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0.1 Motivations

La science moderne tire son origine d’un livre fondateur Origine Philosophiae Naturalis Principia Mathematica, Londres,
1687, Sir Isaac Newton, Trinity college, Cambridge ot il énonce le principe fondamental de la mécanique

mz = F(x)
Par exemple pour un ressort
mi = —kx
un pendule )
LO = —gsinf
ou bien la chute libre (non recommandée)
T =—g

le probléme & N corps soumis & l'attraction universelle de la gravitation :

(T — z))
|z — 253

m; Ty = G E m; mg
k#j

Pour N = 2 Képler a montré que les trajectoires sont des coniques.

Pour N > 3 c’est beaucoup plus difficile et on peut obtenir des trajectoires surprenantes, dont certaines n’ont été démontrées
que trés récemment, par exemple le célébre « huit » de Alain Chenciner. On renvoie au site suivant pour des illustrations.
http://ciel.mmi-lyon.fr/deux-astres-en-tete-a-tete/choregraphies/

Les équations différentielles interviennent dans de nombreuses disciplines et ne sont pas seulement utilisées pour décrire les
mouvements des systémes de points matériels comme le pendule, les planétes idéalisées en des points matériels. Elles permettent
de modéliser aussi que variations de courants ou de différences de potentiels dans les circuits électriques ou encore 1’évolution des
espéces en écologie ou encore 1’évolution des épidémies, sujet d’actualité. Par exemple le fameux systéme SIR (sound, infected,

recovered) qui s’écrit ainsi
ds

o T
dt p-1-5
dl

Y LS - T—al
7 p-S «

La plupart des équations issues de situations réelles n’ont pas de solution exprimables & 'aide des fonctions usuelles donc il
est nécessaire de les calculer numériquement par des approximations rigoureuses. C ’est le but de ce cours que de présenter des
méthodes numériques pour approcher la solution

y:teR —»y(t) eR”

d’une équation différentielle ordinaire :
y'(t) = £(t,y(t))
ot la fonction f: (t,y) € R x R" — f(t,y) € R" est donnée et ainsi que y(to) € R™ (probléme de Cauchy).
Enfin on conseille vivement de visionner sur youtube la série 3BBLUEIBROWN SERIES Saison 4 Episode 1 Differential
equations, studying the unsolvable https://youtu.be/p_di4Zndwz4 (v.0.s.t. en frangais)
Les sections précédées d’une étoile (x) sont des compléments facultatifs.
Vous trouverez a la fin de ce document une bibliographie non exhaustive de livres que vous pouvez éventuellement consulter.

Ce document est un version itérative (work in progress) et contient de nombreuses coquilles, merci de les signaler a Uauteur
qui les corrigera au fur et & mesure.


http://ciel.mmi-lyon.fr/deux-astres-en-tete-a-tete/choregraphies/
https://youtu.be/p_di4Zn4wz4

Chapitre 1

Résolution de systémes d’équations
différentielles ordinaires.

Ce chapitre, inspiré d’un polycopié légendaire de Michel Cuer, présente

— quelques rappels ou compléments de théories mathématiques classiques;

— une introduction aux méthodes numériques de résolution des problémes de conditions initiales (probléme de Cauchy)
pour les équations différentielles ordinaires ot on donnera des notions concernant les méthodes a un pas, les méthodes
multipas et les problémes raides.

On renvoie a la bibliographie en fin de document pour des compléments, en particulier & [I0] dont les documents suivants, en
ligne sur le site de I’Université de Genéve, sont des versions en frangais gratuites trés claires et instructives.
Gerhard Wanner http://www.unige.ch/ wanner/Numi.html|, Ernst Hairer http://www.unige.ch/~hairer/poly/chap3.pdf

1.1 Le probléme de Cauchy pour les systémes d’équations différentielles
ordinaires

Etant donnés une fonction f : [a,b] x R™ — R™, un réel to € [a,b] ou les réels a,b vérifient a < b et en pratique tg
est une des extrémités de [a, b], et un vecteur yo € R™, par probléme de Cauchy pour le systéme d’équationsE] différentielles
y'(t) = £(t,y(t)), on entend la recherche d’une fonction y de [a, b] dans R™ telle que :

y'(t) = £(t,y(t)) pour t € [a,b] y(to) = o, (1.1)
ou y'(t) = limp_, est la dérivée en t de la fonction vectorielle y.

Le théoréme de Cauchy-Lipschitz énonce que si f est une fonction continue de [a, b] x R™ dans R™ telle qu’il existe une
norme sur R™||.|| et une constante L > 0 pour lesquelles (on dit alors que f est Lipschitzienne en y de constante de Lipschitz

L):

o y(t+h}):>'(t>

£ty ) = £(t,y) < Llly® = y V|, pour tout (¢,yV,y®) € [a,b] x R™ x R™, (1.2)

alors (L.1)) a une solution et une seule définie sur tout U'intervalle ¢t € [a,b] — y(t) € R™ contintment différentiable.
Preuve. Voici une démonstration, basée sur le théoréme du point fixe de Banach-Picard, dans le cas o to = a (il n’est pas
difficile de la modifier pour I'étendre au cas to = b et ensuite de traiter le cas général). Les conditions (1.1]) sont équivalentes a :

0 =yo+ [ t(s,y(s))ds, (1.3)

to
équation fonctionnelle & laquelle on peut appliquer la méthode des approximations successives qui engendre une suite de fonctions
de [a,b] dans R™, t — y® (t) définies par :

t
y ) = yo, y" (1) = yo +/ £(s,y"(s))ds, k> 0 (1.4)

to
Pour obtenir le résultat il suffit donc d’établir que dans une espace fonctionnel complet convenable X, l’applicationﬁ d:ye
X = O(y): t€a=to,b > yo+ f:o f(s,y(s))ds est contractante donc a un unique point fixe. On choisit alors I'espace X des

fonctions continues de [a,b] dans R™ muni de la norme ||y||x = maxicpa=rop e "~y ()] :
X ={y € Cle, s R™); lyllx = _max e |ly(t)][};
tela=to,b]

cet espace vectoriel normé est complet et on a :

1. Si f ne dépend pas de t on parle de systéme autonome.
2. Ce langage fonctionnel est tel que par y on entend la fonction ¢ € [a,b] — y(t) € R™.


http://www.unige.ch/~wanner/Numi.html
http://www.unige.ch/~hairer/poly/chap3.pdf

[2(y®) = 2(y™) | x = maxeatop e O [ (Fls, ¥ (5) — £(s, 5 () ds|
< maxyefaion € T [ |1E(s, y P (5)) — £(s,5(s))||ds
< maxiefa=io € 0 [i L ly®(s) =y (s)llds

Lek(s—tg) e—k(s—tg)

< Moy ) €O fi, LT mae | oMy () -y D))l o
s'€la=to,

ly@ -y x
Ck(t—to) eF(t—to)—1 2 1
= Lmaxieia—iyp ¢ "0 |y —yM|x

k
= £ = ey ® -y Dl < E(1 - e )y @ -y O

et en choisissant £ > L on a bien une application contractante.

Remarques ou compléments.

i) Il y a un théoréme de Cauchy-Peanolﬂ qui donne l'existence dés que f est continue mais, sans conditions supplémentaires,
il peut ne pas y avoir unicité. Le cas y'(t) = 2|y|1/2(1 +y) pour t > 0, y(0) = 0 est un premier exemple; y(¢) = 0 est solution sur

Opourt € [0, d]
tan®(t — a) pourt € [a,a + |
est [0,a 4+ Z[. Un cas plus élémentaire est proposé en exercice de TD.

La formulation précédente du théoréme de Cauchy Lipschitz est assez restrictive ; avec le méme schéma de démonstration,
on peut établir un résultat d’existence et d’unicité locale en changeant « pour tout (t,y(1>,y(2)) € [a,b] x R™ x R™ » dans
I’hypothése 1' en « pour tout (t,y(1>,y(2)) € [a,b] Xx O x O » ou O est un ouvert de R™, f étant une application continue de
[a,b] x O dans O. Dans ce cas plus général mais quand méme éclairant, le domaine d’existence n’est alors pas forcément R tout
entier ou l'intervalle I sur lequel on pose le probléme comme le montre 'exemple y'(t) = 2ty(t)? pour ¢t € R, y(0) = 1 dont la
seule solution est y(t) = ﬁ et n’est définie que pour ¢ €] — 1,1[. Il convient, dans ce cadre général, d’introduire la notion de
solution maximale (les exemples cités sont tous de telles solutions maximales).

i1) Les techniques utilisables pour les équations différentielles intégrables “a la main” sont importantes et on peut en trouver
par exemple avec un logiciel de calcul formel ou le moteur wolframalpha.com (Bernoulli, Clairault, linéaire, variable séparable
...); voir aussi le début du livre de E. Hairer, S.P. Ngrsett, G. Wanner (1993) [10]. Mais ce sont des cas particuliers trés rares.
Dans la réalité, la plupart du temps on ne sait pas intégrer exactement une équation différentielle.

i11) Une équation différentielle d’ordre p > 1 est de la forme :

0, +o0of, mais quel que soit a > 0, y.(t) = est encore une solution dont le domaine d’existence
[0, ; quel q >0,y

dPy Pty
%(t) :f(t,y(t)vy/(t)w“vm(t)) (1.5)
et le probléme de Cauchy correspondant consiste a calculer la fonction ¢ — y(t) vérifiant en plus des conditions initiales “y(to),
Y (to), - %(to) données”. Il est important de comprendre, aussi bien sur le plan formel ou théorique que pratiquel’| qu’une
telle équation se raméne, en posant z(t) = (y(t),y'(t), ..., %(t))T € R? au systéme différentiel du premier ordre :
2a(t)
z'(t) = £(t,z(t)) avec f(t,2(t)) = : (1.6)
2p(t)
f(z1(t), z2(8), ., 2 (1))
ou, bien str, z;(t) = % pour j = 1,....,p (par convention % = y). Détaillons cela sur un exemple essentiel, I’équation

fondamentale de la mécanique, qui traduit la loi de Newton « Force = masse x accélération ». Soit m la masse du corps, repéré
par sa position de son centre d’inertie y(t) = (y1(t),y2(t),ys(t)) € R? a l'instant ¢ et sa vitesse y'(t) € R3, la loi de Newton
s’écrit )
d’y
mo = Fly,y) = (Fu(y,v), P2y, ¢), Fs(y,9))
La force F(y,y’) ne dépend pas en général explicitement de ¢ donc on a un systéme différentiel autonome du second ordre. On
le réécrit sous forme d’un systéme d’ordre 1 en posant z(t) = (y(t),y'(t)) = (y1,Y2,y3, Y1, Y5, ¥s)

dz ;1 ,
& _ - F
=W Fy)
qui est donc une équation différentielle de la forme
= _ o)
dt

ou la fonction t € R — z(t) € RS et G(z) = (;:4,,25,,267 %F(Zl,zz,z'3,z47z5,za)) e RS

1) Une équation différentielle s’interpréte géométriquement comme la donnée d’un champ de vecteurs. La figure cor-
respond & I'exemple simple de I’équation 3y’ = y. On a tracé le champ de vecteur (1,y) : A chaque point (¢,y), on associe le
vecteur (1,y). Les solutions de I’équation différentielle sont les courbes ¢ — (t,y(t)) telles que le vecteur tangent (1,y'(t)) est

3. La démonstration de ce théoréme n’est pas au programme de L3 parce qu’elle fait appel au théoréme d’Ascoli qui donne
un critére pour savoir si un ensemble de fonctions continues sur un compact est compact, si bien qu’on peut en extraire une
sous suite qui converge.

4. parce que, bien qu’il existe des schémas numériques adaptés aux équations d’ordre 2 par exemple, la majorité des codes,
en particulier les codes MATLAB, sont écrits pour des systémes différentiels d’ordre 1.



égal au champ de vecteur (1,y). Cette interprétation est trés fructueuse et permet de visualiser I’allure des solutions, méme si
on ne sait pas intégrer I’équation différentielle.

courbes integrales et champs de vecteur de dy/dt =y
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FIGURE 1.1 — Champ de vecteurs associé a I’équation différentielle ' = y.

Sur le site demonstrations.wolfram.com on trouve des documents cdekrés instructifs permettant de visualiser divers
champs de vecteurs associés & des EDO (Cf SlopeFields.cdf).

Ci dessous sur la ﬁgure une copie d’écran oti I’on voit le champ de vecteur associé 4 "EDO gy’ = t* -y ainsi qu'une courbe
intégrale, solution d’un probléme de Cauchy particulier.

1.2 Introduction aux méthodes numeériques de résolution d’équations dif-
férentielles.

On considére donc le probléme de Cauchy pour une équation différentielle ordinaire, qui consiste a calculer une fonction
t € [a,b] — y(t) € R™ telle que :

y'(t) = £(t,y(t)) pourt € [a,b], y(to) = yo, (L.7)
ouy'(t) = %(t) désigne la dérivée de y par rapport a ¢ au point (ou a U'instant) ¢ et la fonction f : (¢,y) € RxR™ — f(t,y) € R™
ainsi que le réel tg et le vecteur yo € R™ sont donnés. On suppose aussi que f est continue de [a,b] x R™ dans R™ et vérifie la
condition de Lipschitz “en y” :

£ty ) — £,y )| < Llly™ = y® | pourtout (£, y ", y'¥) € [a,b]xR™ x R™, (1.8)

pour une norme ||.|| quelconque dans R™, par exemple ||z]| = ||z]|cc = maxi<j<m |2;| et une constante L > 0. Pour la simplicité
on supposera en plus to = a.

1.2.1 Les méthodes a un pas

Etant donnée une suite de réels to, t1, ..., tn telle queﬂ a =1 < t1 < .. <ty = b, on pose hy, = tpt1 — tn et
h = maxo<n<n—1hn. La méthode d’Euler, archétype des méthodes & un pas[[, essentiellement méthodes de Runge Kutta pour la
résolution des problémes de Cauchy pour les équations différentielles ordinaires, appliqué a consiste & calculer les quantités
¥n» € R™ qu’on espére étre des approximations de y(¢,), définies par :

Ynt1 =Yn + Anf(tn,yn)pour0 <n < N — 1. (1.9)

La formule (1.9) est appelé schéma d’Euler.

5. Wolfram computable document format : ce sont des fichiers pdf interactifs ot I’on peut changer des données grace & des
menus.

6. Ce qui suit s’applique aussi aux cas ol ty < tny—1 < ... < t1 < to en changeant les signes des h,, et en posant h =
maxo<n<N-1 |hn|

7. On dit aussi méthode & pas séparés.
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This Demonstration generates a slope field for a number of differential equations. You have
the option to plot a particular solution passing through one point. You can control the x and y
axes as well as the number of segments plotted. You can display the midpoints of the
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PERMANENT CITATION

= Automatic Animation

"Slope Fields" from the Wolfram Demonstrations Project

Remarque. On peut la comprendre de deux fagons : En partant de y(t + h) = y(¢) + |,

2

FIGURE 1.2 — champ de vecteurs associé a ¢y = t*y.

t+h
ya+m:mw+1 F(s,y(s))ds

et on approche 'intégrale par la méthode du rectangle :

On obtient ainsi

t+h
‘[ F(s.9(s))ds = B (L, ().

y(t +h) = y(t) + hf(ty(t).

Ou en approchant la dérivée par un taux d’accroissement.

d’ou l'on tire

y'(t) ~

y(t+h) —y(t)

h

Lyt h) = y(t)

h

~ f(t, y(t).

t+h
t

y'(s)ds on écrit

(1.10)



Définition 1 Soit t — y(t) la solution exacte de ’équation différentielle On appelle erreur de consistance du schéma
la quantité
h i e(h) :=y(to+ h) — y(to) — hf(to,y(to))- (1.11)

C’est en quelque sorte l’erreur locale commise par le schéma au point to. On espére que cette erreur e(h) tend vers zéro quand
le pas h tend vers zéro.

