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Introduction Objectifs

Objectifs |

Mise en oeuvre de la théorie des langages formels.

Compréhension des techniques de compilation.

Utilisation d’outils de génération de code (flex, bison).

Utilité des traducteurs : compilateurs, interpréteurs, convertisseurs de
format (rtfToLatex, LaTeXToHtml, postscript To ...).

Réalisation d'un projet : compilateur d'un langage a objets “Sool".
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Introduction Rappels théoriques

Familles de grammaires et de langages : hiérarchie de

Chomsky |

On classe les grammaires G = (V1, Vi, R, S) en quatres grandes familles
(ou types ou classes) numérotés de 0 a 3, de la plus large a la plus petite
au sens de l'inclusion stricte. Les quatres familles se distinguent par les
restrictions imposées aux régles de production de chaque famille.

Type 0 aucune restriction. Les langages engendrés sont qualifiés de
récursivement énumérables.

Type 1 toute régle r de R est de la forme : r = a X — amf avec
a,BeV*; XeVy;, me VT,
Attention m ne peut étre le mot vide! Ces grammaires sont
dites contextuelles ou dépendant du contexte (« et
représentant ce contexte). Le mot vide ne pouvant étre
généré par ces grammaires, une exception existe : la regle
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Introduction Rappels théoriques

Familles de grammaires et de langages : hiérarchie de

Chomsky I

S — € peut exister a condition que S ne soit pas présente
dans une partie droite d'une regle de production.

le P garcon — le petit garcon; la P N — la petite N; N — fille.

Type 2 toute régle r de R est de la forme : r = X — o avec a € V*;
X € Wy.
Ces grammaires sont dites algébriques, ou indépendantes du
contexte (“context-free"), ou grammaires de Chomsky, ou
C-grammaires.

P — (P)|e| PP : une grammaire de parenthéses.
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Familles de grammaires et de langages : hiérarchie de

Chomsky [l

Type 3 toute régle r de R est de la forme : r = X — « avec
ac VrVyu VTU{E}; X e Vy:
Ces grammaires sont dites réguliéres, ou rationnelles, ou
grammaires de Kleene, ou K-grammaires.

P — O|1E|2E|...|9E; E — OE|...|9E|e : une grammaire réguliere
d'indices.

.

Théoréme

On note L; I'ensemble des langages engendrés par les grammaires de type
i. On a alors l'inclusion stricte : £3 C L, C L1 C Lg.

.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601| Univ. Montpellier



Introduction Langages réguliers : propriétés et caractérisations

e Introduction

@ Langages réguliers : propriétés et caractérisations

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601| Univ. Montpellier 10 /389



Introduction Langages réguliers : propriétés et caractérisations

Langages réguliers : propriétés et caractérisations |

Théoreme

Les 4 propositions suivantes sont équivalentes :

O le langage L est défini par une expression réguliére;

@ le langage L est généré par une grammaire réguliere ;

© le langage L est reconnu par un automate fini déterministe ;
@ le langage L est reconnu par un automate fini indéterministe.

Théoreme (Théoreme de Kleene)

La famille des langages réguliers L3 est la plus petite famille de langages
qui contient les langages finis et qui est fermée pour les opérations
réunion, produit et étoile.
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Langages réguliers : propriétés et caractérisations |l

Théoreme (la pompe, version 2a)

Soit L, un langage régulier infini sur V. Alors, 3k € N — {0} tel que
Vme L,|m| > k,3x,u,y € V* tel que u # e, m = xuy, |xu| < k et
Vne N, xu"y € L.

Théoréme

Le langage inverse, complémentaire d'un langage régulier est régulier.
L'intersection de deux langages réguliers est régulier.
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Langages algébriques : propriétés et caractérisations |

Définition

L’ensemble des arbres de dérivation (ou arbres syntaxiques) associé a une
grammaire G = (V1, Vy, R, S), noté A(G) est un esemble d’arbres
étiquetés construits par le schéma d’induction suivant.

Univers Ensemble de tous les arbres dont les nceuds sont étiquetés
par des symbole de V U {e}.
Base Ensemble de tous les arbres réduits a une unique racine
étiquetée par un symbole de V U {e}.
Reégles Soit une regle de production quelconque X — y1y» ...y,
avec X € Vi, y; € V U {e}. Soient n arbres syntaxiques

ai, ap,...,ap dont les racines sont étiquetées par
Y1,¥2,...,¥n. Alors |'arbre de racine étiquetée par X et de
sous-arbres ap, ap, ..., a, est un arbre de dérivation de G.
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Langages algébriques : propriétés et caractérisations |l

Théoreme

L'ensemble des dérivations gauches d'une grammaire algébrique
G = (VT1,Vn, R,S) est équipotent a A(G).

.

Définition
Une grammaire G = (VT, Vn, R, S) est ambigué si et seulement s'il existe
deux dérivations gauches distinctes partant de S et aboutissant au méme
mot terminal m.

.

Théoreme
Tout langage régulier est non ambigu.
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Langages algébriques : propriétés et caractérisations |lI

Théoreme (d'Ogden)

Soit L un langage algébrique infini sur V. Alors, 3k € N — {0} tel que
Vme L,|m| > k,3x,u,y,v,z € V* tel que uv # e, m = xuyvz, |uyv| < k
et Vne N, xu"yv"z € L.

Théoreme

La famille des langages algébriques L5 est fermée pour I'union, la
concaténation, |'opération *.

.

Théoreme

La famille des langages algébriques £, n’est pas fermée pour l'intersection
ni la complémentation.

A
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Types de traducteurs |

Préprocesseurs (macro, directives).

Assembleurs (pentium x86, DEC alpha, ...).
Compilateurs (C, C++, javac, visual Basic, ...).
Interpréteurs (basic, shells Unix, SQL, java, ...).
Convertisseurs (dvips, asciiToPostscript, rtfToLaTeX, ...).
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Modele classique de compilation |

@ Analyse du source :

@ lexicale : découpage en “jetons” (tokens);

@ syntaxique : vérification de la correction grammaticale et production
d'une représentation intermédiaire (souvent un arbre);

@ sémantique : vérification de la correction sémantique du programme
(controdle de type (conversions), non déclarations, protection de
composants (privé, public), ...).

L'analyse génére une table des symboles qui sera utilisée tout au long
du processus de compilation. De plus, I'apparition d’erreurs dans
chaque phase peut interrompre le processus ou générer des messages
d’'avertissements (“warnings”).

@ Synthese de la cible :

@ génération de code intermédiaire : machine abstraite (ou virtuelle),
p-code du Pascal, byte-code de java, basic tokenisé de Visual Basic,

‘
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Modele classique de compilation |l

@ optimisation de code : optimiseur de requétes SQL, optimiseurs C et
C++, ..
© génération de code cible : langage machine (C, C++), ou autre.
A la fin de ce processus, il reste encore :

o soit a lier les différents fichiers objets et bibliotheques (C, C++) en un
fichier exécutable (code machine translatable). Le chargeur du systéme
d’'exploitation n'aura plus qu'a créer un processus en mémoire centrale,
lui allouer les ressources mémoires nécessaires, puis lancer son
exécution. Attention, certaines liaisons (linking) peuvent étre retardées
jusqu'a I'exécution (DLL Microsoft, ELF Unix).
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Modele classique de compilation Il

e Soit a interpréter le code cible. C'est la solution choisie par le langage
Java. Cela permet au compilateur javac de générer un code cible
indépendant de la plateforme. Il suffit qu'un interpréte java (dépendant
de la plateforme) soit installé pour exécuter un fichier cible (un .class).
Les navigateurs (“browser” Netscape ou Internet Explorer) contiennent
tous un interpréte intégré ce qui leur permet d'exécuter les “applets”

java.
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Remarques |

By

o L'analyse lexicale est souvent réalisée “a la demande” de I'analyse
syntaxique, jeton par jeton. Ainsi la décomposition en phase (analyse
lexicale, syntaxique, sémantique, ...) n'engendre pas forcément la
méme décomposition en “passes”, une passe correspondant a la
lecture séquentielle du résultat de la phase précédente. Les problémes
de “référence en avant” (“forward reference”) pose tout de méme des
problémes a la compilation en une seule passe. Il faut pouvoir laisser
des “blancs” qu'on pourra reprendre plus tard quand on connaitra la
valeur de cette référence.

@ Le compilateur est souvent décomposé en une partie “frontale”
indépendante de la plateforme de développement, et une partie
“finale” dépendante de la plateforme de développement. Ainsi,
I'écriture d'un compilateur du méme langage source pour une autre
plateforme est moins couteuse.
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Reconnaissance d'un mot par un AFD |

rappelons les résultats sur les Automates d'états Finis Déterministes
(AFD) :

@ un AFD posséde un unique état initial

@ aucun couple de transitions (ej, a, &), (ej, a, ex) tels que j # k

@ l'ensemble des transitions peut étre implémenté simplement par une
table a double entrée TRANS|etatCourant|[carCourant]| qui contient
I'état suivant

o l'algorithme suivant décrit la reconnaissance d'un mot par un AFD
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Algorithme accepter()

Algorithme 1 : Reconnaissance d'un mot par un AFD
Données : B= (V,E,D = {d},A, T) un AFD; mot une chaine de
caractéres ou un flot
Résultat : Booléen
Fonction accepter (B, mot) : Booléen;
début
etat=d;
tant que (c=carSuivant(mot))# $ faire
si Je € E tel que (etat,c,e) € T alors
| etat=e;
sinon
L retourner FAUX;

retourner test(etat € A) ;
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Implémentation d’Automates Finis Déterministes AFD |

Soit I'AFD de la figure 1 reconnaissant |'expression réguliére a(b™*c)?|bd

©
a

Figure 1 — AFD
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Implémentation d’Automates Finis Déterministes AFD Il

Nous le représentons par un fichier d'en-téte C ayant les caractéristiques
suivantes :
@ les états de d’automate sont représentés par des macro définitions
symboliques (#define)
@ le vocabulaire sera défini sur un sous-ensemble (ici {a, b, ¢, d}) du
type C char
@ les transitions sont stockées dans un tableau TRANS d'entiers a
double entrée de NBETAT lignes et 256 colonnes (un char possédant
256 codes)
@ un tableau FINAL d’entier de taille NBETAT indiquera si I'état est
final (1) ou non (0)
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Implémentation d’Automates Finis Déterministes AFD I

%k
* @file afd.h Définition d'un AFD reconnaissant a(b+c)?/bd
* Q@author Michel Meynard
*/

#define EINIT O

#define EA 1

#define EAB 2

#define EABC 3

#define EB 4

#define EBD 5

#define NBETAT 6

int TRANS[NBETAT] [256] ; /* table de transition */
int FINAL[NBETAT]; /* final (1) ou mon (0) 2 */
void creerAfd(){ /* Construction de l'AFD */

for (int i=0;i<NBETAT;i++){
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Implémentation d’Automates Finis Déterministes AFD IV

for(int j=0;j<256;j++) TRANS[il [jl1=-1; /* init vide */
FINAL[i]=0; /* init tous états non finaux */
+
/* Transitions de 1'AFD */
TRANS[EINIT] ['a']=EA;TRANS[EA] ['b']=EAB;TRANS[EAB] ['b']=EAB;
TRANS[EAB] ['c']=EABC;TRANS[EINIT] ['b']=EB;TRANS[EB] ['d']=EBD;
FINAL[EA]=FINAL[EABC]=FINAL[EBD]=1; /* états finauxz */
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Implémentation en C de I'algorithme de reconnaissance

d'un mot par un AFD |

Jk*

* @file accepter.c Définition de la fon accepter
* Qauthor Michel Meynard

*/
#include <stdio.h>
#include "afd.h" /* définition de l'automate */
int accepter(){ /* reconnatt un mot sur
— Ll'entrée standard */
int etat=EINIT; /* unique état initial */
int c; /* caractére courant */
while ((c=getchar())!=EOQF) /* Tq non fin de fichier */
if (TRANS[etat] [c]!=-1) /* si transition définie */
etat=TRANS[etat] [c]; /* Avancer */
else return O; /* sinon Echec de

— reconnaissance */
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Implémentation en C de I'algorithme de reconnaissance

d'un mot par un AFD Il

return FINAL[etat]; /* OK si dans un état final
— */

}

int main({ /* Programme principal */
creerAfd(); /* Construction de 1'AFD */

printf("Saisissez un mot matchant a(b+c)?|bd suivi de EOF
— (CTRL-D) SVP : ");
if (accepter())
printf ("\nMot reconnu !\n");
else
printf ("\nMot non reconnu !\n");
return 0;
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Test du programme |

$ gcc -Wall accepter.c -o accepter

$ accepter

Saisissez un mot matchant a(b+c)?|bd suivi de EOF (CTRL-D) SVP
— abbbc

Mot reconnu !

$ accepter

Saisissez un mot matchant a(b+c)?|bd suivi de EOF (CTRL-D) SVP
s abd

Mot non reconnu !
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Discussion sur I'implémentation |

Il existe d'autres types d'implémentation, plus efficaces en mémoire, de la
table de transition d'un AFD :

@ par un multigraphe étiqueté chainé (pointeurs),

@ par une table de transition plus petite; la taille de la table est alors :
taille( TRANS) = |E| = |V|. Cette solution est adoptée par le
programme flex (voir section 5), avec une structure de données
réduisant la taille de la table qui est souvent “creuse”
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Analyseur lexical |

L'analyse lexicale est bien plus complexe que la simple reconnaissance d'un
mot.

@ Suite a la reconnaissance d’un mot ou lexéme, I'analyseur lexical doit
retourner un jeton (token) entier associé a la catégorie lexicale du
mot accepté

@ Un jeton (token) est généralement représenté par un entier positif ou
une instance de classe

@ Les entiers inférieurs a 256 sont réservés aux mots clés composés
d'un seul caractére : (“{", “;", “]", ...). Leur code (ASCII, ISO
Latinl, ...) correspondra ainsi a leur jeton

@ Chaque mot clé de plus d'une lettre est également associé a son
jeton : (if, 300), (else, 301), (while, 302), ...

@ On définira également un jeton pour chaque catégorie lexicale
variable : (littéral entier, 303), (littéral chaine, 304), ...
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Analyseur lexical I

@ Pour les catégories lexicales variables, il faudra également “retourner”
une valeur sémantique associée

@ pour les littéraux entiers on pourrait retourner la valeur entiére
correspondante

@ pour les identificateurs le lexéme lui-méme ou l'indice d'entrée
correspondant dans la table des symboles

@ De plus, un analyseur lexical doit reconnaitre une suite de lexémes
dans un flot de caracteéres

@ Dans 'automate d’états finis déterministe (AFD), chaque état
terminal est associé a un jeton retournable

@ C'est le chemin parcouru dans I'automate qui déterminera le jeton a
retourner
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Analyseur lexical Il

@ Cela peut poser probléme lorsque un mot du langage est préfixe d'un
autre. Lorsqu'on est sur le dernier caractére du préfixe, pour savoir
quel jeton retourner, il est nécessaire de regarder le caractére suivant :
si celui-ci étend le lexéme reconnu, on le lira et on avancera dans
I'automate (régle du mot le plus grand possible), sinon on
reconnaitra le préfixe.

@ Par exemple, while( est reconnu comme un mot clé puis une
parenthese, alors que whilel est reconnu comme un identificateur.

@ Attention, si on a avancé dans I'AFD et que I'on se retrouve dans un
état non terminal sans pouvoir avancer, il faudra reculer afin de
retourner dans le dernier état terminal parcouru! Ce recul nécessite de
rejeter dans le flot d'entrée (ungetc) les caractéres qui ont été lus en
trop.
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Analyseur lexical [V

@ En reprenant |'exemple précédent, le mot “abd” doit étre analysé
comme une suite des jetons A, BD méme si a un moment |'analyseur
avait avancé jusqu’a I'état EAB.

@ une convention habituelle permet de retourner le jeton 0 lorsqu’on est
arrivé a la fin du flot.

@ Enfin, I'analyseur lexical doit filtrer un certain nombre de mots
inutiles pour I'analyseur syntaxique (blancs (espace, tabulations,
retour a la ligne), commentaires, ...).

Prenons I'exemple du morceau de code correspondant a la fonction
main() du fichier accepter.c précédent et voyons la suite de couple
(jeton, valeur sémantique) que doit successivement retourner la fonction
d’'analyse lexicale du compilateur C :
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Analyseur lexical V

(INT,) (ID,'main') C'(C',) ("',) ('{',) (ID,'creerAfd') ('(',)
', ¢yy,) (D, 'printf') (' (')

(LITTERALCHAINE, 'Saisis...') (")',) (';',) (IF,) ('(',
(ID, 'accepter') ('(',) (')',) (")',) (ID,'printf') ('(
(LITTERALCHAINE, '\nMot..."') (')',) (';',) (ELSE,)

(ID, 'printf') ('(',) (LITTERALCHAINE, '\nMot...') (")',)
(';',) (RETURN,) (LITTERALENTIER,0) (';',) ('}")

"algorithme suivant décrit le fonctionnement d'un tel analyseur lexical

{

)
l’)

L

—
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Algorithme Analyseur lexical |

Algorithme 2 : Analyseur lexical

Données : B = (V,E,D = {d},A, T); JETON[A]; flot;
Résultat : (Entier : le jeton reconnu, Chaine : le lexéme reconnu)
Fonction analex(B, JETON[A], flot) : (Entier, Chaine)
début
etat=d; lexeme=""; efinal=-1; Ifinal=0; // Init.;
tant que ((c=carSuivant(flot))# $) et (etat,c,e) € T faire
lexeme=lexeme . c; etat=e¢;
si e € A alors

L efinal=e; Ifinal=|lexeme|;
si etat € A alors
| rejeter(flot, c); retourner (JETON[etat] lexeme);
sinon
si efinal > —1 alors

rejeter(flot, c); rejeter(flot, sous-chaine(lexeme,lIfinal,|lexeme])) ; retourner

(JETON|efinal], lexemel0, lfinal — 1]);

sinon

si lexeme="" et c=$ alors

| retourner (0,""); // pas d'état final;
sinon
si lexeme="" alors
| retourner (c,c);
sinon
L rejeter(flot, c); rejeter(flot, sous-chaine(lexeme,1,|lexeme|));

nn

wn

retourner (lexeme[0], lexeme[0]);// tout sauf le ler car;
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Remarques sur I'algorithme |

@ la gestion des mots non reconnus est la suivante : retourner le jeton
correspondant au code ASCII du premier caractére. Contrairement a
cela, Lex lui ne retourne aucun jeton mais envoie ce premier caractere
sur la sortie standard et tenter de se resynchroniser sur le caractére
suivant;

@ on suppose dans cet algorithme que le symbole $ est retourné a
I'infini par carSuivant() lorsqu’on est parvenu a la fin du flot;

@ Remarquons que dans le cas ou ['état initial est également final, le
mot vide est donc acceptable. Par conséquent, sur un mot non
acceptable ou sur le mot vide, I'analyseur lexical retournera une suite
infinie de jetons associés a I'état initial !
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Remarques sur I'algorithme |l

@ le caractére minimal d'un AFD n'est pas une bonne propriété pour les
analyseurs lexicaux dans la mesure ou la minimisation d'un AFD
fusionne plusieurs états terminaux ce qui interdit le retour de jetons
distincts. Il suffit de construire I'AFDM du langage {< b >, < /b >}

pour s'en persuader!
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@ Implémentation des analyseurs lexicaux
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Implémentation des analyseurs lexicaux |

@ L'implémentation en C de la fonction d’analyse lexicale analex()
correspondant a I'algorithme précédent suit.

@ En C, une seule valeur pouvant étre retournée par une fonction, on
choisit de retourner le jeton et d'implémenter la valeur sémantique
dans une variable globale 1exeme de type chaine de caractéres

@ On utilise I'AFD de la figure 1 et on transforme la définition de
I'automate pour ajouter la définition des jetons dans un tableau entier
JETON remplagant le tableau FINAL (afdJeton.h) :

JETON [EA]=300; JETON [EABC]=301; JETON [EBD]=302; // jetons des
— états finaux
Nous représentons la fonction d’'analyse lexicale int analex() dans le
fichier analexJeton.h :
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Implémentation des analyseurs lexicaux |l

J k%
* O@file analexJeton.h
* Qauthor Michel Meynard
*/

char lexeme[1024]; /* lexéme courant de tatille mazi 1024 */

int analex(){ /* reconnait un mot sur l'entrée standard */
int etat=EINIT; /* unique état initial */
int efinal=-1; /* pas d'état final déja vu */
int 1final=0; /* longueur du lezéme final */
int c;char sc([2];int i; /* caractére courant */
lexeme[0]='\0'; /* lexeme en wvar globale (pour le main)*/
while ((c=getchar())!=EOF && TRANS[etat] [c]!=-1){ /* Tq on peut
- awvancer */
sprintf (sc,"%c",c); /* transforme le char c en chaine sc */
strcat(lexeme,sc); /* concaténation */
etat=TRANS[etat] [c]; /* Avancer */
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Implémentation des analyseurs lexicaux Il

if (JETON[etat]){ /* st état final */
efinal=etat; /* s'en souvenir */
1final=strlen(lexeme); /* longueur du lezeme egalement */
Y /* fin si */
} /* fin while */
if (JETON[etat]l){ /* état final */
ungetc(c,stdin); /* rejeter le car non utilisé */
return JETON[etat]; /* ret le jeton correspondant */
}
else if (efinal>-1){ /* on en avait vu 1 */
ungetc(c,stdin); /* rejeter le car non utilisé */
for(i=strlen(lexeme)-1;i>=1final;i--)
ungetc(lexeme[i],stdin); /* rejeter les car en trop */
lexeme[1final]l="'\0"'; /* woici le lexeme reconnu */
return JETON[efinall; /* retourner le jeton */
}
else if (strlen(lexeme)==0 && c==EOF)
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Implémentation des analyseurs lexicaux [V

return O; /* cas particulier */
else if (strlen(lexeme)==0){
lexeme[0]=c;lexeme[1]="'\0"; /* retourner (c,c) */

return c;

}

else {
ungetc(c,stdin); /* rejeter le car non utilisé */
for(i=strlen(lexeme)-1;i>=1;i--)

ungetc(lexeme[i] ,stdin); /* rejeter les car en trop */

return lexeme[0];

}

}

Enfin la fonction principale est codé dans le programme C suivant :
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Implémentation des analyseurs lexicaux V

/** @file analexzJeton.c
* Q@author Michel Meynard
*/
#include <stdio.h>
#include <string.h>
#include "afdJeton.h" /* Définition de l'AFD et des JETONS */
#1include "analexJeton.h" /* Déf. fon : int analex() */

int main(){  /* Construction de 1'AFD */
int j;  /* jeton retourné par analex() */
char *invite="Saisissez un(des) mot(s) matchant a(b+c)?|bd
< suivi de EOF (CTRL-D) SVP : ";
creerAfd();  /* Construction de 1'AFD 4 jeton */
printf("%s",invite); /* prompt */
while((j=analex())!=0){ /* analyser tq pas jeton 0 */
printf("\nRésultat : Jeton = %d ; Lexeme =
—  %s\nZ%s",j,lexeme,invite);
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Implémentation des analyseurs lexicaux VI

3

return 0O;

}

Aprés compilation de ce programme C, on |'exécute :

Saisissez un(des) mot(s) matchant a(b+c)?|bd suivi de EOF
<+ (CTRL-D) SVP : abdaabbc

Résultat : Jeton = 300 ; Lexeme = a

Résultat : Jeton = 302 ; Lexeme = bd

Résultat : Jeton = 300 ; Lexeme = a

Résultat : Jeton = 301 ; Lexeme = abbc

Saisissez un(des) mot(s) matchant a(b+c)?|bd suivi de EOF
— (CTRL-D) SVP : baabc

Résultat : Jeton 98 ; Lexeme = b

Résultat : Jeton 300 ; Lexeme = a

Résultat : Jeton 301 ; Lexeme = abc

Saisissez un(des) mot(s) matchant a(b+c)?|bd suivi de EOF
— (CTRL-D) SVP : xx
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Implémentation des analyseurs lexicaux VII

Résultat : Jeton = 120 ; Lexeme =
Résultat : Jeton = 120 ; Lexeme =
Résultat : Jeton = 10 ; Lexeme =

X
X

Remarque : sur |'entrée standard Unix le CTRL-D tapé en début de ligne
génére un EOF, mais aprés une chaine de caracteres, le CTRL-D (parfois
doublé a cause des ungetc) génére un vidage (flush) du tampon d’entrée
sans caractére supplémentaire a la différence du ENTREE.

