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0.1 Motivations
La science moderne tire son origine d’un livre fondateur Origine Philosophiae Naturalis Principia Mathematica, Londres,

1687, Sir Isaac Newton, Trinity college, Cambridge où il énonce le principe fondamental de la mécanique

mẍ = F (x)

Par exemple pour un ressort
mẍ = −kx

un pendule
Lθ̈ = −g sin θ

ou bien la chute libre (non recommandée)
ẍ = −g

le problème à N corps soumis à l’attraction universelle de la gravitation :

mj ẍj = G
∑
k ̸=j

mj mk
(xk − xj)

||xk − xj ||3.

Pour N = 2 Képler a montré que les trajectoires sont des coniques.
Pour N ≥ 3 c’est beaucoup plus difficile et on peut obtenir des trajectoires surprenantes, dont certaines n’ont été démontrées

que très récemment, par exemple le célèbre « huit » de Alain Chenciner. On renvoie au site suivant pour des illustrations.
http://ciel.mmi-lyon.fr/deux-astres-en-tete-a-tete/choregraphies/

Les équations différentielles interviennent dans de nombreuses disciplines et ne sont pas seulement utilisées pour décrire les
mouvements des systèmes de points matériels comme le pendule, les planètes idéalisées en des points matériels. Elles permettent
de modéliser aussi que variations de courants ou de différences de potentiels dans les circuits électriques ou encore l’évolution des
espèces en écologie ou encore l’évolution des épidémies, sujet d’actualité. Par exemple le fameux système SIR (sound, infected,
recovered) qui s’écrit ainsi 

dS

dt
= −p · I · S

dI

dt
= p · S · I − αI

dR

dt
= α · I

La plupart des équations issues de situations réelles n’ont pas de solution exprimables à l’aide des fonctions usuelles donc il
est nécessaire de les calculer numériquement par des approximations rigoureuses. C ’est le but de ce cours que de présenter des
méthodes numériques pour approcher la solution

y : t ∈ R → y(t) ∈ Rn

d’une équation différentielle ordinaire :
y′(t) = f(t,y(t))

où la fonction f : (t,y) ∈ R × Rn → f(t,y) ∈ Rn est donnée et ainsi que y(t0) ∈ Rn (problème de Cauchy).
Enfin on conseille vivement de visionner sur youtube la série 3BLUE1BROWN SERIES Saison 4 Episode 1 Differential

equations, studying the unsolvable https://youtu.be/p_di4Zn4wz4 (v.o.s.t. en français)
Les sections précédées d’une étoile (⋆) sont des compléments facultatifs.

Vous trouverez à la fin de ce document une bibliographie non exhaustive de livres que vous pouvez éventuellement consulter.

Ce document est un version itérative (work in progress) et contient de nombreuses coquilles, merci de les signaler à l’auteur
qui les corrigera au fur et à mesure.
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Chapitre 1

Résolution de systèmes d’équations
différentielles ordinaires.

Ce chapitre, inspiré d’un polycopié légendaire de Michel Cuer, présente
— quelques rappels ou compléments de théories mathématiques classiques ;
— une introduction aux méthodes numériques de résolution des problèmes de conditions initiales (problème de Cauchy)

pour les équations différentielles ordinaires où on donnera des notions concernant les méthodes à un pas, les méthodes
multipas et les problèmes raides.

On renvoie à la bibliographie en fin de document pour des compléments, en particulier à [10] dont les documents suivants, en
ligne sur le site de l’Université de Genève, sont des versions en français gratuites très claires et instructives.
Gerhard Wanner http://www.unige.ch/~wanner/Numi.html , Ernst Hairer http://www.unige.ch/~hairer/poly/chap3.pdf

1.1 Le problème de Cauchy pour les systèmes d’équations différentielles
ordinaires

Étant donnés une fonction f : [a, b] × Rm → Rm, un réel t0 ∈ [a, b] où les réels a, b vérifient a < b et en pratique t0
est une des extrémités de [a, b], et un vecteur y0 ∈ Rm, par problème de Cauchy pour le système d’équations 1 différentielles
y′(t) = f(t,y(t)), on entend la recherche d’une fonction y de [a, b] dans Rm telle que :

y′(t) = f(t,y(t)) pour t ∈ [a, b] y(t0) = y0, (1.1)

où y′(t) = limh→0
y(t+h)−y(t)

h
est la dérivée en t de la fonction vectorielle y.

Le théorème de Cauchy-Lipschitz énonce que si f est une fonction continue de [a, b]×Rm dans Rm telle qu’il existe une
norme sur Rm∥.∥ et une constante L > 0 pour lesquelles (on dit alors que f est Lipschitzienne en y de constante de Lipschitz
L) :

∥f(t,y(2))− f(t,y(1))∥ ≤ L∥y(2) − y(1)∥, pour tout (t,y(1),y(2)) ∈ [a, b]× Rm × Rm, (1.2)

alors (1.1) a une solution et une seule définie sur tout l’intervalle t ∈ [a, b] → y(t) ∈ Rm continûment différentiable.
Preuve. Voici une démonstration, basée sur le théorème du point fixe de Banach-Picard, dans le cas où t0 = a (il n’est pas

difficile de la modifier pour l’étendre au cas t0 = b et ensuite de traiter le cas général). Les conditions (1.1) sont équivalentes à :

y(t) = y0 +

∫ t

t0

f(s,y(s))ds, (1.3)

équation fonctionnelle à laquelle on peut appliquer la méthode des approximations successives qui engendre une suite de fonctions
de [a, b] dans Rm, t → y(k)(t) définies par :

y(0)(t) = y0, y
(k+1)(t) = y0 +

∫ t

t0

f(s,y(k)(s))ds, k ≥ 0 (1.4)

Pour obtenir le résultat il suffit donc d’établir que dans une espace fonctionnel complet convenable X, l’application 2 Φ : y ∈
X → Φ(y) : t ∈ [a = t0, b] → y0 +

∫ t

t0
f(s,y(s))ds est contractante donc a un unique point fixe. On choisit alors l’espace X des

fonctions continues de [a, b] dans Rm muni de la norme ∥y∥X = maxt∈[a=t0,b] e
−k(t−a)∥y(t)∥ :

X = {y ∈ C([a, b];Rm); ∥y∥X = max
t∈[a=t0,b]

e−k(t−a)∥y(t)∥};

cet espace vectoriel normé est complet et on a :

1. Si f ne dépend pas de t on parle de système autonome.
2. Ce langage fonctionnel est tel que par y on entend la fonction t ∈ [a, b] → y(t) ∈ Rm.
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∥Φ(y(2))− Φ(y(1))∥X = maxt∈[a=t0,b] e
−k(t−t0)∥

∫ t

t0
(f(s,y(2)(s))− f(s,y(1)(s)))ds∥

≤ maxt∈[a=t0,b] e
−k(t−t0)

∫ t

t0
∥f(s,y(2)(s))− f(s,y(1)(s))∥ds

≤ maxt∈[a=t0,b] e
−k(t−t0)

∫ t

t0
L︸︷︷︸

Lek(s−t0)e−k(s−t0)

∥y(2)(s)− y(1)(s)∥ds

≤ maxt∈[a=t0,b] e
−k(t−t0)

∫ t

t0
Lek(s−t0) max

s′∈[a=t0,b]
e−k(s′−t0)∥y(2)(s′)− y(1)(s′))∥︸ ︷︷ ︸

∥y(2)−y(1)∥X

ds

= Lmaxt∈[a=t0,b] e
−k(t−t0) ek(t−t0)−1

k
∥y(2) − y(1)∥X

= L
k
(1− e−k(b−a))∥y(2) − y(1)∥X < L

k
(1− e−k(b−a))∥y(2) − y(1)∥X

et en choisissant k > L on a bien une application contractante.
Remarques ou compléments.
i) Il y a un théorème de Cauchy-Peano 3 qui donne l’existence dès que f est continue mais, sans conditions supplémentaires,

il peut ne pas y avoir unicité. Le cas y′(t) = 2|y|1/2(1+y) pour t ≥ 0, y(0) = 0 est un premier exemple ; y(t) = 0 est solution sur

[0,+∞[, mais quel que soit a ≥ 0, ya(t) =
{

0 pour t ∈ [0, a]
tan2(t− a) pour t ∈ [a, a+ π

2
[

est encore une solution dont le domaine d’existence

est [0, a+ π
2
[. Un cas plus élémentaire est proposé en exercice de TD.

La formulation précédente du théorème de Cauchy Lipschitz est assez restrictive ; avec le même schéma de démonstration,
on peut établir un résultat d’existence et d’unicité locale en changeant « pour tout (t,y(1),y(2)) ∈ [a, b] × Rm × Rm » dans
l’hypothèse (1.2) en « pour tout (t,y(1),y(2)) ∈ [a, b]×O ×O » où O est un ouvert de Rm, f étant une application continue de
[a, b]×O dans O. Dans ce cas plus général mais quand même éclairant, le domaine d’existence n’est alors pas forcément R tout
entier ou l’intervalle I sur lequel on pose le problème comme le montre l’exemple y′(t) = 2ty(t)2 pour t ∈ R, y(0) = 1 dont la
seule solution est y(t) = 1

1−t2
et n’est définie que pour t ∈]− 1, 1[. Il convient, dans ce cadre général, d’introduire la notion de

solution maximale (les exemples cités sont tous de telles solutions maximales).
ii) Les techniques utilisables pour les équations différentielles intégrables “à la main” sont importantes et on peut en trouver

par exemple avec un logiciel de calcul formel ou le moteur wolframalpha.com (Bernoulli, Clairault, linéaire, variable séparable
...) ; voir aussi le début du livre de E. Hairer, S.P. Nørsett, G. Wanner (1993) [10]. Mais ce sont des cas particuliers très rares.
Dans la réalité, la plupart du temps on ne sait pas intégrer exactement une équation différentielle.

iii) Une équation différentielle d’ordre p > 1 est de la forme :

dpy

dtp
(t) = f(t, y(t), y′(t), ...,

dp−1y

dtp−1
(t)) (1.5)

et le problème de Cauchy correspondant consiste à calculer la fonction t → y(t) vérifiant en plus des conditions initiales “y(t0),
y′(t0), ..., dp−1y

dtp−1 (t0) données”. Il est important de comprendre, aussi bien sur le plan formel ou théorique que pratique 4 qu’une

telle équation se ramène, en posant z(t) = (y(t), y′(t), ..., dp−1y
dtp−1 (t))

T ∈ Rp au système différentiel du premier ordre :

z′(t) = f(t, z(t)) avec f(t, z(t)) =


z2(t)

...
zp(t)

f(z1(t), z2(t), .., zp(t))

 (1.6)

où, bien sûr, zj(t) = dj−1y
dtj−1 pour j = 1, ..., p (par convention d0y

dt0
= y). Détaillons cela sur un exemple essentiel, l’équation

fondamentale de la mécanique, qui traduit la loi de Newton « Force = masse × accélération ». Soit m la masse du corps, repéré
par sa position de son centre d’inertie y(t) = (y1(t), y2(t), y3(t)) ∈ R3 à l’instant t et sa vitesse y′(t) ∈ R3, la loi de Newton
s’écrit

m
d2y

dt2
= F (y, y′) =

(
F1(y, y

′), F2(y, y
′), F3(y, y

′)
)

La force F (y, y′) ne dépend pas en général explicitement de t donc on a un système différentiel autonome du second ordre. On
le réécrit sous forme d’un système d’ordre 1 en posant z(t) = (y(t), y′(t)) = (y1, y2, y3, y

′
1, y

′
2, y

′
3) :

dz

dt
= (y′,

1

m
F (y, y′)

qui est donc une équation différentielle de la forme
dz

dt
= G(z)

où la fonction t ∈ R 7→ z(t) ∈ R6 et G(z) =
(
z4, z5, z6,

1
m
F (z1, z2, z3, z4, z5, z6)

)
∈ R6

iv) Une équation différentielle s’interprète géométriquement comme la donnée d’un champ de vecteurs. La figure 1.1 cor-
respond à l’exemple simple de l’équation y′ = y. On a tracé le champ de vecteur (1, y) : A chaque point (t, y), on associe le
vecteur (1, y). Les solutions de l’équation différentielle sont les courbes t 7→ (t, y(t)) telles que le vecteur tangent (1, y′(t)) est

3. La démonstration de ce théorème n’est pas au programme de L3 parce qu’elle fait appel au théorème d’Ascoli qui donne
un critère pour savoir si un ensemble de fonctions continues sur un compact est compact, si bien qu’on peut en extraire une
sous suite qui converge.

4. parce que, bien qu’il existe des schémas numériques adaptés aux équations d’ordre 2 par exemple, la majorité des codes,
en particulier les codes MATLAB, sont écrits pour des systèmes différentiels d’ordre 1.
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égal au champ de vecteur (1, y). Cette interprétation est très fructueuse et permet de visualiser l’allure des solutions, même si
on ne sait pas intégrer l’équation différentielle.

−10 −5 0 5 10 15
−6

−4

−2

0

2

4

6
courbes integrales et champs de vecteur de dy/dt =y  

t

y

 

 

Figure 1.1 – Champ de vecteurs associé à l’équation différentielle y′ = y.

Sur le site demonstrations.wolfram.com on trouve des documents cdf 5très instructifs permettant de visualiser divers
champs de vecteurs associés à des EDO (Cf SlopeFields.cdf).

Ci dessous sur la figure 1.1 une copie d’écran où l’on voit le champ de vecteur associé à l’EDO y′ = t2 ·y ainsi qu’une courbe
intégrale, solution d’un problème de Cauchy particulier.

1.2 Introduction aux méthodes numériques de résolution d’équations dif-
férentielles.

On considère donc le problème de Cauchy pour une équation différentielle ordinaire, qui consiste à calculer une fonction
t ∈ [a, b] → y(t) ∈ Rm telle que :

y′(t) = f(t,y(t)) pour t ∈ [a, b], y(t0) = y0, (1.7)

où y′(t) = dy
dt
(t) désigne la dérivée de y par rapport à t au point (ou à l’instant) t et la fonction f : (t,y) ∈ R×Rm → f(t,y) ∈ Rm

ainsi que le réel t0 et le vecteur y0 ∈ Rm sont donnés. On suppose aussi que f est continue de [a, b]× Rm dans Rm et vérifie la
condition de Lipschitz “en y” :

∥f(t,y(1))− f(t,y(2))∥ ≤ L∥y(1) − y(2)∥pour tout (t,y(1),y(2)) ∈ [a, b]×Rm × Rm, (1.8)

pour une norme ∥.∥ quelconque dans Rm, par exemple ∥z∥ = ∥z∥∞ = max1≤j≤m |zj | et une constante L > 0. Pour la simplicité
on supposera en plus t0 = a.

1.2.1 Les méthodes à un pas
Étant donnée une suite de réels t0, t1, ..., tN telle que 6 a = t0 < t1 < ... < tN = b, on pose hn = tn+1 − tn et

h = max0≤n≤N−1 hn. La méthode d’Euler, archétype des méthodes à un pas 7, essentiellement méthodes de Runge Kutta pour la
résolution des problèmes de Cauchy pour les équations différentielles ordinaires, appliqué à (1.7) consiste à calculer les quantités
yn ∈ Rm qu’on espère être des approximations de y(tn), définies par :

yn+1 = yn + hnf(tn,yn) pour 0 ≤ n ≤ N − 1. (1.9)

La formule (1.9) est appelé schéma d’Euler.

5. Wolfram computable document format : ce sont des fichiers pdf interactifs où l’on peut changer des données grâce à des
menus.

6. Ce qui suit s’applique aussi aux cas où tN < tN−1 < ... < t1 < t0 en changeant les signes des hn et en posant h =
max0≤n≤N−1 |hn|.

7. On dit aussi méthode à pas séparés.
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Slope Fields

fHx,yL = x
2
y

x axis values:

xmin -3

xmax 3

y axis values:

ymin -4.

ymax 3.67

number of sample points:

x axis 17

y axis 14

display points

show exact solution

initial x value 0.2

initial y value 1

-3 -2 -1 1 2 3

-4

-3

-2

-1

1

2

3

slope field for y£ = x2 y

This Demonstration generates a slope field for a number of differential equations. You have 

the option to plot a particular solution passing through one point. You can control the x and y 

axes as well as the number of segments plotted. You can display the midpoints of the 

segments.

THINGS TO TRY

Resize Images  ‰ Slider Zoom ‰ Automatic Animation

RELATED LINKS

Slope Field (Wolfram MathWorld)

Vector Field (Wolfram MathWorld)

PERMANENT CITATION

"Slope Fields" from the Wolfram Demonstrations Project

Figure 1.2 – champ de vecteurs associé à y′ = t2 y.

Remarque. On peut la comprendre de deux façons : En partant de y(t+ h) = y(t) +
∫ t+h

t
y′(s)ds on écrit

y(t+ h) = y(t) +

∫ t+h

t

f(s, y(s))ds (1.10)

et on approche l’intégrale par la méthode du rectangle :∫ t+h

t

f(s, y(s))ds ≈ hf(t, y(t).

On obtient ainsi
y(t+ h) ≈ y(t) + hf(t, y(t).

Ou en approchant la dérivée par un taux d’accroissement.

y′(t) ≈ y(t+ h)− y(t)

h
.

d’où l’on tire
y(t+ h)− y(t)

h
≈ f(t, y(t).