Définition 2 On dit qu’un schéma est consistant si lerreur de consistance e(h) du schéma est négligeable par rapport au pas
de temps h i.e. e(h) = o(h)

Le schéma d’Euler est consistant. En effet en effectuant un développement de Taylor-Lagrange a l’ordre 2,

e(h) = y(to + h) — y(to) — hf(to,y(to) = y(to + h) — y(to) — hy'(to) = %Qy”(to +0h) < CH?

si y”’(t) est bornée. On a montré la proposition suivante.

Proposition 1 Si la solution exacte t — y(t) est C*([a, b)), le schéma d’Buler est consistant. Plus précisément Uerreur de
consistance du schéma d’Euler est en O(h?) quand le pas h tend vers 0. On dit que Uerreur de consistance est d’ordre
deuzx.

1.2.1.1 Erreurs de consistance (locales) et erreurs globales

Pour établir la convergence d’une telle méthode, on introduit d’abord la suite {€,}o<n<n—1 dans R™, qu’on appele suite
des erreurs de consistance dans le schéma d’Euler pour la solution exacteﬂ y(t), définie par :

€n = Y(tnt1) = y(tn) — hnf(tn, y(tn))- (1.12)
Alors la suite des erreurs globales e, = y(t,) — yn (“solution exacte - solution approchée”) satisfait :

€ =0 (1.13)
ent1=€n + hn(f(tn,y(tn)) — f(tn,yn)) + €npor0 <n < N —1 ° ’

En effet :

ent1 =y(tnt1) =  Ynt1 =Y(tnt1) = y(tn) = haf(tn, y(tn)) +y(tn) + hnf(tn, y(tn)) — yn — hnf(tn, yn)

Ynthnf(tn,yn) €n enthn(f(tn,y(tn))—f(tn,yn))

Il en résulte que :

ey = 0
{ lentill < (1 +hnL)|en]l + [l€n]| pour0 <n < N —1

En effet la formule (|1.13)), 'inégalité triangulaire et la propriété (1.8) montrent que :

(1.14)

len+1ll < lleall + Ll y(tn) = yu [l + llenl] = (1 + huL)llen]l + [l€nl].
—_—

Remarque. Si le schéma d’Euler (|1.9) est remplacé par une formule plus précise (voir des exemples plus loin) de la forme :
Ynt1 =Yn + hn®(tn,yn, hn) pour0<n < N -1, (1.15)

ou ® vérifie, pour une constante M :

@ty h) — @,y @, n)|| < M|ly™ — y@| pour tout (¢,y, y?) € [a, )] xR™ x R™ et h > 0 assez petit (1.16)
alors introduisant la suite des erreurs de consistance :

€n = Y(tnt1) =¥ (tn) = hn®(tn, y(tn), hn) (1.17)

on voit que la suite des erreurs globales e, = y(t») — y» (méme définition évidemment) satisfait encore ([1.14]) & condition de
remplacer L par M. Un schéma sous la forme (|1.15) vérifiant (1.17)) est appelé un schéma & un pas.

8. Cette suite est en quelque sorte la suite des erreurs locales dues a la discrétisation.



1.2.1.2 Convergence de la méthode d’Euler et des méthodes a4 un pas consistantes.

On va établir que P'erreur globale maxa<y,, <t |Y(tn) — yn| tend vers 0 quand le pas h tend vers 0. On dit alors que la méthode
d’Euler converge.

Pour obtenir le résultat de convergence cherché, on va d’abord montrer (et le lien avec est évident), avec les mémes
définitions de hy, > 0 et L > 0 le lemme suivant.

Lemme 1 si {0, }o<n<n et {an}o<n<n—1 sont deuz suites de réels positifs telles que :

Ont1 < (1+hpL)0p +an, pour 0<n< N -1 (1.18)
alors :
n—1
O, < enmt0)gy 43" eMinTtit g, 1 <n < N. (1.19)
i=0

Preuve. On procéde par récurrence.

Pour n = 0 (L.18) donne
61 < (1+hoL)bo+ o < elhog, + eL<t17t1)aO

ot 'on a utilisé I'inégalité élementaire
(1+2z) <e”.

Donc (1.19) est vraie si n = 1.
Supposons donc 1) vraie jusqu'au rang n — 1 : 0,1 < eltn—1-to)g, 4 Z?;OQ eltn—1=ti+1); et montrons que la propriété
est vraie au rang n. Appliquant ([1.18]) avec le bon indice, il vient

n—2

On < (1+hn 1 L)1+ an1 < (14 by L)(e"0n177000, + 3~ ety 4 a,

i=0
Utilisant & nouveau 'inégalité élémentaire (1 + x) < e®, on obtient
1+ hp L < ellnmt = b (tn=tn-1),

Donc (1 + hn_lL)eL(tnfl_tO) < el(tn—to) ot (1 4 hn_lL)eL(tnfl_ti#»l) < el(tn—tit1)

Ainsi
n—1
O, < eL(tn*to)go + ZeL(tn*tH-l)ai.
i=0
La récurrence est terminée. | |

Remarque. De fagon plus piétonne, on peut directement itérer la majoration [1.1§

6n«l»l S (1 + hnL)an + an

Ony1 < (1+hnL)(1+hn1L)...(1+ hoL)fo
+(1+h L)A 4+ hpaL)...(1+ h1L)ag
+(1+ ho L)1+ hypoa L) ... (1 + hoL)an
+...

+(1 + hnL)an—l

+an

Les différentes lignes correspondent & I’amplification des erreurs commises aux pas de temps successifs. En majorant 1 + hL <
exp hL, on obtient
Ont1 < ehnlehn—1l = cholg,
—&—eh"Leh"*lL - ehlLao
tehnLghn1l  chal
+...
+€h"LOén71
+an

i

Ce qui donne bien
Ons1 < eL(t”“_tO)Go + eL(t"“_tl)ao + eL(t"“_tQ)al et an.

Montrons maintenant la proposition.

Théoréme 1 si y” ewiste et est continue, le schéma d’Euler est convergent, l’erreur globale maxo<n<n |l€n| est O(h) ou
h = maxo<n<nN-1hn. On dit que le schéma d’Euler est d’ordre 1.



Preuve. 11 suffit de poser 6, =|| ey, || et an = ||€x]; (1.14) montre que (1.18) est vraie. Or d’apreés la proposition précédente,

Perreur de consistance est d’ordre deux, donc ||| < ChZ. Alors (1.19) donne, puisque la condition initiale donne 6y =
y(to) —yo=0:

n—1 n—1
[en <) eftnmtiv) g <e"*"IChY i < Cb—a)e" " h = O(h)
i=0 ~ i=0
<Ch2<Chh; ——
b—a

On montre facilement en prenant le cas particulier de ’équation ¢y’ =y, y(0 = 1 ( voir 'exercice 4 du TD 1) qu’on ne peut
pas avoir une meilleure majoration que || e, ||= O(h).

emarque. ans le cas du probleme de auc y on 1'on connal Yy(to) = Yo, ey = € a Iormule |1. S’ecrit :
R D 1 d blé de Cauch; r it y(t 0 et la fi le [1.19] s’écrit
| en I1< Xt leg]| + X le]| 4 ...+ €D fley ]| + [len].

Chaque terme s’interpréte : eL(tnftl)HeoH correspond a la propagation-amplification de ’erreur de consistance ¢y commise au
temps t; jusqu'au temps tn, eL(t"_tQ)HelH correspond & la propagation-amplification de l’erreur de consistance e¢; commise
au temps t2 jusqu’au temps ty.. ,eL(tnft"—l)Henqﬂ correspond a la propagation-amplification de ’erreur de consistance €, _2
commise au temps ¢,—1 jusqu’au temps t, et enfin ||€,—1|| est la derniére erreur de consistance commise a l'instant ¢,. Ainsi la
formule [[I9] décrit la fagon dont les erreurs se propagent et s’accumulent. Plus une erreur est ancienne plus elle a le temps de
s’amplifier exponentiellement. La figure qui suit éclaire la preuve, attention les notations sont différentes car elle est tirée
du magnifique poly en ligne de G. Wanner http://www.unige.ch/ wanner/Numi.html déja cité dans la bibliographie).

solution exacte E, =e,
4 \
\61 E”_l

hn
Y2

4 ;32
R

polygones d’Euler

To 1 T3 I3 e Ty = X

F1G. II1.3: “Lady Windermere’s Fan”, Estimation de I’erreur globale

FIGURE 1.3 — I'éventail de Lady Windermere d’aprés Hairer-Wanner

O

Remarque. Si on suppose que la condition initiale y(to) = yo est vérifiée seulement de maniére approchée, a cause de la précision
finie des machines par exemple ou bien pour des raisons physiques de précision de mesure, la majoration (1.19) donne

leall < e~ ly(to) — yoll + €7 [leol| + " T x| + ...+ F T e ]| + [len-1])-

Donc l'erreur globale est toujours majorée par ||en|| < C (||y(to) — yol| + h) de sorte que si y(to) — yo — 0 le schéma converge.
Le schéma est dit stable vis & vis des perturbations de la condition initiale. O

On peut aussi tenir compte des erreurs d’arrondis numériques inévitables en pratique du fait de la précision finie des
ordinateurs. On sait que la représentation des réels en machines ( appelés flottants en informatique) basée sur ’écriture binaire
garantit une erreur relative de Pordre de eps &~ 1071%. Ainsi le schéma est en réalité :

Znt1 = Zn + Anf(tn,2n) +an pour0 <n < N -1 z9=y(to) +eo (1.20)

au lieu de
Ynt1 =Yn + hnf(tn,yn) por0<n<N-—-1 yo=y(to). (1.21)
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Le terme a, correspond & l’erreur d’arrondi due a la précision finie & I’étape n de l'algorithme et le terme ey correspond a
Perreur de mesure ou troncature commise sur la valeur initiale y(to). Nous allons comparer les deux suites (yn)n €t (zn)n. En

soustrayant membre a membre (1.20]) et (1.21) on obtient :
Zn+1 — Yn+l1 = Zn — Yn =+ hn (f(tmzn) — f(tn,yn)) + a, (122)

On peut ainsi majorer
[2n+1 = Ynirll < l2n — yall + hnLl|lZn =yl + ll2n]].
1Zn+1 — ynt1ll < (1 + haL)||Zn — yull + [lan]]-
On peut donc appliquer & nouveau le lemme [I] d’amplification des erreurs et obtenir

n—1

70 = yall < €20 — y(to)[| + D " fagl], 1<n <N (1.23)
i=0
On peut ainsi majorer :
n—1
|20 — yaul|| < (n=to) <||e0| +> ||ai||> ,1<n<N (1.24)
i=0

Proposition 2 Le schéma est dit stable vis a vis des perturbations de la condition initiale et des erreurs d’arrondis numériques.

Le théoréme de convergence [T et la propriété de stabilité 2] se généralisent immédiatement aux schémas @ un pas i.e. de la forme
Yot1 =Yn + An®(tn,Yn,hn) pour0 <n < N —1, (1.25)
ot @ vérifie, pour une constante M :
1@ty h) — @y, n)|| < M|y™ —y@| pourtout (t,y™",y?) € [a,b]xR™ x R™ et h > 0 assez petit (1.26)
dont l'erreur de consistance est naturellement définie par :
e(h) = y(t+h) = y() — h®(t,y (1), h). (1.27)
On peut énoncer le théoréme de convergence des schémas & un pas.

Théoréme 2 si un schéma d un pas a une erreur de consistance O(h**!) le schéma est convergent, Uerreur globale maxo<,<n ||en||
est O(h?) ot h = maxo<n<n—1hn. On dit que le schéma est d’ordre p.

La preuve est identique & celle du schéma d’Euler.

1.2.1.3 Les premiéres méthode de Runge-Kutta

Pour obtenir une méthode plus précise il faut améliorer l'erreur de consistance (1.17)) et on peut remarquer en faisant un
développement de Taylor que M =y (t+ %)+ O(h?) (au lieu de M =y'(t) + O(h)). Le schéma dit du point
milieu ( Runge, 1895) s’écrit ainsi :

uz = yo + %f(to, o) (1.28)
y(to-i-h)%yl=yo+hf(to+%7112) '

Remarque. On peut comprendre cette méthode en partant de y(¢ + h) = y(¢) + fttJrh y'(s)ds. On écrit

t+h
b =0+ [ ™ fs,y(s))ds (1.29)

et on approche l'intégrale par la méthode du point milieu :

t+h
/j F(s,y(s))ds ~ hf(t+ )2, y(t + h/2)).

On obtient ainsi
yt+h)=y(t)+hft+h/2,y(t+ h/2)).
Mais on ne connait pas y(t + h/2). On effectue alors une prédiction :
h
y(t+h/2) muz = y(t) + 5 f(t,y(1)
par la méthode d’Euler suivie d’une correction :

yt+h)=ylt)+hf(t+h/2,u2).
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Pour démontrer qu’on obtient ainsi une méthode d’ordre 2, il faut comparer les développements de Taylor y(t+ h) (solution
exacte) et y1 (solution approchée). Or, on peut calculer y” () = 4f(t,y(t)) en utilisant la différentielle de f.

of of

df = —dt+ —dy
ot " oy
donc ”en divisant par dt"
d of ot dy
ZEty(t) = =
atGYW) =5+ 5w
d of of
"(t) = —f(t,y(t — 4+ —y
y'(t) = Gt y(0) = G+ 550
En réutilisant le fait que y'(t) = £(t,y(t)) on obtient donc que y”(t) = o9& 4 2F , £(t,y(t)). Ainsi en notant f; = o oet fy = %
(matrice jacobienne m x m), on obtient
y(t+h) =y(0) +hy' () + 5y (1) + O(h®) =y + hf + 15 (£ + ££) + O(h?) (1.30)
D’autre part :
yi =y +hf(t+ by + 58 y) =y +h(EEY) + i (B ) + OR°) (1.31)

On a ici effectué un développement de Taylor de la fonction a deux variables

G () + K () + O + )

ft+hy+k)==£ty) +h
%f(t y), si bien que finalement l'erreur de consistance introduite en l| vérifie, en posant ®(t,y;h) := f(t+h/2,y+
)

€n = y(tn+1) = y(tn) = hu®(tn,y(tn)) = O(h}) (1.32)
donc on a une erreur de consistance en O(h*). De la méme maniére qu’au paragraphe précédent, on a un schéma a un pas de
la forme . 11 est facile (exercice!) de vérifier que ®(¢,y, h) est Lipschitzienne par rapport a la variable y et en suivant la
méme démarche que pour le schéma d’Euler, on démontre que le schéma du point milieu est convergent et que ’erreur globale
est O(h?). On dit que le schéma du point-milieu est d’ordre 2.

Variante : on peut également approcher l'intégrale

t+h
wt+m =)+ [ fsue)s (1.33)
t
par la méthode du trapéze :

[ ss.uonas = 2 (@) + s+ nae )
On obtient ainsi t
(t+h) & (1) + 2 (7 y(0) + £+ Ry h)
Mais on ne connait pas y(t + h). On effectue alors une prédiction :
y(to + h) = uz = yo + hf(to, vo)

par la méthode d’Euler suivie d'une correction. Le schéma s’écrit alors

h
ylto+h) =y =yo+ 5 (
Cette méthode dite du trapéze explicite est du méme ordre que la méthode du point milieu. Par un développement de Taylor,
cf TD, on estime ’erreur de consistance

f(to,yo) + fto + h,u2).

y(to + h) —y1 = O(h?),

si bien que le schéma est aussi d’ordre 2.

