Université Montpellier - L2 - HA8301 Planche TD 2 : Suites

Exercice 1 (Utilisation de la définition) Dans chacun des cas suivants, démontrer que (u_n) tend vers l:

- 1. $u_n = 1/n, l = 0.$
- 2. $u_n = 1/ln(n) + 1$, l = 1.
- 3. $u_n = e^{-n} 1, l = -1.$

Exercice 2 (Limite et continuité) Soit $f: I \subset \mathbb{R} \to \mathbb{R}$ une application continue et (u_n) une suite à valeur dans I qui converge vers $l \in I$. Montrer que $f(u_n)$ converge vers f(l). La réciproque, plus difficile, est vraie

Exercice 3 (Calcul de limites) Calculer les limites de la suite (u_n) dans les cas suivants :

- 1. $u_n = \frac{an+b}{cn+d}$, $a, b, c, d \in \mathbb{C}$.
- 2. $u_n = \frac{n-1}{n^2+1}$.
- 3. $u_n = e^{\frac{n-1}{n+1}}$.
- 4. $u_n = ln(1+1/n)$.

Exercice 4 (Nombres réels et nombres rationnels) Soit $\alpha \in \mathbb{R}$, on pose $u_n = \frac{E(10^n \alpha)}{10^n}$, où E est la fonction partie entière.

- 1. Montrer que $\lim u_n = \alpha$.
- 2. En déduire que tout nombre réel est limite d'une suite de nombres rationnels.

Exercice 5 (Limite et récurrence) Soit $f: I \subset \mathbb{R} \to I \subset \mathbb{R}$ une application continue et u_n la suite définie par $u_0 = \alpha \in I$ et $u_{n+1} = f(u_n)$.

- 1. On suppose que u_n converge vers $l \in I$, montrer que l = f(l).
- 2. On suppose que $f(x) = \sqrt{x}$ définie sur I = [0, 1], et $\alpha = 1/2$.
 - (a) Montrer que (u_n) est croissante. En déduire que (u_n) converge.
 - (b) Déterminer $\lim u_n$.

Exercice 6 (Suites extraites et convergence) Soit (u_n) une suite

- 1. Soit ϕ_1 et ϕ_2 deux applications strictement croissantes de $\mathbb{N} \to \mathbb{N}$ telles que $\phi_1(\mathbb{N}) \cup \phi_2(\mathbb{N}) = \mathbb{N}$, montrer que u_n tend vers l si et seulement les suites extraites $u_{\phi_1(n)}$ et $u_{\phi_2(n)}$ convergent vers l. Généraliser au cas de p suites extraites.
- 2. Montrer que la suite $u_n = (-1)^n$ diverge (i.e. ne converge pas).
- 3. On dit qu'une suite u_n est périodique si il existe $p \in \mathbb{N}$ tel que pour tout n, $u_{n+p} = u_n$. Montrer que u_n converge si et seulement si u_n est constante. Déterminer les entiers p, q tels que $e^{i\frac{p\pi}{q}n}$ converge.

Exercice 7 (cos(n)) On s'intéresse à la suite $u_n = cos(n)$

- 1. Exprimer $(\cos(n+1)+\cos(n))^2$ en fonction de $\cos(2n+1)$ et $\cos(n)^2$ en fonction de $\cos(2n)$.
- 2. Montrer que la suite $u_n = cos(n)$ diverge.
- 3. Montrer que la suite cos(n) possède une sous-suite convergente (Question subsidiaire infaisable: Trouver explicitement une telle sous-suite)

Exercice 8 (La série harmonique) On considére la suite $u_n = \sum_{i=1}^n 1/i = 1 + 1/2 + \ldots + 1/n$ définie pour $n \ge 1$.

- 1. Montrer que $u_{2n} u_n \ge 1/2$.
- 2. En déduire que u_n diverge.

Exercice 9 (Le théorème du point fixe) Soit $f: I \subset \mathbb{R} \to I$ une fonction telle qu'il existe k < 1 tel que pour tout $x, y \in I$, $|f(y) - f(x)| \le k|x - y|$ et $\alpha \in I$. On définit (u_n) par $u_0 = \alpha$ et $u_{n+1} = f(u_n)$.

- 1. Montrer, par exemple par récurrence, que $|u_{n+1} u_n| \le k^n |u_1 u_0|$.
- 2. Calculer $\sum_{i=0}^{p-1} u_{n+i+1} u_{n+i}$. En déduire que $|u_{n+p} u_n| \le k^n |u_1 u_0| \sum_{i=0}^{p-1} k^i$.
- 3. Calculer $\sum_{i=0}^{p-1} k^i$.
- 4. Montrer que $|u_{n+p} u_n| \le \frac{k^n}{1-k} |u_1 u_0|$.
- 5. Montrer que (u_n) converge, on notera l sa limite.
- 6. Montrer que f est continue.
- 7. Montrer que l'équation f(x) = x a une solution.