□
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Définition 1 Soit t 7→ y(t) la solution exacte de l’équation différentielle (1.7) On appelle erreur de consistance du schéma
1.9 la quantité

h 7→ ϵ(h) := y(t0 + h)− y(t0)− h f(t0,y(t0)). (1.11)

C’est en quelque sorte l’erreur locale commise par le schéma au point t0. On espère que cette erreur ϵ(h) tend vers zéro quand
le pas h tend vers zéro.

Définition 2 On dit qu’un schéma est consistant si l’erreur de consistance ϵ(h) du schéma est négligeable par rapport au pas
de temps h i.e. ϵ(h) = o(h)

Le schéma d’Euler est consistant. En effet en effectuant un développement de Taylor-Lagrange à l’ordre 2,

ϵ(h) = y(t0 + h)− y(t0)− h f(t0,y(t0) = y(t0 + h)− y(t0)− hy′(t0) =
h2

2
y′′(t0 + θh) ≤ Ch2

si y′′(t) est bornée. On a montré la proposition suivante.

Proposition 1 Si la solution exacte t 7→ y(t) est C2([a, b]), le schéma d’Euler est consistant. Plus précisément l’erreur de
consistance du schéma d’Euler est en O(h2) quand le pas h tend vers 0. On dit que l’erreur de consistance est d’ordre
deux.

1.2.1.1 Erreurs de consistance (locales) et erreurs globales
Pour établir la convergence d’une telle méthode, on introduit d’abord la suite {ϵn}0≤n≤N−1 dans Rm, qu’on appele suite

des erreurs de consistance dans le schéma d’Euler pour la solution exacte 8 y(t), définie par :

ϵn = y(tn+1)− y(tn)− hnf(tn,y(tn)). (1.12)

Alors la suite des erreurs globales en = y(tn)− yn (“solution exacte - solution approchée”) satisfait :{
e0 = 0

en+1=en + hn(f(tn,y(tn))− f(tn,yn)) + ϵn pour 0 ≤ n ≤ N − 1
. (1.13)

En effet :

en+1 = y(tn+1)− yn+1︸ ︷︷ ︸
yn+hnf(tn,yn)

= y(tn+1)− y(tn)− hnf(tn,y(tn))︸ ︷︷ ︸
ϵn

+y(tn) + hnf(tn,y(tn))− yn − hnf(tn,yn)︸ ︷︷ ︸
en+hn(f(tn,y(tn))−f(tn,yn))

Il en résulte que : {
e0 = 0

∥en+1∥ ≤ (1 + hnL)∥en∥+ ∥ϵn∥ pour 0 ≤ n ≤ N − 1
. (1.14)

En effet la formule (1.13), l’inégalité triangulaire et la propriété (1.8) montrent que :

∥en+1∥ ≤ ∥en∥+ hnL∥y(tn)− yn︸ ︷︷ ︸
en

∥+ ∥ϵn∥ = (1 + hnL)∥en∥+ ∥ϵn∥.

Remarque. Si le schéma d’Euler (1.9) est remplacé par une formule plus précise (voir des exemples plus loin) de la forme :

yn+1 = yn + hnΦ(tn,yn, hn) pour 0 ≤ n ≤ N − 1, (1.15)

où Φ vérifie, pour une constante M :

∥Φ(t,y(1), h)−Φ(t,y(2), h)∥ ≤ M∥y(1) − y(2)∥pour tout (t,y(1),y(2)) ∈ [a, b]×Rm × Rm eth ≥ 0 assez petit (1.16)

alors introduisant la suite des erreurs de consistance :

ϵn = y(tn+1)− y(tn)− hnΦ(tn,y(tn), hn) (1.17)

on voit que la suite des erreurs globales en = y(tn) − yn (même définition évidemment) satisfait encore (1.14) à condition de
remplacer L par M . Un schéma sous la forme (1.15) vérifiant (1.17) est appelé un schéma à un pas.

8. Cette suite est en quelque sorte la suite des erreurs locales dues à la discrétisation.
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1.2.1.2 Convergence de la méthode d’Euler et des méthodes à un pas consistantes.
On va établir que l’erreur globale maxa≤tn≤b |y(tn)− yn| tend vers 0 quand le pas h tend vers 0. On dit alors que la méthode

d’Euler converge.
Pour obtenir le résultat de convergence cherché, on va d’abord montrer (et le lien avec (1.14) est évident), avec les mêmes

définitions de hn ≥ 0 et L ≥ 0 le lemme suivant.

Lemme 1 si {θn}0≤n≤N et {αn}0≤n≤N−1 sont deux suites de réels positifs telles que :

θn+1 ≤ (1 + hnL)θn + αn pour 0 ≤ n ≤ N − 1 (1.18)

alors :

θn ≤ eL(tn−t0)θ0 +

n−1∑
i=0

eL(tn−ti+1)αi, 1 ≤ n ≤ N. (1.19)

Preuve. On procède par récurrence.
Pour n = 0 (1.18) donne

θ1 ≤ (1 + h0L)θ0 + α0 ≤ eLh0θ0 + eL(t1−t1)α0

où l’on a utilisé l’inégalité élementaire
(1 + x) ≤ ex.

Donc (1.19) est vraie si n = 1.
Supposons donc (1.19) vraie jusqu’au rang n − 1 : θn−1 ≤ eL(tn−1−t0)θ0 +

∑n−2
i=0 eL(tn−1−ti+1)αi et montrons que la propriété

est vraie au rang n. Appliquant (1.18) avec le bon indice, il vient

θn ≤ (1 + hn−1L)θn−1 + αn−1 ≤ (1 + hn−1L)(e
L(tn−1−t0)θ0 +

n−2∑
i=0

eL(tn−1−ti+1)αi) + αn−1

Utilisant à nouveau l’inégalité élémentaire (1 + x) ≤ ex, on obtient

1 + hn−1L ≤ eLhn−1 = eL (tn−tn−1).

Donc (1 + hn−1L)e
L(tn−1−t0) ≤ eL(tn−t0) et (1 + hn−1L)e

L(tn−1−ti+1) ≤ eL(tn−ti+1)

Ainsi

θn ≤ eL(tn−t0)θ0 +

n−1∑
i=0

eL(tn−ti+1)αi.

La récurrence est terminée.

Remarque. De façon plus piétonne, on peut directement itérer la majoration 1.18.

θn+1 ≤ (1 + hnL)θn + αn

θn+1 ≤ (1 + hnL)(1 + hn−1L) . . . (1 + h0L)θ0
+(1 + hnL)(1 + hn−1L) . . . (1 + h1L)α0

+(1 + hnL)(1 + hn−1L) . . . (1 + h2L)α1

+ . . .
+(1 + hnL)αn−1

+αn

Les différentes lignes correspondent à l’amplification des erreurs commises aux pas de temps successifs. En majorant 1 + hL ≤
exphL, on obtient

θn+1 ≤ ehnLehn−1L . . . eh0Lθ0
+ehnLehn−1L . . . eh1Lα0

+ehnLehn−1L . . . eh2Lα1

+ . . .

+ehnLαn−1

+αn

Ce qui donne bien
θn+1 ≤ eL(tn+1−t0)θ0 + eL(tn+1−t1)α0 + eL(tn+1−t2)α1 . . .+ αn.

□

Montrons maintenant la proposition.

Théorème 1 si y′′ existe et est continue, le schéma d’Euler est convergent, l’erreur globale max0≤n≤N ∥en∥ est O(h) où
h = max0≤n≤N−1 hn. On dit que le schéma d’Euler est d’ordre 1.
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Preuve. Il suffit de poser θn =∥ en ∥ et αn = ∥ϵn∥ ; (1.14) montre que (1.18) est vraie. Or d’après la proposition précédente,
l’erreur de consistance est d’ordre deux, donc ∥ϵn∥ ≤ Ch2

n. Alors (1.19) donne, puisque la condition initiale donne θ0 =
y(t0)− y0 = 0 :

∥ en ∥≤
n−1∑
i=0

eL(tn−ti+1) ∥ϵi∥︸︷︷︸
≤Ch2

i≤Chhi

≤ eL(b−a)Ch

n−1∑
i=0

hi︸ ︷︷ ︸
b−a

≤ C(b− a)eL(b−a)h = O(h)

On montre facilement en prenant le cas particulier de l’équation y′ = y, y(0 = 1 ( voir l’exercice 4 du TD 1) qu’on ne peut
pas avoir une meilleure majoration que ∥ en ∥= O(h).
Remarque. Dans le cas du problème de Cauchy on l’on connaît y(t0) = y0, e0 = 0 et la formule 1.19 s’écrit :

∥ en ∥≤ eL(tn−t1)∥ϵ0∥+ eL(tn−t2)∥ϵ1∥+ . . .+ eL(tn−tn−1)∥ϵn−2∥+ ∥ϵn−1∥.

Chaque terme s’interprète : eL(tn−t1)∥ϵ0∥ correspond à la propagation-amplification de l’erreur de consistance ϵ0 commise au
temps t1 jusqu’au temps tn, eL(tn−t2)∥ϵ1∥ correspond à la propagation-amplification de l’erreur de consistance ϵ1 commise
au temps t2 jusqu’au temps tn. . .eL(tn−tn−1)∥ϵn−2∥ correspond à la propagation-amplification de l’erreur de consistance ϵn−2

commise au temps tn−1 jusqu’au temps tn et enfin ∥ϵn−1∥ est la dernière erreur de consistance commise à l’instant tn. Ainsi la
formule 1.19 décrit la façon dont les erreurs se propagent et s’accumulent. Plus une erreur est ancienne plus elle a le temps de
s’amplifier exponentiellement. La figure 1.3 qui suit éclaire la preuve, attention les notations sont différentes car elle est tirée
du magnifique poly en ligne de G. Wanner http://www.unige.ch/~wanner/Numi.html déjà cité dans la bibliographie).

y0

x0 x1 x2 x3 · · · xn = X

solution exacte

polygones d’Euler
yn
E1

E2

.

.

.

En−1

En = en

e1
e2 en−1

y(xn)

y1
y2

y3

FIG. III.3: “Lady Windermere’s Fan”, Estimation de l’erreur globale

Figure 1.3 – l’éventail de Lady Windermere d’après Hairer-Wanner

□

Remarque. Si on suppose que la condition initiale y(t0) = y0 est vérifiée seulement de manière approchée, à cause de la précision
finie des machines par exemple ou bien pour des raisons physiques de précision de mesure, la majoration (1.19) donne

∥en∥ ≤ eL(tn−t0)∥y(t0)− y0∥+ eL(tn−t1)∥ϵ0∥+ eL(tn−t2)∥ϵ1∥+ . . .+ eL(tn−tn−1)∥ϵn−2∥+ ∥ϵn−1∥.

Donc l’erreur globale est toujours majorée par ∥en∥ ≤ C (∥y(t0)− y0∥+ h) de sorte que si y(t0)− y0 → 0 le schéma converge.
Le schéma est dit stable vis à vis des perturbations de la condition initiale. □

On peut aussi tenir compte des erreurs d’arrondis numériques inévitables en pratique du fait de la précision finie des
ordinateurs. On sait que la représentation des réels en machines ( appelés flottants en informatique) basée sur l’écriture binaire
garantit une erreur relative de l’ordre de eps ≈ 10−16. Ainsi le schéma est en réalité :

zn+1 = zn + hnf(tn, zn) + an pour 0 ≤ n ≤ N − 1 z0 = y(t0) + e0 (1.20)

au lieu de
yn+1 = yn + hnf(tn,yn) pour 0 ≤ n ≤ N − 1 y0 = y(t0). (1.21)

10
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Le terme an correspond à l’erreur d’arrondi due à la précision finie à l’étape n de l’algorithme et le terme e0 correspond à
l’erreur de mesure ou troncature commise sur la valeur initiale y(t0). Nous allons comparer les deux suites (yn)n et (zn)n. En
soustrayant membre à membre (1.20) et (1.21) on obtient :

zn+1 − yn+1 = zn − yn + hn (f(tn, zn)− f(tn,yn)) + an (1.22)

On peut ainsi majorer
∥zn+1 − yn+1∥ ≤ ∥zn − yn∥+ hnL∥zn − yn∥+ ∥an∥.

∥zn+1 − yn+1∥ ≤ (1 + hnL)∥zn − yn∥+ ∥an∥.
On peut donc appliquer à nouveau le lemme 1 d’amplification des erreurs et obtenir

∥zn − yn∥ ≤ eL(tn−t0)∥z0 − y(t0)∥+
n−1∑
i=0

eL(tn−ti+1)∥ai∥, 1 ≤ n ≤ N (1.23)

On peut ainsi majorer :

∥zn − yn∥ ≤ eL(tn−t0)

(
∥e0∥+

n−1∑
i=0

∥ai∥

)
, 1 ≤ n ≤ N (1.24)

Proposition 2 Le schéma est dit stable vis à vis des perturbations de la condition initiale et des erreurs d’arrondis numériques.

Le théorème de convergence 1 et la propriété de stabilité 2 se généralisent immédiatement aux schémas à un pas i.e. de la forme

yn+1 = yn + hnΦ(tn,yn, hn) pour 0 ≤ n ≤ N − 1, (1.25)

où Φ vérifie, pour une constante M :

∥Φ(t,y(1), h)−Φ(t,y(2), h)∥ ≤ M∥y(1) − y(2)∥pour tout (t,y(1),y(2)) ∈ [a, b]×Rm × Rm eth ≥ 0 assez petit (1.26)

dont l’erreur de consistance est naturellement définie par :

ϵ(h) = y(t+ h)− y(t)− hΦ(t,y(t), h). (1.27)

On peut énoncer le théorème de convergence des schémas à un pas.

Théorème 2 si un schéma à un pas a une erreur de consistance O(hp+1) le schéma est convergent, l’erreur globale max0≤n≤N ∥en∥
est O(hp) où h = max0≤n≤N−1 hn. On dit que le schéma est d’ordre p.

La preuve est identique à celle du schéma d’Euler.

1.2.1.3 Les premières méthode de Runge-Kutta
Pour obtenir une méthode plus précise il faut améliorer l’erreur de consistance (1.17) et on peut remarquer en faisant un

développement de Taylor que y(t+h)−y(t)
h

= y′(t+ h
2
) + O(h2) (au lieu de y(t+h)−y(t)

h
= y′(t) + O(h)). Le schéma dit du point

milieu ( Runge, 1895) s’écrit ainsi :

u2 = y0 +
h
2
f(t0, y0)

y(t0 + h) ≈ y1 = y0 + hf(t0 +
h
2
,u2)

(1.28)

Remarque. On peut comprendre cette méthode en partant de y(t+ h) = y(t) +
∫ t+h

t
y′(s)ds. On écrit

y(t+ h) = y(t) +

∫ t+h

t

f(s, y(s))ds (1.29)

et on approche l’intégrale par la méthode du point milieu :∫ t+h

t

f(s, y(s))ds ≈ hf(t+ h/2, y(t+ h/2)).

On obtient ainsi
y(t+ h) ≈ y(t) + hf(t+ h/2, y(t+ h/2)).

Mais on ne connaît pas y(t+ h/2). On effectue alors une prédiction :

y(t+ h/2) ≈ u2 = y(t) +
h

2
f(t, y(t))

par la méthode d’Euler suivie d’une correction :

y(t+ h) ≈ y(t) + h f(t+ h/2, u2).

□
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Pour démontrer qu’on obtient ainsi une méthode d’ordre 2, il faut comparer les développements de Taylor y(t+h) (solution
exacte) et y1 (solution approchée). Or, on peut calculer y′′(t) = d

dt
f(t,y(t)) en utilisant la différentielle de f .

df =
∂f

∂t
dt+

∂f

∂y
dy

donc ”en divisant par dt"
d

dt
f(t,y(t)) =

∂f

∂t
+

∂f

∂y

dy

dt

y′′(t) =
d

dt
f(t,y(t)) =

∂f

∂t
+

∂f

∂y
y′(t)

En réutilisant le fait que y′(t) = f(t,y(t)) on obtient donc que y′′(t) = ∂f
∂t

+ ∂f
∂y

f(t,y(t)). Ainsi en notant ft =
∂f
∂t

et fy = ∂f
∂y

(matrice jacobienne m×m), on obtient

y(t+ h) = y(t) + hy′(t) + h2

2
y′′(t) +O(h3) = y + hf + h2

2
(ft + fyf) +O(h3) (1.30)

D’autre part :

y1 = y + hf(t+ h
2
,y + h

2
f(t,y)) = y + h(f(t,y) + h2

2
(ft + fyf) +O(h3) (1.31)

On a ici effectué un développement de Taylor de la fonction à deux variables

f(t+ h, y + k) = f(t, y) + h
∂f

∂t
(t, y) + k

∂f

∂y
(t, y) +O(h2 + k2)

où k := h
2
f(t,y), si bien que finalement l’erreur de consistance introduite en (1.17) vérifie, en posant Φ(t, y;h) := f(t+ h/2, y+

h/2f(t, y)),
ϵn = y(tn+1)− y(tn)− hnΦ(tn,y(tn)) = O(h3

n) (1.32)

donc on a une erreur de consistance en O(h3). De la même manière qu’au paragraphe précédent, on a un schéma à un pas de
la forme (1.15). Il est facile (exercice !) de vérifier que Φ(t, y, h) est Lipschitzienne par rapport à la variable y et en suivant la
même démarche que pour le schéma d’Euler, on démontre que le schéma du point milieu est convergent et que l’erreur globale
est O(h2). On dit que le schéma du point-milieu est d’ordre 2.
Variante : on peut également approcher l’intégrale

y(t+ h) = y(t) +

∫ t+h

t

f(s, y(s))ds (1.33)

par la méthode du trapèze : ∫ t+h

t

f(s, y(s))ds ≈ h

2
(f(t, y(t)) + f(t+ h, y(t+ h))

On obtient ainsi
y(t+ h) ≈ y(t) +

h

2
(f(t, y(t)) + f(t+ h, y(t+ h)) .