1.2.1.4 un schéma d’ordre 3 : le schéma de Heun

Présentons maintenant une méthode d’ordre 3 : la méthode de Heun. Elle repose sur la formule d’intégration de Gauss-Radau
suivante :

[ ateyae~ 1a0) + Ja2/3)

qui est exacte pour les polynémes de degré inférieur ou égal & 2, ainsi qu’on le vérifie aisément. On en déduit

et 1) =0+ () + 36+ G+ 5)).

Pour obtenir une erreur de consistance d’ordre 4, il suffit de "prédire" la valeur de y(t + %) a ordre 3, car l’erreur commise
sera multipliée par le facteur h devant f(-,y(¢t + %) Faisons cela avec la méthode du point milieu avec h remplacé par % Cea

donne (Heun 1900)
h
Uz = Yo + gf(tmyO)

12



2h h
uz = yo + ?f(to + §7u2)

yi=vo+th (lf(to,y()) + §f(lfo + @,US)) :
4 4 3
Par une preuve similaire a la précédente, on voit que le schéma de Heun est d’ordre 3.E| La figure qui suit illustre
géométriquement les différents schémas. La figure [1.5| compare les principaux schémas & un pas et illustre 'ordre de convergence
en O(h) pour Euler, O(h?) pour Runge, O(h®) pour Heun, O(h*) pour Runge-Kutta 4 (voir alinéa suivant). On a utilisé un
pas de temps initial h = 1. L’équation différentielle résolue est 3y’ = y dont la solution exacte est y(t) = yo expt. La condition
initiale est yo = 1 et 'intervalle de temps est [0, 7].

Yl expl. trap. rule Y1 expl. midp. rule Y1 Heun 1900
U n
1 iy
Uz
U2
0 T =
Yo 1 \ Yo 1 \ Yo
3 T o1 3 T 1 1 % o1
FIG. II1.5: Méthodes de Runge-Kutta pour v/ = 2% + 2, 1o = 0.46, b= 1; pointillé: solution
exacte.
FIGURE 1.4 — Illustration graphique des méthodes de Runge et Heun, d’aprés Wanner
1.2.1.5 Meéthode de Runge-Kutta d’ordre 4.
En utilisant le méme principe, on peut approcher 'intégrale
t+h
wt =)+ [ fsue)ds (1.34)
t

par la méthode de Simpson (exacte pour les polyndmes de degré inférieur ou égal a 3) :

t+h
[ (s, u(e))ds ~ B (P00 + AR+ B2+ B/2) + £+ hoy(t )

11 faut alors prédire y(t + h/2) et y((t + h). La méthode de Runge-Kutta dite RK4 est ainsi décrite par les formules suivantes
qui donnent le moyen de calculer y,,+1, noté y; ici, & partir de y, noté yo :

uz = Yo + %f(to,}’o)
us = yo + %f(to + %7'“2)

1.35
w = yo +hf(to+ &, us) (1.35)
y(to+h)=yi=yo+h (éf(to,ul) + %f(to + %,’m) + %f(to + %,u?,) + éf(to + h, u4))

si bien qu’avec la notation de (1.15) et avec t = to, y = yo :

1 h h
’I’(to, yo; h) = 6 (f(to,yo) + 2f(to + 5,712) + 2f(t0 + §,U3) + f(to + h, U4)> (136)

9. G. Wanner raconte que le premier programme qui a tourné sur le premier ordinateur ( aux USA) fut une équation
différentielle résolue par la méthode de Heun.
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Les differents schemas explicites a un pas

1200 T T T .
noir: solution exacte
—HB—rouge: schema Euler
1000 - | % vert: schema Runge point milieu
—O&— bleu: schema Heun
—— magenta: Runge Kutta 4
800
= 600 |
>
400 r
200 +
0& &
0 1
t
. erreur en fonction du pas, echelle log log
10 ' ' T ' '
102 £ ente=0.948
100 ¢ pente=1.98 3
2 102F
o
104
| —E—rouge: erreur en norme max schema Euler
6L —~4— vert: schema Runge point milieu
10 —O— bleu: schema de Heun
I —»— magenta: RK4
3 -~ en pointille: droites de pente 1,2,3,4
10'8- ' ' e ' ' ]
1072 107 10°
pas

FIGURE 1.5 — Ordre de convergence de divers schémas & un pas.

C’est un schéma & un pas d’ordre 4 (erreur globale en O(h*) car on peut vérifier que 'erreur de consistance est en O(h®)).
On pourrait faire des calculs, assez fastidieux quand méme, qui donnent toutes les formules de ce type d’ordre 2, 3 et 4. Pour
plus de détails on peut renvoyer aux livres M. Crouzeix, A.L. Mignot, 1984, Analyse numérique des équations différentielles :
Masson et Hairer, S.P. Ngrsett, G. Wanner,1993, Solving ordinary differential equations I. Nonstiff problems : Springer-Verlag.
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Ces estimations d’erreur nécessitent souvent 'usage de la formule de Taylor a des ordres assez élevés. Les logiciels de calcul
formel sont alors trés précieux.

1.2.1.6 (%) Notions sur les méthodes de Runge-Kutta plus générales.

Les méthodes de Runge-Kutta ezplicites & s étages sont de la forme :

k= 1(t,y)
ky = f(t + c2h,y + has, 1 ki)
ks = f(t + csh,y + h(az 1 ki + a3 2ks)) (1.37)
ks - f(t + csh,y + h(as,lkl + a5,2k2 + ...+ as,sflksfl))
y(t + h) ~y1=Yy + h(blkl =+ b2k2 + ...+ bsks)
si bien qu’avec la notation de (1.15) et avec t =tn, y = yn :
@ (tn, yn;h) = biks + boko + ... + bsks. (1.38)

Il s’agit encore d’une méthode a un pas et on vérifie aussi que la fonction ®(¢,y; h) est Lipschitzienne par rapport a la variable
y.
Il est d’usage de disposer les coefficients d’une telle formule dans un tableau de la forme :

0
C2 | G21
Cc3 as,1 as,2

Cs as,1 as,2 cet As,s—1
b1 b e bs—1 bs
Voici les tableaux de quelques méthodes trés connues :
0
0 0 T 0
I 11 2 2 I I
(1) . 2 | 2 I I Toll 33
2 | 2 L]0 1 g (3] 2 i 0 (2) 1 3 |73 1
011 11001 31 8 5 B o e T 1 1 |- 1
’ Point-milieu, ordre 2 NEAE 4 4 6 16 l6lg 1 LR N
’ 6 3 6 || “I,a” mé 8 8 8 8
Runge, ordre 3 Heun, ordre 3 La” méthode de Regle 3/8, ordre 4 ‘

Runge-Kutta, ordre 4

Remarque. On respecte toujours les contraintes : ¢1 = 0, ¢; = Zj;i a;j et 1 = ijl bj. Ceci afin d’assurer au minimum
ki = f(to + cih, y(to + c;h)) + O(h?) et d’intégrer exactement I’équation différentielle ' = 1. O

Il existe aussi des méthodes de Runge-Kutta implicites. Par exemple le schéma d’Euler implicite :
yt+h) =yi=y+hft+hy1).

Le terme « implicite » décrit le fait que y1 n’est pas donné explicitement. En vertu du théoréme des fonctions implicites, I’équation
yi—y—hf(t+h,y1) = 0 définit y;. En effet considérons la fonction de plusieurs variables F'(y,h,y1) :=y1—y —hf(t+h,y1).
On a F(yo,0,y0) = 0 et aussi g’y—Fl(yo, 0,y0) = Id qui est inversible donc pour pour h suffisamment petit on peut expliciter
y1 = ¢(h,yo) comme une fonction de h et yo.

D’un point de vue pratique, y:1 est un point fixe de ’application

yig(y) =y +hf(t+hy1)
qui est contractante dés que hL < 1 ainsi qu’on le vérifie aisément :
l9(y1) — g(z1)] = h [(£(t + h,y1) — £(t + h,21))| < hL|yr — 2|

De maniére analogue la régle du trapéze implicite s’écrit

h
y(t+h) =y :y+§(f(t,y)+f(t+h,y1))

On peut vérifier facilement que application y1 — g(y1) :=yo + %(f(t7 vo) + f(¢t + h,y1)) est Lipschitzienne :

h hL
19(y1) = g(21)l = 5 1(E(t + h,y1) = £t + by 20))] < - [yr — 2

et contractante dés que hL < 2.

On peut donc calculer y; par la méthode des approximations successives. En pratique on effectue quelques itérations de point
fixe.

La forme générale des schémas implicites est :
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ki = f(t+ cih,y + h Y125 aiik;), i=1,..s
yt+h) =y =y+h>;_ bk

c1 | a1 Qi2 o+ Qls
C2 a1 a2 tee az,s
le tableau associé étant
Cs as,1 as 2 e As,s
by b . bs

(1.39)

Voici quelques tableaux de tels schéma. Ces schémas sont utiles pour les problémes “raides” et dans ces cas implicites on peut
atteindre des ordre 2s avec s étapes (par problémes raides on entend des équations différentielles dont les solutions présentent
des variations rapides, voir section m ).

— 0]071]O0
1)1 il T I 1

i 1 -
plite | e Schéma. dc

P P Hammer & Hollingsworth

1.2.1.7 (x) Notions sur les estimations d’erreurs utilisées dans les codes adaptatifs

Le pas de la subdivision h,, := t,4+1 —tn n’est pas forcément constant au cours des itérations et peut étre adapté en fonction
d’une estimation de erreur. Dans la mesure out c’est possible, si cette estimation d’erreur est négligeable on augmente le pas,
si par contre I’estimation est trop grande on le diminue. Pour cela il est indispensable de disposer d’une estimation de ’erreur
locale.

En général pour estimer l’erreur, on utilise deuz schémas numériques simultanément. Un schéma de Runge-Kutta est alors
utilisé combiné a un autre, d’ordre plus élevé, afin de permettre une estimation de l'erreur par soustraction des deux valeurs
calculées par les schémas, yn+1 et Ynr1. On estime ent1 := y(tn + hn) — Ynt1 = Yol — Z/n+1-|E| On augmente ou diminue alors
h,, selon la taille de e,,+1. Cela donne des algorithmes adaptatifs ou les pas h,, sont automatiquement choisis pour essayer de
garantir une précision donnée. On présente ces méthodes avec des tableaux de la forme :

0
C2 | Q21
C3 as,1 as,2

Cs as,1 Qs,2 et As,s—1
bl b2 te bs—l bs
bl b2 e bs—l bs bs+1

ot il est entendu que y1 =y +h>.;_, biks avec ki = f(t,y) et ky = f(t + c;h,y ++h Z;j{l ai,;K;), 2 <1i < s et Pestimation
d’erreur est y1 —y1 ouy1 =y +h(>;_, bik; +ZS+1f(t + h,y1). I faut citer ici la méthode de Merson qui est d’ordre 4 et
dont I’estimation d’erreur est d’ordre 3 en général, la méthode de Bogacki et Schampine qui est d’ordre 3 avec une estimation
d’erreur d’ordre 2 et la méthode de Dormand-Prince qui est d’ordre 5 avec une estimation d’erreur d’ordre 4. Ces deux derniéres
méthodes sont utilisées dans MATLAB, respectivement dans les procédure ode23 et oded5; on peut vérifier les coefficients des

tableaux qui suivent avec les commandes type ode23 et type ode4b, qui permettent de voir le code source de Matlab.

0
1 1
3| 3 0
T T T
b4+ 23
R AR R
113 ]0]-5]2 o M
ol o0 21 A B T I B
(15 % 613 24 24 24 24
A 4 3 3 99
S0 S [2]=% méthode de Bogacki, Shampine “23” |

S

méthode de Merson “34’

10. On parle de schémas emboités (embedded formulas) car les deux schémas ont beaucoup de coefficients en commun ce qui
a l'avantage d’économiser le nombre d’évaluations de f.
11. Les références sont :
R.H. Merson, 1957, An operational method for the study of integration processes : Proc. Symp. Data Processing, Weapons
Research Establishment, Salisbury, Australia, p 110-1 — 110-25;
P. Bogacki, L.F. Shampine, 1989, A 3(2) pair of Runge-Kutta formulas : Applied Mathematics Letters, 2, 1 - 9;
J.R. Dormand, P.J. Prince, 1980, A family of embedded Runge-Kutta formulae : J. Comp. Appl. Math., 6, 19 — 26.
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0
I I
5 5
3 3 9
10 40 40
1 11 —56 32
5 55 15 9
g T9572 | 25360 | 64448 | _ 212
9 6561 2187 6561 729
1 3017 —355 16732 9 — 5103
3168 33 5247 176 18656
1 35 0 0 5 ALY 1T
384 1113 192 6784 84
35 0 00 155 — 287 11 0
384 1113 192 ~ G784 Y
5179 0 7571 305 92097 187 [ T
57600 16695 640 T 339200 | 2100 | 40

] Meéthode de Dormand-Prince “45”

1.2.2 Les méthodes multipas

Pour augmenter la précision du schéma d’Euler, le processus employé dans les méthodes de Runge-Kutta n’est pas le seul
possible. On peut aussi, aprés une période de démarrage, utiliser les valeurs approchées de y, ¥yn—1, yn—2, ---, Yn—k+1 aUX pas
qui précédent y,. Les premiers procédés de ce genre qu’on range dans la classe des méthodes multipas| “| sont antérieurs aux
méthodes de Runge-Kutta et sont dus & Adams (et publiés par BashforthH)

1.2.2.1 Meéthodes d’Adams et de différentiation rétrograde (BDF).

Les méthodes d’Adams sont obtenues en approchant I'intégrale du second membre de
Y(tnt1) = y(tn) + f::“ f(t,y(t))dt par I’intégrale du polynéme d’interpolation de ¢t — f(¢,y(¢)) aux points tn, tn-1, ...,
tn—k+1 (méthodes explicites) dans le cas des méthodes dites d’Adams-Bashforth et aux points tn41, tn, .., tn—k+1 (méthodes
implicites) dans le cas des méthodes dites d’Adams-Moulton. On note f, = f(t,,y») ol y, est Papproximation ainsi obtenue
pour y(tn). Dans le cas ou le pas h = t;4+1 — t; est constant les premiéres méthodes d’Adams-Bashforth sont avec comme ordre
de convergence respectivement 1,2, 3,4 (donc erreurs locales en O(h?), O(h*), O(h*), O(h®) respectivement) :

k=1: ynt1 = yn + hf, (Eulerexplicite),
k=2: yn+1:yn+h( f, ;fnfl),

4 1.40
=3¢ Yori = yo +h(E2E — 86,1 4+ 2,,), (1.40)
k=4: Ynt+1 = Yn + h(55fn - 5an—1 + %fn—Q - %fn—3)~
Toujours & pas constant, les premiéres méthodes d’Adams-Moulton sont, avec les mémes ordres de convergence :
k=0: Ynt1 =yn+ hfn+1 (Euler implicite),
k=1: Ynt1 =yn + h( froi1 + f ) (reégle du trapeéze implicite, ) (1.41)

k=2: Yntl =Yn + h(12 nt+1 + 12f - %fnfl)y
k=3: yar1=Yyn+ h(24fn+l + 19f - %fn—l + ﬁfn—Q)-

A partir de ces méthodes, une méthode prédicteur-correcteur est construite de la maniére suivante :

P (prédiction) : on utilise une formule de type Adams-Bashforth pour faire une prédiction ¥,+1 de yn+1;

E (évaluation) : on évalue la fonction f avec cette approximation [ f(tnt1,¥nt1);

C (correction) : on porte cette approximation dans une formule d’Adams-Moulton ce qui donne y;,+1 ;

E (évaluation) : pour continuer on évalue f41 = f(tnt1, Ynt1)-
Cela s’appelle un schéma PECE. C’est la procédure la plus courante mais il existe aussi des schémas PECECE, des schémas
PEC ...