@ Une derniéere fonctionalité a réaliser par les analyseurs lexicaux est le
filtrage des séparateurs (blancs : espaces, tabulations, ...) et des
commentaires.

@ dans notre implémentation précédente de I'exemple analexJeton.h,
on fixera un jeton négatif pour les états finaux a filtrer
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Implémentation des analyseurs lexicaux VIII

o Il suffira alors de modifier les retours de jeton négatif en appel récursif
a analex() : return JETON[etat]; deviendra alors return
(JETON[etat]<0 ? analex() : JETON[etat]);.

@ Idem pour return JETON[efinall;. On trouvera ces changements
dans le fichier analex.h fourni pour les TD.
Pour conclure, avec un langage réel de taille importante, il devient
difficile de construire manuellement I'’AFD sans se tromper (plusieurs
centaines de transitions). De plus, I'évolution permanente de la
grammaire d'un langage en cours de conception rend nécessaire
I'utilisation d'un outil informatique pour modéliser le langage lexical a
I'aide d'expressions régulieres. L'outil aura comme mission de
transformer ces expressions en AFD a jeton et de fournir une fonction
d’'analyse lexicale.
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Un langage et un outil pour I'analyse lexicale : flex |

@ Pour plus d'informations sur flex, faire man flex

@ Lex est un outil permettant de générer un programme d'analyse
lexicale a partir de définitions de modéles (expressions réguliéres) et
d’actions a exécuter lors de la reconnaissance de ces modeéles

o Il existe différentes versions de lex (lex, flex, pclex,...) sur différentes
plateformes et permettant |'utilisation de différents langages d’actions

(C, ada, ...)

@ Les plus usuelles tournent sous Unix et utilisent le C. Nous utiliserons
“Flex" qui est une version gratuite, rapide, n'ayant pas besoin de
bibliothéque
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Un exemple |

Analyseur lexical de la figure 1 réécrit en flex :

7 /% analflex.l */

/* ZONE DE DEFINITION (OPTIONNELLE) */

/* ZONE DES REGLES apres le double pourcent (OBLIGATOIRE) */
5}

hte

a {return 300; /* ret un jeton */}

ab+c {return 301; /* ret un jeton */}

bd {/* ne rien faire : filtrer */}

.INn {return -1; /* ret un jeton pour tout le reste */}
hte

/* ZONE DES FONCTIONS C */

main()

{int j; char *invite="Saisissez un(des) mot(s) matchant
— a(b+c)?|bd suivi de EOF

(CTRL-D) SVP : ";

printf (invite) ;
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Un exemple I

while ((j=yylex())!=0) printf("\nJeton : %i; de lexeme

<  %s\n%s",j,yytext,invite);

}

Aprés compilation flex, flex analflex.l, puis compilation C et éditions
de liens avec la bibliotheque flex, gcc -o analflex lex.yy.c -1f1, il
ne reste plus qu'a lancer I'exécutable analflex obtenu :

Saisissez ... : abbbbcbdbdabdabbc
Jeton : 301; de lexeme abbbbc
Jeton : 300; de lexeme a

Jeton : 301; de lexeme abbc
<CTRL>-<D>

o L'analyseur lexical généré tente, de maniére itérative, de reconnaitre
une expression réguliére (pattern matching) puis exécute les
instructions C correspondantes
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exemple Il

e L’analyseur termine sur la fin de fichier (EOF) de I'entrée standard
(CTRL-D pour le terminal)

@ Les mots ne correspondant a aucune expression réguliere sont rejetés
dans la sortie standard sans aucun traitement particulier.

@ Au coeur du source C lex.yy.c généré par flex, la fonction C : int
yylex() d'analyse lexicale permet de retourner un jeton entier
correspondant au modele reconnu

@ Dans I'exemple précédent, la fonction principale : int main() appelle
yylex () itérativement jusqu'au caractere de fin de fichier

@ La résolution de I'ambiguité de reconnaissance est obtenue d'une part,
par la tentative de toujours reconnaitre le mot le plus long, d'autre
part par I'ordre des expressions réguliéres dans le source lex
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Un exemple IV

@ Sil'on observe le code C généré dans lex.yy.c, on s'apercoit que
I'automate fini déterministe calculé par flex est codé dans un tableau
statique du programme C.
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Architecture d'un fichier flex |

Un source lex comprend 3 sections séquentielles :

@ une section optionelle de définitions. Elle contient les directives
d'inclusions et les définitions globales C (variables, types, ...).

@ Une section obligatoire de régles lex délimitée par %% au début. C'est
la section centrale du source lex qui définit I'analyseur lexical en
associant des instructions C a des expressions réguliéres.

@ Une section optionelle de fonctions C définies par |'utilisateur
délimitée par %% au début. C'est |a que I'on peut définir le main().
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Les regles lex |

Une regle lex se présente de la facon suivante : une expression réguliere,
suivie de séparateur(s), suivie de

@ d'un bloc d'instructions C ou C++ encadré par des accolades ou bien
e ;" (ne rien faire) ou bien

@ d'une instruction C a exécuter.

L'espace et la tabulation sont les séparateurs qui divise la régle en deux. Le
modeéle lexical doit commencer en début de ligne et la regle doit se
terminer par un “;” ou une fin de bloc C “}".
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Syntaxe des expressions réguliéres |

Soit e et r deux ers quelconques, c et d deux caractéres, m et n deux
nombres entiers positifs :

Exemple Signification Opérateur
abc concaténation implicite er
Monsieur|Madame | union elr
b* opération * : 0 an 'b’ e*
b+ opération +:1an'b’ e+
cartons ? optionnel : carton ou cartons e?
(abc)* parenthésage pour priorités (e)
[ace] classe de car : 1 caractere parmi [cd]
[a-z] [0-9] 1 minuscule suivie d'1 chiffre [c-d]
[Tabcl 1 caractére sauf a, b ou ¢ [Tcd]
HEIIE évite l'interprétation des opérateurs "de"
\* le caractére * (et non pas |'opérateur) | \c
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Syntaxe des expressions réguliéres |l

. un car quelconque hormis newline .
[0-9]1{3} trois chiffres e{n}
a{1,10} entre 1 3 10 'a’ contigus e{m,n}
a{3,} au moins 3 'a’ contigus e{m,}
“Bonjour Bonjour en début de ligne )
Au revoir$ Au revoir en fin de ligne (pas en EOF) | e$
“Bonjour$ interdit (1 seul opérateur contextuel)
Bonjour/(toto) Bonjour seulement si suivi par toto e/r
Dupont seulement si on est dans |'état
<etat1>Dupont <state>e
etatl
<<EOF>> fin de fichier (seulement flex) <<EOF>>
<state><<EIF>> fin de fichier dans un certain état <a><<EOF>>
(seulement flex)
chiffre = alias dans la lére section du
{chiffre} {def}
source lex
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Instruction(s) C |

@ La partie droite de chaque régle est un bloc d'instructions C

@ Le texte inclu entre accolades sera recopié intégralement dans
lex.yy.c sans aucune analyse ni modification

@ Les instructions C peuvent faire appel a des fonctions prédéfinies par
lex ou définies par |'utilisateur dans la troisiéme section du source lex

@ En particulier, avec flex, on peut ne pas utiliser la librairie flex
1libfl.a a condition de définir la fonction principale main() ainsi que
la fonction int yywrap()
int yywrap() {return 1;} /* pas d'enchainement sur un autre
— fichier */
main() {while (yylex()!=0) {} } /* boucle sans rien faire
— jusqu'd eof */

@ une autre solution pour yywrap consiste a utiliser dans le préambule
I'option suivante :
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Instruction(s) C I

%option noyywrap
@ Les instructions C peuvent référerencer une variable :

o soit prédéfinie par lex : la chaine char* yytext de longueur int
yyleng correspond au mot reconnu dans le texte a analyser (lexeme);

e soit définie en section définitions : dans ce cas, la variable est globale;

e soit définie juste apres I'accolade : dans ce cas, la variable est locale a
la régle.
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Un exemple |

Le source lex suivant illustre |'utilisation des variables :
%{ int glob=0; %}
Dot
-7[1-9]+ {int loc=5; glob++;loc++;
printf ("/d éme entier de taille %d; loc=
— %d",glob,yyleng,loc);

}
Une exécution de ce programme donne :
12
1 éme entier de taille 2; loc= 6
123
2 éme entier de taille 3; loc= 6
-1

3 éme entier de taille 2; loc= 6
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Variables prédéfinies |

yytext chaine de car (char *) contenant le lexéme en cours de
reconnaissance;;

yyleng longueur (int) de yytext;

yyin flot d'entrée des caractéres de type FILE* (par défaut

stdin); On peut rediriger le flot d’entrée sur le premier
argument du main en faisant : yyin=fopen(argv[1],"r");

yyout sortie standard de type FILE*. Pour y afficher, faire :
fprintf (yyout, "...");

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601| Univ. Montpellier 69 /389



Analyse lexicale ~ Syntaxe et sémantique des sources Flex

Fonctions prédéfinies |

int yylex() lit un lexéme depuis le flot d'entrée et retourne le jeton
associé. Retourne le jeton 0 pour finir.
int input() lecture d’un caractére depuis le flot d’entrée (yyinput en
C++); input () équivaut a fgetc(yyin) ;
void unput(int) retour dans le flot d’entrée d'un car; unput (c) équivaut a
ungetc(c,yyin) ;
int yywrap() lorsque I'analyseur yylex() arrive en fin de fichier (EOF), il
appelle yywrap (). Si yywrap retourne 1 (par défaut) alors
yylex() retourne O (fin d'analyse). Si on voulait enchainer
sur un autre fichier, il faut redéfinir dans la section
"“définitions” du source lex, la fonction yywrap() afin qu’elle
fasse pointer yyin sur le nouveau fichier puis retourne 0;
yymore() concaténe dans yytext le prochain lexéme avec celui en
cours;
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Fonctions prédéfinies |l

yyless(int n) replace le lexéme reconnu yytext dans le flot d'entrée a
I'exception de ses n premiers caracteres;
ECHO affiche yytext; ECHO équivaut a fprintf (yyout,yytext) ;
REJECT rejette le lexeme reconnu dans le flot d'entrée et s'interdit de
reconnaitre la régle courante au prochain essai (appel de
yylex()).
BEGIN(etat) positionne I'automate dans la condition de départ etat. Cet
état doit avoir été défini dans la premiére section grace a
%Start etat ou a %x etat. BEGIN(O) permet de revenir a
I'état normal.
int main() par défaut, la librairie de 1lex (1ibl.a) ou de flex
(1ibfl.a) définissent une fonction pricipale qui appelle
yylex () jusqu'a ce que celle-ci retourne 0.
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Ambiguités de correspondance |

Regle de la plus longue correspondance (match) si un préfixe (début de
chaine) correspond a plusieurs expressions réguliéres
possibles, lex choisira I'expression réguliere correspondant a
la plus longue extension. Par exemple, avec les régles
suivantes :

end {return 300;%}
[a-z]+ {return 301;}

Le mot endemique se verra appliquer la seconde régle
(identificateur) et yylex() retournera 301.

Attention aux opérateurs contextuels en avant qui
comptabilisent les caractéres en avant : par exemple,
I'expression réguliere a$ sera préféré a I'expression a pout
tout a en fin de ligne.
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Ambiguités de correspondance |l

Regle du premier trouvé si la longueur de correspondance est égale pour
plusieurs régles, alors c’est la premiere dans la liste qui est
déclenchée. Dans |'exemple précédent, le mot end
déclenchera le retour de 300. Par conséquent, pour un
langage donné, il faut toujours placer les régles concernant
les mots-clés au début.

Attention aux opérateurs contextuels qui provoquent parfois des “erreurs” !
En effet, I'utilisation des 2 régles suivantes provoque un conflit gagné par
la premiére régle (a I'encontre de la régle du plus long lexéme) :

a+$ {return 300; /* ret un jeton */}
“a+\n  {return 301; /* ret un jeton */}

@ En inversant 'ordre de ces deux régles, tout se passe cependant
comme prévu.
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Ambiguités de correspondance ||

e En fait, les opérateurs contextuels de suffixe ($, /) sont consommés
apres le lexeme et c'est ce mot qui doit étre considéré comme le plus
long possible.

o Ensuite, le suffixe sera rejeté dans yyin.
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section définitions |

Il existe différentes sortes de définitions :

Abbréviation de modéle certains facteurs de modéles revenant
fréquemment dans les régles, on peut en définir des alias
selon la syntaxe suivante : nomAlias séparateur(s)
modéle. Par exemple :

chiffre  ([0-9])
minuscule ([a-z])
exposant ([DEde] [-+]7{chiffre}+)

Dans cet exemple, chiffre désigne I'alias de [0-9]. Ces alias
seront principalement utilisés dans les expressions régulieres
en les entourant d'accolades. Le parenthésage sera utilisé
systématiquement pour éviter des problemes liés aux
priorités.
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section définitions Il

Start conditions permet de conditionner la reconnaissance de certaines
expressions régulieres selon I'état dans lequel I'analyseur se
trouve. Par exemple, %Start statel state2 state3
définit trois états. Ceux-ci pourront étre utilisés en préfixe
des expressions réguliéres : <state2>[a-z]+
{BEGIN(state3);}. La définition des états peut également
se faire par %x s1 s2 (exclusif). Dans ce cas, I'analyseur ne
peut se trouver que dans un seul état a la fois. Dans I'autre
cas, %Start ou %s, I'état est prioritaire mais les autres régles
(sans état) seront utilisées s'il n'y a pas de correspondance
possible ! Il est donc préférable d'utiliser %x s1 s2.

Définition de variables et autre toute ligne de la section définitions
débutant par un espace ou une tabulation est recopiée au
début du source C généré par lex
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section définitions |l

Ces lignes seront donc externes a toute fonction C du code
correspondant a I'automate.

Idem pour tout ce qui est inclus entre %{ et %}, ces
délimiteurs étant détruits dans lex.yy.c. A part les
variables globales, cette section permet d'inclure des macros
#include #define, des typedef, .. ..
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Troisieme section |

o Cette section permet d'écrire des fonctions C utilisées dans les parties
droites des regles.

@ On peut également redéfinir les fonctions main(), yywrapQ,
input (), unput(char), ... afin de surcharger leur versionflex.

o Ces fonctions peuvent également étre redéfinies dans un fichier inclus.

@ Enfin, on peut utiliser des fichiers objets externes lors de I'édition de
liens a condition d'avoir inclus leurs en-tétes dans la premiére section
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La commande flex |

Principales options de la commande flex :

flex -d débogue un source flex en affichant lors de I'exécution la
regle reconnue (ligne) et le lexéme;

flex -T trace I'automate construit en donnant : I'AFN (nfa), I'AFD
(dfa), et les classes de caractéres définies;

flex -v (verbose) donne des informations statistiques sur I'automate
généré;

flex -s supprime la régle par défaut qui consiste a envoyer sur la
sortie standard tout caractére non reconnu.
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makefile |

Voici la partie du makefile correspondant a la génération d'applications a
partir de source flex d'extension .1 sans la bibliothéque flex (il faut
définir les fonctions int main() et int yywrap()

.SUFFIXES:.1

CC=gcc

CFLAGS=-g

LEX=flex

.1: # sans librairie
@echo début $(LEX)-compil : $<
$(LEX) $<
Q@echo début compil C de lex.yy.c
$(CC) $(CFLAGS) -o $* lex.yy.c
Q@echo fin $(LEX)-compil : $<
@echo Vous pouvez exécuter : $x*
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Actions C+-+ |

Il est possible d’'utiliser f1lex avec des actions en C+—+. Il suffit alors de
compiler lex.yy.c avec un compilateur C++. Soit le source flex
suivant :

A
#include <iostream.h>
class A{
public:
void essai(){cout<<"Identif ";
}
+;
ht
Toto
[a-z] ([a-z] | [0-9])* {return 4;}
. {return 5;%}
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Actions C+-+ I

Ioth
int main(){
A a; int i;
while ((i=yylex())!=0)
if (i==4) a.essai();

}

Apres compilation par flex exempleC++.1+ puis g++ -g -o
exempleC++ lex.yy.c -1f1, on obtient un exécutable.
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makefile pour le C++ |

Voici les 2 entrées de makefile pour les sources flex contenant des
instructions C++ :

CPP=g++

CPPFLAGS=-g

1+ # C++ sans la librairie LEX
$(LEX) $<

$(CPP) $(CPPFLAGS) -o $* lex.yy.c
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Liaison avec un analyseur syntaxique |

@ Lorqu'il est utilisé avec un analyseur syntaxique généré par yacc ou
bison, c'est la fonction d'analyse syntaxique yyparse() qui appelle
itérativement yylex () pour obtenir les jetons correspondants au
fichier analysé.

@ La fonction principale int main() appelle alors yyparse() et non
plus yylex ()

@ Une ou plusieurs variables globales, yylval par exemple, peuvent étre
alors partagées par les 2 fonctions yylex () et yyparse().

@ Souvent la variable yylval sera utilisée pour stocker un attribut
sémantique associé au jeton retourné par Flex

@ La définition du type de yylval sera réalisé dans le fichier source
bison qui sera le fichier maitre du projet
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Traduction des expressions réguliéres |

Nous allons étudier les différents algorithmes utilisés par Flex pour
construire “I'automate” déterministe codé en C.

@ construction de “Thompson” qui admet des AFN possédant des
e-transitions mais ayant un unique état initial et un unique état final

@ la donnée est constituée d'une expression réguliére r (sans () sur
I'alphabet V

@ Le résultat est un AFN

@ Le principe revient a associer récursivement un automate a chaque
noeud de I'arbre syntaxique de I'expression réguliere
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Traduction des expressions régulieres |l

Algorithme 3 : construction d'un automate équivalent a une expression
réguliere

Données : r une expression réguliére sur V
Résultat : B=(V,E,D,A, T)
1 Construire |'arbre a de construction inductive de r // arbre syntaxique
der
2 i=0 // numéro d’état;
3 B=arbreVersAF(a) // appel a la fonction définie dans I'algorithme 4
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Traduction des expressions régulieres |l

Algorithme 4 : construction d'un automate a partir d'un arbre

Données : a un arbre syntaxique d'une expression réguliere r
Résultat : B=(V,E,D,A, T)

Fonction arbreVersAF(a) : automate;

si a est une feuille étiquetée par un symbole s € V U {c} alors
B=(V,{i,i+1}{i}, {i+1},{(i,s,i +1)});

i=i+2;

retourner B;

si a est étiquetée par e alors

By = (V,Eg,{dg}, {ag}, Tg) =arbreVersAF (sag(a));

By = (V, Ey, {dd}, {ad}, Td) :arbreVersAF(sad(a)) ;
retourner B = (V,Eg U Eg,{dg},{aq}, To U Tg U {agedy}) ;
| // état fin. de By “fusionné” a I'état init. de By
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Traduction des expressions régulieres 1V

Algorithme 5 : construction d'un automate a partir d'un arbre (suite)

si a est étiquetée par | alors

By = (V,Eg,{dg},{ag}, Tg) =arbreVersAF (sag(a))
By = (V,E4,{ds},{a4}, T4) =arbreVersAF (sad(a))
B=(V,E,UE;U{i,i+1},{i},{i+1},

Te U TgU{ieds,icdy, agei + 1, agei + 1}) ;

// on parallélise By et By;

i=i+2;

retourner B ;

si a est étiquetée par * alors

By = (V,Eg,{ds},{ag}, Tg) =arbreVersAF (sous-arbre(a));
B=(V, Eg U { i+ 1}y {it {i+ 1},

Te U {icdg, ici +1,agei + 1, aged,})

// on crée un circuit sur Bg;

i=i+2;

retourner B;
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Traduction des expressions régulieres V

Quelques propriétés de I'algorithme de Thompson :

@ Correction : I'AF construit reconnait le langage L(r) défini par
I'expression réguliére r.

@ L'AF construit a au plus deux fois plus d'états que |r|.

@ L'AF construit a un état initial et un état final.

e Chaque état (non final) possede, soit 1 ou 2 e-transitions sortantes,
soit une transition sortante étiquetée par un symbole de V.

e Chaque état (non initial) posséde, soit 1 ou 2 e-transitions entrantes,
soit une transition entrante étiquetée par un symbole de V.

o L’état final n'a pas de transition sortante, I'état initial n'a pas de
transition entrante.
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Traduction des expressions régulieres VI

Les preuves de ces propriétés sont réalisées par I'analyse de la fonction
récursive arbreVersAF.

La difficulté de mise en oeuvre de cet algorithme réside dans la
construction de I'arbre de dérivation. En effet, la grammaire des
expressions réguliere est algébrique non rationnelle. Une programmation
récursive ad hoc permet cependant de le réaliser. Il ne reste plus ensuite
qu'a déterminiser I'AF ainsi construit pour construire un AFD équivalent a
une expression réguliere.
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Déterminisation |

On va écrire I'algorithme 6 de déterminisation d'un AFN
N=(V,E,D,A T);
o l'idée consiste a fusionner I'ensemble des états ot I'AFN peut étre 3

un “instant” donné en un seul état de I'AFD
D= (V,DE,{d},DA,DT).

@ Pour cela, un état de DE sera modélisé dans I'algo. par un ensemble
d'états de E

@ Il reste a la fin de I'algorithme 6 a numéroter ces ensembles

o L'Epsilon-fermeture d'un ensemble d'états consiste a effectuer la
fermeture réflexo-transitive par des epsilon transitions depuis ces états.
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Algorithme de déterminisation |

Algorithme 6 : déterminisation d'un automate

Données : N=(V,E,D,A, T)
Résultat : B = (V, DE, {d}, DA, DT)
d=EpsilonFermeture(D) ; // on initialise I'ensemble des états initiaux comme unique état de
départ non marqué;
DE={d};
tant que i/ existe un état G = {e1, ez, ..., en} non marqué dans DE faire
marquer G // on traite une seule fois chaque état de I'AFD B;
pour chaque x € V faire
X = EpsiIonFermeture(ULl{ej}) tel que ej € G et (ejxg)) € T // X est
I'ensemble des états atteignables par x a partir de G;
si X # () alors
DE = DE U {X} ;
L DT = DT U{(GxX)} // ajouter la transition dans I'’AFD;

DA={Y € DE/YNA# 0} // les états finaux de B sont ceux qui contiennent au moins un
état final de N,
numéroter les états de DE et substituer ces numéros dans DE,DA,DT
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Remarques |

@ A tout chemin menant d'un état initial a un état final de N, donc a
tout mot de L(N), correspond un chemin de d a un état final dans D.

@ De plus, pour un chemin menant a un état final, I'état {...epy1...}
est final (Voir dans I'algorithme : DA={Y € DE/Y N A # (}).

@ Remarquons que cette déterminisation permet de supprimer tous les
chemins inaccessibles
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Exemple |

Déterminisons I'AFN N suivant :

N = {{a, b},{1..4},{1,2},{3,4},{1a3,1a4,2a3,2b4}}
tracons I'algorithme :

DE = {{1,2}x};

x =a; X ={3,4}; DE = {{1,2}%,{3,4}}; DT = {({1,2}a{3,4})}
x = b; X = {4}, DE = {{1,2}*,{3,4},{4}}; DT =
{({1,2}a{3,4}), ({1, 2} b{4})}

DE = {{1,2}x,{3,4}x,{4}};

x=apuis b X=10

DE = {{1,2}x,{3,4}x,{4}x};

x=apus by X=10

DA = {{3,4},{4}}

numérotation : {1,2} — 1;{3,4} — 2;{4} - 3;D =
{{a, b},{1..3},{1},{2,3},{1a2,1b3}}.
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Minimisation |

@ Rappelons que la forme canonique d'un langage régulier est son AFD
minimal.

