Corrigé du contrôle continu 1 du lundi 7 mars 2022, 16h45-18h15

Exercice 1 (Cours & TD) Voir le cours.

Exercice 2 (10 points) Étudiez la convergence simple, uniforme, et uniforme sur les compacts des suites de fonctions $(f_n)_{n\in\mathbb{N}^*}$ définies ci-dessous :

- 1. $f_n(x) = \frac{x}{x+n} + \sin(x)$, pour $x \in [0, +\infty[$;
 - Pour tout $x \in [0, +\infty[$ on a $\lim_{n \to +\infty} \frac{x}{x+n} = 0$, donc (f_n) converge simplement vers $\sin: [0, +\infty[\to \mathbb{R}.$ Pour tout $n \in \mathbb{N}^*$ et $x \in [0, +\infty[$ on a $0 \le \frac{x}{x+n} \le 1$ et $\lim_{x \to +\infty} \frac{x}{x+n} = 1$, donc $||f_n \sin|| = \sup_{x \in [0, +\infty[} \frac{x}{x+n} = 1$. Ceci montre que $\lim_{n \to +\infty} ||f_n \sin|| \ne 0$, donc la convergence de (f_n) n'est pas uniforme sur $[0, +\infty[$. (Noter qu'il suffit d'obtenir l'inégalité $||f_n \sin|| \ge \lim_{x \to +\infty} \frac{x}{x+n} = 1$ pour conclure). Enfin tout segment [a, b] de $[0, +\infty[$ est inclus dans un segment de la forme [0, M], et $0 \le \sup_{x \in [0, M]} \frac{x}{x+n} \le \frac{M}{n}$, donc $\lim_{n \to +\infty} ||f_n \sin||_{[0, M]} = \lim_{n \to +\infty} \frac{M}{n} = 0$. Comme le segment [0, M] est quelconque, ceci montre que la convergence de (f_n) est uniforme sur les compacts de $[0, +\infty[$.
- 2. $f_n(x) = e^{-2nx}(\cos(nx) 1)$, $pour \ x \in [0, +\infty[$, $puis \ pour \ x \in [a, +\infty[$, a > 0; Pour tout $n \in \mathbb{N}^*$ on a $f_n(0) = 0$, et pour tout x > 0 l'inégalité $|f_n(x)| \le e^{-2nx}(|\cos(nx)| + 1) \le 2e^{-2nx}$ implique $\lim_{n \to +\infty} f_n(x) = 0$. Donc (f_n) converge simplement vers la fonction nulle f sur $[0, +\infty[$. Considérons la suite de points $x_n = \frac{1}{n}, n \in \mathbb{N}^*$. On a $f_n(x_n) = e^{-2}(\cos(1) 1)$, donc la suite $(f_n(x_n))$, constante et non nulle, ne converge pas vers f(0) = 0. On déduit de la question de cours 1 que la convergence de (f_n) n'est pas uniforme sur $[0, +\infty[$. De plus, tout segment de $[0, +\infty[$ qui contient 0 contient une infinité de termes de la suite (x_n) , donc le même argument montre que la convergence de (f_n) n'est pas uniforme sur ces segments, et donc sur les compacts de $[0, +\infty[$. Enfin, pour tout a > 0 on obtient comme plus haut l'inégalité $0 \le \sup_{x \in [a, +\infty]} |f_n(x)| \le 2e^{-2na}$, donc $\lim_{n \to +\infty} ||f_n||_{[a, +\infty[} = 0$, ce qui montre que la convergence de (f_n) est uniforme sur $[a, +\infty[$ (donc évidemment sur les compacts de $[a, +\infty[$).
- 3. $f_n(x) = n^{\alpha}x(1-x)^n$, pour $x \in [0,1]$, où $\alpha \in \mathbb{R}$ est un paramètre fixé (on discutera suivant la valeur de α).
 - Pour tous $n \in \mathbb{N}^*$ et $\alpha \in \mathbb{R}$ on a $f_n(0) = 0 = f_n(1)$, et pour tout $x \in]0,1[$, $\ln(1-x) < 0$, donc $f_n(x) = xn^{\alpha}e^{n\ln(1-x)} \to 0$ lorsque $n \to +\infty$ par croissances comparées. Ceci montre que (f_n) converge simplement vers la fonction nulle f sur [0,1], quel que soit $\alpha \in \mathbb{R}$. Pour estimer $||f_n||$, fixons $n \in \mathbb{N}^*$ et étudions les variations de f_n . Pour tout $x \in]0,1[$ on a $f'_n(x) = n^{\alpha}(1-x)^{n-1}(1-x(n+1))$, donc $f'_n(x) \geq 0$ si, et seulement si, $x \in [0,\frac{1}{n+1}]$. Le max de f_n est atteint en $x = \frac{1}{n+1}$, et $||f_n|| = f(\frac{1}{n+1}) = n^{\alpha} \frac{1}{n+1}(1-\frac{1}{n+1})^n$. Maintenant $(1-\frac{1}{n+1})^n = e^{n\ln(1-\frac{1}{n+1})} \sim e^{-1}$ (faire

