Exercice (compactifié d'Alexandroff)

On considère $\widehat{\mathbb{R}^n} := \mathbb{R}^n \cup \{\omega\}$ muni de la topologie $\tau := \tau_n \cup \tau'$ où τ_n désigne l'ensemble des ouverts de \mathbb{R}^n et

$$\tau' = \{(\mathbb{R}^n \setminus K) \cup \{\omega\} \mid K \text{ compact de } \mathbb{R}^n\}.$$

- **a.** Montrer que $(\widehat{\mathbb{R}^n}, \tau)$ est un espace topologique compact.
- **b.** Montrer que $(\widehat{\mathbb{R}}^n, \tau)$ est homéomorphe à la sphère $\mathbb{S}^n := \{z \in \mathbb{R}^{n+1}, ||z||^2 = 1\}.$

<u>Correction</u>: Par définition les fermés de τ ont deux formes possibles

- (1) $F \cup \{\omega\}$ où F est un fermé de \mathbb{R}^n ,
- (2) K un compact de \mathbb{R}^n .

Soient A et B deux fermés de τ . Alors

- $A \cup B$ est dans le cas (1) si A ou B sont dans le cas (1),
- $A \cup B$ est dans le cas (2) si A et B sont dans le cas (2).

Ainsi les fermés de τ sont stables par union finie.

Soient A_i , $i \in I$ une famille de fermés de τ . Alors

- $\bigcap_{i \in I} A_i$ est dans le cas (1) si **tous** les A_i sont dans le cas (1),
- $-- \bigcap_{i \in I} A_i$ est dans le cas (2) si **un** des A_i est dans le cas (2).

Ainsi les fermés de τ sont stables par intersection quelconque.

On voit de plus que \emptyset et $\widehat{\mathbb{R}^n}$ sont des fermés de τ . Pour vérifier que τ est une topologie séparée il suffit de considérer les couples de la forme x, ω avec $x \in \mathbb{R}^n$: l'élément x appartient à la boule ouverte B(x, r) et $\omega \in U$ avec $U = (\mathbb{R}^n \setminus \overline{B(x, r)}) \cup \{\omega\}$. On voit que $B(x, r) \cap U = \emptyset$.

Ainsi, on a vérifé que τ définit une topologie séparée sur $\widehat{\mathbb{R}}^n$.

Vérifions que $(\widehat{\mathbb{R}^n}, \tau)$ est un espace topologique compact. Soient $A_i, i \in I$ une famille de fermés de τ tels que

$$\bigcap_{i\in I}A_i=\emptyset.$$

Comme $\omega \notin \bigcap_{i \in I} A_i$, il existe i_o tel que $\omega \notin A_{i_o}$. Donc le fermé A_{i_o} est dans le cas (2) : c'est un compact de \mathbb{R}^n . Pour tout $i \in I$ on pose

$$C_i := A_{i_o} \cap A_i$$

qui est un fermé du compact $A_{i_o} \subset \mathbb{R}^n$. L'équation (1) est équivalente à $\bigcap_{i \in I} C_i = \emptyset$. Si on utilise le fait que A_{i_o} est compact, on sait qu'il existe $i_1, i_2, \cdots, i_n \in I$ tel que $C_{i_1} \cap \cdots \cap C_{i_n} = \emptyset$. Cette dernière relation est équivalente à $A_{i_o} \cap A_{i_1} \cap \cdots \cap A_{i_n} = \emptyset$. \square

Considérons la sphère $\mathbb{S}^n := \{z \in \mathbb{R}^{n+1}, ||z||^2 = 1\}$ et le pôle $N = (0, \dots, 0, 1) \in \mathbb{S}^n$. La projection stéréographique

$$\pi_n: \mathbb{S}^n \setminus \{N\} \longrightarrow \mathbb{R}^n$$

est défini par la relation

$$\pi_n(x_1,\dots,x_n,x_{n+1})=\frac{1}{1-x_{n+1}}(x_1,\dots,x_n).$$

On vérifie aisément que π_n est une application bijective d'application réciproque

$$\pi_n^{-1}(X_1, \dots, X_n) = \left(\frac{2X_1}{\|X\|^2 + 1}, \dots, \frac{2X_n}{\|X\|^2 + 1}, \frac{\|X\|^2 - 1}{\|X\|^2 + 1}\right).$$

On remarque donc que $\pi_n : \mathbb{S}^n \setminus \{N\} \longrightarrow \mathbb{R}^n$ est un homéomorphisme.

On définit

$$H_n:\widehat{\mathbb{R}^n}\longrightarrow\mathbb{S}^n$$

en posant $H_n(X) = \pi_n^{-1}(X)$ si $X \in \mathbb{R}^n$ et $H_n(\omega) = N$.

On voit que H_n est une bijection. Comme \mathbb{R}^n et \mathbb{S}^n sont des espaces topologiques compacts, la continuité de H_n assurera le fait que H_n est un homéomophisme.

Soit F un fermé de \mathbb{S}^n .

— Supposons que $N \in F$. Alors $F \setminus \{N\}$ est un fermé de $\mathbb{S}^n \setminus \{N\}$ et

$$H_n^{-1}(F) = \pi_n(F \setminus \{N\}) \bigcup \{\omega\}$$

est un fermé de $\widehat{\mathbb{R}^n}$.

— Supposons que $N \notin F$. Alors F est un compact de $\mathbb{S}^n \setminus \{N\}$ et

$$H_n^{-1}(F) = \pi_n(F)$$

est un compact de \mathbb{R}^n .

Dans les deux cas on a donc montré que $H_n^{-1}(F)$ est un fermé de $\widehat{\mathbb{R}}^n$. \square

Remarque : La construction précédente se géréralise au cadre d'un espace topologique (X, τ) qui est séparé et *localement compact* : ici tout point de X possède un voisinage compact. On peut définir comme précédemment l'espace $\widehat{X} = X \cup \{\omega\}$ muni de la topologie

$$\widehat{\tau} = \tau \bigcup \left\{ (X \setminus K) \cup \{\omega\}, K \text{ compact de } X \right\}.$$

On montre de la même façon que $(\widehat{X}, \widehat{\tau})$ est un espace topologique (séparé et) compact.

Soit C(X) l'espace des fonctions continues sur X. On dit que $f \in C(X)$ tend vers l'infini si

$$(\star) \qquad \forall \epsilon > 0, \exists K \subset X \text{ compact}, |f(x)| \le \epsilon, \forall x \in X - K.$$

On note $C_0(X) \subset C(X)$ le sous-espace vectoriel des fonctions tendant vers 0 à l'infini. On considère l'application qui à une fonction $f \in C_0(X)$ associe la fonction $\hat{f} : \widehat{X} \to \mathbb{R}$ définie comme suit :

- (1) $\hat{f}(x) = f(x)$ si $x \in X$,
- (2) $\hat{f}(\omega) = 0$.

La condition (\star) permet de voir que \hat{f} est continue au point ω , ainsi $\hat{f} \in C(\widehat{X})$.

L'application $f\mapsto \hat{f}$ définit une application linéaire $\iota:C_0(X)\to C(\widehat{X})$ isométrique : $\|\hat{f}\|_{\infty}=\|f\|_{\infty}$, $\forall f\in C_0(X)$.