
Analyse Syntaxique et Interprétation HAI601I

Michel Meynard

UM

Univ. Montpellier

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 1 / 389

Table des matières I

1 Introduction

2 Analyse lexicale

3 Analyse syntaxique

4 Analyse sémantique

5 Génération de code

6 Interprétation

7 Conclusion

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 2 / 389

Introduction

Plan

1 Introduction

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 3 / 389

Introduction Objectifs

Plan

1 Introduction
Objectifs
Rappels théoriques
Langages réguliers : propriétés et caractérisations
Langages algébriques : propriétés et caractérisations
Types de traducteurs
Modèle classique de compilation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 4 / 389

Introduction Objectifs

Objectifs I

Mise en oeuvre de la théorie des langages formels.
Compréhension des techniques de compilation.
Utilisation d’outils de génération de code (flex, bison).
Utilité des traducteurs : compilateurs, interpréteurs, convertisseurs de
format (rtfToLatex, LaTeXToHtml, postscript To . . .).
Réalisation d’un projet : compilateur d’un langage à objets “Sool”.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 5 / 389

Introduction Rappels théoriques

Plan

1 Introduction
Objectifs
Rappels théoriques
Langages réguliers : propriétés et caractérisations
Langages algébriques : propriétés et caractérisations
Types de traducteurs
Modèle classique de compilation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 6 / 389

Introduction Rappels théoriques

Familles de grammaires et de langages : hiérarchie de
Chomsky I

On classe les grammaires G = (VT , VN , R, S) en quatres grandes familles
(ou types ou classes) numérotés de 0 à 3, de la plus large à la plus petite
au sens de l’inclusion stricte. Les quatres familles se distinguent par les
restrictions imposées aux règles de production de chaque famille.

Type 0 aucune restriction. Les langages engendrés sont qualifiés de
récursivement énumérables.

Type 1 toute règle r de R est de la forme : r = αXβ → αmβ avec
α, β ∈ V ∗ ; X ∈ VN ; m ∈ V +.
Attention m ne peut être le mot vide ! Ces grammaires sont
dites contextuelles ou dépendant du contexte (α et β
représentant ce contexte). Le mot vide ne pouvant être
généré par ces grammaires, une exception existe : la règle

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 7 / 389

Introduction Rappels théoriques

Familles de grammaires et de langages : hiérarchie de
Chomsky II

S → ε peut exister à condition que S ne soit pas présente
dans une partie droite d’une règle de production.

Exemple
le P garçon → le petit garçon ; la P N → la petite N ; N → fille.

Type 2 toute règle r de R est de la forme : r = X → α avec α ∈ V ∗ ;
X ∈ VN .
Ces grammaires sont dites algébriques, ou indépendantes du
contexte (“context-free”), ou grammaires de Chomsky, ou
C-grammaires.

Exemple
P → (P)|ε|PP : une grammaire de parenthèses.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 8 / 389

Introduction Rappels théoriques

Familles de grammaires et de langages : hiérarchie de
Chomsky III

Type 3 toute règle r de R est de la forme : r = X → α avec
α ∈ VT VN ∪ VT ∪ {ε} ; X ∈ VN ;
Ces grammaires sont dites régulières, ou rationnelles, ou
grammaires de Kleene, ou K-grammaires.

Exemple
P → 0|1E |2E | . . . |9E ; E → 0E | . . . |9E |ε : une grammaire régulière
d’indices.

Théorème

On note Li l’ensemble des langages engendrés par les grammaires de type
i. On a alors l’inclusion stricte : L3 ⊂ L2 ⊂ L1 ⊂ L0.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 9 / 389

Introduction Langages réguliers : propriétés et caractérisations

Plan

1 Introduction
Objectifs
Rappels théoriques
Langages réguliers : propriétés et caractérisations
Langages algébriques : propriétés et caractérisations
Types de traducteurs
Modèle classique de compilation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 10 / 389

Introduction Langages réguliers : propriétés et caractérisations

Langages réguliers : propriétés et caractérisations I

Théorème
Les 4 propositions suivantes sont équivalentes :

1 le langage L est défini par une expression régulière ;
2 le langage L est généré par une grammaire régulière ;
3 le langage L est reconnu par un automate fini déterministe ;
4 le langage L est reconnu par un automate fini indéterministe.

Théorème (Théorème de Kleene)
La famille des langages réguliers L3 est la plus petite famille de langages
qui contient les langages finis et qui est fermée pour les opérations
réunion, produit et étoile.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 11 / 389

Introduction Langages réguliers : propriétés et caractérisations

Langages réguliers : propriétés et caractérisations II

Théorème (la pompe, version 2a)

Soit L, un langage régulier infini sur V. Alors, ∃k ∈ N − {0} tel que
∀m ∈ L, |m| ≥ k, ∃x , u, y ∈ V ∗ tel que u ̸= ε, m = xuy , |xu| ≤ k et
∀n ∈ N, xuny ∈ L.

Théorème
Le langage inverse, complémentaire d’un langage régulier est régulier.
L’intersection de deux langages réguliers est régulier.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 12 / 389

Introduction Langages algébriques : propriétés et caractérisations

Plan

1 Introduction
Objectifs
Rappels théoriques
Langages réguliers : propriétés et caractérisations
Langages algébriques : propriétés et caractérisations
Types de traducteurs
Modèle classique de compilation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 13 / 389

Introduction Langages algébriques : propriétés et caractérisations

Langages algébriques : propriétés et caractérisations I

Définition
L’ensemble des arbres de dérivation (ou arbres syntaxiques) associé à une
grammaire G = (VT , VN , R, S), noté A(G) est un esemble d’arbres
étiquetés construits par le schéma d’induction suivant.

Univers Ensemble de tous les arbres dont les nœuds sont étiquetés
par des symbole de V ∪ {ε}.

Base Ensemble de tous les arbres réduits à une unique racine
étiquetée par un symbole de V ∪ {ε}.

Règles Soit une règle de production quelconque X → y1y2 . . . yn
avec X ∈ VN , yi ∈ V ∪ {ε}. Soient n arbres syntaxiques
a1, a2, . . . , an dont les racines sont étiquetées par
y1, y2, . . . , yn. Alors l’arbre de racine étiquetée par X et de
sous-arbres a1, a2, . . . , an est un arbre de dérivation de G.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 14 / 389

Introduction Langages algébriques : propriétés et caractérisations

Langages algébriques : propriétés et caractérisations II

Théorème
L’ensemble des dérivations gauches d’une grammaire algébrique
G = (VT , VN , R, S) est équipotent à A(G).

Définition
Une grammaire G = (VT , VN , R, S) est ambiguë si et seulement s’il existe
deux dérivations gauches distinctes partant de S et aboutissant au même
mot terminal m.

Théorème
Tout langage régulier est non ambigu.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 15 / 389

Introduction Langages algébriques : propriétés et caractérisations

Langages algébriques : propriétés et caractérisations III

Théorème (d’Ogden)

Soit L un langage algébrique infini sur V. Alors, ∃k ∈ N − {0} tel que
∀m ∈ L, |m| > k, ∃x , u, y , v , z ∈ V ∗ tel que uv ̸= ε, m = xuyvz , |uyv | ≤ k
et ∀n ∈ N, xunyvnz ∈ L.

Théorème
La famille des langages algébriques L2 est fermée pour l’union, la
concaténation, l’opération *.

Théorème
La famille des langages algébriques L2 n’est pas fermée pour l’intersection
ni la complémentation.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 16 / 389

Introduction Types de traducteurs

Plan

1 Introduction
Objectifs
Rappels théoriques
Langages réguliers : propriétés et caractérisations
Langages algébriques : propriétés et caractérisations
Types de traducteurs
Modèle classique de compilation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 17 / 389

Introduction Types de traducteurs

Types de traducteurs I

Préprocesseurs (macro, directives).
Assembleurs (pentium x86, DEC alpha, . . .).
Compilateurs (C, C++, javac, visual Basic, . . .).
Interpréteurs (basic, shells Unix, SQL, java, . . .).
Convertisseurs (dvips, asciiToPostscript, rtfToLaTeX, . . .).

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 18 / 389

Introduction Modèle classique de compilation

Plan

1 Introduction
Objectifs
Rappels théoriques
Langages réguliers : propriétés et caractérisations
Langages algébriques : propriétés et caractérisations
Types de traducteurs
Modèle classique de compilation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 19 / 389

Introduction Modèle classique de compilation

Modèle classique de compilation I

1 Analyse du source :
1 lexicale : découpage en “jetons” (tokens) ;
2 syntaxique : vérification de la correction grammaticale et production

d’une représentation intermédiaire (souvent un arbre) ;
3 sémantique : vérification de la correction sémantique du programme

(contrôle de type (conversions), non déclarations, protection de
composants (privé, public), . . .).

L’analyse génère une table des symboles qui sera utilisée tout au long
du processus de compilation. De plus, l’apparition d’erreurs dans
chaque phase peut interrompre le processus ou générer des messages
d’avertissements (“warnings”).

2 Synthèse de la cible :
1 génération de code intermédiaire : machine abstraite (ou virtuelle),

p-code du Pascal, byte-code de java, basic tokenisé de Visual Basic,
. . . ;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 20 / 389

Introduction Modèle classique de compilation

Modèle classique de compilation II

2 optimisation de code : optimiseur de requêtes SQL, optimiseurs C et
C++, . . . ;

3 génération de code cible : langage machine (C, C++), ou autre.
A la fin de ce processus, il reste encore :

soit à lier les différents fichiers objets et bibliothèques (C, C++) en un
fichier exécutable (code machine translatable). Le chargeur du système
d’exploitation n’aura plus qu’à créer un processus en mémoire centrale,
lui allouer les ressources mémoires nécessaires, puis lancer son
exécution. Attention, certaines liaisons (linking) peuvent être retardées
jusqu’à l’exécution (DLL Microsoft, ELF Unix).

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 21 / 389

Introduction Modèle classique de compilation

Modèle classique de compilation III

Soit à interpréter le code cible. C’est la solution choisie par le langage
Java. Cela permet au compilateur javac de générer un code cible
indépendant de la plateforme. Il suffit qu’un interprète java (dépendant
de la plateforme) soit installé pour exécuter un fichier cible (un .class).
Les navigateurs (“browser” Netscape ou Internet Explorer) contiennent
tous un interprète intégré ce qui leur permet d’exécuter les “applets”
java.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 22 / 389

Introduction Modèle classique de compilation

Remarques I

L’analyse lexicale est souvent réalisée “à la demande” de l’analyse
syntaxique, jeton par jeton. Ainsi la décomposition en phase (analyse
lexicale, syntaxique, sémantique, . . .) n’engendre pas forcément la
même décomposition en “passes”, une passe correspondant à la
lecture séquentielle du résultat de la phase précédente. Les problèmes
de “référence en avant” (“forward reference”) pose tout de même des
problèmes à la compilation en une seule passe. Il faut pouvoir laisser
des “blancs” qu’on pourra reprendre plus tard quand on connaîtra la
valeur de cette référence.
Le compilateur est souvent décomposé en une partie “frontale”
indépendante de la plateforme de développement, et une partie
“finale” dépendante de la plateforme de développement. Ainsi,
l’écriture d’un compilateur du même langage source pour une autre
plateforme est moins couteuse.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 23 / 389

Analyse lexicale

Plan

2 Analyse lexicale

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 24 / 389

Analyse lexicale Reconnaissance d’un mot par un AFD

Plan

2 Analyse lexicale
Reconnaissance d’un mot par un AFD
Implémentation des Automates Finis Déterministes AFD
Analyseur lexical
Implémentation des analyseurs lexicaux
Un langage et un outil pour l’analyse lexicale : flex
Syntaxe et sémantique des sources Flex
La commande flex
Actions C++
Liaison avec un analyseur syntaxique
Algorithmique
Déterminisation
Minimisation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 25 / 389

Analyse lexicale Reconnaissance d’un mot par un AFD

Reconnaissance d’un mot par un AFD I

rappelons les résultats sur les Automates d’états Finis Déterministes
(AFD) :

un AFD possède un unique état initial
aucun couple de transitions (ei , a, ej), (ei , a, ek) tels que j ̸= k
l’ensemble des transitions peut être implémenté simplement par une
table à double entrée TRANS[etatCourant][carCourant] qui contient
l’état suivant
l’algorithme suivant décrit la reconnaissance d’un mot par un AFD

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 26 / 389

Analyse lexicale Reconnaissance d’un mot par un AFD

Algorithme accepter()

Algorithme 1 : Reconnaissance d’un mot par un AFD
Données : B = (V , E , D = {d}, A, T) un AFD ; mot une chaîne de

caractères ou un flot
Résultat : Booléen
Fonction accepter(B, mot) : Booléen;
début

etat=d;
tant que (c=carSuivant(mot))̸= $ faire

si ∃e ∈ E tel que (etat, c, e) ∈ T alors
etat=e;

sinon
retourner FAUX ;

retourner test(etat ∈ A) ;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 27 / 389

Analyse lexicale Implémentation des Automates Finis Déterministes AFD

Plan

2 Analyse lexicale
Reconnaissance d’un mot par un AFD
Implémentation des Automates Finis Déterministes AFD
Analyseur lexical
Implémentation des analyseurs lexicaux
Un langage et un outil pour l’analyse lexicale : flex
Syntaxe et sémantique des sources Flex
La commande flex
Actions C++
Liaison avec un analyseur syntaxique
Algorithmique
Déterminisation
Minimisation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 28 / 389

Analyse lexicale Implémentation des Automates Finis Déterministes AFD

Implémentation d’Automates Finis Déterministes AFD I

Soit l’AFD de la figure 1 reconnaissant l’expression régulière a(b+c)?|bd

EINIT

EA EAB EABC

EB EBD

a

b

b

b

c

d

Figure 1 – AFD

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 29 / 389

Analyse lexicale Implémentation des Automates Finis Déterministes AFD

Implémentation d’Automates Finis Déterministes AFD II

Nous le représentons par un fichier d’en-tête C ayant les caractéristiques
suivantes :

les états de d’automate sont représentés par des macro définitions
symboliques (#define)
le vocabulaire sera défini sur un sous-ensemble (ici {a, b, c, d}) du
type C char
les transitions sont stockées dans un tableau TRANS d’entiers à
double entrée de NBETAT lignes et 256 colonnes (un char possèdant
256 codes)
un tableau FINAL d’entier de taille NBETAT indiquera si l’état est
final (1) ou non (0)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 30 / 389

Analyse lexicale Implémentation des Automates Finis Déterministes AFD

Implémentation d’Automates Finis Déterministes AFD III

/**
* @file afd.h Définition d'un AFD reconnaissant a(b+c)?|bd
* @author Michel Meynard
*/

define EINIT 0
define EA 1
define EAB 2
define EABC 3
define EB 4
define EBD 5
define NBETAT 6

int TRANS[NBETAT][256]; /* table de transition */
int FINAL[NBETAT]; /* final (1) ou non (0) ? */

void creerAfd(){ /* Construction de l'AFD */
for (int i=0;i<NBETAT;i++){

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 31 / 389

Analyse lexicale Implémentation des Automates Finis Déterministes AFD

Implémentation d’Automates Finis Déterministes AFD IV

for(int j=0;j<256;j++) TRANS[i][j]=-1; /* init vide */
FINAL[i]=0; /* init tous états non finaux */

}
/* Transitions de l'AFD */
TRANS[EINIT]['a']=EA;TRANS[EA]['b']=EAB;TRANS[EAB]['b']=EAB;
TRANS[EAB]['c']=EABC;TRANS[EINIT]['b']=EB;TRANS[EB]['d']=EBD;
FINAL[EA]=FINAL[EABC]=FINAL[EBD]=1; /* états finaux */

}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 32 / 389

Analyse lexicale Implémentation des Automates Finis Déterministes AFD

Implémentation en C de l’algorithme de reconnaissance
d’un mot par un AFD I

/**
* @file accepter.c Définition de la fon accepter
* @author Michel Meynard
*/

include <stdio.h>
include "afd.h" /* définition de l'automate */

int accepter(){ /* reconnaît un mot sur
l'entrée standard */↪→

int etat=EINIT; /* unique état initial */
int c; /* caractère courant */
while ((c=getchar())!=EOF) /* Tq non fin de fichier */

if (TRANS[etat][c]!=-1) /* si transition définie */
etat=TRANS[etat][c]; /* Avancer */

else return 0; /* sinon Echec de
reconnaissance */↪→

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 33 / 389

Analyse lexicale Implémentation des Automates Finis Déterministes AFD

Implémentation en C de l’algorithme de reconnaissance
d’un mot par un AFD II

return FINAL[etat]; /* OK si dans un état final
*/↪→

}
int main(){ /* Programme principal */

creerAfd(); /* Construction de l'AFD */
printf("Saisissez un mot matchant a(b+c)?|bd suivi de EOF

(CTRL-D) SVP : ");↪→

if (accepter())
printf("\nMot reconnu !\n");

else
printf("\nMot non reconnu !\n");

return 0;
}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 34 / 389

Analyse lexicale Implémentation des Automates Finis Déterministes AFD

Test du programme I

$ gcc -Wall accepter.c -o accepter
$ accepter
Saisissez un mot matchant a(b+c)?|bd suivi de EOF (CTRL-D) SVP :

abbbc↪→

Mot reconnu !
$ accepter
Saisissez un mot matchant a(b+c)?|bd suivi de EOF (CTRL-D) SVP :

abd↪→

Mot non reconnu !

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 35 / 389

Analyse lexicale Implémentation des Automates Finis Déterministes AFD

Discussion sur l’implémentation I

Il existe d’autres types d’implémentation, plus efficaces en mémoire, de la
table de transition d’un AFD :

par un multigraphe étiqueté chaîné (pointeurs),
par une table de transition plus petite ; la taille de la table est alors :
taille(TRANS) = |E | ∗ |V |. Cette solution est adoptée par le
programme flex (voir section 5), avec une structure de données
réduisant la taille de la table qui est souvent “creuse”

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 36 / 389

Analyse lexicale Analyseur lexical

Plan

2 Analyse lexicale
Reconnaissance d’un mot par un AFD
Implémentation des Automates Finis Déterministes AFD
Analyseur lexical
Implémentation des analyseurs lexicaux
Un langage et un outil pour l’analyse lexicale : flex
Syntaxe et sémantique des sources Flex
La commande flex
Actions C++
Liaison avec un analyseur syntaxique
Algorithmique
Déterminisation
Minimisation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 37 / 389

Analyse lexicale Analyseur lexical

Analyseur lexical I

L’analyse lexicale est bien plus complexe que la simple reconnaissance d’un
mot.

Suite à la reconnaissance d’un mot ou lexème, l’analyseur lexical doit
retourner un jeton (token) entier associé à la catégorie lexicale du
mot accepté
Un jeton (token) est généralement représenté par un entier positif ou
une instance de classe
Les entiers inférieurs à 256 sont réservés aux mots clés composés
d’un seul caractère : (“{”, “ ;”, “]”, ...). Leur code (ASCII, ISO
Latin1, ...) correspondra ainsi à leur jeton
Chaque mot clé de plus d’une lettre est également associé à son
jeton : (if, 300), (else, 301), (while, 302), ...
On définira également un jeton pour chaque catégorie lexicale
variable : (littéral entier, 303), (littéral chaîne, 304), ...

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 38 / 389

Analyse lexicale Analyseur lexical

Analyseur lexical II

Pour les catégories lexicales variables, il faudra également “retourner”
une valeur sémantique associée
pour les littéraux entiers on pourrait retourner la valeur entière
correspondante
pour les identificateurs le lexème lui-même ou l’indice d’entrée
correspondant dans la table des symboles
De plus, un analyseur lexical doit reconnaître une suite de lexèmes
dans un flot de caractères
Dans l’automate d’états finis déterministe (AFD), chaque état
terminal est associé à un jeton retournable
C’est le chemin parcouru dans l’automate qui déterminera le jeton à
retourner

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 39 / 389

Analyse lexicale Analyseur lexical

Analyseur lexical III

Cela peut poser problème lorsque un mot du langage est préfixe d’un
autre. Lorsqu’on est sur le dernier caractère du préfixe, pour savoir
quel jeton retourner, il est nécessaire de regarder le caractère suivant :
si celui-ci étend le lexème reconnu, on le lira et on avancera dans
l’automate (règle du mot le plus grand possible), sinon on
reconnaîtra le préfixe.
Par exemple, while(est reconnu comme un mot clé puis une
parenthèse, alors que while1 est reconnu comme un identificateur.
Attention, si on a avancé dans l’AFD et que l’on se retrouve dans un
état non terminal sans pouvoir avancer, il faudra reculer afin de
retourner dans le dernier état terminal parcouru ! Ce recul nécessite de
rejeter dans le flot d’entrée (ungetc) les caractères qui ont été lus en
trop.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 40 / 389

Analyse lexicale Analyseur lexical

Analyseur lexical IV

En reprenant l’exemple précédent, le mot “abd” doit être analysé
comme une suite des jetons A, BD même si à un moment l’analyseur
avait avancé jusqu’à l’état EAB.
une convention habituelle permet de retourner le jeton 0 lorsqu’on est
arrivé à la fin du flot.
Enfin, l’analyseur lexical doit filtrer un certain nombre de mots
inutiles pour l’analyseur syntaxique (blancs (espace, tabulations,
retour à la ligne), commentaires, ...).

Prenons l’exemple du morceau de code correspondant à la fonction
main() du fichier accepter.c précédent et voyons la suite de couple
(jeton, valeur sémantique) que doit successivement retourner la fonction
d’analyse lexicale du compilateur C :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 41 / 389

Analyse lexicale Analyseur lexical

Analyseur lexical V

(INT,) (ID,'main') ('(',) (')',) ('{',) (ID,'creerAfd') ('(',)
(')',) (';',) (ID,'printf') ('(',)
(LITTERALCHAINE,'Saisis...') (')',) (';',) (IF,) ('(',)
(ID,'accepter') ('(',) (')',) (')',) (ID,'printf') ('(',)
(LITTERALCHAINE,'\nMot...') (')',) (';',) (ELSE,)
(ID,'printf') ('(',) (LITTERALCHAINE,'\nMot...') (')',)
(';',) (RETURN,) (LITTERALENTIER,0) (';',) ('}')

↪→

↪→

↪→

↪→

↪→

↪→

L’algorithme suivant décrit le fonctionnement d’un tel analyseur lexical

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 42 / 389

Analyse lexicale Analyseur lexical

Algorithme Analyseur lexical I
Algorithme 2 : Analyseur lexical
Données : B = (V , E , D = {d}, A, T) ; JETON[A] ; flot ;
Résultat : (Entier : le jeton reconnu, Chaîne : le lexème reconnu)
Fonction analex(B, JETON[A], flot) : (Entier, Chaîne)
début

etat=d ; lexeme="" ; efinal=-1 ; lfinal=0 ; // Init.;
tant que ((c=carSuivant(flot))̸= $) et (etat, c, e) ∈ T faire

lexeme=lexeme . c ; etat=e;
si e ∈ A alors

efinal=e ; lfinal=|lexeme|;

si etat ∈ A alors
rejeter(flot, c) ; retourner (JETON[etat],lexeme);

sinon
si efinal > −1 alors

rejeter(flot, c) ; rejeter(flot, sous-chaine(lexeme,lfinal,|lexeme|)) ; retourner
(JETON[efinal], lexeme[0, lfinal − 1]);

sinon
si lexeme="" et c=$ alors

retourner (0,"") ; // pas d’état final;
sinon

si lexeme="" alors
retourner (c,c);

sinon
rejeter(flot, c) ; rejeter(flot, sous-chaine(lexeme,1,|lexeme|)) ;
retourner (lexeme[0], lexeme[0]) ;// tout sauf le 1er car;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 43 / 389

Analyse lexicale Analyseur lexical

Remarques sur l’algorithme I

la gestion des mots non reconnus est la suivante : retourner le jeton
correspondant au code ASCII du premier caractère. Contrairement à
cela, Lex lui ne retourne aucun jeton mais envoie ce premier caractère
sur la sortie standard et tenter de se resynchroniser sur le caractère
suivant ;
on suppose dans cet algorithme que le symbole $ est retourné à
l’infini par carSuivant() lorsqu’on est parvenu à la fin du flot ;
Remarquons que dans le cas où l’état initial est également final, le
mot vide est donc acceptable. Par conséquent, sur un mot non
acceptable ou sur le mot vide, l’analyseur lexical retournera une suite
infinie de jetons associés à l’état initial !

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 44 / 389

Analyse lexicale Analyseur lexical

Remarques sur l’algorithme II

le caractère minimal d’un AFD n’est pas une bonne propriété pour les
analyseurs lexicaux dans la mesure ou la minimisation d’un AFD
fusionne plusieurs états terminaux ce qui interdit le retour de jetons
distincts. Il suffit de construire l’AFDM du langage {< b >, < /b >}
pour s’en persuader !

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 45 / 389

Analyse lexicale Implémentation des analyseurs lexicaux

Plan

2 Analyse lexicale
Reconnaissance d’un mot par un AFD
Implémentation des Automates Finis Déterministes AFD
Analyseur lexical
Implémentation des analyseurs lexicaux
Un langage et un outil pour l’analyse lexicale : flex
Syntaxe et sémantique des sources Flex
La commande flex
Actions C++
Liaison avec un analyseur syntaxique
Algorithmique
Déterminisation
Minimisation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 46 / 389

Analyse lexicale Implémentation des analyseurs lexicaux

Implémentation des analyseurs lexicaux I

L’implémentation en C de la fonction d’analyse lexicale analex()
correspondant à l’algorithme précédent suit.
En C, une seule valeur pouvant être retournée par une fonction, on
choisit de retourner le jeton et d’implémenter la valeur sémantique
dans une variable globale lexeme de type chaîne de caractères
On utilise l’AFD de la figure 1 et on transforme la définition de
l’automate pour ajouter la définition des jetons dans un tableau entier
JETON remplaçant le tableau FINAL (afdJeton.h) :
JETON[EA]=300;JETON[EABC]=301;JETON[EBD]=302; // jetons des

états finaux↪→

Nous représentons la fonction d’analyse lexicale int analex() dans le
fichier analexJeton.h :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 47 / 389

Analyse lexicale Implémentation des analyseurs lexicaux

Implémentation des analyseurs lexicaux II

/**
* @file analexJeton.h
* @author Michel Meynard
*/

char lexeme[1024]; /* lexème courant de taille maxi 1024 */

int analex(){ /* reconnaît un mot sur l'entrée standard */
int etat=EINIT; /* unique état initial */
int efinal=-1; /* pas d'état final déjà vu */
int lfinal=0; /* longueur du lexème final */
int c;char sc[2];int i; /* caractère courant */
lexeme[0]='\0'; /* lexeme en var globale (pour le main)*/
while ((c=getchar())!=EOF && TRANS[etat][c]!=-1){ /* Tq on peut

avancer */↪→

sprintf(sc,"%c",c); /* transforme le char c en chaine sc */
strcat(lexeme,sc); /* concaténation */
etat=TRANS[etat][c]; /* Avancer */

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 48 / 389

Analyse lexicale Implémentation des analyseurs lexicaux

Implémentation des analyseurs lexicaux III

if (JETON[etat]){ /* si état final */
efinal=etat; /* s'en souvenir */
lfinal=strlen(lexeme); /* longueur du lexeme egalement */

} /* fin si */
} /* fin while */
if (JETON[etat]){ /* état final */

ungetc(c,stdin); /* rejeter le car non utilisé */
return JETON[etat]; /* ret le jeton correspondant */

}
else if (efinal>-1){ /* on en avait vu 1 */

ungetc(c,stdin); /* rejeter le car non utilisé */
for(i=strlen(lexeme)-1;i>=lfinal;i--)

ungetc(lexeme[i],stdin); /* rejeter les car en trop */
lexeme[lfinal]='\0'; /* voici le lexeme reconnu */
return JETON[efinal]; /* retourner le jeton */

}
else if (strlen(lexeme)==0 && c==EOF)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 49 / 389

Analyse lexicale Implémentation des analyseurs lexicaux

Implémentation des analyseurs lexicaux IV

return 0; /* cas particulier */
else if (strlen(lexeme)==0){

lexeme[0]=c;lexeme[1]='\0'; /* retourner (c,c) */
return c;

}
else {

ungetc(c,stdin); /* rejeter le car non utilisé */
for(i=strlen(lexeme)-1;i>=1;i--)

ungetc(lexeme[i],stdin); /* rejeter les car en trop */
return lexeme[0];

}
}

Enfin la fonction principale est codé dans le programme C suivant :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 50 / 389

Analyse lexicale Implémentation des analyseurs lexicaux

Implémentation des analyseurs lexicaux V

/** @file analexJeton.c
* @author Michel Meynard
*/

include <stdio.h>
include <string.h>
include "afdJeton.h" /* Définition de l'AFD et des JETONS */
include "analexJeton.h" /* Déf. fon : int analex() */

int main(){ /* Construction de l'AFD */
int j; /* jeton retourné par analex() */
char *invite="Saisissez un(des) mot(s) matchant a(b+c)?|bd

suivi de EOF (CTRL-D) SVP : ";↪→

creerAfd(); /* Construction de l'AFD à jeton */
printf("%s",invite); /* prompt */
while((j=analex())!=0){ /* analyser tq pas jeton 0 */

printf("\nRésultat : Jeton = %d ; Lexeme =
%s\n%s",j,lexeme,invite);↪→

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 51 / 389

Analyse lexicale Implémentation des analyseurs lexicaux

Implémentation des analyseurs lexicaux VI

}
return 0;

}
Après compilation de ce programme C, on l’exécute :
Saisissez un(des) mot(s) matchant a(b+c)?|bd suivi de EOF

(CTRL-D) SVP : abdaabbc↪→

Résultat : Jeton = 300 ; Lexeme = a
Résultat : Jeton = 302 ; Lexeme = bd
Résultat : Jeton = 300 ; Lexeme = a
Résultat : Jeton = 301 ; Lexeme = abbc
Saisissez un(des) mot(s) matchant a(b+c)?|bd suivi de EOF

(CTRL-D) SVP : baabc↪→

Résultat : Jeton = 98 ; Lexeme = b
Résultat : Jeton = 300 ; Lexeme = a
Résultat : Jeton = 301 ; Lexeme = abc
Saisissez un(des) mot(s) matchant a(b+c)?|bd suivi de EOF

(CTRL-D) SVP : xx↪→

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 52 / 389

Analyse lexicale Implémentation des analyseurs lexicaux

Implémentation des analyseurs lexicaux VII

Résultat : Jeton = 120 ; Lexeme = x
Résultat : Jeton = 120 ; Lexeme = x
Résultat : Jeton = 10 ; Lexeme =

Remarque : sur l’entrée standard Unix le CTRL-D tapé en début de ligne
génère un EOF, mais après une chaîne de caractères, le CTRL-D (parfois
doublé à cause des ungetc) génère un vidage (flush) du tampon d’entrée
sans caractère supplémentaire à la différence du ENTREE.