Remarque. Les coefficients du second membre présentent la particularité de sommer & un. En effet on avance de h entre t,, et
tn+1. En particulier, les solutions de I’équation différentielle triviale ¢y = 1 sont données par yn+1 = yn + h qui correspond bien
a y(t) =t + const. O

Les méthodes de Nystrom (explicites) et de Milne-Simpson (implicites) sont construites de la méme maniére mais a partir de
Y(tnt1) = y(tn-1) + ftt"jll f(t,y(t))dt. Toujours & pas h constant, les premiéres méthodes de Nystrom sont (k = 2 est identique
ak=1):

k=1: ynt1 =¥n-1+ 2hf, (schéma saute mouton),

1.42
k=3: Yn+1 :yn71+h(%f an 1+ fn 2) ( )
et les premiéres méthodes de Milne-Simpson sont :
k=0: Yn+1 = ¥Yn-1 + 2hfn+17
k=1: Yn+1 = Yn-1+ th'm (1 43)

k=2: Yn+1 =Yn— 1+h( fn+1+4f +1fn 1),
k=4: Ynt1 =Yn— 1+h(90fn+1+ 124f +24f 1+9;40fn72_%fn73-

12. On dit aussi méthodes a pas liés.

13. La référence est F. Bashforth, 1883, An attempt to test the theories of capillary action by comparing the theoretical and
measured forms of drops of fluid. With an explanation of the method of integration employed in constructing the tables which
give the theoretical form of such drops, by C. Adams : Cambridge Univ. Press.
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Dans ces cas aussi on peut définir des schémas prédicteurs-correcteurs et bien siir on peut étendre & d’autres intégrales que
S ety (1)t

by

Remarque. Les coefficients du second membre présentent la particularité de sommer & 2. En effet on avance de 2h entre t,,_; et
tn+1. En particulier, les solutions de ’équation différentielle triviale ¥’ = 1 sont données par Yn+1 = Yyn—1 + 2h qui correspond
bien a y(t) = ¢ + const. O

Les méthodes de différentation rétrograde appelées en anglais BDF (backward differentiation formula) sont construites d’une
autre maniére. On dérive le polynéme d’interpolation q de t — y(t) aux points t,+1 (en ce point y,41 n’est pas (encore)
connu), tn, ..., tn—k+1 et on écrit : q' (tnt1) = F(Ent1, Ynt1)-

On obtient des formules implicites dont les 6 premiéres sont stables et les autres sont instables (voir section suivante), ce
que nous admettons aussi. Ces 6 formules implicites de différentiation rétrograde dans le cas de pas constant sont :

k=1: ynt1 —yn = hfn41, (Eulerimplicite)

k=2: 2yn41 —2yn + 3¥n—1 = hfny1, (BDF2)

k= 3: %ynﬁ»l - 3yn + %Y”n,fl - l}"77,72 = hfn+17

k=4: %Y’rkl»l - 4yn + SY’VLfl - §Yn72 + i}’nfii = hfn+17

k=5: %)’n-&—l —dyn + 51g’n—1 — %Zg’n—z + %?’;—3 — %yGn—él = hf'rll+17

k= 6: Wyn+1 - GYn + 7}’7171 - ?yn72 + TYn73 - gyn74 + g}’n74 = hfn+1-

(1.44)

Remarque. Les coefficients du premier membre présentent la particularité de sommer a zéro. En effet pour I’équation différentielle
triviale 3’ = 0, les constantes doivent étre solution du schéma. O

1.2.2.2 Un exemple d’instabilité

Contrairement aux méthodes a un pas, dans ce cas des méthodes multipas, il ne suffit pas qu'une méthode soit consistante,
c’est a dire d’erreur locale tendant vers zéro avec le pas (plus vite que O(h)), pour qu’elle soit convergente. Voici une formuleE qui
est d’ordre 3 au moins mais diverge (le pas étant constant, ¢, = ¢o +nh, on note y,, Papproximation de y (¢»), et £, = £(tn,yn)) :

Yn+1 + 4Yn - 5yn,1 = h(4fn + 2fn,1). (145)

Montrons que Perreur de consistance est en O(h*).
Pour cela, portons la solution exacte dans le schéma et examinons la différence

€(hn) == y(tnt1) + 4y (tn) — 5y (tn—1) — h (4 (tn, y (tn)) + 2f(tn—1,y (tn-1))) - (1.46)

En effectuant un développement de Taylor au point t, et en utilisant que 3’ = f(¢,y) on obtient :

e(h) = y(tn) + hy/(tn) + % Yy (tn) + % y" (tn) (1.47)
Hy(t) =5 (¥lt) = /(6 + o/ () = (1)) (1.48)
—h (4Y' (tn) + 2y (tn-1)) + O(h*) (1.49)

/ h2 1" hB "
e(h) = y(tn) + hy'(tn) + 54" (tn) + 54" (tn) (1.50)
by (t) =5 (¥lt) ~ /(6 4 5 (00 = T /00 (151)
—4hy' (tn) — 2h (y’(tn) — hy" (tn) + % y'”(tn)> + O(h*) (1.52)

Aprés simplification il reste ¢(h) = O(h*). Donc 'erreur de consistance (locale) est ¥(tni1) — yni1 = O(h?*) et la méthode
serait au moins d’ordre 3 (si elle était stable, I'erreur globale serait en O(h?)). Mais cette méthode n’est pas stable ainsi qu’on
va le voir plus bas. Voici en effet ce qui se passe lorsqu’on applique la méthode a I’équation différentielle triviale y'(¢) = 0,
y(0) = 1, dont la solution exacte est y(t) = 1, avec un pas h constant. En supposant que les valeurs de démarrage sont exactes,
les relations a satisfaire sont :

vo=1,y1 =1, Yynt1 +4Yn — dYyn—1 =0 pour n > 1 (1.53)

Or la solution générale de la relation de récurrence yn+1 + 4yn — 5yn—1 = 0 pour n > 1 est y, = aA] + Ay o0 A1 = 1 et
A2 = —5 sont les racines de 1’équation caractéristique ¢ 4+ 4¢ — 5 = 0. Pour trouver la solution de valeurs initiales yo et y; il
a+pB=1yo
A+ Aff =y
étant toujours non nul. On trouve immédiatement o = 1 et 8 = 0, ce qui donne

suffit de résoudre le systéme linéaire 2 X 2 en «, 8 { qui a une solution unique le déterminant Ao — Ay = —6

yn = A7 =1 (1.54)

14. On l'obtient en cherchant une formule explicite & 3 pas d’ordre maximum.
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Mais si on commet une petite erreur d’arrondi en prenant par exemple yo = 1 et y1 = 1 + € on obtient alors
€

Yn = A} + NS = (1 + g) — 5 (5" (1.55)

Le premier terme est trés voisin de 1 lorsque € < 1, ce qui est favorable, mais le second est non borné quand n — oo et
oscille de plus en plus violemment & mesure que n augmente. On dit que le schéma est instable. Ainsi il n’y a pas convergence
vers la solution y = 1 et cela provient du fait que le polynéme p(¢) = ¢+ 4¢ — 5 a pour racine ( = 1 et ( = —5 : cette
deuziéme racine de module > 1 propage les “petites erreurs de consistance” commises a chaque pas de maniére explosive. On
pourrait objecter que si on prend exactement yo = 1 et y1 = 1 il n’y pas pas de probléme. Cependant si on change la condition
initiale en yo = 0.1 et y1 = 0.1, on a vu dans le chapitre 1 que 0.1 = 1/10 n’admet pas d’écriture binaire finie donc on ne peut
assurer exactement yo = 0.1 et y1 = 0.1 On constate numériquement que y, diverge violemment au bout de quelques dizaines
d’itérations en codant
x=0.1;
y=0.1;
z=zeros(30,1);
for i=1:30

z(1)=-4*y+5%*x

X=y;

y=z(i);
end

par exemple Y23 &~ —700 et y29 =~ 3450! Ce schéma est donc inutilisable en pratique sur une équation non triviale, car il est
impossible d’assurer une précision infinie et les erreurs sont amplifiées de maniére exponentielle par le facteur A3.

1.2.2.3 Notions sur le résultat général

On considére une méthode multipas, & pas constant h, de la forme :

WYntk + Wk—1Yntk—1 + ... + @0yn = h(Befnsr + ... + Bofn) (1.56)
ou ay # 0, |awo| + |Bo| > 0.
La méthode est explicite si B = 0 et implicite si non.
Définition 3 Le schéma est dit consistant si l’erreur de consistance €(h)

k
e(h) :=> (aiy(t+ih) — hBif(t +ih, y(t + ih)) (1.57)

=0

est o(h) quand h — 0. On dira que ce schéma est d’ordre p si l’erreur de consistance e(h) est en O(hPT) pour toute fonction
t — y(t) suffisamment réguliére.

On associe au schéma (|1.56)) les polynomes :

p(¢) = ar¢" + ar1¢* " + . 4 ao,

o(¢) = BrC* + Be-1¢"" + ... + fo. (1.58)

Proposition 3 un schéma est consistant si et seulement si
p(1) =0, p'(1) = o(1). (1.59)

Preuve. 11 suffit de remplacer y(t + ih) et y'(t +ih) = f(t + ih, y(t + ih)) par leurs développement de Taylor dans (1.57)) :

e(h) = Y (cuy(t+ih) —hBif(t +ih,y(t + ih)) (1.60)
= > aiy(t+ih) — hBiy'(t +ih) (1.61)

1=0

k
= Za (y(t) +ihy'(t)) — hBiy'(t) + o(h) (1.62)

k
(Z ozi) y(t)+h (Z(iai — 61)> y'(t) 4+ o(h) (1.63)

i
On en déduit que le schéma est consistant si et seulement si >, a; = 0et Y, ic; = D>, Bi ce qui donne bien p(1) = 0, p'(1) = o(1).
H

Remarque. La condition p(1) = 0 revient & vérifier que y = Cte est solution du schéma lorsque f = 0. La condition ), ta; = 3, Bs
revient & imposer en plus que y(t) = ¢ est solution du schéma lorsque f = 1. O
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Définition 4 On dit que le schéma est stable si la solution générale de la relation de récurrence linéaire :

QkYn+k + Ak—1Yntk—1 + ... + @oyn =0, (1.64)

est bornée en fonction des données initiales i.e s’il existe une constante C > 0 telle qu’étant données des valeurs de “démarrage”

Yo, Y1, ---, Yk—1 quelconques la suite {yn }nen solution de vérifie |yn| < Cmaxo<i<k—1|yi| que soit n € N.

Remarque. Cela impose en particulier que les solutions du schéma appliqué & I’équation ¢y’ = 0 restent bornées. Ce qui est bien
la moindre des choses & demander. O

On démontre la proposition
Proposition 4 Le schéma est stable si et seulement si
le polynéme p(¢) a toutes ses racines de module < 1, lesracines de modules 1 étant simples. (1.65)

Preuve. Montrons d’abord que la condition ([1.65]) est nécessaire. C’est un résultat d’algébre linéaire sur les suites récurrentes
linéaires que la solution générale (y,) de

QkYntk + Ak—1Yntk—1 + ... + @oyn =0, (1.66)
est une combinaison linéaire de (™ si ¢ est racine simple de p(¢) = 0, de ¢",nC™ si ¢ est racine double de p(¢) = 0, de
¢, n¢™,...n' ¢ si € est racine de multiplicité [ de p(¢) = 0. Cela signifie que

Yn =p1(n)C1 +p2(n)G + .. + pi(n)(, (1.67)
ou (1, (2, ..., ; sont les racines distinctes de p, la multiplicité de ¢; étant m; et ol pi1, p2, ..., pi sont des polynomes, le degré

de p; étant au plus m; — 1. En particulier pour que les solutions y, restent bornées Vn il faut que d’une part toutes les racines
¢; soient de module inférieur ou égal & un et qu’aucune racine multiple ne soit de module un.

Montrons maintenant que la condition est suffisante. Sans perte de généralité, quitte a diviser tous les coeflicients
par ay on peut supposer que o = 1. Nous supposons aussi pour simplifier que y(t) est scalaire. On introduit alors le vecteur

Yn
& Yn+1 .
de R* Y, = . et la matrice k x k
Yn+k—1
0 1 0
0 0 1 . :
A = : . . . (1.68)
0 0 1
—aQp oo —Qlg—29 —Qg—1
La relation de récurrence linéaire
Yn+k = —Q0Yn — ... — Ok—1Yn+k—1
Yn+1 Yn
. . . y"l+2 yn+1 . . .
se traduit alors ainsi : . =A . c’est a dire Yy,41 = AY,,. Ainsi
Yn+k Yn+k—1
Y, = A"Y,. (1.69)

11 suffit alord de choisir une norme sur R” telle que ||A| < 1. Pour cela montrons le lemme d’algébre linéaire suivant.

Lemme 2 Soit A une matrice k X k dont toutes les valeurs propres sont de module inférieur ou égal a un et dont les éventuelles
valeurs propres multiples sont de module strictement inférieur a un. Il existe une norme sur R® telle que la norme matricielle
subordonnée vérifie ||A|| < 1.

G 0 0
Preuve du lemme. Effectuons la preuve pour k = 3 pour alléger. Si A est diagonalisable, alors elle peut s’écrire A = P 0 ¢ O
0 0 ¢
Sinon (2 = (3 est une racine double du polynéme caractéristique et on peut mettre A sous forme réduite de Jordan. A =
G 0 0 G 1 0
P 0 ¢ 1 P~ ou bien (1 = (2 = (3 est racine triple et la forme de Jordan est A = P 0 G 1 P
0 0 (2 0 0 G
Dans le cas d’une racine double, par hypothése |(2| < 1. Quitte & multiplier la 3-iéme colonne de P par le facteur 1 — (2|,
G0 0
on peut mettre A sous la forme de Jordan modifiée : A = P 0 ({2 1—|¢| | P7'. Dans le cas d’une racine tripe, par
0 0 ©
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hypothése |¢1] < 1. Quitte & multiplier la 2-éme colonne de P par le facteur 1 — |¢1| et la 3-éme colonne par le facteur (1 —|¢;])?

G 1-G] 0
, on peut mettre A sous la forme de Jordan modifice : A=P | 0 G 1—|¢| | P
0 0 C1
G 0 0 G 0 0
Dans tous les cas on peut donc écrire : A = PJP™! avec J = 0 ¢ O ou J = 0 ¢ 1-—]¢] ou
0 0 ¢ 0 0 C2
G 1-]G] 0
J= 0 G 1—1G|
0 0 G
Choisissons maintenant la norme suivante sur R* : ||z|| := | P~ z||oo. Majorons
Azl = P! Azlloo = | TP z]|oo < (| ]lool| P~ @llo = [[/]loc [l]l- (1.70)

Or on sait d’aprés le cours d’analyse numérique matricielle que la norme co d’une matrice M se calcule en sommant les modules
des coefficients en ligne |[M|loc = max; »_; [mi ;| donc ||J||o = max; |(;| dans le cas diagonalisable et ||/||c = 1 sinon et avec

(1.70) on obtient ||Az|| < ||z|| donc ||A| < 1. O
Considérons la matrice (ot on a pris k = 3 pour alléger I’écriture)
0 1 0
A= 0 0 1
—QQ —Q1 — Q2

Le polynome caractéristique de A se calcule en développant suivant la derniére ligne :

—C 1 0
0 —C 1 = —op — a1C — (12(2 - C3 = *P(C)~
—Qp —Q1 —Q2 _C

Le polynoéme caractéristique de la matrice A est précisément p(¢ )|E| Par hypothése de stabilité (1.65]) les valeurs propres de A
satisfont les conditions du lemme [2] Il existe donc une norme matricielle subordonnée a une norme telle que ||A|| < 1. Ainsi de

la relation (1.69) on déduit
IYall < [[A™[[[Yoll < Al Yol < [IYoll-

Comme les normes sur R¥ sont équivalentes on déduit qu’il existe une constante C' > 0 telle que

[¥alloo < C'[[Yoloo

ce qui donne exactement |y,| < C maxo<i<k—1 |yi| que soit n € N. |

Exemple. Les méthodes d’Adams sont toutes stables. En effet le polynome p(¢) = ¢F — ¢*=1 = ¢*=1(1 - ¢).
Exercice. Montrez que les méthodes de Nystrom et Milne-Simpson le sont également.