@ |'algorithme de minimisation d'un AFD B = (V, E,{d}, A, T) suppose
en entrée un AFD complet en ajoutant si nécessaire un état puits

@ On va construire incrémentalement une suite de partitions P;,
composées de classes d’'états

@ On dit que 2 états i, j d'une méme classe C sont distinguables par un
symbole x € V ssi la reconnaissance de x n'aboutit pas pour ces deux
états a la méme classe de la partition courante

@ On va partitionner les états de I'automate en classes d’'états
distinguables les unes par rapport aux autres puis ces classes
représenteront les états du nouvel AFD Minimal M.
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Algorithme de minimisation |

Algorithme 7 : Minimisation d'un AFD

Données : B= (V, E,{d}, A, T), un AFD complet
Résultat : M = (V, ME, {nd}, MA, MT), un AFD minimal
i=0;
Initialiser la partition P; = {A, E — A};
répéter
pour chaque C € P; faire
si il existe plusieurs états de C distinguables par un x € V alors
partitionner C en Cy, Cy,. .., C, dans P11 de maniére a ce que ces
sous-classes ne soient plus distinguables par x;

sinon
L recopier C dans Pjy1;

i=i+1;

jusqu'a P; = P;_y;

numéroter chaque classe C € P; pour former les états de ME;

le nouvel état de départ nd est le numéro de la classe qui contient d;

MA est I'ensemble des numéros de classes contenant des états d’arrivée de A;
MT est constitué des transitions entre les classes de P;;

supprimer les états puits non finaux ainsi que les états non accessibles;
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Exemple |

Soit I' AFD complet suivant :

B =(
V = {a, b},
E =11,6],
D = {1},
A= {3,4,5},

T = {1a2,1b3,2a2,2b3, 324, 3b6, 45, 4b6, 535, 5b6, 626, 666 }
)

@ On obtient la partition initiale : Py = {{3,4,5},{1,2,6}}
@ La classe {3,4,5} n'est pas distinguable ni par a (classe {3,4,5}), ni
par b (classe {1,2,6})
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Exemple I

@ Par contre, la classe {1,2,6} se distingue sur b

@ Par conséquent :

P1 = {{3’47 5}7{1a2}7{6}} =P

o Il ne reste plus qu'a supprimer la classe {6} qui est un puits non final
pour obtenir 'AFD minimal :

M = ({a, b}, {12,345}, {12}, {345}, {12212, 125345, 3452345})

Remarquons qu'un état d'arrivée de M ne contient que des états
d’arrivée de B a cause de la partition initiale.

Soit I'expression réguliere (a|bc)x. Calculer I'AFDM correspondant en
passant par la construction de Thompson.
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Analyse syntaxique

Introduction a I'analyse syntaxique |

@ L’analyse syntaxique du programme source doit vérifier que celui-ci
est bien un mot du langage de programmation

@ Pour cela, la grammaire du langage est utilisée

o Cette grammaire G = (V7, Vi, R, S) est algébrique (insensible au
contexte)

@ Toutes les régles de R sont donc de la forme : X — « avec X € V) et
a € (VT U \/[\/)”<

@ De plus, G doit étre non ambigiie afin d’éviter différentes sémantiques
pour un méme programme

@ Ainsi, il existe une unique dérivation gauche depuis I'axiome S de la
grammaire et conduisant au programme

o Clest-a-dire qu'il existe un unique arbre de dérivation dont la frontiére
soit le programme
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Introduction a I'analyse syntaxique |l

o Cette analyse peut se faire selon deux approches :

e l'analyse syntaxique descendante consiste a partir de |'axiome qui
constitue la racine de I'arbre de dérivation (ou arbre syntaxique)

o I'arbre de dérivation est ainsi construit (ou pas) depuis la racine S vers
les feuilles.

e l'analyse syntaxique ascendante consiste, au contraire, a partir du
programme et a remonter vers I'axiome S

o I'arbre de dérivation est alors construit (ou pas) depuis les feuilles vers
la racine S

De plus, la phase d'analyse syntaxique peut générer selon les cas :

@ un résultat booléen indiquant la correction syntaxique. C'est le cas
des vérificateurs syntaxiques tels que lint, qui est un vérificateur
pour le C
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Introduction a I'analyse syntaxique Il

@ un arbre syntaxique représentant le programme. Celui-ci est soit un
arbre de dérivation (arbre complet), soit un arbre abstrait (Abstract
Syntax Tree) qui est un arbre simplifié. Cet arbre servira ensuite pour
I'analyse sémantique puis la synthése de la cible ou I'évaluation

@ le programme cible directement compilé par la phase d'analyse
syntaxique. On parle de traduction dirigée par la syntaxe. Cette
traduction utilise fréquemment des grammaires attribuées

@ le résultat de I'évaluation du programme source. C'est le cas des
interpréteurs de programme et des évaluateurs d'expressions
(calculette)
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Analyse descendante récursive |

@ méthode de programmation qui associe une fonction, souvent
récursive, a chaque symbole non terminal de la grammaire

@ ces fonctions s'appellent suite a la reconnaissance de certains jetons
du flot d’entrée correspondant aux début des parties droites des regles
de production

@ ces jetons permettent donc de prédire la régle de production a choisir

@ la grammaire doit posséder un certain nombre de propriétés pour
permettre I'analyse descendante prédictive

@ propriété fondamentale de ces grammaires : non récursivité a
gauche

o celle-ci générerait des appels récursifs infinis

o la récursivité a droite étant permise, il est toujours possible de
transformer une grammaire récursive a gauche en une grammaire
équivalente non récursive a gauche
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Analyse descendante récursive I

@ le nombre de symboles terminaux nécessaires a la prédiction de la
regle de production a choisir est une caractéristique des analyses
descendantes prédictives

@ si ce nombre est 0, on choisit une production quelconque et on tente
la descente. Si celle-ci échoue : backtracking

@ le backtracking étant cofiteux du point de vue de I'efficacité, on
utilise toujours au moins un symbole (jeton) de prédiction (prévision)

@ ce jeton doit étre lu avant d’entrer dans une fonction afin de
permettre le retour sans effet dans le cas d'une production
epsilonesque
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Un exemple |

Soit la grammaire d’expressions arithmétiques intuitive suivante :
Ge=({0,1,...,9,+,%,(,)},{E}, R, E) avec les regles de R suivantes :

E — E+E|ExE|(E)0[1]...]9

Cette grammaire Gg étant ambigiie, on écrit une grammaire équivalente
non ambigiie selon le schéma Expression Terme Facteur (ou ETF) :

@ une expression est quelconque, par exemple 14+2*3+4-4;

@ un terme est un élément d'une somme : dans |'exemple précédent, 1,
2*3 et 4 sont trois termes;

@ un facteur est un élément d'un produit : dans |'exemple précédent, 2
et 3 sont des facteurs du produit 2*3.
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Un exemple I

Gere = ({0,1,...,9,+,%,(,)},{E, T, F}, R, E) avec les régles de R
suivantes :

E — E+T|T
T — TxFIF
F — (E)[0|1]...]|9

@ cette grammaire Geyr n'est pas ambigué : pour un méme niveau de
parenthésage, les opérateurs + doivent étre tous générés avant de
générer un opérateur *

@ Ggrr étant récursive a gauche, on écrit une grammaire équivalente
non récursive a gauche mais récursive a droite

@ bien entendu, du point de vue syntaxique ces 3 grammaires sont
équivalentes : L(Gg) = L(Gerr) = L(Genr)
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Un exemple IlI

Geng = ({0,1,...,9,4+,%,(,)},{E,R, T, S, F}, X, E) avec les régles de X
suivantes :

E —- TR

R — +TR|e

T — FS

S — xFS|e

F — (E)|0|1]...]9

o il reste a écrire un vérificateur (reconnaisseur) syntaxique récursif
utilisant un jeton de prédiction
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Un exemple IV

@ le programme C suivant (analdesc.c) effectue cette vérification
syntaxique en calquant la structure de ses fonctions sur la grammaire
GENnr

@ l'analyse lexicale est triviale car chaque lexéme du langage est
contitué d'un seul caractére (getchar())

@ on utilisera deux variables globales jeton et numcar pour conserver le
jeton courant et la position dans la ligne

@ il utilise des macros C (en majuscules) permettant de :

e lire le jeton suivant (AVANCER()),

e comparer le jeton courant avec le jeton attendu puis avancer
(TEST_AVANCEQ)),

o gérer les erreurs de syntaxe (ERREUR_SYNTAXE())
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Un exemple V

VAL

* gnaldesc.c vérifie la syntaze d'une expression arith.
composée de mombres d'un chiffre, des opérations +, * et du
parenthésage.
L'expresston est lue depuis l'entrée standard et se termine
par deux caractéres EOF (Ctrl-D)
Q@author Michel Meynard

*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

// chaque macro est un bloc
#define AVANCER {jeton=getchar();numcar++;}
#define TEST AVANCE(prevu) {if (jeton==(prevu)) AVANCER else
— ERREUR_SYNTAXE}
#define ERREUR_SYNTAXE {printf("\nMot mon reconnu : erreur de
< syntaze au caractére numéro jd \n",numcar); exit(1);}

* % X X x
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Un exemple VI

// déclars en avant
void E(void) ;void R(void);void T(void) ;void S(void) ;void F(void);

o
int jeton; // caractére courant du flot d'entrée
int numcar=0; // numero du caractére courant (jeton)

void E(void){
TO; // régle : E->TR
RO;
}
void R(void){
if (jeton=='+') {// régle : R->+IR
AVANCER
TO;
RO;
}
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Un exemple VII

else ; // régle : R->epsilon
}
void T(void){

FO3

SO; // régle : T->FS
}

void S(void){
if (jeton=='x') { // régle : S->*FS
AVANCER
FO;
SO;
}
else ; // régle : S->epsilon
}
void F(void){
if (jeton=='(') { // regle : F->(E)
AVANCER
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Un exemple VIII

EQ;
TEST_AVANCE(') ")
}
else
if (isdigit(jeton)) // regle : F->0/1/.../9
AVANCER
else ERREUR_SYNTAXE
}
int main(void){ // Fonction principale
AVANCER // initialiser jeton sur le
— premier car
EQ; // aziome

if (jeton==EOF) // expression reconnue et Tien aprés
printf ("\nMot reconnu\n");
else ERREUR_SYNTAXE // ezpression reconnue mais il reste des
— car
return 0O;
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Un exemple IX

}
Aprés compilation et édition de liens, on exécute ce vérificateur :

$ gcc -g -Wall -o analdesc analdesc.c

$ analdesc

14+2%3+ (4+ (5% (2+(1)+2)*3)) "D

Mot reconnu

$ analdesc

4x81+27D

Mot non reconnu : erreur de syntaxe au caractére numéro 4
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Exercice |

Ecrire un vérificateur syntaxique pour le langage de Dyck a un couple de
parentheses : S — SS|aSble

Une solution :
e Grammaire non ambigué et non récursive a gauche : S — aShS|e

@ Programme C suivant :
VAL
* dyck.c Analyse descendante récursive de mots de Dyck
* Q@author Michel Meynard
*/
#include <stdio.h>
#include <stdlib.h>

#define AVANCER {jeton=getchar();numcar++;}
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Exercice |l

#define TEST AVANCE(prevu) {if (jeton==(prevu)) AVANCER else
— ERREUR_SYNTAXE}

#define ERREUR_SYNTAXE {printf("\nMot non reconnu : erreur de
— syntaze au caractére numéro jd \n",numcar); exit(1);}

int jeton;

int numcar=0;

void S(void){ // AXIOME
if (jeton=='a') { // régle : S->aSbsS
AVANCER
SO;
TEST_AVANCE('b')
SO;
¥
else ; // régle : S->epsilon
}

int main(void){
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Analyse syntaxique  Analyse descendante récursive

Exercice Il

AVANCER // initialiser jeton
SO; // aziome
if (jeton==EOF) // ezpression reconnue et rien aprTés
printf ("\nMot reconnu\n");
else ERREUR_SYNTAXE // ezpression reconnue mais il reste des
- car
return 0O;
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© Analyse syntaxique

@ Analyse descendante par automate a pile
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Introduction |

o l'intérét de la programmation récursive descendante réside dans son
universalité (OS et langage)

@ cependant une étude théorique des automates a pile est indispensable
car le débogage des appels récursifs emboités devient vite compliqué

@ un automate a pile est une machine lisant itérativement des symboles
terminaux (jetons) depuis le flot d'entrée, gérant une pile de
symboles, et exécutant des actions en fonction d'une table d’analyse
ou table d'actions

@ le flot d’entrée est constitué d'une suite de jetons terminée par un
symbole spécial de fin représenté par $ (jeton 0 retourné par yylex())

@ la pile est toujours initialisée avec le symbole spécial $ puis est
manipulée par des empilements et dépilements dépendant de la table
d’actions
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Analyse syntaxique  Analyse descendante par automate a pile

Introduction 1l

@ la table d'actions est une table 3 2 dimensions indicées par les non
terminaux d'une part, et les symboles terminaux (jetons du flot) et $
d’autre part

@ ainsi, en fonction du symbole de sommet de pile et du jeton courant,
la table indique I'action a réaliser

@ les automates a pile sont utilisés en analyse descendante comme en
ascendante avec des différences au niveau des types d’actions et des
types de symboles de pile

@ en analyse descendante, la pile de I'automate simule les appels
récursifs des fonctions vues a la section précédente

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601| Univ. Montpellier 126 /389



Analyse syntaxique  Analyse descendante par automate a pile

Fonctionnement de |'automate a pile en analyse

descendante |

Soit la grammaire G = (V7, Vi, R, S), chaque case de la table
M[Vn, VT U {$}] contient :

@ soit une regle de production
@ soit I'action ERREUR
A tout moment, |'analyse du flot d'entrée consiste a regarder la régle de

production correspondant au sommet de pile et au jeton d’entrée. Puis,
selon les cas, I'automate soit :

@ s'arréte en générant une erreur de syntaxe,

@ avance sur le flot et dépile un jeton (concordance),
@ empile a I'envers la partie droite de la regle,

@ termine en indiquant la réussite de |'analyse.

L'algorithme suivant précise le fonctionnement exact de |'automate a pile.
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Fonctionnement de |'automate |

Algorithme 8 : Fonctionnement de |'automate

Données : Une table d’action M[Vyy, VT U {$}], un flot de jetons terminé par $, une
grammaire G = (V7, Wy, R, S)
Résultat : Erreur ou Succés
Pile=construirePileVide() ; empiler(Pile,$) ; empiler(Pile,S); jeton=lireFlot() ;
tant que vrai faire
si sommet(Pile)=jeton et jeton=3$ alors
| terminer I'algorithme avec succés // return true

sinon
si sommet(Pile)=jeton alors

dépiler(Pile) // avancons

jeton=lireFlot() // jeton suivant du flot
sinon
si sommet(Pile)e V1 U {$} alors

| terminer I'algorithme en échec // return false

sinon

si M[sommet(Pile), jeton] = ERREUR alors

| terminer I'algorithme en échec // return false
sinon
dépiler(Pile) // remplacons le non terminal
empiler(Pile, inverse(partieDroite( M[sommet(Pile), jeton]))) // de
droite a gauche
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Un exemple simple |

Une grammaire de Dyck a un couple de parenthéses :
Gp = ({a,b},{S}, R, S) avec les regles de R suivantes :

S — aSbS|e

On obtient la table d'analyse suivante (voir algorithme 16) :

a b $
S|S—aShbS5|S—e|S— e

Etudions le fonctionnement de |'automate, c’est-a-dire :

@ sa pile dont le fond est toujours le symbole $ et qui grandit vers la
gauche,

@ son flot d'entrée, ici le mot abaababb$

@ l'action réalisée a chaque étape en fonction du sommet de pile et du
jeton courant situé a gauche du flot d'entrée
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Un exemple simple |l

Analyse descendante par automate a pile

Pile | Flot d'entrée Action
S$ abaababb$ S — aSbSs
aSbS$ abaababb$ | dépiler et avancer (a)
SbS$ baababb$ S—e
bS$ baababb$ | dépiler et avancer (b)
S$ aababb$ S — aSbs
aSbS$ aababb$ | dépiler et avancer (a)
SbS$ ababb$ S — aSbS
aSbSbS$ ababb$ | dépiler et avancer (a)
SbSbS$ babb$ S—e
bSbS$ babb$ | dépiler et avancer (b)
SbS$ abb$ S — aSbSs
aSbSbS$ abb$ | dépiler et avancer (a)

Michel Meynard (UM)
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Un exemple simple Il

SbSbS$ bb$ S—e
bSbS$ bb$ | dépiler et avancer (b)
SbS$ b$ S—e
bS$ b$ | dépiler et avancer (b)
S$ $ S—e
$ $ Accepter
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Un exemple simple [V
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© Analyse syntaxique

@ Algorithmique en analyse descendante
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Analyse syntaxique  Algorithmique en analyse descendante

Algorithmique |

@ La grammaire doit posséder certaines propriétés de forme de ses
régles afin de permettre |'analyse descendante.

@ Nous allons examiner les différentes transformations de régles
susceptibles de mettre une grammaire G = (V1, Vy, R, S) quelconque
en “bonne forme”, c'est-a-dire non récursive a gauche, non ambigué
et factorisée !

@ Attention, la désambiguation d’une grammaire étant non décidable,
celle-ci devra étre réalisée par une méthode ad hoc.

o Les différents algorithmes suivants doivent parfois étre utilisés pour
cette mise en forme.
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Suppression des e-productions |

Les symboles non terminaux effacables, c'est-a-dire pouvant dériver en ¢,
sont détectés de la maniére suivante. Un symbole non terminal effacable :

@ soit dérive directement en ¢,
@ soit dérive en un mot constitué exclusivement de symboles non
terminaux effacables.
Soit G = (V1, W\, R, S), soit E; une suite d'ensembles Effacables de
symboles non terminaux définie comme suit :
o £, ={Xe W/(X—¢e)eR}
o Ei+1:E;U{XE V/\M(X—)OJ)E Retac€ E,'*}

@ On prouve que les ensembles E; ne contiennent que des symboles non
terminaux effacables, c'est a dire dérivant en ¢

@ On prouve également que la suite E; converge et est donc constante
au-dela d'un certain rang n :
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Suppression des e-productions ||

e dne N E,=E, .k, VkeN

e Par conséquent, VX € Vi, X = ¢ si et seulement si X € E,.

o Il reste a construire une grammaire Gsg ne contenant (presque) plus
d'e-production et équivalente a G

@ |l peut rester une e-production dans le cas ou le langage de la
grammaire contient le mot vide. ..

e Soit Gog = (V1, Vi, R1, S) avec un ensemble de régles défini comme
suit :

o R ={X — a tel que a # ¢ et 3IX — € R tel que « s'obtient a
partir de 3 en supprimant un nombre quelconque (k € [0, |5][)
d’occurrences d'éléments effacables (de E,)}

@ On prouve que L(Gog) = L(G) — {&}. Si S est un symbole effacable
de G, S € E,,, on obtient Gsg en ajoutant un nouvel axiome S et
deux nouvelles régles :
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Suppression des e-productions |ll

o Gsg = (\/T, Vi U {51}, R U {51 — €|5}, 51)
@ Sinon, S € E,, on a Gsg = GyE.
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Un exemple |

Soit la grammaire G = ({a, b}, {S, X, Y}, R, S) avec les régles de R

suivantes :

S = aX|Y|XX
X = elb|XX
Y = aXb

On calcule les ensembles d'effacables :
Ey = {X}, B2 = {X,S}, E3 = {X,S}. On obtient donc un nouvel
ensemble de regles Ry :

S — aXlalY|XX|X

X — bIXX|X
Y — aXblab
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Un exemple I

Pour finir, voici la grammaire équivalente a G et ne contenant qu'une
e-production :
Gse = (V1,Vn U{S1}, R U {51 — ¢|S}, S1).
Remarques
@ Remarquons que notre construction n'admet au plus qu'une
e-production et que celle-ci se trouve en partie droite de I'axiome qui
ne peut lui-méme étre atteint par aucune autre production.

@ Dans les algorithmes suivants on supposera I'inexistence
d’e-production et/ou de cycle (X = X).
@ Remarquons d'abord qu'il ne peut exister de cycle sur Xj.

e Si la grammaire Gsg possede, S; — ¢|S, on appliquera ces
algorithmes a la grammaire Gog = (V7, Vi, R1, S), puis on rajoutera
I'axiome S; et ses deux régles tout a fait a la fin du processus.
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Suppression des cycles |

@ On suppose une grammaire sans e-production.
@ L’algorithme 9 supprime les cycles de dérivation : X = X.

@ Une production est appelée substitution de non terminal ou plus
simplement substitution lorsqu’elle est de la forme : X — Y.

@ Seules les substitutions engendrant des cycles doivent étre supprimées.

@ Dans I'algorithme 9, on calcule la Fermeture Transitive des non
terminaux Substituables a chaque symbole non terminal.

@ Ce calcul partitionne V) en classes d'équivalence correspondant aux
cycles de non terminaux substituables.

@ Puis on filtre les productions selon I'appartenance de leur partie
gauche a un cycle.
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Algorithme de Suppression des cycles |

Algorithme 9 : Suppression des cycles

Données : Gog = (V1, Vy = {X1, X2,..., Xn}, R, S) une grammaire sans e-production
Résultat : Gsc = (Vr, Vi, Rsc, S) une grammaire sans cycle
Rsc = 0 /* initialisation */
Construire la Fermeture Transitive des non terminaux Substituables a chaque X; € Vy :
FTS(Xi) = {X; € Vn/Xi = X;}
pour i=1 a n faire
si Xi € FTS(X;) /* pas de cycle */ alors
pour chaque production Xj — a € R faire
Rsc = Rsc U{X; — a} /* recopier */
sinon
pour chaque X; € FTS(X;) /* traitons les non terminaux substituables, y compris
Xi */ faire
si X; € FTS(X;) /* X; pas dans le cycle */ alors
‘ Rsc = RSCU{X,' —>)(J}
sinon
pour chaque production X; — o € R faire
si o] > 1 ou afl] € V1 alors
Rsc = Rsc U{X; — a} /* transitivité pour les non substitutions
*
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Remarques |

@ preuve de |'élimination des cycles : les seules régles de substitutions
(Xi — Xj) autorisées dans Rsc impliquent que X; et X; ne soient pas
dans le méme cycle

@ les non terminaux membres d’'un méme cycle peuvent étre représentés
par un seul non terminal du cycle car ils auront tous les mémes regles
de production.
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Exemple |

Soit la grammaire G = ({a, b, ¢, d}, {X1, X2, X3}, R, X1) avec les régles de
R suivantes :

X1 — X2|a
X2 — X1|X2|X3|b
X3 — bX1|X23

On calcule les fermetures transitives des substituables :
FTS(X1) = {X1, X2, X3}, FTS(X2) = {X1, X2, X3}, FTS(X3) = (). On
obtient donc un nouvel ensemble de régles sans cycle Rsc¢ :

X1 — a|b|X3

X2 — a|b|X3
X3 — le‘Xza
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Exemple I

Remarquons que X; et X5 peuvent étre remplacés par Xi qui les
représente tous deux. Ce qui donne :

X1 — a|b|X3
X3 — le\Xla
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Suppression de la récursivité a gauche immédiate |

@ Une récursivité a gauche immédiate d'un symbole non terminal X se
matérialise par au moins une régle de production X — Xa

@ La suppression de cette récursivité a gauche immédiate nécessite de
transformer I'ensemble des régles de production ayant X comme partie
gauche (les X-productions)

o L'algorithme 10 réalise cette transformation

@ Remarquons que I'appel de cet algorithme nécessite d'avoir au moins
une récursivité a gauche immédiate (n # 0) et au moins une autre
production (k # 0)

o Cette derniére condition est indispensable dans une grammaire sans
e-production

Sinon, le non terminal X ne peut dériver en un mot terminal !
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Algorithme |

Algorithme 10 : Suppression de la récursivité a gauche immédiate

Données : Un ensemble de productions :
P=X— Xa1|Xa2| e |Xa,,|ﬁ1|ﬁ2| . |Bk sans
g-production et telles que n# 0 et k # 0
Résultat : Un nouveau symbole non terminal Rx et un ensemble de
productions P’ sans récursivité 3 gauche immédiate
P" = {Rx — ¢} // initialisation
pour =1 a k faire
| PP=P U{X — BiRx}
pour j=1 a n faire
L P =P U {RX — OéJ'Rx}
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Remarques |

e L’algorithme 10 crée un nouveau symbole Rx (Reste de X), pour
remplacer la récursivité a gauche par une récursivité a droite sur Rx

@ Remarquons que Rx possede une e-production donc est effacable

o La correction de I'algorithme, c'est-a-dire |'équivalence des deux
ensembles de productions P et P’, se démontre par une double
récurrence sur i et j
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Exemple |

Soit la grammaire d’expressions arithmétiques
Ge=({0,1,...,9,4,%,(,)},{E}, P, E) avec les régles de P suivantes :

E — E+E|ExE|(E)|O[1]...|9
Apres application de I'algorithme 10, on obtient la grammaire suivante :

Genrr = ({0,1,...,9,4+,%,(,)},{E, Re}, P', E) avec les régles de P’
suivantes :

E — (E)RE|0RE’1RE|...|9RE
Re — €’+ERE‘*ERE

Remarquons que Ggygy n'est plus récursive a gauche, mais elle reste
ambigué.
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Exercice |

Soit la grammaire Gerr = ({0,1,...,9,+,%,(,)},{E, T,F}, R, E) avec
les regles de R suivantes :

E —- E+T|T
T — TxF|F
F — (E)[01]...]9

Supprimer la récursivité a gauche dans cette grammaire !
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Exercice |l

E — TR
Re — +TRgle

T — FRy

Rr — «FRt|e

F — (E)0|1]...]9
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Suppression de la récursivité a gauche |

@ Dans certains cas, la suppression de la récursivité a gauche immédiate
ne suffit pas car il peut subsister des récursivités plus complexes

@ dans les productions X1 — Xzala, Xo — Xib|b il n'y pas de récursivité
a gauche immédiate mais il y a de la récursivité a gauche!