Une dernière fonctionalité à réaliser par les analyseurs lexicaux est le
filtrage des séparateurs (blancs : espaces, tabulations, ...) et des
commentaires.
dans notre implémentation précédente de l’exemple analexJeton.h,
on fixera un jeton négatif pour les états finaux à filtrer

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 53 / 389

Analyse lexicale Implémentation des analyseurs lexicaux

Implémentation des analyseurs lexicaux VIII

Il suffira alors de modifier les retours de jeton négatif en appel récursif
à analex() : return JETON[etat]; deviendra alors return
(JETON[etat]<0 ? analex() : JETON[etat]);.
Idem pour return JETON[efinal];. On trouvera ces changements
dans le fichier analex.h fourni pour les TD.
Pour conclure, avec un langage réel de taille importante, il devient
difficile de construire manuellement l’AFD sans se tromper (plusieurs
centaines de transitions). De plus, l’évolution permanente de la
grammaire d’un langage en cours de conception rend nécessaire
l’utilisation d’un outil informatique pour modéliser le langage lexical à
l’aide d’expressions régulières. L’outil aura comme mission de
transformer ces expressions en AFD à jeton et de fournir une fonction
d’analyse lexicale.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 54 / 389

Analyse lexicale Un langage et un outil pour l’analyse lexicale : flex

Plan

2 Analyse lexicale
Reconnaissance d’un mot par un AFD
Implémentation des Automates Finis Déterministes AFD
Analyseur lexical
Implémentation des analyseurs lexicaux
Un langage et un outil pour l’analyse lexicale : flex
Syntaxe et sémantique des sources Flex
La commande flex
Actions C++
Liaison avec un analyseur syntaxique
Algorithmique
Déterminisation
Minimisation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 55 / 389

Analyse lexicale Un langage et un outil pour l’analyse lexicale : flex

Un langage et un outil pour l’analyse lexicale : flex I

Pour plus d’informations sur flex, faire man flex
Lex est un outil permettant de générer un programme d’analyse
lexicale à partir de définitions de modèles (expressions régulières) et
d’actions à exécuter lors de la reconnaissance de ces modèles
Il existe différentes versions de lex (lex, flex, pclex,. . .) sur différentes
plateformes et permettant l’utilisation de différents langages d’actions
(C, ada, . . .)
Les plus usuelles tournent sous Unix et utilisent le C. Nous utiliserons
“Flex” qui est une version gratuite, rapide, n’ayant pas besoin de
bibliothèque

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 56 / 389

Analyse lexicale Un langage et un outil pour l’analyse lexicale : flex

Un exemple I

Analyseur lexical de la figure 1 réécrit en flex :
%{ /* analflex.l */
/* ZONE DE DEFINITION (OPTIONNELLE) */
/* ZONE DES REGLES apres le double pourcent (OBLIGATOIRE) */

%}
%%
a {return 300; /* ret un jeton */ }
ab+c {return 301; /* ret un jeton */ }
bd {/* ne rien faire : filtrer */ }
.|\n {return -1; /* ret un jeton pour tout le reste */ }
%%
/* ZONE DES FONCTIONS C */
main()
{int j; char *invite="Saisissez un(des) mot(s) matchant

a(b+c)?|bd suivi de EOF↪→

(CTRL-D) SVP : ";
printf(invite);

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 57 / 389

Analyse lexicale Un langage et un outil pour l’analyse lexicale : flex

Un exemple II

while ((j=yylex())!=0) printf("\nJeton : %i; de lexeme
%s\n%s",j,yytext,invite);↪→

}
Après compilation flex, flex analflex.l, puis compilation C et éditions
de liens avec la bibliothèque flex, gcc -o analflex lex.yy.c -lfl, il
ne reste plus qu’à lancer l’exécutable analflex obtenu :

Saisissez ... : abbbbcbdbdabdabbc
Jeton : 301; de lexeme abbbbc
Jeton : 300; de lexeme a
Jeton : 301; de lexeme abbc
<CTRL>-<D>

L’analyseur lexical généré tente, de manière itérative, de reconnaitre
une expression régulière (pattern matching) puis exécute les
instructions C correspondantes

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 58 / 389

Analyse lexicale Un langage et un outil pour l’analyse lexicale : flex

Un exemple III

L’analyseur termine sur la fin de fichier (EOF) de l’entrée standard
(CTRL-D pour le terminal)
Les mots ne correspondant à aucune expression régulière sont rejetés
dans la sortie standard sans aucun traitement particulier.
Au cœur du source C lex.yy.c généré par flex, la fonction C : int
yylex() d’analyse lexicale permet de retourner un jeton entier
correspondant au modèle reconnu
Dans l’exemple précédent, la fonction principale : int main() appelle
yylex() itérativement jusqu’au caractère de fin de fichier
La résolution de l’ambiguïté de reconnaissance est obtenue d’une part,
par la tentative de toujours reconnaitre le mot le plus long, d’autre
part par l’ordre des expressions régulières dans le source lex

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 59 / 389

Analyse lexicale Un langage et un outil pour l’analyse lexicale : flex

Un exemple IV

Si l’on observe le code C généré dans lex.yy.c, on s’aperçoit que
l’automate fini déterministe calculé par flex est codé dans un tableau
statique du programme C.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 60 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

Plan

2 Analyse lexicale
Reconnaissance d’un mot par un AFD
Implémentation des Automates Finis Déterministes AFD
Analyseur lexical
Implémentation des analyseurs lexicaux
Un langage et un outil pour l’analyse lexicale : flex
Syntaxe et sémantique des sources Flex
La commande flex
Actions C++
Liaison avec un analyseur syntaxique
Algorithmique
Déterminisation
Minimisation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 61 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

Architecture d’un fichier flex I

Un source lex comprend 3 sections séquentielles :
une section optionelle de définitions. Elle contient les directives
d’inclusions et les définitions globales C (variables, types, . . .).
Une section obligatoire de règles lex délimitée par %% au début. C’est
la section centrale du source lex qui définit l’analyseur lexical en
associant des instructions C à des expressions régulières.
Une section optionelle de fonctions C définies par l’utilisateur
délimitée par %% au début. C’est là que l’on peut définir le main().

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 62 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

Les règles lex I

Une règle lex se présente de la façon suivante : une expression régulière,
suivie de séparateur(s), suivie de

d’un bloc d’instructions C ou C++ encadré par des accolades ou bien
“ ;” (ne rien faire) ou bien
d’une instruction C à exécuter.

L’espace et la tabulation sont les séparateurs qui divise la règle en deux. Le
modèle lexical doit commencer en début de ligne et la règle doit se
terminer par un “ ;” ou une fin de bloc C “}”.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 63 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

Syntaxe des expressions régulières I

Soit e et r deux ers quelconques, c et d deux caractères, m et n deux
nombres entiers positifs :

Exemple Signification Opérateur
abc concaténation implicite er
Monsieur|Madame union e|r
b* opération * : 0 à n ’b’ e*
b+ opération + : 1 à n ’b’ e+
cartons ? optionnel : carton ou cartons e ?
(abc)* parenthésage pour priorités (e)
[ace] classe de car : 1 caractère parmi [cd]
[a-z][0-9] 1 minuscule suivie d’1 chiffre [c-d]
[^abc] 1 caractère sauf a, b ou c [^cd]
"[*+)(" évite l’interprétation des opérateurs "dc"
* le caractère * (et non pas l’opérateur) \c

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 64 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

Syntaxe des expressions régulières II

. un car quelconque hormis newline .
[0-9]{3} trois chiffres e{n}
a{1,10} entre 1 à 10 ’a’ contigus e{m,n}
a{3,} au moins 3 ’a’ contigus e{m,}
^Bonjour Bonjour en début de ligne ^e
Au revoir$ Au revoir en fin de ligne (pas en EOF) e$
^Bonjour$ interdit (1 seul opérateur contextuel)
Bonjour/(toto) Bonjour seulement si suivi par toto e/r

<etat1>Dupont Dupont seulement si on est dans l’état
etat1 <state>e

<<EOF>> fin de fichier (seulement flex) <<EOF>>

<state><<EOF>> fin de fichier dans un certain état
(seulement flex) <s><<EOF>>

{chiffre} chiffre = alias dans la 1ère section du
source lex {def}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 65 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

Instruction(s) C I

La partie droite de chaque règle est un bloc d’instructions C
Le texte inclu entre accolades sera recopié intégralement dans
lex.yy.c sans aucune analyse ni modification
Les instructions C peuvent faire appel à des fonctions prédéfinies par
lex ou définies par l’utilisateur dans la troisième section du source lex
En particulier, avec flex, on peut ne pas utiliser la librairie flex
libfl.a à condition de définir la fonction principale main() ainsi que
la fonction int yywrap()
int yywrap() {return 1;} /* pas d'enchaînement sur un autre

fichier */↪→

main() {while (yylex()!=0) {} } /* boucle sans rien faire
jusqu'à eof */↪→

une autre solution pour yywrap consiste à utiliser dans le préambule
l’option suivante :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 66 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

Instruction(s) C II

%option noyywrap
Les instructions C peuvent référerencer une variable :

soit prédéfinie par lex : la chaîne char* yytext de longueur int
yyleng correspond au mot reconnu dans le texte à analyser (lexème) ;
soit définie en section définitions : dans ce cas, la variable est globale ;
soit définie juste après l’accolade : dans ce cas, la variable est locale à
la règle.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 67 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

Un exemple I

Le source lex suivant illustre l’utilisation des variables :
%{ int glob=0; %}
%%
-?[1-9]+ {int loc=5; glob++;loc++;

printf("%d ème entier de taille %d; loc=
%d",glob,yyleng,loc);↪→

}

Une exécution de ce programme donne :

12
1 ème entier de taille 2; loc= 6
123
2 ème entier de taille 3; loc= 6
-1
3 ème entier de taille 2; loc= 6

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 68 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

Variables prédéfinies I

yytext chaîne de car (char *) contenant le lexème en cours de
reconnaissance ;

yyleng longueur (int) de yytext ;
yyin flot d’entrée des caractères de type FILE* (par défaut

stdin) ; On peut rediriger le flot d’entrée sur le premier
argument du main en faisant : yyin=fopen(argv[1],"r");

yyout sortie standard de type FILE*. Pour y afficher, faire :
fprintf(yyout, "...");

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 69 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

Fonctions prédéfinies I

int yylex() lit un lexème depuis le flot d’entrée et retourne le jeton
associé. Retourne le jeton 0 pour finir.

int input() lecture d’un caractère depuis le flot d’entrée (yyinput en
C++) ; input() équivaut à fgetc(yyin) ;

void unput(int) retour dans le flot d’entrée d’un car ; unput(c) équivaut à
ungetc(c,yyin) ;

int yywrap() lorsque l’analyseur yylex() arrive en fin de fichier (EOF), il
appelle yywrap(). Si yywrap retourne 1 (par défaut) alors
yylex() retourne 0 (fin d’analyse). Si on voulait enchaîner
sur un autre fichier, il faut redéfinir dans la section
“définitions” du source lex, la fonction yywrap() afin qu’elle
fasse pointer yyin sur le nouveau fichier puis retourne 0 ;

yymore() concatène dans yytext le prochain lexème avec celui en
cours ;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 70 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

Fonctions prédéfinies II

yyless(int n) replace le lexème reconnu yytext dans le flot d’entrée à
l’exception de ses n premiers caractères ;

ECHO affiche yytext ; ECHO équivaut à fprintf(yyout,yytext) ;
REJECT rejette le lexème reconnu dans le flot d’entrée et s’interdit de

reconnaitre la règle courante au prochain essai (appel de
yylex()).

BEGIN(etat) positionne l’automate dans la condition de départ etat. Cet
état doit avoir été défini dans la première section grâce à
%Start etat ou à %x etat. BEGIN(0) permet de revenir à
l’état normal.

int main() par défaut, la librairie de lex (libl.a) ou de flex
(libfl.a) définissent une fonction pricipale qui appelle
yylex() jusqu’à ce que celle-ci retourne 0.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 71 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

Ambiguités de correspondance I

Règle de la plus longue correspondance (match) si un préfixe (début de
chaîne) correspond à plusieurs expressions régulières
possibles, lex choisira l’expression régulière correspondant à
la plus longue extension. Par exemple, avec les règles
suivantes :
end {return 300;}
[a-z]+ {return 301;}
Le mot endemique se verra appliquer la seconde règle
(identificateur) et yylex() retournera 301.
Attention aux opérateurs contextuels en avant qui
comptabilisent les caractères en avant : par exemple,
l’expression régulière a$ sera préféré à l’expression a pout
tout a en fin de ligne.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 72 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

Ambiguités de correspondance II

Règle du premier trouvé si la longueur de correspondance est égale pour
plusieurs règles, alors c’est la première dans la liste qui est
déclenchée. Dans l’exemple précédent, le mot end
déclenchera le retour de 300. Par conséquent, pour un
langage donné, il faut toujours placer les règles concernant
les mots-clés au début.

Attention aux opérateurs contextuels qui provoquent parfois des “erreurs” !
En effet, l’utilisation des 2 règles suivantes provoque un conflit gagné par
la première règle (à l’encontre de la règle du plus long lexème) :

a+$ {return 300; /* ret un jeton */}
^a+\n {return 301; /* ret un jeton */}

En inversant l’ordre de ces deux règles, tout se passe cependant
comme prévu.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 73 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

Ambiguités de correspondance III

En fait, les opérateurs contextuels de suffixe ($, /) sont consommés
après le lexème et c’est ce mot qui doit être considéré comme le plus
long possible.
Ensuite, le suffixe sera rejeté dans yyin.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 74 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

section définitions I

Il existe différentes sortes de définitions :
Abbréviation de modèle certains facteurs de modèles revenant

fréquemment dans les règles, on peut en définir des alias
selon la syntaxe suivante : nomAlias séparateur(s)
modèle. Par exemple :
chiffre ([0-9])
minuscule ([a-z])
exposant ([DEde][-+]?{chiffre}+)
Dans cet exemple, chiffre désigne l’alias de [0-9]. Ces alias
seront principalement utilisés dans les expressions régulières
en les entourant d’accolades. Le parenthésage sera utilisé
systématiquement pour éviter des problèmes liés aux
priorités.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 75 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

section définitions II

Start conditions permet de conditionner la reconnaissance de certaines
expressions régulières selon l’état dans lequel l’analyseur se
trouve. Par exemple, %Start state1 state2 state3
définit trois états. Ceux-ci pourront être utilisés en préfixe
des expressions régulières : <state2>[a-z]+
{BEGIN(state3);}. La définition des états peut également
se faire par %x s1 s2 (exclusif). Dans ce cas, l’analyseur ne
peut se trouver que dans un seul état à la fois. Dans l’autre
cas, %Start ou %s, l’état est prioritaire mais les autres règles
(sans état) seront utilisées s’il n’y a pas de correspondance
possible ! Il est donc préférable d’utiliser %x s1 s2.

Définition de variables et autre toute ligne de la section définitions
débutant par un espace ou une tabulation est recopiée au
début du source C généré par lex

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 76 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

section définitions III

Ces lignes seront donc externes à toute fonction C du code
correspondant à l’automate.
Idem pour tout ce qui est inclus entre %{ et %}, ces
délimiteurs étant détruits dans lex.yy.c. A part les
variables globales, cette section permet d’inclure des macros
#include #define, des typedef,

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 77 / 389

Analyse lexicale Syntaxe et sémantique des sources Flex

Troisième section I

Cette section permet d’écrire des fonctions C utilisées dans les parties
droites des règles.
On peut également redéfinir les fonctions main(), yywrap(),
input(), unput(char), ... afin de surcharger leur versionflex.
Ces fonctions peuvent également être redéfinies dans un fichier inclus.
Enfin, on peut utiliser des fichiers objets externes lors de l’édition de
liens à condition d’avoir inclus leurs en-têtes dans la première section

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 78 / 389

Analyse lexicale La commande flex

Plan

2 Analyse lexicale
Reconnaissance d’un mot par un AFD
Implémentation des Automates Finis Déterministes AFD
Analyseur lexical
Implémentation des analyseurs lexicaux
Un langage et un outil pour l’analyse lexicale : flex
Syntaxe et sémantique des sources Flex
La commande flex
Actions C++
Liaison avec un analyseur syntaxique
Algorithmique
Déterminisation
Minimisation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 79 / 389

Analyse lexicale La commande flex

La commande flex I

Principales options de la commande flex :
flex -d débogue un source flex en affichant lors de l’exécution la

règle reconnue (ligne) et le lexème ;
flex -T trace l’automate construit en donnant : l’AFN (nfa), l’AFD

(dfa), et les classes de caractères définies ;
flex -v (verbose) donne des informations statistiques sur l’automate

généré ;
flex -s supprime la règle par défaut qui consiste à envoyer sur la

sortie standard tout caractère non reconnu.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 80 / 389

Analyse lexicale La commande flex

makefile I

Voici la partie du makefile correspondant à la génération d’applications à
partir de source flex d’extension .l sans la bibliothèque flex (il faut
définir les fonctions int main() et int yywrap().
.SUFFIXES:.l
CC=gcc
CFLAGS=-g
LEX=flex
.l: # sans librairie

@echo début $(LEX)-compil : $<
$(LEX) $<
@echo début compil C de lex.yy.c
$(CC) $(CFLAGS) -o $* lex.yy.c
@echo fin $(LEX)-compil : $<
@echo Vous pouvez exécuter : $*

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 81 / 389

Analyse lexicale Actions C++

Plan

2 Analyse lexicale
Reconnaissance d’un mot par un AFD
Implémentation des Automates Finis Déterministes AFD
Analyseur lexical
Implémentation des analyseurs lexicaux
Un langage et un outil pour l’analyse lexicale : flex
Syntaxe et sémantique des sources Flex
La commande flex
Actions C++
Liaison avec un analyseur syntaxique
Algorithmique
Déterminisation
Minimisation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 82 / 389

Analyse lexicale Actions C++

Actions C++ I

Il est possible d’utiliser flex avec des actions en C++. Il suffit alors de
compiler lex.yy.c avec un compilateur C++. Soit le source flex
suivant :

%{
#include <iostream.h>
class A{
public:
void essai(){cout<<"Identif ";
}

};
%}
%%
[a-z]([a-z]|[0-9])* {return 4;}
. {return 5;}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 83 / 389

Analyse lexicale Actions C++

Actions C++ II

%%
int main(){

A a; int i;
while ((i=yylex())!=0)

if (i==4) a.essai();
}

Après compilation par flex exempleC++.l+ puis g++ -g -o
exempleC++ lex.yy.c -lfl, on obtient un exécutable.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 84 / 389

Analyse lexicale Actions C++

makefile pour le C++ I

Voici les 2 entrées de makefile pour les sources flex contenant des
instructions C++ :

CPP=g++
CPPFLAGS=-g
.l+: # C++ sans la librairie LEX

$(LEX) $<
$(CPP) $(CPPFLAGS) -o $* lex.yy.c

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 85 / 389

Analyse lexicale Liaison avec un analyseur syntaxique

Plan

2 Analyse lexicale
Reconnaissance d’un mot par un AFD
Implémentation des Automates Finis Déterministes AFD
Analyseur lexical
Implémentation des analyseurs lexicaux
Un langage et un outil pour l’analyse lexicale : flex
Syntaxe et sémantique des sources Flex
La commande flex
Actions C++
Liaison avec un analyseur syntaxique
Algorithmique
Déterminisation
Minimisation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 86 / 389

Analyse lexicale Liaison avec un analyseur syntaxique

Liaison avec un analyseur syntaxique I

Lorqu’il est utilisé avec un analyseur syntaxique généré par yacc ou
bison, c’est la fonction d’analyse syntaxique yyparse() qui appelle
itérativement yylex() pour obtenir les jetons correspondants au
fichier analysé.
La fonction principale int main() appelle alors yyparse() et non
plus yylex()
Une ou plusieurs variables globales, yylval par exemple, peuvent être
alors partagées par les 2 fonctions yylex() et yyparse().
Souvent la variable yylval sera utilisée pour stocker un attribut
sémantique associé au jeton retourné par Flex
La définition du type de yylval sera réalisé dans le fichier source
bison qui sera le fichier maître du projet

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 87 / 389

Analyse lexicale Algorithmique

Plan

2 Analyse lexicale
Reconnaissance d’un mot par un AFD
Implémentation des Automates Finis Déterministes AFD
Analyseur lexical
Implémentation des analyseurs lexicaux
Un langage et un outil pour l’analyse lexicale : flex
Syntaxe et sémantique des sources Flex
La commande flex
Actions C++
Liaison avec un analyseur syntaxique
Algorithmique
Déterminisation
Minimisation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 88 / 389

Analyse lexicale Algorithmique

Traduction des expressions régulières I

Nous allons étudier les différents algorithmes utilisés par Flex pour
construire “l’automate” déterministe codé en C.

construction de “Thompson” qui admet des AFN possédant des
ε-transitions mais ayant un unique état initial et un unique état final
la donnée est constituée d’une expression régulière r (sans ∅) sur
l’alphabet V
Le résultat est un AFN
Le principe revient à associer récursivement un automate à chaque
noeud de l’arbre syntaxique de l’expression régulière

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 89 / 389

Analyse lexicale Algorithmique

Traduction des expressions régulières II

Algorithme 3 : construction d’un automate équivalent à une expression
régulière

Données : r une expression régulière sur V
Résultat : B = (V , E , D, A, T)

1 Construire l’arbre a de construction inductive de r // arbre syntaxique
de r;

2 i=0 // numéro d’état;
3 B=arbreVersAF(a) // appel à la fonction définie dans l’algorithme 4

;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 90 / 389

Analyse lexicale Algorithmique

Traduction des expressions régulières III

Algorithme 4 : construction d’un automate à partir d’un arbre

Données : a un arbre syntaxique d’une expression régulière r
Résultat : B = (V , E , D, A, T)
Fonction arbreVersAF(a) : automate;
si a est une feuille étiquetée par un symbole s ∈ V ∪ {ε} alors

B = (V , {i , i + 1}, {i}, {i + 1}, {(i , s, i + 1)});
i=i+2;
retourner B;

si a est étiquetée par • alors
Bg = (V , Eg , {dg}, {ag}, Tg) =arbreVersAF(sag(a));
Bd = (V , Ed , {dd}, {ad}, Td) =arbreVersAF(sad(a)) ;
retourner B = (V , Eg ∪ Ed , {dg}, {ad}, Tg ∪ Td ∪ {agεdd}) ;
// état fin. de Bg “fusionné” à l’état init. de Bd

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 91 / 389

Analyse lexicale Algorithmique

Traduction des expressions régulières IV

Algorithme 5 : construction d’un automate à partir d’un arbre (suite)
si a est étiquetée par | alors

Bg = (V , Eg , {dg}, {ag}, Tg) =arbreVersAF(sag(a))
Bd = (V , Ed , {dd}, {ad}, Td) =arbreVersAF(sad(a))
B = (V , Eg ∪ Ed ∪ {i , i + 1}, {i}, {i + 1},
Tg ∪ Td ∪ {iεdg , iεdd , agεi + 1, adεi + 1}) ;
// on parallèlise Bg et Bd ;
i=i+2;
retourner B ;

si a est étiquetée par ∗ alors
Bg = (V , Eg , {dg}, {ag}, Tg) =arbreVersAF(sous-arbre(a));
B = (V , Eg ∪ {i , i + 1}, {i}, {i + 1},
Tg ∪ {iεdg , iεi + 1, agεi + 1, agεdg})
// on crèe un circuit sur Bg ;
i=i+2;
retourner B;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 92 / 389

Analyse lexicale Algorithmique

Traduction des expressions régulières V

Quelques propriétés de l’algorithme de Thompson :
Correction : l’AF construit reconnaît le langage L(r) défini par
l’expression régulière r.
L’AF construit a au plus deux fois plus d’états que |r |.
L’AF construit a un état initial et un état final.
Chaque état (non final) possède, soit 1 ou 2 ε-transitions sortantes,
soit une transition sortante étiquetée par un symbole de V.
Chaque état (non initial) possède, soit 1 ou 2 ε-transitions entrantes,
soit une transition entrante étiquetée par un symbole de V.
L’état final n’a pas de transition sortante, l’état initial n’a pas de
transition entrante.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 93 / 389

Analyse lexicale Algorithmique

Traduction des expressions régulières VI

Les preuves de ces propriétés sont réalisées par l’analyse de la fonction
récursive arbreVersAF.
La difficulté de mise en oeuvre de cet algorithme réside dans la
construction de l’arbre de dérivation. En effet, la grammaire des
expressions régulière est algébrique non rationnelle. Une programmation
récursive ad hoc permet cependant de le réaliser. Il ne reste plus ensuite
qu’à déterminiser l’AF ainsi construit pour construire un AFD équivalent à
une expression régulière.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 94 / 389

Analyse lexicale Déterminisation

Plan

2 Analyse lexicale
Reconnaissance d’un mot par un AFD
Implémentation des Automates Finis Déterministes AFD
Analyseur lexical
Implémentation des analyseurs lexicaux
Un langage et un outil pour l’analyse lexicale : flex
Syntaxe et sémantique des sources Flex
La commande flex
Actions C++
Liaison avec un analyseur syntaxique
Algorithmique
Déterminisation
Minimisation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 95 / 389

Analyse lexicale Déterminisation

Déterminisation I

On va écrire l’algorithme 6 de déterminisation d’un AFN
N = (V , E , D, A, T) ;

l’idée consiste à fusionner l’ensemble des états où l’AFN peut être à
un “instant” donné en un seul état de l’AFD
D = (V , DE , {d}, DA, DT).
Pour cela, un état de DE sera modélisé dans l’algo. par un ensemble
d’états de E
Il reste à la fin de l’algorithme 6 à numéroter ces ensembles
L’Epsilon-fermeture d’un ensemble d’états consiste à effectuer la
fermeture réflexo-transitive par des epsilon transitions depuis ces états.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 96 / 389

