Statistics and Computing

James E. Gentle

Statistics and Computing
Series Editors:

J. Chambers

D. Hand

W. Hirdle

For other titles published in this series, go to
http://www.springer.com/series/3022

James E. Gentle

Computational Statistics

@ Springer

J.E. Gentle

Department of Computational & Data Sciences

George Mason University
4400, University Drive
Fairfax, VA 22030-4444
USA

jgentle@gmu.edu

Series Editors:

J. Chambers

Department of Statistics
Sequoia Hall

390 Serra Mall

Stanford University
Stanford, CA 94305-4065

D. Hand

Department of Mathematics
Imperial College London,
South Kensington Campus
London SW7 2AZ

United Kingdom

W. Hirdle

Institut fiir Statistik
und Okonometrie

Humboldt-Universitét
zu Berlin

Spandauer Str. 1

D-10178 Berlin
Germany

ISBN 978-0-387-98143-7
DOI 10.1007/978-0-387-98144-4
Springer Dordrecht Heidelberg London New York

e-ISBN 978-0-387-98144-4

Library of Congress Control Number: 2009929633

© Springer Science+-Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To Maria

Preface

This book began as a revision of Elements of Computational Statistics, pub-
lished by Springer in 2002. That book covered computationally-intensive sta-
tistical methods from the perspective of statistical applications, rather than
from the standpoint of statistical computing.

Most of the students in my courses in computational statistics were in a
program that required multiple graduate courses in numerical analysis, and so
in my course in computational statistics, I rarely covered topics in numerical
linear algebra or numerical optimization, for example. Over the years, how-
ever, I included more discussion of numerical analysis in my computational
statistics courses. Also over the years I have taught numerical methods courses
with no or very little statistical content. I have also accumulated a number
of corrections and small additions to the elements of computational statistics.
The present book includes most of the topics from Elements and also incor-
porates this additional material. The emphasis is still on computationally-
intensive statistical methods, but there is a substantial portion on the numer-
ical methods supporting the statistical applications.

I have attempted to provide a broad coverage of the field of computational
statistics. This obviously comes at the price of depth.

Part I, consisting of one rather long chapter, presents some of the most
important concepts and facts over a wide range of topics in intermediate-level
mathematics, probability and statistics, so that when I refer to these concepts
in later parts of the book, the reader has a frame of reference.

Part I attempts to convey the attitude that computational inference, to-
gether with exact inference and asymptotic inference, is an important com-
ponent of statistical methods.

Many statements in Part I are made without any supporting argument,
but references and notes are given at the end of the chapter. Most readers
and students in courses in statistical computing or computational statistics
will be familiar with a substantial proportion of the material in Part I, but I
do not recommend skipping the chapter. If readers are already familiar with
the material, they should just read faster. The perspective in this chapter is

viii Preface

that of the “big picture”. As is often apparent in oral exams, many otherwise
good students lack a basic understanding of what it is all about.

A danger is that the student or the instructor using the book as a text
will too quickly gloss over Chapter 1 and miss some subtle points.

Part II addresses statistical computing, a topic dear to my heart. There are
many details of the computations that can be ignored by most statisticians,
but no matter at what level of detail a statistician needs to be familiar with
the computational topics of Part II, there are two simple, higher-level facts
that all statisticians should be aware of and which I state often in this book:

Computer numbers are not the same as real numbers, and the arith-
metic operations on computer numbers are not exactly the same as
those of ordinary arithmetic.

and

The form of a mathematical expression and the way the expression
should be evaluated in actual practice may be quite different.

Regarding the first statement, some of the differences in real numbers and
computer numbers are summarized in Table 2.1 on page 98.

A prime example of the second statement is the use of the normal equations
in linear regression, X T Xb = X Ty. It is quite appropriate to write and discuss
these equations. We might consider the elements of XX, and we might even
write the least squares estimate of 3 as b = (XTX)"1XTy. That does not
mean that we ever actually compute XTX or (XTX)~!, although we may
compute functions of those matrices or even certain elements of them.

The most important areas of statistical computing (to me) are

computer number systems

algorithms and programming

function approximation and numerical quadrature
numerical linear algebra

solution of nonlinear equations and optimization
generation of random numbers.

These topics are the subjects of the individual chapters of Part II.