@ L’algorithme 11 s'applique a une grammaire sans cycle, sans

e-production et sans récursivité a gauche immédiate. Il produit une
grammaire sans récursivité a gauche, c'est-a-dire sans dérivation de la

forme X = Xa.
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Algo. de suppression de la récursivité a gauche |

Algorithme 11 : Suppression de la récursivité a gauche

Données : G = (V1, Vy = {X1, X2,..., Xn}, R, S) une grammaire
sans cycle, sans e-production et sans récursivité a gauche
immédiate

Résultat : Gyg = (V71, Vg, Ragr, S) une grammaire sans récursivité a
gauche

pour i=1 3 n faire
P ={X; — v € R} // ensemble des productions X; — ...
tant que 3X; — Xja € P telle que i > j faire
P =P —{X; — Xja} // suppression
pour chaque production X; — 3 € Ryg faire
| P=PU{X; — Ba} // remplacement

P'=Supprimer la récursivité immédiate dans P (algo. 10)
Rng = Ryp U P
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Remarques |

@ La preuve de la correction de I'algorithme tient en ce qu'a la fin, il est
impossible d'avoir une production de la forme X; — Xja telle que
i>]

@ il est toujours possible mais pas toujours nécessaire, en analyse
descendante, de transformer la grammaire initiale de la facon
suivante :

@ suppression des e-productions,

@ suppression des cycles,

© suppression des récursivités a gauche immédiates,
© suppression des récursivités a gauche.

@ La seule propriété a respecter est la non récursivité a gauche
@ Le moyen par lequel on obtient cette propriété est indifférent

@ apres la dérécursivation, on obtient souvent des grammaires ayant des
e-productions
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Remarques I

@ Ainsi, dans I'exemple de la page 111, la grammaire Ggyg est non
récursive a gauche et contient des e-productions et ceci n’est pas
génant

@ En effet, ces productions ne peuvent en aucun cas impliquer une
récursivité a gauche
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Exemple |

Soit la grammaire G = ({a, b,d}, {X1, X2, X3}, P, X1) avec les régles de P
suivantes :

X1 — Xga]d
X2 — X3a]X1b
X3 — Xla

Apres application de I'algorithme 11, on obtient la grammaire suivante
G' = ({a,b,d},{X1, X2, R, X3, R3}, P', X1) avec les régles de P’

suivantes :
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Exemple I

Xi — Xoa|d

Xo — XszaRu|dbR»
Ry — ¢€labR,

X3 — dbRpaaRs|daRs
R3 — ¢laRyaaRs
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Factorisation a gauche |

@ Si plusieurs parties droites de X-productions ont méme préfixe, la
prédiction de la regle a choisir est retardée jusqu'a ce qu'un jeton
permette de déterminer la “bonne” regle

@ Il faudrait donc pouvoir lire plusieurs jetons en avance!

@ La factorisation des parties droites est destinée a réduire a 1 ce
nombre de jetons de prévision

@ les grammaires ainsi formées seront qualifiée de LL(1) (Left to right
scanning of the input, Leftmost derivation, 1 look-ahead symbol)
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Algorithme de factorisation |

Algorithme 12 : Factorisation a gauche

Données : G = (V7, Vy = {X1,Xz,..., Xy}, R, S) une grammaire

Résultat : Gr = (V7, VF, Re, S) une grammaire factorisée a gauche

Ve = Vv // initialisation

Re=R

pour chaque symbole non terminal X non marqué de VF faire

calculer «, le plus long préfixe commun du plus grand nombre de parties
droites des X-productions de Rg

tant que « # ¢ faire

Ve = Ve U{X'} // nouveau non terminal

soit X — afi|afa]...|aBn|y1] .- |7k I'ensemble des X-productions de
Re

remplacer ces productions par :
{X = aX'|m|... | X" = BilBal. .. [Bn}

calculer «, le plus long préfixe commun du plus grand nombre de
parties droites des X-productions de Rr

| marquer X
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Exemple |

Soit la grammaire du “if then else” G = ({/,t,e, a,b},{S,E}, R, S) avec
les regles de R suivantes :

S — EtS|iEtSeS|a
E — b

Aprés application de I'algorithme 12, on obtient la grammaire :
Gr = ({i,t,e,a,b},{S,S, E}, Rr,S) avec les régles de Rf suivantes :

S — iEtSS|a
S — ¢leS
E —- b

Remarquons que cette grammaire factorisée reste ambigué, ce qui posera
probleme a |'analyse.
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fonction premiers() |

o La fonction premiers est nécessaire a la construction de la table
d’'analyse qu'utilise I'automate a pile

@ Elle retourne un ensemble de terminaux (jetons)

@ premiers suppose une grammaire non récursive a gauche mais
pouvant admettre des e-productions

o La fonction premiers(a) retourne I'ensemble des terminaux qui
débute un mot dérivant de

o Si « est effacable alors ¢ fait partie de ses premiers

@ Pour calculer premiers(a), il faut commencer par calculer
premiers(X), quel que soit X un symbole de V

@ L'algorithme 13 réalise cette fonction.
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Algorithme premiers(X) |

Algorithme 13 : premiers(X)

Données : X € V un symbole de V7 U V), et une grammaire non récursive a gauche G = (V, Vi, R, S)
Résultat : Resultat C V1 U {e} un ensemble de terminaux
si X € Vr alors
| retourner {X}
sinon
Resultat = () // initialisation
pour chaque production X — Y1Ya ... Yya telle que Y; € Vy et o € {e} U V1 @ V* faire
si k =0 et o = ¢ alors
| Resultat = Resultat U {e} // e-production
sinon
si k = 0 alors
| Resultat = Resultat U {«[1]}
sinon
Resultat = Resultat U (premiers(Y;) — {e}) // non réc. gauche
i=1
tant que i < k et Y est effacable faire

i=i+
L Resultat = Resultat U (premiers(Y;) — {e}) // non réc. gauche

sii = k + 1 alors
si |a| = 0 alors
| Resultat = Resultat U {e} // tous les Y; s’effacent
sinon
| Resultat = Resultat U {«[1]}

retourner Resultat
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Remarques |

@ L'algorithme 13 est trivial pour les terminaux

@ Pour les non terminaux, il consiste a accumuler les premiers(Y;)
tant que Y;_; est effacable

@ ¢ n'est ajouté que dans le cas ou une partie droite de production est
entiérement effacable

@ cet algorithme ne peut étre utilisé sur une grammaire récursive a
gauche (appel récursif infini)

o Cette propriété reste fondamentale pour le calcul des premiers(a)
qui fait appel aux premiers(X)

o L'algorithme 14 calcule justement ces premiers(«).
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Exemple |

Soit la grammaire non récursive a gauche
Geng = ({0,1,...,9,+,%,(,)},{E,R, T,S,F}, X, E) avec les regles de X
suivantes :

E —- TR

R — +4TR|e

T — FS

S — xFS|e

F — (E)|0]1]...]9
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Exemple I

On obtient par I'application de I'algorithme 13 :

premiers(F) = {(,0,1,...,9}
{*,¢}

premiers(F)

{+:¢}

premiers(E) = premiers(F)

premiers(S)

premiers(T)

premiers(R)
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Algorithme Premiers(mot) |

Algorithme 14 : premiers(a)

Données : a = Y1 Y,... Yy avec Y; € V, ainsi qu'une grammaire non
récursive a gauche G = (V7, Vi, R, S)

Résultat : Resultat C V1 U {e} un ensemble de terminaux

si a = ¢ alors

| retourner {¢}

sinon

Resultat = () // initialisation

Resultat = Resultat U (premiers(Y;) — {e})

i=1

tant que i < k et ¢ € premiers(Y;) faire

i=i+1
L Resultat = Resultat U (premiers(Y;) —{e}) // non réc. gauche

sii=k+1 alors
| Resultat = Resultat U{e} // tous les Y; s'effacent

L retourner Resultat
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Suivants |

@ L'algorithme 15 est nécessaire a la construction de la table d’analyse
qu'utilise I'automate a pile

@ Il utilise une grammaire G et calcule un tableau d'ensembles de
terminaux, et éventuellement $ le symbole de fin d’entrée
@ Chaque case du tableau est associé a un non terminal de G

@ Son contenu est I'ensemble des terminaux pouvant suivre
immédiatement ce symbole non terminal X; de G dans un mot
dérivant de I'axiome :

TabSuivants[Xi] = {x € V7 U{$}/S = aXixB}

e L’'algorithme 15 calcule ce tableau TabSuivants[X;]
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Algorithme Suivants |

Algorithme 15 : Suivants

Données : G = (V1, Vy = {X1, X2, ..., Xn}, R, X1), une grammaire
Résultat : un tableau TabSuivants[X;] d’ensembles de terminaux {x1, x2,...,xm} C (V7 U {$})
TabSuivants[X1] = {$} // initialisation pour I'axiome
pour =2 a n faire
| TabSuivants[X;] = @ // initialisation
répéter
stable=vrai // booléen testant la stabilité du tableau
pour chaque production Y — ~ de R faire
pour chaque non terminal X de v : Y — aX avec v = aXf3 faire
si 3 = ¢ alors
si TabSuivants[Y] € TabSuivants[X] alors
stable=faux
TabSuivants[X] = TabSuivants[X] U TabSuivants[Y]

sinon
si premiers(3) — {e} Z TabSuivants[X] alors
stable=faux
L TabSuivants[X] = TabSuivants[X] U (premiers(8) — {e})

si ¢ € premiers(3) // 3 est effacable alors
si TabSuivants[Y] € TabSuivants[X] alors
stable=faux
TabSuivants[X] = TabSuivants[X] U TabSuivants[Y]

jusqu'a stable;
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Exemple |

Soit la grammaire non récursive a gauche Ggyg de I'exemple de la page
162. On obtient par I'application de I'algorithme 15 :

TabSuivants[E] = {$,)}
TabSuivants[T] = {+,$,)}
TabSuivants[R] = {$,)}
TabSuivants[F] = {x +,$,)}
TabSuivants[S] = {+,9%,)}
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Construction de la table d'analyse |

o L’algorithme 16 réalise la construction de la table d’analyse qu'utilise
I"automate a pile

@ Dans cette table, |'existence de plus d'une production dans une case
est appelée un conflit et signifie que I'automate a pile a un choix a
réaliser !

o Ceci n'est pas envisageable pour des raisons d’efficacité (backtrack)

@ il sera alors nécessaire de transformer la grammaire

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601| Univ. Montpellier 169 /389



Analyse syntaxique  Algorithmique en analyse descendante

Algorithme de construction de la table d'analyse |

Algorithme 16 : Construction de la table d'analyse

Données : Une grammaire G = (V1, Vy, R, S)
Résultat : Une table d'analyse M[Vy, Vr U {$}] contenant des
ensembles de productions
pour chaque case M[i, j] faire
L M[i,j]=0
pour chaque production X — « faire
pour chaque x € premiers(a) — {c} faire
| M[X,x]=M[X,x] UX = «
si € € premiers(a) alors

pour chaque y € TabSuivants[X] faire
| MX,y] = MIX,y]UX > a

pour chaque case M[i,j] == () faire
| M[i,j] = {ERREUR}
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Exemple |

@ Reprenons I'exemple de la grammaire de Dyck a un couple de
parentheses a, b

e Soit la grammaire Gp = ({a, b}, {S}, R = {S — aSbS|c}, S)

@ La premiére régle S — aSbS ne pose aucun probléme car
premiers(aShS) = a donc M[S,a] =S — aSbS

@ Quant 2 la seconde production S — ¢, elle génére le calcul de

TabSuivants[S] = {b, $}
@ On obtient donc la table d'analyse suivante :

a b $
S|S—aSbS|S—e|S—¢
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Exemple Geyp |

Reprenons une grammaire non récursive a gauche plus complexe et voyons
la table d'analyse générée

Geng = ({0,1,...,9,+,%,(,)},{E,R, T,S,F}, X, E) avec les regles de X
suivantes :

E —- TR

R — +TR|e

T — FS

S — xFS|e

F — (E)|0J1]...|9
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Exemple Geyg I

Il nous faut rappeler les premiers() des non terminaux débutant des
parties droites :

premiers(F) = {(,0,1,...,9}

premiers(T) = premiers(F)
Il nous faut également rappeler les suivants des non terminaux effacables :

TabSuivants[R] = {$,)}
TabSuivants[S] = {+,%,)}

On obtient finalement par I'application de I'algorithme 16, la table
suivante :
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Exemple Geyg I

O[...|9 ( ) + X S
E— TR E— TR

R—e¢| R—+TR R— ¢

T—FS | T—FS

S—e¢ S—e S—*FS| S —¢

M| |~ | m

F—0[1]...|19| F — (E)

Les cases vides correspondent a des erreurs de syntaxe !
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Contre-exemple |

On choisit de placer un ensemble de productions et pas seulement une
production, dans I'algorithme 16 pour permettre a I'utilisateur de
désambiguer |'analyse de certaines grammaires ambigués en choisissant la
regle a appliquer parmi celles qui sont proposées.

L'exemple suivant illustre ce probleme

Soit la grammaire du “if then else” aprés factorisation :

Gir=({i,t,e a b},{S,S E},Ri,S) avec les régles de R suivantes :

S — EtSS|a
S — ¢leS
E — b
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Contre-exemple I

Apres calcul, on obtient les premiers() :

premiers(S) = {i,a}
premiers(S) = {e, e}
premiers(E) = {b}

Il nous faut également rappeler les suivants des non terminaux effacables :
TabSuivants[S] = {e,$}
TabSuivants[S'] = {e,$}
TabSuivants[E] = {t}

On obtient finalement par I'application de I'algorithme 16, la table
suivante :
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Contre-exemple Il

a b e i t $
S|S—a S — iEtSS’
S S —+eS5,S —e¢ S e
E E—b

@ Dans cette table, I'entrée M[S’, €] contient deux productions possibles

o |l faut, dans ce cas, choisir de conserver la production S’ — eS pour
deux raisons

@ D’abord, parce qu'en |'absence de cette production, la partie “else” ne
serait jamais reconnu !

e Ensuite, parce que que I'ambiguité de la grammaire (a quel “if”
associer le “else”) est résolue dans I'analyseur

o En effet, la partie “else” sera toujours associée syntaxiquement au
“if" le plus proche, ce qui correspond a la sémantique choisie par tous
les langages de programmation.
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Contre-exemple [V

@ Attention, cet exemple est particulier et ne peut fonctionner dans le
cas général ol un choix produira un langage reconnu plus petit !
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© Analyse syntaxique

@ Grammaires LL(1)
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Grammaires LL(1) |

Définition

Une grammaire dont la table d'analyse peut étre calculée et dont toutes les
entrées ont une unique production ou bien ERREUR, est appelée LL(1).

La signification de cet acronyme est :

o Left to Right scanning of the input,
@ Leftmost derivation,
@ 1 symbole de prévision.
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Grammaires LL(1) I

Théoreme

Aucune grammaire ambigué et aucune grammaire récursive a gauche n’est
LL(1).

.

Théoreme

Une grammaire G est LL(1) si et seulement si les conditions suivantes sont
respectées. Quelle que soit X — a3, deux productions de G :

@ il n'existe pas deux dérivations de « et 8 ayant un préfixe commun
terminal ;

@ une partie droite seulement, a ou bien 3, peut s'effacer;

@ si « peut s'effacer, alors 8 ne dérive pas en un mot ayant un préfixe
commun terminal avec suivants(X).

\.
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© Analyse syntaxique

@ Conclusion sur I'analyse descendante
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Conclusion sur I'analyse descendante |

e Examinons les grammaires qui ne sont pas LL(1) :

o Toutes les grammaires ambigués ne sont pas LL(1)

o Certaines grammaires non ambigués ne sont pas LL(1)

o Par exemple, G, = ({a, b}, {S, A}, {S — Ablaa, A — a},S) est une
grammaire simple produisant 2 mots aa et ab et n'est pas LL(1). En
effet, sur la lecture du premier a, on ne peut pas déterminer quelle
production de S utiliser.

@ Cependant, on peut parfois utiliser un automate a pile en analyse
descendante pour reconnaitre le langage généré par une grammaire
non LL(1) (exemple de la grammaire if then else qui génére un
conflit). On peut déterminiser cette table en réussissant a reconnaitre
le méme langage. Malheureusement, ce probléme du choix est
indécidable et nécessite donc une réflexion ad hoc.

@ Dans I'exemple de Gp, le choix de I'une ou de I'autre des productions
de S a privilégier aboutit a un langage reconnu réduit de moitié !
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Conclusion sur I'analyse descendante I

@ D’un point de vue plus pratique, le probleme principal des grammaires
LL(1) résulte du fait qu’elles sont souvent obtenues par de multiples
transformations qui les rendent difficilement lisibles pour le
concepteur du langage

@ Aussi, les actions sémantiques qu'il faut associer a ces regles
syntaxiques deviennent difficiles 3 mettre en oeuvre

@ L'analyse syntaxique ascendante va nous permettre de conserver des
grammaires récursives a gauche et/ou a droite plus intuitives
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© Analyse syntaxique

@ Un langage et un outil pour I'analyse syntaxique ascendante : bison
et yacc
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bison, un outil pour I'analyse syntaxique ascendante |

@ Yacc (“Yet Another Compiler Compiler”) est un outil d'analyse
syntaxique permettant d'écrire des grammaires algébriques LALR(1)
assez générales (“Look Ahead Left to right scanning of the input,
Rightmost derivation in reverse, 1 look-ahead token")

@ Il génére un analyseur syntaxique ascendant utilisant un automate a
pile

@ Associés a chaque regle de grammaire, des actions peuvent étre
associées

@ Ces actions sont des instructions d'un langage de programmation (C
ou C++) ainsi que des actions spécifiques de Yacc

@ |l existe de nombreuses versions de yacc, dont bison que nous
utiliserons et qui est une version gratuite du projet GNU accessible sur
le Web sur tous les OS
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bison, un outil pour I'analyse syntaxique ascendante I

@ Bien entendu, bison peut étre utilisé conjointement a flex qui fournira
lui les jetons consommés par |'analyseur syntaxique généré par bison
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Un exemple |

Soit la grammaire ambigué d’expressions booléennes
Gg == ({0,1,&,|,',(,)},{E}, R, E) avec les régles de R suivantes :

E — (E)|E'VE|E&E|E|0|1

On va construire un vérificateur syntaxique, en utilisant bison,
reconnaissant les mots du langage généré par cette grammaire.
Voici le source bison obtenu :
Al /* veriflog.y */
#include <stdio.h>
int yylex(void); void yyerror(char *s);
5}
hte
expr : "(" expr ')’
{}

| expr '|' expr
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Analyse syntaxique bison et yacc

Un exemple Il

{3

| expr '&' expr
{3

| "I expr

{3

I IOI

{3

| l1|

{3

Wh /* début des fonctions C */

int yylex(void) { // analyseur lexical filtrant les blancs
int c;
while(((c=getchar())=="' ") || (c=='\t"))

return (c);

}
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Un exemple IlI

void yyerror(char *s) { // appelée par yyparse sur erreur de
— syntaze
fprintf (stderr,"%s\n",s);

}
int main(void){ // fonction principale
if (!yyparse()) // appel d l'analyseur généré par bison
printf ("\nExpression reconnue\n");
else
printf ("\nExpression non reconnue\n");
return 0O;
}

Apres compilation bison, bison -y veriflog.y, puis compilation C et
éditions de liens gcc -o veriflog y.tab.c, il ne reste plus qu'a lancer
I'exécutable veriflog obtenu :
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Analyse syntaxique bison et yacc

Un exemple IV

$ veriflog

1&01 (CO) 1011)

Expression reconnue

$ veriflog

1&0] ((0) |0l 1la)parse error

Expression non reconnue
o L'analyseur syntaxique généré tente, de reconnaitre un mot du
langage défini par la grammaire
@ |l exécute les instructions correspondantes a chaque régle reconnue

@ Dans cette exemple, il n'y a aucune action associée aux regles

e L’'analyseur termine sur la fin de fichier (EOF) de I'entrée standard
(CTRL-D pour le terminal)
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Analyse syntaxique bison et yacc

Un exemple V

Au cceur du source C y.tab.c généré par bison, la fonction C : int
yyparse () d'analyse syntaxique permet de retourner la valeur 1 en
cas d'erreur syntaxique, 0 sinon

La fonction principale : int main() appelle yyparse() qui va
appeler yylex () itérativement au fur et a mesure de la
reconnaissance des regles de grammaires

En cas d'erreur de syntaxe, yyparse() fait appel a yyerror (char
*) pour informer I'utilisateur puis yyparse() retourne 1.