Analyse lexicale Déterminisation

Algorithme de déterminisation I

Algorithme 6 : déterminisation d’un automate
Données : N = (V , E , D, A, T)
Résultat : B = (V , DE , {d}, DA, DT)
d=EpsilonFermeture(D) ; // on initialise l’ensemble des états initiaux comme unique état de

départ non marqué;
DE={d};
tant que il existe un état G = {e1, e2, . . . , en} non marqué dans DE faire

marquer G // on traite une seule fois chaque état de l’AFD B;
pour chaque x ∈ V faire

X = EpsilonFermeture(
⋃n

i=1{ej }) tel que ei ∈ G et (ei xej) ∈ T // X est
l’ensemble des états atteignables par x à partir de G;

si X ̸= ∅ alors
DE = DE ∪ {X} ;
DT = DT ∪ {(GxX)} // ajouter la transition dans l’AFD;

DA = {Y ∈ DE/Y ∩ A ̸= ∅} // les états finaux de B sont ceux qui contiennent au moins un
état final de N;

numéroter les états de DE et substituer ces numéros dans DE,DA,DT ;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 97 / 389

Analyse lexicale Déterminisation

Remarques I

A tout chemin menant d’un état initial à un état final de N, donc à
tout mot de L(N), correspond un chemin de d à un état final dans D.
De plus, pour un chemin menant à un état final, l’état {. . . en+1 . . .}
est final (Voir dans l’algorithme : DA = {Y ∈ DE/Y ∩ A ̸= ∅}).
Remarquons que cette déterminisation permet de supprimer tous les
chemins inaccessibles

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 98 / 389

Analyse lexicale Déterminisation

Exemple I

Déterminisons l’AFN N suivant :
N = {{a, b}, {1..4}, {1, 2}, {3, 4}, {1a3, 1a4, 2a3, 2b4}}
traçons l’algorithme :
DE = {{1, 2}∗};
x = a; X = {3, 4}; DE = {{1, 2}∗, {3, 4}}; DT = {({1, 2}a{3, 4})}
x = b; X = {4}; DE = {{1, 2}∗, {3, 4}, {4}}; DT =
{({1, 2}a{3, 4}), ({1, 2}b{4})}
DE = {{1, 2}∗, {3, 4}∗, {4}};
x = a puis b; X = ∅
DE = {{1, 2}∗, {3, 4}∗, {4}∗};
x = a puis b; X = ∅
DA = {{3, 4}, {4}}
numérotation : {1, 2} → 1; {3, 4} → 2; {4} → 3; D =
{{a, b}, {1..3}, {1}, {2, 3}, {1a2, 1b3}}.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 99 / 389

Analyse lexicale Minimisation

Plan

2 Analyse lexicale
Reconnaissance d’un mot par un AFD
Implémentation des Automates Finis Déterministes AFD
Analyseur lexical
Implémentation des analyseurs lexicaux
Un langage et un outil pour l’analyse lexicale : flex
Syntaxe et sémantique des sources Flex
La commande flex
Actions C++
Liaison avec un analyseur syntaxique
Algorithmique
Déterminisation
Minimisation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 100 / 389

Analyse lexicale Minimisation

Minimisation I

Rappelons que la forme canonique d’un langage régulier est son AFD
minimal.
l’algorithme de minimisation d’un AFD B = (V , E , {d}, A, T) suppose
en entrée un AFD complet en ajoutant si nécessaire un état puits
On va construire incrémentalement une suite de partitions Pi ,
composées de classes d’états
On dit que 2 états i, j d’une même classe C sont distinguables par un
symbole x ∈ V ssi la reconnaissance de x n’aboutit pas pour ces deux
états à la même classe de la partition courante
On va partitionner les états de l’automate en classes d’états
distinguables les unes par rapport aux autres puis ces classes
représenteront les états du nouvel AFD Minimal M.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 101 / 389

Analyse lexicale Minimisation

Algorithme de minimisation I

Algorithme 7 : Minimisation d’un AFD
Données : B = (V , E , {d}, A, T), un AFD complet
Résultat : M = (V , ME , {nd}, MA, MT), un AFD minimal
i=0;
Initialiser la partition Pi = {A, E − A};
répéter

pour chaque C ∈ Pi faire
si il existe plusieurs états de C distinguables par un x ∈ V alors

partitionner C en C1, C2, . . . , Cn dans Pi+1 de manière à ce que ces
sous-classes ne soient plus distinguables par x;

sinon
recopier C dans Pi+1;

i=i+1;
jusqu’à Pi = Pi−1;
numéroter chaque classe C ∈ Pi pour former les états de ME;
le nouvel état de départ nd est le numéro de la classe qui contient d;
MA est l’ensemble des numéros de classes contenant des états d’arrivée de A;
MT est constitué des transitions entre les classes de Pi ;
supprimer les états puits non finaux ainsi que les états non accessibles;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 102 / 389

Analyse lexicale Minimisation

Exemple I

Soit l’ AFD complet suivant :

B = (
V = {a, b},

E = [1, 6],
D = {1},

A = {3, 4, 5},

T = {1a2, 1b3, 2a2, 2b3, 3a4, 3b6, 4a5, 4b6, 5a5, 5b6, 6a6, 6b6}
)

On obtient la partition initiale : P0 = {{3, 4, 5}, {1, 2, 6}}
La classe {3, 4, 5} n’est pas distinguable ni par a (classe {3, 4, 5}), ni
par b (classe {1, 2, 6})

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 103 / 389

Analyse lexicale Minimisation

Exemple II
Par contre, la classe {1, 2, 6} se distingue sur b
Par conséquent :

P1 = {{3, 4, 5}, {1, 2}, {6}} = P2

Il ne reste plus qu’à supprimer la classe {6} qui est un puits non final
pour obtenir l’AFD minimal :

M = ({a, b}, {12, 345}, {12}, {345}, {12a12, 12b345, 345a345})

Remarquons qu’un état d’arrivée de M ne contient que des états
d’arrivée de B à cause de la partition initiale.

Exercice
Soit l’expression régulière (a|bc)∗. Calculer l’AFDM correspondant en
passant par la construction de Thompson.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 104 / 389

Analyse syntaxique

Plan

3 Analyse syntaxique

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 105 / 389

Analyse syntaxique

Introduction à l’analyse syntaxique I

L’analyse syntaxique du programme source doit vérifier que celui-ci
est bien un mot du langage de programmation
Pour cela, la grammaire du langage est utilisée
Cette grammaire G = (VT , VN , R, S) est algébrique (insensible au
contexte)
Toutes les règles de R sont donc de la forme : X → α avec X ∈ VN et
α ∈ (VT ∪ VN)∗

De plus, G doit être non ambigüe afin d’éviter différentes sémantiques
pour un même programme
Ainsi, il existe une unique dérivation gauche depuis l’axiome S de la
grammaire et conduisant au programme
C’est-à-dire qu’il existe un unique arbre de dérivation dont la frontière
soit le programme

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 106 / 389

Analyse syntaxique

Introduction à l’analyse syntaxique II

Cette analyse peut se faire selon deux approches :
l’analyse syntaxique descendante consiste à partir de l’axiome qui
constitue la racine de l’arbre de dérivation (ou arbre syntaxique)
l’arbre de dérivation est ainsi construit (ou pas) depuis la racine S vers
les feuilles.
l’analyse syntaxique ascendante consiste, au contraire, à partir du
programme et à remonter vers l’axiome S
l’arbre de dérivation est alors construit (ou pas) depuis les feuilles vers
la racine S

De plus, la phase d’analyse syntaxique peut générer selon les cas :
un résultat booléen indiquant la correction syntaxique. C’est le cas
des vérificateurs syntaxiques tels que lint, qui est un vérificateur
pour le C

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 107 / 389

Analyse syntaxique

Introduction à l’analyse syntaxique III

un arbre syntaxique représentant le programme. Celui-ci est soit un
arbre de dérivation (arbre complet), soit un arbre abstrait (Abstract
Syntax Tree) qui est un arbre simplifié. Cet arbre servira ensuite pour
l’analyse sémantique puis la synthèse de la cible ou l’évaluation
le programme cible directement compilé par la phase d’analyse
syntaxique. On parle de traduction dirigée par la syntaxe. Cette
traduction utilise fréquemment des grammaires attribuées
le résultat de l’évaluation du programme source. C’est le cas des
interpréteurs de programme et des évaluateurs d’expressions
(calculette)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 108 / 389

Analyse syntaxique Analyse descendante récursive

Plan

3 Analyse syntaxique
Analyse descendante récursive
Analyse descendante par automate à pile
Algorithmique en analyse descendante
Grammaires LL(1)
Conclusion sur l’analyse descendante
Un langage et un outil pour l’analyse syntaxique ascendante : bison
et yacc
Syntaxe et sémantique des sources bison
Un exemple bison complet : une calculette
Analyse ascendante par automate à pile
Algorithmique
Construction de la collection canonique SLR
Construction des tables d’analyse SLR
Les conflits et leur résolution par bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 109 / 389

Analyse syntaxique Analyse descendante récursive

Analyse descendante récursive I

méthode de programmation qui associe une fonction, souvent
récursive, à chaque symbole non terminal de la grammaire
ces fonctions s’appellent suite à la reconnaissance de certains jetons
du flot d’entrée correspondant aux début des parties droites des règles
de production
ces jetons permettent donc de prédire la règle de production à choisir
la grammaire doit posséder un certain nombre de propriétés pour
permettre l’analyse descendante prédictive
propriété fondamentale de ces grammaires : non récursivité à
gauche
celle-ci générerait des appels récursifs infinis
la récursivité à droite étant permise, il est toujours possible de
transformer une grammaire récursive à gauche en une grammaire
équivalente non récursive à gauche

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 110 / 389

Analyse syntaxique Analyse descendante récursive

Analyse descendante récursive II

le nombre de symboles terminaux nécessaires à la prédiction de la
règle de production à choisir est une caractéristique des analyses
descendantes prédictives
si ce nombre est 0, on choisit une production quelconque et on tente
la descente. Si celle-ci échoue : backtracking
le backtracking étant coûteux du point de vue de l’efficacité, on
utilise toujours au moins un symbole (jeton) de prédiction (prévision)
ce jeton doit être lu avant d’entrer dans une fonction afin de
permettre le retour sans effet dans le cas d’une production
epsilonesque

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 111 / 389

Analyse syntaxique Analyse descendante récursive

Un exemple I

Soit la grammaire d’expressions arithmétiques intuitive suivante :
GE = ({0, 1, . . . , 9, +, ∗, (,)}, {E}, R, E) avec les règles de R suivantes :

E → E + E |E ∗ E |(E)|0|1| . . . |9

Cette grammaire GE étant ambigüe, on écrit une grammaire équivalente
non ambigüe selon le schéma Expression Terme Facteur (ou ETF) :

une expression est quelconque, par exemple 1+2*3+4 ;
un terme est un élément d’une somme : dans l’exemple précédent, 1,
2*3 et 4 sont trois termes ;
un facteur est un élément d’un produit : dans l’exemple précédent, 2
et 3 sont des facteurs du produit 2*3.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 112 / 389

Analyse syntaxique Analyse descendante récursive

Un exemple II

GETF = ({0, 1, . . . , 9, +, ∗, (,)}, {E , T , F}, R, E) avec les règles de R
suivantes :

E → E + T |T
T → T ∗ F |F
F → (E)|0|1| . . . |9

cette grammaire GETF n’est pas ambiguë : pour un même niveau de
parenthésage, les opérateurs + doivent étre tous générés avant de
générer un opérateur *
GETF étant récursive à gauche, on écrit une grammaire équivalente
non récursive à gauche mais récursive à droite
bien entendu, du point de vue syntaxique ces 3 grammaires sont
équivalentes : L(GE) = L(GETF) = L(GENR)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 113 / 389

Analyse syntaxique Analyse descendante récursive

Un exemple III

GENR = ({0, 1, . . . , 9, +, ∗, (,)}, {E , R, T , S, F}, X , E) avec les règles de X
suivantes :

E → TR
R → +TR|ε
T → FS
S → ∗FS|ε
F → (E)|0|1| . . . |9

il reste à écrire un vérificateur (reconnaisseur) syntaxique récursif
utilisant un jeton de prédiction

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 114 / 389

Analyse syntaxique Analyse descendante récursive

Un exemple IV

le programme C suivant (analdesc.c) effectue cette vérification
syntaxique en calquant la structure de ses fonctions sur la grammaire
GENR

l’analyse lexicale est triviale car chaque lexème du langage est
contitué d’un seul caractère (getchar())
on utilisera deux variables globales jeton et numcar pour conserver le
jeton courant et la position dans la ligne
il utilise des macros C (en majuscules) permettant de :

lire le jeton suivant (AVANCER()),
comparer le jeton courant avec le jeton attendu puis avancer
(TEST_AVANCE()),
gérer les erreurs de syntaxe (ERREUR_SYNTAXE())

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 115 / 389

Analyse syntaxique Analyse descendante récursive

Un exemple V

/**
* analdesc.c vérifie la syntaxe d'une expression arith.
* composée de nombres d'un chiffre, des opérations +, * et du
* parenthésage.
* L'expression est lue depuis l'entrée standard et se termine
* par deux caractères EOF (Ctrl-D)
* @author Michel Meynard
*/

include <stdio.h>
include <stdlib.h>
include <ctype.h>

// chaque macro est un bloc
define AVANCER {jeton=getchar();numcar++;}
define TEST_AVANCE(prevu) {if (jeton==(prevu)) AVANCER else

ERREUR_SYNTAXE}↪→

define ERREUR_SYNTAXE {printf("\nMot non reconnu : erreur de
syntaxe au caractère numéro %d \n",numcar); exit(1);}↪→

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 116 / 389

Analyse syntaxique Analyse descendante récursive

Un exemple VI

// déclars en avant
void E(void);void R(void);void T(void);void S(void);void F(void);
↪→

int jeton; // caractère courant du flot d'entrée
int numcar=0; // numero du caractère courant (jeton)

void E(void){
T(); // règle : E->TR
R();

}
void R(void){

if (jeton=='+') {// règle : R->+TR
AVANCER
T();
R();

}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 117 / 389

Analyse syntaxique Analyse descendante récursive

Un exemple VII

else ; // règle : R->epsilon
}
void T(void){

F();
S(); // règle : T->FS

}
void S(void){

if (jeton=='*') { // règle : S->*FS
AVANCER
F();
S();

}
else ; // règle : S->epsilon

}
void F(void){

if (jeton=='(') { // regle : F->(E)
AVANCER

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 118 / 389

Analyse syntaxique Analyse descendante récursive

Un exemple VIII

E();
TEST_AVANCE(')')

}
else

if (isdigit(jeton)) // regle : F->0|1|...|9
AVANCER

else ERREUR_SYNTAXE
}
int main(void){ // Fonction principale

AVANCER // initialiser jeton sur le
premier car↪→

E(); // axiome
if (jeton==EOF) // expression reconnue et rien après

printf("\nMot reconnu\n");
else ERREUR_SYNTAXE // expression reconnue mais il reste des

car↪→

return 0;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 119 / 389

Analyse syntaxique Analyse descendante récursive

Un exemple IX

}

Après compilation et édition de liens, on exécute ce vérificateur :
$ gcc -g -Wall -o analdesc analdesc.c
$ analdesc
1+2*3+(4+(5*(2+(1)+2)*3))^D
Mot reconnu
$ analdesc
4*81+2^D
Mot non reconnu : erreur de syntaxe au caractère numéro 4

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 120 / 389

Analyse syntaxique Analyse descendante récursive

Exercice I

Exercice
Ecrire un vérificateur syntaxique pour le langage de Dyck à un couple de
parenthèses : S → SS|aSb|ε

Une solution :
Grammaire non ambiguë et non récursive à gauche : S → aSbS|ε
Programme C suivant :

/**
* dyck.c Analyse descendante récursive de mots de Dyck
* @author Michel Meynard
*/

include <stdio.h>
include <stdlib.h>

define AVANCER {jeton=getchar();numcar++;}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 121 / 389

Analyse syntaxique Analyse descendante récursive

Exercice II

define TEST_AVANCE(prevu) {if (jeton==(prevu)) AVANCER else
ERREUR_SYNTAXE}↪→

define ERREUR_SYNTAXE {printf("\nMot non reconnu : erreur de
syntaxe au caractère numéro %d \n",numcar); exit(1);}↪→

int jeton;
int numcar=0;

void S(void){ // AXIOME
if (jeton=='a') { // règle : S->aSbS

AVANCER
S();
TEST_AVANCE('b')
S();

}
else ; // règle : S->epsilon

}
int main(void){

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 122 / 389

Analyse syntaxique Analyse descendante récursive

Exercice III

AVANCER // initialiser jeton
S(); // axiome
if (jeton==EOF) // expression reconnue et rien après

printf("\nMot reconnu\n");
else ERREUR_SYNTAXE // expression reconnue mais il reste des

car↪→

return 0;
}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 123 / 389

Analyse syntaxique Analyse descendante par automate à pile

Plan

3 Analyse syntaxique
Analyse descendante récursive
Analyse descendante par automate à pile
Algorithmique en analyse descendante
Grammaires LL(1)
Conclusion sur l’analyse descendante
Un langage et un outil pour l’analyse syntaxique ascendante : bison
et yacc
Syntaxe et sémantique des sources bison
Un exemple bison complet : une calculette
Analyse ascendante par automate à pile
Algorithmique
Construction de la collection canonique SLR
Construction des tables d’analyse SLR
Les conflits et leur résolution par bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 124 / 389

Analyse syntaxique Analyse descendante par automate à pile

Introduction I

l’intérêt de la programmation récursive descendante réside dans son
universalité (OS et langage)
cependant une étude théorique des automates à pile est indispensable
car le débogage des appels récursifs emboîtés devient vite compliqué
un automate à pile est une machine lisant itérativement des symboles
terminaux (jetons) depuis le flot d’entrée, gérant une pile de
symboles, et exécutant des actions en fonction d’une table d’analyse
ou table d’actions
le flot d’entrée est constitué d’une suite de jetons terminée par un
symbole spécial de fin représenté par $ (jeton 0 retourné par yylex())
la pile est toujours initialisée avec le symbole spécial $ puis est
manipulée par des empilements et dépilements dépendant de la table
d’actions

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 125 / 389

Analyse syntaxique Analyse descendante par automate à pile

Introduction II

la table d’actions est une table à 2 dimensions indicées par les non
terminaux d’une part, et les symboles terminaux (jetons du flot) et $
d’autre part
ainsi, en fonction du symbole de sommet de pile et du jeton courant,
la table indique l’action à réaliser
les automates à pile sont utilisés en analyse descendante comme en
ascendante avec des différences au niveau des types d’actions et des
types de symboles de pile
en analyse descendante, la pile de l’automate simule les appels
récursifs des fonctions vues à la section précédente

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 126 / 389

Analyse syntaxique Analyse descendante par automate à pile

Fonctionnement de l’automate à pile en analyse
descendante I

Soit la grammaire G = (VT , VN , R, S), chaque case de la table
M[VN , VT ∪ {$}] contient :

soit une règle de production
soit l’action ERREUR

A tout moment, l’analyse du flot d’entrée consiste à regarder la règle de
production correspondant au sommet de pile et au jeton d’entrée. Puis,
selon les cas, l’automate soit :

s’arrète en générant une erreur de syntaxe,
avance sur le flot et dépile un jeton (concordance),
empile à l’envers la partie droite de la règle,
termine en indiquant la réussite de l’analyse.

L’algorithme suivant précise le fonctionnement exact de l’automate à pile.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 127 / 389

Analyse syntaxique Analyse descendante par automate à pile

Fonctionnement de l’automate I
Algorithme 8 : Fonctionnement de l’automate
Données : Une table d’action M[VN , VT ∪ {$}], un flot de jetons terminé par $, une

grammaire G = (VT , VN , R, S)
Résultat : Erreur ou Succès
Pile=construirePileVide() ; empiler(Pile,$) ; empiler(Pile,S) ; jeton=lireFlot() ;
tant que vrai faire

si sommet(Pile)=jeton et jeton=$ alors
terminer l’algorithme avec succès // return true

sinon
si sommet(Pile)=jeton alors

dépiler(Pile) // avançons
jeton=lireFlot() // jeton suivant du flot

sinon
si sommet(Pile)∈ VT ∪ {$} alors

terminer l’algorithme en échec // return false
sinon

si M[sommet(Pile), jeton] = ERREUR alors
terminer l’algorithme en échec // return false

sinon
dépiler(Pile) // remplaçons le non terminal
empiler(Pile, inverse(partieDroite(M[sommet(Pile), jeton]))) // de

droite à gauche
Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 128 / 389

Analyse syntaxique Analyse descendante par automate à pile

Un exemple simple I
Une grammaire de Dyck à un couple de parenthèses :
GD = ({a, b}, {S}, R, S) avec les règles de R suivantes :

S → aSbS|ε

On obtient la table d’analyse suivante (voir algorithme 16) :

a b $
S S → aSbS S → ε S → ε

Etudions le fonctionnement de l’automate, c’est-à-dire :
sa pile dont le fond est toujours le symbole $ et qui grandit vers la
gauche,
son flot d’entrée, ici le mot abaababb$
l’action réalisée à chaque étape en fonction du sommet de pile et du
jeton courant situé à gauche du flot d’entrée

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 129 / 389

Analyse syntaxique Analyse descendante par automate à pile

Un exemple simple II

Pile Flot d’entrée Action
S$ abaababb$ S → aSbS

aSbS$ abaababb$ dépiler et avancer (a)
SbS$ baababb$ S → ε

bS$ baababb$ dépiler et avancer (b)
S$ aababb$ S → aSbS

aSbS$ aababb$ dépiler et avancer (a)
SbS$ ababb$ S → aSbS

aSbSbS$ ababb$ dépiler et avancer (a)
SbSbS$ babb$ S → ε

bSbS$ babb$ dépiler et avancer (b)
SbS$ abb$ S → aSbS

aSbSbS$ abb$ dépiler et avancer (a)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 130 / 389

Analyse syntaxique Analyse descendante par automate à pile

Un exemple simple III

SbSbS$ bb$ S → ε

bSbS$ bb$ dépiler et avancer (b)
SbS$ b$ S → ε

bS$ b$ dépiler et avancer (b)
S$ $ S → ε

$ $ Accepter

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 131 / 389

Analyse syntaxique Analyse descendante par automate à pile

Un exemple simple IV

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 132 / 389

Analyse syntaxique Algorithmique en analyse descendante

Plan

3 Analyse syntaxique
Analyse descendante récursive
Analyse descendante par automate à pile
Algorithmique en analyse descendante
Grammaires LL(1)
Conclusion sur l’analyse descendante
Un langage et un outil pour l’analyse syntaxique ascendante : bison
et yacc
Syntaxe et sémantique des sources bison
Un exemple bison complet : une calculette
Analyse ascendante par automate à pile
Algorithmique
Construction de la collection canonique SLR
Construction des tables d’analyse SLR
Les conflits et leur résolution par bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 133 / 389

Analyse syntaxique Algorithmique en analyse descendante

Algorithmique I

La grammaire doit posséder certaines propriétés de forme de ses
règles afin de permettre l’analyse descendante.
Nous allons examiner les différentes transformations de règles
susceptibles de mettre une grammaire G = (VT , VN , R, S) quelconque
en “bonne forme”, c’est-à-dire non récursive à gauche, non ambiguë
et factorisée !
Attention, la désambiguation d’une grammaire étant non décidable,
celle-ci devra être réalisée par une méthode ad hoc.
Les différents algorithmes suivants doivent parfois être utilisés pour
cette mise en forme.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 134 / 389

Analyse syntaxique Algorithmique en analyse descendante

Suppression des ε-productions I

Les symboles non terminaux effaçables, c’est-à-dire pouvant dériver en ε,
sont détectés de la manière suivante. Un symbole non terminal effaçable :

soit dérive directement en ε,
soit dérive en un mot constitué exclusivement de symboles non
terminaux effaçables.

Soit G = (VT , VN , R, S), soit Ei une suite d’ensembles Effaçables de
symboles non terminaux définie comme suit :

E1 = {X ∈ VN/(X → ε) ∈ R}
Ei+1 = Ei ∪ {X ∈ VN/(X → α) ∈ R et α ∈ Ei

∗}

On prouve que les ensembles Ei ne contiennent que des symboles non
terminaux effaçables, c’est à dire dérivant en ε

On prouve également que la suite Ei converge et est donc constante
au-delà d’un certain rang n :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 135 / 389

Analyse syntaxique Algorithmique en analyse descendante

Suppression des ε-productions II

∃n ∈ N, En = En+k , ∀k ∈ N
Par conséquent, ∀X ∈ VN , X ∗⇒ ε si et seulement si X ∈ En.
Il reste à construire une grammaire GSE ne contenant (presque) plus
d’ε-production et équivalente à G
Il peut rester une ε-production dans le cas où le langage de la
grammaire contient le mot vide. . .
Soit G0E = (VT , VN , R1, S) avec un ensemble de règles défini comme
suit :
R1 = {X → α tel que α ̸= ε et ∃X → β ∈ R tel que α s’obtient à
partir de β en supprimant un nombre quelconque (k ∈ [0, |β|[)
d’occurrences d’éléments effaçables (de En)}
On prouve que L(G0E) = L(G) − {ε}. Si S est un symbole effaçable
de G, S ∈ En, on obtient GSE en ajoutant un nouvel axiome S1 et
deux nouvelles règles :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 136 / 389

Analyse syntaxique Algorithmique en analyse descendante

Suppression des ε-productions III

GSE = (VT , VN ∪ {S1}, R1 ∪ {S1 → ε|S}, S1)
Sinon, S ̸∈ En, on a GSE = G0E .