Précisons maintenant la notion de convergence pour les schémas multipas.

Définition 5 Soit T' > 0 une durée fixée, une subdivision to < t1 < ... < ty = to + T de pas constant h. Etant données k
valeurs de départ Yon, Yin, - - -Yk—1)n, on dit que le schéma est convergent si on a maxy |y(tn) — yn| —rh—o 0 lorsque les
k wvaleurs de départ vérifient y(t;) — yin —h—00,i=0...k —1.

De plus, on dit que le schéma est convergent d’ordre p si Uerreur globale maxy,<t, <to+7 |Y(tn) — yn| = O(RP) lorsque les valeurs
de départ vérifient y(t;) — yin = O(RP), i =0...k — 1.

Le résultat fondamental suivant est di & Germund Dahlquist (1956). On a I’équivalence :

Théoréme 3 Un schéma multipas est convergent si et seulement si il est stable et consistant. De plus si l’erreur de consistance
est O(RPTY), il est convergent d’ordre p.

Preuve. Montrons que la condition est suffisante. Nous donnons la preuve dans le cas des schémas explicites. Sans perte de
généralité, quitte a diviser tous les coefficients par ax on peut supposer que oy = 1. Nous supposons aussi pour simplifier que

Yn
. . . k Yn+1 .
y(t) est scalaire. Comme précédemment, on introduit alors le vecteur de R” Y, := . et la matrice k x k
Yn+k—1
0 1 0
0 0 1 . :
A= : . . . (1.71)
0 0 1
—Qo  cr e —Qr_s  —Qp_1

15. De ce fait, la matrice A est appelée matrice compagnon du polynéme p(().
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de sorte que le schéma multipas s’écrit alors

Yoi1 =AYy + h®(tn, Y, h) avec ®(ty,, Yo, h) = : . (1.72)
Br—1fn+k—1 + Br—2fntk—2 + ... + Bofn

On procéde ensuite de la méme maniére que dans le cas des méthodes & un pas. Le schéma est consistant donc la solution exacte
vérifie

Y(tn+k) = —ak—1Y(tntr—1) — .. — @y(tn) + h (Be-1f(tnsro—1,Y(tntr—1)) + ... Bof(tn, y(tn)) + (h).
y(tn)
ou e(h) désigne l'erreur de consistance (1.57). Donc les vecteurs associés a la solution exacte Y7;, = : vérifient,
y(thrkf?)
y(thrkfl)
pour un schéma d’ordre p :
0
0
Y51 =AY, +h®(ts, Y5, h) + . (1.73)
e(h))
——

erreur de consistance
Puisque f est Lipschitzienne (de constante de Lipschitz L), on montre aisément que ® aussi :
|®(t,Y,h) — ®(t,Z,h)|| < M||Y — Z|| VY et Z vecteurs de R*, pour h < 1 et M = kmaxo<i<k_1|53:|L.
En soustrayant membre & membre a , on obtient :

0
0
Enp = AE, + h(q)(t7Y7i: h) - q)(ta Yo, h)) +
e(h)
Pour une norme sur R* et la norme matricielle subordonnée, on peut majorer I'erreur globale ||E,|| = [|[YS — Y| :
[Enti]l < (IA[ +AM)|[En] +[le(h)]]- (1.74)

Comme dans la preuve de la proposition [4] on voit que le polyndome caractéristique de la matrice A est précisément p({) =
¢* + o_1¢* 1 + ...+ . Par hypothése de consistance 1 est racine du polynéme caractéristique. Par hypothése de stabilité les
valeurs propres de A sont toutes de module inférieur ou égal & un et celles qui sont de module un sont simples, on peut donc
appliquer le lemme [2] et choisir une norme sur R* telle que ||A| = 1.

On a ainsi démontré que la suite des erreurs globales vérifie

[Buirl] < (14 RM)[Eal + [e(B)]. (1.75)

On procede alors de la méme maniére que pour les méthodes & un pas en utilisant le lemme [I] oit I'on doit tenir compte aussi
des erreurs qu’on peut faire sur les valeurs de démarrage mais vu (1.19)) (terme 6o) cela est possible.

Réciproquement montrons que la convergence d’un schéma implique sa stabilité et sa consistance. Commencgons par démontrer
la condition de stabilité. Pour cela considérons 1’équation différentielle particuliére : ' = 0, avec la condition initiale y(0) = 0
dont 'unique solution est la solution y(t) = 0. Supposons qu'il existe ¢ racine du polynéme p telle que |{| > 1. On suppose qu’on
applique le schéma multipas avec un pas constant b > 0. Soient les valeurs de démarrage yo = h,y1 = h(, ... yp—1 = h¢F~1. La
suite 3, = h¢™ est alors solution du schéma. Or y, = h¢*/" nest pas bornée quand h — 0 donc y, ne converge pas vers 0 bien
que Yo = h,y1 = h¢,...ye—1 = h¢* ™! convergent bien vers 0 quand h — 0. Le schéma ne converge donc pas. Cela prouve que
toutes les racines de p sont de module inférieur ou égal & 1. Supposons maintenant qu’il existe ¢ racine multiple du polynéme
p telle que |¢] = 1. Soient les valeurs de démarrage yo = 0,y1 = Vh(,...yn—1 = Vh(k — 1)¢F~'. La suite y, = vVhn(™ est
alors solution du schéma. Or y,, = ﬁgt/h n’est pas bornée quand h — 0. Le schéma ne converge donc pas. Cela prouve que
toutes les racines multiples de p sont de module strictement inférieur & 1. La condition de stabilité (1.65]) est donc nécessaire &
la convergence.

Pour montrer la consistance nous allons considéder successivement deux équations différentielles trés simples. Tout d’abord
y' =0, y(0) = 1 dont la solution exacte est y(t) = 1. Le schéma donne la relation de récurrence :

QkYntk + Ok 1Yntk—1 + ... + aoyn = 0.

Le schéma étant convergent, pour chaque n on doit avoir y, — 1 quand h vers 0. En passant a la limite dans la relation, on
obtient

ok +ag—1+...+a0=0
qui traduit précisément p(1) = 0.
Enfin considérons le probléme de Cauchy y’ = 1, y(0) = 0 dont la solution exacte est y(t) = t. Choisissons un pas constant h.
Le schéma donne la relation de récurrence :

kYn+k + Ok—1Yntk—-1 + .. + @0Yn = h(Br + Br—1 + ... + Bo)-
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Prenons la suite y; = C jh et portons la suite dans la relation de récurrence.

Clag(n+k)h+ar—1(n+k—1)+ ...+ aonh) = h(Br + Br-1 + ... + Bo) = ha(1)

k
Cnh(ak + ox—1 + ... + a0) + Ch(D _ jay) = ho(1)
7=0

Nous avons montré que p(1) = 0 donc il reste en simplifiant par h :
k
(3 jay) = Cp'(1) = o(1).
j=0

Donc la suite y,, = C'nh est solution si on prend C = ”,(11)

qui est bien définie car 1 est racine simple de p comme le schéma est

p’'(1)
stable. Donc y, = Ct, mais on doit avoir convergence de y, vers y(t,) = ¢, donc C =1 donc p'(1) = o(1) et on a bien prouvé
la consistance du schéma (|1.59)). [ |

1.2.3 Notions sur les problémes raides (stiff en anglais)

Les équations différentielles dites « raides » sont celles qui contiennent des second membres f(¢,y) qui peuvent varier
brusquement en fonction de y. Cela signifie que la constante de Lipschitz L telle que |f(¢,y) — f(¢, z)| < L|y — z| peut étre trés
grande devant 1'unité.

On va traiter ici un exemple trés élémentaire mais, on l’espére éclairant. Considérons I’équation différentielle y'(t) =
—50(y(t) —cos(t)) = f(t,y(t)), y(0) = 0, o la constante de Lipschitz vaut 50 >> 1. Dans le code MATLAB qui suit, on a appliqué
a cette équation différentielle la méthode d’Euler (explicite), la méthode d’Euler implicite et la régle du trapéze implicite ou
schéma de Crank-Nicolson ynt1 = yn + 22 (f(tn, yn) + f(tnt1, Yns1))-

Au moyen de la méthode de la variation de constante on peut calculer la solution (exacte)

() = 2500 cos(z) + 50sin(z) — 2500e 77"
N 2501 '

il y a une transition assez “raide” de y(0) = 0 & y(x) = cos(z) entre z = 0 et z < 0.8. On a obtenu les résultats affichés dans la
figure qui suit en prenant des pas de temps h = 1.974/50 et h = 1.875/50 trés voisins de 2/50.
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Euler explicite sur dy/dx=-50*(y-cos(x)), y(0)=0
Résultats avec deux pas et solution exacte

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Euler implicite sur dy/dx=-50*(y-cos(x)), y(0)=0
Résultats avec les deux mémes pas et solution exacte

2 T . . . . . .

1k i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Crank-Nicholson - implicite — sur dy/dx=-50*(y—cos(x)), y(0)=0

, Résultats avec le plus grand pas et solution exacte

1k i

of —
0 Oi2 014 0i6 018 1I 112 114 1.6

La méthode d’Euler explicite avec un pas constant h > 0 sur une équation différentielle y'(t) = f(¢,y(t)), y(0) = yo s’écrit :

yn+1 = yn + hf(nhv yn)a n Z 07 (176)

et si Péquation différentielle est ' = Ay ol A est une constante (solution en e*yyp) :

Yn+1 = RFF(AR)y, donc y, = (RFF(Ah))"yo avec RFF(2) =1 + 2. (1.77)
La solution numérique “n’explose pas”’ seulement si |[R(Ah)| < 1 ce qui équivaut & —1 <1+ Ah < 1 donc a, si A <0, h < %
Dans I'exemple précédent on congoit que la valeur de A est —50, les pas adoptés sont trop proches du seuil h = ﬁ = 2/50 et

on voit des oscillations parasites.
La méthode d’Euler implicite avec un pas constant h > 0 sur une équation différentielle y'(t) = f(t,y(t)), y(0) = yo s’écrit :

Yntl = Yn + hf((n + 1)h7 yn+1)a n >0, (1'78)

et si 'équation différentielle est ¢y = Ay :

Ynt1 = R¥T(AR)yn donc y, = (RFT(Ah))"yo avec R¥!(z) = 7 i o

Pour A < 0 et h > 0, RF! (Ah) = ﬁ < 1 la solution numérique n’explose jamais et on constate de bons résultats; il n’y

(1.79)

a plus d’oscillations parasites. Cependant la transition brusque entre ¢ = 0 et t =< 0.8 n’est pas reproduite avec une grande
précision.

Avec la régle du trapéze, il n’y a plus d’oscillations parasites et le transition est mieux capturée parce que le schéma est
d’ordre 2 :
1+

11—z

Ynt1 = RN (Ah)y, donc yn, = (RN (Ah))"yo avec RV (2) (1.80)

En effet pour A < 0 et h > 0, RN (\h) = ;K“lzg <1
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1.2.3.1 (x) Compléments sur la stabilité.

D’une maniére générale ’application d’une méthode & un pas & ’équation différentielle 3y = Ay se traduit en une récurrence
de la forme :

Yn+1 = R(hRA)yn. (1.81)

Le cas ot Re(\) < 0 est le plus discriminant car la solution exacte y(t) = C* exp(\t) doit tendre vers zéro trés rapidement
donc, d’un point de vue comportement qualitatif, il est souhaitable que la solution numérique reste au moins bornée. Comme
Yn+1k = R(AR) yn, il faut que R(Ah) < 1, et ce méme lorsque le pas h n’est pas forcément assez petit pour que la solution
numérique soit une bonne approximation. Cela conduit a définir le domaine de stabilité du schéma S = {z € C: |R(z)| < 1}.
On dit qu’un schéma a un pas est A-stable (absolument stable) si C— = {z € C : Re(z) < 0} C S. Ainsi avec un schéma
A-stable, pour Re(\) < 0 tous les pas h donnent des résultats “corrects”. Le schéma d’Euler explicite n’est pas A-stable, par
contre les schémas d’Euler implicite et de Crank-Nicholson le sont. Il y a d’autres notions de stabilité comme la L-stabilité
qui est la A-stabilité avec en plus lim., o R(z) = 0. On peut montrer que les schémas de Runge-Kutta explicites ne sont pas
A-stables. Par contre il y a des méthodes de Runge-Kutta implicites A-stables et méme L-stables et des extensions de ces
méthodes qui utilisent la dérivée %, appelées méthodes de type Rosenbrock sont souvent utilisées pour la résolution numérique
de ces problémes raides.
La notion de A-stabilité pour les méthodes multipas axyn+k + @k—1Yntk—1+ ... + @0yn = A(Brfntk + ... + Bofyn) s’'introduit
de la maniére suivante. On applique la méthode & une équation différentielle y' = Ay et cela conduit & considérer, avec u = \h,
le polynéme (o — pBx)C* + ... + (a0 — pBo) = 0 dont on note (;(u) les racines. Le domaine de stabilité de la méthode est
S = {ue C toutes les racines (;(u) satisfont |{(p)| <1
" les racines multiples satisfaisant |{;(u)| < 1
Dahlquist dit qu'une méthode multipas A-stable est forcément d’ordre p < 2. Enfin, si on définit, pour 0 < o < 7, la notion de
A(a)-stabilité par le fait qu’une méthode est dite A(a)-stable si S, = {u€ C; |arg(—p)| < «, u# 0} C S, alors on peut établir
que les méthodes de différentiation rétrograde a k = 1,2,...,6 étapes sont A(«)-stables avec les valeurs de a suivantes (on a
aussi {u€ C; Re(p) < —D} C S avec les valeurs de D indiquées dans le tableau) :

" } et la méthode est dite A-stable si C_ C S. La seconde barriére de

k 1 2 3 4 5 6
90° 90° 86.03° 73.35° 51.84° 17.84°
D 0 0 0.083 0.667 2.327 6.075

Pratiquement on peut déceler qu’un probléme est raide par le fait qu'une méthode numérique “ordinaire” (Runge-Kutta explicite,
Adams) adaptative aboutit a de petits pas. Pour toutes ces considérations et des compléments, il faut se reporter a la bibliographie
et en particulier au livre E. Hairer, G. Wanner, 1996, Solving ordinary differential equations II : Stiff and Differential-Algebraic
problems : Springer-Verlag, Berlin.