L'option ~y de bison permet de générer un fichier nommé y.tab.c,
comme en yacc

Sans cette option, le fichier généré se nommerait veriflog.tab.c.
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

© Analyse syntaxique

@ Syntaxe et sémantique des sources bison
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Architecture |

Un source bison comprend 3 parties séquentielles :

@ une partie déclaration contenant des déclarations C contenues entre
%{ et %}, et des déclarations spécifiques a bison.

e Délimitée par %% au début, une partie constituées de régles de
grammaire et des actions associées a la reconnaissance de chaque
regle. C'est la partie centrale du source bison qui définit I'analyseur
syntaxique.

e Délimitée par %% au début, une partie de fonctions C définies par
I'utilisateur. Dans le cas de Bison, on doit définir au moins trois
fonctions : le main(), yyerror() et yylex()

@ Remarquons que ces fonctions peuvent étre définies dans un autre
fichier qui sera lié apres compilation

@ Dans le cas de Yacc, une librairie liby.a contient des définitions par
défaut de ces trois fonctions.
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Les regles de grammaires bison |

@ Une regle bison se présente de la facon suivante : un symbole non

terminal, le caractére “ :"”, une séquence de symboles (terminaux
(jetons) ou non terminaux) et de blocs d'actions {. ..}, terminé par
unYY ;”

@ L’espace, la tabulation et le retour a la ligne ne sont pris en compte
que comme séparateurs

o La régle doit commencer en début de ligne et terminer par un ;"
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Symboles terminaux (jetons) et non terminaux |

Les symboles terminaux ou jetons sont représentés par un entier (int)
retourné par la fonction d’analyse lexicale yylex(). Les jetons peuvent étre :

non nommés comme '&’, '1" dans I'exemple précédent. En fait dans cet
exemple, tous les jetons étaient non nommés

ou bien nommés . Dans ce cas, yylex() et yyparse() doivent partager une
définition (#define) commune de ces jetons. La maniére la
plus simple consiste a :
@ les déclarer, dans la premiere partie du source bison a
I'aide du déclarateur bison : %token NAME. Par
convention, les noms de jeton sont en majuscules
@ Générer un fichier y.tab.h contenant les #define
correspondant grace a |'option -d du compilateur bison
© Inclure ce fichier dans la partie définition du source flex.
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Symboles terminaux (jetons) et non terminaux I

Bien entendu, si I'on n'utilise pas flex, cette derniére
opération est inutile.
Dans I'exemple précédent, on remplace les jetons non nommés '0’ et '1’
par ZERO et UN.
%token UN ZERO

YA
| ZERO
{>
| UN
{3
%k // debut des fonctions C
int yylex() { // analyseur lexical filtrant les blancs
int c;
while(((c=getchar())==' ') || (c=='\t'))
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Symboles terminaux (jetons) et non terminaux Il

if (c=='0")
return ZERO;
else
if (c=='1")
return UN;
else
return (c);

3

Si I'on regarde le fichier y.tab.h aprés la commande bison -yd ..., on
observe :

#define UN 258
#tdefine ZERO 259

@ Rappelons que yylex() généré par lex retourne 0 en fin de fichier
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Symboles terminaux (jetons) et non terminaux IV

@ Les caractéres ascii ont un numéro de jeton égal a leur code ascii !
@ Enfin, un jeton spécial error est réservé pour la gestion des erreurs

@ Les symboles non terminaux sont conventionnellement écrits en
minuscules (expr, statement, ...)
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Exercice |

Ecrire le source bison de vérification du langage de Dyck

J{#include <stdio.h>
int yylex(void); void yyerror(char *s);
%Y
he
S : S 'a' S 'b' >
| {3
hle
void yyerror(char *s) {fprintf(stderr,"’%s\n",s);}
int yylex(){return getchar();}
int main(void){
yydebug=0;
if (!yyparse()) /* appel d l'analyseur généré
< par yacc */
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Exercice |l

printf ("\nMot de Dyck reconnu\n");
else

printf("\nMot non reconnu\n");
return O;

}
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Partie droite de regle |

Les différentes productions associées au méme non-terminal seront
séparées par une barre verticale “|". Une partie droite peut étre vide afin
d’'indiquer une epsilon-production. Par exemple :
list // epsilon-production
| list ',' stat
;
@ Les différentes productions pourraient cependant étre écrites
séparément (I :;1:1"," s;)
@ La récursivité a gauche et a droite est permise dans les regles bison,
cependant il est fortement recommandé d’écrire des grammaires
récursives a gauche pour optimiser le fonctionnement de I'analyseur
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Valeur sémantique ou attribut |

Associée a chaque symbole, terminal ou non, une valeur sémantique
(attributs des grammaires attribuées) est définie automatiquement par
bison. Le type YYSTYPE (YY Semantic TYPE) par défaut de cet attribut
est entier (int) mais peut étre défini de deux facons :

@ si I'on a besoin que d'un seul type sémantique pour tous les symboles

de la grammaire, il suffit de définir YYSTYPE par une macro dans les
déclarations C : #define YYSTYPE double;

@ attention a répéter cette macro également dans le source flex avant
I'inclusion de y.tab.h sinon lex utilisera le type par défaut int

@ si I'on a besoin de plusieurs types sémantiques pour différents
symboles, par exemple int et float, on utilisera la déclaration bison
union. Par exemple,
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Valeur sémantique ou attribut |

Junion {
int typeEntier;
float typeFlottant;
X

dans la section déclaration, redéfinit YYSTYPE comme suit :

typedef union {
int typeEntier;
float typeFlottant;
} YYSTYPE;

o La variable globale yylval est I'attribut que yylex() peut affecter
aux jetons

@ Ainsi, par exemple, toutes les littéraux entiers seront associés au
méme jeton LITINT mais auront une valeur sémantique
yylval.typeEntier différente correspondant a leur valeur
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Valeur sémantique ou attribut Ill

@ De méme pour les littéraux flottants qui correspondront au jeton
LITFLOT mais qui différeront sur yylval.typeFlottant

@ La déclaration de yylval dans y.tab.h est de la forme : extern
YYSTYPE yylval;

@ En C++, les champs de I'union devront étre de type pointeur sur
classe
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Actions |

@ N'importe quelle instruction C peut apparaitre dans un bloc d'actions

@ De plus, bison admet des ations spécifiques permettant d'utiliser les
attributs

@ L’attribut associé a la partie gauche de la régle de production
courante est nommé $8$, tandis que I'attribut du niéme élément de la
partie droite est nommé $n

Un exemple d’utilisation de ces attributs est I'amélioration du vérificateur
de Gg en un interpréteur d'expression booléenne :
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Actions Il
Al // interlog.y
#include <stdio.h>
#define YYSTYPE int /* inutile */
int yylex(void); void yyerror(char x*s);
hY
hle
liste : {3
| liste ligne {z
ligne : expr '\n' {printf ("\nRésultat : %d\n",$1);}
expr : '(" expr ') {$$ = $2;}

| expr '|" expr {$$ = $1 || $3;}
| expr '&' expr {$$ = $1 && $3;}
| "I expr {33 = ! $2;%
| 0" {$$ = 0;}
| 1 {33 = 15}
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Actions llI

YA
int yylex(void) {
int c;
while(((c=getchar())==" ") || (c=='\t"))

return c;
}
void yyerror(char *s) {
fprintf (stderr,"%s\n",s);
}
int main(void){
printf("Veuillez entrer une expression booléenne S.V.P. : ");
return yyparse();

3

Un exemple d'utilisation de cet interpréte :
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Actions IV

ol !1o&1
Résultat : 1
11&0
Résultat : 1

Le dernier résultat n'est pas cohérent en logique mais est le résultat de la
non définition de priorité d'opérateur dans notre source bison.
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Actions a l'intérieur de la partie droite |

@ Un bloc d'actions peut apparaitre au début et/ou au milieu de la
partie droite de la régle

@ Ces actions peuvent faire référence aux attributs associés aux
symboles les précédants

@ Ces actions sont exécutées aprés la reconnaissance des symboles les
précédant et avant la reconnaissance des symboles suivants

@ Attention, un bloc d'action intermédiaire est comptabilisé comme un
autre symbole dans la numérotation des attributs $i

@ En effet, un bloc intermédiaire est lui-méme associé a un attribut $n
correspondant a sa position dans la partie droite

@ A l'intérieur du bloc intermédiaire, la valeur de I'attribut associé a ce
bloc peut étre défini en affectant I'attribut $$
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Actions a l'intérieur de la partie droite I

@ Attention, $$ référence I'attribut de bloc et non pas I'attribut de la
partie gauche de regle! Ce dernier ne peut étre défini que par une
action de fin de regle.

@ Le type d'un bloc intermédiaire ne peut qu'étre explicitement donné
lors de son utilisation par : $<typeBloc>$ ou $<typeBloc>n

@ Le typeBloc pouvant étre n'importe lequel des types définis par
YYSTYPE

@ Prenons I'exemple du langage C, dans lequel un bloc d'instructions
est composé de déclarations (optionnelles) suivies d'instructions, le
tout entre accolades :
bloc: '{' {initPourDeclarations();} decls insts 'J}'

| '{' insts '}'

)
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Actions a l'intérieur de la partie droite Il

Dans cet exemple, le symbole non terminal decls a un attribut
référencé par $3.
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Actions prédéfinies |

$$ attribut du non terminal en partie gauche de reégle;
$n attribut associé au n i€me composant de la partie droite;

$<typeAutre>n permet de spécifier un autre type que le type par défaut
du n iéme composant;

YYABORT retourne immédiatement de yyparse avec un résultat 1
(erreur);

YYACCEPT retourne immédiatement de yyparse avec un résultat nul 0;
YYBACKUP(jeton, valeurAttribut) dépile un jeton de I'automate . ..
yychar variable entiére contenant le jeton de prévision courant;
YYEMPTY valeur stockée dans yychar quand il n'existe pas de jeton de
prevision ;

YYERROR provoque une erreur de syntaxe immédiate ;
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Actions prédéfinies |l

YYRECOVERING variable valant 1 si on est dans une récupération
d’erreur, 0 sinon;

yyclearin supprime le le jeton de prévision courant;

yyerrok force le retour de la récupération d'erreur vers I'état normal
de I'analyseur syntaxique. Il faut étre sur d'étre a un bon
“endroit” du flot de jeton pour appeler cette fonction. Dans
les interpréteurs ligne a ligne, un bon endroit se situe aprés le
retour ligne.
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

La premiere partie : déclarations |

Le type YYSTYPE des attributs doit étre défini par la déclaration %union :

Junion {
int typeEntier;
float typeFlottant;
b

Les jetons nommés doivent étre déclarés dans cette section ainsi que le
type de leur attribut par une déclaration du genre : % token
<typeFlottant> LITTERALFLOTTANT. Il est inutile de spécifier le code
numérique du jeton, car bison s'en charge, ce qui évite des erreurs de
conflits.

En cas de types multiples des attributs, les symboles non terminaux
doivent étre tous typés par une déclaration : Ytype <typeFlottant>
nonterminall nonterminal?2
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

La premiere partie : déclarations |l

Par défaut, I'axiome de la grammaire est le premier non terminal rencontré
dans la partie des régles. On peut définir explicitement I'axiome par la
déclaration : %start nonterminal.
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Associativité et priorité des opérateurs |

@ Dans la partie déclaration, on peut définir des priorités d'opérateurs
et les régles définissant leur type d'associativité.

e Rappelons qu'un opérateur binaire infixe * est associatif a gauche
(“left") lorsque x x y x z = (x % y) x z et associatif a droite (“right”)
lorsque x x y * z = x * (y * 2)

@ Lorsqu'un opérateur est associatif a gauche et a droite, il faudra
choisir I'une des deux associativités pour indiquer I'ordre d'évaluation
des expressions

@ Si un opérateur est non associatif, c’'est-a-dire x x y * z n’est pas
défini, il faudra également I'indiquer a bison par J%nonassoc

@ La déclaration de I'associativité a gauche est effectuée par : %left
JETONOP1 JETONOP2 JETONOP3 ... ou JETONOPi est un jeton
nommé ou non d'opérateur
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Associativité et priorité des opérateurs |l

@ On utilise de méme %right et %nonassoc pour |'associativité a
droite et la non associativité

@ Dans ce dernier cas, si I'analyseur trouve x % y * z alors que * est non
associatif, une erreur de syntaxe sera générée

o La priorité des opérateurs, les uns par rapport aux autres, est définie
simplement par |'odre des définitions des associativités des opérateurs,
du moins prioritaire au plus prioritaire

@ Enfin, une priorité différente de celle de I'opérateur en cours de
reconnaissance peut étre affectée a une partie droite de regle en
ajoutant %prec JETONVIRTUEL a la fin de la regle

@ Ainsi, I'opérateur obtiendra, pour cette regle la priorité (précédence)
du JETONVIRTUEL qui aura du étre déclaré
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Exemple de priorités |

J%nonassoc '<' '>' EGAL DIFFERENT SUPEGAL INFEGAL

Jleft '+' -t
left 'x' /!
Jright MOINSUNAIRE
Yright '~
expr :
| expr '-' expr {/* priorité normale du moins

< binaire */}
| '-' expr Jprec MOINSUNAIRE {/* priorité spéciale du moins
< unaire */}

o Ce type de précédence variable pour le méme jeton lexical est
nécessaire lorsqu’'un opérateur est utilisé dans des emplois différents

@ On peut prendre comme autre exemple 'opérateur * du C++, utilisé
pour la multiplication et le déréférencement d'un pointeur : *ptrInt
* 2
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Exemple de priorités |l

o L'automate a pile choisit I'opération Shift ou Reduce en comparant
la priorité de la reégle courante avec celle du jeton de prévision

@ Si le jeton est plus prioritaire alors un Shift est effectué, sinon un
Reduce est effectué

@ La priorité d'une régle est la priorité de son jeton le plus a droite

@ Les jetons sans priorité explicite sont considérés comme ayant une
priorité minimale
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Interface avec lex |

e yyparse() appelle itérativement yylex () jusqu'a ce que celui-ci
retourne un jeton inférieur ou égal a 0

@ Les noms de jetons nommés peuvent étre partagés par |'intermédiaire
du fichier y.tab.h qui est automatiquement généré lorsqu’on utilise
I'option -d de bison

e La valeur sémantique (attribut) d'un jeton sera passée de flex a
bison par |'intermédiaire de la variable yylval qui est de type
YYSTYPE
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Divers |

Débogage : afin de déboguer |'analyseur syntaxique, il suffit de positionner
la variable bison prédéfinie yydebug a 1 avant I'appel a yyparse() ou

pendant son exécution
Makefile :

YACC=bison

YACCFLAGS=-ydtv

#-y yacc : y.tab.c; -d genere y.tab.h; -t debogage possible; -v
— wverbose

.y
@echo debut $(YACC)-compil : $<

$(YACC) $(YACCFLAGS) $<

Q@echo debut compil ¢ avec edition de liens de y.tab.c
$(CC) $(CFLAGS) -o $* y.tab.c

@echo fin $(YACC)-compil de : $<

@echo Vous pouvez executer : $x*
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Divers 1l

On peut également utiliser du C++ dans les actions. Soi, par exemple, le
source suivant :

YAl

#1include <iostream>

using namespace std;

int yylex(void);void yyerror(char *s);

class A{

public:
void essai(int n){cout<<"Suite de "<<n<<"
— identificateurs'"<<endl;

}
};
Y
Jtoken IDENTIF
hto
liste : {/* chaine vide sur fin de fichier Ctrl-D */}

| liste ligne {}
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Divers Il

ligne : "\n' {/* ligne vide : expression vide
- */}
| error '\n' {yyerrok; /* synchro aprés la fin de
- ligne */}
| expr '\n' {A a;a.essai($1);}
expr : IDENTIF {$$=1;2
| expr IDENTIF {$$++;3
hte
int yylex() {
int c;
while(((c=getchar())==' ') || (c=='\t')) ; /* filtrage des

— blancs */
if ((c<='z") && (c>='a")) {
while(((c=getchar())<='z"') && (c>='a')) ;
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Analyse syntaxique ~ Syntaxe et sémantique des sources bison

Divers |V

ungetc(c,stdin);
return (IDENTIF);
}

return c; /* erreur lexicale */
}
void yyerror(char *s) {cerr<<s<<emndl;}
int main(){yydebug=0; return yyparse();}

Ce source pourra étre compilé par I'entrée de makefile suivante :

CPP=g++
CPPFLAGS=-g
A
Q@echo debut $(YACC)-compil : $<
$(YACC) $(YACCFLAGS) $<
@echo debut compil c++ avec edition de liens de y.tab.c
$(CPP) $(CPPFLAGS) -o $* y.tab.c
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Divers V

@echo fin $(YACC)-compil de : $<
@echo Vous pouvez executer : $x*

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601| Univ. Montpellier
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© Analyse syntaxique

@ Un exemple bison complet : une calculette
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Un exemple bison complet : une calculette |

Les sources lex calc.l et bison calc.y définissent une calculette
interprétant des expressions arithmétiques décimales. Voici le source flex :

Al /% calc.l */

#define YYSTYPE double /* ATTENTION AUX 2 MACROS
— dans lex et yacc */

#include "y.tab.h" /* JETONS crees par yacc et definition
— de yylval */

#include <stdlib.h> /* pour double atof(char *) */
#1include <stdio.h> /* pour printf */

13

chiffre ([0-91)

entier ({chiffre}+)

Joption noyywrap

YA

[ Nt]+ {/* filtrer les blancs */}

{entier}I{entier}N.{chiffre}*I{chiffre}*‘.{entier} {
/* latsser l'accolade d la ligne precedente */
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Un exemple bison complet : une calculette |l

yylval=atof (yytext) ;return (LITFLOT);

}
sin { return(SIN); }
cos { return(C0S); }
exp { return(EXP); }
1n { return(LN); }
pi { return(PI); }
exit|quit { return (QUIT); }
aidelhelpl‘? { return (HELP); }
.INn { return yytext[0]; /* indispensable !
— */}

hto
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Un exemple bison complet : une calculette IlI

Voici le source bison :

At /* calc.y */

#1include <math.h>

int errSemantiq=0; /* vrai st erreur sémantique :
— */

#define DIVPARO 1 /* divistion par 0 */

#define LOGNEG 2 /* logarithme d'un négatif */

#define YYSTYPE double
int yylex(void);void yyerror(char *s);
13
/* définition des jetons */
%token LITFLOT SIN COS EXP LN PI QUIT HELP
/* traitement des priorités */
hleft '+' '-!
Jleft 'x' v/t vyt
Jright MOINSUNAIRE
Jright '~'
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Un exemple bison complet : une calculette IV

hh
liste : {/* chaine vide sur fin de fichier Ctrl-D */%}
liste ligne {3}
ligne : "\n' {/* ligne vide : expression vide
- */}
| error '\n' {yyerrok; /* aprés la fin de
< ligne */}
| expr '\n' {

if (lerrSemantiq)
printf ("Résultat : %10.2f\n",$1); /* 10 car dont 2
— déctmales */

else if (errSemantiq==DIVPARO){
printf ("Erreur sémantique : division par O !\n");
errSemantiq=0; /* RAZ */

}
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Un exemple bison complet : une calculette V

else {
printf ("Erreur sémantique : logarithme d'un négatif
< ou nul '\n");
errSemantiq=0; /* RAZ */

}
}
| QUIT '\n' {return 0; /* fin de yyparse */}
| HELP '\n' {
printf (" Aide de la calculette\n");
printf (" = =\n");

printf ("Taper une expression constituée de nombres,

— d'opérations,\n");

printf (" de fonctions, de constantes, de parenthéses
— puis taper <Entrée> \n");

printf ("Ou taper une commande suivie de <Entrée>\n\n");
printf ("Syntaxe des nombres : - optionnel, suivi de

<« chiffres, \n");
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Un exemple bison complet : une calculette VI

printf (" suivi d'un . optionnel, suivi de chiffres
- \n");

printf ("Opérations infixes : + - * / = %} (modulo) \n");
printf ("Fonctions prédéfinies : sin(x) cos(x) exp(x)

< 1n(x)\n");

printf ("Constantes prédéfinies : pi\n");

printf ("Commandes : exit ou quit pour quitter la

< calculette\n");

printf (" aide ou help ou \?7 pour afficher
— cette aide\n");
}
expr : "(" expr ") {83 = $2;}
expr '+' expr {$$ = $1 + $3;}
expr '-' expr {$$ = $1 - $3;}

$1 * $3;%

expr 'x' expr {$$
expr '/' expr |
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Un exemple bison complet : une calculette VIl

_———— —

if ($3!=0)
$$ = $1 / $3;
else

errSemantiq=DIVPARO; /* par défaut $$=$1 =/

expr '~' expr {$$ = pow($1,$3);}
expr '%' expr {
if ($3!=0) $$ = fmod($1,$3);
else errSemantiq=DIVPARO; /* par défaut $$=§1 */

'-' expr %prec MOINSUNAIRE {3%$ = - $2;}
SIN '('" expr ')'{$$ = sin ( M_PI/180%$3 );}
COS '(' expr ')'{$$ = cos ( M_PI/180%$3 );}

EXP '(' expr ')'{$$ = exp($3);}
LN '(" expr ')' {
if ($3>0) $3% = 1log($3);
else errSemantiq=LOGNEG; /* $$=81 ... */
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Un exemple bison complet : une calculette

| PI {83
| LITFLOT 3%

)

M_PI;}
$1;%

Toth
void yyerror(char *s) {fprintf(stderr,"%s\n",s);}
int main(void){yydebug=0; return yyparse();}
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Un exemple bison complet : une calculette X

Voici I'entrée de makefile :

calc : calc.y calc.1l
# d'abord yacc pour y.tab.h puis lex puis gcc
Q@echo debut $(YACC)-compil : calc.y
$(YACC) $(YACCFLAGS) calc.y
@echo debut $(LEX)-compil : calc.l
$(LEX) calc.l
Q@echo debut compil ¢ avec edition de liens
$(CC) -g -Wall -o calc y.tab.c lex.yy.c -lm  # lib math
Q@echo fin compil : vous pouvez executer calc
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Un exemple bison complet : une calculette X

Voici une exécution :

$ make calc

$ calc

2+3%x4

Résultat : 14.00
-5--272

Résultat : -1.00
1/4-1/272

Résultat : 0.00
1+3%2737(1n(100) /1n(10))
Résultat : 1537.00
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@ Analyse ascendante par automate a pile
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Analyse ascendante par automate a pile |

@ Nous allons étudier I'analyse ascendante et plus particulierement
I'analyse LALR utilisée dans bison.

e Rappelons que, partant d'un mot (flot de jetons), on essaie de
construire |'arbre de dérivation associé

o Cette construction va se faire depuis les feuilles (jetons) en remontant
jusqu’a la racine (I'axiome)

@ De plus, on va construire une dérivation droite (Rightmost) et a
I'envers !

@ Les grammaires pouvant étre analysées par un analyseur LR doivent,
bien entendu, avoir certaines propriétés comme la non ambiguité

@ Prenons un exemple simple pour illustrer le fonctionnement de
I'automate a pile.
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Analyse ascendante par automate a pile |l

Soit la grammaire G = ({1,2,3,+},{E}, R, E) avec les regles de R
suivantes :

E—1]238lE+E

Considérons le mot d'entrée 14-2+3%
L’analyse du mot commence sur le 1 (Left to right scanning)

Ce symbole 1 est décalé du flot de jeton sur la pile (opération Shift)

Puis la régle E — 1 est appliquée en réduisant sa partie droite (1)
dans la pile et en la remplacant par sa partie gauche E (opération
Reduce)

@ Arrivé sur le 4, I'analyseur empile ce symbole car il ne peut pas
appliquer de réduction
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Analyse ascendante par automate a pile Il

@ Le 2 est ensuite reconnu et décalé sur la pile

@ Puis, 2 est réduit en E (E — 2) dans la pile

@ On s'apercoit qu'on peut alors réduire (Reduce) le mot sur la pile
(E+E) en appliquant la régle E — E+ E

@ La pile ne contient donc plus que E

@ En continuant le méme procédé, on reconnait les productions E — 3
puis E - E+ E

@ On a donc la dérivation droite, obtenue a I'envers :
E3e e e E+ESe 3 E+32 b e E+E+356
E+2+33.,14+243

@ Remarquons que cette grammaire est ambigué et qu'on a décrit un

analyseur déterministe qui choisit d'évaluer 142 en premier et non
pas 243
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Analyse ascendante par automate a pile IV

o Cet analyseur choisit I'action Reduce sur un conflit Shift/Reduce

@ bison, au contraire, privilégie toujours le Shift sur le Reduce, ce qui
lui permet d'associer naturellement le else au if le plus proche!

@ Mais ceci entraine I'évaluation des opérateurs de droite a gauche si
aucune priorité n'est définie!
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Fonctionnement de |'automate a pile en analyse

ascendante LR |

Un manche d'un mot (pas forcément terminal) m = a3~y est un couple
constitué :

@ d'une production X — 3,
@ d’une position p dans m telle que m[p, p + |B|[= 3;

s 1
ayant la propriété suivante : S =4 aXy =4 m = af.

@ Dans I'exemple précédent, le mot 14+2+3 ne posséde qu'un manche
(E—11)

e En effet, ni (E — 3,5), ni (E — 2,3) ne sont des manches car ni
14+2+E, ni 1+E+3 ne dérive de E par une dérivation droite
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Fonctionnement de |'automate a pile en analyse

ascendante LR 1l

e Par contre, E+E+3 possede deux manches : (E — E + E,1) et
(E — 3,5)

@ On peut donc choisir entre les deux réductions possibles

@ Dans I'exemple précédent, nous avions choisi de réduire sur la position
la plus a gauche de facon a réduire dés qu'un manche est situé sur la
pile

@ On aurait pu empiler + puis E au dessus de E+E puis réduire par
deux fois E+E en E

@ Nous avions choisi de privilégier la réduction (Reduce) sur le décalage
(Shift) dans ce conflit Shift/Reduce

@ Malheureusement, I'identification du manche n'est pas toujours aussi
simple que dans cet exemple
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Fonctionnement de |'automate a pile en analyse

ascendante LR 11

o Il peut exister d'autres types de conflits Reduce/Reduce lorsque deux
manches sont réductibles |'un étant suffixe de I'autre

@ Pour limiter ces conflits d'action, la table d'analyse ainsi que la pile
vont utiliser des états entiers correspondant a la configuration
courante, c'est-a-dire a ce qui a été reconnu jusqu'alors.

Définition

La pile d'un analyseur LR est une structure Dernier Entré Premier Sorti
(LIFO) de couples (s,e) ot s € VU{$} est un symbole et e € N est un état
entier. L'état courant de I'analyseur est I'état situé au sommet de la pile.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601| Univ. Montpellier 245 /389



Analyse syntaxique ~ Analyse ascendante par automate a pile

Table d'analyse d'un analyseur LR |

La table d'analyse d'un analyseur LR est constitué d'une partie Action et
d'une partie Successeur.