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 137 / 389

Analyse syntaxique Algorithmique en analyse descendante

Un exemple I

Soit la grammaire G = ({a, b}, {S, X , Y }, R, S) avec les règles de R
suivantes :

S → aX |Y |XX
X → ε|b|XX
Y → aXb

On calcule les ensembles d’effaçables :
E1 = {X}, E2 = {X , S}, E3 = {X , S}. On obtient donc un nouvel
ensemble de règles R1 :

S → aX |a|Y |XX |X
X → b|XX |X
Y → aXb|ab

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 138 / 389

Analyse syntaxique Algorithmique en analyse descendante

Un exemple II

Pour finir, voici la grammaire équivalente à G et ne contenant qu’une
ε-production :
GSE = (VT , VN ∪ {S1}, R1 ∪ {S1 → ε|S}, S1).
Remarques

Remarquons que notre construction n’admet au plus qu’une
ε-production et que celle-ci se trouve en partie droite de l’axiome qui
ne peut lui-même être atteint par aucune autre production.
Dans les algorithmes suivants on supposera l’inexistence
d’ε-production et/ou de cycle (X +⇒ X).
Remarquons d’abord qu’il ne peut exister de cycle sur X1.
Si la grammaire GSE possède, S1 → ε|S, on appliquera ces
algorithmes à la grammaire G0E = (VT , VN , R1, S), puis on rajoutera
l’axiome S1 et ses deux règles tout à fait à la fin du processus.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 139 / 389

Analyse syntaxique Algorithmique en analyse descendante

Suppression des cycles I

On suppose une grammaire sans ε-production.
L’algorithme 9 supprime les cycles de dérivation : X +⇒ X .
Une production est appelée substitution de non terminal ou plus
simplement substitution lorsqu’elle est de la forme : X → Y .
Seules les substitutions engendrant des cycles doivent être supprimées.
Dans l’algorithme 9, on calcule la Fermeture Transitive des non
terminaux Substituables à chaque symbole non terminal.
Ce calcul partitionne VN en classes d’équivalence correspondant aux
cycles de non terminaux substituables.
Puis on filtre les productions selon l’appartenance de leur partie
gauche à un cycle.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 140 / 389

Analyse syntaxique Algorithmique en analyse descendante

Algorithme de Suppression des cycles I
Algorithme 9 : Suppression des cycles
Données : G0E = (VT , VN = {X1, X2, . . . , Xn}, R, S) une grammaire sans ε-production
Résultat : GSC = (VT , VN , RSC , S) une grammaire sans cycle
RSC = ∅ /* initialisation */
Construire la Fermeture Transitive des non terminaux Substituables à chaque Xi ∈ VN :

FTS(Xi) = {Xj ∈ VN/Xi
+⇒ Xj }

pour i=1 à n faire
si Xi ̸∈ FTS(Xi) /* pas de cycle */ alors

pour chaque production Xi → α ∈ R faire
RSC = RSC ∪ {Xi → α} /* recopier */

sinon
pour chaque Xj ∈ FTS(Xi) /* traitons les non terminaux substituables, y compris

Xi */ faire
si Xi ̸∈ FTS(Xj) /* Xj pas dans le cycle */ alors

RSC = RSC ∪ {Xi → Xj }
sinon

pour chaque production Xj → α ∈ R faire
si |α| > 1 ou α[1] ∈ VT alors

RSC = RSC ∪ {Xi → α} /* transitivité pour les non substitutions
*/

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 141 / 389

Analyse syntaxique Algorithmique en analyse descendante

Remarques I

preuve de l’élimination des cycles : les seules règles de substitutions
(Xi → Xj) autorisées dans RSC impliquent que Xi et Xj ne soient pas
dans le même cycle
les non terminaux membres d’un même cycle peuvent être représentés
par un seul non terminal du cycle car ils auront tous les mêmes règles
de production.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 142 / 389

Analyse syntaxique Algorithmique en analyse descendante

Exemple I

Soit la grammaire G = ({a, b, c, d}, {X1, X2, X3}, R, X1) avec les règles de
R suivantes :

X1 → X2|a
X2 → X1|X2|X3|b
X3 → bX1|X2a

On calcule les fermetures transitives des substituables :
FTS(X1) = {X1, X2, X3}, FTS(X2) = {X1, X2, X3}, FTS(X3) = ∅. On
obtient donc un nouvel ensemble de règles sans cycle RSC :

X1 → a|b|X3

X2 → a|b|X3

X3 → bX1|X2a

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 143 / 389

Analyse syntaxique Algorithmique en analyse descendante

Exemple II

Remarquons que X1 et X2 peuvent être remplacés par X1 qui les
représente tous deux. Ce qui donne :

X1 → a|b|X3

X3 → bX1|X1a

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 144 / 389

Analyse syntaxique Algorithmique en analyse descendante

Suppression de la récursivité à gauche immédiate I

Une récursivité à gauche immédiate d’un symbole non terminal X se
matérialise par au moins une règle de production X → Xα

La suppression de cette récursivité à gauche immédiate nécessite de
transformer l’ensemble des règles de production ayant X comme partie
gauche (les X-productions)
L’algorithme 10 réalise cette transformation
Remarquons que l’appel de cet algorithme nécessite d’avoir au moins
une récursivité à gauche immédiate (n ̸= 0) et au moins une autre
production (k ̸= 0)
Cette dernière condition est indispensable dans une grammaire sans
ε-production
Sinon, le non terminal X ne peut dériver en un mot terminal !

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 145 / 389

Analyse syntaxique Algorithmique en analyse descendante

Algorithme I

Algorithme 10 : Suppression de la récursivité à gauche immédiate

Données : Un ensemble de productions :
P = X → Xα1|Xα2| . . . |Xαn|β1|β2| . . . |βk sans
ε-production et telles que n ̸= 0 et k ̸= 0

Résultat : Un nouveau symbole non terminal RX et un ensemble de
productions P ′ sans récursivité à gauche immédiate

P ′ = {RX → ε} // initialisation
pour i=1 à k faire

P ′ = P ′ ∪ {X → βiRX }
pour j=1 à n faire

P ′ = P ′ ∪ {RX → αjRX }

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 146 / 389

Analyse syntaxique Algorithmique en analyse descendante

Remarques I

L’algorithme 10 crée un nouveau symbole RX (Reste de X), pour
remplacer la récursivité à gauche par une récursivité à droite sur RX

Remarquons que RX possède une ε-production donc est effaçable
La correction de l’algorithme, c’est-à-dire l’équivalence des deux
ensembles de productions P et P’, se démontre par une double
récurrence sur i et j

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 147 / 389

Analyse syntaxique Algorithmique en analyse descendante

Exemple I

Soit la grammaire d’expressions arithmétiques
GE = ({0, 1, . . . , 9, +, ∗, (,)}, {E}, P, E) avec les règles de P suivantes :

E → E + E |E ∗ E |(E)|0|1| . . . |9

Après application de l’algorithme 10, on obtient la grammaire suivante :
GENRI = ({0, 1, . . . , 9, +, ∗, (,)}, {E , RE }, P ′, E) avec les règles de P ′

suivantes :

E → (E)RE |0RE |1RE | . . . |9RE

RE → ε| + ERE | ∗ ERE

Remarquons que GENRI n’est plus récursive à gauche, mais elle reste
ambiguë.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 148 / 389

Analyse syntaxique Algorithmique en analyse descendante

Exercice I

Soit la grammaire GETF = ({0, 1, . . . , 9, +, ∗, (,)}, {E , T , F}, R, E) avec
les règles de R suivantes :

E → E + T |T
T → T ∗ F |F
F → (E)|0|1| . . . |9

Supprimer la récursivité à gauche dans cette grammaire !

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 149 / 389

Analyse syntaxique Algorithmique en analyse descendante

Exercice II

E → TRE

RE → +TRE |ε
T → FRT

RT → ∗FRT |ε
F → (E)|0|1| . . . |9

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 150 / 389

Analyse syntaxique Algorithmique en analyse descendante

Suppression de la récursivité à gauche I

Dans certains cas, la suppression de la récursivité à gauche immédiate
ne suffit pas car il peut subsister des récursivités plus complexes
dans les productions X1 → X2a|a, X2 → X1b|b il n’y pas de récursivité
à gauche immédiate mais il y a de la récursivité à gauche !
L’algorithme 11 s’applique à une grammaire sans cycle, sans
ε-production et sans récursivité à gauche immédiate. Il produit une
grammaire sans récursivité à gauche, c’est-à-dire sans dérivation de la
forme X +⇒ Xα.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 151 / 389

Analyse syntaxique Algorithmique en analyse descendante

Algo. de suppression de la récursivité à gauche I
Algorithme 11 : Suppression de la récursivité à gauche

Données : G = (VT , VN = {X1, X2, . . . , Xn}, R, S) une grammaire
sans cycle, sans ε-production et sans récursivité à gauche
immédiate

Résultat : GNR = (VT , VNR , RNR , S) une grammaire sans récursivité à
gauche

RNR = ∅
pour i=1 à n faire

P = {Xi → γ ∈ R} // ensemble des productions Xi → . . .
tant que ∃Xi → Xjα ∈ P telle que i > j faire

P = P − {Xi → Xjα} // suppression
pour chaque production Xj → β ∈ RNR faire

P = P ∪ {Xi → βα} // remplacement

P’=Supprimer la récursivité immédiate dans P (algo. 10)
RNR = RNR ∪ P ′

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 152 / 389

Analyse syntaxique Algorithmique en analyse descendante

Remarques I

La preuve de la correction de l’algorithme tient en ce qu’à la fin, il est
impossible d’avoir une production de la forme Xi → Xjα telle que
i ≥ j
il est toujours possible mais pas toujours nécessaire, en analyse
descendante, de transformer la grammaire initiale de la façon
suivante :

1 suppression des ε-productions,
2 suppression des cycles,
3 suppression des récursivités à gauche immédiates,
4 suppression des récursivités à gauche.

La seule propriété à respecter est la non récursivité à gauche
Le moyen par lequel on obtient cette propriété est indifférent
après la dérécursivation, on obtient souvent des grammaires ayant des
ε-productions

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 153 / 389

Analyse syntaxique Algorithmique en analyse descendante

Remarques II

Ainsi, dans l’exemple de la page 111, la grammaire GENR est non
récursive à gauche et contient des ε-productions et ceci n’est pas
génant
En effet, ces productions ne peuvent en aucun cas impliquer une
récursivité à gauche

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 154 / 389

Analyse syntaxique Algorithmique en analyse descendante

Exemple I

Soit la grammaire G = ({a, b, d}, {X1, X2, X3}, P, X1) avec les règles de P
suivantes :

X1 → X2a|d
X2 → X3a|X1b
X3 → X1a

Après application de l’algorithme 11, on obtient la grammaire suivante
G ′ = ({a, b, d}, {X1, X2, R2, X3, R3}, P ′, X1) avec les règles de P ′

suivantes :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 155 / 389

Analyse syntaxique Algorithmique en analyse descendante

Exemple II

X1 → X2a|d
X2 → X3aR2|dbR2

R2 → ε|abR2

X3 → dbR2aaR3|daR3

R3 → ε|aR2aaR3

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 156 / 389

Analyse syntaxique Algorithmique en analyse descendante

Factorisation à gauche I

Si plusieurs parties droites de X-productions ont même préfixe, la
prédiction de la règle à choisir est retardée jusqu’à ce qu’un jeton
permette de déterminer la “bonne” règle
Il faudrait donc pouvoir lire plusieurs jetons en avance !
La factorisation des parties droites est destinée à réduire à 1 ce
nombre de jetons de prévision
les grammaires ainsi formées seront qualifiée de LL(1) (Left to right
scanning of the input, Leftmost derivation, 1 look-ahead symbol)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 157 / 389

Analyse syntaxique Algorithmique en analyse descendante

Algorithme de factorisation I
Algorithme 12 : Factorisation à gauche
Données : G = (VT , VN = {X1, X2, . . . , Xn}, R, S) une grammaire
Résultat : GF = (VT , VF , RF , S) une grammaire factorisée à gauche
VF = VN // initialisation
RF = R
pour chaque symbole non terminal X non marqué de VF faire

calculer α, le plus long préfixe commun du plus grand nombre de parties
droites des X-productions de RF

tant que α ̸= ε faire
VF = VF ∪ {X ′} // nouveau non terminal
soit X → αβ1|αβ2| . . . |αβn|γ1| . . . |γk l’ensemble des X-productions de
RF

remplacer ces productions par :
{X → αX ′|γ1| . . . |γk , X ′ → β1|β2| . . . |βn}

calculer α, le plus long préfixe commun du plus grand nombre de
parties droites des X-productions de RF

marquer X
Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 158 / 389

Analyse syntaxique Algorithmique en analyse descendante

Exemple I

Soit la grammaire du “if then else” G = ({i , t, e, a, b}, {S, E}, R, S) avec
les règles de R suivantes :

S → iEtS|iEtSeS|a
E → b

Après application de l’algorithme 12, on obtient la grammaire :
GF = ({i , t, e, a, b}, {S, S ′, E}, RF , S) avec les règles de RF suivantes :

S → iEtSS ′|a
S ′ → ε|eS
E → b

Remarquons que cette grammaire factorisée reste ambiguë, ce qui posera
problème à l’analyse.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 159 / 389

Analyse syntaxique Algorithmique en analyse descendante

La fonction premiers() I

La fonction premiers est nécessaire à la construction de la table
d’analyse qu’utilise l’automate à pile
Elle retourne un ensemble de terminaux (jetons)
premiers suppose une grammaire non récursive à gauche mais
pouvant admettre des ε-productions
La fonction premiers(α) retourne l’ensemble des terminaux qui
débute un mot dérivant de α

Si α est effaçable alors ε fait partie de ses premiers
Pour calculer premiers(α), il faut commencer par calculer
premiers(X), quel que soit X un symbole de V
L’algorithme 13 réalise cette fonction.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 160 / 389

Analyse syntaxique Algorithmique en analyse descendante

Algorithme premiers(X) I

Algorithme 13 : premiers(X)
Données : X ∈ V un symbole de VT ∪ VN , et une grammaire non récursive à gauche G = (VT , VN , R, S)
Résultat : Resultat ⊆ VT ∪ {ε} un ensemble de terminaux
si X ∈ VT alors

retourner {X}
sinon

Resultat = ∅ // initialisation
pour chaque production X → Y1Y2 . . . Yk α telle que Yi ∈ VN et α ∈ {ε} ∪ VT • V ∗ faire

si k = 0 et α = ε alors
Resultat = Resultat ∪ {ε} // ε-production

sinon
si k = 0 alors

Resultat = Resultat ∪ {α[1]}
sinon

Resultat = Resultat ∪ (premiers(Y1) − {ε}) // non réc. gauche
i=1
tant que i ≤ k et Yi est effaçable faire

i = i + 1
Resultat = Resultat ∪ (premiers(Yi) − {ε}) // non réc. gauche

si i = k + 1 alors
si |α| = 0 alors

Resultat = Resultat ∪ {ε} // tous les Yi s’effacent
sinon

Resultat = Resultat ∪ {α[1]}

retourner Resultat

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 161 / 389

Analyse syntaxique Algorithmique en analyse descendante

Remarques I

L’algorithme 13 est trivial pour les terminaux
Pour les non terminaux, il consiste à accumuler les premiers(Yi)
tant que Yi−1 est effaçable
ε n’est ajouté que dans le cas ou une partie droite de production est
entièrement effaçable
cet algorithme ne peut être utilisé sur une grammaire récursive à
gauche (appel récursif infini)
Cette propriété reste fondamentale pour le calcul des premiers(α)
qui fait appel aux premiers(X)
L’algorithme 14 calcule justement ces premiers(α).

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 162 / 389

Analyse syntaxique Algorithmique en analyse descendante

Exemple I

Soit la grammaire non récursive à gauche
GENR = ({0, 1, . . . , 9, +, ∗, (,)}, {E , R, T , S, F}, X , E) avec les règles de X
suivantes :

E → TR
R → +TR|ε
T → FS
S → ∗FS|ε
F → (E)|0|1| . . . |9

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 163 / 389

Analyse syntaxique Algorithmique en analyse descendante

Exemple II

On obtient par l’application de l’algorithme 13 :

premiers(F) = {(, 0, 1, . . . , 9}
premiers(S) = {∗, ε}
premiers(T) = premiers(F)
premiers(R) = {+, ε}
premiers(E) = premiers(F)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 164 / 389

Analyse syntaxique Algorithmique en analyse descendante

Algorithme Premiers(mot) I

Algorithme 14 : premiers(α)

Données : α = Y1Y2 . . . Yk avec Yi ∈ V , ainsi qu’une grammaire non
récursive à gauche G = (VT , VN , R, S)

Résultat : Resultat ⊆ VT ∪ {ε} un ensemble de terminaux
si α = ε alors

retourner {ε}
sinon

Resultat = ∅ // initialisation
Resultat = Resultat ∪ (premiers(Y1) − {ε})
i=1
tant que i ≤ k et ε ∈ premiers(Yi) faire

i = i + 1
Resultat = Resultat ∪ (premiers(Yi)−{ε}) // non réc. gauche

si i = k + 1 alors
Resultat = Resultat ∪ {ε} // tous les Yi s’effacent

retourner Resultat

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 165 / 389

Analyse syntaxique Algorithmique en analyse descendante

Suivants I

L’algorithme 15 est nécessaire à la construction de la table d’analyse
qu’utilise l’automate à pile
Il utilise une grammaire G et calcule un tableau d’ensembles de
terminaux, et éventuellement $ le symbole de fin d’entrée
Chaque case du tableau est associé à un non terminal de G
Son contenu est l’ensemble des terminaux pouvant suivre
immédiatement ce symbole non terminal Xi de G dans un mot
dérivant de l’axiome :
TabSuivants[Xi] = {x ∈ VT ∪ {$}/S ∗⇒ αXixβ}
L’algorithme 15 calcule ce tableau TabSuivants[Xi]

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 166 / 389

Analyse syntaxique Algorithmique en analyse descendante

Algorithme Suivants I

Algorithme 15 : Suivants
Données : G = (VT , VN = {X1, X2, . . . , Xn}, R, X1), une grammaire
Résultat : un tableau TabSuivants[Xi] d’ensembles de terminaux {x1, x2, . . . , xm} ⊆ (VT ∪ {$})
TabSuivants[X1] = {$} // initialisation pour l’axiome
pour i=2 à n faire

TabSuivants[Xi] = ∅ // initialisation

répéter
stable=vrai // booléen testant la stabilité du tableau
pour chaque production Y → γ de R faire

pour chaque non terminal X de γ : Y → αXβ avec γ = αXβ faire
si β = ε alors

si TabSuivants[Y] ̸⊆ TabSuivants[X] alors
stable=faux
TabSuivants[X] = TabSuivants[X] ∪ TabSuivants[Y]

sinon
si premiers(β) − {ε} ̸⊆ TabSuivants[X] alors

stable=faux
TabSuivants[X] = TabSuivants[X] ∪ (premiers(β) − {ε})

si ε ∈ premiers(β) // β est effaçable alors
si TabSuivants[Y] ̸⊆ TabSuivants[X] alors

stable=faux
TabSuivants[X] = TabSuivants[X] ∪ TabSuivants[Y]

jusqu’à stable;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 167 / 389

Analyse syntaxique Algorithmique en analyse descendante

Exemple I

Soit la grammaire non récursive à gauche GENR de l’exemple de la page
162. On obtient par l’application de l’algorithme 15 :

TabSuivants[E] = {$,)}
TabSuivants[T] = {+, $,)}
TabSuivants[R] = {$,)}
TabSuivants[F] = {∗, +, $,)}
TabSuivants[S] = {+, $,)}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 168 / 389

Analyse syntaxique Algorithmique en analyse descendante

Construction de la table d’analyse I

L’algorithme 16 réalise la construction de la table d’analyse qu’utilise
l’automate à pile
Dans cette table, l’existence de plus d’une production dans une case
est appelée un conflit et signifie que l’automate à pile a un choix à
réaliser !
Ceci n’est pas envisageable pour des raisons d’efficacité (backtrack)
il sera alors nécessaire de transformer la grammaire

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 169 / 389

Analyse syntaxique Algorithmique en analyse descendante

Algorithme de construction de la table d’analyse I
Algorithme 16 : Construction de la table d’analyse

Données : Une grammaire G = (VT , VN , R, S)
Résultat : Une table d’analyse M[VN , VT ∪ {$}] contenant des

ensembles de productions
pour chaque case M[i , j] faire

M[i , j] = ∅
pour chaque production X → α faire

pour chaque x ∈ premiers(α) − {ε} faire
M[X , x] = M[X , x] ∪ X → α

si ε ∈ premiers(α) alors
pour chaque y ∈ TabSuivants[X] faire

M[X , y] = M[X , y] ∪ X → α

pour chaque case M[i , j] == ∅ faire
M[i , j] = {ERREUR}
Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 170 / 389

Analyse syntaxique Algorithmique en analyse descendante

Exemple I

Reprenons l’exemple de la grammaire de Dyck à un couple de
parenthèses a, b
Soit la grammaire GD = ({a, b}, {S}, R = {S → aSbS|ε}, S)
La première règle S → aSbS ne pose aucun problème car
premiers(aSbS) = a donc M[S, a] = S → aSbS
Quant à la seconde production S → ε, elle génère le calcul de
TabSuivants[S] = {b, $}
On obtient donc la table d’analyse suivante :

a b $
S S → aSbS S → ε S → ε

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 171 / 389

Analyse syntaxique Algorithmique en analyse descendante

Exemple GENR I

Reprenons une grammaire non récursive à gauche plus complexe et voyons
la table d’analyse générée
GENR = ({0, 1, . . . , 9, +, ∗, (,)}, {E , R, T , S, F}, X , E) avec les règles de X
suivantes :

E → TR
R → +TR|ε
T → FS
S → ∗FS|ε
F → (E)|0|1| . . . |9

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 172 / 389

Analyse syntaxique Algorithmique en analyse descendante

Exemple GENR II

Il nous faut rappeler les premiers() des non terminaux débutant des
parties droites :

premiers(F) = {(, 0, 1, . . . , 9}
premiers(T) = premiers(F)

Il nous faut également rappeler les suivants des non terminaux effaçables :

TabSuivants[R] = {$,)}
TabSuivants[S] = {+, $,)}

On obtient finalement par l’application de l’algorithme 16, la table
suivante :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 173 / 389

Analyse syntaxique Algorithmique en analyse descendante

Exemple GENR III

0|1| . . . |9 () + ∗ $
E E → TR E → TR
R R → ε R → +TR R → ε

T T → FS T → FS
S S → ε S → ε S → ∗FS S → ε

F F → 0|1| . . . |9 F → (E)

Les cases vides correspondent à des erreurs de syntaxe !

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 174 / 389

Analyse syntaxique Algorithmique en analyse descendante

Contre-exemple I

On choisit de placer un ensemble de productions et pas seulement une
production, dans l’algorithme 16 pour permettre à l’utilisateur de
désambiguer l’analyse de certaines grammaires ambiguës en choisissant la
règle à appliquer parmi celles qui sont proposées.
L’exemple suivant illustre ce problème
Soit la grammaire du “if then else” après factorisation :
GIF = ({i , t, e, a, b}, {S, S ′, E}, RIF , S) avec les règles de RIF suivantes :

S → iEtSS ′|a
S ′ → ε|eS
E → b

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 175 / 389

Analyse syntaxique Algorithmique en analyse descendante

Contre-exemple II

Après calcul, on obtient les premiers() :

premiers(S) = {i , a}
premiers(S’) = {e, ε}
premiers(E) = {b}

Il nous faut également rappeler les suivants des non terminaux effaçables :

TabSuivants[S] = {e, $}
TabSuivants[S ′] = {e, $}
TabSuivants[E] = {t}

On obtient finalement par l’application de l’algorithme 16, la table
suivante :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 176 / 389

Analyse syntaxique Algorithmique en analyse descendante

Contre-exemple III
a b e i t $

S S → a S → iEtSS ′

S ′ S ′ → eS, S ′ → ε S ′ → ε

E E → b

Dans cette table, l’entrée M[S ′, e] contient deux productions possibles
Il faut, dans ce cas, choisir de conserver la production S ′ → eS pour
deux raisons
D’abord, parce qu’en l’absence de cette production, la partie “else” ne
serait jamais reconnu !
Ensuite, parce que que l’ambiguïté de la grammaire (à quel “if”
associer le “else”) est résolue dans l’analyseur
En effet, la partie “else” sera toujours associée syntaxiquement au
“if” le plus proche, ce qui correspond à la sémantique choisie par tous
les langages de programmation.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 177 / 389

Analyse syntaxique Algorithmique en analyse descendante

Contre-exemple IV

Attention, cet exemple est particulier et ne peut fonctionner dans le
cas général où un choix produira un langage reconnu plus petit !

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 178 / 389

Analyse syntaxique Grammaires LL(1)

Plan

3 Analyse syntaxique
Analyse descendante récursive
Analyse descendante par automate à pile
Algorithmique en analyse descendante
Grammaires LL(1)
Conclusion sur l’analyse descendante
Un langage et un outil pour l’analyse syntaxique ascendante : bison
et yacc
Syntaxe et sémantique des sources bison
Un exemple bison complet : une calculette
Analyse ascendante par automate à pile
Algorithmique
Construction de la collection canonique SLR
Construction des tables d’analyse SLR
Les conflits et leur résolution par bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 179 / 389

Analyse syntaxique Grammaires LL(1)

Grammaires LL(1) I

Définition
Une grammaire dont la table d’analyse peut être calculée et dont toutes les
entrées ont une unique production ou bien ERREUR, est appelée LL(1).

La signification de cet acronyme est :
Left to Right scanning of the input,
Leftmost derivation,
1 symbole de prévision.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 180 / 389

Analyse syntaxique Grammaires LL(1)

Grammaires LL(1) II

Théorème
Aucune grammaire ambiguë et aucune grammaire récursive à gauche n’est
LL(1).

Théorème
Une grammaire G est LL(1) si et seulement si les conditions suivantes sont
respectées. Quelle que soit X → α|β, deux productions de G :

il n’existe pas deux dérivations de α et β ayant un préfixe commun
terminal ;
une partie droite seulement, α ou bien β, peut s’effacer ;
si α peut s’effacer, alors β ne dérive pas en un mot ayant un préfixe
commun terminal avec suivants(X).

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 181 / 389

Analyse syntaxique Conclusion sur l’analyse descendante

Plan

3 Analyse syntaxique
Analyse descendante récursive
Analyse descendante par automate à pile
Algorithmique en analyse descendante
Grammaires LL(1)
Conclusion sur l’analyse descendante
Un langage et un outil pour l’analyse syntaxique ascendante : bison
et yacc
Syntaxe et sémantique des sources bison
Un exemple bison complet : une calculette
Analyse ascendante par automate à pile
Algorithmique
Construction de la collection canonique SLR
Construction des tables d’analyse SLR
Les conflits et leur résolution par bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 182 / 389

Analyse syntaxique Conclusion sur l’analyse descendante

Conclusion sur l’analyse descendante I

Examinons les grammaires qui ne sont pas LL(1) :
Toutes les grammaires ambiguës ne sont pas LL(1)
Certaines grammaires non ambiguës ne sont pas LL(1)
Par exemple, G2 = ({a, b}, {S, A}, {S → Ab|aa, A → a}, S) est une
grammaire simple produisant 2 mots aa et ab et n’est pas LL(1). En
effet, sur la lecture du premier a, on ne peut pas déterminer quelle
production de S utiliser.

Cependant, on peut parfois utiliser un automate à pile en analyse
descendante pour reconnaitre le langage généré par une grammaire
non LL(1) (exemple de la grammaire if then else qui génère un
conflit). On peut déterminiser cette table en réussissant à reconnaître
le même langage. Malheureusement, ce problème du choix est
indécidable et nécessite donc une réflexion ad hoc.
Dans l’exemple de G2, le choix de l’une ou de l’autre des productions
de S à privilégier aboutit à un langage reconnu réduit de moitié !