Mais on ne connaît pas y(t+ h). On effectue alors une prédiction :

y(t0 + h) ≈ u2 = y0 + hf(t0, y0)

par la méthode d’Euler suivie d’une correction. Le schéma s’écrit alors

y(t0 + h) ≈ y1 = y0 +
h

2
(f(t0, y0) + f(t0 + h, u2) .

Cette méthode dite du trapèze explicite est du même ordre que la méthode du point milieu. Par un développement de Taylor,
cf TD, on estime l’erreur de consistance

y(t0 + h)− y1 = O(h3),

si bien que le schéma est aussi d’ordre 2.

1.2.1.4 un schéma d’ordre 3 : le schéma de Heun
Présentons maintenant une méthode d’ordre 3 : la méthode de Heun. Elle repose sur la formule d’intégration de Gauss-Radau

suivante : ∫ 1

0

g(t) dt ≈ 1

4
g(0) +

3

4
g(2/3)

qui est exacte pour les polynômes de degré inférieur ou égal à 2, ainsi qu’on le vérifie aisément. On en déduit

y(t+ h) ≈ y(t) + h

(
1

4
f(t, y(t)) +

3

4
f(t+

2h

3
, y(t+

2h

3
)

)
.

Pour obtenir une erreur de consistance d’ordre 4, il suffit de "prédire" la valeur de y(t + 2h
3
) à l’ordre 3, car l’erreur commise

sera multipliée par le facteur h devant f(·, y(t+ 2h
3
). Faisons cela avec la méthode du point milieu avec h remplacé par 2h

3
. Cea

donne (Heun 1900)

u2 = y0 +
h

3
f(t0, y0)
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u3 = y0 +
2h

3
f(t0 +

h

3
, u2)

y1 = y0 + h

(
1

4
f(t0, y0) +

3

4
f(t0 +

2h

3
, u3)

)
.

Par une preuve similaire à la précédente, on voit que le schéma de Heun est d’ordre 3. 9 La figure 1.4 qui suit illustre
géométriquement les différents schémas. La figure 1.5 compare les principaux schémas à un pas et illustre l’ordre de convergence
en O(h) pour Euler, O(h2) pour Runge, O(h3) pour Heun, O(h4) pour Runge-Kutta 4 (voir alinéa suivant). On a utilisé un
pas de temps initial h = 1. L’équation différentielle résolue est y′ = y dont la solution exacte est y(t) = y0 exp t. La condition
initiale est y0 = 1 et l’intervalle de temps est [0, 7].

1

1

1

1

1

1

①

②

②✵ ✶
✷

✉✷

②✶

expl. trap. rule

①

②

②✵ ✶
✷

✉✷

②✶

expl. midp. rule

①

②

②✵
✶
✸

✷
✸

✶
✹

✉✷

✉✸

②✶

Heun 1900

FIG. III.5: Méthodes de Runge-Kutta pour ②✦ ❂ ①
✷
✰ ②

✷, ②✵ ❂ �✳✁✂, ❤ ❂ ✄; pointillé: solution

exacte.

Figure 1.4 – Illustration graphique des méthodes de Runge et Heun, d’après Wanner

1.2.1.5 Méthode de Runge-Kutta d’ordre 4.
En utilisant le même principe, on peut approcher l’intégrale

y(t+ h) = y(t) +

∫ t+h

t

f(s, y(s))ds (1.34)

par la méthode de Simpson (exacte pour les polynômes de degré inférieur ou égal à 3) :∫ t+h

t

f(s, y(s))ds ≈ h

6
(f(t, y(t)) + 4f(t+ h/2, y(t+ h/2) + f(t+ h, y(t+ h)) .

Il faut alors prédire y(t + h/2) et y((t + h). La méthode de Runge-Kutta dite RK4 est ainsi décrite par les formules suivantes
qui donnent le moyen de calculer yn+1, noté y1 ici, à partir de yn noté y0 :

u2 = y0 +
h
2
f(t0,y0)

u3 = y0 +
h
2
f(t0 +

h
2
, u2)

u4 = y0 + h f(t0 +
h
2
, u3)

y(t0 + h) ≈ y1 = y0 + h
(
1
6
f(t0, u1) +

2
6
f(t0 +

h
2
, u2) +

2
6
f(t0 +

h
2
, u3) +

1
6
f(t0 + h, u4)

) , (1.35)

si bien qu’avec la notation de (1.15) et avec t = t0, y = y0 :

Φ(t0,y0;h) =
1

6

(
f(t0,y0) + 2f(t0 +

h

2
, u2) + 2f(t0 +

h

2
, u3) + f(t0 + h, u4)

)
(1.36)

9. G. Wanner raconte que le premier programme qui a tourné sur le premier ordinateur ( aux USA) fut une équation
différentielle résolue par la méthode de Heun.
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Figure 1.5 – Ordre de convergence de divers schémas à un pas.

C’est un schéma à un pas d’ordre 4 (erreur globale en O(h4) car on peut vérifier que l’erreur de consistance est en O(h5)).
On pourrait faire des calculs, assez fastidieux quand même, qui donnent toutes les formules de ce type d’ordre 2, 3 et 4. Pour
plus de détails on peut renvoyer aux livres M. Crouzeix, A.L. Mignot, 1984, Analyse numérique des équations différentielles :
Masson et Hairer, S.P. Nørsett, G. Wanner,1993, Solving ordinary differential equations I. Nonstiff problems : Springer-Verlag.
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Ces estimations d’erreur nécessitent souvent l’usage de la formule de Taylor à des ordres assez élevés. Les logiciels de calcul
formel sont alors très précieux.

1.2.1.6 (⋆) Notions sur les méthodes de Runge-Kutta plus générales.
Les méthodes de Runge-Kutta explicites à s étages sont de la forme :

k1 = f(t,y)
k2 = f(t+ c2h,y + ha2,1k1)
k3 = f(t+ c3h,y + h(a3,1k1 + a3,2k2))
· · ·
ks = f(t+ csh,y + h(as,1k1 + as,2k2 + ...+ as,s−1ks−1))
y(t+ h) ≈ y1 = y + h(b1k1 + b2k2 + ...+ bsks)

(1.37)

si bien qu’avec la notation de (1.15) et avec t = tn y = yn :

Φ(tn,yn;h) = b1k1 + b2k2 + ...+ bsks. (1.38)

Il s’agit encore d’une méthode à un pas et on vérifie aussi que la fonction Φ(t,y;h) est Lipschitzienne par rapport à la variable
y.
Il est d’usage de disposer les coefficients d’une telle formule dans un tableau de la forme :

0
c2 a2,1

c3 a3,1 a3,2

...
...

...
. . .

cs as,1 as,2 · · · as,s−1

b1 b2 · · · bs−1 bs

Voici les tableaux de quelques méthodes très connues :

0
1
2

1
2

0 1

Point-milieu, ordre 2

0
1
2

1
2

1 0 1

1 0 0 1
1
6

2
3

0 1
6

Runge, ordre 3

0
1
3

1
3

2
3

0 2
3

1
4

0 3
4

Heun, ordre 3

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

2
6

2
6

1
6

“La” méthode de
Runge-Kutta, ordre 4

0
1
3

1
3

2
3

- 1
3

1

1 1 -1 1
1
8

3
8

3
8

1
8

Règle 3/8, ordre 4

Remarque. On respecte toujours les contraintes : c1 = 0, ci =
∑s−1

j=1 ai,j et 1 =
∑s

j=1 bj . Ceci afin d’assurer au minimum
ki = f(t0 + cih, y(t0 + cih)) +O(h2) et d’intégrer exactement l’équation différentielle y′ = 1. □

Il existe aussi des méthodes de Runge-Kutta implicites. Par exemple le schéma d’Euler implicite :

y(t+ h) ≈ y1 = y + h f(t+ h,y1).

Le terme « implicite » décrit le fait que y1 n’est pas donné explicitement. En vertu du théorème des fonctions implicites, l’équation
y1−y−h f(t+h,y1) = 0 définit y1. En effet considérons la fonction de plusieurs variables F (y, h,y1) := y1−y−h f(t+h,y1).
On a F (y0, 0,y0) = 0 et aussi ∂F

∂y1
(y0, 0,y0) = Id qui est inversible donc pour pour h suffisamment petit on peut expliciter

y1 = φ(h,y0) comme une fonction de h et y0.
D’un point de vue pratique, y1 est un point fixe de l’application

y1 7→ g(y1) := y + h f(t+ h,y1)

qui est contractante dés que hL < 1 ainsi qu’on le vérifie aisément :

|g(y1)− g(z1)| = h |(f(t+ h,y1)− f(t+ h, z1))| ≤ hL |y1 − z1|

De manière analogue la règle du trapèze implicite s’écrit

y(t+ h) ≈ y1 = y +
h

2
(f(t,y) + f(t+ h,y1))

On peut vérifier facilement que l’application y1 7→ g(y1) := y0 + h
2
(f(t,y0) + f(t+ h,y1)) est Lipschitzienne :

|g(y1)− g(z1)| =
h

2
|(f(t+ h,y1)− f(t+ h, z1))| ≤

hL

2
|y1 − z1|

et contractante dès que hL < 2.
On peut donc calculer y1 par la méthode des approximations successives. En pratique on effectue quelques itérations de point
fixe.
La forme générale des schémas implicites est :
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ki = f(t+ cih,y + h
∑j=s

j=1 ai,jkj), i = 1, ...s

y(t+ h) ≈ y1 = y + h
∑s

i=1 biki

le tableau associé étant

c1 a1,1 a1,2 · · · a1,s

c2 a2,1 a2,2 · · · a2,s

...
...

...
. . .

cs as,1 as,2 · · · as,s

b1 b2 · · · bs

(1.39)

Voici quelques tableaux de tels schéma. Ces schémas sont utiles pour les problèmes “raides” et dans ces cas implicites on peut
atteindre des ordre 2s avec s étapes (par problèmes raides on entend des équations différentielles dont les solutions présentent
des variations rapides, voir section 1.2.3 ).

1 1

1

Euler
implicite

1
2

1
2

1

Point milieu
implicite

0 0 0
2
3

1
3

1
3

1
4

3
4

Schéma de
Hammer & Hollingsworth

1.2.1.7 (⋆) Notions sur les estimations d’erreurs utilisées dans les codes adaptatifs
Le pas de la subdivision hn := tn+1− tn n’est pas forcément constant au cours des itérations et peut être adapté en fonction

d’une estimation de l’erreur. Dans la mesure où c’est possible, si cette estimation d’erreur est négligeable on augmente le pas,
si par contre l’estimation est trop grande on le diminue. Pour cela il est indispensable de disposer d’une estimation de l’erreur
locale.

En général pour estimer l’erreur, on utilise deux schémas numériques simultanément. Un schéma de Runge-Kutta est alors
utilisé combiné à un autre, d’ordre plus élevé, afin de permettre une estimation de l’erreur par soustraction des deux valeurs
calculées par les schémas, yn+1 et ŷn+1. On estime en+1 := y(tn + hn)− yn+1 ≈ ŷn+1 − yn+1.

10 On augmente ou diminue alors
hn selon la taille de en+1. Cela donne des algorithmes adaptatifs où les pas hn sont automatiquement choisis pour essayer de
garantir une précision donnée. On présente ces méthodes avec des tableaux de la forme :

0
c2 a2,1

c3 a3,1 a3,2

...
...

...
. . .

cs as,1 as,2 · · · as,s−1

b1 b2 · · · bs−1 bs

b̂1 b̂2 · · · b̂s−1 b̂s b̂s+1

où il est entendu que y1 = y + h
∑s

i=1 biki avec k1 = f(t,y) et ki = f(t+ cih,y ++h
∑j=i−1

j=1 ai,jkj), 2 ≤ i ≤ s et l’estimation
d’erreur est ŷ1 − y1 où ŷ1 = y + h(

∑s
i=1 b̂iki + b̂s+1f(t + h,y1). Il faut citer ici 11 la méthode de Merson qui est d’ordre 4 et

dont l’estimation d’erreur est d’ordre 3 en général, la méthode de Bogacki et Schampine qui est d’ordre 3 avec une estimation
d’erreur d’ordre 2 et la méthode de Dormand-Prince qui est d’ordre 5 avec une estimation d’erreur d’ordre 4. Ces deux dernières
méthodes sont utilisées dans MATLAB, respectivement dans les procédure ode23 et ode45 ; on peut vérifier les coefficients des
tableaux qui suivent avec les commandes type ode23 et type ode45, qui permettent de voir le code source de Matlab.

0
1
3

1
3

1
3

1
6

1
6

1
2

1
8

0 3
8

1 1
2

0 - 3
2

2
1
6

0 0 2
3

1
6

1
10

0 3
10

2
5

1
5

méthode de Merson “34”

0
1
2

1
2

3
4

0 3
4

2
9

3
9

4
9

7
24

6
24

8
24

3
24

méthode de Bogacki, Shampine “23”

10. On parle de schémas emboîtés (embedded formulas) car les deux schémas ont beaucoup de coefficients en commun ce qui
a l’avantage d’économiser le nombre d’évaluations de f .

11. Les références sont :
R.H. Merson, 1957, An operational method for the study of integration processes : Proc. Symp. Data Processing, Weapons

Research Establishment, Salisbury, Australia, p 110-1 – 110-25 ;
P. Bogacki, L.F. Shampine, 1989, A 3(2) pair of Runge-Kutta formulas : Applied Mathematics Letters, 2, 1 – 9 ;
J.R. Dormand, P.J. Prince, 1980, A family of embedded Runge-Kutta formulae : J. Comp. Appl. Math., 6, 19 – 26.
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0
1
5

1
5

3
10

3
40

9
40

4
5

44
55

− 56
15

32
9

8
9

19372
6561

− 25360
2187

64448
6561

− 212
729

1 9017
3168

− 355
33

46732
5247

49
176

− 5103
18656

1 35
384

0 500
1113

125
192

− 2187
6784

11
84

35
384

0 500
1113

125
192

− 2187
6784

11
84

0
5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40

Méthode de Dormand-Prince “45”

1.2.2 Les méthodes multipas
Pour augmenter la précision du schéma d’Euler, le processus employé dans les méthodes de Runge-Kutta n’est pas le seul

possible. On peut aussi, après une période de démarrage, utiliser les valeurs approchées de y, yn−1, yn−2, ..., yn−k+1 aux pas
qui précèdent yn. Les premiers procédés de ce genre qu’on range dans la classe des méthodes multipas 12 sont antérieurs aux
méthodes de Runge-Kutta et sont dus à Adams (et publiés par Bashforth 13).

1.2.2.1 Méthodes d’Adams et de différentiation rétrograde (BDF).
Les méthodes d’Adams sont obtenues en approchant l’intégrale du second membre de

y(tn+1) = y(tn) +
∫ tn+1

tn
f(t,y(t))dt par l’intégrale du polynôme d’interpolation de t → f(t,y(t)) aux points tn, tn−1, ...,

tn−k+1 (méthodes explicites) dans le cas des méthodes dites d’Adams-Bashforth et aux points tn+1, tn, ..., tn−k+1 (méthodes
implicites) dans le cas des méthodes dites d’Adams-Moulton. On note fn = f(tn,yn) où yn est l’approximation ainsi obtenue
pour y(tn). Dans le cas où le pas h = ti+1 − ti est constant les premières méthodes d’Adams-Bashforth sont avec comme ordre
de convergence respectivement 1, 2, 3, 4 (donc erreurs locales en O(h2), O(h3), O(h4), O(h5) respectivement) :

k = 1 : yn+1 = yn + hfn (Euler explicite),
k = 2 : yn+1 = yn + h( 3

2
fn − 1

2
fn−1),

k = 3 : yn+1 = yn + h( 23
12
fn − 16

12
fn−1 +

5
12
fn−2),

k = 4 : yn+1 = yn + h( 55
24
fn − 59

24
fn−1 +

37
24
fn−2 − 9

24
fn−3).

(1.40)

Toujours à pas constant, les premières méthodes d’Adams-Moulton sont, avec les mêmes ordres de convergence :

k = 0 : yn+1 = yn + hfn+1 (Euler implicite),
k = 1 : yn+1 = yn + h( 1

2
fn+1 +

1
2
fn) (règle du trapèze implicite, )

k = 2 : yn+1 = yn + h( 5
12
fn+1 +

8
12
fn − 1

12
fn−1),

k = 3 : yn+1 = yn + h( 9
24
fn+1 +

19
24
fn − 5

24
fn−1 +

1
24
fn−2).