@ La table d’action est un tableau a deux entrées : les différents états
sur les lignes, les terminaux et $ sur les colonnes. On note une case de
cette table par Action[e, x]|. Une action d'un analyseur LR peut étre :

o Décaler (Shift) le symbole courant du flot d'entrée sur la pile (empiler)
avec un état e. Cette action est notée : Se.

o Réduire (Reduce) par une production X — «. Cela consiste a dépiler «
(a I'envers) de la pile et a le remplacer par X et I'état correspondant
dans la table Successeur, c'est a dire Successeur[sommet(Pile)[2], X].
Cette action est notée : R(X — «).

o Accepter le mot d’entrée et terminer I'analyse. Cette action est notée :
Accepter.

o Générer un message d’erreur de syntaxe et terminer |'analyse. Cette
action n'est pas notée explicitement : toutes les cases vides de la table
Action représentent des actions Erreur.
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Table d'analyse d'un analyseur LR I

o La table des successeurs est un tableau a deux entrées : les différents
états sur les lignes, les non terminaux sur les colonnes. On note une
case de cette table par Successeur[e, X]. Cette table ne sert qu’a
indiquer le nouvel état courant aprés une réduction. La aussi, toutes
les cases vides de la table Successeur représentent des erreurs.

Avant de voir les algorithmes de construction de ces tables, regardons le
fonctionnement de I'analyseur. L'analyse d’'un mot du flot d'entrée est
décrit dans I'algorithme 17.
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Algorithme de Fonctionnement de I'automate |

Algorithme 17 : Fonctionnement de I'automate

Données : Une table d'analyse
Action[Etat, VT U {$}], Successeur[Etat, V], un flot de
jetons terminé par $
Résultat : Erreur ou Succes
Pile=construirePileVide() // contenu : (symbole, état)
empiler(Pile,($,0)) // initialisation
jeton=lireFlot() // jeton courant du flot
tant que vrai faire
etatCourant=sommet(Pile)[2] // projection sur |'état
exécuter Action|etatCourant, jeton] // Shift, Reduce, Erreur ou
Accepter
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Analyse syntaxique

Analyse ascendante par automate a pile

Pour illustrer le fonctionnement de |'algorithme 17, prenons un exemple
simple d'une grammaire de Dyck a un couple de parentheéses :
Soit la grammaire G4 = ({a, b}, {S}, R, S) avec les régles de R suivantes :

S — SaSble

Le calcul des tables de cette grammaire fournit le résultat suivant :

Action Successeur
a b $ S
0 R(S — ¢) R(S —¢) R(S — ¢) 1
1 S2 Accepter
2 R(S — ¢) R(S — ¢) R(S — ¢) 3
3 S2 S4
4 | R(S — SaSb) | R(S — SaSb) | R(S — SaSb)
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Exemple I

Examinons I'analyse du mot abaababb$ :

Analyse ascendante par automate a pile

Pile Flot d'entrée Action

$0 abaababb$ R(S — ¢)
$0S1 abaababb$ S2
$0S1a2 baababb$ R(S — ¢)
$0S1a2S3 baababb$ S4
$0S1a2S3b4 aababb$ | R(S — SaSb)
$0S1 aababb$ S2
$0S1a2 ababb$ R(S — ¢)
$0S1a2S3 ababb$ S2
$0S1a2S3a2 babb$ R(S — ¢)
$0S1a253a2S3 babb$ S4
$0S1a2S53a2S3b4 abb$ | R(S — SaSh)
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Exemple Il

$0S1a2S3 abb$ 52
$0S1a2S3a2 bb$ R(S — ¢)
$0S1a253a2S3 bb$ S4
$0S1a2S3a2S3b4 b$ | R(S — SaSb)
$0S1a2S3 b$ S4
$0S1a2S3b4 $ | R(S — SaSb)
$0S1 $ Accepter
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Exemple IV

Ce qui donne la dérivation droite suivante :

S A SaSh = SaSaSbb = SaSabb = SaSaSbabb = SaSababb =
Saababb :1> SaSbaababb :1> Sabaababb :1> abaababb
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@ Algorithmique
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SLR et LALR |

@ Nous allons décrire comment calculer les tables d’analyses pour des
grammaires LR(1), c'est-a-dire avec un symbole de prévision

o Il existe plusieurs méthodes de construction dépendant de la
complexité de la grammaire et de I'efficacité de I'analyseur,
notamment en ce qui concerne la taille des tables

@ La méthode SLR, “Simple LR", permet de construire trés
efficacement des tables d'analyse assez petites

@ Malheureusement, certaines constructions syntaxiques, peu
nombreuses dans les langages de programmation, ne peuvent étre
gérées par cette méthode

@ D’autres méthodes existent, dont la méthode LALR utilisé par bison,

résolvant certains problémes de SLR au prix d'une taille plus
importante des tables
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SLR et LALR I

@ Enfin, il existe une méthode dite canonique qui assure la
reconnaissance de toute grammaire LR(1) mais a un cout prohibitif

@ Nous nous contenterons ici de décrire la méthode SLR en conseillant
le livre [2] pour ceux qui souhaiteraient en savoir plus ...
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Construction de la collection canonique SLR |

Définition

Un item LR(0), ou SLR, ou plus simplement item, d'une grammaire

G = (V1,Vn, R, S) est un couple constitué d'une production de R et
d'une position dans la partie droite de celle-ci. La position est représentée
par un point "' dans la parte droite.

e Soit la grammaire Gy = ({a, b},{S}, R = {S — SaSh|c},S)

@ L'ensemble des items de G est ltems(G) = {S — .5aSb,S —
S.a5b,S — Sa.5b,S — SaS.b,S — SaSb.,S — ¢.}

@ Un item représente ce qui a déja été reconnu (a gauche du point) lors
de I'analyse, et ce qu'il reste a reconnaitre (a droite du point) avant
de pouvoir réduire
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Construction de la collection canonique SLR I

@ Avant de construire les tables Action et Successeur, il faut calculer un
automate fini déterministe (ou collection canonique), c’est a dire un
ensemble d'états reliés par des transitions

@ Chaque état représente un ensemble d'items correspondant a une
situation d'analyse

@ Ces états sont les états de I'analyseur LR

Définition

Une grammaire augmentée G' d'une grammaire G = (Vr, Vy, R, S) est
obtenue par ajout d'un nouvel axiome S’ et d'une production S’ — S :
G' = (VT, Vy U {5’}, RU {5/ — 5}, 5/)

@ L’ajout de ce “super-axiome” est motivé par |'obtention d'un état
initial de I'AFD qui soit une source : on ne peut revenir sur cet état
initial.
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Construction de la collection canonique SLR Il

@ La construction de I'’AFD utilise une fonction Fermeture() qui
regroupe tous les items auxquels on peut s'attendre dans un état
donné

@ La fonction Fermeture() est décrite dans I'algorithme 18

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601| Univ. Montpellier 259 /389



Analyse syntaxique Construction de la collection canonique SLR

Algorithme Fermeture d'un ensemble d'items |

Algorithme 18 : Fermeture d'un ensemble d'items

Données : Un ensemble | d'items d'une grammaire augmentée
G=(Vr,Vn,R,S)
Résultat : Un ensemble d'items
Fermeture(l)=I // initialisation
pour chaque item non marqué j = a.X3 € Fermeture(l) tel que
X € V) faire
marquer j // on ne traite un item qu’une seule fois
pour chaque production X — ~ € R faire
| Fermeture(l) = Fermeture(l) U{X — v}

retourner Fermeture(l)
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Exemple |

Le principe de I'algorithme 18 tient en ce que lorsqu'on s'attend a
reconnaitre un non terminal X, il faut également s’attendre a reconnaitre
toute partie droite de production dont X est la partie gauche.

Soit la grammaire de Dyck augmentée :

G = ({a,b},{S,S'},{S — SaSb|e,S" — S}, S’). Calculons les fermetures
des ensembles d'items {S' — .S} et {S — Sa.Sb}.

Fermeture({S' — .S}) ={S' — .5,S — .5a5bh,S — ¢.}

Fermeture({S — Sa.Sb}) = {S — Sa.Sb,S — .5aSb, S — €.}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601| Univ. Montpellier 261 /389



Analyse syntaxique Construction de la collection canonique SLR

Collection canonique |

@ Pour construire I'AFD des états de I'analyseur, également appelée
collection canonique des ensembles d'items LR(0), il faut examiner
toutes les transitions possibles d'un état (ensemble d'items) vers un
autre par le déplacement du “" d'une position vers la droite.

@ L'algorithme 19 décrit cette construction.
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Algorithme Construction de la collection canonique

Algorithme 19 : Construction de I'AFD

Données : Une grammaire augmentée G = (Vr, Vy, R, S')
Résultat : Un AFD B = (V,E,D, A, T) ou collection canonique
V = V5 U Vy—{S'} // les symboles de transition sont les symboles de la
grammaire non augmentée
E = {Fermeture({S’ — .S})} // initialisation de I'ensemble des états
D = E // unique état initial
répéter
choisir un état non marqué | € E // un état est un ensemble d'items
marquer | // on ne traite un état | qu'une seule fois
pour chaque x € V tel qu'il existe au moins un Y — a.xf € | faire
transition(l, x) = Fermeture({Y — ax.B}) // calcul de I'état suivant
aprés reconnaissance de x
E = E U transition(l, x) // ajout possible d’un nouvel état
T = T U{(l,x, transition(l, x))} // ajout d'une nouvelle transition

jusqu’a ce que tous les états de E soient marqués;
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Remarques et exemple |

@ Remarquons que I'algorithme 19 ne calcule pas d'états d'arrivée de
I'automate

o En effet, cet automate ne permet pas de reconnaitre un mot du
langage analysé mais sert uniquement a décrire les transitions entre
états

@ Chaque chemin dans I'’AFD correspond a un préfixe d'un mot dérivant
de I'axiome

o Ces préfixes, aussi appelé préfixes viables, sont constitués de
terminaux et de non terminaux

@ llIs représentent le contenu possible de la pile de |I'automate a un
instant donné
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Analyse syntaxique Construction de la collection canonique SLR

Remarques et exemple |l

Exemple :
Soit la grammaire de Dyck augmentée :
G = ({a, b},{S,5'},{S — SaSb|e, S’ — S}, S’). Calculons I'automate

correspondant :

lo = Fermeture({S’ — .S}) ={S' — .5,5 — .5aSb,S — ¢.}

l = Fermeture({S’ — .5,S — .SaSb}) ={S' — S.,S — S5.aSb}

T ={(l,S,h)}

I, = Fermeture({S — Sa.Sb}) = {S — Sa.5b,S — .SaSb,S — ¢.}

T+ ={(lo,S,h),(h,a h)}

I3 = Fermeture({S — SaS.b,S — S.aSb}) = {S — SaS.b,S — S.aSb}
T+ = {(/07 57 I1)7 (I17 a, l2)7 (l27 57 I3)}

Iy = Fermeture({S — SaSb.}) = {S — SaSb.}

l = Fermeture({S — Sa.Sb}) = {S — Sa.5b,S — .SaSb,S — ¢.}
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Analyse syntaxique Construction de la collection canonique SLR

Remarques et exemple Il

T+ = {(l07 Sa I1)7 (Ila a, l2)7 (l27 Sa I3)7 (I3> b7 I4)) (I3a a, 12)7 }

@ Dans cet exemple, les préfixes viables sont :
e,S,Sa, SaS, SaSb, SaSaSh, ..., S5a5(aS)"b

@ La question que I'on se pose est de savoir quand un préfixe situé en
pile doit étre réduit

@ Définissons la notion d'item valide pour un préfixe viable.

Définition

Un item X — [31.082 est valide pour un préfixe a1 d'un mot dérivant de
['axiome si et 1seulement s'il existe une dérivation droite :
S' =4 aXm =4 aBifom avec m € V7*, X € Vy,af18 € V*.
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Analyse syntaxique Construction de la collection canonique SLR

Remarques et exemple [V

@ Remarquons que dans le cas ol I'item X — ;. est valide pour le
préfixe af1, alors on a un manche qu'il faut réduire

@ Dans le cas ou I'item X — (31./5 est valide et que 8> n'est pas vide, il
faut décaler

@ La question est maintenant de savoir quand un item est valide pour
un préfixe donné?

Théoreme

L'ensemble des items valides pour le préfixe viable a1 est I'ensemble des
items atteint par un parcours de I'AFD depuis I'état initial, le long du
chemin étiqueté par af;.

Ainsi, I'automate construit permet de répondre facilement a la question
précédente.
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Analyse syntaxique Construction de la collection canonique SLR

Remarques et exemple V

Soit le préfixe viable Sa$S, les deux items valides sont S — SaS.b et

S — 5.aSb. On a donc les deux types de dérivations droites possibles :
S = 5aSh ou bien S = SaSh = SaSaSb = SaSa... Remarquons que le
symbole d’entrée suivant (a ou b) permettra de choisir I'état suivant qui
correspondra soit a une réduction par S — 5aSb ou bien par S — €.
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© Analyse syntaxique

@ Construction des tables d'analyse SLR
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Analyse syntaxique Construction des tables d’analyse SLR

Construction de la table Action SLR |

Algorithme 20 : Construction de la table Action en analyse SLR

Données : Une grammaire augmentée G = (V1, Vy, R, S’), un AFD B=(V,E,D,A, T)
collection canonique
Résultat : La table d’analyse Action[E, VT U {$}]
pour chaque état I; € E faire
pour chaque item i € I; faire
suivant /'item i faire
casou i =S — S. faire
| ajouter “Accepter” a Actionll;, $]
casol i =X — a.aff avec a € V1 et (lj,a,lk) € T faire
| ajouter Shift I, a Actionll;, a]
casol i =X - a.eti#S — S. faire
L pour chaque x € TabSuivants[X] faire
| ajouter Reduce(X — «) a Action[l;, x]

cas ou autres faire
L ne rien faire

pour chaque case vide Action[l;, x] faire
| écrire “Erreur” dans Action[l;, x]

ou
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Analyse syntaxique Construction des tables d'analyse SLR

Remarques |

@ Remarquons qu’une seule action Accepter existe qui correspond a la
réduction S’ — S de la grammaire augmentée

Une case de la table Action peut contenir plusieurs actions !
On peut obtenir des conflits Shift/Reduce ou Reduce/Reduce

@ Dans ce cas, la grammaire n’est pas SLR et il sera nécessaire d’utiliser
un algorithme de construction de table plus complexe

Exemple

Pour appliquer I'algorithme 20 sur la grammaire de Dyck augmentée

G = ({a, b},{S,S'},{S — SaSb|e, S’ — S}, 5'), il nous faut calculer les
suivants de S : TabSuivants[S] = {a, b,$}. On obtient alors la table
suivante :
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Analyse syntaxique Construction des tables d'analyse SLR

Remarques I

Action
a b $
0 R(S — ¢) R(S — ¢) R(S — ¢)
1 S2 Erreur Accepter
2 R(S — ¢) R(S — ¢) R(S — ¢)
3 S2 S4 Erreur
4 | R(S — SaSb) | R(S — SaSb) | R(S — SaSb)

On peut maintenant écrire I'algorithme 21 de construction de la table
Successeur SLR.
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Analyse syntaxique Construction des tables d’analyse SLR

Construction de la table Successeur |

Algorithme 21 : Construction de la table Successeur en analyse SLR

Données : Une grammaire augmentée G = (Vr, Vy, R, S’), un AFD
B=(V,E,D,A, T) ou collection canonique

Résultat : La table d'analyse Successeur[E, V]

pour chaque transition (I;, X, l) € T tel que X € V) faire

| Successeur([l;, X] = Ix

pour chaque case vide Successeur(l;, X] faire
| écrire “Erreur” dans Successeur|l;, X]

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601| Univ. Montpellier 273 /389



Analyse syntaxique Construction des tables d'analyse SLR

Remarques et exemple |

@ Remarquons qu'’il ne peut y avoir de conflit car I'automate est
déterministe

@ La table Successeur permet de déterminer I'état courant aprés une
réduction en fonction de I'état sous-jacent dans la pile.

@ L’algorithme 21 sur la grammaire de Dyck augmentée
G = ({a, b},{S,S'},{S — SaSb|e, S’ — S}, S') fournit la table

suivante :

Successeur
S
1
Erreur
3
Erreur
Erreur

AN =IO
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Analyse syntaxique Construction des tables d’analyse SLR

Efficacité |

Théoreme

Une grammaire est LR(0) ou SLR si et seulement si sa table Action ne
contient aucun conflit

Théoreme

Un langage est LR(0) ou SLR si et seulement s'il existe une grammaire
SLR le générant

o Différentes grammaires SLR existant pour un méme langage, on peut
se préoccuper de la “"meilleure” en terme d'efficacité

@ Par exemple, nous avons souvent considérée la grammaire augmentée
de Dyck suivante : Gz = ({a, b},{S,5'},{S — SaSb|e, S' — S}, S)

@ Il existe une autre grammaire SLR engendrant le méme langage :
Gy = ({a,b},{S,5'},{S — aSbS|e,S" — S5}, S").
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Analyse syntaxique Construction des tables d'analyse SLR

Efficacité I

@ La grammaire de Dyck récursive a gauche engendrera un automate
dont la pile grossira moins que celle de I'automate "a droite" car les
réductions pourront s'effectuer dés que possible

@ C'est la raison pour laquelle on privilégie les grammaires récursives a
gauche qui correspondent en plus au fonctionnement habituel des
opérateurs majoritairement associatifs a gauche!
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Analyse syntaxique Construction des tables d'analyse SLR

Un exercice |

Construire les tables d’analyse SLR de Gy. Examiner le fonctionnement de
I'analyseur sur le mot abaababb$.
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Un exercice Il

Solution : AFD :

lo = Fermeture({S’ — .S5}) ={S" — .5,5 — .aShS,S — .}

T = {(l07 a, ll)}

h = Fermeture({S — a.5bS}) = {S — a.5bS5,S — .aSbS,S — ¢.}
T+ ={(h,a h)}

T+ ={(h,S, )}

I, = Fermeture({S — aS.bS}) = {S — aS.bS}

T+ ={(h,b, )}

I3 = Fermeture({S — aSb.S}) = {S — aSb.5,S — .aShS5,S5 — .}
T+={(h,ah)}

T+ ={(h,5, 1)}

ls = Fermeture({S — aSbhS.}) = {S — aSbhS.}

T+ = {(IOa Sa I5)}

Is = Fermeture({S' — S.}) ={S — S.}
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Un exercice

Table d'analyse :

Analyse syntaxique

Construction des tables d'analyse SLR

Action Successeur
a b $ S
0 S1 R(S — ¢) R(S — ¢) 5
1 S1 R(S —¢) R(S —¢) 2
2 S3
3 S1 R(S — ¢) R(S — ¢) 4
4 R(S — aSbS) | R(S — aSbs)
5 Accepter

Avec le mot abaababb$, empilement de :
aSbaaSbaSbS avant la premiére réduction intéressante (R(S — aShS))

Michel Meynard (UM)
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Analyse syntaxique Construction des tables d'analyse SLR

exercice |V

@ Apreés construction des tables SLR de cette seconde grammaire, on
s'apercoit qu'elles possedent un état de plus, mais surtout que la
reconnaissance d'un mot nécessite une pile beaucoup plus importante

o En effet, la premiére réduction par S — aShS ne peut avoir lieu que
trés tard par rapport a l'analyseur de la grammaire G,

@ La raison principale de cette inefficacité tient en ce que G4 est
récursive a droite

@ Par conséquent, on préférera toujours, quand on a le choix, utiliser
des grammaires récursives a gauche en analyse ascendante
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© Analyse syntaxique

@ Les conflits et leur résolution par bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601| Univ. Montpellier 281/389



Analyse syntaxique Les conflits et leur résolution par bison

Les conflits et leur résolution par bison |

Des grammaires extremement simples et non ambigués peuvent étre non
SLR. Par exemple, la grammaire augmentée G =

({a, b,c},{S",S,A, B}, {S"— S,S — Aaa|Bablaac, A — a, B — a}, S)
est non SLR. Pour le montrer, commencons a construire I'AFD

lo = Fermeture({S’ — .5})={S"— .5,5S — .Aaa,S — .Bab,S —
.aac,A — .a,B — .a}

h = Fermeture({S — a.ac,A — a.,B — a.}) ={S — a.ac,A— a.,B —
a.}

I = Fermeture({S — aa.c}) = {S — aa.c}

T = {(Io, a, Il), .. }

TabSuivants[A] = TabSuivants|B] = {a}

Nous pouvons maintenant construire un morceau de la table Action :
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Les conflits et leur résolution par bison I

Action
a
S1
R(A — a),R(B — a),52

N =[O

Quel que soit le mot d’entrée, il commence par aa. La lecture du premier a
produit un décalage, puis il existe trois actions possibles : deux réductions
différentes et un décalage! En fait, dans ce cas il faudrait examiner la
troisieme lettre pour choisir la bonne réduction ou le décalage. Cette
grammaire n'est pas LR(1) mais LR(2), par conséquent la méthode SLR
ne peut rien (pas plus qu'aucune autre méthode LR(1)).