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 183 / 389

Analyse syntaxique Conclusion sur l’analyse descendante

Conclusion sur l’analyse descendante II

D’un point de vue plus pratique, le problème principal des grammaires
LL(1) résulte du fait qu’elles sont souvent obtenues par de multiples
transformations qui les rendent difficilement lisibles pour le
concepteur du langage
Aussi, les actions sémantiques qu’il faut associer à ces règles
syntaxiques deviennent difficiles à mettre en oeuvre
L’analyse syntaxique ascendante va nous permettre de conserver des
grammaires récursives à gauche et/ou à droite plus intuitives

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 184 / 389

Analyse syntaxique
Un langage et un outil pour l’analyse syntaxique ascendante :

bison et yacc

Plan

3 Analyse syntaxique
Analyse descendante récursive
Analyse descendante par automate à pile
Algorithmique en analyse descendante
Grammaires LL(1)
Conclusion sur l’analyse descendante
Un langage et un outil pour l’analyse syntaxique ascendante : bison
et yacc
Syntaxe et sémantique des sources bison
Un exemple bison complet : une calculette
Analyse ascendante par automate à pile
Algorithmique
Construction de la collection canonique SLR
Construction des tables d’analyse SLR
Les conflits et leur résolution par bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 185 / 389

Analyse syntaxique
Un langage et un outil pour l’analyse syntaxique ascendante :

bison et yacc

bison, un outil pour l’analyse syntaxique ascendante I

Yacc (“Yet Another Compiler Compiler”) est un outil d’analyse
syntaxique permettant d’écrire des grammaires algébriques LALR(1)
assez générales (“Look Ahead Left to right scanning of the input,
Rightmost derivation in reverse, 1 look-ahead token”)
Il génère un analyseur syntaxique ascendant utilisant un automate à
pile
Associés à chaque règle de grammaire, des actions peuvent être
associées
Ces actions sont des instructions d’un langage de programmation (C
ou C++) ainsi que des actions spécifiques de Yacc
Il existe de nombreuses versions de yacc, dont bison que nous
utiliserons et qui est une version gratuite du projet GNU accessible sur
le Web sur tous les OS

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 186 / 389

Analyse syntaxique
Un langage et un outil pour l’analyse syntaxique ascendante :

bison et yacc

bison, un outil pour l’analyse syntaxique ascendante II

Bien entendu, bison peut être utilisé conjointement à flex qui fournira
lui les jetons consommés par l’analyseur syntaxique généré par bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 187 / 389

Analyse syntaxique
Un langage et un outil pour l’analyse syntaxique ascendante :

bison et yacc

Un exemple I

Soit la grammaire ambiguë d’expressions booléennes
GB == ({0, 1, &, |, !, (,)}, {E}, R, E) avec les règles de R suivantes :

E → (E)|E ′|′E |E&E |!E |0|1

On va construire un vérificateur syntaxique, en utilisant bison,
reconnaissant les mots du langage généré par cette grammaire.
Voici le source bison obtenu :
%{ /* veriflog.y */

include <stdio.h>
int yylex(void); void yyerror(char *s);

%}
%%
expr : '(' expr ')'

{}
| expr '|' expr

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 188 / 389

Analyse syntaxique
Un langage et un outil pour l’analyse syntaxique ascendante :

bison et yacc

Un exemple II

{}
| expr '&' expr
{}
| '!' expr
{}
| '0'
{}
| '1'
{}
;

%% /* début des fonctions C */
int yylex(void) { // analyseur lexical filtrant les blancs

int c;
while(((c=getchar())==' ') || (c=='\t'))

;
return (c);

}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 189 / 389

Analyse syntaxique
Un langage et un outil pour l’analyse syntaxique ascendante :

bison et yacc

Un exemple III

void yyerror(char *s) { // appelée par yyparse sur erreur de
syntaxe↪→

fprintf(stderr,"%s\n",s);
}
int main(void){ // fonction principale

if (!yyparse()) // appel à l'analyseur généré par bison
printf("\nExpression reconnue\n");

else
printf("\nExpression non reconnue\n");

return 0;
}

Après compilation bison, bison -y veriflog.y, puis compilation C et
éditions de liens gcc -o veriflog y.tab.c, il ne reste plus qu’à lancer
l’exécutable veriflog obtenu :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 190 / 389

Analyse syntaxique
Un langage et un outil pour l’analyse syntaxique ascendante :

bison et yacc

Un exemple IV

$ veriflog
1&0|((0)|0|1)
Expression reconnue
$ veriflog
1&0|((0)|0|1|a)parse error

Expression non reconnue

L’analyseur syntaxique généré tente, de reconnaitre un mot du
langage défini par la grammaire
Il exécute les instructions correspondantes à chaque règle reconnue
Dans cette exemple, il n’y a aucune action associée aux règles
L’analyseur termine sur la fin de fichier (EOF) de l’entrée standard
(CTRL-D pour le terminal)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 191 / 389

Analyse syntaxique
Un langage et un outil pour l’analyse syntaxique ascendante :

bison et yacc

Un exemple V

Au cœur du source C y.tab.c généré par bison, la fonction C : int
yyparse() d’analyse syntaxique permet de retourner la valeur 1 en
cas d’erreur syntaxique, 0 sinon
La fonction principale : int main() appelle yyparse() qui va
appeler yylex() itérativement au fur et à mesure de la
reconnaissance des règles de grammaires
En cas d’erreur de syntaxe, yyparse() fait appel à yyerror(char
*) pour informer l’utilisateur puis yyparse() retourne 1.
L’option -y de bison permet de générer un fichier nommé y.tab.c,
comme en yacc
Sans cette option, le fichier généré se nommerait veriflog.tab.c.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 192 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Plan

3 Analyse syntaxique
Analyse descendante récursive
Analyse descendante par automate à pile
Algorithmique en analyse descendante
Grammaires LL(1)
Conclusion sur l’analyse descendante
Un langage et un outil pour l’analyse syntaxique ascendante : bison
et yacc
Syntaxe et sémantique des sources bison
Un exemple bison complet : une calculette
Analyse ascendante par automate à pile
Algorithmique
Construction de la collection canonique SLR
Construction des tables d’analyse SLR
Les conflits et leur résolution par bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 193 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Architecture I

Un source bison comprend 3 parties séquentielles :
une partie déclaration contenant des déclarations C contenues entre
%{ et %}, et des déclarations spécifiques à bison.
Délimitée par %% au début, une partie constituées de règles de
grammaire et des actions associées à la reconnaissance de chaque
règle. C’est la partie centrale du source bison qui définit l’analyseur
syntaxique.
Délimitée par %% au début, une partie de fonctions C définies par
l’utilisateur. Dans le cas de Bison, on doit définir au moins trois
fonctions : le main(), yyerror() et yylex()
Remarquons que ces fonctions peuvent être définies dans un autre
fichier qui sera lié après compilation
Dans le cas de Yacc, une librairie liby.a contient des définitions par
défaut de ces trois fonctions.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 194 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Les règles de grammaires bison I

Une règle bison se présente de la façon suivante : un symbole non
terminal, le caractère “ :”, une séquence de symboles (terminaux
(jetons) ou non terminaux) et de blocs d’actions {...}, terminé par
un” ;”
L’espace, la tabulation et le retour à la ligne ne sont pris en compte
que comme séparateurs
La règle doit commencer en début de ligne et terminer par un “ ;”.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 195 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Symboles terminaux (jetons) et non terminaux I

Les symboles terminaux ou jetons sont représentés par un entier (int)
retourné par la fonction d’analyse lexicale yylex(). Les jetons peuvent être :

non nommés comme ’&’, ’1’ dans l’exemple précédent. En fait dans cet
exemple, tous les jetons étaient non nommés

ou bien nommés . Dans ce cas, yylex() et yyparse() doivent partager une
définition (#define) commune de ces jetons. La manière la
plus simple consiste à :

1 les déclarer, dans la première partie du source bison à
l’aide du déclarateur bison : %token NAME. Par
convention, les noms de jeton sont en majuscules

2 Générer un fichier y.tab.h contenant les #define
correspondant grâce à l’option -d du compilateur bison

3 Inclure ce fichier dans la partie définition du source flex.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 196 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Symboles terminaux (jetons) et non terminaux II

Bien entendu, si l’on n’utilise pas flex, cette dernière
opération est inutile.

Dans l’exemple précédent, on remplace les jetons non nommés ’0’ et ’1’
par ZERO et UN.
%token UN ZERO
%%
...

| ZERO
{}
| UN
{}
;

%% // debut des fonctions C
int yylex() { // analyseur lexical filtrant les blancs

int c;
while(((c=getchar())==' ') || (c=='\t'))

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 197 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Symboles terminaux (jetons) et non terminaux III

;
if (c=='0')

return ZERO;
else

if (c=='1')
return UN;

else
return (c);

}

Si l’on regarde le fichier y.tab.h après la commande bison -yd ..., on
observe :

#define UN 258
#define ZERO 259

Rappelons que yylex() généré par lex retourne 0 en fin de fichier

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 198 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Symboles terminaux (jetons) et non terminaux IV

Les caractères ascii ont un numéro de jeton égal à leur code ascii !
Enfin, un jeton spécial error est réservé pour la gestion des erreurs
Les symboles non terminaux sont conventionnellement écrits en
minuscules (expr, statement, . . .)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 199 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Exercice I

Exercice
Ecrire le source bison de vérification du langage de Dyck

%{#include <stdio.h>
int yylex(void); void yyerror(char *s);

%}
%%
S : S 'a' S 'b' {}

| {}
%%
void yyerror(char *s) {fprintf(stderr,"%s\n",s);}
int yylex(){return getchar();}
int main(void){

yydebug=0;
if (!yyparse()) /* appel à l'analyseur généré

par yacc */↪→

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 200 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Exercice II

printf("\nMot de Dyck reconnu\n");
else

printf("\nMot non reconnu\n");
return 0;

}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 201 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Partie droite de règle I

Les différentes productions associées au même non-terminal seront
séparées par une barre verticale “|”. Une partie droite peut être vide afin
d’indiquer une epsilon-production. Par exemple :
list : // epsilon-production

| list ',' stat
;

Les différentes productions pourraient cependant être écrites
séparément (l : ; l :l ’,’ s ;)
La récursivité à gauche et à droite est permise dans les règles bison,
cependant il est fortement recommandé d’écrire des grammaires
récursives à gauche pour optimiser le fonctionnement de l’analyseur

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 202 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Valeur sémantique ou attribut I

Associée à chaque symbole, terminal ou non, une valeur sémantique
(attributs des grammaires attribuées) est définie automatiquement par
bison. Le type YYSTYPE (YY Semantic TYPE) par défaut de cet attribut
est entier (int) mais peut être défini de deux façons :

si l’on a besoin que d’un seul type sémantique pour tous les symboles
de la grammaire, il suffit de définir YYSTYPE par une macro dans les
déclarations C : #define YYSTYPE double ;
attention à répéter cette macro également dans le source flex avant
l’inclusion de y.tab.h sinon lex utilisera le type par défaut int
si l’on a besoin de plusieurs types sémantiques pour différents
symboles, par exemple int et float, on utilisera la déclaration bison
union. Par exemple,

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 203 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Valeur sémantique ou attribut II

%union {
int typeEntier;
float typeFlottant;

}
dans la section déclaration, redéfinit YYSTYPE comme suit :
typedef union {

int typeEntier;
float typeFlottant;

} YYSTYPE;

La variable globale yylval est l’attribut que yylex() peut affecter
aux jetons
Ainsi, par exemple, toutes les littéraux entiers seront associés au
même jeton LITINT mais auront une valeur sémantique
yylval.typeEntier différente correspondant à leur valeur

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 204 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Valeur sémantique ou attribut III

De même pour les littéraux flottants qui correspondront au jeton
LITFLOT mais qui différeront sur yylval.typeFlottant
La déclaration de yylval dans y.tab.h est de la forme : extern
YYSTYPE yylval;
En C++, les champs de l’union devront être de type pointeur sur
classe

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 205 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Actions I

N’importe quelle instruction C peut apparaître dans un bloc d’actions
De plus, bison admet des ations spécifiques permettant d’utiliser les
attributs
L’attribut associé à la partie gauche de la règle de production
courante est nommé $$, tandis que l’attribut du nième élément de la
partie droite est nommé $n

Un exemple d’utilisation de ces attributs est l’amélioration du vérificateur
de GB en un interpréteur d’expression booléenne :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 206 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Actions II

%{ // interlog.y
include <stdio.h>
define YYSTYPE int /* inutile */
int yylex(void); void yyerror(char *s);
%}
%%
liste : {}

| liste ligne {}
;

ligne : expr '\n' {printf("\nRésultat : %d\n",$1);}
;

expr : '(' expr ')' {$$ = $2;}
| expr '|' expr {$$ = $1 || $3;}
| expr '&' expr {$$ = $1 && $3;}
| '!' expr {$$ = ! $2;}

| '0' {$$ = 0;}
| '1' {$$ = 1;}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 207 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Actions III

;
%%
int yylex(void) {

int c;
while(((c=getchar())==' ') || (c=='\t'))

;
return c;

}
void yyerror(char *s) {

fprintf(stderr,"%s\n",s);
}
int main(void){

printf("Veuillez entrer une expression booléenne S.V.P. : ");
return yyparse();

}

Un exemple d’utilisation de cet interprète :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 208 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Actions IV

0|!0&1
Résultat : 1
!1&0
Résultat : 1

Le dernier résultat n’est pas cohérent en logique mais est le résultat de la
non définition de priorité d’opérateur dans notre source bison.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 209 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Actions à l’intérieur de la partie droite I

Un bloc d’actions peut apparaître au début et/ou au milieu de la
partie droite de la règle
Ces actions peuvent faire référence aux attributs associés aux
symboles les précédants
Ces actions sont exécutées après la reconnaissance des symboles les
précédant et avant la reconnaissance des symboles suivants
Attention, un bloc d’action intermédiaire est comptabilisé comme un
autre symbole dans la numérotation des attributs $i
En effet, un bloc intermédiaire est lui-même associé à un attribut $n
correspondant à sa position dans la partie droite
A l’intérieur du bloc intermédiaire, la valeur de l’attribut associé à ce
bloc peut être défini en affectant l’attribut $$

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 210 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Actions à l’intérieur de la partie droite II

Attention, $$ référence l’attribut de bloc et non pas l’attribut de la
partie gauche de règle ! Ce dernier ne peut être défini que par une
action de fin de règle.
Le type d’un bloc intermédiaire ne peut qu’être explicitement donné
lors de son utilisation par : $<typeBloc>$ ou $<typeBloc>n
Le typeBloc pouvant être n’importe lequel des types définis par
YYSTYPE
Prenons l’exemple du langage C, dans lequel un bloc d’instructions
est composé de déclarations (optionnelles) suivies d’instructions, le
tout entre accolades :
bloc: '{' {initPourDeclarations();} decls insts '}'

| '{' insts '}'
;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 211 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Actions à l’intérieur de la partie droite III

Dans cet exemple, le symbole non terminal decls a un attribut
référencé par $3.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 212 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Actions prédéfinies I

$$ attribut du non terminal en partie gauche de règle ;
$n attribut associé au n ième composant de la partie droite ;

$<typeAutre>n permet de spécifier un autre type que le type par défaut
du n ième composant ;

YYABORT retourne immédiatement de yyparse avec un résultat 1
(erreur) ;

YYACCEPT retourne immédiatement de yyparse avec un résultat nul 0 ;
YYBACKUP(jeton, valeurAttribut) dépile un jeton de l’automate . . .

yychar variable entière contenant le jeton de prévision courant ;
YYEMPTY valeur stockée dans yychar quand il n’existe pas de jeton de

prévision ;
YYERROR provoque une erreur de syntaxe immédiate ;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 213 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Actions prédéfinies II

YYRECOVERING variable valant 1 si on est dans une récupération
d’erreur, 0 sinon ;

yyclearin supprime le le jeton de prévision courant ;
yyerrok force le retour de la récupération d’erreur vers l’état normal

de l’analyseur syntaxique. Il faut être sur d’être à un bon
“endroit” du flot de jeton pour appeler cette fonction. Dans
les interpréteurs ligne à ligne, un bon endroit se situe après le
retour ligne.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 214 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

La première partie : déclarations I

Le type YYSTYPE des attributs doit être défini par la déclaration %union :

%union {
int typeEntier;
float typeFlottant;

}

Les jetons nommés doivent être déclarés dans cette section ainsi que le
type de leur attribut par une déclaration du genre : %token
<typeFlottant> LITTERALFLOTTANT. Il est inutile de spécifier le code
numérique du jeton, car bison s’en charge, ce qui évite des erreurs de
conflits.
En cas de types multiples des attributs, les symboles non terminaux
doivent être tous typés par une déclaration : %type <typeFlottant>
nonterminal1 nonterminal2

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 215 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

La première partie : déclarations II

Par défaut, l’axiome de la grammaire est le premier non terminal rencontré
dans la partie des règles. On peut définir explicitement l’axiome par la
déclaration : %start nonterminal.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 216 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Associativité et priorité des opérateurs I

Dans la partie déclaration, on peut définir des priorités d’opérateurs
et les règles définissant leur type d’associativité.
Rappelons qu’un opérateur binaire infixe * est associatif à gauche
(“left”) lorsque x ∗ y ∗ z = (x ∗ y) ∗ z et associatif à droite (“right”)
lorsque x ∗ y ∗ z = x ∗ (y ∗ z)
Lorsqu’un opérateur est associatif à gauche et à droite, il faudra
choisir l’une des deux associativités pour indiquer l’ordre d’évaluation
des expressions
Si un opérateur est non associatif, c’est-à-dire x ∗ y ∗ z n’est pas
défini, il faudra également l’indiquer à bison par %nonassoc
La déclaration de l’associativité à gauche est effectuée par : %left
JETONOP1 JETONOP2 JETONOP3 ... où JETONOPi est un jeton
nommé ou non d’opérateur

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 217 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Associativité et priorité des opérateurs II

On utilise de même %right et %nonassoc pour l’associativité à
droite et la non associativité
Dans ce dernier cas, si l’analyseur trouve x ∗ y ∗ z alors que * est non
associatif, une erreur de syntaxe sera générée
La priorité des opérateurs, les uns par rapport aux autres, est définie
simplement par l’odre des définitions des associativités des opérateurs,
du moins prioritaire au plus prioritaire
Enfin, une priorité différente de celle de l’opérateur en cours de
reconnaissance peut être affectée à une partie droite de règle en
ajoutant %prec JETONVIRTUEL à la fin de la règle
Ainsi, l’opérateur obtiendra, pour cette règle la priorité (précédence)
du JETONVIRTUEL qui aura du être déclaré

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 218 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Exemple de priorités I

%nonassoc '<' '>' EGAL DIFFERENT SUPEGAL INFEGAL
%left '+' '-'
%left '*' '/'
%right MOINSUNAIRE
%right '^'
...
expr : ...

| expr '-' expr {/* priorité normale du moins
binaire */ }↪→

| '-' expr %prec MOINSUNAIRE {/* priorité spéciale du moins
unaire */ }↪→

Ce type de précédence variable pour le même jeton lexical est
nécessaire lorsqu’un opérateur est utilisé dans des emplois différents
On peut prendre comme autre exemple l’opérateur * du C++, utilisé
pour la multiplication et le déréférencement d’un pointeur : *ptrInt
* 2

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 219 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Exemple de priorités II

L’automate à pile choisit l’opération Shift ou Reduce en comparant
la priorité de la règle courante avec celle du jeton de prévision
Si le jeton est plus prioritaire alors un Shift est effectué, sinon un
Reduce est effectué
La priorité d’une règle est la priorité de son jeton le plus à droite
Les jetons sans priorité explicite sont considérés comme ayant une
priorité minimale

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 220 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Interface avec lex I

yyparse() appelle itérativement yylex() jusqu’à ce que celui-ci
retourne un jeton inférieur ou égal à 0
Les noms de jetons nommés peuvent être partagés par l’intermédiaire
du fichier y.tab.h qui est automatiquement généré lorsqu’on utilise
l’option -d de bison
La valeur sémantique (attribut) d’un jeton sera passée de flex à
bison par l’intermédiaire de la variable yylval qui est de type
YYSTYPE

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 221 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Divers I

Débogage : afin de déboguer l’analyseur syntaxique, il suffit de positionner
la variable bison prédéfinie yydebug à 1 avant l’appel à yyparse() ou
pendant son exécution
Makefile :
YACC=bison
YACCFLAGS=-ydtv
#-y yacc : y.tab.c; -d genere y.tab.h; -t debogage possible; -v

verbose↪→

.y:
@echo debut $(YACC)-compil : $<
$(YACC) $(YACCFLAGS) $<
@echo debut compil c avec edition de liens de y.tab.c
$(CC) $(CFLAGS) -o $* y.tab.c
@echo fin $(YACC)-compil de : $<
@echo Vous pouvez executer : $*

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 222 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Divers II

On peut également utiliser du C++ dans les actions. Soi, par exemple, le
source suivant :
%{
include <iostream>
using namespace std;
int yylex(void);void yyerror(char *s);
class A{
public:

void essai(int n){cout<<"Suite de "<<n<<"
identificateurs"<<endl;↪→

}
};
%}
%token IDENTIF
%%
liste : {/* chaine vide sur fin de fichier Ctrl-D */ }

| liste ligne {}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 223 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Divers III

;
ligne : '\n' {/* ligne vide : expression vide

*/ }↪→

| error '\n' {yyerrok; /* synchro après la fin de
ligne */ }↪→

| expr '\n' {A a;a.essai($1);}
;

expr : IDENTIF {$$=1;}
| expr IDENTIF {$$++;}
;

%%
int yylex() {

int c;
while(((c=getchar())==' ') || (c=='\t')) ; /* filtrage des

blancs */↪→

if ((c<='z') && (c>='a')) {
while(((c=getchar())<='z') && (c>='a')) ;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 224 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Divers IV

ungetc(c,stdin);
return (IDENTIF);

}
return c; /* erreur lexicale */

}
void yyerror(char *s) {cerr<<s<<endl;}
int main(){yydebug=0; return yyparse();}

Ce source pourra être compilé par l’entrée de makefile suivante :

CPP=g++
CPPFLAGS=-g
.y+:

@echo debut $(YACC)-compil : $<
$(YACC) $(YACCFLAGS) $<
@echo debut compil c++ avec edition de liens de y.tab.c
$(CPP) $(CPPFLAGS) -o $* y.tab.c

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 225 / 389

Analyse syntaxique Syntaxe et sémantique des sources bison

Divers V

@echo fin $(YACC)-compil de : $<
@echo Vous pouvez executer : $*

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 226 / 389

Analyse syntaxique Un exemple bison complet : une calculette

Plan

3 Analyse syntaxique
Analyse descendante récursive
Analyse descendante par automate à pile
Algorithmique en analyse descendante
Grammaires LL(1)
Conclusion sur l’analyse descendante
Un langage et un outil pour l’analyse syntaxique ascendante : bison
et yacc
Syntaxe et sémantique des sources bison
Un exemple bison complet : une calculette
Analyse ascendante par automate à pile
Algorithmique
Construction de la collection canonique SLR
Construction des tables d’analyse SLR
Les conflits et leur résolution par bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 227 / 389

Analyse syntaxique Un exemple bison complet : une calculette

Un exemple bison complet : une calculette I

Les sources lex calc.l et bison calc.y définissent une calculette
interprétant des expressions arithmétiques décimales. Voici le source flex :
%{ /* calc.l */
define YYSTYPE double /* ATTENTION AUX 2 MACROS

dans lex et yacc */↪→

include "y.tab.h" /* JETONS crees par yacc et definition
de yylval */↪→

include <stdlib.h> /* pour double atof(char *) */
include <stdio.h> /* pour printf */
%}
chiffre ([0-9])
entier ({chiffre}+)
%option noyywrap
%%
[\t]+ {/* filtrer les blancs */ }
{entier}|{entier}\.{chiffre}*|{chiffre}*\.{entier} {

/* laisser l'accolade à la ligne precedente */

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 228 / 389

Analyse syntaxique Un exemple bison complet : une calculette

Un exemple bison complet : une calculette II

yylval=atof(yytext);return (LITFLOT);
}

sin { return(SIN); }
cos { return(COS); }
exp { return(EXP); }
ln { return(LN); }
pi { return(PI); }
exit|quit { return (QUIT); }
aide|help|\? { return (HELP); }
.|\n { return yytext[0]; /* indispensable !

*/ }↪→

%%

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 229 / 389

Analyse syntaxique Un exemple bison complet : une calculette

Un exemple bison complet : une calculette III

Voici le source bison :
%{ /* calc.y */
include <math.h>
int errSemantiq=0; /* vrai si erreur sémantique :

*/↪→

define DIVPAR0 1 /* division par 0 */
define LOGNEG 2 /* logarithme d'un négatif */
define YYSTYPE double
int yylex(void);void yyerror(char *s);
%}

/* définition des jetons */
%token LITFLOT SIN COS EXP LN PI QUIT HELP

/* traitement des priorités */
%left '+' '-'
%left '*' '/' '%'
%right MOINSUNAIRE
%right '^'

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 230 / 389

Analyse syntaxique Un exemple bison complet : une calculette

Un exemple bison complet : une calculette IV

%%

liste : {/* chaine vide sur fin de fichier Ctrl-D */ }
| liste ligne {}
;

ligne : '\n' {/* ligne vide : expression vide
*/ }↪→

| error '\n' {yyerrok; /* après la fin de
ligne */ }↪→

| expr '\n' {
if (!errSemantiq)

printf("Résultat : %10.2f\n",$1); /* 10 car dont 2
décimales */↪→

else if (errSemantiq==DIVPAR0){
printf("Erreur sémantique : division par 0 !\n");
errSemantiq=0; /* RAZ */

}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 231 / 389

Analyse syntaxique Un exemple bison complet : une calculette

Un exemple bison complet : une calculette V

else {
printf("Erreur sémantique : logarithme d'un négatif

ou nul !\n");↪→

errSemantiq=0; /* RAZ */
}

}
| QUIT '\n' {return 0; /* fin de yyparse */ }
| HELP '\n' {
printf(" Aide de la calculette\n");
printf(" =====================\n");
printf("Taper une expression constituée de nombres,

d'opérations,\n");↪→

printf(" de fonctions, de constantes, de parenthèses
puis taper <Entrée> \n");↪→

printf("Ou taper une commande suivie de <Entrée>\n\n");
printf("Syntaxe des nombres : - optionnel, suivi de

chiffres, \n");↪→

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 232 / 389

Analyse syntaxique Un exemple bison complet : une calculette

Un exemple bison complet : une calculette VI

printf(" suivi d'un . optionnel, suivi de chiffres
\n");↪→

printf("Opérations infixes : + - * / ^ %% (modulo) \n");
printf("Fonctions prédéfinies : sin(x) cos(x) exp(x)

ln(x)\n");↪→

printf("Constantes prédéfinies : pi\n");
printf("Commandes : exit ou quit pour quitter la

calculette\n");↪→

printf(" aide ou help ou \? pour afficher
cette aide\n");↪→

}
;

expr : '(' expr ')' {$$ = $2;}
| expr '+' expr {$$ = $1 + $3;}
| expr '-' expr {$$ = $1 - $3;}
| expr '*' expr {$$ = $1 * $3;}
| expr '/' expr {

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 233 / 389

Analyse syntaxique Un exemple bison complet : une calculette

Un exemple bison complet : une calculette VII

if ($3!=0)
$$ = $1 / $3;

else
errSemantiq=DIVPAR0; /* par défaut $$=$1 */

}
| expr '^' expr {$$ = pow($1,$3);}
| expr '%' expr {

if ($3!=0) $$ = fmod($1,$3);
else errSemantiq=DIVPAR0; /* par défaut $$=$1 */

}
| '-' expr %prec MOINSUNAIRE {$$ = - $2;}
| SIN '(' expr ')'{$$ = sin (M_PI/180*$3);}
| COS '(' expr ')'{$$ = cos (M_PI/180*$3);}
| EXP '(' expr ')'{$$ = exp($3);}
| LN '(' expr ')' {

if ($3>0) $$ = log($3);
else errSemantiq=LOGNEG; /* $$=$1 ... */

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 234 / 389

Analyse syntaxique Un exemple bison complet : une calculette

Un exemple bison complet : une calculette VIII

}
| PI {$$ = M_PI;}
| LITFLOT {$$ = $1;}
;

%%
void yyerror(char *s) {fprintf(stderr,"%s\n",s);}
int main(void){yydebug=0; return yyparse();}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 235 / 389

Analyse syntaxique Un exemple bison complet : une calculette

Un exemple bison complet : une calculette IX

Voici l’entrée de makefile :
calc : calc.y calc.l

d'abord yacc pour y.tab.h puis lex puis gcc
@echo debut $(YACC)-compil : calc.y
$(YACC) $(YACCFLAGS) calc.y
@echo debut $(LEX)-compil : calc.l
$(LEX) calc.l
@echo debut compil c avec edition de liens
$(CC) -g -Wall -o calc y.tab.c lex.yy.c -lm # lib math
@echo fin compil : vous pouvez executer calc

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 236 / 389

Analyse syntaxique Un exemple bison complet : une calculette

Un exemple bison complet : une calculette X

Voici une exécution :
$ make calc
$ calc
2+3*4
Résultat : 14.00
-5--2^2
Résultat : -1.00
1/4-1/2^2
Résultat : 0.00
1+3*2^3^(ln(100)/ln(10))
Résultat : 1537.00

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 237 / 389

Analyse syntaxique Analyse ascendante par automate à pile

Plan

3 Analyse syntaxique
Analyse descendante récursive
Analyse descendante par automate à pile
Algorithmique en analyse descendante
Grammaires LL(1)
Conclusion sur l’analyse descendante
Un langage et un outil pour l’analyse syntaxique ascendante : bison
et yacc
Syntaxe et sémantique des sources bison
Un exemple bison complet : une calculette
Analyse ascendante par automate à pile
Algorithmique
Construction de la collection canonique SLR
Construction des tables d’analyse SLR
Les conflits et leur résolution par bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 238 / 389

Analyse syntaxique Analyse ascendante par automate à pile

Analyse ascendante par automate à pile I

Nous allons étudier l’analyse ascendante et plus particulièrement
l’analyse LALR utilisée dans bison.
Rappelons que, partant d’un mot (flot de jetons), on essaie de
construire l’arbre de dérivation associé
Cette construction va se faire depuis les feuilles (jetons) en remontant
jusqu’à la racine (l’axiome)
De plus, on va construire une dérivation droite (Rightmost) et à
l’envers !
Les grammaires pouvant être analysées par un analyseur LR doivent,
bien entendu, avoir certaines propriétés comme la non ambiguïté
Prenons un exemple simple pour illustrer le fonctionnement de
l’automate à pile.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 239 / 389

Analyse syntaxique Analyse ascendante par automate à pile

Analyse ascendante par automate à pile II

Soit la grammaire G = ({1, 2, 3, +}, {E}, R, E) avec les règles de R
suivantes :

E → 1|2|3|E + E

Considérons le mot d’entrée 1+2+3$
L’analyse du mot commence sur le 1 (Left to right scanning)
Ce symbole 1 est décalé du flot de jeton sur la pile (opération Shift)
Puis la règle E → 1 est appliquée en réduisant sa partie droite (1)
dans la pile et en la remplaçant par sa partie gauche E (opération
Reduce)
Arrivé sur le +, l’analyseur empile ce symbole car il ne peut pas
appliquer de réduction

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 240 / 389

Analyse syntaxique Analyse ascendante par automate à pile

Analyse ascendante par automate à pile III

Le 2 est ensuite reconnu et décalé sur la pile
Puis, 2 est réduit en E (E → 2) dans la pile
On s’aperçoit qu’on peut alors réduire (Reduce) le mot sur la pile
(E+E) en appliquant la règle E → E + E
La pile ne contient donc plus que E
En continuant le même procédé, on reconnait les productions E → 3
puis E → E + E
On a donc la dérivation droite, obtenue à l’envers :
E 1⇒E→E+E E + E 1⇒E→3 E + 3 1⇒E→E+E E + E + 3 1⇒E→2

E + 2 + 3 1⇒E→1 1 + 2 + 3
Remarquons que cette grammaire est ambiguë et qu’on a décrit un
analyseur déterministe qui choisit d’évaluer 1+2 en premier et non
pas 2+3

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 241 / 389

Analyse syntaxique Analyse ascendante par automate à pile

Analyse ascendante par automate à pile IV

Cet analyseur choisit l’action Reduce sur un conflit Shift/Reduce
bison, au contraire, privilégie toujours le Shift sur le Reduce, ce qui
lui permet d’associer naturellement le else au if le plus proche !
Mais ceci entraîne l’évaluation des opérateurs de droite à gauche si
aucune priorité n’est définie !