un DL de ln à l'ordre 1) et $n^{\alpha} \frac{1}{n+1} \sim n^{\alpha-1}$ lorsque $n \to +\infty$. Donc $||f_n|| \sim n^{\alpha-1}/e$. Ceci montre que la convergence de (f_n) est uniforme si $\alpha < 1$, et non uniforme si $\alpha \ge 1$. Idem évidemment sur les compacts.

Exercice 3 (8 points) On pose $f_0(x) = 0$, et $f_{n+1}(x) = \sqrt{x + f_n(x)}$ pour $x \ge 0$ et $n \in \mathbb{N}$. On va étudier la suite de fonctions (f_n) .

1. (Dans un premier temps la conclusion de cette question peut être admise afin d'avancer dans l'exercice) Montrer que pour tout $x \ge 0$ et $n \in \mathbb{N}$ on a

$$0 \le f_n(x) \le 1 + \sqrt{1 + 4x}$$
.

Il est évident que $0 \le f_n(x)$ pour tout $x \ge 0$ et $n \in \mathbb{N}$. Montrons l'inégalité $f_n(x) \le 1 + \sqrt{1+4x}$ par récurrence. Elle est évidemment vraie lorsque n=0. Supposons-la vraie pour un entier k, il suffit de vérifier qu'elle est vraie pour k+1. Or pour tout $x \ge 0$ on a

$$f_{k+1}(x) - (1 + \sqrt{1+4x}) = \sqrt{x + f_k(x)} - (1 + \sqrt{1+4x})$$

$$= \frac{x + f_k(x) - (1 + \sqrt{1+4x})^2}{\sqrt{x + f_k(x)} + (1 + \sqrt{1+4x})}$$

$$\leq \frac{x + (1 + \sqrt{1+4x}) - (2 + 2\sqrt{1+4x} + 4x)}{\sqrt{x + f_k(x)} + 1 + \sqrt{1+4x}}$$

$$\leq \frac{-1 - 3x - \sqrt{1+4x}}{\sqrt{x + f_k(x)} + 1 + \sqrt{1+4x}}.$$

Le membre de droite est négatif pour tout $x \ge 0$, donc $f_{k+1}(x) \le 1 + \sqrt{1+4x}$, ce qui achève la preuve.

2. Montrer que (f_n) converge simplement, et expliciter soigneusement $\ell = \lim_{n \to +\infty} f_n$.

La question 1 montre que pour tout $x \geq 0$ la suite $(f_n(x))$ est bornée. La fonction $g_x \colon [0, +\infty[\to \mathbb{R}, y \mapsto \sqrt{x+y}, \text{ est croissante, et } f_{n+1}(x) = g_x(f_n(x))$ pour tout $n \in \mathbb{N}$. Comme $f_1 \geq f_0$, on en déduit $f_{n+1}(x) \geq f_n(x)$, ie. la suite $(f_n(x))$ est croissante. Toute suite réelle croissante et majorée converge, donc $\ell(x) := \lim_{n \to +\infty} f_n(x) \in \mathbb{R}_+$ existe. En x = 0 on a $f_n(0) = 0$ directement avec la définition, donc $\ell(0) = 0$. Par passage à la limite $n \to +\infty$ dans la relation $f_{n+1}(x) = g_x(f_n(x))$ (licite puisque g_x est continue), on obtient $\ell(x) = \sqrt{x + \ell(x)}$, d'où $\ell(x)^2 - \ell(x) - x = 0$. Si x > 0 cette équation donne

$$\ell(x) = \frac{1 + \sqrt{1 + 4x}}{2}$$

(l'autre solution, négative, est exclue puisque $f_n(x) > 0$ pour $n \ge 1$). En conclusion, (f_n) converge simplement vers la fonction

$$\ell: [0, +\infty[\longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} 0 & \text{si } x = 0 \\ \frac{1+\sqrt{1+4x}}{2} & \text{si } x > 0. \end{cases}$$