D'autres méthodes algorithmiques existent pour les grammaires LR(1)
dont la méthode LALR de bison. L'option —v de bison permet notamment
de visualiser les tables d'analyse utilisées. Voici, par exemple, le fichier
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Les conflits et leur résolution par bison Il

.output obtenu avec la grammaire
Gy = ({a,b},{S,5'},{S — SaSble, S’ — S}, 5).

state 0
$default reduce using rule 2 (S)
S go to state 1
state 1
S -> S . 'a' S 'b' (rule 1)
$ go to state 5
'a' shift, and go to state 2
state 2

S -> S 'a' .S 'p'" (rule 1)
$default reduce using rule 2 (S)
S go to state 3

state 3
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Les conflits et leur résolution par bison IV

S -> S . 'a' S 'p' (rule 1)
S -> S 'a' S . 'p' (rule 1)

'a' shift, and go to state 2
'b! shift, and go to state 4
state 4
S -> S8 'a'S 'b' . (rule 1)
$default reduce using rule 1 (S)
state 5
$ go to state 6
state 6

$default accept

On retrouve, a quelques détails pres, les tables Action et Successeur
obtenus dans I'exemple du transparent 248.
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Analyse syntaxique Les conflits et leur résolution par bison

Conflit Shift/Reduce |

Que fait bison lorsqu'il rencontre des conflits ? Sur conflit Shift/Reduce,
bison avantage toujours I'action Shift. L'une des raisons historiques de ce
choix concerne les “si alors sinon” imbriqués. Soit la grammaire suivante :

GF = ({i7 t’ e’ a’ b}’ {S? E}? R’ 5)
avec les regles de R suivantes :

S — iEtS|iEtSeS|a
E — b

La compilation bison fournit un analyseur privilégiant le décalage du “else”
plutét que la réduction du iEtS empilé. Voici la partie descriptive fournie
par bison -v:
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Analyse syntaxique Les conflits et leur résolution par bison

Conflit Shift/Reduce Il

S -> 'i' E 't' S (rule 1)

S -> 'i' E 't' 8 'e' S (rule 2)
'e! shift, and go to state 7
e [reduce using rule 1 (S)]

$default reduce using rule 1 (S)

Les crochets encadrant “reduce using rule 1" indique que cette action
n'est pas prise en compte par I'analyseur.
Conflit Reduce/Reduce :

Dans un conflit Reduce/Reduce bison choisit d'utiliser la premiére régle
dans I'ordre de description de la grammaire du source bison. Il est
extremement périlleux d'utiliser cette caractéristique dans un analyseur car
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Conflit Shift/Reduce Il

I'ordre des régles de production dans le source bison peut souvent varier
dans la phase de conception du langage.
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Analyse syntaxique Les conflits et leur résolution par bison

Conflits multiples |

Un autre exemple de gestion des conflits dans bison consiste a voir les
tables obtenues pour la grammaire non LR(1) G =

({a,b,c},{S',S,A, B}, {S' = S,S — Aaa|Bab|aac,A — a, B — a}, S).

state 1
S -> 'a' . 'a' 'c¢' (rule 3)
A > r'a' . (rule 4)
B -> 'a' . (rule 5)
'a' shift, and go to state 4
'a' [reduce using rule 4 (A)]
'a [reduce using rule 5 (B)]
state 4
S -> 'a' 'a' . 'c' (rule 3)
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Analyse syntaxique Les conflits et leur résolution par bison

Conflits multiples I

'c! shift, and go to state 7

@ L'action Shift a bien été privilégiée par rapport aux deux reduce
possibles

@ bison parvient donc a fournir un analyseur pour nombre de
grammaires mais attention, cet analyseur ne reconnait que le mot
aac, ce qui n'est pas correct vis a vis de la grammaire (ni aab, ni aaa
ne sont reconnus)

e Pour finir, remarquons que certaines grammaires LR(1), c’est-a-dire
nécessitant un seul jeton de prévision, ne sont pas analysables avec la
méthode LALR.
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Analyse syntaxique Les conflits et leur résolution par bison

Outils d'analyse des conflits |

@ Bison avec I'option verbose -v fournit un fichier texte d’extension
output vu auparavant
@ avec l'option graph -g, il fournit également un graphe graphviz
d'extension gv illustrant la collection canonique, les conflits et leur
résolution !
@ Le graphe du transparent suivant a été obtenu par la commande :
$ bison -yvg calcAvecConflits.y

@ La grammaire calcAvecConflits.y contient :

expr : "(" expr ') {$$ = $2;}
| expr '+' expr {$$ = $1 + $3;}

| expr 'x' expr {$$ = $1 * $3;}

| LITFLOT {$$ = $1;3

’

o Elle génere 4 conflits S/R!
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Analyse syntaxique Les conflits et leur résolution par bison

Outils d'analyse des conflits |l

. X
Etat 10 Etat 8
3 expr: '(' expr ')’ = 4 expr: expr '+' * expr 2 lig
LITFLOT ,’p_-,(pr/u- far
¥
Etat 11
4 expr: expr
4 | expr
5 expr \
[, et NUe |
m a Etat 9
5 expr: expr '+' s expr
nume B -+
Réduction rejaté LITFLOT Jexpr IS.H\FT ivilégi point de 'item
- rivilégié
2 s S/R pour +, ¥ P 9

Etat 12

4 expr: expr * "+° expr
5 | expr ¢ "*" expr
5 expr "*° expr *

6 expr: LITFLOT »

Réduction par la production 5 : e:e*e

€ Réduction par la production 5§ REJETEE
par défaut (tout sauf+") —

2 conflits S/R pour +,*
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@ Analyse sémantique
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Analyse sémantique

Introduction a I'analyse sémantique |

Nous allons ici étudier une certain nombre de techniques concernant
I'analyse sémantique de code source :
@ aprés |'analyse syntaxique qui a produit un AST (Abstract Syntax
Tree), I'analyse sémantique a3 comme missions :

o la résolution des noms (en liaison avec une table des symboles)

o la vérification des types (types mismatch)

o d'autres vérifications spécifiques au langages (nombre et types des
paramétres d'une fonction)

@ quelques généralités, beaucoup de spécificités liées au langage source

@ les grammaires attribuées, une théorie pour la traduction ou
I'interprétation dirigée par la syntaxe

@ mise en pratique des grammaires attribuées avec bison
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@ Analyse sémantique
@ AST ou Arbre syntaxique abstrait
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Analyse sémantique ~ AST ou Arbre syntaxique abstrait

AST ou Arbre syntaxique abstrait |

Un arbre dont les noeuds internes sont marqués par :
@ des opérateurs tels + ou *

@ ou des noms de structures de controle ou de structures syntaxiques
tels while ou block

et dont les feuilles (ou nceuds externes) représentent :
@ des opérandes tels un identificateur ou un littéral

@ ou des instructions élémentaires telle ;" (instruction vide)
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Analyse sémantique ~ AST ou Arbre syntaxique abstrait

Un exemple d'AST d'expression |

A L'AST de gauche représente |'expres-

1 * sion entiére :
A 1+2x(a>573:4)
2 ?
Remarquons que I'AST est une simpli-
/’\ fication de I'arbre de dérivation (plus
3 3 4 de‘ parentheses ni de symboles non ter-
A minaux)
a 5
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Un exemple d'AST d'itérative |

while
L'AST de gauche représente l'itéra-
tion de factorielle :
> bIOCk While(n>0){
cumul*=n;
n--;
}
n 0 *— -

La encore, les accolades et des sym-
boles non terminaux tels que instruc-

tion ont disparus
cumul n n
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Analyse sémantique ~ AST ou Arbre syntaxique abstrait

Implémentation d'AST |

o |'utilisation d'un langage a objet, tel C++, facilite I'implémentation
d'AST

@ |'héritage va permettre de spécialiser certains noeuds a partir de la
classe de base Noeud

@ ainsi la classe Expression permettra de représenter un opérateur et ses
n opérandes qui sont des sous-expressions
@ la vérification de la compatibilité des types :

o des sous-expressions (addition de 2 nombres)

o de chaque sous-expression avec |'opérateur (concaténation nécessite 2
chaines)

o I'éventuelle conversion implicite (prévue dans le langage) sera ajoutée
dans I'’AST (en PHP, 11+"toto" vaut 11)

@ |'ajout d’attributs a des noeuds de I'AST est permis durant tout le
processus d'analyse (e.g. type de I'expression inféré pendant I'analyse
sémantique)
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Analyse sémantique ~ AST ou Arbre syntaxique abstrait

Implémentation d'AST I

@ I'AST ainsi attribué est souvent appelé arbre décoré !
o des méthodes génériques peuvent étre définies dans la classe de base :
e dans un compilateur,
string genererCode()

permettra de générer le code cible (assembleur ou langage
intermédiaire) de chaque noeud

e dans un interpréteur,
void executer()
pour les instructions permettra de faire évoluer le "contexte
d'exécution",
Valeur evaluer()

pour une expression permettra de calculer la valeur de |'expression
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@ Analyse sémantique

@ Tables des symboles
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Analyse sémantique Tables des symboles

Tables des symboles |

@ Dans les langages a blocs (C/C++, Java, ...), des variables peuvent
étre définies localement au bloc :

for(int i=0; ...){...}

@ chaque bloc d'instruction doit donc étre associé a une table des
symboles (identificateurs) permettant d’accumuler I'information sur
les symboles locaux a ce bloc (nom, type, valeur initiale, adresse ...)

@ lors de reconnaissance syntaxique d'un identificateur, la liaison
(binding) entre ce dernier et I'entrée dans une table des symboles le
représentant peut étre complexe voire impossible suivant le langage

@ dans la plupart des langages interprétés, la liaison sera dynamique car
le symbole sera recherché en remontant les contextes d'exécution et
leurs tables des symboles :
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Analyse sémantique ~ Tables des symboles

Tables des symboles |l

extern int i; // liaison tardive
int f(int j){ // TDSI1

int c=0;
for(int i=0; i<10; i++){ // TDS2
ct=j*i; //
}
printf("%d\n", i); // &
}

@ dans les langages compilés, la plupart des liaisons sont efféctuées lors
de la compilation mais certaines liaisons dites "externes" sont
effectuées lors de I'édition de liens

@ l'implémentation de chaque table des symboles doit permettre un
acces efficace a un symbole par son nom s'il est présent

@ dans I'AST, chaque identificateur lié sera représenté par un couple
(référence a la TDS, nom ou clef dans cette TDS)
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Analyse sémantique ~ Tables des symboles

Tables des symboles |IlI

@ une implémentation en C++ triviale de TDS consiste a utiliser une
table associative ou dictionnaire :

std: :map<std::string><Symbole>
@ Symbole agglomérera les différents attribut d'un symbole

@ Certains langages, comme le C, ont plusieurs catégories de noms
(types, vars, struct, ...) ce qui multiplie encore le nombre de TDS a
gérer
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@ Analyse sémantique

@ Contrdle de type
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Analyse sémantique Contrdle de type

Contréle de type |

@ les langages statiquement typés (C/C++, Java, ...) attribuent un
type invariable a chaque variable tandis que les langages
dynamiquement typés (PHP, JavaScript) permettent aux variables
d'évoluer également en type (pas seulement en valeur)

@ le contréle de type consiste a vérifier qu'une expression contenant des
opérateurs et des opérandes (variables, appels de fonctions, littéraux)
puisse étre calculée et soit cohérente

@ Ce contrdle est réalisé lors de la compilation pour les langages
statiquement typés et nécessite parfois des coercitions de type
(cast) implicites

@ dans les langages dynamiquement typés, une partie de ce contrdle
pourra étre réalisé lors d’'une premiére passe mais des coercitions
de types seront parfois réalisées lors de |'exécution
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Analyse sémantique Controle de type

Exemple en C |

Soit I'expression C

i = (100 + j) * 3.1

I'analyseur syntaxique a créé I' AST

de gauche

en supposant que i, j sont des entiers,

+ 31 il va falloir insérer des cast dans I’
arbre décoré de la page suivante afin

de réaliser les conversions nécessaires
100

—.
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Analyse sémantique Controle de type

Arbre décoré |

i (int) L'addition de 10 avec j est réalisé avec
| I'addition entiére réalisée par I'Unité
Arithmétique et logique (ALU)
/\ le résultat est casté en float
la multiplication flottante suivante est

float 1
( ) 3 effectué dans la FPU
le tout est casté en int afin d'étre af-
addint ;N s
Pas fecté ai!
100 j
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Analyse sémantique Controle de type

Exemple en js |

let j=1 ;
let i=(100+j)*3.1 ;

j est intialisé avec le number 1.0 (flottant double précision)

@ 100 est converti en 100.0

o |'addition flottante est effectuée (101.0)

e la multiplication flottante puis I'affectation sont réalisées (313.1)

@ |'existence d'un unique type numérique simplifie le contréle de type
°

la surcharge d'opérateurs rend le controle de type plus complexe
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@ Analyse sémantique

@ Calcul de type
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Analyse sémantique Calcul de type

Calcul de type |

Certains langages utilisent des opérateurs de types afin de construire des
types complexes a partir des types primitifs et de ces opérateurs :
char * argv[]l; // tableau de chaines

float * pascall[5]; // tableau de ptr (tab) de flottant
struct { struct{ ... } champl; int champ2[5];} // etc.

o il faut définir dans le langage du compilateur ou de I'interpréteur, une
structure de données permettant de représenter tous les types
possibles

@ lors de la compilation du source, il faut construire tous les types
utilisés et controler la cohérence des types dans les expressions

@ |a encore, le langage définit parfois des conversions implicites :
char t[] - {le R 1e! s e s N , 0! s |\0|};
char *s = t; // autorisé !

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601| Univ. Montpellier 311/389
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@ Analyse sémantique

@ Traduction dirigée par la syntaxe avec les Grammaires attribuées
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Analyse sémantique ~ Traduction dirigée par la syntaxe avec les Grammaires attribuées

Théorie |

@ Dans une grammaire attribuée, on associe a chaque symbole,
terminal et non terminal, de la grammaire, un ensemble d'attributs

e Un attribut stocke une information typée (entier, chaine de
caracteres, ...)

@ La notation d'un attribut val associé a un symbole X est X.val

@ La notation de I'ensemble des attributs associé a un symbole est
X{vah,vah, ..., val}

@ Un symbole sans attribut sera noté simplement X

@ A chaque régle de production, correspond une ou plusieurs régles
sémantiques indiquant le mode de calcul de certains des attributs

@ Bien entendu, le calcul de certains attributs dépend d'autres
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Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Théorie |l

o Lorsque la régle est récursive, méme symbole en partie gauche et
droite de production, on indice les occurrences de droite pour les
distinguer de I'occurrence de gauche

Définition

Dans une grammaire attribuée, une regle sémantique associé a une regle
de production indique le mode de calcul d'un attribut d'une occurence de
symbole présent dans la production. Soit la production xg — x1x2 ... xs,
une regle sémantique s'écrit toujours :

x,-.val = f(x,-l.a,-l, Xi2.di2, ... ,x,-k.a,-k).

Par exemple, le tableau suivant indique le calcul des attributs de la
grammaire :

Gerr = ({0,1,...,9,4+,%,(,)},{E{val}, T{val}, F{val}}, R, E) avec les
régles syntaxiques et sémantiques suivantes :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601| Univ. Montpellier 314 /389



Analyse sémantique ~ Traduction dirigée par la syntaxe avec les Grammaires attribuées

Théorie |l

Production Regles sémantiques
E—T E.val=T.val

E— E;+ T | Eval=E;.val+T.val
T—F T.val=F.val

T — Ty« F | T.val=Ty.val*F.val
F — (E) F.val=E.val

F—0 F.val=0

F—1 F.val=1

F—9 F.val=9
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Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Grammaires attribuées avec Bison |

@ Avec Bison, chaque symbole est associé a une unique valeur
sémantique

@ Cette valeur est du type YYSTYPE qui peut étre une union de
différents types

@ Ainsi, I'unique attribut de chaque symbole peut étre un pointeur sur
une structure C ou une instance de classe C++, donc contenir
plusieurs informations typées

@ La notation de I'attribut associé a un symbole X dans une production
X — o est $$

@ La notation de I'attribut associé a une occurrence du symbole X dans
une production Y — did>d3Xdsdg est $4, c'est a dire son indice dans
la partie droite

@ Dans une application de I'exemple précédent, I'analyseur lexical
fournit une valeur entiére associée a chaque jeton CHIFFRE
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Grammaires attribuées avec Bison |l

@ On peut également associer des régles d'action aux productions
@ Par exemple, on pourra afficher la valeur de I'attribut calculé

@ Pour cela, on augmente la grammaire d'un super axiome S avec les
régles :

| S — E \n | Afficher(E.val) |

Voici le source Bison implémentant cet exemple :

Al /% etf.y */

#1include <stdio.h> /* printf */

#1include <ctype.h> /* isdigit */

#define YYSTYPE int /* YYSTYPE comme int */

int yylex(void);void yyerror(char *s);

13

Jtoken CHIFFRE

ho

liste : {/* chaine vide sur fin de fichier Ctrl-D */}
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Analyse sémantique

Grammaires attribuées avec

Traduction dirigée par la syntaxe avec les Grammaires attribuées

Bison |lI

| liste ligne

ligne "\n'
| error '\n'
| expr '\n'
expr : terme
expr '+' terme
terme : fact
terme 'x' fact
fact : CHIFFRE
|(| expr l)l
YA

int yylex(void){ // sans Flex

Michel Meynard (UM)

Analyse Syntaxique et Interprétation HAI601|

{/* ligne vide */3}
{yyerrok; /* sync aprés \n */}
{printf ("Résultat : %d\n",$1);}

{$$ = $1; /* par défaut */}
{$$ = $1 + $3;}

{$$ = $1;}

{$$ = $1 = $3;%

{$$ = $1;}

{$$ = $2;}
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Analyse sémantique ~ Traduction dirigée par la syntaxe avec les Grammaires attribuées

Grammaires attribuées avec Bison [V

int c=getchar();while(c==' '||c=='\t')c=getchar(); /* filtrage
— */
if (isdigit(c)){
yylval=c-'0"';return CHIFFRE;
}

else return c;

}
void yyerror(char *s) {fprintf(stderr,"’%s\n",s);}
int main(void){yydebug=0; return yyparse();}

Remarques

@ en Bison, on peut redéfinir YYSTYPE, soit par un #define, soit par
un %union{}

@ Si le type d’attribut est unique, alors il n'est pas nécessaire d'indiquer
le type des attributs des terminaux et des non terminaux

@ Sinon, définitions Bison :
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Grammaires attribuées avec Bison V

o token<typeDeLUnion> JETON
o Jtype<typeDeLUnion> nonterminal
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Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs synthétisés |

Définition
Un arbre syntaxique ou abstrait pour lequel on indique sur chaque noeud
les valeurs des attributs du symbole, est appelé arbre décoré.

Lors de I'analyse syntaxique, on construit trés fréquemment un arbre
abstrait décoré représentant la structure syntaxique et certains éléments
sémantiques du programme

Définition

Dans une regle sémantique associé a une production, un attribut est
synthétisé lorsque il est défini par une fonction des valeurs de ses propres
attributs et/ou de ceux de ses fils. Pour une production xg — x1x2 . . . X,
on a donc : X().Va/ = f(X,'l.a,']_,X,'Q.a,'z, 000 7x,-k.a,-k).
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Attributs synthétisés ||

o Clest le cas de tous les attributs de I'exemple précédent. En
particulier, les attributs des chiffres sont des fonctions constantes

@ L'analyse ascendante, par exemple avec Bison, permet facilement de
calculer les attributs synthétisés

@ En particulier, si I'on considere un noeud de I'arbre abstrait comme
attribut, la construction de cet arbre abstrait peut étre réalisée des
feuilles vers la racine

@ En analyse descendante, le calcul des attributs synthétisés doit se
faire lors de la remontée postfixe dans le parcours en profondeur
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Attributs synthétisés |lI

Définition
Une grammaire est S-attribuée ssi toutes les régles sémantiques calculent
des attributs synthétisés.

Les grammaires S-attribuées peuvent facilement étre implémenthées avec
Bison
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Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs hérités |

Définition

Dans une regle sémantique associé a une production, un attribut est hérité
lorsque il est défini par une fonction des attributs de son pére et/ou de ses
fréres dans I'arbre syntaxique.

L’évaluation de certains attributs hérités (dépendant du pére et des freres
de gauche (resp. de droite)) est facile en analyse descendante. Il suffit de
les calculer lors du parcours en profondeur. Cela devient plus complexe en
analyse ascendante.

Définition

Une grammaire est L-attribuée ssi toutes les regles sémantiques calculent
des attributs synthétisés et des attributs hérités ne dépendant que
d’attributs de leur pére et/ou de leurs fréres de gauche (Left).
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Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs hérités |l

@ En analyse ascendante LR, rappelons que parallelement a la pile des
symboles, une pile des attributs (valeurs sémantiques) existe

@ De plus, rappelons que le symbole non terminal de gauche n’est réduit
qu'aprés que tous ses fils aient été reconnus

@ Par conséquent, il n'est pas possible d'hériter directement de son pére

@ Par contre, tous les fréres gauches du symbole dont I'attribut doit
étre calculé sont sur la pile au moment de la réduction

@ On peut donc calculer facilement les attributs ne dépendant que des
attributs de fréres gauches

@ Par exemple, une déclaration simple d'un identificateur entier donne
lieu aux régles suivantes :

Production Regles sémantiques Commentaire
D—INT ID; | INT.s="entier", ID.h=INT.s | h est hérité, s synth
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Attributs hérités |l

@ Pour un attribut hérité du pére, I'astuce consiste a aller chercher dans
la pile I'attribut d'un “oncle” de gauche

@ Un exemple classique concerne I'attribution d'un type a une liste
d'identificateurs dans une déclaration, comme par exemple en C :
int i,j,k;

@ Soit Gype = ({INT, CHAR, ID{h} ) },{D, L{h}, T{s}}, R, D)

@ Chaque attribut est une chaine de caractéres indiquant un type de
données entier ou caractére

o Cet attribut est nommé s et est synthétisé pour T, tandis qu'il est
nommé h et est hérité pour L et ID

@ On a les régles de production R, et les régles sémantiques suivantes :
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Attributs hérités

Analyse sémantique

A%

Production | Regles sémantiques | Commentaire
D—TL L.h=T.s h est hérité, s synth
T—INT T.s="entier" s est une chaine
T—CHAR | T.s="caractere" s est une chaine
L—ID ID.h=L.h hérite du pere
L—L; , ID | ID.h=L.h, L;.h=L.H | héritent du pere

Traduction dirigée par la syntaxe avec les Grammaires attribuées

o Le premier héritage (L.h=T.s) concerne un frére gauche et peut donc
étre réalisé en Bison

@ Par contre, les trois derniéres regles sémantiques d'héritage du pere
(ID.h=L.h, ID.h=L.h, L;.h=L.H) ne peuvent étre mises en oeuvre

avec Bison

@ regardons le contenu de la pile au moment ol une production de L est
en cours de reconnaissance
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Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs hérités V

@ On a forcément le symbole T avec son attribut T.s, dans |'élément de
pile situé sous le premier ID a étre réduit (L—1D)

@ Par conséquent, I'attribut d'ID peut étre affecté de
pileAttribut[sommet — 1], c'est-a-dire de I'attribut de son oncle T

@ Par la suite, les réductions par L — Ly, ID pourront de la méme facon
affecter a I'attribut d'ID, la valeur de pileAttribut[sommet — 3]

@ Nous avons donc remplacé les régles sémantiques x=L.h par x=T .s.
On n'hérite donc plus de son pére mais du frére gauche de son pére

o Cette transformation est possible, avec Bison, en accédant a I'élément
de pile correspondant a T et qui est symbolisé par $0

@ Attention, cette méthode ne peut toutefois pas étre généralisé a tous
les héritages de pére

o |l faut étudier soigneusement les différents états que peut prendre la
pile au moment de |'exécution de la régle
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Attributs hérités VI

@ Une implémentation Bison de la grammaire précédente de
déclarations est donnée ci-apres :

L’analyseur lexical

W /* declar.l */

#define YYSTYPE char * /* YYSTYPE chaine */
#include "y.tab.h" /* JETONS et yylval */

hY

Joption noyywrap

lettre ([a-zA-Z])

chiffre ([0-91)

hte

[ Nel+ {/* filtrer les blancs */}

int {return INT;}

char {return CHAR;}
{lettre}({lettre}|{chiffrel})* {yylval=yytext;return ID;}
.INn {return yytext[0]; /* indispensable ! */}
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Analyse sémantique ~ Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs hérités VII

ho

L’analyseur syntaxique

7w /* declar.y */
#include <stdio.h>

#include <string.h>

#define YYSTYPE char * /* YYSTYPE chaine */

int yylex(void);void yyerror(char *s);
int nb; char affich[1024];

5}

%token INT CHAR ID /* les jetons (tous chaines) */

YA

inter {/* chaine vide sur fin de fichter Ctrl-D */}
inter {affich[0]='\0"';} ligne

ligne : "\n' {/* ligne vide : ezpression vide

- */}
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Analyse sémantique ~ Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs hérités VIII

| error '\n' {yyerrok; /* aprés la fin de
- ligne */}
| declar '\n' {printf ("%i déclaration(s)

<  %s\n",nb,affich);
affich[0]="'\0";

}
declar ; type liste
type INT {$$="entier";}

| CHAR {$$="caractére";}
liste i ID {

nb=1;char couple[128];
sprintf (couple," (%s,%s) ",$1,$0); /* héritage */
strcat(affich,couple);

}
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Analyse sémantique ~ Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs hérités X

I liste ',' ID {
nb++;char couple[128];
sprintf (couple," (%s,%s) ",$3,$0); /* héritage */
strcat(affich,couple);
}
Dot
void yyerror(char *s) {fprintf(stderr,"’%s\n",s);}
int main() {yydebug=0;return yyparse();}

L’exécution de I'exécutable obtenu donne :

int i, j2, k,1

4 déclaration(s) : (i,entier) (j2,entier) (k,entier) (1,entie:
char c

1 déclaration(s) : (c,caractére)
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Analyse sémantique Méthode de transformation des grammaires L-attribuées

@ Analyse sémantique

@ Méthode de transformation des grammaires L-attribuées
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Analyse sémantique Méthode de transformation des grammaires L-attribuées

Méthode de transformation des grammaires L-attribuées |

La méthode précédente, simple et pratique, ne fonctionne pas toujours.
Par exemple, soit les productions suivantes :

Production | Regles sémantiques | Commentaire

S — aAC C.h=As h est hérité, s synth
S — bABC | Ch=Ass h est hérité, s synth
C—c C.s=f(C.h) calcul sur h

@ Au moment de réduire par C — ¢, le calcul de C.s nécessite |'acces a
C.h c'est-a-dire A.s

@ Malheureusement, il est impossible de savoir si cet attribut A.s se
situe en pileAttribut[sommet — 1] ou en pileAttribut[sommet — 2] !