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 242 / 389

Analyse syntaxique Analyse ascendante par automate à pile

Fonctionnement de l’automate à pile en analyse
ascendante LR I

Définition
Un manche d’un mot (pas forcément terminal) m = αβγ est un couple
constitué :

d’une production X → β,
d’une position p dans m telle que m[p, p + |β|[= β ;

ayant la propriété suivante : S ∗⇒d αXγ
1⇒d m = αβγ.

Dans l’exemple précédent, le mot 1+2+3 ne possède qu’un manche
(E → 1,1)
En effet, ni (E → 3,5), ni (E → 2,3) ne sont des manches car ni
1+2+E, ni 1+E+3 ne dérive de E par une dérivation droite

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 243 / 389

Analyse syntaxique Analyse ascendante par automate à pile

Fonctionnement de l’automate à pile en analyse
ascendante LR II

Par contre, E+E+3 possède deux manches : (E → E + E ,1) et
(E → 3,5)
On peut donc choisir entre les deux réductions possibles
Dans l’exemple précédent, nous avions choisi de réduire sur la position
la plus à gauche de façon à réduire dès qu’un manche est situé sur la
pile
On aurait pu empiler + puis E au dessus de E+E puis réduire par
deux fois E+E en E
Nous avions choisi de privilégier la réduction (Reduce) sur le décalage
(Shift) dans ce conflit Shift/Reduce
Malheureusement, l’identification du manche n’est pas toujours aussi
simple que dans cet exemple

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 244 / 389

Analyse syntaxique Analyse ascendante par automate à pile

Fonctionnement de l’automate à pile en analyse
ascendante LR III

Il peut exister d’autres types de conflits Reduce/Reduce lorsque deux
manches sont réductibles l’un étant suffixe de l’autre
Pour limiter ces conflits d’action, la table d’analyse ainsi que la pile
vont utiliser des états entiers correspondant à la configuration
courante, c’est-à-dire à ce qui a été reconnu jusqu’alors.

Définition
La pile d’un analyseur LR est une structure Dernier Entré Premier Sorti
(LIFO) de couples (s,e) où s ∈ V ∪ {$} est un symbole et e ∈ N est un état
entier. L’état courant de l’analyseur est l’état situé au sommet de la pile.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 245 / 389

Analyse syntaxique Analyse ascendante par automate à pile

Table d’analyse d’un analyseur LR I

La table d’analyse d’un analyseur LR est constitué d’une partie Action et
d’une partie Successeur.

La table d’action est un tableau à deux entrées : les différents états
sur les lignes, les terminaux et $ sur les colonnes. On note une case de
cette table par Action[e, x]. Une action d’un analyseur LR peut être :

Décaler (Shift) le symbole courant du flot d’entrée sur la pile (empiler)
avec un état e. Cette action est notée : Se.
Réduire (Reduce) par une production X → α. Cela consiste à dépiler α
(à l’envers) de la pile et à le remplacer par X et l’état correspondant
dans la table Successeur, c’est à dire Successeur [sommet(Pile)[2], X].
Cette action est notée : R(X → α).
Accepter le mot d’entrée et terminer l’analyse. Cette action est notée :
Accepter.
Générer un message d’erreur de syntaxe et terminer l’analyse. Cette
action n’est pas notée explicitement : toutes les cases vides de la table
Action représentent des actions Erreur.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 246 / 389

Analyse syntaxique Analyse ascendante par automate à pile

Table d’analyse d’un analyseur LR II

La table des successeurs est un tableau à deux entrées : les différents
états sur les lignes, les non terminaux sur les colonnes. On note une
case de cette table par Successeur [e, X]. Cette table ne sert qu’à
indiquer le nouvel état courant après une réduction. Là aussi, toutes
les cases vides de la table Successeur représentent des erreurs.

Avant de voir les algorithmes de construction de ces tables, regardons le
fonctionnement de l’analyseur. L’analyse d’un mot du flot d’entrée est
décrit dans l’algorithme 17.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 247 / 389

Analyse syntaxique Analyse ascendante par automate à pile

Algorithme de Fonctionnement de l’automate I

Algorithme 17 : Fonctionnement de l’automate

Données : Une table d’analyse
Action[Etat, VT ∪ {$}], Successeur [Etat, VN], un flot de
jetons terminé par $

Résultat : Erreur ou Succès
Pile=construirePileVide() // contenu : (symbole, état)
empiler(Pile,($,0)) // initialisation
jeton=lireFlot() // jeton courant du flot
tant que vrai faire

etatCourant=sommet(Pile)[2] // projection sur l’état
exécuter Action[etatCourant, jeton] // Shift, Reduce, Erreur ou
Accepter

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 248 / 389

Analyse syntaxique Analyse ascendante par automate à pile

Exemple I

Pour illustrer le fonctionnement de l’algorithme 17, prenons un exemple
simple d’une grammaire de Dyck à un couple de parenthèses :
Soit la grammaire Gd = ({a, b}, {S}, R, S) avec les règles de R suivantes :

S → SaSb|ε

Le calcul des tables de cette grammaire fournit le résultat suivant :

Action Successeur
a b $ S

0 R(S → ε) R(S → ε) R(S → ε) 1
1 S2 Accepter
2 R(S → ε) R(S → ε) R(S → ε) 3
3 S2 S4
4 R(S → SaSb) R(S → SaSb) R(S → SaSb)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 249 / 389

Analyse syntaxique Analyse ascendante par automate à pile

Exemple II

Examinons l’analyse du mot abaababb$:

Pile Flot d’entrée Action
$0 abaababb$ R(S → ε)
$0S1 abaababb$ S2
$0S1a2 baababb$ R(S → ε)
$0S1a2S3 baababb$ S4
$0S1a2S3b4 aababb$ R(S → SaSb)
$0S1 aababb$ S2
$0S1a2 ababb$ R(S → ε)
$0S1a2S3 ababb$ S2
$0S1a2S3a2 babb$ R(S → ε)
$0S1a2S3a2S3 babb$ S4
$0S1a2S3a2S3b4 abb$ R(S → SaSb)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 250 / 389

Analyse syntaxique Analyse ascendante par automate à pile

Exemple III

$0S1a2S3 abb$ S2
$0S1a2S3a2 bb$ R(S → ε)
$0S1a2S3a2S3 bb$ S4
$0S1a2S3a2S3b4 b$ R(S → SaSb)
$0S1a2S3 b$ S4
$0S1a2S3b4 $ R(S → SaSb)
$0S1 $ Accepter

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 251 / 389

Analyse syntaxique Analyse ascendante par automate à pile

Exemple IV

Ce qui donne la dérivation droite suivante :
S 1⇒ SaSb 1⇒ SaSaSbb 1⇒ SaSabb 1⇒ SaSaSbabb 1⇒ SaSababb 1⇒
Saababb 1⇒ SaSbaababb 1⇒ Sabaababb 1⇒ abaababb

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 252 / 389

Analyse syntaxique Algorithmique

Plan

3 Analyse syntaxique
Analyse descendante récursive
Analyse descendante par automate à pile
Algorithmique en analyse descendante
Grammaires LL(1)
Conclusion sur l’analyse descendante
Un langage et un outil pour l’analyse syntaxique ascendante : bison
et yacc
Syntaxe et sémantique des sources bison
Un exemple bison complet : une calculette
Analyse ascendante par automate à pile
Algorithmique
Construction de la collection canonique SLR
Construction des tables d’analyse SLR
Les conflits et leur résolution par bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 253 / 389

Analyse syntaxique Algorithmique

SLR et LALR I

Nous allons décrire comment calculer les tables d’analyses pour des
grammaires LR(1), c’est-à-dire avec un symbole de prévision
Il existe plusieurs méthodes de construction dépendant de la
complexité de la grammaire et de l’efficacité de l’analyseur,
notamment en ce qui concerne la taille des tables
La méthode SLR, “Simple LR”, permet de construire très
efficacement des tables d’analyse assez petites
Malheureusement, certaines constructions syntaxiques, peu
nombreuses dans les langages de programmation, ne peuvent être
gérées par cette méthode
D’autres méthodes existent, dont la méthode LALR utilisé par bison,
résolvant certains problèmes de SLR au prix d’une taille plus
importante des tables

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 254 / 389

Analyse syntaxique Algorithmique

SLR et LALR II

Enfin, il existe une méthode dite canonique qui assure la
reconnaissance de toute grammaire LR(1) mais à un cout prohibitif
Nous nous contenterons ici de décrire la méthode SLR en conseillant
le livre [2] pour ceux qui souhaiteraient en savoir plus ...

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 255 / 389

Analyse syntaxique Construction de la collection canonique SLR

Plan

3 Analyse syntaxique
Analyse descendante récursive
Analyse descendante par automate à pile
Algorithmique en analyse descendante
Grammaires LL(1)
Conclusion sur l’analyse descendante
Un langage et un outil pour l’analyse syntaxique ascendante : bison
et yacc
Syntaxe et sémantique des sources bison
Un exemple bison complet : une calculette
Analyse ascendante par automate à pile
Algorithmique
Construction de la collection canonique SLR
Construction des tables d’analyse SLR
Les conflits et leur résolution par bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 256 / 389

Analyse syntaxique Construction de la collection canonique SLR

Construction de la collection canonique SLR I

Définition
Un item LR(0), ou SLR, ou plus simplement item, d’une grammaire
G = (VT , VN , R, S) est un couple constitué d’une production de R et
d’une position dans la partie droite de celle-ci. La position est représentée
par un point ’.’ dans la parte droite.

Soit la grammaire Gd = ({a, b}, {S}, R = {S → SaSb|ε}, S)
L’ensemble des items de G est Items(G) = {S → .SaSb, S →
S.aSb, S → Sa.Sb, S → SaS.b, S → SaSb., S → ε.}
Un item représente ce qui a déjà été reconnu (à gauche du point) lors
de l’analyse, et ce qu’il reste à reconnaitre (à droite du point) avant
de pouvoir réduire

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 257 / 389

Analyse syntaxique Construction de la collection canonique SLR

Construction de la collection canonique SLR II

Avant de construire les tables Action et Successeur, il faut calculer un
automate fini déterministe (ou collection canonique), c’est à dire un
ensemble d’états reliés par des transitions
Chaque état représente un ensemble d’items correspondant à une
situation d’analyse
Ces états sont les états de l’analyseur LR

Définition
Une grammaire augmentée G’ d’une grammaire G = (VT , VN , R, S) est
obtenue par ajout d’un nouvel axiome S’ et d’une production S ′ → S :
G ′ = (VT , VN ∪ {S ′}, R ∪ {S ′ → S}, S ′)

L’ajout de ce “super-axiome” est motivé par l’obtention d’un état
initial de l’AFD qui soit une source : on ne peut revenir sur cet état
initial.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 258 / 389

Analyse syntaxique Construction de la collection canonique SLR

Construction de la collection canonique SLR III

La construction de l’AFD utilise une fonction Fermeture() qui
regroupe tous les items auxquels on peut s’attendre dans un état
donné
La fonction Fermeture() est décrite dans l’algorithme 18

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 259 / 389

Analyse syntaxique Construction de la collection canonique SLR

Algorithme Fermeture d’un ensemble d’items I

Algorithme 18 : Fermeture d’un ensemble d’items

Données : Un ensemble I d’items d’une grammaire augmentée
G = (VT , VN , R, S)

Résultat : Un ensemble d’items
Fermeture(I)=I // initialisation
pour chaque item non marqué j = α.Xβ ∈ Fermeture(I) tel que
X ∈ VN faire

marquer j // on ne traite un item qu’une seule fois
pour chaque production X → γ ∈ R faire

Fermeture(I) = Fermeture(I) ∪ {X → .γ}

retourner Fermeture(I)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 260 / 389

Analyse syntaxique Construction de la collection canonique SLR

Exemple I

Le principe de l’algorithme 18 tient en ce que lorsqu’on s’attend à
reconnaitre un non terminal X, il faut également s’attendre à reconnaitre
toute partie droite de production dont X est la partie gauche.
Soit la grammaire de Dyck augmentée :
G ′ = ({a, b}, {S, S ′}, {S → SaSb|ε, S ′ → S}, S ′). Calculons les fermetures
des ensembles d’items {S ′ → .S} et {S → Sa.Sb}.
Fermeture({S ′ → .S}) = {S ′ → .S, S → .SaSb, S → ε.}
Fermeture({S → Sa.Sb}) = {S → Sa.Sb, S → .SaSb, S → ε.}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 261 / 389

Analyse syntaxique Construction de la collection canonique SLR

Collection canonique I

Pour construire l’AFD des états de l’analyseur, également appelée
collection canonique des ensembles d’items LR(0), il faut examiner
toutes les transitions possibles d’un état (ensemble d’items) vers un
autre par le déplacement du “.” d’une position vers la droite.
L’algorithme 19 décrit cette construction.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 262 / 389

Analyse syntaxique Construction de la collection canonique SLR

Algorithme Construction de la collection canonique I

Algorithme 19 : Construction de l’AFD
Données : Une grammaire augmentée G = (VT , VN , R, S ′)
Résultat : Un AFD B = (V , E , D, A, T) ou collection canonique
V = VT ∪ VN − {S ′} // les symboles de transition sont les symboles de la
grammaire non augmentée

E = {Fermeture({S ′ → .S})} // initialisation de l’ensemble des états
D = E // unique état initial
répéter

choisir un état non marqué I ∈ E // un état est un ensemble d’items
marquer I // on ne traite un état I qu’une seule fois
pour chaque x ∈ V tel qu’il existe au moins un Y → α.xβ ∈ I faire

transition(I, x) = Fermeture({Y → αx .β}) // calcul de l’état suivant
après reconnaissance de x

E = E ∪ transition(I, x) // ajout possible d’un nouvel état
T = T ∪ {(I, x , transition(I, x))} // ajout d’une nouvelle transition

jusqu’à ce que tous les états de E soient marqués;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 263 / 389

Analyse syntaxique Construction de la collection canonique SLR

Remarques et exemple I

Remarquons que l’algorithme 19 ne calcule pas d’états d’arrivée de
l’automate
En effet, cet automate ne permet pas de reconnaitre un mot du
langage analysé mais sert uniquement à décrire les transitions entre
états
Chaque chemin dans l’AFD correspond à un préfixe d’un mot dérivant
de l’axiome
Ces préfixes, aussi appelé préfixes viables, sont constitués de
terminaux et de non terminaux
Ils représentent le contenu possible de la pile de l’automate à un
instant donné

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 264 / 389

Analyse syntaxique Construction de la collection canonique SLR

Remarques et exemple II

Exemple :
Soit la grammaire de Dyck augmentée :
G ′ = ({a, b}, {S, S ′}, {S → SaSb|ε, S ′ → S}, S ′). Calculons l’automate
correspondant :

I0 = Fermeture({S ′ → .S}) = {S ′ → .S, S → .SaSb, S → ε.}
I1 = Fermeture({S ′ → .S, S → .SaSb}) = {S ′ → S., S → S.aSb}
T = {(I0, S, I1)}
I2 = Fermeture({S → Sa.Sb}) = {S → Sa.Sb, S → .SaSb, S → ε.}
T+ = {(I0, S, I1), (I1, a, I2)}
I3 = Fermeture({S → SaS.b, S → S.aSb}) = {S → SaS.b, S → S.aSb}
T+ = {(I0, S, I1), (I1, a, I2), (I2, S, I3)}
I4 = Fermeture({S → SaSb.}) = {S → SaSb.}
I2 = Fermeture({S → Sa.Sb}) = {S → Sa.Sb, S → .SaSb, S → ε.}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 265 / 389

Analyse syntaxique Construction de la collection canonique SLR

Remarques et exemple III

T+ = {(I0, S, I1), (I1, a, I2), (I2, S, I3), (I3, b, I4), (I3, a, I2), }

Dans cet exemple, les préfixes viables sont :
ε, S, Sa, SaS, SaSb, SaSaSb, . . . , SaS(aS)nb
La question que l’on se pose est de savoir quand un préfixe situé en
pile doit être réduit
Définissons la notion d’item valide pour un préfixe viable.

Définition
Un item X → β1.β2 est valide pour un préfixe αβ1 d’un mot dérivant de
l’axiome si et seulement s’il existe une dérivation droite :
S ′ ∗⇒d αXm 1⇒d αβ1β2m avec m ∈ VT

∗, X ∈ VN , αβ1β2 ∈ V ∗.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 266 / 389

Analyse syntaxique Construction de la collection canonique SLR

Remarques et exemple IV

Remarquons que dans le cas où l’item X → β1. est valide pour le
préfixe αβ1, alors on a un manche qu’il faut réduire
Dans le cas où l’item X → β1.β2 est valide et que β2 n’est pas vide, il
faut décaler
La question est maintenant de savoir quand un item est valide pour
un préfixe donné ?

Théorème
L’ensemble des items valides pour le préfixe viable αβ1 est l’ensemble des
items atteint par un parcours de l’AFD depuis l’état initial, le long du
chemin étiqueté par αβ1.

Ainsi, l’automate construit permet de répondre facilement à la question
précédente.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 267 / 389

Analyse syntaxique Construction de la collection canonique SLR

Remarques et exemple V

Exemple
Soit le préfixe viable SaS, les deux items valides sont S → SaS.b et
S → S.aSb. On a donc les deux types de dérivations droites possibles :
S 1⇒ SaSb ou bien S 1⇒ SaSb 1⇒ SaSaSb ∗⇒ SaSa . . . Remarquons que le
symbole d’entrée suivant (a ou b) permettra de choisir l’état suivant qui
correspondra soit à une réduction par S → SaSb ou bien par S → ε.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 268 / 389

Analyse syntaxique Construction des tables d’analyse SLR

Plan

3 Analyse syntaxique
Analyse descendante récursive
Analyse descendante par automate à pile
Algorithmique en analyse descendante
Grammaires LL(1)
Conclusion sur l’analyse descendante
Un langage et un outil pour l’analyse syntaxique ascendante : bison
et yacc
Syntaxe et sémantique des sources bison
Un exemple bison complet : une calculette
Analyse ascendante par automate à pile
Algorithmique
Construction de la collection canonique SLR
Construction des tables d’analyse SLR
Les conflits et leur résolution par bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 269 / 389

Analyse syntaxique Construction des tables d’analyse SLR

Construction de la table Action SLR I
Algorithme 20 : Construction de la table Action en analyse SLR
Données : Une grammaire augmentée G = (VT , VN , R, S′), un AFD B = (V , E , D, A, T) ou

collection canonique
Résultat : La table d’analyse Action[E , VT ∪ {$}]
pour chaque état Ij ∈ E faire

pour chaque item i ∈ Ij faire
suivant l’item i faire

cas où i = S′ → S. faire
ajouter “Accepter” à Action[Ij , $]

cas où i = X → α.aβ avec a ∈ VT et (Ij , a, Ik) ∈ T faire
ajouter Shift Ik à Action[Ij , a]

cas où i = X → α. et i ̸= S′ → S. faire
pour chaque x ∈ TabSuivants[X] faire

ajouter Reduce(X → α) à Action[Ij , x]

cas où autres faire
ne rien faire

pour chaque case vide Action[Ij , x] faire
écrire “Erreur” dans Action[Ij , x]

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 270 / 389

Analyse syntaxique Construction des tables d’analyse SLR

Remarques I

Remarquons qu’une seule action Accepter existe qui correspond à la
réduction S ′ → S de la grammaire augmentée
Une case de la table Action peut contenir plusieurs actions !
On peut obtenir des conflits Shift/Reduce ou Reduce/Reduce
Dans ce cas, la grammaire n’est pas SLR et il sera nécessaire d’utiliser
un algorithme de construction de table plus complexe

Exemple

Pour appliquer l’algorithme 20 sur la grammaire de Dyck augmentée
G ′ = ({a, b}, {S, S ′}, {S → SaSb|ε, S ′ → S}, S ′), il nous faut calculer les
suivants de S : TabSuivants[S] = {a, b, $}. On obtient alors la table
suivante :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 271 / 389

Analyse syntaxique Construction des tables d’analyse SLR

Remarques II

Action
a b $

0 R(S → ε) R(S → ε) R(S → ε)
1 S2 Erreur Accepter
2 R(S → ε) R(S → ε) R(S → ε)
3 S2 S4 Erreur
4 R(S → SaSb) R(S → SaSb) R(S → SaSb)

On peut maintenant écrire l’algorithme 21 de construction de la table
Successeur SLR.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 272 / 389

Analyse syntaxique Construction des tables d’analyse SLR

Construction de la table Successeur I

Algorithme 21 : Construction de la table Successeur en analyse SLR

Données : Une grammaire augmentée G = (VT , VN , R, S ′), un AFD
B = (V , E , D, A, T) ou collection canonique

Résultat : La table d’analyse Successeur [E , VN]
pour chaque transition (Ij , X , Ik) ∈ T tel que X ∈ VN faire

Successeur [Ij , X] = Ik
pour chaque case vide Successeur [Ij , X] faire

écrire “Erreur” dans Successeur [Ij , X]

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 273 / 389

Analyse syntaxique Construction des tables d’analyse SLR

Remarques et exemple I

Remarquons qu’il ne peut y avoir de conflit car l’automate est
déterministe
La table Successeur permet de déterminer l’état courant après une
réduction en fonction de l’état sous-jacent dans la pile.
L’algorithme 21 sur la grammaire de Dyck augmentée
G ′ = ({a, b}, {S, S ′}, {S → SaSb|ε, S ′ → S}, S ′) fournit la table
suivante :

Successeur
S

0 1
1 Erreur
2 3
3 Erreur
4 Erreur

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 274 / 389

Analyse syntaxique Construction des tables d’analyse SLR

Efficacité I

Théorème
Une grammaire est LR(0) ou SLR si et seulement si sa table Action ne
contient aucun conflit

Théorème
Un langage est LR(0) ou SLR si et seulement s’il existe une grammaire
SLR le générant

Différentes grammaires SLR existant pour un même langage, on peut
se préoccuper de la “meilleure” en terme d’efficacité
Par exemple, nous avons souvent considérée la grammaire augmentée
de Dyck suivante : Gg = ({a, b}, {S, S ′}, {S → SaSb|ε, S ′ → S}, S ′)
Il existe une autre grammaire SLR engendrant le même langage :
Gd = ({a, b}, {S, S ′}, {S → aSbS|ε, S ′ → S}, S ′).

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 275 / 389

Analyse syntaxique Construction des tables d’analyse SLR

Efficacité II

La grammaire de Dyck récursive à gauche engendrera un automate
dont la pile grossira moins que celle de l’automate "à droite" car les
réductions pourront s’effectuer dès que possible
C’est la raison pour laquelle on privilégie les grammaires récursives à
gauche qui correspondent en plus au fonctionnement habituel des
opérateurs majoritairement associatifs à gauche !

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 276 / 389

Analyse syntaxique Construction des tables d’analyse SLR

Un exercice I

Exercice
Construire les tables d’analyse SLR de Gd . Examiner le fonctionnement de
l’analyseur sur le mot abaababb$.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 277 / 389

Analyse syntaxique Construction des tables d’analyse SLR

Un exercice II

Solution : AFD :
I0 = Fermeture({S ′ → .S}) = {S ′ → .S, S → .aSbS, S → ε.}
T = {(I0, a, I1)}
I1 = Fermeture({S → a.SbS}) = {S → a.SbS, S → .aSbS, S → ε.}
T+ = {(I1, a, I1)}
T+ = {(I1, S, I2)}
I2 = Fermeture({S → aS.bS}) = {S → aS.bS}
T+ = {(I2, b, I3)}
I3 = Fermeture({S → aSb.S}) = {S → aSb.S, S → .aSbS, S → ε.}
T+ = {(I3, a, I1)}
T+ = {(I3, S, I4)}
I4 = Fermeture({S → aSbS.}) = {S → aSbS.}
T+ = {(I0, S, I5)}
I5 = Fermeture({S ′ → S.}) = {S → S.}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 278 / 389

Analyse syntaxique Construction des tables d’analyse SLR

Un exercice III

Table d’analyse :

Action Successeur
a b $ S

0 S1 R(S → ε) R(S → ε) 5
1 S1 R(S → ε) R(S → ε) 2
2 S3
3 S1 R(S → ε) R(S → ε) 4
4 R(S → aSbS) R(S → aSbS)
5 Accepter

Avec le mot abaababb$, empilement de :
aSbaaSbaSbS avant la première réduction intéressante (R(S → aSbS))

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 279 / 389

Analyse syntaxique Construction des tables d’analyse SLR

Un exercice IV

Après construction des tables SLR de cette seconde grammaire, on
s’aperçoit qu’elles possèdent un état de plus, mais surtout que la
reconnaissance d’un mot nécessite une pile beaucoup plus importante
En effet, la première réduction par S → aSbS ne peut avoir lieu que
très tard par rapport à l’analyseur de la grammaire Gg

La raison principale de cette inefficacité tient en ce que Gd est
récursive à droite
Par conséquent, on préférera toujours, quand on a le choix, utiliser
des grammaires récursives à gauche en analyse ascendante

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 280 / 389

Analyse syntaxique Les conflits et leur résolution par bison

Plan

3 Analyse syntaxique
Analyse descendante récursive
Analyse descendante par automate à pile
Algorithmique en analyse descendante
Grammaires LL(1)
Conclusion sur l’analyse descendante
Un langage et un outil pour l’analyse syntaxique ascendante : bison
et yacc
Syntaxe et sémantique des sources bison
Un exemple bison complet : une calculette
Analyse ascendante par automate à pile
Algorithmique
Construction de la collection canonique SLR
Construction des tables d’analyse SLR
Les conflits et leur résolution par bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 281 / 389

Analyse syntaxique Les conflits et leur résolution par bison

Les conflits et leur résolution par bison I

Des grammaires extrèmement simples et non ambiguës peuvent être non
SLR. Par exemple, la grammaire augmentée G =
({a, b, c}, {S ′, S, A, B}, {S ′ → S, S → Aaa|Bab|aac, A → a, B → a}, S)
est non SLR. Pour le montrer, commençons à construire l’AFD :
I0 = Fermeture({S ′ → .S}) = {S ′ → .S, S → .Aaa, S → .Bab, S →
.aac, A → .a, B → .a}
I1 = Fermeture({S → a.ac, A → a., B → a.}) = {S → a.ac, A → a., B →
a.}
I2 = Fermeture({S → aa.c}) = {S → aa.c}
T = {(I0, a, I1), . . .}
TabSuivants[A] = TabSuivants[B] = {a}

Nous pouvons maintenant construire un morceau de la table Action :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 282 / 389

Analyse syntaxique Les conflits et leur résolution par bison

Les conflits et leur résolution par bison II

Action
a . . .