Part IIT in six relatively short chapters addresses methods and techniques
of computational statistics. I think that any exploration of data should begin
with graphics, and the first chapter in Part ITI, Chapter 8, presents a brief
overview of some graphical methods, especially those concerned with multi-
dimensional data. The more complicated the structure of the data and the
higher the dimension, the more ingenuity is required for visualization of the
data; it is, however, in just those situations that graphics is most important.
The orientation of the discussion on graphics is that of computational statis-
tics; the emphasis is on discovery, and the important issues that should be
considered in making presentation graphics are not addressed.

Preface ix

Chapter 9 discusses methods of projecting higher-dimensional data into
lower dimensions. The tools discussed in Chapter 9 will also be used in Part IV
for clustering and classification, and, in general, for exploring structure in
data. Chapter 10 covers some of the general issues in function estimation,
building on the material in Chapter 4 on function approximation.

Chapter 11 is about Monte Carlo simulation and some of its uses in com-
putational inference, including Monte Carlo tests, in which artificial data are
generated according to a hypothesis. Chapters 12 and 13 discuss computa-
tional inference using resampling and partitioning of a given dataset. In these
methods, a given dataset is used, but Monte Carlo sampling is employed re-
peatedly on the data. These methods include randomization tests, jackknife
techniques, and bootstrap methods, in which data are generated from the
empirical distribution of a given sample, that is, the sample is resampled.

Identification of interesting features, or “structure”, in data is an impor-
tant activity in computational statistics. In Part IV, I consider the problem of
identification of structure and the general problem of estimation of probability
densities. In simple cases, or as approximations in more realistic situations,
structure may be described in terms of functional relationships among the
variables in a dataset.

The most useful and complete description of a random data-generating
process is the associated probability density, if it exists. Estimation of this
special type of function is the topic of Chapters 14 and 15, building on gen-
eral methods discussed in earlier chapters, especially Chapter 10. If the data
follow a parametric distribution, or rather, if we are willing to assume that
the data follow a parametric distribution, identification of the probability den-
sity is accomplished by estimation of the parameters. Nonparametric density
estimation is considered in Chapter 15.

Features of interest in data include clusters of observations and relation-
ships among variables that allow a reduction in the dimension of the data.
I discuss methods for statistical learning in Chapter 16, building on some of
the basic measures introduced in Chapter 9.

Higher-dimensional data have some surprising and counterintuitive proper-
ties, and I discuss some of the interesting characteristics of higher dimensions.

In Chapter 17, I discuss asymmetric relationships among variables. For
such problems, the objective often is to estimate or predict a response for
a given set of explanatory or predictive variables, or to identify the class
to which an observation belongs. The approach is to use a given dataset to
develop a model or a set of rules that can be applied to new data. Statistical
modeling may be computationally intensive because of the number of possible
forms considered or because of the recursive partitioning of the data used in
selecting a model. In computational statistics, the emphasis is on building a
model rather than just estimating the parameters in the model. Parametric
estimation, of course, plays an important role in building models.

Many of the topics addressed in this book could easily be (and are) sub-
jects for full-length books. My intent is to describe these methods in a general

X Preface

manner and to emphasize commonalities among them. Decompositions of ma-
trices and of functions are examples of basic tools that are used in a variety
of settings in computational statistics. Decompositions of matrices, which are
introduced on page 28 of Chapter 1, play a major role in many computations
in linear algebra and in statistical analysis of linear models. The decomposi-
tional approach to matrix computations has been chosen as one of the Top
10 developments in algorithms in the twentieth century. (See page 138.) The
PDF decomposition of a function so that the function has a probability den-
sity as a factor, introduced on page 37 of Chapter 1, plays an important role in
many statistical methods. We encounter this technique in Monte Carlo meth-
ods (pages 192 and 418), in function estimation (Chapters 10 and 15), and in
projection pursuit (Chapter 16).

My goal has been to introduce a number of topics and devote some suitable
proportion of pages to each. I have given a number of references for more in-
depth study of most of the topics. The references are not necessarily chosen
because they are the “best”; they’re just the ones I'm most familiar with. A
general reference for a slightly more detailed coverage of most of the topics in
this book is the handbook edited by Wolfgang Héardle, Yuichi Mori, and me
(Gentle, Hardle, and Mori, 2004).

The material in Chapters 2, 5, and 9 relies heavily on my book on Matrix
Algebra (Gentle, 2007), and some of the material in Chapters 7 and 11 is
based on parts of my book on Random Number Generation (Gentle, 2003).