(1.41)

À partir de ces méthodes, une méthode prédicteur-correcteur est construite de la manière suivante :
P (prédiction) : on utilise une formule de type Adams-Bashforth pour faire une prédiction ŷn+1 de yn+1 ;
E (évaluation) : on évalue la fonction f avec cette approximation f̂n+1 = f(tn+1, ŷn+1) ;
C (correction) : on porte cette approximation dans une formule d’Adams-Moulton ce qui donne yn+1 ;
E (évaluation) : pour continuer on évalue fn+1 = f(tn+1,yn+1).

Cela s’appelle un schéma PECE. C’est la procédure la plus courante mais il existe aussi des schémas PECECE, des schémas
PEC . . .
Remarque. Les coefficients du second membre présentent la particularité de sommer à un. En effet on avance de h entre tn et
tn+1. En particulier, les solutions de l’équation différentielle triviale y′ = 1 sont données par yn+1 = yn + h qui correspond bien
à y(t) = t+ const. □

Les méthodes de Nyström (explicites) et de Milne-Simpson (implicites) sont construites de la même manière mais à partir de
y(tn+1) = y(tn−1)+

∫ tn+1

tn−1
f(t,y(t))dt. Toujours à pas h constant, les premières méthodes de Nyström sont (k = 2 est identique

à k = 1) :

k = 1 : yn+1 = yn−1 + 2hfn (schéma saute-mouton),
k = 3 : yn+1 = yn−1 + h( 7

3
fn − 2

3
fn−1 +

1
3
fn−2),

(1.42)

et les premières méthodes de Milne-Simpson sont :

k = 0 : yn+1 = yn−1 + 2hfn+1,
k = 1 : yn+1 = yn−1 + 2hfn,
k = 2 : yn+1 = yn−1 + h( 1

3
fn+1 +

4
3
fn + 1

3
fn−1),

k = 4 : yn+1 = yn−1 + h( 29
90
fn+1 +

124
90

fn + 24
90
fn−1 +

4
90
fn−2 − 1

90
fn−3.

(1.43)

12. On dit aussi méthodes à pas liés.
13. La référence est F. Bashforth, 1883, An attempt to test the theories of capillary action by comparing the theoretical and

measured forms of drops of fluid. With an explanation of the method of integration employed in constructing the tables which
give the theoretical form of such drops, by C. Adams : Cambridge Univ. Press.
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Dans ces cas aussi on peut définir des schémas prédicteurs-correcteurs et bien sûr on peut étendre à d’autres intégrales que∫ tn+1

tn−1
f(t,y(t))dt.

Remarque. Les coefficients du second membre présentent la particularité de sommer à 2. En effet on avance de 2h entre tn−1 et
tn+1. En particulier, les solutions de l’équation différentielle triviale y′ = 1 sont données par yn+1 = yn−1 + 2h qui correspond
bien à y(t) = t+ const. □

Les méthodes de différentation rétrograde appelées en anglais BDF (backward differentiation formula) sont construites d’une
autre manière. On dérive le polynôme d’interpolation q de t → y(t) aux points tn+1 (en ce point yn+1 n’est pas (encore)
connu), tn, ..., tn−k+1 et on écrit : q′(tn+1) = f(tn+1,yn+1).

On obtient des formules implicites dont les 6 premières sont stables et les autres sont instables (voir section suivante), ce
que nous admettons aussi. Ces 6 formules implicites de différentiation rétrograde dans le cas de pas constant sont :

k = 1 : yn+1 − yn = hfn+1, (Euler implicite)
k = 2 : 3

2
yn+1 − 2yn + 1

2
yn−1 = hfn+1, (BDF2)

k = 3 : 11
6
yn+1 − 3yn + 3

2
yn−1 − 1

3
yn−2 = hfn+1,

k = 4 : 25
12
yn+1 − 4yn + 3yn−1 − 4

3
yn−2 +

1
4
yn−3 = hfn+1,

k = 5 : 137
60

yn+1 − 5yn + 5yn−1 − 10
3
yn−2 +

5
4
yn−3 − 1

5
yn−4 = hfn+1,

k = 6 : 147
60

yn+1 − 6yn + 15
2
yn−1 − 20

3
yn−2 +

15
4
yn−3 − 6

5
yn−4 +

1
6
yn−4 = hfn+1.

(1.44)

Remarque. Les coefficients du premier membre présentent la particularité de sommer à zéro. En effet pour l’équation différentielle
triviale y′ = 0, les constantes doivent être solution du schéma. □

1.2.2.2 Un exemple d’instabilité
Contrairement aux méthodes à un pas, dans ce cas des méthodes multipas, il ne suffit pas qu’une méthode soit consistante,

c’est à dire d’erreur locale tendant vers zéro avec le pas (plus vite que O(h)), pour qu’elle soit convergente. Voici une formule 14 qui
est d’ordre 3 au moins mais diverge (le pas étant constant, tn = t0+nh, on note yn l’approximation de y(tn), et fn = f(tn,yn)) :

yn+1 + 4yn − 5yn−1 = h(4fn + 2fn−1). (1.45)

Montrons que l’erreur de consistance est en O(h4).
Pour cela, portons la solution exacte dans le schéma et examinons la différence

ϵ(hn) := y(tn+1) + 4y(tn)− 5y(tn−1)− h (4f(tn,y(tn)) + 2f(tn−1,y(tn−1))) . (1.46)

En effectuant un développement de Taylor au point tn et en utilisant que y′ = f(t, y) on obtient :

ϵ(h) = y(tn) + hy′(tn) +
h2

2
y′′(tn) +

h3

6
y′′′(tn) (1.47)

+4y(tn)− 5

(
y(tn)− hy′(tn) + y′′(tn)−

h3

6
y′′′(tn)

)
(1.48)

−h
(
4y′(tn) + 2y′(tn−1)

)
+O(h4) (1.49)

ϵ(h) = y(tn) + hy′(tn) +
h2

2
y′′(tn) +

h3

6
y′′′(tn) (1.50)

+4y(tn)− 5

(
y(tn)− hy′(tn) +

h2

2
y′′(tn)−

h3

6
y′′′(tn)

)
(1.51)

−4hy′(tn)− 2h

(
y′(tn)− hy′′(tn) +

h2

2
y′′′(tn)

)
+O(h4) (1.52)

Après simplification il reste ϵ(h) = O(h4). Donc l’erreur de consistance (locale) est y(tn+1) − yn+1 = O(h4) et la méthode
serait au moins d’ordre 3 (si elle était stable, l’erreur globale serait en O(h3)). Mais cette méthode n’est pas stable ainsi qu’on
va le voir plus bas. Voici en effet ce qui se passe lorsqu’on applique la méthode à l’équation différentielle triviale y′(t) = 0,
y(0) = 1, dont la solution exacte est y(t) = 1, avec un pas h constant. En supposant que les valeurs de démarrage sont exactes,
les relations à satisfaire sont :

y0 = 1, y1 = 1, yn+1 + 4yn − 5yn−1 = 0 pour n ≥ 1 (1.53)

Or la solution générale de la relation de récurrence yn+1 + 4yn − 5yn−1 = 0 pour n ≥ 1 est yn = αλn
1 + βλn

2 où λ1 = 1 et
λ2 = −5 sont les racines de l’équation caractéristique ζ2 + 4ζ − 5 = 0. Pour trouver la solution de valeurs initiales y0 et y1 il

suffit de résoudre le système linéaire 2× 2 en α, β
{

α+ β = y0
λ1α+ λ2β = y1

qui a une solution unique le déterminant λ2 − λ1 = −6

étant toujours non nul. On trouve immédiatement α = 1 et β = 0, ce qui donne

yn = λn
1 = 1 (1.54)

14. On l’obtient en cherchant une formule explicite à 3 pas d’ordre maximum.
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Mais si on commet une petite erreur d’arrondi en prenant par exemple y0 = 1 et y1 = 1 + ϵ on obtient alors

yn = αλn
1 + βλn

2 = (1 +
ϵ

6
)− ϵ

6
(−5)n (1.55)

Le premier terme est très voisin de 1 lorsque ϵ ≪ 1, ce qui est favorable, mais le second est non borné quand n → ∞ et
oscille de plus en plus violemment à mesure que n augmente. On dit que le schéma est instable. Ainsi il n’y a pas convergence
vers la solution y = 1 et cela provient du fait que le polynôme ρ(ζ) = ζ2 + 4ζ − 5 a pour racine ζ = 1 et ζ = −5 : cette
deuxième racine de module > 1 propage les “petites erreurs de consistance” commises à chaque pas de manière explosive. On
pourrait objecter que si on prend exactement y0 = 1 et y1 = 1 il n’y pas pas de problème. Cependant si on change la condition
initiale en y0 = 0.1 et y1 = 0.1, on a vu dans le chapitre 1 que 0.1 = 1/10 n’admet pas d’écriture binaire finie donc on ne peut
assurer exactement y0 = 0.1 et y1 = 0.1 On constate numériquement que yn diverge violemment au bout de quelques dizaines
d’itérations en codant

x=0.1;
y=0.1;
z=zeros(30,1);
for i=1:30

z(i)=-4*y+5*x
x=y;
y=z(i);

end

par exemple y28 ≈ −700 et y29 ≈ 3450 ! Ce schéma est donc inutilisable en pratique sur une équation non triviale, car il est
impossible d’assurer une précision infinie et les erreurs sont amplifiées de manière exponentielle par le facteur λn

2 .

1.2.2.3 Notions sur le résultat général
On considère une méthode multipas, à pas constant h, de la forme :

αkyn+k + αk−1yn+k−1 + ...+ α0yn = h(βkfn+k + ...+ β0fn) (1.56)
où αk ̸= 0, |α0|+ |β0| > 0.
La méthode est explicite si βk = 0 et implicite si non.

Définition 3 Le schéma est dit consistant si l’erreur de consistance ϵ(h)

ϵ(h) :=

k∑
i=0

(αiy(t+ ih)− hβif(t+ ih,y(t+ ih)) (1.57)

est o(h) quand h → 0. On dira que ce schéma est d’ordre p si l’erreur de consistance ϵ(h) est en O(hp+1) pour toute fonction
t → y(t) suffisamment régulière.

On associe au schéma (1.56) les polynômes :

ρ(ζ) = αkζ
k + αk−1ζ

k−1 + ...+ α0,

σ(ζ) = βkζ
k + βk−1ζ

k−1 + ...+ β0.
(1.58)

Proposition 3 un schéma est consistant si et seulement si

ρ(1) = 0, ρ′(1) = σ(1). (1.59)

Preuve. Il suffit de remplacer y(t+ ih) et y′(t+ ih) = f(t+ ih,y(t+ ih)) par leurs développement de Taylor dans (1.57)) :

ϵ(h) =
k∑

i=0

(αiy(t+ ih)− hβif(t+ ih,y(t+ ih)) (1.60)

=

k∑
i=0

αiy(t+ ih)− hβiy
′(t+ ih) (1.61)

=

k∑
i=0

αi

(
y(t) + ihy′(t)

)
− hβiy

′(t) + o(h) (1.62)

=

(
k∑

i=0

αi

)
y(t) + h

(∑
i

(iαi − βi)

)
y′(t) + o(h) (1.63)

On en déduit que le schéma est consistant si et seulement si
∑

i αi = 0 et
∑

i iαi =
∑

i βi ce qui donne bien ρ(1) = 0, ρ′(1) = σ(1).

Remarque. La condition ρ(1) = 0 revient à vérifier que y = Cte est solution du schéma lorsque f ≡ 0. La condition
∑

i iαi =
∑

i βi

revient à imposer en plus que y(t) = t est solution du schéma lorsque f ≡ 1. □
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Définition 4 On dit que le schéma (1.56) est stable si la solution générale de la relation de récurrence linéaire :

αkyn+k + αk−1yn+k−1 + ...+ α0yn = 0, (1.64)

est bornée en fonction des données initiales i.e s’il existe une constante C > 0 telle qu’étant données des valeurs de “démarrage”
y0, y1, ..., yk−1 quelconques la suite {yn}n∈N solution de (1.64) vérifie |yn| ≤ Cmax0≤i≤k−1 |yi| que soit n ∈ N.

Remarque. Cela impose en particulier que les solutions du schéma appliqué à l’équation y′ = 0 restent bornées. Ce qui est bien
la moindre des choses à demander. □

On démontre la proposition

Proposition 4 Le schéma est stable si et seulement si

le polynôme ρ(ζ) a toutes ses racines demodule ≤ 1, les racines demodules 1 étant simples. (1.65)

Preuve. Montrons d’abord que la condition (1.65) est nécessaire. C’est un résultat d’algèbre linéaire sur les suites récurrentes
linéaires que la solution générale (yn) de

αkyn+k + αk−1yn+k−1 + ...+ α0yn = 0, (1.66)

est une combinaison linéaire de ζn si ζ est racine simple de ρ(ζ) = 0, de ζn, nζn si ζ est racine double de ρ(ζ) = 0, de
ζn, nζn, . . . nl−1ζn si ζ est racine de multiplicité l de ρ(ζ) = 0. Cela signifie que

yn = p1(n)ζ
n
1 + p2(n)ζ

n
2 + ...+ pl(n)ζ

n
l , (1.67)

où ζ1, ζ2, ..., ζl sont les racines distinctes de ρ, la multiplicité de ζj étant mj et où p1, p2, ..., pl sont des polynômes, le degré
de pj étant au plus mj − 1. En particulier pour que les solutions yn restent bornées ∀n il faut que d’une part toutes les racines
ζj soient de module inférieur ou égal à un et qu’aucune racine multiple ne soit de module un.

Montrons maintenant que la condition (1.65) est suffisante. Sans perte de généralité, quitte à diviser tous les coefficients
par αk on peut supposer que αk = 1. Nous supposons aussi pour simplifier que y(t) est scalaire. On introduit alors le vecteur

de Rk Yn :=


yn

yn+1

...
yn+k−1

 et la matrice k × k

A =



0 1 · · · 0

0 0 1
. . .

...
...

. . .
. . .

...
0 0 1

−α0 · · · · · · −αk−2 −αk−1

 (1.68)

La relation de récurrence linéaire
yn+k = −α0yn − . . .− αk−1yn+k−1

se traduit alors ainsi :


yn+1

yn+2

...
yn+k

 = A


yn

yn+1

...
yn+k−1

 c’est à dire Yn+1 = AYn. Ainsi

Yn = AnY0. (1.69)

Il suffit alord de choisir une norme sur Rk telle que ∥A∥ ≤ 1. Pour cela montrons le lemme d’algèbre linéaire suivant.

Lemme 2 Soit A une matrice k×k dont toutes les valeurs propres sont de module inférieur ou égal à un et dont les éventuelles
valeurs propres multiples sont de module strictement inférieur à un. Il existe une norme sur Rk telle que la norme matricielle
subordonnée vérifie ∥A∥ ≤ 1.

Preuve du lemme. Effectuons la preuve pour k = 3 pour alléger. Si A est diagonalisable, alors elle peut s’écrire A = P

 ζ1 0 0
0 ζ2 0
0 0 ζ3

P−1.

Sinon ζ2 = ζ3 est une racine double du polynôme caractéristique et on peut mettre A sous forme réduite de Jordan. A =

P

 ζ1 0 0
0 ζ2 1
0 0 ζ2

P−1 ou bien ζ1 = ζ2 = ζ3 est racine triple et la forme de Jordan est A = P

 ζ1 1 0
0 ζ1 1
0 0 ζ1

P−1.

Dans le cas d’une racine double, par hypothèse |ζ2| < 1. Quitte à multiplier la 3-ième colonne de P par le facteur 1− |ζ2|,

on peut mettre A sous la forme de Jordan modifiée : A = P

 ζ1 0 0
0 ζ2 1− |ζ2|
0 0 ζ2

P−1. Dans le cas d’une racine tripe, par
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hypothèse |ζ1| < 1. Quitte à multiplier la 2-ème colonne de P par le facteur 1− |ζ1| et la 3-ème colonne par le facteur (1− |ζ1|)2

, on peut mettre A sous la forme de Jordan modifiée : A = P

 ζ1 1− |ζ1| 0
0 ζ1 1− |ζ1|
0 0 ζ1

P−1.

Dans tous les cas on peut donc écrire : A = PJP−1 avec J =

 ζ1 0 0
0 ζ2 0
0 0 ζ3

 ou J =

 ζ1 0 0
0 ζ2 1− |ζ2|
0 0 ζ2

 ou

J =

 ζ1 1− |ζ1| 0
0 ζ1 1− |ζ1|
0 0 ζ1


Choisissons maintenant la norme suivante sur Rk : ∥x∥ := ∥P−1x∥∞. Majorons

∥Ax∥ = ∥P−1Ax∥∞ = ∥JP−1x∥∞ ≤ ∥J∥∞∥P−1x∥∞ = ∥J∥∞∥x∥. (1.70)

Or on sait d’après le cours d’analyse numérique matricielle que la norme ∞ d’une matrice M se calcule en sommant les modules
des coefficients en ligne ∥M∥∞ = maxi

∑
j |mi,j | donc ∥J∥∞ = maxj |ζj | dans le cas diagonalisable et ∥J∥∞ = 1 sinon et avec

(1.70) on obtient ∥Ax∥ ≤ ∥x∥ donc ∥A∥ ≤ 1. □

Considérons la matrice (où on a pris k = 3 pour alléger l’écriture)

A =

 0 1 0
0 0 1

−α0 −α1 −α2


Le polynôme caractéristique de A se calcule en développant suivant la dernière ligne :

−ζ 1 0
0 −ζ 1

−α0 −α1 −α2 − ζ
= −α0 − α1ζ − α2ζ

2 − ζ3 = −ρ(ζ).

