E P S CONTROL OF THE STATE OF T

HAX705X

FACULTÉ DES SCIENCE

REMARQUE SUR LES ESPACES DE BANACH RÉFLEXIFS

On rappelle un résultat important.

Théorème : Soit E un espace de Banach réflexif. Alors toute suite bornée de E admet une sous-suite faiblement convergente.

La preuve de ce résultat utilise deux résultats auxilliaires :

Proposition 1 : Soit E un espace de Banach réflexif et F un sous-espace vectoriel fermé. Alors F est réflexif.

Proposition 2 : Soit E un espace de Banach réflexif. Alors E est séparable si et seulement si E^* est séparable.

La preuve de la proposition 1 se trouve dans les notes du cours (voir section 4.3).

On se propose de donner une preuve de la proposition 2. Pour cela il suffit de montrer l'implication

$$E^*$$
 séparable \Longrightarrow E séparable,

car elle induit l'implication $E = (E^*)^*$ séparable $\implies E^*$ séparable.

Soit $(f_k)_{k\in\mathbb{N}}$ une suite dense dans E^* . Pour tout $k\in\mathbb{N}$, il existe $x_k\in E$ tel que $||x_k||=1$ et $f_k(x_k)=||f_k||$ (c'est une conséquence de la réflexivité). Montrons que $F:=\mathrm{Vect}_{\mathbb{Q}}(x_k,k\in\mathbb{N})$ est dense dans E: cela terminera notre preuve car F est dénombrable.

Supposons le contraire : l'adhérence \overline{F} est un sous-espace vectoriel distinct de E. D'après le théorème de Hahn-Banach, il existe $f \in E^*$ non nul tel que f(x) = 0, $\forall x \in \overline{F}$. Comme $(f_k)_{k \in \mathbb{N}}$ une suite dense dans E^* , il existe une sous-suite $(f_{\varphi(k)})_{k \in \mathbb{N}}$ qui converge vers f.

Sachant que $f(x_n) = 0, \forall n \in \mathbb{N}$, on obtient

$$||f_{\varphi(k)}|| = |f_k(x_{\varphi(k)}) - f(x_{\varphi(k)}) \le ||f_k - f||, \quad \forall k \in \mathbb{N}.$$

Cela implique que $||f|| = \lim_{k \to \infty} ||f_{\varphi(k)}|| = 0$. C'est contradictoire avec l'hypothèse $f \neq 0$.