Each chapter has a section called “notes and further reading”. The content
of these is somewhat eclectic. In some cases, I had fun writing the section, so
I went on at some length; in other cases, my interest level was not adequate
for generation of any substantial content.

A Little History

While I have generally tried to keep up with developments in computing, and I
do not suffer gladly old folks who like to say “well, the way we used to do it was
.7, occasionally while writing this book, I looked in Statistical Computing to
see what Bill Kennedy and I said thirty years ago about the things I discuss
in Part IT. The biggest change in computing of course has resulted from the
personal computer. “Computing” now means a lot more than it did thirty
years ago, and there are a lot more people doing it. Advances in display
devices has been a natural concurrence with the development of the PC, and
this has changed statistical graphics in a quantum way.

While T think that the PC sui generis is the Big Thing, the overall ad-
vance in computational power is also important. There have been many evo-
lutionary advances, basically on track with Moore’s law (so long as we ad-
just the number of months appropriately). The net result of the evolutionary
advance in speed has been enormous. Some people have suggested that sta-
tistical methods/approaches should undergo fundamental changes every time
there is an increase of one order of magnitude in computational speed and/or

Preface xi

storage. Since 1980, and roughly in accordance with Moore’s law, there have
been 4 such increases. I leave to others an explicit interpretation of the rel-
evance of this fact to the field of statistics, but it is clear that the general
increase in the speed of computations has allowed the development of useful
computationally-intensive methods. These methods together constitute the
field of computational statistics. Computational inference as an approxima-
tion is now generally as accepted as asymptotic inference (more readily by
many people).

At a more technical level, standardization of hardware and software has
yielded meaningful advances. In the 1970’s over 75% of the computer mar-
ket was dominated by the IBM 360/370 systems. Bill and I described the
arithmetic implemented in this computer. It was in base 16 and did not do
rounding. The double precision exponent had the same range as that of sin-
gle precision. The IBM Fortran compilers (G and H) more-or-less conformed
to the Fortran 66 standard (and they chose the one-trip for null DO-loops).
Pointers and dynamic storage allocation were certainly not part of the stan-
dard. PL/I was a better language/compiler and IBM put almost as many
1970s dollars in pushing it as US DoD in 1990s dollars pushing Ada. And of
course, there was JCL!

The first eight of the Top 10 algorithms were in place thirty years ago, and
we described statistical applications of at least five of them. The two that were
not in place in 1980 do not have much relevance to statistical applications.
(OK, I know somebody will tell me soon how important these two algorithms
are, and how they have just been used to solve some outstanding statistical
problem.)

One of the Top 10 algorithms, dating to the 1940s, is the basis for MCMC
methods, which began receiving attention by statisticians around 1990, and
in the past twenty years has been one of the hottest areas in statistics.

I could go on, but I tire of telling “the way we used to do it”. Let’s learn
what we need to do it the best way now.

Data

I do not make significant use of any “real world” datasets in the book. I
often use “toy” datasets because I think that is the quickest way to get the
essential characteristics of a method. I sometimes refer to the datasets that
are available in R or S-Plus, and in some exercises, I point to websites for
various real world datasets.

Many exercises require the student to generate artificial data. While such
datasets may lack any apparent intrinsic interest, I believe that they are often
the best for learning how a statistical method works. One of my firm beliefs
is

If I understand something, I can simulate it.

Learning to simulate data with given characteristics means that one under-
stands those characteristics. Applying statistical methods to simulated data

xii Preface

may lack some of the perceived satisfaction of dealing with “real data”, but
it helps us better to understand those methods and the principles underlying
them.

A Word About Notation

I try to be very consistent in notation. Most of the notation is “standard”.
Appendix C contains a list of notation, but a general summary here may be
useful. Terms that represent mathematical objects, such as variables, func-
tions, and parameters, are generally printed in an italic font. The exceptions
are the standard names of functions, operators, and mathematical constants,
such as sin, log, I' (the gamma function), ® (the normal CDF), E (the ex-
pectation operator), d (the differential operator), e (the base of the natural
logarithm), and so on.

I tend to use Greek letters for parameters and English letters for almost
everything else, but in some cases, I am not consistent in this distinction.