Le polynôme caractéristique de la matrice A est précisément ρ(ζ). 15 Par hypothèse de stabilité (1.65) les valeurs propres de A
satisfont les conditions du lemme 2. Il existe donc une norme matricielle subordonnée à une norme telle que ∥A∥ ≤ 1. Ainsi de
la relation (1.69) on déduit

∥Yn∥ ≤ ∥An∥∥Y0∥ ≤ ∥A∥n∥Y0∥ ≤ ∥Y0∥.
Comme les normes sur Rk sont équivalentes on déduit qu’il existe une constante C > 0 telle que

∥Yn∥∞ ≤ C ∥Y0∥∞

ce qui donne exactement |yn| ≤ Cmax0≤i≤k−1 |yi| que soit n ∈ N.

Exemple. Les méthodes d’Adams sont toutes stables. En effet le polynôme ρ(ζ) = ζk − ζk−1 = ζk−1(1− ζ).
Exercice. Montrez que les méthodes de Nystrom et Milne-Simpson le sont également.

Précisons maintenant la notion de convergence pour les schémas multipas.

Définition 5 Soit T > 0 une durée fixée, une subdivision t0 < t1 < . . . < tN = t0 + T de pas constant h. Etant données k
valeurs de départ y0h, y1h, . . .y(k−1)h, on dit que le schéma (1.56) est convergent si on a maxn |y(tn)− yn| →h→0 0 lorsque les
k valeurs de départ vérifient y(ti)− yih →h→0 0, i = 0 . . . k − 1.
De plus, on dit que le schéma est convergent d’ordre p si l’erreur globale maxt0≤tn≤t0+T |y(tn)− yn| = O(hp) lorsque les valeurs
de départ vérifient y(ti)− yih = O(hp), i = 0 . . . k − 1.

Le résultat fondamental suivant est dû à Germund Dahlquist (1956). On a l’équivalence :

Théorème 3 Un schéma multipas est convergent si et seulement si il est stable et consistant. De plus si l’erreur de consistance
est O(hp+1), il est convergent d’ordre p.

Preuve. Montrons que la condition est suffisante. Nous donnons la preuve dans le cas des schémas explicites. Sans perte de
généralité, quitte à diviser tous les coefficients par αk on peut supposer que αk = 1. Nous supposons aussi pour simplifier que

y(t) est scalaire. Comme précédemment, on introduit alors le vecteur de Rk Yn :=


yn

yn+1

...
yn+k−1

 et la matrice k × k

A =



0 1 · · · 0

0 0 1
. . .

...
...

. . .
. . .

...
0 0 1

−α0 · · · · · · −αk−2 −αk−1

 (1.71)

15. De ce fait, la matrice A est appelée matrice compagnon du polynôme ρ(ζ).
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de sorte que le schéma multipas s’écrit alors

Yn+1 = AYn + hΦ(tn, Yn, h) avec Φ(tn, Yn, h) =

 0
...

βk−1fn+k−1 + βk−2fn+k−2 + ...+ β0fn

 . (1.72)

On procède ensuite de la même manière que dans le cas des méthodes à un pas. Le schéma est consistant donc la solution exacte
vérifie

y(tn+k) = −αk−1y(tn+k−1)− . . .− α0y(tn) + h (βk−1f(tn+k−1, y(tn+k−1)) + . . . β0f(tn, y(tn)) + ε(h).

ou ε(h) désigne l’erreur de consistance (1.57). Donc les vecteurs associés à la solution exacte Ye
n ≡


y(tn)

...
y(tn+k−2)
y(tn+k−1)

 vérifient,

pour un schéma d’ordre p :

Ye
n+1 = AYe

n + hΦ(tn,Y
e
n, h) +


0
0
...

ε(h))


︸ ︷︷ ︸

erreur de consistance

(1.73)

Puisque f est Lipschitzienne (de constante de Lipschitz L), on montre aisément que Φ aussi :
∥Φ(t,Y, h)−Φ(t,Z, h)∥ ≤ M∥Y − Z∥ ∀Y et Z vecteurs de Rk, pour h ≤ 1 et M = kmax0≤i≤k−1 |βi|L.
En soustrayant membre à membre (1.72) à (1.73), on obtient :

En+1 = AEn + h(Φ(t,Ye
n, h)−Φ(t,Yn, h)) +


0
0
...

ε(h)


Pour une norme sur Rk et la norme matricielle subordonnée, on peut majorer l’erreur globale ∥En∥ ≡ ∥Ye

n −Yn∥ :

∥En+1∥ ≤ (∥A∥+ hM)∥En∥+ ∥ε(h)∥. (1.74)
Comme dans la preuve de la proposition 4 on voit que le polynôme caractéristique de la matrice A est précisément ρ(ζ) =
ζk + αk−1ζ

k−1 + ...+ α0. Par hypothèse de consistance 1 est racine du polynôme caractéristique. Par hypothèse de stabilité les
valeurs propres de A sont toutes de module inférieur ou égal à un et celles qui sont de module un sont simples, on peut donc
appliquer le lemme 2 et choisir une norme sur Rk telle que ∥A∥ = 1.

On a ainsi démontré que la suite des erreurs globales vérifie

∥En+1∥ ≤ (1 + hM)∥En∥+ ∥ε(h)∥. (1.75)

On procède alors de la même manière que pour les méthodes à un pas en utilisant le lemme 1 où l’on doit tenir compte aussi
des erreurs qu’on peut faire sur les valeurs de démarrage mais vu (1.19) (terme θ0) cela est possible.

Réciproquement montrons que la convergence d’un schéma implique sa stabilité et sa consistance. Commençons par démontrer
la condition de stabilité. Pour cela considérons l’équation différentielle particulière : y′ = 0, avec la condition initiale y(0) = 0
dont l’unique solution est la solution y(t) ≡ 0. Supposons qu’il existe ζ racine du polynôme ρ telle que |ζ| > 1. On suppose qu’on
applique le schéma multipas avec un pas constant h > 0. Soient les valeurs de démarrage y0 = h, y1 = hζ, . . . yk−1 = hζk−1. La
suite yn = hζn est alors solution du schéma. Or yn = hζt/h n’est pas bornée quand h → 0 donc yn ne converge pas vers 0 bien
que y0 = h, y1 = hζ, . . . yk−1 = hζk−1 convergent bien vers 0 quand h → 0. Le schéma ne converge donc pas. Cela prouve que
toutes les racines de ρ sont de module inférieur ou égal à 1. Supposons maintenant qu’il existe ζ racine multiple du polynôme
ρ telle que |ζ| = 1. Soient les valeurs de démarrage y0 = 0, y1 =

√
h ζ, . . . yk−1 =

√
h (k − 1)ζk−1. La suite yn =

√
hnζn est

alors solution du schéma. Or yn = t√
h
ζt/h n’est pas bornée quand h → 0. Le schéma ne converge donc pas. Cela prouve que

toutes les racines multiples de ρ sont de module strictement inférieur à 1. La condition de stabilité (1.65) est donc nécessaire à
la convergence.

Pour montrer la consistance nous allons considéder successivement deux équations différentielles très simples. Tout d’abord
y′ = 0, y(0) = 1 dont la solution exacte est y(t) ≡ 1. Le schéma donne la relation de récurrence :

αkyn+k + αk−1yn+k−1 + ...+ α0yn = 0.

Le schéma étant convergent, pour chaque n on doit avoir yn → 1 quand h vers 0. En passant à la limite dans la relation, on
obtient

αk + αk−1 + ...+ α0 = 0

qui traduit précisément ρ(1) = 0.
Enfin considérons le problème de Cauchy y′ = 1, y(0) = 0 dont la solution exacte est y(t) = t. Choisissons un pas constant h.
Le schéma donne la relation de récurrence :

αkyn+k + αk−1yn+k−1 + ...+ α0yn = h(βk + βk−1 + ...+ β0).
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Prenons la suite yj = C jh et portons la suite dans la relation de récurrence.

C(αk(n+ k)h+ αk−1(n+ k − 1) + ...+ α0nh) = h(βk + βk−1 + ...+ β0) = hσ(1)

Cnh(αk + αk−1 + ...+ α0) + Ch(

k∑
j=0

jαj) = hσ(1)

Nous avons montré que ρ(1) = 0 donc il reste en simplifiant par h :

C(

k∑
j=0

jαj) = Cρ′(1) = σ(1).

Donc la suite yn = C nh est solution si on prend C = σ(1)
ρ′(1) qui est bien définie car 1 est racine simple de ρ comme le schéma est

stable. Donc yn = Ctn mais on doit avoir convergence de yn vers y(tn) = tn donc C = 1 donc ρ′(1) = σ(1) et on a bien prouvé
la consistance du schéma (1.59).

1.2.3 Notions sur les problèmes raides (stiff en anglais)
Les équations différentielles dites « raides » sont celles qui contiennent des second membres f(t, y) qui peuvent varier

brusquement en fonction de y. Cela signifie que la constante de Lipschitz L telle que |f(t, y)− f(t, z)| ≤ L|y − z| peut être très
grande devant l’unité.

On va traiter ici un exemple très élémentaire mais, on l’espère éclairant. Considérons l’équation différentielle y′(t) =
−50(y(t)− cos(t)) ≡ f(t, y(t)), y(0) = 0, où la constante de Lipschitz vaut 50 >> 1. Dans le code MATLAB qui suit, on a appliqué
à cette équation différentielle la méthode d’Euler (explicite), la méthode d’Euler implicite et la règle du trapèze implicite ou
schéma de Crank-Nicolson yn+1 = yn + hn

2
(f(tn, yn) + f(tn+1, yn+1)).

Au moyen de la méthode de la variation de constante on peut calculer la solution (exacte)

y(x) =
2500 cos(x) + 50 sin(x)− 2500e−50x

2501
;

il y a une transition assez “raide” de y(0) = 0 à y(x) ∼= cos(x) entre x = 0 et x ≲ 0.8. On a obtenu les résultats affichés dans la
figure qui suit en prenant des pas de temps h = 1.974/50 et h = 1.875/50 très voisins de 2/50.
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Euler explicite sur dy/dx=−50*(y−cos(x)), y(0)=0
Résultats avec deux pas et solution exacte
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Euler implicite sur dy/dx=−50*(y−cos(x)), y(0)=0
Résultats avec les deux mêmes pas et solution exacte
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Crank−Nicholson − implicite − sur dy/dx=−50*(y−cos(x)), y(0)=0
Résultats avec le plus grand pas et solution exacte

La méthode d’Euler explicite avec un pas constant h > 0 sur une équation différentielle y′(t) = f(t, y(t)), y(0) = y0 s’écrit :

yn+1 = yn + hf(nh, yn), n ≥ 0, (1.76)

et si l’équation différentielle est y′ = λy où λ est une constante (solution en eλty0) :

yn+1 = REE(λh)yn donc yn = (REE(λh))ny0 avec REE(z) = 1 + z. (1.77)

La solution numérique “n’explose pas” seulement si |R(λh)| ≤ 1 ce qui équivaut à −1 ≤ 1 + λh ≤ 1 donc à, si λ < 0, h ≤ 2
|λ| .

Dans l’exemple précédent on conçoit que la valeur de λ est −50, les pas adoptés sont trop proches du seuil h = 2
|λ| = 2/50 et

on voit des oscillations parasites.
La méthode d’Euler implicite avec un pas constant h > 0 sur une équation différentielle y′(t) = f(t, y(t)), y(0) = y0 s’écrit :

yn+1 = yn + hf((n+ 1)h, yn+1), n ≥ 0, (1.78)

et si l’équation différentielle est y′ = λy :

yn+1 = REI(λh)yn donc yn = (REI(λh))ny0 avec REI(z) =
1

1− z
, (1.79)

Pour λ < 0 et h > 0, REI(λh) = 1
1+|λ|h < 1 la solution numérique n’explose jamais et on constate de bons résultats ; il n’y

a plus d’oscillations parasites. Cependant la transition brusque entre t = 0 et t =≲ 0.8 n’est pas reproduite avec une grande
précision.

Avec la règle du trapèze, il n’y a plus d’oscillations parasites et le transition est mieux capturée parce que le schéma est
d’ordre 2 :

yn+1 = RCN (λh)yn donc yn = (RCN (λh))ny0 avec RCN (z) =
1 + z

2

1− z
2

. (1.80)

En effet pour λ < 0 et h > 0, RCN (λh) = 1−|λ|h/2
1+|λ|h/2 < 1.
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1.2.3.1 (⋆) Compléments sur la stabilité.
D’une manière générale l’application d’une méthode à un pas à l’équation différentielle y′ = λy se traduit en une récurrence

de la forme :

yn+1 = R(hλ)yn. (1.81)

Le cas où ℜe(λ) < 0 est le plus discriminant car la solution exacte y(t) = Cte exp(λt) doit tendre vers zéro très rapidement
donc, d’un point de vue comportement qualitatif, il est souhaitable que la solution numérique reste au moins bornée. Comme
yn+1k = R(λh) yn, il faut que R(λh) ≤ 1, et ce même lorsque le pas h n’est pas forcément assez petit pour que la solution
numérique soit une bonne approximation. Cela conduit à définir le domaine de stabilité du schéma S = {z ∈ C : |R(z)| ≤ 1}.
On dit qu’un schéma à un pas est A-stable (absolument stable) si C− ≡ {z ∈ C : ℜe(z) ≤ 0} ⊆ S. Ainsi avec un schéma
A-stable, pour ℜe(λ) < 0 tous les pas h donnent des résultats “corrects”. Le schéma d’Euler explicite n’est pas A-stable, par
contre les schémas d’Euler implicite et de Crank-Nicholson le sont. Il y a d’autres notions de stabilité comme la L-stabilité
qui est la A-stabilité avec en plus limz→∞ R(z) = 0. On peut montrer que les schémas de Runge-Kutta explicites ne sont pas
A-stables. Par contre il y a des méthodes de Runge-Kutta implicites A-stables et même L-stables et des extensions de ces
méthodes qui utilisent la dérivée ∂f

∂y
, appelées méthodes de type Rosenbrock sont souvent utilisées pour la résolution numérique

de ces problèmes raides.
La notion de A-stabilité pour les méthodes multipas αkyn+k +αk−1yn+k−1 + ...+α0yn = h(βkfn+k + ...+β0fn) s’introduit

de la manière suivante. On applique la méthode à une équation différentielle y′ = λy et cela conduit à considérer, avec µ = λh,
le polynôme (αk − µβk)ζ

k + ... + (α0 − µβ0) = 0 dont on note ζj(µ) les racines. Le domaine de stabilité de la méthode est

S = {µ∈ C; toutes les racines ζj(µ) satisfont |ζj(µ)| ≤ 1,
les racines multiples satisfaisant |ζj(µ)| < 1

} et la méthode est dite A-stable si C− ⊆ S. La seconde barrière de

Dahlquist dit qu’une méthode multipas A-stable est forcément d’ordre p ≤ 2. Enfin, si on définit, pour 0 < α < π
2
, la notion de

A(α)-stabilité par le fait qu’une méthode est dite A(α)-stable si Sα ≡ {µ∈ C; | arg(−µ)| < α, µ ̸= 0} ⊆ S, alors on peut établir
que les méthodes de différentiation rétrograde à k = 1, 2, ..., 6 étapes sont A(α)-stables avec les valeurs de α suivantes (on a
aussi {µ∈ C; ℜe(µ) < −D} ⊆ S avec les valeurs de D indiquées dans le tableau) :

k 1 2 3 4 5 6

α 90◦ 90◦ 86.03◦ 73.35◦ 51.84◦ 17.84◦

D 0 0 0.083 0.667 2.327 6.075

Pratiquement on peut déceler qu’un problème est raide par le fait qu’une méthode numérique “ordinaire” (Runge-Kutta explicite,
Adams) adaptative aboutit à de petits pas. Pour toutes ces considérations et des compléments, il faut se reporter à la bibliographie
et en particulier au livre E. Hairer, G. Wanner, 1996, Solving ordinary differential equations II : Stiff and Differential-Algebraic
problems : Springer-Verlag, Berlin.