0 S1 . . .
1 R(A → a),R(B → a),S2 . . .
2

Quel que soit le mot d’entrée, il commence par aa. La lecture du premier a
produit un décalage, puis il existe trois actions possibles : deux réductions
différentes et un décalage ! En fait, dans ce cas il faudrait examiner la
troisième lettre pour choisir la bonne réduction ou le décalage. Cette
grammaire n’est pas LR(1) mais LR(2), par conséquent la méthode SLR
ne peut rien (pas plus qu’aucune autre méthode LR(1)).
D’autres méthodes algorithmiques existent pour les grammaires LR(1)
dont la méthode LALR de bison. L’option -v de bison permet notamment
de visualiser les tables d’analyse utilisées. Voici, par exemple, le fichier

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 283 / 389

Analyse syntaxique Les conflits et leur résolution par bison

Les conflits et leur résolution par bison III

.output obtenu avec la grammaire
Gg = ({a, b}, {S, S ′}, {S → SaSb|ε, S ′ → S}, S ′).

state 0
$default reduce using rule 2 (S)
S go to state 1

state 1
S -> S . 'a' S 'b' (rule 1)
$ go to state 5
'a' shift, and go to state 2

state 2
S -> S 'a' . S 'b' (rule 1)
$default reduce using rule 2 (S)
S go to state 3

state 3

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 284 / 389

Analyse syntaxique Les conflits et leur résolution par bison

Les conflits et leur résolution par bison IV

S -> S . 'a' S 'b' (rule 1)
S -> S 'a' S . 'b' (rule 1)
'a' shift, and go to state 2
'b' shift, and go to state 4

state 4
S -> S 'a' S 'b' . (rule 1)
$default reduce using rule 1 (S)

state 5
$ go to state 6

state 6
$default accept

On retrouve, à quelques détails près, les tables Action et Successeur
obtenus dans l’exemple du transparent 248.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 285 / 389

Analyse syntaxique Les conflits et leur résolution par bison

Conflit Shift/Reduce I

Que fait bison lorsqu’il rencontre des conflits ? Sur conflit Shift/Reduce,
bison avantage toujours l’action Shift. L’une des raisons historiques de ce
choix concerne les “si alors sinon” imbriqués. Soit la grammaire suivante :

GF = ({i , t, e, a, b}, {S, E}, R, S)

avec les règles de R suivantes :

S → iEtS|iEtSeS|a
E → b

La compilation bison fournit un analyseur privilégiant le décalage du “else”
plutôt que la réduction du iEtS empilé. Voici la partie descriptive fournie
par bison -v :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 286 / 389

Analyse syntaxique Les conflits et leur résolution par bison

Conflit Shift/Reduce II

state 6
S -> 'i' E 't' S . (rule 1)
S -> 'i' E 't' S . 'e' S (rule 2)

'e' shift, and go to state 7
'e' [reduce using rule 1 (S)]
$default reduce using rule 1 (S)

Les crochets encadrant “reduce using rule 1” indique que cette action
n’est pas prise en compte par l’analyseur.
Conflit Reduce/Reduce :

Dans un conflit Reduce/Reduce bison choisit d’utiliser la première règle
dans l’ordre de description de la grammaire du source bison. Il est
extrèmement périlleux d’utiliser cette caractéristique dans un analyseur car

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 287 / 389

Analyse syntaxique Les conflits et leur résolution par bison

Conflit Shift/Reduce III

l’ordre des règles de production dans le source bison peut souvent varier
dans la phase de conception du langage.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 288 / 389

Analyse syntaxique Les conflits et leur résolution par bison

Conflits multiples I

Un autre exemple de gestion des conflits dans bison consiste à voir les
tables obtenues pour la grammaire non LR(1) G =
({a, b, c}, {S ′, S, A, B}, {S ′ → S, S → Aaa|Bab|aac, A → a, B → a}, S).

state 1
S -> 'a' . 'a' 'c' (rule 3)
A -> 'a' . (rule 4)
B -> 'a' . (rule 5)

'a' shift, and go to state 4
'a' [reduce using rule 4 (A)]
'a' [reduce using rule 5 (B)]

state 4
S -> 'a' 'a' . 'c' (rule 3)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 289 / 389

Analyse syntaxique Les conflits et leur résolution par bison

Conflits multiples II

'c' shift, and go to state 7

L’action Shift a bien été privilégiée par rapport aux deux reduce
possibles
bison parvient donc à fournir un analyseur pour nombre de
grammaires mais attention, cet analyseur ne reconnait que le mot
aac, ce qui n’est pas correct vis à vis de la grammaire (ni aab, ni aaa
ne sont reconnus)
Pour finir, remarquons que certaines grammaires LR(1), c’est-à-dire
nécessitant un seul jeton de prévision, ne sont pas analysables avec la
méthode LALR.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 290 / 389

Analyse syntaxique Les conflits et leur résolution par bison

Outils d’analyse des conflits I

Bison avec l’option verbose -v fournit un fichier texte d’extension
output vu auparavant
avec l’option graph -g, il fournit également un graphe graphviz
d’extension gv illustrant la collection canonique, les conflits et leur
résolution !
Le graphe du transparent suivant a été obtenu par la commande :

$ bison -yvg calcAvecConflits.y
La grammaire calcAvecConflits.y contient :

expr : '(' expr ')' {$$ = $2;}
| expr '+' expr {$$ = $1 + $3;}
| expr '*' expr {$$ = $1 * $3;}
| LITFLOT {$$ = $1;}
;

Elle génère 4 conflits S/R !

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 291 / 389

Analyse syntaxique Les conflits et leur résolution par bison

Outils d’analyse des conflits II

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 292 / 389

Analyse sémantique

Plan

4 Analyse sémantique

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 293 / 389

Analyse sémantique

Introduction à l’analyse sémantique I

Nous allons ici étudier une certain nombre de techniques concernant
l’analyse sémantique de code source :

après l’analyse syntaxique qui a produit un AST (Abstract Syntax
Tree), l’analyse sémantique à comme missions :

la résolution des noms (en liaison avec une table des symboles)
la vérification des types (types mismatch)
d’autres vérifications spécifiques au langages (nombre et types des
paramètres d’une fonction)

quelques généralités, beaucoup de spécificités liées au langage source
les grammaires attribuées, une théorie pour la traduction ou
l’interprétation dirigée par la syntaxe
mise en pratique des grammaires attribuées avec bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 294 / 389

Analyse sémantique AST ou Arbre syntaxique abstrait

Plan

4 Analyse sémantique
AST ou Arbre syntaxique abstrait
Tables des symboles
Contrôle de type
Calcul de type
Traduction dirigée par la syntaxe avec les Grammaires attribuées
Méthode de transformation des grammaires L-attribuées

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 295 / 389

Analyse sémantique AST ou Arbre syntaxique abstrait

AST ou Arbre syntaxique abstrait I

Un arbre dont les nœuds internes sont marqués par :
des opérateurs tels + ou *
ou des noms de structures de contrôle ou de structures syntaxiques
tels while ou block

et dont les feuilles (ou nœuds externes) représentent :
des opérandes tels un identificateur ou un littéral
ou des instructions élémentaires telle ’ ;’ (instruction vide)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 296 / 389

Analyse sémantique AST ou Arbre syntaxique abstrait

Un exemple d’AST d’expression I

+

1 *

2 ?

>

a 5

3 4

L’AST de gauche représente l’expres-
sion entière :

1 + 2 ∗ (a > 5?3 : 4)

Remarquons que l’AST est une simpli-
fication de l’arbre de dérivation (plus
de parenthèses ni de symboles non ter-
minaux)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 297 / 389

Analyse sémantique AST ou Arbre syntaxique abstrait

Un exemple d’AST d’itérative I

while

>

n 0

block

*=

cumul n

–

n

L’AST de gauche représente l’itéra-
tion de factorielle :

while(n>0){
cumul*=n;
n--;

}
Là encore, les accolades et des sym-
boles non terminaux tels que instruc-
tion ont disparus

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 298 / 389

Analyse sémantique AST ou Arbre syntaxique abstrait

Implémentation d’AST I

l’utilisation d’un langage à objet, tel C++, facilite l’implémentation
d’AST
l’héritage va permettre de spécialiser certains noeuds à partir de la
classe de base Noeud
ainsi la classe Expression permettra de représenter un opérateur et ses
n opérandes qui sont des sous-expressions
la vérification de la compatibilité des types :

des sous-expressions (addition de 2 nombres)
de chaque sous-expression avec l’opérateur (concaténation nécessite 2
chaînes)
l’éventuelle conversion implicite (prévue dans le langage) sera ajoutée
dans l’AST (en PHP, 11+"toto" vaut 11)

l’ajout d’attributs à des noeuds de l’AST est permis durant tout le
processus d’analyse (e.g. type de l’expression inféré pendant l’analyse
sémantique)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 299 / 389

Analyse sémantique AST ou Arbre syntaxique abstrait

Implémentation d’AST II

l’AST ainsi attribué est souvent appelé arbre décoré !
des méthodes génériques peuvent être définies dans la classe de base :

dans un compilateur,
string genererCode()
permettra de générer le code cible (assembleur ou langage
intermédiaire) de chaque noeud
dans un interpréteur,
void executer()
pour les instructions permettra de faire évoluer le "contexte
d’exécution",
Valeur evaluer()
pour une expression permettra de calculer la valeur de l’expression

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 300 / 389

Analyse sémantique Tables des symboles

Plan

4 Analyse sémantique
AST ou Arbre syntaxique abstrait
Tables des symboles
Contrôle de type
Calcul de type
Traduction dirigée par la syntaxe avec les Grammaires attribuées
Méthode de transformation des grammaires L-attribuées

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 301 / 389

Analyse sémantique Tables des symboles

Tables des symboles I

Dans les langages à blocs (C/C++, Java, ...), des variables peuvent
être définies localement au bloc :
for(int i=0; ...){...}
chaque bloc d’instruction doit donc être associé à une table des
symboles (identificateurs) permettant d’accumuler l’information sur
les symboles locaux à ce bloc (nom, type, valeur initiale, adresse ...)
lors de reconnaissance syntaxique d’un identificateur, la liaison
(binding) entre ce dernier et l’entrée dans une table des symboles le
représentant peut être complexe voire impossible suivant le langage
dans la plupart des langages interprétés, la liaison sera dynamique car
le symbole sera recherché en remontant les contextes d’exécution et
leurs tables des symboles :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 302 / 389

Analyse sémantique Tables des symboles

Tables des symboles II

extern int i; // liaison tardive
int f(int j){ // TDS1

int c=0;
for(int i=0; i<10; i++){ // TDS2

c+=j*i; //
}
printf("%d\n", i); // 5

}

dans les langages compilés, la plupart des liaisons sont efféctuées lors
de la compilation mais certaines liaisons dites "externes" sont
effectuées lors de l’édition de liens
l’implémentation de chaque table des symboles doit permettre un
accès efficace à un symbole par son nom s’il est présent
dans l’AST, chaque identificateur lié sera représenté par un couple
(référence à la TDS, nom ou clef dans cette TDS)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 303 / 389

Analyse sémantique Tables des symboles

Tables des symboles III

une implémentation en C++ triviale de TDS consiste à utiliser une
table associative ou dictionnaire :
std::map<std::string><Symbole>
Symbole agglomérera les différents attribut d’un symbole
Certains langages, comme le C, ont plusieurs catégories de noms
(types, vars, struct, ...) ce qui multiplie encore le nombre de TDS à
gérer

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 304 / 389

Analyse sémantique Contrôle de type

Plan

4 Analyse sémantique
AST ou Arbre syntaxique abstrait
Tables des symboles
Contrôle de type
Calcul de type
Traduction dirigée par la syntaxe avec les Grammaires attribuées
Méthode de transformation des grammaires L-attribuées

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 305 / 389

Analyse sémantique Contrôle de type

Contrôle de type I

les langages statiquement typés (C/C++, Java, ...) attribuent un
type invariable à chaque variable tandis que les langages
dynamiquement typés (PHP, JavaScript) permettent aux variables
d’évoluer également en type (pas seulement en valeur)
le contrôle de type consiste à vérifier qu’une expression contenant des
opérateurs et des opérandes (variables, appels de fonctions, littéraux)
puisse être calculée et soit cohérente
Ce contrôle est réalisé lors de la compilation pour les langages
statiquement typés et nécessite parfois des coercitions de type
(cast) implicites
dans les langages dynamiquement typés, une partie de ce contrôle
pourra être réalisé lors d’une première passe mais des coercitions
de types seront parfois réalisées lors de l’exécution

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 306 / 389

Analyse sémantique Contrôle de type

Exemple en C I

=

i *

+

100 j

3.1

Soit l’expression C
i = (100 + j) * 3.1
l’analyseur syntaxique a créé l’ AST
de gauche
en supposant que i, j sont des entiers,
il va falloir insérer des cast dans l’
arbre décoré de la page suivante afin
de réaliser les conversions nécessaires

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 307 / 389

Analyse sémantique Contrôle de type

Arbre décoré I

=

i (int)

multfloat

(float)

addint

100 j

3.1

L’addition de 10 avec j est réalisé avec
l’addition entière réalisée par l’Unité
Arithmétique et logique (ALU)
le résultat est casté en float
la multiplication flottante suivante est
effectué dans la FPU
le tout est casté en int afin d’être af-
fecté à i !

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 308 / 389

Analyse sémantique Contrôle de type

Exemple en js I

let j=1 ;
let i=(100+j)*3.1 ;

j est intialisé avec le number 1.0 (flottant double précision)
100 est converti en 100.0
l’addition flottante est effectuée (101.0)
la multiplication flottante puis l’affectation sont réalisées (313.1)
l’existence d’un unique type numérique simplifie le contrôle de type
la surcharge d’opérateurs rend le contrôle de type plus complexe

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 309 / 389

Analyse sémantique Calcul de type

Plan

4 Analyse sémantique
AST ou Arbre syntaxique abstrait
Tables des symboles
Contrôle de type
Calcul de type
Traduction dirigée par la syntaxe avec les Grammaires attribuées
Méthode de transformation des grammaires L-attribuées

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 310 / 389

Analyse sémantique Calcul de type

Calcul de type I

Certains langages utilisent des opérateurs de types afin de construire des
types complexes à partir des types primitifs et de ces opérateurs :

char * argv[]; // tableau de chaînes
float * pascal[5]; // tableau de ptr (tab) de flottant
struct { struct{ ... } champ1; int champ2[5];} // etc.

il faut définir dans le langage du compilateur ou de l’interpréteur, une
structure de données permettant de représenter tous les types
possibles
lors de la compilation du source, il faut construire tous les types
utilisés et contrôler la cohérence des types dans les expressions
là encore, le langage définit parfois des conversions implicites :

char t[] = {'H','e','l','l','o','\0'};
char *s = t; // autorisé !

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 311 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Plan

4 Analyse sémantique
AST ou Arbre syntaxique abstrait
Tables des symboles
Contrôle de type
Calcul de type
Traduction dirigée par la syntaxe avec les Grammaires attribuées
Méthode de transformation des grammaires L-attribuées

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 312 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Théorie I

Dans une grammaire attribuée, on associe à chaque symbole,
terminal et non terminal, de la grammaire, un ensemble d’attributs
Un attribut stocke une information typée (entier, chaîne de
caractères, . . .)
La notation d’un attribut val associé à un symbole X est X.val
La notation de l’ensemble des attributs associé à un symbole est
X{val1, val2, . . . , valk}
Un symbole sans attribut sera noté simplement X
A chaque règle de production, correspond une ou plusieurs règles
sémantiques indiquant le mode de calcul de certains des attributs
Bien entendu, le calcul de certains attributs dépend d’autres

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 313 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Théorie II

Lorsque la règle est récursive, même symbole en partie gauche et
droite de production, on indice les occurrences de droite pour les
distinguer de l’occurrence de gauche

Définition
Dans une grammaire attribuée, une règle sémantique associé à une règle
de production indique le mode de calcul d’un attribut d’une occurence de
symbole présent dans la production. Soit la production x0 → x1x2 . . . xn,
une règle sémantique s’écrit toujours :
xi .val = f (xi1.ai1, xi2.ai2, . . . , xik .aik).

Par exemple, le tableau suivant indique le calcul des attributs de la
grammaire :
GETF = ({0, 1, . . . , 9, +, ∗, (,)}, {E{val}, T{val}, F{val}}, R, E) avec les
règles syntaxiques et sémantiques suivantes :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 314 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Théorie III

Production Règles sémantiques
E → T E.val=T.val
E → E1 + T E.val=E1.val+T.val
T → F T.val=F.val
T → T1 ∗ F T.val=T1.val*F.val
F → (E) F.val=E.val
F → 0 F.val=0
F → 1 F.val=1
F → 9 F.val=9

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 315 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Grammaires attribuées avec Bison I

Avec Bison, chaque symbole est associé à une unique valeur
sémantique
Cette valeur est du type YYSTYPE qui peut être une union de
différents types
Ainsi, l’unique attribut de chaque symbole peut être un pointeur sur
une structure C ou une instance de classe C++, donc contenir
plusieurs informations typées
La notation de l’attribut associé à un symbole X dans une production
X → α est $$
La notation de l’attribut associé à une occurrence du symbole X dans
une production Y → d1d2d3Xd5d6 est $4, c’est à dire son indice dans
la partie droite
Dans une application de l’exemple précédent, l’analyseur lexical
fournit une valeur entière associée à chaque jeton CHIFFRE

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 316 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Grammaires attribuées avec Bison II

On peut également associer des règles d’action aux productions
Par exemple, on pourra afficher la valeur de l’attribut calculé
Pour cela, on augmente la grammaire d’un super axiome S avec les
règles :

S → E \n Afficher(E.val)
Voici le source Bison implémentant cet exemple :
%{ /* etf.y */
include <stdio.h> /* printf */
include <ctype.h> /* isdigit */
define YYSTYPE int /* YYSTYPE comme int */
int yylex(void);void yyerror(char *s);
%}
%token CHIFFRE
%%
liste : {/* chaine vide sur fin de fichier Ctrl-D */ }

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 317 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Grammaires attribuées avec Bison III

| liste ligne
;

ligne : '\n' {/* ligne vide */ }
| error '\n' {yyerrok; /* sync après \n */ }
| expr '\n' {printf("Résultat : %d\n",$1);}
;

expr : terme {$$ = $1; /* par défaut */ }
| expr '+' terme {$$ = $1 + $3;}
;

terme : fact {$$ = $1;}
| terme '*' fact {$$ = $1 * $3;}
;

fact : CHIFFRE {$$ = $1;}
| '(' expr ')' {$$ = $2;}
;

%%
int yylex(void){ // sans Flex

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 318 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Grammaires attribuées avec Bison IV

int c=getchar();while(c==' '||c=='\t')c=getchar(); /* filtrage
*/↪→

if (isdigit(c)){
yylval=c-'0';return CHIFFRE;

}
else return c;

}
void yyerror(char *s) {fprintf(stderr,"%s\n",s);}
int main(void){yydebug=0; return yyparse();}

Remarques
en Bison, on peut redéfinir YYSTYPE, soit par un #define, soit par
un %union{}
Si le type d’attribut est unique, alors il n’est pas nécessaire d’indiquer
le type des attributs des terminaux et des non terminaux
Sinon, définitions Bison :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 319 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Grammaires attribuées avec Bison V

%token<typeDeLUnion> JETON
%type<typeDeLUnion> nonterminal

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 320 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs synthétisés I

Définition
Un arbre syntaxique ou abstrait pour lequel on indique sur chaque noeud
les valeurs des attributs du symbole, est appelé arbre décoré.

Lors de l’analyse syntaxique, on construit très fréquemment un arbre
abstrait décoré représentant la structure syntaxique et certains éléments
sémantiques du programme

Définition
Dans une règle sémantique associé à une production, un attribut est
synthétisé lorsque il est défini par une fonction des valeurs de ses propres
attributs et/ou de ceux de ses fils. Pour une production x0 → x1x2 . . . xn,
on a donc : x0.val = f (xi1.ai1, xi2.ai2, . . . , xik .aik).

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 321 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs synthétisés II

C’est le cas de tous les attributs de l’exemple précédent. En
particulier, les attributs des chiffres sont des fonctions constantes
L’analyse ascendante, par exemple avec Bison, permet facilement de
calculer les attributs synthétisés
En particulier, si l’on considère un noeud de l’arbre abstrait comme
attribut, la construction de cet arbre abstrait peut être réalisée des
feuilles vers la racine
En analyse descendante, le calcul des attributs synthétisés doit se
faire lors de la remontée postfixe dans le parcours en profondeur

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 322 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs synthétisés III

Définition
Une grammaire est S-attribuée ssi toutes les règles sémantiques calculent
des attributs synthétisés.

Les grammaires S-attribuées peuvent facilement être implémenthées avec
Bison

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 323 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs hérités I

Définition
Dans une règle sémantique associé à une production, un attribut est hérité
lorsque il est défini par une fonction des attributs de son père et/ou de ses
frères dans l’arbre syntaxique.

L’évaluation de certains attributs hérités (dépendant du père et des frères
de gauche (resp. de droite)) est facile en analyse descendante. Il suffit de
les calculer lors du parcours en profondeur. Cela devient plus complexe en
analyse ascendante.

Définition
Une grammaire est L-attribuée ssi toutes les règles sémantiques calculent
des attributs synthétisés et des attributs hérités ne dépendant que
d’attributs de leur père et/ou de leurs frères de gauche (Left).

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 324 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs hérités II

En analyse ascendante LR, rappelons que parallèlement à la pile des
symboles, une pile des attributs (valeurs sémantiques) existe
De plus, rappelons que le symbole non terminal de gauche n’est réduit
qu’après que tous ses fils aient été reconnus
Par conséquent, il n’est pas possible d’hériter directement de son père
Par contre, tous les frères gauches du symbole dont l’attribut doit
être calculé sont sur la pile au moment de la réduction
On peut donc calculer facilement les attributs ne dépendant que des
attributs de frères gauches
Par exemple, une déclaration simple d’un identificateur entier donne
lieu aux règles suivantes :

Production Règles sémantiques Commentaire
D→INT ID ; INT.s="entier", ID.h=INT.s h est hérité, s synth

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 325 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs hérités III

Pour un attribut hérité du père, l’astuce consiste à aller chercher dans
la pile l’attribut d’un “oncle” de gauche
Un exemple classique concerne l’attribution d’un type à une liste
d’identificateurs dans une déclaration, comme par exemple en C :
int i,j,k;
Soit Gtype = ({INT , CHAR, ID{h},′ ,′ ,′ ;′ }, {D, L{h}, T{s}}, R, D)
Chaque attribut est une chaine de caractères indiquant un type de
données entier ou caractère
Cet attribut est nommé s et est synthétisé pour T, tandis qu’il est
nommé h et est hérité pour L et ID
On a les règles de production R, et les règles sémantiques suivantes :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 326 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs hérités IV

Production Règles sémantiques Commentaire
D→T L L.h=T.s h est hérité, s synth
T→INT T.s="entier" s est une chaîne
T→CHAR T.s="caractère" s est une chaîne
L→ID ID.h=L.h hérite du père
L→L1 , ID ID.h=L.h, L1.h=L.H héritent du père

Le premier héritage (L.h=T.s) concerne un frère gauche et peut donc
être réalisé en Bison
Par contre, les trois dernières règles sémantiques d’héritage du père
(ID.h=L.h, ID.h=L.h, L1.h=L.H) ne peuvent être mises en oeuvre
avec Bison
regardons le contenu de la pile au moment où une production de L est
en cours de reconnaissance

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 327 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs hérités V

On a forcément le symbole T avec son attribut T.s, dans l’élément de
pile situé sous le premier ID à être réduit (L→ID)
Par conséquent, l’attribut d’ID peut être affecté de
pileAttribut[sommet − 1], c’est-à-dire de l’attribut de son oncle T
Par la suite, les réductions par L → L1, ID pourront de la même façon
affecter à l’attribut d’ID, la valeur de pileAttribut[sommet − 3]
Nous avons donc remplacé les règles sémantiques x=L.h par x=T.s.
On n’hérite donc plus de son père mais du frère gauche de son père
Cette transformation est possible, avec Bison, en accédant à l’élément
de pile correspondant à T et qui est symbolisé par $0
Attention, cette méthode ne peut toutefois pas être généralisé à tous
les héritages de père
Il faut étudier soigneusement les différents états que peut prendre la
pile au moment de l’exécution de la règle

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 328 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs hérités VI

Une implémentation Bison de la grammaire précédente de
déclarations est donnée ci-après :

L’analyseur lexical
%{ /* declar.l */
define YYSTYPE char * /* YYSTYPE chaîne */
include "y.tab.h" /* JETONS et yylval */
%}
%option noyywrap
lettre ([a-zA-Z])
chiffre ([0-9])
%%
[\t]+ {/* filtrer les blancs */ }
int {return INT;}
char {return CHAR;}
{lettre}({lettre}|{chiffre})* {yylval=yytext;return ID;}
.|\n {return yytext[0]; /* indispensable ! */ }

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 329 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs hérités VII

%%

L’analyseur syntaxique
%{ /* declar.y */
include <stdio.h>
include <string.h>
define YYSTYPE char * /* YYSTYPE chaine */
int yylex(void);void yyerror(char *s);
int nb; char affich[1024];
%}
%token INT CHAR ID /* les jetons (tous chaines) */
%%
inter : {/* chaine vide sur fin de fichier Ctrl-D */ }

| inter {affich[0]='\0';} ligne
;

ligne : '\n' {/* ligne vide : expression vide
*/ }↪→

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 330 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs hérités VIII

| error '\n' {yyerrok; /* après la fin de
ligne */ }↪→

| declar '\n' {printf("%i déclaration(s) :
%s\n",nb,affich);↪→

affich[0]='\0';
}
;

declar : type liste
;

type : INT {$$="entier";}
| CHAR {$$="caractère";}
;

liste : ID {
nb=1;char couple[128];
sprintf(couple,"(%s,%s) ",$1,$0); /* héritage */
strcat(affich,couple);

}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 331 / 389

Analyse sémantique Traduction dirigée par la syntaxe avec les Grammaires attribuées

Attributs hérités IX

| liste ',' ID {
nb++;char couple[128];
sprintf(couple,"(%s,%s) ",$3,$0); /* héritage */
strcat(affich,couple);

}
;

%%
void yyerror(char *s) {fprintf(stderr,"%s\n",s);}
int main(){yydebug=0;return yyparse();}

L’exécution de l’exécutable obtenu donne :

int i, j2, k,l
4 déclaration(s) : (i,entier) (j2,entier) (k,entier) (l,entier)
char c
1 déclaration(s) : (c,caractère)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 332 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Plan

4 Analyse sémantique
AST ou Arbre syntaxique abstrait
Tables des symboles
Contrôle de type
Calcul de type
Traduction dirigée par la syntaxe avec les Grammaires attribuées
Méthode de transformation des grammaires L-attribuées

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 333 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Méthode de transformation des grammaires L-attribuées I

La méthode précédente, simple et pratique, ne fonctionne pas toujours.
Par exemple, soit les productions suivantes :

Production Règles sémantiques Commentaire
S → aAC C.h=A.s h est hérité, s synth
S → bABC C.h=A.s h est hérité, s synth
C → c C.s=f(C.h) calcul sur h

Au moment de réduire par C → c , le calcul de C.s nécessite l’accès à
C.h c’est-à-dire A.s
Malheureusement, il est impossible de savoir si cet attribut A.s se
situe en pileAttribut[sommet − 1] ou en pileAttribut[sommet − 2] !
Par conséquent, une méthode générique de traitement des attributs
hérités consiste à faire précéder chaque symbole ayant un attribut
hérité par un non terminal “marqueur” dans chaque production

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 334 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Méthode de transformation des grammaires L-attribuées
II

Ces marqueurs ont une seule ε-production et ne sont présents que
pour servir d’emplacement dans la pile d’attributs pour contenir les
attributs hérités
Cette méthode appliquée aux productions précédentes donne :

Production Règles sémantiques Commentaire
S → aAM1C C .h = M1.s, M1.h = A.s h est hérité, s synth
M1 → ε M1.s = M1.h recopie
S → bABM2C C .h = M2.s, M2.h = A.s h est hérité, s synth
M2 → ε M2.s = M2.h recopie
C → c C .s = f (C .h) calcul sur h

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 335 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Méthode de transformation des grammaires L-attribuées
III

Ainsi, lorsque la réduction par C → c a lieu, il suffit de regarder en
pileAttribut[sommet − 1] pour atteindre C.h, c’est-à-dire M1.s ou
bien M2.s
Attention, le calcul des Mi .h est bien entendu adapté : M1.h = A.s
devient M1.h = pileAttribut[sommet − 1] tandis que M2.h = A.s
devient M2.h = pileAttribut[sommet − 2]
Sur le plan théorique, la méthode échoue parfois lorsque l’adjonction
des non terminaux marqueurs et de leurs production génère une
grammaire non LR
Cela n’arrive que très rarement dans la pratique
Enfin, dans deux cas, il n’est pas nécessaire d’introduire des
marqueurs :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 336 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Méthode de transformation des grammaires L-attribuées
IV

dans une règle G → D1 . . . avec D1.h = G .h, introduire un marqueur
devant D1 ne sert à rien sauf quand G est l’axiome ;
dans une règle G → D1D2 . . . Dn avec Di .h = Di−1.h, introduire un
marqueur devant Di ne sert à rien.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 337 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Un exemple I

Soit une grammaire d’expressions booléennes à évaluation partielle
(ou court-circuit)
Dans un interpréteur de ces expressions, il n’est pas nécessaire
d’évaluer la suite de l’expression lorsque le résultat est déjà connu
Pour réaliser cette évaluation partielle :

l’attribut synthétisé val remontera la valeur calculée (0 pour faux, 1
pour vrai),
tandis que l’attribut hérité cal sert uniquement à indiquer s’il faut
continuer à calculer le résultat de l’expression courante (dans ce cas sa
valeur est 1), ou bien s’il est déjà connu (court-circuit et sa valeur est
0)
Remarquons qu’en cas de court-circuit, l’analyse syntaxique sera quand
même effectuée mais pas l’évaluation.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 338 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Un exemple II

Dans un interpréteur, l’unique intérêt de l’évaluation partielle consiste
en la possibilité de mettre dans la même expression des conditions
causales, par exemple, if (!feof(f) && fgetchar(f)!='x') ...