I do not distinguish vectors and scalars in the notation; thus, “z” may
represent either a scalar or a vector, and z; may represent either the ‘"
element of an array or the i*™ vector in a set of vectors. I use uppercase
letters for matrices and the corresponding lowercase letters with subscripts
for elements of the matrices. I do not use boldface except for emphasis or for
headings.

I generally use uppercase letters for random variables and the correspond-
ing lowercase letters for realizations of the random variables. Sometimes I
am not completely consistent in this usage, especially in the case of random
samples and statistics.

I describe a number of methods or algorithms in this book. The descrip-
tions are in a variety of formats. Occasionally they are just in the form of text;
the algorithm is described in (clear?!) English text. Often they are presented
in the form of pseudocode in the form of equations with simple for-loops,
such as for the accumulation of a sum of corrected squares on page 116, or in
pseudocode that looks more like Fortran or C. (Even if C-like statements are
used, I almost always begin the indexing at the 15 element; that is, at the
first element, not the zeroth element. The exceptions are for cases in which
the index also represents a power, such as in a polynomial; in such cases, the
0" element is the first element. I call this “0 equals first” indexing.) Other
times the algorithms are called “Algorithm x.x” and listed as a series of steps,
as on page 218. There is a variation of the “Algorithm x.x” form. In one form
the algorithm is given a name and its input is listed as input arguments, for
example MergeSort, on page 122. This form is useful for recursive algorithms
because it allows for an easy specification of the recursion. Pedagogic consid-
erations (if not laziness!) led me to use a variety of formats for presentation of
algorithms; the reader will likely encounter a variety of formats in literature
in statistics and computing, and some previous exposure should help to make
the format irrelevant.

Preface xiii
Use in the Classroom

Most statistics students will only take one or two courses in the broad field of
computational statistics. I have tried at least to introduce the major areas of
the field, but this means, of course, that depth of coverage of most areas has
been sacrificed.

The chapters and sections in the book vary considerably in their lengths,
and this sometimes presents a problem for an instructor to allocate the cover-
age over the term. The number of pages is a better, but still not very accurate,
measure of the time required to cover the material.

There are several different types of courses for which this book could be
used, either as the primary text or as a supplement.

Statistical Computing Courses

Most programs in statistics in universities in the United States include a course
called “statistical computing”. There are two kinds of courses called “statisti-
cal computing”. One kind is “packages and languages for data analysis”. This
book would not be of much use in such a course.

The other kind of course in statistical computing is “numerical methods in
statistics”. Part II of this book is designed for such a course in statistical com-
puting. Selected chapters in Parts III and IV could also be used to illustrate
and motivate the topics of those six chapters. Chapter 1 could be covered as
necessary in a course in statistical computing, but that chapter should not be
skipped over too lightly.

One of the best ways to learn and understand a computational method
is to implement the method in a computer program. Executing the program
provides immediate feedback on the correctness. Many of the exercises in
Part II require the student to “write a program in Fortran or C”. In some cases,
the purpose is to identify design issues and how to handle special datasets,
but in most cases the purpose is to ensure that the method is understood;
hence, in most cases, instead of Fortran or C, a different language could be
used, even a higher-level one such as R. Those exercises also help the student
to develop a facility in programming. Programming is the best way to learn
programming. (Read that again; yes, that’s what I mean. It’s like learning to

type.)

Computational Statistics Courses

Another course often included in statistics programs is one on “computa-
tionally intensive statistical methods”, that is, what I call “computational
statistics”. This type of course, which is often taught as a “special topics”
course, varies widely. The intent generally is to give special attention to such
statistical methods as the bootstrap or to such statistical applications as den-
sity estimation. These topics often come up in other courses in statistical
theory and methods, but because of the emphasis in these courses, there is no
systematic development of the computationally-intensive methods. Parts III
and IV of this book are designed for courses in computational statistics. I have

xiv Preface

taught such a course for a number of years, and I find that the basic material
of Chapter 1 bears repeating (although it is prerequisite for the course that I
teach). Some smattering of Part II, especially random number generation in
Chapter 7, may also be useful in such a course, depending on whether or not
the students have a background in statistical computing (meaning “numerical
methods in statistics”).

Modern Applied Statistics Courses

The book, especially Parts III and IV, could also be used as a text in a
course on “modern applied statistics”. The emphasis would be on modeling
and statistical learning; the approach would be exploration of data.

Exercises

The book contains a number of exercises that reinforce the concepts discussed
in the text or, in some cases, extend those concepts. Appendix D provides
solutions or comments for several of the exercises.