1.2.3.2 Epilogue.
Terminons par quelques exemples. Voici les commandes MATLAB pour résoudre le problème proies prédateurs de Lokta

Volterra (r représente une population de lapins (rabbits en anglais) et f représente une population de renards (fox en anglais) ;
la solution est périodique, la période étant fonction des conditions initiales ; pour plus de détails voir le livre de Moler, exercice
7.15) :

dr
dt

= 2r − αrf
df
dt

= −f + αrf
r(0) = r0, f(0) = f0

(1.82)

les données étant α = 0.01, r0 = 300, f0 = 150 :
f=@(t,y) [2*y(1)-0.01*y(1)*y(2); -y(2)+0.01*y(1)*y(2)]
ode23(f,[0 20],[300 150])

La première instruction définit le système différentiel, la deuxième le résout et affiche automatiquement le résultat. Pour
conserver le résultat dans une structure afin de le reéchantillonner et par exemple le dessiner d’une autre façon on peut utiliser
les instructions :

sol=ode23(f,[0 20],[300 150])
xx=0:0.01:20; yy=deval(sol,xx); figure(2), plot(xx,yy(1,:),xx,yy(2,:))
Pour plus détails il faut se reporter à la documentation MATLAB. Il faut quand même signaler que les “solveurs” proposés

pour les problèmes ordinaires (non raides) sont ode23 (méthode de type Runge Kutta de précision modeste mais rapide), ode45
(méthode de type Runge Kutta précise) et ode113 (méthode d’Adams-Bashforth-Moulton PECE d’ordre variable plus précise
encore). De plus on peut modifier des options pour effectuer certaines opérations. Par exemple avec la fonction, écrite dans un
fichier nommé evenment.m :

function [valeur,fin,direction] = evenment(t,y)
valeur=y(1)-300; fin=1; direction=1;

les instructions :
options=odeset(’Events’,@evenment);
[t,y,te,ye] = ode23(f,[0 20],[300 150],options);
te
ye
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Figure 1.6 – Population proie-prédateurs.

fournissent la période 4.9981 (te(2)) qu’on peut aussi déterminer approximativement sur les graphiques.
Les “solveurs” proposés, adaptés aux problèmes raides sont ode15s, ode23s, ode23t et ode23tb et pour montrer l’intérêt de ces
codes, on peut proposer les manipulations suivantes, tiré du livre de Moler (paragraphe 7.9), avec une équation qui modélise la
combustion d’une allumette :

dy

dt
= y2 − y3, 0 ≤ t ≤ 2

δ
, y(0) = δ

delta=0.0001;
f=@(t,y) y^2-y^3
options=odeset(’RelTol’,1e-4);
figure(3)
ode45(f,[0 2/delta],delta,options);
pause
delta=0.0001;
figure(4)
ode23s(f,[0 2/delta],delta,options); On obtient apparemment les mêmes résultats.
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Figure 1.7 – Allumage d’une allumette, gauche : schéma standard, droite :un schéma pour équations raides.

Mais si on regarde de plus près, on constate que la simulation avec le solveur ode23s spécialement conçu pour les équations
raides nécessite seulement 120 pas de temps pour une durée de 20000 alors que le solveur générique ode45 a besoin de 12000 pas
de temps pour la même simulation ! De plus la solution calculée a tendance à osciller autour de la valeur finale 1 alors qu’elle
devrait se stabiliser à y = 1. De fait si on "zoome" sur la figure de gauche :
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Chapitre 2

Equations aux dérivées partielles.

2.1 Introduction.
Il existe une très grande variété d’EDP (équations aux dérivées partielles) : Maxwell, Navier-Stokes, chaleur, KdV, Schrö-

dinger. . .C’est un domaine très vaste des mathématiques pures et appliquées. Ce cours est une brève introduction élémentaire.
Notations : dans la suite u : (x, t) ∈ Rd ×R → u(x, t) ∈ R désigne une fonction numériques de plusieurs variables x, t, x variable
d’espace (pouvant être éventuellement multidimensionnelle), t est la variable de temps. On notera en général :

ut =
∂u

∂t
, ux =

∂u

∂x
, uxt =

∂2u

∂x∂t
, uxx =

∂2u

∂x2
, uxx =

∂2u

∂x2
, uxxx =

∂3u

∂x3

etc. . .

Définition 6 Une équation aux dérivées partielles (EDP) en la fonction scalaire u(x, y, z, t) est une équation de la forme

F (t, x, y, z, u, ux, uy, uz, ut . . . D
mu) = 0 (2.1)

où F := F (t, x,Du,D2u, . . . , Dmu) est une fonction de plusieurs variables.

L’ordre de l’EDP est l’ordre m maximum des dérivées apparaissant dans l’équation. On dit que u est solution (classique) de
l’EDP dans un domaine Q ⊂ Rd × R+ si u ∈ Cm(Q) et que u ainsi que ses dérivées partielles satisfont l’équation en tout point
de Q.

Les EDP sont utilisées pour modéliser une grande variété de phénomènes physiques, biologiques, . . .dans des domaines
scientifiques très divers. En général pour déterminer une solution, il faut également donner des conditions initiales u(·, t = 0),
des conditions limites au bord du domaine spatial. Comme la solution de l’EDP décrit en principe la solution d’un problème
concret, on souhaite de plus que des petites erreurs sur les données n’engendrent pas de grosses différences sur la solution u.
Etudier une EDP c’est donc trouver les bonnes données initiales et aux limites qui assurent

— l’existence de solutions à l’EDP,
— montrer qu’avec ces données la solution est unique dans une certaine classe de fonction,
— que la solution dépend continûment des données.

Si ces trois critères sont satisfaits, on dit que le problème est bien-posé.
Dans de très rares cas, nous pourrons trouver une expression analytique de u. Parfois, on pourra trouver une expression

sous forme intégrale (convolution), ou somme de série de Fourier par exemple.
Le plus souvent il faudra calculer une approximation de u par un schéma numérique, comme dans le cas des équations différen-
tielles.

Exemple. l’équation eikonale de l’optique
u2
x + u2

y = 1

une équation de transport
ut + a(x, t)ux = 0

l’équation des ondes
utt − c2uxx = 0

L’équation de la chaleur
ut − ν uxx = 0

L’équation de Poisson
uxx + uyy = f

L’équation de Burgers
ut + uux = 0

l’équation de Korteweg de Vries
ut + 6uux + uxxx = 0
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Une propriété qui simplifie grandement l’étude est la linéarité. On dit que l’edp est linéaire si u 7→ F (t, x, y, z, u, ux, uy, uz, ut . . . D
mu)

est linéaire. Dans ce cas u et ses dérivées apparaissent seulement à la puissance un et e les coefficients de u et ses dérivées dé-
pendent seulement des variables indépendantes x, y, . . . , t.

Exercice. Parmi les exemples précédents quelles sont les EDP linéaires ?
Lorsque l’EDP est linéaire, on peut l’écrire sous la forme Lu = g où L est une fonctionnelle linéaire définie sur un espace

de fonction approprié.

2.2 EDP linéaires du premier ordre.
L’EDP linéaire générale du premier ordre en les variables x, y s’écrit

a(x, y)ux + b(x, y)uy + c(x, y)u = g(x, y). (2.2)

L’edp (2.2) peut s’écrire Lu = g avec Lu = aux + buy + cu. La linéarité de l’edp permet d’ajouter des solutions : si Lu = g1 et
Lv = g2 alors

L(αu+ βv) = αg1 + βg2

pour des scalaires quelconques α et β. C’est le principe de superposition.

2.2.1 Cas des coefficients constants.
Commençons par étudier une équation linéaire simple. Soit c > 0 une constante.

ut + c ux = 0 (2.3)

Remarquons que ut + c ux = (c, 1) · ∇u où le gradient ∇u = (ux, ut). Il est alors naturel de considérer les droites d’équation
x = ct+ x0 sur lesquelles u est constante :

d

dt
{u(x0 + ct, t)} = c ux + ut = 0

Donc u(x0 + ct, t) = u(x0, 0). Nous pouvons alors énoncer le théorème.

Théorème 4 Soit f(x) une fonction C1 sur R. Il existe une unique solution C1 au problème de Cauchy

ut + c ux = 0, u(x, 0) = f(x). (2.4)

Elle est donnée explicitement par la formule u(x, t) = f(x− ct).

Nous allons voir que le problème est bien posé en étudiant la dépendance de la solution par rapport à la donnée initiale f .
Soient f(x) et g(x) deux données initiales et u(x, t), v(x, t) les solutions correspondantes. Par linéarité de l’EDP, on peut écrire

u(x, t)− v(x, t) = f(x− ct)− g(x− ct)

et cela implique
max
x,t

|u(x, t)− v(x, t)| = max
x,t

|f(x− ct)− g(x− ct)| = max
x

|f(x)− g(x)|

∥u− v∥L∞ ≤ ∥f − g∥L∞ .

On a bien une dépendance continue des solutions vis à vis de la donnée initiale (pour la norme infinie ici). Le problème est donc
bien posé.
Remarque. quelle que soit l’unité adoptée pour u, si x est une longueur et t un temps, c est homogène à une longueur/temps
donc à une vitesse. La grandeur c est appelée célérité ou vitesse de propagation. La solution u(x, t) est une onde ou un signal
qui se propage à vitesse c vers la droite lorsque c > 0, (resp. vers la gauche si c < 0). Les courbes x− ct = Cte sont appelées les
caractéristiques parce qu’elle portent l’information (la valeur) de u. Voir la figure 2.2.1. La méthode qui consiste à construire la
solution en analysant son comportement le long des courbes caractéristiques est appelée méthode des caractéristiques et permet
d’étudier de nombreuses EDP du premier ordre. □

2.2.2 Méthode des caractéristiques.
Reprenons l’équation de transport ut + c ux = 0 mais en ne supposant plus que la vitesse de propagation est constante.

Remarque. La vitesse c = c(x) peut dépendre de la position, lorsque par exemple le milieu modélisé n’est pas homogène. □

Considérons l’équation de transport linéaire suivante :

ut + c(x)ux = 0, u(x, 0) = f(x). (2.5)

Il est naturel d’introduire les courbes caractéristiques, définies par l’EDO

ξ̇ = c(ξ). (2.6)
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Figure 2.1 – courbes caractéristiques des EDP ut + cux = 0 (gauche) et ut + xux = 0 (droite).

Si la fonction c(x) est C1 on peut appliquer le théorème de Cauchy-Lipschitz et on est assuré de l’existence (locale au moins) de
courbes caractéristiques. Dans ce cas la fonction d’une variable v : t 7→ u(ξ(t), t) vérifie une ODE très simple : v̇ = ut+c(x)ux = 0
donc v(t) = v(0) est constante. Ce qui se traduit par u(ξ(t), t) = u(ξ(0), 0). Ainsi si la caractéristique est issue de ξ(0) = x0 à
t = 0 on a u(ξ(t), t) = f(x0).
Si on veut calculer u(x, t) en un point donné, il suffit donc de déterminer la courbe caractéristique passant par ce point (x, t)
et de remonter le temps pour trouver sa valeur en t = 0 que nous noterons x0 = p(x, t) et que nous appellerons le pied de la
caractéristique. Cela n’est pas toujours possible car l’existence de solution globale en temps n’est pas garantie, l’EDO n’étant
pas linéaire. Mais dans le cas où c’est possible, le théorème de Cauchy-Lipschitz garantit l’unicité de la courbe caractéristique
donc si p(x, t) existe, il est défini sans ambigüité. Dans ce cas, la solution du problème de Cauchy (2.5) s’exprime :

u(x, t) = f(p(x, t))

Nous pouvons énoncer le théorème.

Théorème 5 Soit c(x) une fonction C1 sur R. Soit t ≥ 0. On suppose qu’il est possible de remonter la caractéristique passant
par x, t jusqu’à un point p(x, t) sur l’axe des x. Alors il existe une unique solution C1 au problème de Cauchy (2.5), qui est
donnée par

u(x, t) = f(p(x, t)).

Etudions la dépendance de la solution par rapport à la donnée initiale. Soient f(x) et g(x) deux données initiales et u(x, t),
v(x, t) les solutions correspondantes, on peut écrire

u(x, t)− v(x, t) = f(p(x, t))− g(p(x, t))

et cela implique
max
x,t

|u(x, t)− v(x, t)| = max
x

|f(x)− g(x)|.

Le problème est donc bien posé
Exemple.

ut + xux = 0, u(x, 0) = f(x).

dans ce cas les caractéristiques vérifient ξ̇ = ξ donc ξ(t) = x0e
t. On trouve facilement le pied de chaque caractéristique :

p(x, t) = x e−t et la solution est donnée par u(x, t) = f(x e−t). Les caractéristiques sont représentées dans la figure 2.2.1.

2.2.3 Loi de conservation non linéaire : premières difficultés.

2.2.3.1 Principe d’une loi de conservation.
soit u(x, t) la densité d’une quantité (par exemple la masse linéique d’un fluide en kg ·m−1). La quantité totale (par exemple

la masse) présente dans le segment [a, b] à l’instant t est donc :∫ b

a

u(x, t) dx.

Si on sait par ailleurs que le flux de la quantité qui traverse le point x est donné par F (u(x, t)), comptée positivement lorsque
la quantité traverse dans le sens des x croissants, de la gauche vers la droite. F (u(x, t)) est par exemple la masse de fluide qui
traverse le point x par unité de temps, en kg · s−1). La conservation de la masse impose que

d

dt

{∫ b

a

u(x, t) dx

}
= F (u(a, t))− F (u(b, t)).

30



Remarquez que le flux entrant (resp. sortant) est bien F (u(a, t)) (resp. F (u(b, t)). En supposant que la fonction u(x, t) est C1,
on peut dériver sous l’intégrale : ∫ b

a

ut(x, t) dx = F (u(a, t))− F (u(b, t)).

On utilise ensuite le théorème fondamental du calcul infinitésimal :

F (u(a, t))− F (u(b, t)) = −
∫ b

a

F (u(x, t))xdx.

Ainsi ∫ b

a

ut(x, t) + F (u(x, t))x dx = 0.

Comme le segment [a, b] est quelconque, si la fonction u ainsi que la fonction F sont C1, cela impose que

ut + F (u)x = ut + F ′(u)ux = 0. (2.7)

L’EDP (2.7) est appelée une loi de conservation. C’est en géneral une EDP non linéaire.
Exemple. (Trafic routier.) Supposons que u(x, t) représente la densité de voiture au point x circulant sur une route de

gauche à droite. La vitesse à laquelle les véhicules circulent dépend évidemment de la densité de véhicules. Soit β la densité
maximale de véhicule. La vitesse est donnée par

k · (β − u)

où k est une constante de proportionnalité. Le flux de véhicule qui traverse au point x est alors :

F (u) = k u(β − u).

Pour simplifier prenons k = 1 dans la suite. Le flux maximal est atteint lorsque u = β/2. Si nous comparons avec l’EDP (2.5)
la célérité c dépend maintenant de la solution u :

c(u) = F ′(u).

Revenons au cas général. Utilisons à nouveau la méthode des caractéristiques. Ce sont les courbes solutions de l’EDO :

dξ

dt
= c(u(ξ, t)). (2.8)

Comme précédemment u est constante le long des caractéristiques.

d

dt
u(ξ(t), t) = ux

dξ

dt
+ ut = c(u)ux + ut = 0.

Notons ξ(t, x0) la courbe caractéristique issue du point (x0, 0) sur l’axe des x. Alors u(ξ(t, x0), t) = u(x0, 0). Revenant alors à
l’EDO (2.8), dont le second membre est en fait constant, puisque u(ξ(t), t) est constant. La courbe caractéristique est en fait la
droite :

x = ξ(t, x0) = x0 + c(u(x0, 0)) t.

En utilisant la condition initiale u(x0, 0) = f(x0),

ξ(t, x0) = x0 + c(f(x0)) t

Retournons à l’exemple du trafic routier. Dans ce cas c(u) = F ′(u) = β−2u. Remarquez que c(u) < 0 quand u > β/2. Attention
c(u) n’est pas la vitesse individuelle des véhicules, puisque les véhicules roulent dans le même sens de gauche à droite. c(u) est
une vitesse de propagation d’onde. Par exemple, quand les véhicules s’arrêtent à un feu, il y a une onde de densité croissante
qui remonte vers l’arrière de la file de véhicule. Pour fixer les idées, supposons que la densité initiale des véhicules est donnée
par :

f(x) = u(x, 0) =


0 si x ≤ 0

βx2(3− 2x) si 0 ≤ x ≤ 1
β si 1 ≤ x

Pour étudier l’évolution de la densité de véhicules, on doit résoudre l’EDP

ut + F (u)x = ut + c(u)ux = 0 u(x, 0) = f(x) (2.9)

avec c(u) = F ′(u) = β − 2u. La condition f(x) = β correspond à un bouchon, les voitures sont à l’arrêt. La route est vide pour
x ≤ 0 et dans la région de transition 0 ≤ x ≤ 1 la densité des voitures augmente de 0 à la capacité maximale β. La valeur
β/2 ets atteinte pour x = 1/2. On peut alors tracer les caractéristiques dans le plan x, t qui sont des droites de pente positive
si 0 ≤ x ≤ 1/2, de pente négative si 1/2 ≤ x ≤ 1, tandis que la caractéristique issue de x = 1/2 est verticale (on prend x en
abscisse et t en ordonnée). Les pentes de ces droites varient donc continûment entre β pour x ≤ 0 et −β pour x ≥ 1. Voir figure
2.2

Comme u est constante sur les caractéristiques, u = 0 sur la droite x = βt, u = β/2 sur la droite verticale x = 1/2 et
u = β sur la droite x = 1− βt. A l’instant précise t = 1/(2β) les caractéristiques se coupent au point (1/2, 1/(2β). En ce point
la densité n’est pas définie car elle devrait prendre 3 valeurs distinctes, ce n’est plus une fonction usuelle ! En fait la courbe
solution ne peut pas être prolongée au sens classique car pour t ≥ t⋆, où l’instant t⋆ ≤ 1/(2β) une discontinuité apparaît. Pour
mieux saisir le phénomène, on peut visualiser comment évolue le profil initial en fonction du temps sur la figure suivante 2.3.
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Figure 2.2 – caractéristiques de l’EDP ut + (β − 2u)ux, β = 1.5

On voir sur la figure 2.3 que le profil ne correspond plus à une fonction pour t = 0.4. Pour prolonger la solution au delà de
l’instant où les caractéristiques se croisent, il faut introduire une solution discontinue et définir la notion de« solution faible »
car la solution étant discontinue, la dérivée ux n’est plus définie au sens usuel. Il y a développement d’une singularité même si
la donnée initiale est lisse. Dans le cas présent la solution pour t ≥ t⋆ est représentée sur la figure 2.4. La solution correspond
à un « bouchon » qui n’évolue plus.