- 3. La suite (f_n) converge-elle uniformément sur \mathbb{R}_+ ? Sur [1,2]?
 - La fonction limite ℓ n'est pas continue en 0 alors que les fonctions f_n le sont, donc d'après le cours la convergence de la suite (f_n) n'est pas uniforme sur \mathbb{R}_+ . Sur le segment [1,2], ℓ et les fonctions f_n sont continues, et nous avons vu que la suite $(f_n(x))$ est croissante pour tout point x, donc le théorème de Dini implique que la convergence est uniforme.
- 4. Démontrer que pour tout x > 0 et $n \in \mathbb{N}$ on a

$$|f_{n+1}(x) - \ell(x)| \le \frac{|f_n(x) - \ell(x)|}{2f_{n+1}(x)}.$$
 (1)

On remarque que $f_{n+1}(x) - \ell(x) = g_x(f_n(x)) - g_x(\ell(x))$, où $g_x(y) = \sqrt{x+y}$ comme à la question 2. Alors on applique l'inégalité des accroissements finis à g_x sur le segment $[f_n(x), \ell(x)]$; puisque $g'_x(y) = \frac{1}{2\sqrt{x+y}}$, on obtient

$$|f_{n+1}(x) - \ell(x)| \le |f_n(x) - \ell(x)| \sup_{y \in [f_n(x), \ell(x)]} \frac{1}{2\sqrt{x+y}}$$
$$\le \frac{|f_n(x) - \ell(x)|}{2\sqrt{x+f_n(x)}}.$$

C'est le résultat demandé.

5. En déduire que (f_n) converge uniformément sur tout intervalle $[a, +\infty[$ avec a > 0 (on pourra remarquer que $f_n - \ell$ est une fonction bornée pour tout $n \ge 1$).

On applique l'inégalité (1) au numérateur de son membre de droite, et ainsi de suite jusqu'à descendre à $|f_1(x) - \ell(x)|$. Comme $f_{n+1}(x) \geq f_n(x) \geq \ldots \geq f_1(x) = \sqrt{x}$, pour tout x > 0 et $n \in \mathbb{N}$ on obtient

$$|f_{n+1}(x) - \ell(x)| \le \frac{|f_1(x) - \ell(x)|}{2^n f_{n+1}(x) f_n(x) \dots f_1(x)}$$
$$\le \frac{|f_1(x) - \ell(x)|}{2^n f_1(x)^n}.$$

Maintenant, un calcul simple montre que $f_1(x) - \ell(x) = -\frac{1+\sqrt{1+4x}}{2(\sqrt{x}+1+\sqrt{1+4x})}$; cette fonction est continue sur $[a, +\infty[$, a>0, et a une limite finie en $+\infty$, donc elle est bornée. Soit donc M>0 un majorant de $f_1-\ell$ sur $[a, +\infty[$. Pour tout $x\in [a, +\infty[$, $f_1(x)=\sqrt{x}\geq \sqrt{a}$, alors l'inégalité précédente implique

$$|f_{n+1}(x) - \ell(x)| \le \frac{M}{(2\sqrt{a})^n}.$$

Si a > 1/4, alors $2\sqrt{a} > 1$ et $\lim_{n \to +\infty} ||f_{n+1}(x) - \ell||_{[a,+\infty[} = 0$. Ceci prouve la convergence uniforme sur tout intervalle $[a, +\infty[, a > 1/4$. Enfin, si $0 < a \le 1/4$ on démontre la convergence uniforme de (f_n) sur le segment [a, a'], où a' > 1/4, comme nous l'avons fait à la question 3 sur l'intervalle [1, 2]. La convergence uniforme sur les intervalles [a, a'] et $[a', +\infty[$ implique la convergence uniforme sur $[a, +\infty[$.