Some of the exercises are rather open-ended, asking the student to “ex-
plore”. Some of the “explorations” are research questions.

One weakness of students (and lots of other people!) is the ability to write
clearly. Writing is improved by practice and by criticism. Several of the exer-
cises, especially the “exploration” ones, end with the statement: “Summarize
your findings in a clearly-written report.” Grading such exercises, including
criticism of the writing, usually requires more time —so a good trick is to let
students “grade” each others’ work. Writing and editing are major activities
in the work of statisticians (not just the academic ones!), and so what better
time to learn and improve these activities than during the student years.

In most classes I teach in computational statistics, I give Exercise A.3
in Appendix A (page 656) as a term project. It is to replicate and extend a
Monte Carlo study reported in some recent journal article. Each student picks
an article to use. The statistical methods studied in the article must be ones
that the student understands, but that is the only requirement as to the area
of statistics addressed in the article. I have varied the way in which the project
is carried out, but it usually involves more than one student working together.
A simple way is for each student to referee another student’s first version (due
midway through the term) and to provide a report for the student author to
use in a revision. Each student is both an author and a referee. In another
variation, I have students be coauthors.

Prerequisites

It is not (reasonably) possible to itemize the background knowledge required
for study of this book. I could claim that the book is self-contained, in the sense
that it has brief introductions to almost all of the concepts, but that would

Preface XV

not be fair. An intermediate-level background in mathematics and statistics
is assumed.

The book also assumes some level of computer literacy, and the ability
to “program” in some language such as R or Matlab. “Real” programming
ability is highly desirable, and many of the exercises in Part II require real
programming.

Acknowledgements

I thank John Kimmel of Springer for his encouragement and advice on this
book and other books he has worked with me on. I also thank the many
readers who have informed me of errors in other books and who have otherwise
provided comments or suggestions for improving my exposition.

I thank my wife Maria, to whom this book is dedicated, for everything.
I used K TEX 2¢ to write the book, and I used R to generate the graphics. I did

all of the typing, programming, etc., myself, so all mistakes are mine. I would
appreciate receiving notice of errors as well as suggestions for improvement.

Notes on this book, including errata, are available at
http://mason.gmu.edu/" jgentle/cmstatbk/

Fairfax County, Virginia James E. Gentle
April 24, 2009

Contents

Preface e vii

Part I Preliminaries

Introduction to Part I 3
Mathematical and Statistical Preliminaries 5
1.1 Discovering Structure in Data, 6
1.2 Mathematical Tools for Identifying Structure in Data 10
1.3 Data-Generating Processes; Probability Distributions 29
1.4 Statistical Inference. i 37
1.5 Probability Statements in Statistical Inference 52
1.6 Modeling and Computational Inference..................... 56
1.7 The Role of the Empirical Cumulative Distribution Function.. 59
1.8 The Role of Optimization in Inference...................... 65
Notes and Further Reading. o i .. 74
Exercises ... 75

Part IT Statistical Computing

Introduction to Part II 83
Computer Storage and Arithmetic............................. 85
2.1 The Fixed-Point Number System 86
2.2 The Floating-Point Number System........................ 88
2.3 Errors 97
Notes and Further Reading. o i .. 101

Exercises ... 102

xviii Contents

Algorithms and Programming 107

3.1 Error in Numerical Computations 109

3.2 Algorithms and Data o i, 113

3.3 Efficiency. 116

3.4 Tterations and Convergencec.oueeuvennennon.. 128

3.5 Programming 134

3.6 Computational Feasibility 137

Notes and Further Reading. 138

Exercises ... 142

Approximation of Functions and Numerical Quadrature 147

4.1 Function Approximation and Smoothing.................... 153

4.2 Basis Sets in Function Spaces oo, 160

4.3 Orthogonal Polynomials 167

4.4 SPHNES . oot 178

4.5 Kernel Methods 182

4.6 Numerical Quadrature 184

4.7 Monte Carlo Methods for Quadrature 192

Notes and Further Reading. o i .. 197

Exercises ... 199

Numerical Linear Algebra 203
5.1 General Computational Considerations for Vectors and