La théorie des lois de conservations non linéaire dépasse le cadre d’un cours de L3. Pour des compléments, vous pouvez
consulter l’ouvrage de référence de P. Lax [13].

Figure 2.3 – gauche : profil initial et direction d’évolution. droite : "solution" à t=0, t=0.1, t=0.14, t=0.4
(β = 1.5)
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Figure 2.4 – solution lisse à t = 0 et solution discontinue pour t ≥ t⋆.

2.2.4 Méthode des différences finies.

2.2.4.1 Principe de discrétisation.
Revenons sur les façons de discrétiser la dérivée d’une fonction g de classe C2.

Différence finies avant :
g′(x) =

g(x+ h)− g(x)

h
+O(h)

Différence finies arrière :
g′(x) =

g(x)− g(x− h)

h
+O(h)

Différence finies centrées :
g′(x) =

g(x+ h)− g(x− h)

2h
+O(h2)

et enfin pour la dérivée seconde

g′′(x) =
g(x+ h)− 2g(x) + g(x− h)

h2
+O(h2).

Soit c un réel constant positif pour fixer les idées. On considère de nouveau l’EDP

ut + c ux = 0. (2.10)

Appliquons ces discrétisations aux équations aux dérivées partielles. Comme il faut discrétiser des dérivées par rapport au temps
et aussi par rapport à la variable d’espace x, il faut introduire un pas de temps δt et aussi un pas d’espace δx. Pour j et n
entiers, on note xj = jδx et tn = nδt. Ainsi les (xj , tn) définissent une grille de points ou un maillage dans le plan (x, t). Comme
pour les EDO, on cherche à approcher u(xj , tn). On notera un

j ≈ u(xj , tn) la valeur approchée calculée par le schéma considéré.
En discrétisant ut et ux par les différences finies avant , on obtient le schéma explicite suivant :

un+1
j − un

j

δt
+ c

un
j+1 − un

j

δx
= 0.

Le schéma peut s’écrire ainsi :
un+1
j = (1 + r)un

j − r un
j+1.

où on a noté
r =

c δt

δx

appelé nombre de Courant. 1 Le stencil de calcul est donc

◦j,n+1

|
◦j,n ◦j+1,n

On calcule l’erreur de consistance du schéma comme pour les schémas d’EDO en portant une solution exacte de l’EDP (2.10)
dans le schéma numérique :

ϵ(δt, δx) := u(xj , t
n+1)− (1 + r)u(xj , t

n) + r u(xj+1, t
n).

1. Richard Courant, 1888-1972, fondateur du Courant Institute of Mathematical Sciences, NYU.
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On obtient)en effectuant des développements de Taylor (Cf TD) :

ϵ(δt, δx) = O(δt2) +O(δt · δx)

On suppose maintenant c > 0. Prenons la donnée initiale u(x, t = 0) = f(x) définie par

f(x) =


0 si x ≤ −1

x+ 1 si −1 ≤ x ≤ 0
1 si 0 ≤ x

Le schéma donne un
j = 1, ∀n ≥ 0, ∀j ≥ 0. Le schéma ne peut pas converger car u(xj , tn) = f(xj−ctn) = 0 quand xj ≤ ctn−1.

Le schéma ne va pas chercher l’information dans la bonne direction !

2.2.4.2 Décentrage amont ou « upwinding ».
Pour cette raison, on va utiliser une discrétisation spatiale « amont ». Lorsque c > 0, cela correspond à une différence finie

arrière :
ux(x, t) =

u(x, t)− u(x− δx, t)

δx
+O(δx).

Le schéma « amont » ou « upwind » s’écrit alors :

un+1
j − un

j

δt
+ c

un
j − un

j−1

δx
= 0.

Le schéma peut s’écrire ainsi :
un+1
j = r un

j−1 + (1− r)un
j . (2.11)

Le stencil de calcul est maintenant
◦j,n+1

|
◦j−1,n ◦j,n

L’erreur de consistance du schéma est encore

ϵ(δt, δx) = O(δt2) +O(δt · δx).

Cette fois le schéma va bien chercher l’information du bon côté. Cependant cela ne suffit pas. Regardons de plus près. Avec le
schéma amont (2.11) la valeur un

j depend des valeurs à t = 0 suivantes u0
j−n, u

0
j−(n−1), . . . u

0
j qui sont situées dans l’intervalle

[xj − nδx, xj ]. La valeur exacte u(xj , tn) devrait être u(xj − c tn, 0). Cependant si le nombre de Courant r > 1 alors x⋆ =
xj − c tn < xj − nδx = xj−n. Le domaine de dépendance du schéma u0

j−n, u
0
j−(n−1), . . . u

0
j ne contient pas x⋆. La solution

discrète un
j ne peut pas recevoir la bonne valeur car le schéma ne propage pas suffisamment pas vite l’information depuis

l’amont. En revanche si r = c δt
δx

≤ 1, le schéma a des chances de converger. La condition c δt
δx

≤ 1 est appelée condition CFL. 2

Remarque. Lorsque r = CFL < 1, on peut voir en particulier que un+1
j est une combinaison convexe de un

j−1 et un
j donc le

schéma vérifie le principe du maximum discret :
inf
j
u0
j ≤ un

j ≤ sup
j

u0
j

□

Quand CFL = c δt
δx

< 1, on peut montrer et nous admettrons dans ce cours que le schéma décentré amont est convergent
quand δt, δx → 0. L’erreur de consistance étant d’ordre 2, c’est un schéma d’ordre 1. Il n’est donc pas très précis, ainsi qu’on
le constate sur la figure 2.6.

2.2.4.3 Stabilité au sens de Von Neumann.
On peut essayer d’augmenter la précision en utilisant le schéma centré suivant.

un+1
j − un

j

δt
+ c

un
j+1 − un

j−1

2δx
= 0.

Le schéma s’écrit :
un+1
j = − r

2
un
j−1 + un

j +
r

2
un
j+1 (2.12)

Le domaine de dépendance du schéma est maintenant u0
j−n, u

0
j−(n−1), . . . u

0
j , u

0
j+1 . . . u

0
j+n et convient aussi bien pour c > 0 que

pour c < 0.
Si r < 1 le domaine de dépendance contient bien x⋆, cependant on constate sur la figure 2.6 que le schéma ne converge pas. On
va prouver qu’il est instable. Pour cela on prend la donnée initiale oscillante f(x) = exp(ikx). Le nombre k ∈ R est la fréquence
spatiale. Le schéma donne

un
j = G(k)nu0

j .

Le facteur d’amplification
G(k) = 1 + ir sin(kδx)

2. d’après un article célèbre de Courant-Friedrichs-Lewy.
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est de module 1 + r2 sin(kδx)2 strictement supérieur à 1 si 0 < kδx < π même si r est petit. Le schéma amplifie les oscillations
de façon non bornées. On dit que le schéma centré (2.12) est instable au sens de Von Neumann.
Pour le schéma amont (2.11), le facteur d’amplification

G(k) = 1− r + r exp(−ikδx).

Lorsque r ≤ 1, le module de G est inférieur à un car |G| ≤ (1 − r) + r = 1 donc le schéma amont est stable. Cela explique sa
convergence en vertu du théorème de Lax que nous admettrons : un schéma est convergent ssi il est stable et consistant.

2.2.4.4 D’autres schémas.
Il est possible de stabiliser le schéma centré en le modifiant légèrement. C’est le schéma de Lax-Friedrichs. On reprend la

même EDP d’advection linéaire (2.10), mais on ne suppose plus que c > 0. On considère le schéma explicite suivant :

un+1
j − 1

2
[un

j+1 + un
j−1]

δt
+ c

un
j+1 − un

j−1

2δx
= 0.

un+1
j = (

1

2
+

c

2ρ
)un

j−1 + (
1

2
− c

2ρ
)un

j+1.

où on a noté ρ = δx/δt. L’erreur de consistance du schéma est

ϵ(δt, δx) = O(δt2) +O(δx2)

Etudions la stabilité du schéma. Soit k ∈ R. On prend la donnée initiale f(x) = exp(ikx). Le nombre k correspond à une
fréquence spatiale. Le schéma donne

un
j = G(k)n · u0

j .

où le facteur d’amplification G(k) = ( 1
2
− c

2ρ
) exp(ikδx) + ( 1

2
+ c

2ρ
) exp(−ikδx).

On vérifie aisément que |G(k| ≤ 1 ssi −1 ≤ c/ρ ≤ 1. Lorsque cette condition appelée condition de Courant-Friedrichs-Lewy est
vérifiée, on dit que le schéma de Lax-Friedrichs est stable. Dans ce cas ∥un

· ∥∞ ≤ maxj |u0
j |. Le schéma est convergent et d’ordre

1.
Si on veut une schéma plus précis, on modifie encore le schéma de la façon suivante. Schéma de Lax-Wendroff. On reprend

la même EDP d’advection linéaire (2.10), où c ∈ R. On considère le schéma explicite suivant :

un+1
j − un

j

δt
+ c

un
j+1 − un

j−1

2δx
− 1

2
c2δt

un
j+1 − 2un

j + un
j−1

(δx)2
= 0.

Le schéma peut s’écrire ainsi :

un+1
j =

1

2
(r2 − r)un

j+1 + (1− r2)un
j +

1

2
(r2 + r)un

j−1.

où on a noté r = c δt/δx (appelé nombre de Courant) 3. On calcule de même l’erreur de consistance du schéma :

ϵ(δt, δx) = O(δt3) +O(δx3)

Etudions la stabilité du schéma. Soit k ∈ R. On prend la donnée initiale f(x) = exp(ikx). Le gain du schéma est : |G(k)| =
|1− r2 + 1

2
(r2 − r) exp(ik δx) + 1

2
(r2 + r) exp(−ik δx)|.

et on peut vérifier (Cf TD) que |G(k| ≤ 1 si −1 ≤ r ≤ 1. Lorsque cette condition, appelée condition de Courant-Friedrichs-Lewy,
est vérifiée, on dit que le schéma de Lax-Wendroff est stable. Il est donc convergent et d’ordre 2.

Cependant, comme les coefficients du schéma ne sont plus positifs, même lorsque −1 ≤ r ≤ 1 la propriété ∥un
· ∥∞ ≤ maxj |u0

j |
n’est plus vérifiée. On dit que le schéma n’est plus monotone. Des petites oscillations parasites apparaissent au voisinage des
discontinuités, cf figure 2.5.
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Figure 2.5 – Oscillations parasites avec le schéma de Lax-Wendroff.

On peut vérifier sur la figure 2.6 que le schéma centré diverge, que les schémas upwind et de Lax-Friedrichs convergent pour
un CFL < 1 mais sont d’ordre 1 seulement (pas très précis), et que le schéma de Lax-Wendroff, bien que plus précis, étant
d’ordre 2, peut présenter des petites oscillations parasites. On voit enfin sur la figure 2.7 que tous les schémas divergent lorsque
la CFL > 1.

3. Richard Courant, 1888-1972, fondateur du Courant Institute of Mathematical Sciences, NYU.
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Figure 2.6 – Comparaison des différents schémas explicites.
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Figure 2.7 – Divergence des schémas lorsque CFL > 1.

2.3 Equations de diffusion.

2.3.1 Obtention de l’équation de la chaleur.
Soit u(x, t) la température au point x à l’instant t dans un milieu unidimensionnel pour simplifier, par exemple une tige.

La quantité totale de chaleur emmagasinée dans le segment [a, b] à l’instant t est donc :∫ b

a

ρc u(x, t) dx

où ρ désigne la densité du milieu en kg ·m−1 et c sa capacité calorifique en J · kg−1K−1.
Soit F (u(x, t)) le flux de chaleur qui traverse le point x, compté positivement lorsque la quantité traverse dans le sens des

x croissants, de la gauche vers la droite. F (u(x, t)) en J · s−1). La conservation de chaleur impose que

d

dt

{∫ b

a

ρc u(x, t) dx

}
= F (u(a, t))− F (u(b, t)).

Remarquez que le flux entrant (resp. sortant) est bien F (u(a, t)) (resp. F (u(b, t)). En supposant que la fonction u(x, t) est C1,
on peut dériver sous l’intégrale : ∫ b

a

ρc ut(x, t) dx = F (u(a, t))− F (u(b, t)).
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On utilise ensuite le théorème fondamental du calcul infinitésimal :

F (u(a, t))− F (u(b, t)) = −
∫ b

a

F (u(x, t))xdx.

Ainsi ∫ b

a

ρc ut(x, t) + F (u(x, t))x dx = 0.

Comme le segment [a, b] est quelconque, si la fonction u ainsi que la fonction F sont C1, cela impose que

ρc ut + F (u)x = 0. (2.13)

Maintenant la loi de Fourier-Fick dit que le flux de chaleur traversant x est donné par

F (u) = −kux

où k est la conductivité thermique du milieu en J ·m · s−1 ·K−1. Ce principe exprime que la chaleur va des zones chaudes vers
les zones froides et que le flux de chaleur est proportionnel au gradient de température. En portant l’expression de F (u) dans
(2.13) on obtient

ut − µuxx = 0. (2.14)

où la constant µ = k
ρc

> 0 est appelée coefficient de diffusion. Cette équation est appelée équation de la chaleur ou équation de
diffusion. C’est une équation linéaire et elle vérifie donc le principe de supeposition(Cf section 2.2). Comme il y a une dérivée
par rapport au temps, c’est une équation d’évolution. Il faut donc prescrire une donnée initiale

u(x, t = 0) = f(x).

2.3.2 (⋆) Solution par convolution avec noyau gaussien sur l’espace entier.

2.3.3 (⋆) Solution par série de Fourier en domaine borné.
Cf TD 6 Effet régularisant et convergence vers l’état stationnaire.

2.3.4 Discrétisation par différences finies.
Comme dans la section 2.2.4.1, Introduisons un pas de temps δt et aussi un pas d’espace δx. Pour j et n entiers, on

note xj = jδx et tn = nδt. Ainsi les (xj , tn) définissent une grille de points ou un maillage dans le plan (x, t). On discrétise
naturellement

ut(x, t) =
u(x, t+ δt)− u(x, t)

δt
+O(δt). et uxx(x, t) =

u(x+ δx, t)− 2u(x, t) + u(x− δx, t)

δx2
+O(δx2).

On obtient le schéma suivant :
un+1
j = r un

j−1 + (1− 2r)un
j + r un

j+1. (2.15)

où un
j désigne a valeur approchée de u(xj , tn) calculée par le schéma et

r =
µ δt

δx2
.

L’erreur de consistance du schéma se calcule aisément (Cf TD) :

ϵ(δt, δx) = O(δt2) +O(δt · δx2).

C’est un schéma explicite : pour calculer les valeurs un+1
j au temps tn+1, il suffit de connaître les valeurs de un

j au temps
précédent tn. Le stencil de calcul est très simple :

◦j,n+1

|
◦j−1,n ◦j,n ◦j+1,n

Remarque. Lorsque r ≤ 1/2, on peut voir en particulier que un+1
j est une moyenne pondérée des valeurs un

j−1 un
j et un

j=1 donc
le schéma vérifie le principe du maximum discret :

inf
j
u0
j ≤ un

j ≤ sup
j

u0
j

□

Nous allons voir que la condition

r =
µ δt

δx2
<

1

2
est en fait une condition nécessaire et suffisante de stabilité. Etudions la stabilité du schéma par la méthode de Von Neumann.
Pour cela on prend la donnée initiale f(x) = exp(ikx). Le nombre k est la fréquence spatiale. Le schéma donne

un
j = G(k)nu0

j
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où le facteur d’amplification de la fréquence k est donné par le nombre réel

G(k) = 1− 2r + 2r cos kδx = 1− 4r sin2(kδx/2).

On a évidemment 1− 4r ≤ G(k) ≤ 1. Mais pour garantir |G(k)| ≤ 1 pour toute fréquence k il faut et il suffit que

r =
µ δt

δx2
≤ 1/2. (2.16)

C’est la condition de stabilité du schéma explicite (2.15).
Remarque. Cette condition est beaucoup plus exigeante que la condition CFL de l’équation de transport vue à la section 2.11.
En effet elle impose un pas de temps δt de l’ordre de δx2, ce qui demande un pas de temps très petit. Cela peut rendre les
calculs numériques trop coûteux. 4 □

Sous la condition de stabilité 2.16 le schéma (2.15) est stable et consistant, le théorème de Lax permet d’affirmer qu’il est
convergent. Comme l’erreur de consistance est en O(δt2 + δt · δx2) = O(δt · (δt+ δx2)), on peut démontrer le schéma est d’ordre
1 en temps et d’ordre 2 en espace.
Pour éviter la condition de stabilité (2.16), on est conduit à utiliser des schémas implicites. Pour cela on estime

uxx(xj , tn+1) =
un+1
j−1 − 2un+1

j + un+1
j+1

(δx)2
+O(δx2),

ut(xj , tn+1) =
un+1
j − un

j

δt
+O(δt).