@ Par conséquent, une méthode générique de traitement des attributs
hérités consiste a faire précéder chaque symbole ayant un attribut
hérité par un non terminal “marqueur” dans chaque production
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Méthode de transformation des grammaires L-attribuées

@ Ces marqueurs ont une seule e-production et ne sont présents que
pour servir d'emplacement dans la pile d'attributs pour contenir les
attributs hérités

@ Cette méthode appliquée aux productions précédentes donne :

Production Regles sémantiques Commentaire

S — aAM;C C.h= My.s, My.h = A.s | h est hérité, s synth
M; — ¢ Mi.s = My.h recopie

S = bABM,C | C.h= Msy.s, My.h = A.s | h est hérité, s synth
My — ¢ Ms.s = My.h recopie

C—c C.s=f(C.h) calcul sur h
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Méthode de transformation des grammaires L-attribuées

Ainsi, lorsque la réduction par C — ¢ a lieu, il suffit de regarder en
pileAttribut[sommet — 1] pour atteindre C.h, c’est-a-dire Mj.s ou
bien M».s

@ Attention, le calcul des M;.h est bien entendu adapté : M;.h = A.s
devient My.h = pileAttribut[sommet — 1] tandis que My.h = A.s
devient M,.h = pileAttribut[sommet — 2]

@ Sur le plan théorique, la méthode échoue parfois lorsque I'adjonction
des non terminaux marqueurs et de leurs production génére une
grammaire non LR

o Cela n'arrive que trés rarement dans la pratique

@ Enfin, dans deux cas, il n'est pas nécessaire d'introduire des
marqueurs :
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Méthode de transformation des grammaires L-attribuées

IV

e dans une régle G — D; ... avec D;.h = G.h, introduire un marqueur
devant D; ne sert a rien sauf quand G est I'axiome;

e dans une régle G — D1D, ... D, avec D;.h = D;_1.h, introduire un
marqueur devant D; ne sert a rien.
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Un exemple |

@ Soit une grammaire d'expressions booléennes a évaluation partielle
(ou court-circuit)

@ Dans un interpréteur de ces expressions, il n'est pas nécessaire
d'évaluer la suite de I'expression lorsque le résultat est déja connu

@ Pour réaliser cette évaluation partielle :

o I'attribut synthétisé val remontera la valeur calculée (0 pour faux, 1
pour vrai),

e tandis que |'attribut hérité cal sert uniquement a indiquer s'il faut
continuer a calculer le résultat de I'expression courante (dans ce cas sa
valeur est 1), ou bien s'il est déja connu (court-circuit et sa valeur est
0)

e Remarquons qu'en cas de court-circuit, I'analyse syntaxique sera quand
méme effectuée mais pas |'évaluation.
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Un exemple I

@ Dans un interpréteur, I'unique intérét de |'évaluation partielle consiste
en la possibilité de mettre dans la méme expression des conditions
causales, par exemple, if (!feof(f) && fgetchar(f)!='x")

Production | Regles sémantiques Commentaire
S—E S.val=E.val, E.cal=1 au début, il fau
E—1 E.val=1 calcul de base
E—0 E.val=0 calcul de base
E — E||Ex | Ev.cal = E.cal, Ey.cal = (E.cal?'E;j.val : 0) | transmission d
E.val = (E.cal?(Ej.val?l : Ey.val) : 99) calcul de I'expi
E —=1E Ej.cal = E.cal,E.val = (E.cal?!'Ej.val : 98) | calcul de I'expi
E— (E) Ei.cal = E.cal, E.val = (E.cal?E;.val : 97) | transmission ef
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exemple Il

@ Les valeurs 99, 98 et 97 signalent des valeurs farfelues qui n'ont
aucune chance d'étre remontées jusqu'a |'axiome : en effet, lorsque

E.cal est faux E.val n'a aucun intérét car le résultat final est déja
connu !

@ La transformation de cette grammaire L-attribuée par I'introduction
de marqueurs donne les régles sémantiques suivantes

@ Remarquons qu’un marqueur M; précede toujours une expression E
dans la pile, ce qui permet d'obtenir facilement I'attribut hérité cal

Production Regles sémantiques Commentaire
S — ME S.wval = E.val, My.cal = 1;E.cal = | au début, Il
My .val faut calculer
My — ¢ M;.val = My.cal transmission
E—1 E.val=1 calcul de base
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Un exemple IV

Méthode de transformation des grammaires L-attribuées

E—0 E.val=0 calcul de base
E — Ei||MyE; | Ej.cal = E.cal, M5.cal = | transmission
(E.cal?'Eq.val : 0), Ex.cal = My.val du court-
circuit
E.val = (E.cal?(Ey.val?l : Ey.val) : | calcul de I'ex-
99) pression
My, — ¢ My .val = My.cal transmission
du court-
circuit
E —-'Ms3E; Ms.cal = E.cal, Eq.cal = | calcul de l'ex-
Ms.val, E.val = (E.cal?!Ej.val : 98) | pression
M3 — ¢ Ms.val = Ms.cal transmission
du court-
circuit
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Un exemple V

E — (MyEp) My.cal = E.cal, E;.cal = | transmission
My.val, E.val = (E.cal?Ey.val : 97)
My — ¢ My.val = My.cal transmission
du court-
circuit
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exemple VI

@ Remarquons que nous avons introduit les marqueurs M; afin que
I'héritage provienne toujours d'un frére gauche ou d'un oncle gauche

@ Chacun des marqueurs n'utilise en fait qu'un seul attribut puisqu’il
recopie toujours M;.cal dans M;.val

@ De plus, I'attribut E.cal provient toujours d'un M;.cal

@ Aussi, plutot que d'utiliser les notations théoriques un peu lourdes, on
utilise une syntaxe a la Bison avec des $i pour représenter les
attributs sur la pile
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Un exemple VII

Méthode de transformation des grammaires L-attribuées

Production Regles sémantiques Commentaire

S — ME $$=9%2 résultat final

My — € $$=1 initialisation

E—1 $$=1 calcul

E—0 $$=0 calcul

E — E||MaE; | $$ = (307($171: $4) : 99) | calcul de I'expression

My — ¢ $$=($—-2?1$-1:0) transmission du court-circuit
E —>'MsE; $$ = ($071%$3 : 98) calcul de I'expression

Mz — ¢ $$=9%-1 on recopie le marqueur précé
E— (MsEr) | $$ = ($27$3:97) transmission

My — ¢ $$=9%-1 on recopie le marqueur précé

Ce qui donne en Bison :
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Un exemple VIII

/* evalcc.y */

3t
int yylex(void);
void yyerror(char *s);
5}
/* définition de YYSTYPE comme int par défaut */
/* définition des précédences */
Jleft '[!
Yright '!°
hto
liste : /% chaine vide sur fin de fichier Ctrl-D */
| liste ligne
ligne : "\n' /* ligne vide : expression vide */
| error '\n' {yyerrok; /* aprés la fin de ligne */}
| m1 exp '"\n' {printf ("Résultat : %d\n",$2);}
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Un exemple IX

mil : {$%=1; /* $$=vrai */}
exp , exp '|' m2 exp {$$=($07($172:$4):99); /* un peu
< condensé ! */}
[ '!''" m3 exp {$$=($071$3:98); /* $0 est l'attribut

< de mi */}
[ '(" m4 exp ') {$$=($27$3:97);}

(A {83%=1; /* $$=vrai */}
| '0! {$$=0; /* $8=faux */}
m2 {$$=($-271$-1:0);}
m3 , {8%=%-1;}
m4 {$$=$-1;3

hh
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Un exemple X

int yylex(void) {int c; while(((c=getchar())=="' ') || (c=='\t'));
< return (c);}

void yyerror(char *s) {fprintf(stderr,"’%s\n",s);}

int main(void){/*yydebug=1+/; return yyparse();}

Dans cet évalaluateur a court-circuit, nous avons donné la valeur 2
lorsqu'un court-circuit était réalisé grace au ou logique. Voici quelques
exécutions :

ololtlo
Résultat : 2
olololol1
Résultat : 1
(1r1)
Résultat : 1
1(1lo)lo
Résultat : O
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Exercice |

Compléter I'évaluateur booléen en ajoutant la regle du et logique a court
circuit. Compléter le source Bison.
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Exercice |l

E — E1&&MsE, | $% = ($07($17%4 : 0) : 96) | calcul de I'expression

Ms — € $$=($—-27$-1:0) transmission du court-circu

Ce qui donne en Bison :
/* evalccet.y */

5t
int yylex(void);
void yyerror(char *s);
5}
/* définition de YYSTYPE comme int par défaut */
/* définition des précédences */
Jleft '[!
hleft '&'
Jright '!!
hte
liste : /* chaine vide sur fin de fichier Ctrl-D */
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Exercice Il

| liste ligne

ligne : "\n' /* ligne vide : expression vide */
| error '\n' {yyerrok; /* aprés fin de ligne */}
| m1 exp '\n' {printf ("Résultat : %d\n",$2);}
n1 : 88=1;  /* $8=vrai */}
exp ; exp '|' m2 exp {$$=($07($172:$4):99); /* condensé */}
[ 'I'" m3 exp {$8=(8$07!$3:98); /* $0 attribut mi */3}
[ '(" m4 exp ') {$$=($27$3:97);}
(A {83%=1; /* $$=vrai */}
| '0' {$$=0; /* $$=faux */}
|

exp '&' mb exp {$$=($07($17$4:0):96); /* condensé */}

m5 : {8%=($-271$-1:0);}
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Exercice

m2 : {$$=($-2718-1:0);}

m3 , {$8=8-1;}

m4 ’ {$$=$-1;3

T ;

int yylex(void) {int c; while(((c=getchar())==' ') || (c=='\t'));

< return (c);}
void yyerror(char *s) {fprintf(stderr,"%s\n",s);}
int main(void){/*yydebug=1%/; return yyparse();}

Voici quelques exécutions :
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Exercice V

0]1&01(1
Résultat : 1
0&1&11&0
Résultat : O
1&011&110]1

Résultat : 2
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Génération de code Introduction

Introduction |

On utilise généralement un langage intermédiaire entre le langage évolué
et le langage de la machine héte :

@ Le langage intermédiaire est souvent soit un langage de machine
virtuelle a pile, soit un langage d'arbre représenté par une notation
postfixée

@ Deux frontaux (“front-end”) de gcc et g++, qui traduisent le fichier

source en une représentation interne arborescente commune : Register
Transfer Language (RTL)

@ Inspiré de Lisp ce langage a une représentation interne, structures
chainées par pointeurs, et textuelle aux fins de débogage

@ Pour lire cette apparence textuelle :
gcc -dr exrtl.c; cat exrtl.c.rtl

o Cette représentation dépend tout de méme de la machine cible et
n'est donc pas totalement portable
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Introduction 1l

@ La seconde partie finale (“back-end”, bulk compiler), est commune a
gcc et g++ pour une machine donnée.

o Le byte-code de Java est un langage universel qu'interprete une
machine virtuelle

@ La portabilité des .class est donc totale a condition d’avoir un
interpréteur (java, machine virtuelle) sur la machine cible

@ Or tous les navigateurs Internet ont un interpéte java

@ Le langage byte-code est assez proche d'un langage machine, a ceci
prés qu'il utilise beaucoup la pile et des variables locales plutét que
des registres

@ |l contient environ 200 instructions, ce qui permet de stocker le code
opération sur un octet

@ Le P-code du Pascal est I'un des premiers langages intermédiaires a
avoir été utilisé par un compilateur
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Introduction Il

e C'est un langage pour machine abstraite a pile (on voit la filiation
avec Java)
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© Génération de code

@ Machine virtuelle a pile
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Génération de code Machine virtuelle a pile

Machine virtuelle a pile |

Une machine, virtuelle ou abstraite, a pile est constituée :

@ d’une mémoire d'instructions et d'un compteur ordinal CO,

@ d'une mémoire de données,

e d'une pile.

Les instructions de la mémoire d’instructions sont exécutées en séquence.
Les différentes instructions sont rangées en catégories :

@ manipulation de la pile : empiler, dépiler des constantes ou des
données de la mémoire, opérer sur le ou les 2 sommets de pile et le ou
les remplacer par le résultat.

@ controle du flux d'instructions : branchements conditionnels, appels et
retours de procédure.

L'utilisation de la pile est continuelle puisque les opérandes sont stockés
dessus pour les opérations arithmétiques, logiques, de branchements ou
d'appels. Pour plus d'informations sur ce type de langage, voir par exemple

I'ouvrage [5].
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@ Développement d'un compilateur
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Développement d'un compilateur |

@ |'étude du langage source est fondamentale mais n'est pas suffisante

@ le choix d'un “bon"” langage intermédiaire et du langage de
développement du compilateur est important

@ il est impensable d'écrire un compilateur en langage d’'assemblage

@ Dans I'environnement Unix, I'écriture en C ou C++ permet d'obtenir
une excellente efficacité (le systéme est lui-méme majoritairement
écrit en C)

@ L'utilisation d'un langage intermédiaire facilite I'écriture de la partie
finale du compilateur pour différentes machines

e Dans la famille de compilateurs gnu (gcc, ...), on peut spécifier la
correspondance des instructions RTL et de la machine cible dans un
fichier, ce qui permettra de générer du code machine sans réécrire
cette partie finale!
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Composition de traducteurs |

@ Un compilateur peut étre représenté par une forme géométrique en T,
notée SIO' ou S est le langage source, O le langage objet, et | le
langage d'implémentation du compilateur

@ Par exemple, un compilateur écrit en C++ traduisant du Pascal en C
est noté : Pascalc++C

o Ces formes en T peuvent étre imbriquées, représentant en ceci la
composition de compilateurs

@ Ainsi, si nous disposons d'un second compilateur C++ en langage
machine, la compilation de PascaIC_H_C par C++M|\/| fournit un
compilateur de Pascal en C écrit en langage machine

o Cette technique de compilation de compilateur a souvent été utilisée
dans la technique d'auto-amorcage
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Composition de traducteurs |l

@ Pour un langage L dont on souhaite écrire un compilateur pour la
machine M, cette technique consiste a écrire un premier compilateur
grossier en L L'LI\/I, puis a traduire a la main ce compilateur dans le
langage M, on obtient donc L'MM

o Ensuite, on utilise ce premier compilateur grossier pour recompiler le
compilateur écrit en L : ce compilateur s'est compilé lui-méme !

@ De la méme facon, le premier interpréteur Lisp a été écrit en Lisp puis
traduit a la main

@ De nouvelles modifications du compilateur sont ensuite utilisées pour
I"affiner

@ Les techniques de compilation de compilateur sont également utilisées
pour les compilateurs croisés

@ Supposons que |'on a écrit un compilateur L en L générant du code
pour la machine N : LLN
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Composition de traducteurs Il

@ Sil'on a a sa disposition un compilateur de L sur une autre machine
M, L\yM, alors on peut trés bien obtenir une version du compilateur
fonctionnant sur la machine N de la facon suivante :

@ compiler LLN gace a LMM : on obtient LMN qui est un compilateur
@ compiler encore une fois LLN gace 3 ce nouveau compilateur LMN on
obtient donc LNN.

@ Remarquons que I'on a concu un compilateur tournant sur la machine
N, sans jamais utiliser la machine N

o |l suffit de connaitre les spécifications de cette machine avant méme
qu'elle ne soit construite

@ Pour ces deux raisons, auto-amorcage et compilation croisée, mais
aussi afin de tester la puissance du langage en cours de
développement, il est souvent intéressant d’écrire un compilateur dans
son propre langage source
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Interprétation Introduction

Introduction a I'Interprétation |

Dans cette section nous supposons une interprétration du langage :

@ A la fin de la phase d'analyse sémantique et éventuellement de
génération de code, nous obtenons :

e soit un fichier de code intermédiaire (fichier .class Java)
e soit un arbre décoré associé a des tables de symboles

@ il convient dés lors d'exécuter ce code grace au moteur d'exécution
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Exemple : la machine virtuelle Java |

Java Virtual Machine (JVM) permet d'exécuter du byte-code Java :

@ la JVM est lancé grace a la commande : java Toto qui exécutera le
fichier compilé Toto.class

o elle contient un environnement d'exécution (Runtime Environment)
composé des librairies Java nécessaires (System, ...)

@ plusieurs versions de JVM existent utilisant des architectures
d’'exécution différentes :

o simple interpréteur exécutant le byte code

e Just In Time Compiler, qui compile en langage machine le byte code au
lancement puis qui exécute ce code binaire. Cet algorithme est plus
efficace pour le code redondant (corps de boucle)

e dynamic adaptive compilers (DAC) commence par interpréter le byte
code et en stocke une version binaire native. Lors d'une seconde passe
sur une séquence d'instructions, c'est la version binaire qui est exécutée.
Cela nécessite de stocker les deux versions (byte code et binaire natif)
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Exemple : la machine virtuelle Java I

o enfin way-ahead-of-time (WAT) compile le byte code au moment de la
compilation javac du source et réalise I'édition de liens avec une
librairie au format binaire (langage compilé)

@ en plus de I'exécution, la JVM assure le Garbage Collecting
(ramasse-miettes) qui permet de désallouer les objets non référencés

o elle gere également le mécanisme d'exception
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Projet : un interprete récursif |

@ on souhaite prototyper un interpréete d'un langage simple et connu en
s'appuyant sur |'arbre décoré associé a un script

@ on utilisera une méthode agile utilisant des sprints courts pour obtenir
des versions incrémentales

@ le langage de programmation se basera sur la syntaxe du C

@ le principe d'interprétation consiste a parcourir récursivement |'arbre
décoré (séquence d'instructions)

@ les ruptures de séquences (itérations, appels de fonctions) nécessitent
de conserver une pile des contextes (adrs retour, paramétres, var.
locales)
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Sprint 1 : AST |

On souhaite modéliser un arbre de syntaxe abstrait sur un
sous-langage basique

Un seul type int est défini

4 opérateurs arithmétiques +,-,*,/
o |'affectation et les comparaisons

@ une instruction echo <exp>;

pas de fonction ni bloc : un script constitué d'une séquence
d’instructions
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Réalisation du Sprint 1 |

@ Analyseur syntaxique sur une premiére passe et construction de
I'AST : SeqInston * root;

@ Création d'une hiérarchie de classes C++ héritant de la classe
abstraite de base Noeud

@ permettant une séquence d'instructions SeqInston
e Chaque instruction (Inston) peut étre :
o Une déclaration (Declaration) de variable ( int i;)
e Une Expression suivie d'un;
o Une affectation (Affectation) d'expression a une variable (Lvalue)
e Une instruction echo
@ Une expression peut étre simple (ValInt, Designation) ou
complexe (Binaire) utilisant un opérateur infixe

@ Une fois I'AST récupéré, ce premier sprint consistera simplement a
reconstruire la chaine de la séquence d'instructions et a |'afficher
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Interprétation Projet : un interpreéte récursif

Un exemple |

Soit le code source suivant :
int i; i=5+3%2;

int __aZ12_36; __
echo __aZl2 36+i;

aZ12_36=4;

L'analyse de cet exemple donne :

Sprint1$ intc exemple.c
int i;

i=(5+(3%2));

int __aZ12_36;

__aZl12 36=4;

echo (__aZ12_36+i);
Sprinti1$

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601| Univ. Montpellier 374 /389



Interprétation Projet : un interpreéte récursif

Hiérarchie de classes |

abstract class Noeud { // tout élément de 1'AST est un Noeud
int jeton;
Noeud *parent;
virtual string toString();

}

class SeqInston : Noeud {
list<Inston *> *instons;
Valeur* exec();
string toString();

}

abstract class Inston : Noeud {
virtual Valeur * exec()=0;
virtual string toString();

}

class Declaration: Inston {
string *type;
string *id;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601| Univ. Montpellier 375/389



Interprétation Projet : un interpreéte récursif

Hiérarchie de classes |l

Valeur * exec()=0;
string toString();

}

class Affectation: Inston {
Lvalue *1lvalue;
Expression * exp;

+

abstract class Expression : Inston {
virtual Valeur * calculer()=0;

}

class Binaire : Expression {
char op; // opérateur +,-,*,/
Expression *gauche; // sous-exp de gauche
Expression *droite; // sous-exp de droite
Valeur * calculer();

}
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Interprétation Projet : un interpreéte récursif

Hiérarchie de classes |IlI

class ValInt: public Valeur {
int valeur; // attribut spécifique de Vallnt

ValInt(int i):Valeur('I'), valeur(i){}

int getInt();
Valeur * calculer(){return new Vallnt(valeur);}
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Interprétation Projet : un interpreéte récursif

L'analyseur syntaxique |

YA
liste : { // init. : création d'une liste en fond de pile
root=$$=new SeqIlnston(); // création d'une séquence vide
}
| 1liste inston { // au moins une inston
if (erreur)q{ // pour me pas ajouter l'error
erreur=false;
} else { // inston normale
$$=%1->ajouter($2); // ajout d'une inston d la séquence
}
}
inston : error ';' { // synchro sur prochaine inston
erreur=true;
yyerrok;

}
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Interprétation Projet : un interpreéte récursif

L'analyseur syntaxique I

| lvalue '=' exp ';' { // affectation vue comme inston
$$ = new Affectation($1,$3);
}
| exp ';' {
$$=%$1; // une ezpression ; est une instruction
}
| TYPE ID ';' { $$=new Declaration($1,$2);
}
| MMECHO exp ';' { $$=new Echo($2);
}

lvalue : ID {
$$=new Lvalue($1); // chemin d'accés m.t[2]

exp : exp '+' exp {
$$=new Binaire('+', $1, $3);
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Interprétation Projet : un interpreéte récursif

L'analyseur syntaxique Il

}
| exp '-' exp {
$$=new Binaire('-', $1, $3);
}
| '-' exp %prec MOINSUNAIRE {
$$=new Binaire('-', new ValInt(0) , $2);
}
| exp '*' exp {
$$=new Binaire('x', $1, $3);
}
| exp '/' exp {
$$=new Binaire('/', $1, $3);
+
| LITENT { $$=new ValInt($1);
}
| ID { $%$=new Designation(*$1); // ID est de type string*
+
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Interprétation Projet : un interpreéte récursif

L'analyseur syntaxique IV

ho
int main (int argc, char #** argv, char **env) {
//yydebug=1;
if (arge>1){ // $ intc toto.c
yyin=fopen(argv[i],"r");
if (yyin==NULL){
perror("fopen");
exit (errno);
}
}
int res=yyparse(); // lancement du parser, récup. AST dans la
— wvar globale root
if (res!=0){
cerr<<"Erreur de syntaxe !"<<endl;
exit(1);
}
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Interprétation Projet : un interpreéte récursif

L'analyseur syntaxique V

cout<< "FIN EXEC: ast =" << endl << root->toString(); //
— affichage de l'arbre
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Interprétation Sprint 2 : exécution

@ Interprétation

@ Sprint 2 : exécution
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Interprétation Sprint 2 : exécution

Sprint 2 : exécution |

@ On conserve le méme mini-langage mais on veut pouvoir exécuter le
script

@ Pour cela, il faut gérer une table des symboles locaux a la séquence
d'instruction : structure en bloc {. ..} avec une table des symboles
locale a chaque bloc. Plus une table des symboles pour les
identificateurs globaux. On n'utilisera qu'un seul espace de nom pour
les variables et les fonctions (pas de struct ou étiquettes de goto)

@ La liaison entre un identificateur et sa définition sera réalisée lors de
I'analyse sémantique.

@ Puisqu'il n'y a pas de rupture de séquence, pas besoin de pile de
contextes

o |'exécution sera réalisée par parcours récursif de I'AST avec une seule
table de symboles globaux
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Interprétation Sprint 3

@ Interprétation

@ Sprint 3
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Interprétation Sprint 3

Sprint 3 : fonctions |

@ On cree le bloc et la fonction dont les identificateurs sont stockés
dans la table des symboles globaux

@ On ajoute I'appel de fonction qui nécessite un pile de contextes
mémorisant I'adrs de retour les paramétres passés et les variables
automatiques lié a cet appel

@ le compteur ordinal est matérialisé par un pointeur sur I'Instruction
suivante

@ la structure d’exécution est constituée de cette pile de contexte et du
compteur ordinal : pas de structure mémoire (sprint 4 ...)
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Conclusion

@ Conclusion
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Conclusion

Conclusion |

Quelques remarques sur ce cours :
@ Théorie des langages formels et programmation efficace

@ Découpage entre les phases d'analyse qui n'est pas toujours vérifié
dans la pratique (anal. lex., synt. et sém en 1 passe)

e Nombreux outils (ANTLR, JITC, ...)

@ Permet de comprendre les concepts fondamentaux des langages (a
classes, a prototypes, impératifs, fonctionnels)

o L'efficacité des outils développé influe sur I'orientation des
développements professionnels (V8 Javascript Engine qui a propulsé
Node et Chrome et les front-end js (Angular, React, Vue) )
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