1.2.3.2 Epilogue.

Terminons par quelques exemples. Voici les commandes MATLAB pour résoudre le probléme proies prédateurs de Lokta
Volterra (r représente une population de lapins (rabbits en anglais) et f représente une population de renards (fox en anglais) ;
la solution est périodique, la période étant fonction des conditions initiales ; pour plus de détails voir le livre de Moler, exercice
7.15) :

dar
R (152)
dt :
r(0) =ro, f(0) = fo
les données étant o = 0.01, o = 300, fo = 150 :

£=0(t,y) [2%y(1)-0.01*y(1)*y(2); -y(2)+0.01*y(1)*y(2)]

0de23(f, [0 20], [300 150])

La premiére instruction définit le systéme différentiel, la deuxiéme le résout et affiche automatiquement le résultat. Pour
conserver le résultat dans une structure afin de le reéchantillonner et par exemple le dessiner d’une autre fagon on peut utiliser
les instructions :

sol=o0de23(f, [0 20],[300 150])

xx=0:0.01:20; yy=deval(sol,xx); figure(2), plot(xx,yy(1,:),xx,yy(2,:))

Pour plus détails il faut se reporter & la documentation MATLAB. Il faut quand méme signaler que les “solveurs” proposés
pour les problémes ordinaires (non raides) sont ode23 (méthode de type Runge Kutta de précision modeste mais rapide), ode45
(méthode de type Runge Kutta précise) et ode113 (méthode d’Adams-Bashforth-Moulton PECE d’ordre variable plus précise
encore). De plus on peut modifier des options pour effectuer certaines opérations. Par exemple avec la fonction, écrite dans un
fichier nommé evenment.m :

function [valeur,fin,direction] = evenment(t,y)

valeur=y(1)-300; fin=1; direction=1;
les instructions :

options=odeset (’Events’,Q@evenment) ;

[t,y,te,ye]l = ode23(f,[0 20],[300 150],options);

te

ye
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FI1GURE 1.6 — Population proie-prédateurs.

fournissent la période 4.9981 (te(2)) qu’on peut aussi déterminer approximativement sur les graphiques.
Les “solveurs” proposés, adaptés aux problémes raides sont ode15s, ode23s, ode23t et 0ode23tb et pour montrer I'intérét de ces
codes, on peut proposer les manipulations suivantes, tiré du livre de Moler (paragraphe 7.9), avec une équation qui modélise la
combustion d’une allumette :
Yoy 0si< 2 y0)=4
delta=0.0001;
f=e(t,y) y~2-y~3
options=odeset (’RelTol’,le-4);
figure(3)
ode45(f, [0 2/delta] ,delta,options);
pause
delta=0.0001;
figure(4)
0de23s(f, [0 2/deltal ,delta,options); On obtient apparemment les mémes résultats.

rayon de la flamme
rayon de la flamme

0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2 0.2 0.4 0.6 08 1.2 1.4 1.6 1.8 2
temps x10* temps %10

FIGURE 1.7 — Allumage d’une allumette, gauche : schéma standard, droite :un schéma pour équations raides.

Mais si on regarde de plus prés, on constate que la simulation avec le solveur ode23s spécialement congu pour les équations
raides nécessite seulement 120 pas de temps pour une durée de 20000 alors que le solveur générique ode45 a besoin de 12000 pas
de temps pour la méme simulation! De plus la solution calculée a tendance & osciller autour de la valeur finale 1 alors qu’elle
devrait se stabiliser & y = 1. De fait si on "zoome" sur la figure de gauche :
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FIGURE 1.8 — Allumage d’une allumette, avec un schéma standard.
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Chapitre 2

Equations aux dérivées partielles.

2.1 Introduction.

11 existe une trés grande variété d’EDP (équations aux dérivées partielles) : Maxwell, Navier-Stokes, chaleur, KdV, Schro-
dinger. . .C’est un domaine trés vaste des mathématiques pures et appliquées. Ce cours est une bréve introduction élémentaire.
Notations : dans la suite u : (z,t) € RYx R — u(x,t) € R désigne une fonction numeériques de plusieurs variables z, ¢, z variable
d’espace (pouvant étre éventuellement multidimensionnelle), ¢ est la variable de temps. On notera en général :

ou ou 8%u 8%u &%u u

Ut = 77 Uz = 75 Uzt = 5 4,5 Uzz = 5 55 Uza = 5 55 Uzzx = 5 3
ot’ ox’ oxot’ 0x?’ 0x?’ ox3

etc. ..

Définition 6 Une équation auz dérivées partielles (EDP) en la fonction scalaire u(x,y, z,t) est une équation de la forme
F(t,z,y,z,u, Uz, Uy, Uz, us ... D"u) =0 (2.1)

ou F := F(t,z, Du, D?u, ..., D™u) est une fonction de plusieurs variables.

L’ordre de 'EDP est 'ordre m maximum des dérivées apparaissant dans I’équation. On dit que w est solution (classique) de
I’EDP dans un domaine Q C R* x R si u € C™(Q) et que u ainsi que ses dérivées partielles satisfont I’équation en tout point
de Q.

Les EDP sont utilisées pour modéliser une grande variété de phénomeénes physiques, biologiques, ...dans des domaines
scientifiques trés divers. En général pour déterminer une solution, il faut également donner des conditions initiales u(-, ¢ = 0),
des conditions limites au bord du domaine spatial. Comme la solution de PEDP décrit en principe la solution d’un probléme
concret, on souhaite de plus que des petites erreurs sur les données n’engendrent pas de grosses différences sur la solution w.
Etudier une EDP c’est donc trouver les bonnes données initiales et aux limites qui assurent

— [lexistence de solutions a 'EDP,

— montrer qu’avec ces données la solution est unique dans une certaine classe de fonction,

— que la solution dépend contintiment des données.

Si ces trois critéres sont satisfaits, on dit que le probléme est bien-posé.

Dans de trés rares cas, nous pourrons trouver une expression analytique de wu. Parfois, on pourra trouver une expression
sous forme intégrale (convolution), ou somme de série de Fourier par exemple.

Le plus souvent il faudra calculer une approximation de u par un schéma numérique, comme dans le cas des équations différen-
tielles.

Exemple. ’équation eikonale de I'optique

ui + uf/ =1
une équation de transport
us + a(z,t)uz =0

I’équation des ondes
2
Utt — C Uge = 0

L’équation de la chaleur
Ut — VUgze = 0

L’équation de Poisson
Uge + Uyy = f

L’équation de Burgers
us +uu, =0

I’équation de Korteweg de Vries
us + Guuw + Ugza = 0

28



Une propriété qui simplifie grandement I’étude est la linéarité. On dit que Uedp est linéaire si u — F (¢, x,y, 2, U, Ug, Uy, Uz, Ut . . . D™ )
est linéaire. Dans ce cas u et ses dérivées apparaissent seulement & la puissance un et e les coefficients de u et ses dérivées dé-
pendent seulement des variables indépendantes x,v, ..., t.

Exercice. Parmi les exemples précédents quelles sont les EDP linéaires 7

Lorsque EDP est linéaire, on peut 1’écrire sous la forme Lu = g ot L est une fonctionnelle linéaire définie sur un espace
de fonction approprié.

2.2 EDP linéaires du premier ordre.
L’EDP linéaire générale du premier ordre en les variables x,y s’écrit

a(@, y)uz + b(x, y)uy + c(z, y)u = g(z,y). (2.2)

L’edp (2.2) peut s’écrire Lu = g avec Lu = aug + buy + cu. La linéarité de ’edp permet d’ajouter des solutions : si Lu = g1 et
Lv = g2 alors
L(au + Bv) = agi + Bg2

pour des scalaires quelconques « et 8. C’est le principe de superposition.

2.2.1 Cas des coefficients constants.
Commencgons par étudier une équation linéaire simple. Soit ¢ > 0 une constante.
ur +cuy =0 (2.3)

Remarquons que u; + cuy = (¢,1) - Vu ou le gradient Vu = (uz,ut). Il est alors naturel de considérer les droites d’équation
x = ct + xo sur lesquelles u est constante :

d

T {u(zo +ct,t)} =cuz +ur =0
Donc u(zo + ct, t) = u(xo, 0). Nous pouvons alors énoncer le théoréme.
Théoréme 4 Soit f(x) une fonction C* sur R. Il existe une unique solution C* au probleme de Cauchy

us +cuy =0, u(z,0)= f(z). (2.4)
Elle est donnée explicitement par la formule u(z,t) = f(x — ct).

Nous allons voir que le probléme est bien posé en étudiant la dépendance de la solution par rapport a la donnée initiale f.
Soient f(z) et g(x) deux données initiales et u(z,t), v(x,t) les solutions correspondantes. Par linéarité de 'EDP, on peut écrire

(@ t) - v(@,t) = f(z —ct) — glo — ct)
et cela implique

max u(z, 1) — o(, )| = max| ( — ct) — g(x — et)| = max| (@) - g(x)|

lu—vllzee <[If —gllze.

On a bien une dépendance continue des solutions vis a vis de la donnée initiale (pour la norme infinie ici). Le probléme est donc
bien posé.

Remarque. quelle que soit 'unité adoptée pour u, si x est une longueur et ¢ un temps, ¢ est homogéne a une longueur/temps
donc & une vitesse. La grandeur ¢ est appelée célérité ou vitesse de propagation. La solution u(x,t) est une onde ou un signal
qui se propage a vitesse ¢ vers la droite lorsque ¢ > 0, (resp. vers la gauche si ¢ < 0). Les courbes z — ¢t = Cte sont appelées les
caractéristiques parce qu’elle portent I'information (la valeur) de . Voir la figure La méthode qui consiste a construire la
solution en analysant son comportement le long des courbes caractéristiques est appelée méthode des caractéristiques et permet
d’étudier de nombreuses EDP du premier ordre. O

2.2.2 Meéthode des caractéristiques.

Reprenons ’équation de transport u; 4+ cu, = 0 mais en ne supposant plus que la vitesse de propagation est constante.

Remarque. La vitesse ¢ = ¢(x) peut dépendre de la position, lorsque par exemple le milieu modélisé n’est pas homogéne. O

Considérons I’équation de transport linéaire suivante :
us + c(z) ux =0, u(zx,0) = f(x). (2.5)
Il est naturel d’introduire les courbes caractéristiques, définies par 'EDO

£ = c(9). (2.6)

29



caractéristiques de u, +c u, =0 caractéristiques de u, +x u, =0

5 T T T — 2 T T T
45 18 rd
4 16 /
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35 1.4 //
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3 1.2
—25p -1 B
-
P //
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15} K o6l |
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05t B 02t | /
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FIGURE 2.1 — courbes caractéristiques des EDP w; + cu, = 0 (gauche) et uy + xu, = 0 (droite).

Si la fonction ¢(x) est C' on peut appliquer le théoréme de Cauchy-Lipschitz et on est assuré de I'existence (locale au moins) de
courbes caractéristiques. Dans ce cas la fonction d’une variable v : ¢ — u(§(t), ) vérifie une ODE trés simple : v = uy+c(x) uz =0
donc v(t) = v(0) est constante. Ce qui se traduit par u(£(t),t) = u(£(0),0). Ainsi si la caractéristique est issue de £(0) = zo a
t=0onau(£(t),t) = f(zo).

Si on veut calculer u(z,t) en un point donné, il suffit donc de déterminer la courbe caractéristique passant par ce point (z,t)
et de remonter le temps pour trouver sa valeur en ¢ = 0 que nous noterons zo = p(z,t) et que nous appellerons le pied de la
caractéristique. Cela n’est pas toujours possible car I'existence de solution globale en temps n’est pas garantie, 'EDO n’étant
pas linéaire. Mais dans le cas ou c’est possible, le théoréme de Cauchy-Lipschitz garantit 'unicité de la courbe caractéristique
donc si p(z, t) existe, il est défini sans ambigiiité. Dans ce cas, la solution du probléme de Cauchy s’exprime :

u(z,t) = f(p(z, 1))
Nous pouvons énoncer le théoréme.

Théoréme 5 Soit c(x) une fonction C' sur R. Soit t > 0. On suppose qu’il est possible de remonter la caractéristique passant
par x,t jusqu’a un point p(x,t) sur laze des x. Alors il existe une unique solution C' au probleme de Cauchy ([2.5), qui est
donnée par

u(z,t) = f(p(x, t)).

Etudions la dépendance de la solution par rapport a la donnée initiale. Soient f(z) et g(z) deux données initiales et u(z,t),
v(z,t) les solutions correspondantes, on peut écrire

u(z:,t) - v(x,t) = f(p(x,t)) - g(p(x,t))
et cela implique

max [u(z, t) — v(z,t)| = max|f(z) - g(z)|.

x,t
Le probléme est donc bien posé
Exemple.
us +xuy =0, u(z,0)=f(z).

dans ce cas les caractéristiques vérifient £ = ¢ donc £(t) = xpe’. On trouve facilement le pied de chaque caractéristique :
p(x,t) = xe " et la solution est donnée par u(x,t) = f(xe *). Les caractéristiques sont représentées dans la figure
2.2.3 Loi de conservation non linéaire : premiéres difficultés.

2.2.3.1 Principe d’une loi de conservation.

soit u(x,t) la densité d’une quantité (par exemple la masse linéique d’un fluide en kg-m™'). La quantité totale (par exemple
la masse) présente dans le segment [a, b] & instant ¢ est donc :

/ab u(x,t) dzx.

Si on sait par ailleurs que le flur de la quantité qui traverse le point = est donné par F(u(x,t)), comptée positivement lorsque
la quantité traverse dans le sens des x croissants, de la gauche vers la droite. F(u(z,t)) est par exemple la masse de fluide qui
traverse le point x par unité de temps, en kg - sil). La conservation de la masse impose que

% {/abu(ac,t) dw} = F(u(a, 1)) = F(u(b,t)).

30



Remarquez que le flux entrant (resp. sortant) est bien F(u(a,t)) (resp. F(u(b,t)). En supposant que la fonction u(x,t) est C',
on peut dériver sous l'intégrale :

/ wi(z,t) dz = F(u(a, 1)) — F(u(b,1)).

On utilise ensuite le théoréme fondamental du calcul infinitésimal :

b
Fu(a,0) = Fuv.) = - [ F(u(w,0)do.
Ainsi .
/ e, ) + F(u(z, t))e do = 0.
Comme le segment [a, b] est quelconque, si la fonction u ainsi que la fonction F' sont C 1 cela impose que
ur + F(w)z = us + F'(u) up = 0. (2.7)

L’EDP est appelée une loi de conservation. C’est en géneral une EDP non linéaire.

Exemple. (Trafic routier.) Supposons que u(z,t) représente la densité de voiture au point z circulant sur une route de
gauche & droite. La vitesse & laquelle les véhicules circulent dépend évidemment de la densité de véhicules. Soit 8 la densité
maximale de véhicule. La vitesse est donnée par

ke (B-w)

ol k est une constante de proportionnalité. Le flux de véhicule qui traverse au point x est alors :
F(u) =ku(B —u).

Pour simplifier prenons k£ = 1 dans la suite. Le flux maximal est atteint lorsque v = /2. Si nous comparons avec 'EDP ([2.5)
la célérité ¢ dépend maintenant de la solution w :
c(u) = F'(u).

Revenons au cas général. Utilisons & nouveau la méthode des caractéristiques. Ce sont les courbes solutions de 'EDO :

€ _
o = cul& D). (2.8)

Comme précédemment u est constante le long des caractéristiques.

d d
au(&(t),t) = uxd—f +ur = c(u)uz +ur = 0.
Notons £(t, o) la courbe caractéristique issue du point (xo,0) sur Paxe des z. Alors u(&(t, o), t) = u(zo, 0). Revenant alors a
IEDO ([2.8)), dont le second membre est en fait constant, puisque u(£(t),t) est constant. La courbe caractéristique est en fait la
droite :

z = {(t,z0) = w0 + c(u(z0,0)) t.