Ce qui revient à estimer ut par une différence finie arrière.
On obtient le schéma :

−r un+1
j−1 + (1 + 2r)un+1

j − r un+1
j+1 = un

j (2.17)

Le stencil de calcul est alors :
◦j−1,n+1 ◦j,n+1 ◦j+1,n+1

|
◦j,n

On montre aisément que l’erreur de consistance est encore

ϵ(δt, δx) = O(δt2) +O(δt · δx2).

Il faut alors résoudre une système linéaire tridiagonal pour calculer un+1
j . Prenons un exemple pour fixer les idées. Considérons

un maillage de 5 points xj , j = 0, . . . , 4. On se donne les valeurs initiales u0
j , j = 0, . . . , 4. Le schéma donne le système linéaire à

5 inconnues u1
j , j = 0, . . . , 4.

−ru1
0 +(1 + 2r)u1

1 −ru1
2 = u0

1

−ru1
1 +(1 + 2r)u1

2 −ru1
3 = u0

2

−ru1
2 +(1 + 2r)u1

3 −ru1
4 = u0

3

C’est un système sous-déterminé. Une façon d’avoir le même nombre d’inconnues que d’équations est d’imposer des condi-
tions limites en x0 et x4. Il y a de nombreuses possibilités. On peut prescrire la valeur des inconnues au bord (condition de
Dirichlet), ou bien imposer les flux au bord (condition de Neumann). La façon la plus simple et neutre est d’imposer une
condition limite périodique : un

−1 = un
4 , un

5 = un
0 . On obtient alors le système carré :

+(1 + 2r)u1
0 −ru1

1 −ru1
4 = u0

0

−ru1
0 +(1 + 2r)u1

1 −ru1
2 = u0

1

−ru1
1 +(1 + 2r)u1

2 −ru1
3 = u0

2

−ru1
2 +(1 + 2r)u1

3 −ru1
4 = u0

3

−ru1
0 −ru1

3 +(1 + 2r)u1
4 = u0

4

Dans le cas général, si on considère un maillage de N +1 points xj , j = 0, . . . , N. Si on note Un le vecteur(un
0 , u

n
1 , . . . u

n
N )T ,

le schéma se traduit par le système linéaire suivant : AUn+1 = Un avec la matrice tridiagonale périodique

A =



1 + 2r −r · · · −r

−r 1 + 2r −r
. . .

...
...

. . .
. . .

. . .
...

−r 1 + 2r −r
−r · · · · · · −r 1 + 2r

 (2.18)

On montre aisément que la matrice A est symétrique définie positive :

xTAx =
∑

1≤i<n

(1 + 2r)x2
i − 2rxi xi+1 + (1 + 2r)x2

n − 2rxnx1

4. surtout en dimension supérieure à un.
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comme −x2
i − x2

i+1 ≤ 2xi xi+1 ≤ x2
i + x2

i+1 on voit que

(1 + 4r)(x2
1 + . . . x2

n) ≥ xTAx ≥ x2
1 + . . . x2

n.

La matrice A est donc inversible et bien conditionnée et on peut calculer Un+1 en résolvant le système linéaire AUn+1 = Un à
chaque itération.
Remarque. La matrice A est creuse et possède une structure bande ce qui facilite la résolution du système. □

On peut enfin étudier la stabilité du schéma par la méthode de Von Neumann. Pour cela prenons u0
j = exp(ikxj). Montrons

par récurrence sur n que un
j = G(k)n exp(ikxj). Pour n = 0 c’est vrai. Supposons HRn et vérifions HRn+1. Le schéma se traduit

par l’égalité :

−rG(k)n+1 exp(ikxj) exp(−ikδx) + (1 + 2r)G(k)n+1 exp(ikxj)− rG(k)n+1 exp(ikxj) exp(ikδx) = G(k)n exp(ikxj).

Simplifions par G(k)n exp(ikxj) il vient :

−rG(k) exp(−ikδx) + (1 + 2r)G(k)− rG(k) exp(ikδx) = 1.

Cela donne
G(k)(1 + 2r)− r(exp(ikδx) + exp(−ikδx) = 1

G(k) =
1

1 + 2r(1− cos(kδx))
.

Avec l’identité 1− cos(kδx) = 2 sin2(kδx/2) on obtient

G(k) =
1

1 + 4r sin2(kδx/2)
≤ 1 ∀k.

On en déduit que ce schéma est inconditionnellement stable, il n’y plus de restriction du type (2.16) sur les pas de temps et
d’espace.

Le schéma implicite est encore consistant et l’erreur de consistance est du même ordre que celle du schéma explicite. Etant
stable et consistant, il est convergent et c’est un schéma d’ordre un en temps.

Pour obtenir un schéma d’ordre deux, on utilise comme pour les équations différentielles ordinaires, un schéma des trapèzes
Cf section 1.2.1.3. Cela revient à effectuer la moyenne des deux schémas explicites et implicites :

un+1
j − un

j

δt
= µ

1

2

{
un
j−1 − 2un

j + un
j+1

δx2
+

un+1
j−1 − 2un+1

j + un+1
j+1

δx2.

}
Le schéma s’écrit alors :

−r un+1
j−1 + (1 + 2r)un+1

j − r un+1
j+1 = r un

j−1 + (1− 2r)un
j + r un

j+1. (2.19)

Attention, le nombre r vaut maintenant

r =
1

2

µδt

δx2
.

Le stencil de calcul est alors :
◦j−1,n+1 ◦j,n+1 ◦j+1,n+1

|
◦j−1,n ◦j,n ◦j+1,n

C’est le schéma de Crank-Nicolson, dont on calcule aisément l’erreur de consistance :

ϵ(δt, δx) = O(δt3) +O(δt · δx2) = O(δt · (δt2 + δx2)).

On montre aisément par la méthode de Von Neumann qu’il est inconditionnellement stable (exercice). C’est un schéma d’ordre
deux en temps et en espace.

Là encore, il faut prescrire des conditions limites. Si on choisit par exemple des conditions limites périodiques, Dans le cas
général, si on considère un maillage de N + 1 points xj , j = 0, . . . , N. Si on note Un le vecteur(un

0 , u
n
1 , . . . u

n
N )T , le schéma se

traduit par le système linéaire suivant : AUn+1 = BUn avec A et B les matrices tridiagonales périodiques

A =



1 + 2r −r · · · −r

−r 1 + 2r −r
. . .

...
...

. . .
. . .

. . .
...

−r 1 + 2r −r
−r · · · · · · −r 1 + 2r

 B =



1− 2r r · · · r

r 1− 2r r
. . .

...
...

. . .
. . .

. . .
...

r 1− 2r r
r · · · · · · r 1− 2r

 (2.20)

On a déjà prouvé que A était inversible donc le schéma est bien posé.
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2.3.5 Cas d’équilibre en dimension un.
Abordons maintenant un dernier type d’équation aux dérivéees partielles, correspondant aux phénomènes d’équilibre.

Lorsque t → +∞, on constate que la température u(x, t) converge vers un état stationnaire indépendant de t. On note en-
core u(x) l’état stationnaire d’équilibre thermique. On a évidemment ut = 0 donc u(x) est solution de l’équation différentielle
ordinaire :

−µ
d2u

dx2
= 0

(avec des conditions limites convenables en domaine borné). Si on ajoute une source de chaleur, disons f(x) l’équation devient

−µ
d2u

dx2
= f.

Pour fixer les idées, supposons qu’on s’intéresse à l’équilibre thermique d’un barreau homogène 0 < x < L. On prescrit la
température des deux extrémités u(x = 0) = ug, u(x = L) = ud. La température à l’équilibre est solution du problème aux
limites :

−µ
d2u

dx2
(x) = f(x), 0 < x < L.

u(x = 0) = ug, u(x = L) = ud.

On discrétise ce problème par la méthode des différences finies (quitte à changer f on peut prendre µ = 1). On note h = δx = L/N
et on definit la subdivision 0 = x0 < x1 < x2 < . . . xN < xN+1 = L. On pose uj = u(xj) et fj = f(xj). On utilise les différences
finies centrées pour discrétiser la dérivée seconde et on obtient

−uj−1 + 2uj − uj+1

h2
= fj . (2.21)

On obtient encore un système tridiagonal symétrique défini positif AU = F en les inconnues U = (u1, u2, . . . , uN )T et de second
membre F = (f1 +

1
h2 ug, u2, . . . , fN + 1

h2 ud)
T où la matrice est

A =
1

h2



2 −1 0 · · · 0

−1 2 −1
. . .

...
...

. . .
. . .

. . .
...

−1 2 −1
0 · · · 0 −1 2

 (2.22)

2.3.6 En dimension supérieure, équation de Poisson.
Si on s’intéresse maintenant à l’équilibre thermique d’un carré homogène Ω =]0, L[×]0, L[ on est conduit au problème au

limite suivant :

−µ
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = f(x, y), (x, y) ∈ Ω,

u|∂Ω = ub (x, y) ∈ ∂Ω.

C’est l’équation de Poisson qui fait intervenit l’opérateur laplacien

∆u =
∂2u

∂x2
+

∂2u

∂y2
.

Les inconnues ui,j = u(xi, yj) sont définies sur la grille de points (ih, jh) où le pas h := 1/(N + 1) On discrétise alors cette
équation aisément par la méthode des différences finies et on obtient le célèbre schéma à 5 points,

−ui,j−1 − ui−1,j + 4ui,j − ui+1,j − ui,j+1

h2
= fj .

dont le stencil de calcul est :
◦N
|

◦O ◦i,j ◦E
|
◦S

Où on a utilisé les 4 points cardinaux pour désigner (i± 1, j ± 1) les 4 points voisins de (i, j).

2.4 (⋆) Epilogue : classification.
Nous avons vu ainsi trois types très différents d’équations aux dérivées partielles.
— L’équation de transport :

ut + cux = 0,

— L’équation de diffusion :
ut − µuxx = 0,
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— L’équation de Laplace (ou de Poisson)
uxx + uyy = 0.

Plus généralement considérons une EDP du second ordre linéaire à coefficients constants réels.

auxx + 2buxy + cuyy + dux + euy + fu = 0. (2.23)

où les réels (a, b, c) ̸= (0, 0, 0). Cherchons des solutions sous forme exp (xξ + yη). Injectons cette expression dans l’EDP, on
obtient l’équation caractéristique :

aξ2 + 2bξη + cη2 + (dξ + eη) + f = 0.

C’est l’équation d’une conique dans le plan (ξ, η). D’après la théorie des formes quadratiques on connaît la nature de la conique
en étudiant la forme quadratique

aξ2 + 2bξη + cη2 = (ξ, η)

(
a b
b c

)(
ξ

η

)
Lorsque ac − b2 > 0 on a l’équation d’une ellipse, Lorsque ac − b2 = 0 on a l’équation d’une parabole, Lorsque ac − b2 < 0
on a l’équation d’une hyperbole. Pour cette raison, lorsque ac − b2 > 0, (resp. ac − b2 = 0, ac − b2 < 0) on dit que l’EDP est
elliptique,(resp. parabolique, hyperbolique.) Nous allons montrer qu’avec un changement de variable affine on peut se ramener
à trois formes canoniques d’EDP. La matrice

A =

(
a b
b c

)
est symétrique réelle, elle est donc diagonalisable dans une base orthonormale

P =

(
α γ
β δ

)
Cela se traduit par

A = P

(
λ 0
0 µ

)
PT

où λ et µ sont les valeurs propres de A. Posons maintenant :

X = αx+ βy Y = γx+ δy.

U(X,Y ) = u(x, y).

Par la règle de différentiation composée :

∂

∂x
=

∂

∂X

∂X

∂x
+

∂

∂Y

∂Y

∂x
,

∂

∂y
=

∂

∂X

∂X

∂y
+

∂

∂Y

∂Y

∂y

Ce qui donne
∂

∂x
= α

∂

∂X
+ γ

∂

∂Y
,

∂

∂y
= β

∂

∂X
+ δ

∂

∂Y
.

On calcule alors
uxx = α2 UXX + 2αγ UXY + γ2 UY Y ,

uyy = β2 UXX + 2βδ UXY + δ2 UY Y ,

uxy = αβ UXX + (αδ + βγ)UXY + γδ UY Y .

L’EDP (2.23) devient dans les nouvelles coordonnées

ã UXX + 2b̃ UXY + c̃ UY Y + d̃ UX + ẽ UY + f̃ U = 0.

Considérons les termes du second ordre.
ã = aα2 + 2bαβ + cβ2,

b̃ = aαγ + 2b(αδ + βγ) + 2cβδ,

c̃ = aγ2 + 2bγδ + cδ2.

On reconnaît

Ã =

(
ã b̃

b̃ c̃

)
=

(
α β
γ δ

)(
a b
b c

)(
α γ
β δ

)
La matrice

Ã = PTAP =

(
λ 0
0 µ

)
.

Dans les nouvelles variables, l’équation (2.23) s’écrit donc simplement

λUXX + µUY Y + termes d’ordres inférieurs = 0

Il suffit alors d’effectuer un dernier scaling ou changement d’échelle pour se ramener aux trois formes canoniques ( on revient
aux notations usuelles pour simplifier)

— elliptique si ac− b2 > 0,
uxx + uyy + termes d’ordres inférieurs = 0,
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— parabolique si ac− b2 = 0,
uxx + termes d’ordres inférieurs = 0,

— hyperbolique si ac− b2 < 0,
uxx − uyy + termes d’ordres inférieurs = 0,

Le cas elliptique correspond à l’équation de Laplace, le cas parabolique correspond à l’équation de diffusion de la chaleur,
le cas

uxx − uyy = 0

correspond à l’équation des ondes ou des cordes vibrantes. Cette dernière équation est peut être écrite sous forme d’une
système de deux équations de transport :

ux − uy = v
vx + vy = 0.

Cette classification est cependant insuffisante pour traiter tous les types d’EDP, par exemple les EDP dispersives (Schrödinger,
KdV) ne rentrent pas dans ce cadre. Il n’y pas de théorie générale des EDP, c’est ce qui fait la richesse fascinante de ce domaine.

42



Bibliographie

[1] Gilbert Strang, Introduction to applied mathematics, Wellesley-Cambridge press, 1986.
[2] H.R. Schwarz, Numerical Analysis, A comprehensive introduction, Wiley, 1989.
[3] Cleve Moler, Numerical computing with Matlab, http://www.mathworks.com/moler/

[4] Le Mathematica computational knowledge engine http://www.wolframalpha.com/

[5] 3BLUE1BROWN SERIES Saison 4 Episode 1 Differential equations, studying the unsolvable

https://youtu.be/p_di4Zn4wz4

[6] Arieh Iserles, A First course in the numerical analysis of differential equations, Cambridge University press, 2009.
[7] M. Crouzeix, A.L. Mignot, Analyse numérique des équations différentielles : Masson, Paris, 1984.
[8] M. Crouzeix, A.L. Mignot, Exercice d’analyse numérique des équations différentielles : Masson, Paris, 1986.
[9] J.P. Demailly, Analyse numérique et équations différentielles : EDP Sciences, Grenoble, 1991.

[10] E. Hairer, S.P. Norsett, G. Wanner, Solving Ordinary Differential Equations I : Nonstiff Problems, Springer, Berlin, 2009.
[11] N.J. Higham, Accuracy and stability of numerical algorithms : Siam, Philadelphia, 1996.
[12] Jeffery Cooper, Introduction to Partial Differential Equations with Matlab, Birkhäuser, 1998.
[13] Peter D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM Regional

Conference Series in Applied Mathematics, 11, 1972.

43


	Motivations
	Résolution de systèmes d'équations différentielles ordinaires.
	Le problème de Cauchy pour les systèmes d'équations différentielles ordinaires
	Introduction aux méthodes numériques de résolution d'équations différentielles.
	Les méthodes à un pas
	Erreurs de consistance (locales) et erreurs globales 
	Convergence de la méthode d'Euler et des méthodes à un pas consistantes.
	Les premières méthode de Runge-Kutta
	un schéma d'ordre 3: le schéma de Heun
	Méthode de Runge-Kutta d'ordre 4.
	() Notions sur les méthodes de Runge-Kutta plus générales.
	() Notions sur les estimations d'erreurs utilisées dans les codes adaptatifs

	Les méthodes multipas
	Méthodes d'Adams et de différentiation rétrograde (BDF).
	Un exemple d'instabilité
	Notions sur le résultat général

	 Notions sur les problèmes raides (stiff en anglais)
	() Compléments sur la stabilité.
	Epilogue.



	Equations aux dérivées partielles.
	Introduction.
	EDP linéaires du premier ordre. 
	Cas des coefficients constants.
	Méthode des caractéristiques.
	Loi de conservation non linéaire: premières difficultés.
	Principe d'une loi de conservation.

	Méthode des différences finies.
	Principe de discrétisation.
	Décentrage amont ou « upwinding ».
	Stabilité au sens de Von Neumann.
	D'autres schémas.


	Equations de diffusion.
	Obtention de l'équation de la chaleur.
	() Solution par convolution avec noyau gaussien sur l'espace entier.
	() Solution par série de Fourier en domaine borné. 
	Discrétisation par différences finies.
	Cas d'équilibre en dimension un.
	En dimension supérieure, équation de Poisson.

	() Epilogue: classification.


