Université Montpellier II - L2 - HLMA312

Tous documents, calculatrices, portables interdits

Questions de cours

- 1. Donner la définition d'une série de fonctions normalement convergente.
- 2. En utilisant le critère de Cauchy uniforme, démontrer qu'une série de fonctions normalement convergente est uniformément convergente.

Exercice Nature de la série de terme géneral u_n lorsque :

- 1. $u_n = \frac{1+\sqrt{n}}{1+n\sqrt{n}}$
- 2. $u_n = \frac{(e^n)}{n^{2n}}$.
- 3. $u_n = (-1)^n ln(1+n)$.
- 4. $u_n = \frac{n^{3/2} + in}{n^3}$ où i est un nombre complexe tel que $i^2 = -1$.

Exercice On considère la suite de fonctions f_n définie sur \mathbb{R} par

$$f_n(x) = n^2(1 - \cos(x/n))$$

.

- 1. Etudier la convergence simple de f_n sur \mathbb{R} , on notera f 1a limite simple.
- 2. Dresser le tableau de variation de $f-f_n$ sur \mathbb{R} . On pourra utilser sans démonstration le fait pour $x \geq 0$, $sin(x) \leq x$.
- 3. Montrer que la convergence est uniforme sur tout compact de \mathbb{R} .
- 4. La convergence est-elle uniforme sur \mathbb{R} ?

Exercice On considère la suite de fonctions définie sur \mathbb{R} par $u_n(x) = n^2 e^{-nx}$ et la série de fonctions $S(x) = \sum_{n=0}^{\infty} u_n(x)$.

- 1. Montrer, par exemple par un changement de variable, que l'étude de la convergnce de S revient à l'étude de la convergence de la série entière $T(z) = \sum_{n>0} n^2 z^n$.
- 2. Donner le rayon de convergence de T.
- 3. En déduire l'ensemble I des réels x tels que S converge. Montrer que la convergence est uniforme sur tout compact de I.
- 4. Montrer que pour tout x > 0, $\int_1^x S(u) du$ existe et exprimer cette intégrale sous forme d'une série. On note $F(x) = \int_1^x S(u) du$.
- 5. De la même manière, montrer que $G(x)=\int_1^x F(u)du$ existe et exprimer cette intégrale sous forme d'une série.
- 6. Calculer explicitement G(x), en déduire explicitement F(x), puis S(x).

Exercice On considère la fonction $f(\theta)$ définie sur \mathbb{R} , 2π périodique et qui vaut θ sur $[0, 2\pi[$.

- 1. Tracer le graphe de f sur $[-3\pi, 3\pi]$.
- 2. Déterminer les coefficients de Fourier de f. Donner l'expression de sa série de Fourier S(f).
- 3. A-on S(f) = f?
- 4. Calculer $\sum_{n\geq 0} \frac{(-1)^n}{(2n+1)}$ et $\sum_{n\geq 0} \frac{1}{n^2}$.