En utilisant la condition initiale u(xo,0) = f(zo),

&(t,z0) = zo + c(f(z0)) t

Retournons a I’exemple du trafic routier. Dans ce cas c(u) = F'(u) = 8—2u. Remarquez que c¢(u) < 0 quand u > 3/2. Attention
c(u) n’est pas la vitesse individuelle des véhicules, puisque les véhicules roulent dans le méme sens de gauche a droite. c(u) est
une vitesse de propagation d’onde. Par exemple, quand les véhicules s’arrétent & un feu, il y a une onde de densité croissante
qui remonte vers 'arriére de la file de véhicule. Pour fixer les idées, supposons que la densité initiale des véhicules est donnée
par :

0 si <0
f@) =u(z,0) =< Bz*(3—-22) si 0<z<1
8 si 1<z
Pour étudier 1’évolution de la densité de véhicules, on doit résoudre 'EDP
ur + F(u)e = ur + c(u) uz =0 u(z,0) = f(z) (2.9)

avec c¢(u) = F'(u) = 8 — 2u. La condition f(z) = 8 correspond a un bouchon, les voitures sont a I’arrét. La route est vide pour
z < 0 et dans la région de transition 0 < z < 1 la densité des voitures augmente de 0 a la capacité maximale §. La valeur
B/2 ets atteinte pour z = 1/2. On peut alors tracer les caractéristiques dans le plan z, ¢ qui sont des droites de pente positive
si 0 < x < 1/2, de pente négative si 1/2 < x < 1, tandis que la caractéristique issue de z = 1/2 est verticale (on prend x en
abscisse et ¢ en ordonnée). Les pentes de ces droites varient donc contintiment entre 3 pour z < 0 et —3 pour z > 1. Voir figure

Comme u est constante sur les caractéristiques, u = 0 sur la droite z = St, w = (/2 sur la droite verticale z = 1/2 et
u = (8 sur la droite x = 1 — St. A linstant précise ¢t = 1/(28) les caractéristiques se coupent au point (1/2,1/(28). En ce point
la densité n’est pas définie car elle devrait prendre 3 valeurs distinctes, ce n’est plus une fonction usuelle! En fait la courbe
solution ne peut pas étre prolongée au sens classique car pour ¢ > t*, ou 'instant t* < 1/(283) une discontinuité apparait. Pour
mieux saisir le phénomeéne, on peut visualiser comment évolue le profil initial en fonction du temps sur la figure suivante [2:3]
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09 B
08 1
0.7 - B

06 i

FIGURE 2.2 — caractéristiques de 'EDP w; + (8 — 2u)uy, S =1.5

On voir sur la figure [2.3] que le profil ne correspond plus & une fonction pour ¢ = 0.4. Pour prolonger la solution au dela de
I'instant ol les caractéristiques se croisent, il faut introduire une solution discontinue et définir la notion de« solution faible »
car la solution étant discontinue, la dérivée u, n’est plus définie au sens usuel. Il y a développement d’une singularité méme si
la donnée initiale est lisse. Dans le cas présent la solution pour t > t* est représentée sur la figure La solution correspond
4 un « bouchon » qui n’évolue plus.

La théorie des lois de conservations non linéaire dépasse le cadre d’un cours de L3. Pour des compléments, vous pouvez
consulter 'ouvrage de référence de P. Lax [I3].

0.8 [~ q

06 - B

04 A |
02 B
0 > ———————————— —
L L L L L L L L L L L L
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
X X

FIGURE 2.3 — gauche : profil initial et direction d’évolution. droite : "solution" & t=0, t=0.1, t=0.14, t=0.4

(8= 15)
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06 - B

04 |

02 B

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

FIGURE 2.4 — solution lisse & ¢ = 0 et solution discontinue pour ¢ > t*.

2.2.4 Meéthode des différences finies.

2.2.4.1 Principe de discrétisation.

Revenons sur les fagons de discrétiser la dérivée d’une fonction g de classe C2.

Différence finies avant : ,
g/(x) — g(x—|— ) _g(m) + O(h)

Différence finies arriére :

Différence finies centrées :
x+h)—g(x—h)
2h

g(@) =% +0(h?)
et enfin pour la dérivée seconde
h)—2 —h
o= A DS e o

Soit ¢ un réel constant positif pour fixer les idées. On considére de nouveau 'EDP

ur + cug = 0. (2.10)

Appliquons ces discrétisations aux équations aux dérivées partielles. Comme il faut discrétiser des dérivées par rapport au temps

et aussi par rapport a la variable d’espace x, il faut introduire un pas de temps dt et aussi un pas d’espace dx. Pour j et n

entiers, on note z; = jdx et t, = ndt. Ainsi les (z;, t,) définissent une grille de points ou un maillage dans le plan (z,t). Comme

pour les EDO, on cherche a approcher u(x;,,). On notera uj ~ u(x;,t,) la valeur approchée calculée par le schéma, considéré.
En discrétisant u; et u, par les différences finies avant , on obtient le schéma explicite suivant :

nt+l _  n n n
Yy U Uil — U5
+c =0.
ot Sz
Le schéma peut s’écrire ainsi :
n+1 __ n n
Uj 7(1+’I")U] —TUjyq-
ol on a noté
_cdt
ox
appelé nombre de Coumnt.EI Le stencil de calcul est donc
odimtl
o odtlin

On calcule 'erreur de consistance du schéma comme pour les schémas d’EDO en portant une solution exacte de 'EDP ([2.10))
dans le schéma numérique :
€e(ot,0z) := u(z;, ") — (14 r)u(z;, t") + ru(zj, t").

1. Richard Courant, 1888-1972, fondateur du Courant Institute of Mathematical Sciences, NYU.
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On obtient)en effectuant des développements de Taylor (Cf TD) :
€(6t,6z) = O(5t%) + O(6t - o)
On suppose maintenant ¢ > 0. Prenons la donnée initiale u(z,¢ = 0) = f(z) définie par

0 si r<-—1
fx)=< 41 si -1<z<0
1 si 0<zz

Le schéma donne v} =1, ¥n >0, Vj > 0. Le schéma ne peut pas converger car u(z;,tn) = f(z; —ctn) = 0 quand z; < ct, —1.
Le schéma ne va pas chercher I'information dans la bonne direction !

2.2.4.2 Deécentrage amont ou « upwinding ».

Pour cette raison, on va utiliser une discrétisation spatiale « amont ». Lorsque ¢ > 0, cela correspond & une différence finie

arriére :
u(z,t) — u(z — oz, t)

Uz (z,t) = 5% + O(6x).

Le schéma « amont » ou « upwind » s’écrit alors :

n+l n n n

e R R B e QY
ot oz
Le schéma peut s’écrire ainsi :
n+l _ n n

w;T =ruj_g (1 —r)uj. (2.11)

Le stencil de calcul est maintenant )
odntl
oi=lm o

L’erreur de consistance du schéma est encore
e(dt,0z) = O(5t%) + O(6t - o).

Cette fois le schéma va bien chercher I'information du bon cété. Cependant cela ne suffit pas. Regardons de plus prés. Avec le
schéma amont la valeur v} depend des valeurs & ¢ = 0 suivantes u?_n,u?_ (n=1)s -+ - u? qui sont situées dans 'intervalle
[x; — ndz,x;]. La valeur exacte u(zj,t,) devrait étre u(z; — ctn,0). Cependant si le nombre de Courant r > 1 alors z* =
z; —ctp < T —ndxr = zj_n. Le domaine de dépendance du schéma ug,n,ugf(nfl), . ug ne contient pas z*. La solution
discréte u; ne peut pas recevoir la bonne valeur car le schéma ne propage pas suffisamment pas vite I'information depuis
I’amont. En revanche si r = Cé‘;t <1, le schéma a des chances de converger. La condition 65—‘” < 1 est appelée condition CFL.E'

r —
+

Remarque. Lorsque » = CFL < 1, on peut voir en particulier que u? ! est une combinaison convexe de uj_q et uj donc le
schéma vérifie le principe du maximum discret :
infu? < u? < supu?
U =Y = Lp U
J

O

Quand CFL = % < 1, on peut montrer et nous admettrons dans ce cours que le schéma décentré amont est convergent
quand t,dx — 0. L’erreur de consistance étant d’ordre 2, c’est un schéma d’ordre 1. Il n’est donc pas trés précis, ainsi qu’on
le constate sur la figure [2.6

2.2.4.3 Stabilité au sens de Von Neumann.

On peut essayer d’augmenter la précision en utilisant le schéma centré suivant.

n+l n n n
Y L oS i e B
ot 20x
Le schéma s’écrit : - ,
n+l __ n n n
Uj = —5 Uj_q + U + 5 Uiy (212)
Le domaine de dépendance du schéma est maintenant u?_n, u?_(n_l), . u?, u2+1 . u?+n et convient aussi bien pour ¢ > 0 que

pour ¢ < 0.
Si r < 1 le domaine de dépendance contient bien x*, cependant on constate sur la figure [2.6] que le schéma ne converge pas. On
va prouver qu’il est instable. Pour cela on prend la donnée initiale oscillante f(x) = exp(ikz). Le nombre k € R est la fréquence
spatiale. Le schéma donne
uf = G(k)"u).
Le facteur d’amplification
G(k) = 1 +irsin(kdx)

2. d’aprés un article célébre de Courant-Friedrichs-Lewy.
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est de module 1 + r? sin(kdz)? strictement supérieur & 1 si 0 < kéz < m méme si r est petit. Le schéma amplifie les oscillations
de fagon non bornées. On dit que le schéma centré (2.12)) est instable au sens de Von Neumann.
Pour le schéma amont (2.11)), le facteur d’amplification

G(k) =1—r+ rexp(—ikdzx).

Lorsque 7 < 1, le module de G est inférieur & un car |G| < (1 —r) + r = 1 donc le schéma amont est stable. Cela explique sa
convergence en vertu du théoréme de Lax que nous admettrons : un schéma est convergent ssi il est stable et consistant.

2.2.4.4 D’autres schémas.

Il est possible de stabiliser le schéma centré en le modifiant 1égérement. C’est le schéma de Lax-Friedrichs. On reprend la
méme EDP d’advection linéaire (2.10]), mais on ne suppose plus que ¢ > 0. On considére le schéma explicite suivant :

U?‘Fl — %[u?-',-l + u?—l] Te u?+1 — u;}_l 0
5t 20x ’
1 c 1 c
n+l _ n n
ui =G gt (G g

ot on a noté p = dx/dt. L’erreur de consistance du schéma est
(8L, 6z) = O(6t7) + O(6%)

Etudions la stabilité du schéma. Soit k¥ € R. On prend la donnée initiale f(z) = exp(ikx). Le nombre k correspond & une
fréquence spatiale. Le schéma donne
uf = G(k)" - ul.

ot le facteur d’amplification G(k) = (3 — 3,) exp(ikdx) + (3+ 35) exp(—ikdx).
On vérifie aisément que |G(k| < 1 ssi —1 < ¢/p < 1. Lorsque cette condition appelée condition de Courant-Friedrichs-Lewy est
vérifiée, on dit que le schéma de Lax-Friedrichs est stable. Dans ce cas ||u” |l < max; [u)|. Le schéma est convergent et d’ordre
1.

Si on veut une schéma plus précis, on modifie encore le schéma de la fagon suivante. Schéma de Lax-Wendroff. On reprend

la méme EDP d’advection linéaire (2.10)), ou ¢ € R. On considére le schéma explicite suivant :

n+1 n n n n n n
;T = U Uiy — UG 1 ui ] — 2u% +ui
J J Jj+1 J 1_72& Jj+1 J J 1:0.
5t ¢ 28w 2¢ (62)?
Le schéma peut s’écrire ainsi :
n 1 n n, 1 n
u = 5(7"2 —r)uji + (1 =) uf + 5(7"2 +r)uj_y.

ol on a noté r = c¢dt/dx (appelé nombre de Courant)lﬂ On calcule de méme 'erreur de consistance du schéma :
e(8t,6x) = O(5t%) + O(5z°)

Etudions la stabilité du schéma. Soit k¥ € R. On prend la donnée initiale f(z) = exp(ikz). Le gain du schéma est : |G(k)| =
|1 — 7%+ L(r® — r) exp(ik 6z) + % (r® + 1) exp(—ik 6z)|.
et on peut vérifier (Cf TD) que |G(k| < 1si —1 < r < 1. Lorsque cette condition, appelée condition de Courant-Friedrichs-Lewy,
est vérifiée, on dit que le schéma de Lax-Wendroff est stable. Il est donc convergent et d’ordre 2.

Cependant, comme les coefficients du schéma ne sont plus positifs, méme lorsque —1 < r < 1 la propriété ||u” || < max; |u?
n’est plus vérifiée. On dit que le schéma n’est plus monotone. Des petites oscillations parasites apparaissent au voisinage des
discontinuités, cf figure [2.7]

CFL=0.5

FIGURE 2.5 — Oscillations parasites avec le schéma de Lax-Wendroff.

On peut vérifier sur la figure 2:6] que le schéma centré diverge, que les schémas upwind et de Lax-Friedrichs convergent pour
un CFL < 1 mais sont d’ordre 1 seulement (pas trés précis), et que le schéma de Lax-Wendroff, bien que plus précis, étant
d’ordre 2, peut présenter des petites oscillations parasites. On voit enfin sur la figure que tous les schémas divergent lorsque
la CFL > 1.

3. Richard Courant, 1888-1972, fondateur du Courant Institute of Mathematical Sciences, NYU.
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schéma upwind schéma centré
CFL=0.5 CFL=0.

schéma Lax-Friedrichs schéma Lax-Wendroff
CFL=05 CFL=0.5

FIGURE 2.6 — Comparaison des différents schémas explicites.

schéma upwind schéma centré
CFL=1.05 CFL-1.05
15 15
1 1
Zos Zos
.
0 05 1 05 1
X X
schéma Lax-Friedrichs schéma Lax-Wendroft
CFL=1.05 CFL=1.05
15 15
1 | 1
Zos Zos
e

FIGURE 2.7 — Divergence des schémas lorsque CFL > 1.

2.3 Equations de diffusion.

2.3.1 Obtention de I’équation de la chaleur.

Soit u(z,t) la température au point z a l'instant ¢ dans un milieu unidimensionnel pour simplifier, par exemple une tige.
La quantité totale de chaleur emmagasinée dans le segment [a, b] & Uinstant ¢ est donc :

b
/ pcu(z,t) dx

ol p désigne la densité du milieu en kg - m™" et ¢ sa capacité calorifique en J - kg ' K1,

Soit F(u(z,t)) le flur de chaleur qui traverse le point x, compté positivement lorsque la quantité traverse dans le sens des
x croissants, de la gauche vers la droite. F'(u(z,t)) en J - s~ '). La conservation de chaleur impose que

% {/ab peu(w,t) dm} = F(u(a,t)) — F(u(b,t)).

Remarquez que le flux entrant (resp. sortant) est bien F(u(a,t)) (resp. F(u(b,t)). En supposant que la fonction u(z,t) est C*,
on peut dériver sous l'intégrale :

b
/ peun(z, t) dz = Flu(a, 1)) — F(u(b,1).
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On utilise ensuite le théoréme fondamental du calcul infinitésimal :
b

Flu(a, ) — Flu(b, 1)) = — / Flu(z, ). dz.

Ainsi ,
/ peui(z,t) + Fu(z, b))z de = 0.
Comme le segment [a, b] est quelconque, si la fonction u ainsi que la fonction F sont C 1 cela impose que
pcus + F(u)z =0. (2.13)
Maintenant la loi de Fourier-Fick dit que le flux de chaleur traversant x est donné par
F(u) = —kug

ou k est la conductivité thermique du milieu en J-m - s~ - K~1. Ce principe exprime que la chaleur va des zones chaudes vers
les zones froides et que le flux de chaleur est proportionnel au gradient de température. En portant expression de F(u) dans

(2.13) on obtient
ut — pizs = 0. (2.14)

ol la constant u = % > 0 est appelée coefficient de diffusion. Cette équation est appelée équation de la chaleur ou équation de
diffusion. C’est une équation linéaire et elle vérifie donc le principe de supeposition(Cf section [2.2]). Comme il y a une dérivée
par rapport au temps, c’est une équation d’évolution. Il faut donc prescrire une donnée initiale

u(z,t =0) = f(x).

2.3.2 (%) Solution par convolution avec noyau gaussien sur ’espace entier.