Production Règles sémantiques Commentaire
S → E S.val=E.val, E.cal=1 au début, il faut calculer
E → 1 E.val=1 calcul de base
E → 0 E.val=0 calcul de base
E → E1||E2 E1.cal = E .cal , E2.cal = (E .cal?!E1.val : 0) transmission du court-circuit

E .val = (E .cal?(E1.val?1 : E2.val) : 99) calcul de l’expression
E →!E1 E1.cal = E .cal , E .val = (E .cal?!E1.val : 98) calcul de l’expression
E → (E1) E1.cal = E .cal , E .val = (E .cal?E1.val : 97) transmission et calcul

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 339 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Un exemple III

Les valeurs 99, 98 et 97 signalent des valeurs farfelues qui n’ont
aucune chance d’être remontées jusqu’à l’axiome : en effet, lorsque
E.cal est faux E.val n’a aucun intérêt car le résultat final est déjà
connu !
La transformation de cette grammaire L-attribuée par l’introduction
de marqueurs donne les règles sémantiques suivantes
Remarquons qu’un marqueur Mi précède toujours une expression E
dans la pile, ce qui permet d’obtenir facilement l’attribut hérité cal

Production Règles sémantiques Commentaire
S → M1E S.val = E .val , M1.cal = 1; E .cal =

M1.val
au début, il
faut calculer

M1 → ε M1.val = M1.cal transmission
E → 1 E.val=1 calcul de base

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 340 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Un exemple IV

E → 0 E.val=0 calcul de base
E → E1||M2E2 E1.cal = E .cal , M2.cal =

(E .cal?!E1.val : 0), E2.cal = M2.val
transmission
du court-
circuit

E .val = (E .cal?(E1.val?1 : E2.val) :
99)

calcul de l’ex-
pression

M2 → ε M2.val = M2.cal transmission
du court-
circuit

E →!M3E1 M3.cal = E .cal , E1.cal =
M3.val , E .val = (E .cal?!E1.val : 98)

calcul de l’ex-
pression

M3 → ε M3.val = M3.cal transmission
du court-
circuit

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 341 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Un exemple V

E → (M4E1) M4.cal = E .cal , E1.cal =
M4.val , E .val = (E .cal?E1.val : 97)

transmission

M4 → ε M4.val = M4.cal transmission
du court-
circuit

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 342 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Un exemple VI

Remarquons que nous avons introduit les marqueurs Mi afin que
l’héritage provienne toujours d’un frère gauche ou d’un oncle gauche
Chacun des marqueurs n’utilise en fait qu’un seul attribut puisqu’il
recopie toujours Mi .cal dans Mi .val
De plus, l’attribut E .cal provient toujours d’un Mi .cal
Aussi, plutôt que d’utiliser les notations théoriques un peu lourdes, on
utilise une syntaxe à la Bison avec des $i pour représenter les
attributs sur la pile

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 343 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Un exemple VII

Production Règles sémantiques Commentaire
S → M1E $$=$2 résultat final
M1 → ε $$=1 initialisation
E → 1 $$=1 calcul
E → 0 $$=0 calcul
E → E1||M2E2 $$ = ($0?($1?1 : $4) : 99) calcul de l’expression
M2 → ε $$ = ($ − 2?!$ − 1 : 0) transmission du court-circuit
E →!M3E1 $$ = ($0?!$3 : 98) calcul de l’expression
M3 → ε $$ = $ − 1 on recopie le marqueur précédent
E → (M4E1) $$ = ($2?$3 : 97) transmission
M4 → ε $$ = $ − 1 on recopie le marqueur précédent

Ce qui donne en Bison :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 344 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Un exemple VIII

/* evalcc.y */
%{

int yylex(void);
void yyerror(char *s);
%}

/* définition de YYSTYPE comme int par défaut */
/* définition des précédences */

%left '|'
%right '!'
%%
liste : /* chaine vide sur fin de fichier Ctrl-D */

| liste ligne
;

ligne : '\n' /* ligne vide : expression vide */
| error '\n' {yyerrok; /* après la fin de ligne */ }
| m1 exp '\n' {printf("Résultat : %d\n",$2);}
;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 345 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Un exemple IX

m1 : {$$=1; /* $$=vrai */ }
;

exp : exp '|' m2 exp {$$=($0?($1?2:$4):99); /* un peu
condensé ! */ }↪→

| '!' m3 exp {$$=($0?!$3:98); /* $0 est l'attribut
de mi */ }↪→

| '(' m4 exp ')' {$$=($2?$3:97);}
| '1' {$$=1; /* $$=vrai */ }
| '0' {$$=0; /* $$=faux */ }
;

m2 : {$$=($-2?!$-1:0);}
;

m3 : {$$=$-1;}
;

m4 : {$$=$-1;}
;

%%

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 346 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Un exemple X

int yylex(void) {int c; while(((c=getchar())==' ') || (c=='\t'));
return (c);}↪→

void yyerror(char *s) {fprintf(stderr,"%s\n",s);}
int main(void){/*yydebug=1*/ ; return yyparse();}

Dans cet évalaluateur à court-circuit, nous avons donné la valeur 2
lorsqu’un court-circuit était réalisé grâce au ou logique. Voici quelques
exécutions :

0|0|1|0
Résultat : 2
0|0|0|0|1
Résultat : 1
(!!1)
Résultat : 1
!(1|0)|0
Résultat : 0

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 347 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Exercice I

Exercice
Compléter l’évaluateur booléen en ajoutant la règle du et logique à court
circuit. Compléter le source Bison.

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 348 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Exercice II

E → E1&&M5E2 $$ = ($0?($1?$4 : 0) : 96) calcul de l’expression
M5 → ε $$ = ($ − 2?$ − 1 : 0) transmission du court-circuit

Ce qui donne en Bison :
/* evalccet.y */

%{
int yylex(void);
void yyerror(char *s);
%}

/* définition de YYSTYPE comme int par défaut */
/* définition des précédences */

%left '|'
%left '&'
%right '!'
%%
liste : /* chaine vide sur fin de fichier Ctrl-D */

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 349 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Exercice III

| liste ligne
;

ligne : '\n' /* ligne vide : expression vide */
| error '\n' {yyerrok; /* après fin de ligne */ }
| m1 exp '\n' {printf("Résultat : %d\n",$2);}
;

m1 : {$$=1; /* $$=vrai */ }
;

exp : exp '|' m2 exp {$$=($0?($1?2:$4):99); /* condensé */ }
| '!' m3 exp {$$=($0?!$3:98); /* $0 attribut mi */ }
| '(' m4 exp ')' {$$=($2?$3:97);}
| '1' {$$=1; /* $$=vrai */ }
| '0' {$$=0; /* $$=faux */ }
| exp '&' m5 exp {$$=($0?($1?$4:0):96); /* condensé */ }
;

m5 : {$$=($-2?!$-1:0);}
;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 350 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Exercice IV

m2 : {$$=($-2?!$-1:0);}
;

m3 : {$$=$-1;}
;

m4 : {$$=$-1;}
;

%%
int yylex(void) {int c; while(((c=getchar())==' ') || (c=='\t'));

return (c);}↪→

void yyerror(char *s) {fprintf(stderr,"%s\n",s);}
int main(void){/*yydebug=1*/ ; return yyparse();}

Voici quelques exécutions :

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 351 / 389

Analyse sémantique Méthode de transformation des grammaires L-attribuées

Exercice V

0|1&0|1
Résultat : 1
0&1&1|1&0
Résultat : 0
1&0|1&1|0|1
Résultat : 2

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 352 / 389

Génération de code

Plan

5 Génération de code

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 353 / 389

Génération de code Introduction

Plan

5 Génération de code
Introduction
Machine virtuelle à pile
Développement d’un compilateur

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 354 / 389

Génération de code Introduction

Introduction I

On utilise généralement un langage intermédiaire entre le langage évolué
et le langage de la machine hôte :

Le langage intermédiaire est souvent soit un langage de machine
virtuelle à pile, soit un langage d’arbre représenté par une notation
postfixée
Deux frontaux (“front-end”) de gcc et g++, qui traduisent le fichier
source en une représentation interne arborescente commune : Register
Transfer Language (RTL)
Inspiré de Lisp ce langage a une représentation interne, structures
chainées par pointeurs, et textuelle aux fins de débogage
Pour lire cette apparence textuelle :
gcc -dr exrtl.c; cat exrtl.c.rtl
Cette représentation dépend tout de même de la machine cible et
n’est donc pas totalement portable

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 355 / 389

Génération de code Introduction

Introduction II

La seconde partie finale (“back-end”, bulk compiler), est commune à
gcc et g++ pour une machine donnée.
Le byte-code de Java est un langage universel qu’interprète une
machine virtuelle
La portabilité des .class est donc totale à condition d’avoir un
interprèteur (java, machine virtuelle) sur la machine cible
Or tous les navigateurs Internet ont un interpète java
Le langage byte-code est assez proche d’un langage machine, à ceci
près qu’il utilise beaucoup la pile et des variables locales plutôt que
des registres
Il contient environ 200 instructions, ce qui permet de stocker le code
opération sur un octet
Le P-code du Pascal est l’un des premiers langages intermédiaires à
avoir été utilisé par un compilateur

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 356 / 389

Génération de code Introduction

Introduction III

C’est un langage pour machine abstraite à pile (on voit la filiation
avec Java)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 357 / 389

Génération de code Machine virtuelle à pile

Plan

5 Génération de code
Introduction
Machine virtuelle à pile
Développement d’un compilateur

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 358 / 389

Génération de code Machine virtuelle à pile

Machine virtuelle à pile I
Une machine, virtuelle ou abstraite, à pile est constituée :

d’une mémoire d’instructions et d’un compteur ordinal CO,
d’une mémoire de données,
d’une pile.

Les instructions de la mémoire d’instructions sont exécutées en séquence.
Les différentes instructions sont rangées en catégories :

manipulation de la pile : empiler, dépiler des constantes ou des
données de la mémoire, opérer sur le ou les 2 sommets de pile et le ou
les remplacer par le résultat.
contrôle du flux d’instructions : branchements conditionnels, appels et
retours de procédure.

L’utilisation de la pile est continuelle puisque les opérandes sont stockés
dessus pour les opérations arithmétiques, logiques, de branchements ou
d’appels. Pour plus d’informations sur ce type de langage, voir par exemple
l’ouvrage [5].

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 359 / 389

Génération de code Développement d’un compilateur

Plan

5 Génération de code
Introduction
Machine virtuelle à pile
Développement d’un compilateur

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 360 / 389

Génération de code Développement d’un compilateur

Développement d’un compilateur I

l’étude du langage source est fondamentale mais n’est pas suffisante
le choix d’un “bon” langage intermédiaire et du langage de
développement du compilateur est important
il est impensable d’écrire un compilateur en langage d’assemblage
Dans l’environnement Unix, l’écriture en C ou C++ permet d’obtenir
une excellente efficacité (le système est lui-même majoritairement
écrit en C)
L’utilisation d’un langage intermédiaire facilite l’écriture de la partie
finale du compilateur pour différentes machines
Dans la famille de compilateurs gnu (gcc, . . .), on peut spécifier la
correspondance des instructions RTL et de la machine cible dans un
fichier, ce qui permettra de générer du code machine sans réécrire
cette partie finale !

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 361 / 389

Génération de code Développement d’un compilateur

Composition de traducteurs I

Un compilateur peut être représenté par une forme géométrique en T,
notée SIO, où S est le langage source, O le langage objet, et I le
langage d’implémentation du compilateur
Par exemple, un compilateur écrit en C++ traduisant du Pascal en C
est noté : PascalC++C
Ces formes en T peuvent être imbriquées, représentant en ceci la
composition de compilateurs
Ainsi, si nous disposons d’un second compilateur C++ en langage
machine, la compilation de PascalC++C par C++MM fournit un
compilateur de Pascal en C écrit en langage machine
Cette technique de compilation de compilateur a souvent été utilisée
dans la technique d’auto-amorçage

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 362 / 389

Génération de code Développement d’un compilateur

Composition de traducteurs II

Pour un langage L dont on souhaite écrire un compilateur pour la
machine M, cette technique consiste à écrire un premier compilateur
grossier en L L’LM, puis à traduire à la main ce compilateur dans le
langage M, on obtient donc L’MM
Ensuite, on utilise ce premier compilateur grossier pour recompiler le
compilateur écrit en L : ce compilateur s’est compilé lui-même !
De la même façon, le premier interpréteur Lisp a été écrit en Lisp puis
traduit à la main
De nouvelles modifications du compilateur sont ensuite utilisées pour
l’affiner
Les techniques de compilation de compilateur sont également utilisées
pour les compilateurs croisés
Supposons que l’on a écrit un compilateur L en L générant du code
pour la machine N : LLN

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 363 / 389

Génération de code Développement d’un compilateur

Composition de traducteurs III

Si l’on a à sa disposition un compilateur de L sur une autre machine
M, LMM, alors on peut très bien obtenir une version du compilateur
fonctionnant sur la machine N de la façon suivante :

1 compiler LLN gâce à LMM : on obtient LMN qui est un compilateur
2 compiler encore une fois LLN gâce à ce nouveau compilateur LMN : on

obtient donc LNN.
Remarquons que l’on a conçu un compilateur tournant sur la machine
N, sans jamais utiliser la machine N
Il suffit de connaître les spécifications de cette machine avant même
qu’elle ne soit construite
Pour ces deux raisons, auto-amorçage et compilation croisée, mais
aussi afin de tester la puissance du langage en cours de
développement, il est souvent intéressant d’écrire un compilateur dans
son propre langage source

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 364 / 389

Interprétation

Plan

6 Interprétation

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 365 / 389

Interprétation Introduction

Plan

6 Interprétation
Introduction
Projet : un interprète récursif
Sprint 2 : exécution
Sprint 3

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 366 / 389

Interprétation Introduction

Introduction à l’Interprétation I

Dans cette section nous supposons une interprétration du langage :
A la fin de la phase d’analyse sémantique et éventuellement de
génération de code, nous obtenons :

soit un fichier de code intermédiaire (fichier .class Java)
soit un arbre décoré associé à des tables de symboles

il convient dès lors d’exécuter ce code grâce au moteur d’exécution

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 367 / 389

Interprétation Introduction

Exemple : la machine virtuelle Java I

Java Virtual Machine (JVM) permet d’exécuter du byte-code Java :
la JVM est lancé grâce à la commande : java Toto qui exécutera le
fichier compilé Toto.class
elle contient un environnement d’exécution (Runtime Environment)
composé des librairies Java nécessaires (System, ...)
plusieurs versions de JVM existent utilisant des architectures
d’exécution différentes :

simple interpréteur exécutant le byte code
Just In Time Compiler, qui compile en langage machine le byte code au
lancement puis qui exécute ce code binaire. Cet algorithme est plus
efficace pour le code redondant (corps de boucle)
dynamic adaptive compilers (DAC) commence par interpréter le byte
code et en stocke une version binaire native. Lors d’une seconde passe
sur une séquence d’instructions, c’est la version binaire qui est exécutée.
Cela nécessite de stocker les deux versions (byte code et binaire natif)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 368 / 389

Interprétation Introduction

Exemple : la machine virtuelle Java II

enfin way-ahead-of-time (WAT) compile le byte code au moment de la
compilation javac du source et réalise l’édition de liens avec une
librairie au format binaire (langage compilé)

en plus de l’exécution, la JVM assure le Garbage Collecting
(ramasse-miettes) qui permet de désallouer les objets non référencés
elle gère également le mécanisme d’exception

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 369 / 389

Interprétation Projet : un interprète récursif

Plan

6 Interprétation
Introduction
Projet : un interprète récursif
Sprint 2 : exécution
Sprint 3

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 370 / 389

Interprétation Projet : un interprète récursif

Projet : un interprète récursif I

on souhaite prototyper un interprète d’un langage simple et connu en
s’appuyant sur l’arbre décoré associé à un script
on utilisera une méthode agile utilisant des sprints courts pour obtenir
des versions incrémentales
le langage de programmation se basera sur la syntaxe du C
le principe d’interprétation consiste à parcourir récursivement l’arbre
décoré (séquence d’instructions)
les ruptures de séquences (itérations, appels de fonctions) nécessitent
de conserver une pile des contextes (adrs retour, paramètres, var.
locales)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 371 / 389

Interprétation Projet : un interprète récursif

Sprint 1 : AST I

On souhaite modéliser un arbre de syntaxe abstrait sur un
sous-langage basique
Un seul type int est défini
4 opérateurs arithmétiques +,-,*,/
l’affectation et les comparaisons
une instruction echo <exp>;
pas de fonction ni bloc : un script constitué d’une séquence
d’instructions

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 372 / 389

Interprétation Projet : un interprète récursif

Réalisation du Sprint 1 I

Analyseur syntaxique sur une première passe et construction de
l’AST : SeqInston * root;
Création d’une hiérarchie de classes C++ héritant de la classe
abstraite de base Noeud
permettant une séquence d’instructions SeqInston
Chaque instruction (Inston) peut être :

Une déclaration (Declaration) de variable (int i;)
Une Expression suivie d’un ;
Une affectation (Affectation) d’expression à une variable (Lvalue)
Une instruction echo

Une expression peut être simple (ValInt, Designation) ou
complexe (Binaire) utilisant un opérateur infixe
Une fois l’AST récupéré, ce premier sprint consistera simplement à
reconstruire la chaîne de la séquence d’instructions et à l’afficher

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 373 / 389

Interprétation Projet : un interprète récursif

Un exemple I

Soit le code source suivant :
int i; i=5+3*2;
int __aZ12_36; __aZ12_36=4;
echo __aZ12_36+i;

L’analyse de cet exemple donne :
Sprint1$ intc exemple.c
int i;
i=(5+(3*2));
int __aZ12_36;
__aZ12_36=4;
echo (__aZ12_36+i);
Sprint1$

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 374 / 389

Interprétation Projet : un interprète récursif

Hiérarchie de classes I

abstract class Noeud { // tout élément de l'AST est un Noeud
int jeton;
Noeud *parent;
virtual string toString();

}
class SeqInston : Noeud {

list<Inston *> *instons;
Valeur* exec();
string toString();

}
abstract class Inston : Noeud {

virtual Valeur * exec()=0;
virtual string toString();

}
class Declaration: Inston {

string *type;
string *id;

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 375 / 389

Interprétation Projet : un interprète récursif

Hiérarchie de classes II

Valeur * exec()=0;
string toString();

}
class Affectation: Inston {

Lvalue *lvalue;
Expression * exp;
...

}
abstract class Expression : Inston {

virtual Valeur * calculer()=0;
}
class Binaire : Expression {

char op; // opérateur +,-,*,/
Expression *gauche; // sous-exp de gauche
Expression *droite; // sous-exp de droite
Valeur * calculer();

}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 376 / 389

Interprétation Projet : un interprète récursif

Hiérarchie de classes III

class ValInt: public Valeur {
int valeur; // attribut spécifique de ValInt
ValInt(int i):Valeur('I'), valeur(i){}
int getInt();
Valeur * calculer(){return new ValInt(valeur);}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 377 / 389

Interprétation Projet : un interprète récursif

L’analyseur syntaxique I

%%
liste : { // init. : création d'une liste en fond de pile

root=$$=new SeqInston(); // création d'une séquence vide
}
| liste inston { // au moins une inston

if(erreur){ // pour ne pas ajouter l'error
erreur=false;

} else { // inston normale
$$=$1->ajouter($2); // ajout d'une inston à la séquence

}
}
;

inston : error ';' { // synchro sur prochaine inston
erreur=true;
yyerrok;

}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 378 / 389

Interprétation Projet : un interprète récursif

L’analyseur syntaxique II

| lvalue '=' exp ';' { // affectation vue comme inston
$$ = new Affectation($1,$3);

}
| exp ';' {

$$=$1; // une expression ; est une instruction
}

| TYPE ID ';' { $$=new Declaration($1,$2);
}

| MMECHO exp ';' { $$=new Echo($2);
}

;
lvalue : ID {

$$=new Lvalue($1); // chemin d'accès m.t[2]
}
;
exp : exp '+' exp {

$$=new Binaire('+', $1, $3);

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 379 / 389

Interprétation Projet : un interprète récursif

L’analyseur syntaxique III

}
| exp '-' exp {

$$=new Binaire('-', $1, $3);
}

| '-' exp %prec MOINSUNAIRE {
$$=new Binaire('-', new ValInt(0) , $2);

}
| exp '*' exp {

$$=new Binaire('*', $1, $3);
}

| exp '/' exp {
$$=new Binaire('/', $1, $3);

}
| LITENT { $$=new ValInt($1);

}
| ID { $$=new Designation(*$1); // ID est de type string*

}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 380 / 389

Interprétation Projet : un interprète récursif

L’analyseur syntaxique IV

;
%%
int main (int argc, char ** argv, char **env) {

//yydebug=1;
if (argc>1){ // $ intc toto.c

yyin=fopen(argv[1],"r");
if (yyin==NULL){

perror("fopen");
exit(errno);

}
}
int res=yyparse(); // lancement du parser, récup. AST dans la

var globale root↪→

if (res!=0){
cerr<<"Erreur de syntaxe !"<<endl;
exit(1);

}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 381 / 389

Interprétation Projet : un interprète récursif

L’analyseur syntaxique V

cout<< "FIN EXEC: ast =" << endl << root->toString(); //
affichage de l'arbre↪→

}

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 382 / 389

Interprétation Sprint 2 : exécution

Plan

6 Interprétation
Introduction
Projet : un interprète récursif
Sprint 2 : exécution
Sprint 3

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 383 / 389

Interprétation Sprint 2 : exécution

Sprint 2 : exécution I

On conserve le même mini-langage mais on veut pouvoir exécuter le
script
Pour cela, il faut gérer une table des symboles locaux à la séquence
d’instruction : structure en bloc {...} avec une table des symboles
locale à chaque bloc. Plus une table des symboles pour les
identificateurs globaux. On n’utilisera qu’un seul espace de nom pour
les variables et les fonctions (pas de struct ou étiquettes de goto)
La liaison entre un identificateur et sa définition sera réalisée lors de
l’analyse sémantique.
Puisqu’il n’y a pas de rupture de séquence, pas besoin de pile de
contextes
l’exécution sera réalisée par parcours récursif de l’AST avec une seule
table de symboles globaux

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 384 / 389

Interprétation Sprint 3

Plan

6 Interprétation
Introduction
Projet : un interprète récursif
Sprint 2 : exécution
Sprint 3

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 385 / 389

Interprétation Sprint 3

Sprint 3 : fonctions I

On crèe le bloc et la fonction dont les identificateurs sont stockés
dans la table des symboles globaux
On ajoute l’appel de fonction qui nécessite un pile de contextes
mémorisant l’adrs de retour les paramètres passés et les variables
automatiques lié à cet appel
le compteur ordinal est matérialisé par un pointeur sur l’Instruction
suivante
la structure d’exécution est constituée de cette pile de contexte et du
compteur ordinal : pas de structure mémoire (sprint 4 ...)

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 386 / 389

Conclusion

Plan

7 Conclusion

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 387 / 389

Conclusion

Conclusion I

Quelques remarques sur ce cours :
Théorie des langages formels et programmation efficace
Découpage entre les phases d’analyse qui n’est pas toujours vérifié
dans la pratique (anal. lex., synt. et sém en 1 passe)
Nombreux outils (ANTLR, JITC, ...)
Permet de comprendre les concepts fondamentaux des langages (à
classes, à prototypes, impératifs, fonctionnels)
L’efficacité des outils développé influe sur l’orientation des
développements professionnels (V8 Javascript Engine qui a propulsé
Node et Chrome et les front-end js (Angular, React, Vue))

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 388 / 389

Conclusion

Bibliographie I

Grune, Bal, Jacobs, Langendoen, Compilateurs, Dunod (2002), col.
Sciences Sup., “très technique, beucoup d’algos, 774 pages”

Aho, Sethi, Ullman, Compilateurs, Principes, Techniques et outils,
Interéditions (1989), col. IIA, “La bible, indispensable pour la
compilation, aspect info., 870 pages”

S. B. Lippman, Le modèle objets du C++, Int. Thomson Pub. (1996),
“Très technique, peu pédagogique, les entrailles du C++, 260 pages”

D. Flanagan, Java in a nutshell, O’Reilly Ed., 2nd ed. (1997), “Le livre
de référence sur java, 600 pages”

J. Meyer, T. Downing, Java Virtual Machine, O’Reilly Ed. (1997), “Le
byte-code de java, 420 pages”

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 389 / 389

Conclusion

Bibliographie II

A. Ellis, B. Stroustrup, The annotated C++ reference manual,
Addison Wesley Ed. (1990), “L’ouvrage de référence sur le C++ et
son implémentation, 440 pages”

J. R. Levine, T. Mason, D. Brown, Lex et Yacc, O’Reilly Ed. (1994),
“Pour apprendre à programmer en lex et yacc, 330 pages”

Salomaa, Formal Languages, Academic Press (1973), col. ACM
monograph series, “Très formel, en anglais, aspect maths, 320 pages”

Michel Meynard (UM) Analyse Syntaxique et Interprétation HAI601I Univ. Montpellier 390 / 389

	Introduction
	Objectifs
	Rappels théoriques
	Langages réguliers : propriétés et caractérisations
	Langages algébriques : propriétés et caractérisations
	Types de traducteurs
	Modèle classique de compilation

	Analyse lexicale
	Reconnaissance d'un mot par un AFD
	Implémentation des Automates Finis Déterministes AFD
	Analyseur lexical
	Implémentation des analyseurs lexicaux
	Un langage et un outil pour l'analyse lexicale : flex
	Syntaxe et sémantique des sources Flex
	La commande flex
	Actions C++
	Liaison avec un analyseur syntaxique
	Algorithmique
	Déterminisation
	Minimisation

	Analyse syntaxique
	Analyse descendante récursive
	Analyse descendante par automate à pile
	Algorithmique en analyse descendante
	Grammaires LL(1)
	Conclusion sur l'analyse descendante
	Un langage et un outil pour l'analyse syntaxique ascendante : bison et yacc
	Syntaxe et sémantique des sources bison
	Un exemple bison complet : une calculette
	Analyse ascendante par automate à pile
	Algorithmique
	Construction de la collection canonique SLR
	Construction des tables d'analyse SLR
	Les conflits et leur résolution par bison

	Analyse sémantique
	AST ou Arbre syntaxique abstrait
	Tables des symboles
	Contrôle de type
	Calcul de type
	Traduction dirigée par la syntaxe avec les Grammaires attribuées
	Méthode de transformation des grammaires L-attribuées

	Génération de code
	Introduction
	Machine virtuelle à pile
	Développement d'un compilateur

	Interprétation
	Introduction
	Projet : un interprète récursif
	Sprint 2 : exécution
	Sprint 3

	Conclusion