2.3.3 (%) Solution par série de Fourier en domaine borné.

Cf TD 6 Effet régularisant et convergence vers 1’état stationnaire.

2.3.4 Discrétisation par différences finies.

Comme dans la section Introduisons un pas de temps 0t et aussi un pas d’espace dx. Pour j et n entiers, on
note z; = jéx et t, = ndt. Ainsi les (x;,t,) définissent une grille de points ou un maillage dans le plan (z,t). On discrétise
naturellement
u(z,t + 6t) — u(w,t)

ot

On obtient le schéma suivant :

u(x + oz, t) — 2u(z,t) + u(x — dz,t)

3 + O(6z°).

ui(x,t) = +O(0t). et Uge(z,t) =

u?“ =ruj_q+ (1 —2r)u] +ruji. (2.15)

ot uj désigne a valeur approchée de u(x;,t,) calculée par le schéma et

_ Kot
T—(SxZ.

L’erreur de consistance du schéma se calcule aisément (Cf TD) :

e(dt,0z) = O(6t%) + O(dt - 6z°).

+1

n

au temps tp+1, il suffit de connaitre les valeurs de uj

C’est un schéma explicite : pour calculer les valeurs u?
précédent t,. Le stencil de calcul est trés simple :

au temps

ot

of—Lin ohm oitLn

+

Remarque. Lorsque r < 1/2, on peut voir en particulier que u;l ! est une moyenne pondérée des valeurs ui_q uy et uj—, donc

le schéma vérifie le principe du maximum discret :

. 0 n 0
1rj1f u; < uy <supu;
J

Nous allons voir que la condition
ox? 2
est en fait une condition nécessaire et suffisante de stabilité. Etudions la stabilité du schéma par la méthode de Von Neumann.
Pour cela on prend la donnée initiale f(x) = exp(ikx). Le nombre k est la fréquence spatiale. Le schéma donne



ot le facteur d’amplification de la fréquence k est donné par le nombre réel
G(k) =1 —2r + 2rcoskéx = 1 — 4rsin®(kdz/2).

On a évidemment 1 — 4r < G(k) < 1. Mais pour garantir |G(k)| < 1 pour toute fréquence k il faut et il suffit que

uat
=—<1/2. 2.1
r=a2 S /2 (2.16)

C’est la condition de stabilité du schéma explicite (2.15|).

Remarque. Cette condition est beaucoup plus exigeante que la condition CFL de ’équation de transport vue & la section
En effet elle impose un pas de temps 6t de Pordre de dz2, ce qui demande un pas de temps trés petit. Cela peut rendre les
calculs numériques trop coﬁteux.lﬂ O

Sous la condition de stabilité le schéma est stable et consistant, le théoréme de Lax permet d’affirmer qu’il est
convergent. Comme l’erreur de consistance est en O(0t* 4 6t - 6x2) = O(5t - (5t 4 d2?)), on peut démontrer le schéma est d’ordre
1 en temps et d’ordre 2 en espace.

Pour éviter la condition de stabilité (2.16)), on est conduit a utiliser des schémas implicites. Pour cela on estime

n+1 n+1 n+1

wr =2l
—1 +1 2
Z 1 T+ O(8z%),

Uoa (), tny1) =

(6z)?
u?“ —uy
Ut(xj,tn+1) = T + O((St).
Ce qui revient & estimer u; par une différence finie arriére.
On obtient le schéma :
—r u?j_ll +(1+2r) u?“ - ru?ill =uj (2.17)
Le stencil de calcul est alors : ) ) )
ngl,n+1 O],n+1 O]+1,n+l
|
odn

On montre aisément que 'erreur de consistance est encore

e(ot,6x) = O(8t%) + O(5t - o).

Il faut alors résoudre une systéme linéaire tridiagonal pour calculer u?“. Prenons un exemple pour fixer les idées. Considérons
un maillage de 5 points z;,7 = 0,...,4. On se donne les valeurs initiales u?,j =0,...,4. Le schéma donne le systéme linéaire a
5 inconnues u;,j =0,...,4.
—ruy (1 + 2r)ui —rud = ol
—rui (1 4+ 2r)us —ru} = u
—ruy (1 +2r)ui —rui = ud

C’est un systéme sous-déterminé. Une facon d’avoir le méme nombre d’inconnues que d’équations est d’imposer des condi-
tions limites en xo et 4. Il y a de nombreuses possibilités. On peut prescrire la valeur des inconnues au bord (condition de
Dirichlet), ou bien imposer les flux au bord (condition de Neumann). La fagon la plus simple et neutre est d’imposer une
condition limite périodique : u”, = uy, uy = ug. On obtient alors le systéme carré :

+(1 4 2r)ud —rul —ruj = ud
—ruy (1 + 2r)ui —ru} = f
—rui (1 + 2r)ud —ru} = ud
—ruy (1 +2r)us —ruj = ul
—rud —ruy (1 + 2r)ul = uf
Dans le cas général, si on considére un maillage de N + 1 points zj,j = 0,..., N. Si on note U™ le vecteur(ug, ut, ... u?V)T,

le schéma se traduit par le systéme linéaire suivant : AU™T! = U™ avec la matrice tridiagonale périodique

1+ 2r -r -r
-r 1+2r —r e :
A= : .. .. .. : (2.18)
—r 14+2r -r
—r e .o —r 1+ 2r

On montre aisément que la matrice A est symétrique définie positive :

2T Az = Z 1+ 27“)%2 —2rz; wipr + (1 + 27")1’% — 2rxnT

1<i<n

4. surtout en dimension supérieure & un.
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comme —z7 — 1:?“ <2ixiqr < a4 3322+1 on voit que

A +4r)(z+...22) > " Ae > a7 + ... 22,

La matrice A est donc inversible et bien conditionnée et on peut calculer U™ en résolvant le systéme linéaire AU = U™ a
chaque itération.

Remarque. La matrice A est creuse et posséde une structure bande ce qui facilite la résolution du systéme. ]

On peut enfin étudier la stabilité du schéma par la méthode de Von Neumann. Pour cela prenons uj = exp(ikz;). Montrons
par récurrence sur n que u; = G(k)™ exp(ikx;). Pour n = 0 c’est vrai. Supposons HR,, et vérifions H R, 1. Le schéma se traduit
par ’égalité :

—rG(k)" " exp(ikzy) exp(—ikdx) 4+ (1 + 2r)G(k)" ' exp(ikz;) — rG (k)" " exp(ikz;) exp(ikdx) = G(k)"™ exp(ikzxy).
Simplifions par G(k)" exp(ikz;) il vient :
—rG(k) exp(—ikdz) + (1 + 2r)G(k) — rG(k) exp(ikdz) = 1.

Cela donne
G(k)(1 4+ 2r) — r(exp(ikdz) + exp(—ikdz) =1
_ 1
1+ 2r(1 —cos(kézx))’
Avec l'identité 1 — cos(kdz) = 2sin®(kdx/2) on obtient

G(k)

1

G(k) = 14 4rsin?(kéx/2)

<1 Vk.

On en déduit que ce schéma est inconditionnellement stable, il n’y plus de restriction du type sur les pas de temps et
d’espace.

Le schéma implicite est encore consistant et ’erreur de consistance est du méme ordre que celle du schéma explicite. Etant
stable et consistant, il est convergent et c’est un schéma d’ordre un en temps.

Pour obtenir un schéma d’ordre deuz, on utilise comme pour les équations différentielles ordinaires, un schéma des trapézes
Cf section [[.2.1.3] Cela revient a effectuer la moyenne des deux schémas explicites et implicites :

n+1 n n+1 n+1 n+1
I I O Y Sl e W P S B Y
ot 2 ox2 ox2.
Le schéma s’écrit alors :
—r u;jll +(1+2r) u?“ — Tu?ill =ruj_1+ (1 —2r)u] +ruji. (2.19)
Attention, le nombre r vaut maintenant
1 pdt
S 7L
20z
Le stencil de calcul est alors : ) ) )
j—1,n+1 J,n+1 j+1,n+1
O O O
oi—1lm ol oitin

C’est le schéma de Crank-Nicolson, dont on calcule aisément I’erreur de consistance :
e(6t,0z) = O(6t%) + O(6t - 62%) = O(6t - (5> + 627%)).

On montre aisément par la méthode de Von Neumann qu’il est inconditionnellement stable (exercice). C’est un schéma d’ordre
deux en temps et en espace.

La encore, il faut prescrire des conditions limites. Si on choisit par exemple des conditions limites périodiques, Dans le cas
général, si on considére un maillage de N + 1 points 2,5 = 0,..., N. Si on note U™ le vecteur(ug,u?,...ux)T, le schéma se
traduit par le systéme linéaire suivant : AU = BU™ avec A et B les matrices tridiagonales périodiques

1+2r -r -r 1-2r T T
—r 1+2r —r r 1-2r r . :
A= : . . . : B = : . . . : (2.20)
—r 1+42r —r r 1-—2r T
—r —r 142 r r 1—29r

On a déja prouvé que A était inversible donc le schéma est bien posé.
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2.3.5 Cas d’équilibre en dimension un.

Abordons maintenant un dernier type d’équation aux dérivéees partielles, correspondant aux phénoménes d’équilibre.
Lorsque t — 400, on constate que la température u(z,t) converge vers un état stationnaire indépendant de t. On note en-
core u(x) l'état stationnaire d’équilibre thermique. On a évidemment u¢ = 0 donc u(z) est solution de 1’équation différentielle
ordinaire :

d*u
22—
Hiz?
(avec des conditions limites convenables en domaine borné). Si on ajoute une source de chaleur, disons f(z) ’équation devient
d*u
—hom =1

Pour fixer les idées, supposons qu’on s’intéresse a ’équilibre thermique d’un barreau homogéne 0 < = < L. On prescrit la
température des deux extrémités u(x = 0) = uy, u(x = L) = uq. La température a 1’équilibre est solution du probléme aux
limites : )
d*u
—,u@(x) = f(z), 0<z<L.

u(x = 0) = ug, u(x = L) = uq.

On discrétise ce probléme par la méthode des différences finies (quitte & changer f on peut prendre 4 = 1). On note h = dz = L/N
et on definit la subdivision 0 = o < 21 < 2 < ...zn < n4+1 = L. On pose u; = u(z;) et f; = f(x;). On utilise les différences
finies centrées pour discrétiser la dérivée seconde et on obtient

—Uuj—1 + 2uj — uj1

02 = f;. (2.21)
On obtient encore un systéme tridiagonal symétrique défini positif AU = F en les inconnues U = (u1,uz, . .. ,uN)T et de second
membre F = (f1 + %ug,ug, o fN+ h%ud)T ol la matrice est
2 -1 0 --- 0
1 -1 2 -1 . :
A= o (2.22)
-1 2 -1
0 0o -1 2

2.3.6 En dimension supérieure, équation de Poisson.

Si on s’intéresse maintenant a ’équilibre thermique d’un carré homogeéne 2 =]0, L[x]0, L[ on est conduit au probléme au
limite suivant : ) )
o°u 0“u
—Hg s (2,y) + TyQ(%y) = f(z,y), (z,y)€Q,
upn =up (x,y) € 0N

C’est I’équation de Poisson qui fait intervenit I'opérateur laplacien

*u  0u
Au=— + —.
YT a2 + Oy?
Les inconnues u;,; = u(z;i,y;) sont définies sur la grille de points (ih, jh) o le pas h := 1/(N + 1) On discrétise alors cette

équation aisément par la méthode des différences finies et on obtient le célébre schéma a 5 points,

“Uig-1 = Wi-1y + AUy — Wikt — Wil _

B = fj

dont le stencil de calcul est :

Ou on a utilisé les 4 points cardinaux pour désigner (¢ = 1,5 + 1) les 4 points voisins de (i, ).

2.4 (%) Epilogue : classification.

Nous avons vu ainsi trois types trés différents d’équations aux dérivées partielles.
— L’équation de transport :

ut + cugy = 0,
— L’équation de diffusion :

Ut — PUge = 0,
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— L’équation de Laplace (ou de Poisson)
Uzz + Uyy = 0.

Plus généralement considérons une EDP du second ordre linéaire & coefficients constants réels.
AUze + 2bUgy + ClUyy + dus + euy + fu = 0. (2.23)

ou les réels (a,b,c) # (0,0,0). Cherchons des solutions sous forme exp (z€ + yn). Injectons cette expression dans 'EDP, on
obtient ’équation caractéristique :
ag® +26€n + e’ + (d€ + en) + f = 0.

C’est I’équation d’une conique dans le plan (£,7). D’apreés la théorie des formes quadratiques on connait la nature de la conique

en étudiant la forme quadratique
2 2 _ a b §
ag” +2b¢n + cn —(5,77)( b C)(n)

Lorsque ac — b®> > 0 on a I’équation d’une ellipse, Lorsque ac — b?> = 0 on a I’équation d’une parabole, Lorsque ac — b? < 0
on a I’équation d’une hyperbole. Pour cette raison, lorsque ac — b*> > 0, (resp. ac — b*> = 0, ac — b* < 0) on dit que I'EDP est
elliptique, (resp. parabolique, hyperbolique.) Nous allons montrer qu’avec un changement de variable affine on peut se ramener
A trois formes canoniques d’EDP. La matrice
a b
A =
(i ¢)

est symétrique réelle, elle est donc diagonalisable dans une base orthonormale

Cela se traduit par
A0 T
A=P P
I
oll A et u sont les valeurs propres de A. Posons maintenant :
X=ax+pBy Y =~x+dy.

UX,Y) =u(z,y).
Par la régle de différentiation composée :

0 0 0X 0 oY 0 0 0X 0 oY

or  0X Oxr | 9Y 0z’ dy 00X 0y | 9Y Oy

Ce qui donne

0 _,0 . .,0 9 9 . 59
ar  “ox "oy’ oy

On calcule alors
Upw = &” Uxx + 2y Uxy + ’YQ Uyy,

Uyy = 62 UXX + 2,65 UXY + 52 Uyy’
Usy = afUxx + (ad + By) Uxy + 70 Uyy.
L’EDP (2.23) devient dans les nouvelles coordonnées

aUxx +2bUxy +¢Uyy +dUx +EUy + fU = 0.

Considérons les termes du second ordre.
a=aa’+ 2baf + 0,82,
b=aay+ 2b(ad + By) + 2¢0,
¢ = ay® + 2byd + o,

[ a B a b oy
Ty ¢ b ¢ B 6
A=pTap= ( A0 ) .
0 p
Dans les nouvelles variables, ’équation ([2.23)) s’écrit donc simplement

On reconnait

b
I
7 N
S
[SYERSAN

La matrice

AUxx + uUyy + termes d’ordres inférieurs = 0

11 suffit alors d’effectuer un dernier scaling ou changement d’échelle pour se ramener aux trois formes canoniques ( on revient
aux notations usuelles pour simplifier)
— elliptique si ac — b* > 0,
Uze + Uyy + termes d’ordres inférieurs = 0,
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— parabolique si ac — b~ = 0,
Uzy + termes d’ordres inférieurs = 0,

— hyperbolique si ac — b* < 0,
Uze — Uyy + termes d’ordres inférieurs = 0,

Le cas elliptique correspond a I’équation de Laplace, le cas parabolique correspond & ’équation de diffusion de la chaleur,
le cas
Ugz — Uyy = 0
correspond & [’équation des ondes ou des cordes vibrantes. Cette derniére équation est peut étre écrite sous forme d’une
systéme de deux équations de transport :
Uy — Uy = U
vy +vy = 0.
Cette classification est cependant insuffisante pour traiter tous les types d’EDP, par exemple les EDP dispersives (Schrodinger,
KdV) ne rentrent pas dans ce cadre. Il n’y pas de théorie générale des EDP, c’est ce qui fait la richesse fascinante de ce domaine.
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