MatTiCes ..o .vti it 205

5.2 Gaussian Elimination and Elementary Operator Matrices 209

5.3 Matrix Decompositions......... i 215

5.4 Tterative Methods 221

5.5 Updating a Solution to a Consistent System 227

5.6 Overdetermined Systems; Least Squares 228

5.7 Other Computations with Matrices 235

Notes and Further Reading. 236

ExXercises ... 237

Solution of Nonlinear Equations and Optimization............. 241

6.1 Finding Roots of Equations 244

6.2 Unconstrained Descent Methods in Dense Domains 261

6.3 Unconstrained Combinatorial and Stochastic Optimization. . .. 275

6.4 Optimization under Constraints 284

6.5 Computations for Least Squares 291

6.6 Computations for Maximum Likelihood 294

Notes and Further Reading. 298

EXercises 301

Contents Xix

Generation of Random Numbers 305
7.1 Randomness of Pseudorandom Numbers.................... 305
7.2 Generation of Nonuniform Random Numbers 307
7.3 Acceptance/Rejection Method Using a Markov Chain 313
7.4 Generation of Multivariate Random Variates................ 315
7.5 Data-Based Random Number Generation................... 318
7.6 Software for Random Number Generation 320
Notes and Further Reading. 329
Exercises ... 329

Part IIT Methods of Computational Statistics

Introduction to Part IIT 335
Graphical Methods in Computational Statistics................ 337
8.1 Smoothing and Drawing Lines 341
8.2 Viewing One, Two, or Three Variables 344
8.3 Viewing Multivariate Data............ 355
Notes and Further Reading. o .. 365
ExXercises ... 368
Tools for Identification of Structure in Data 371
9.1 Transformations..............cuiuiinrnrerenninnnnnn.. 373
9.2 Measures of Similarity and Dissimilarity 383
Notes and Further Reading. 397
EXercises 397
Estimation of Functions 401
10.1 General Approaches to Function Estimation 403
10.2 Pointwise Properties of Function Estimators 407
10.3 Global Properties of Estimators of Functions................ 410
Notes and Further Reading. o i .. 414
EXercises 414
Monte Carlo Methods for Statistical Inference................. 417
11.1 Monte Carlo Estimation 418
11.2 Simulation of Data from a Hypothesized Model: Monte Carlo
St o 422
11.3 Simulation of Data from a Fitted Model: “Parametric
Bootstraps” 424
11.4 Random Sampling from Data 424
11.5 Reducing Variance in Monte Carlo Methods 425
11.6 Software for Monte Carlo............o .. 429
Notes and Further Reading. 430

EXercises 431

XX Contents

Data Randomization, Partitioning, and Augmentation 435
12.1 Randomization Methods. 436
12.2 Cross Validation for Smoothing and Fitting 440
12.3 Jackknife Methods.......... i 442
Notes and Further Reading. o i .. 448
EXercises 449

Bootstrap Methods 453
13.1 Bootstrap Bias Correctionsciiiiiiiann.. 454
13.2 Bootstrap Estimation of Variance.......................... 456
13.3 Bootstrap Confidence Intervals 457
13.4 Bootstrapping Data with Dependencies 461
13.5 Variance Reduction in Monte Carlo Bootstrap 462
Notes and Further Reading. o i i, 464
EXercises 465

Part IV Exploring Data Density and Relationships

Introduction to Part IV 471
Estimation of Probability Density Functions Using Parametric
Models 475
14.1 Fitting a Parametric Probability Distribution 476
14.2 General Families of Probability Distributions................ 477
14.3 Mixtures of Parametric Families 480
14.4 Statistical Properties of Density Estimators Based on
Parametric Families. 482
Notes and Further Reading. o i .. 483
ExXercises ... 484

Nonparametric Estimation of Probability Density Functions . .. 487

15.1 The Likelihood Function 487
15.2 Histogram Estimators i .. 490
15.3 Kernel Estimators o i i 499
15.4 Choice of Window Widths 504
15.5 Orthogonal Series Estimators 505
15.6 Other Methods of Density Estimation...................... 506
Notes and Further Reading. o i i, 509
EXercises 510
Statistical Learning and Data Mining 515
16.1 Clustering and Classification 519
16.2 Ordering and Ranking Multivariate Data 538
16.3 Linear Principal Components 548

16.4 Variants of Principal Components 560

Contents xxi

16.5 Projection Pursuit 564
16.6 Other Methods for Identifying Structure.................... 572
16.7 Higher Dimensions 573
Notes and Further Reading. o i .. 578
Exercises ... 580
Statistical Models of Dependencies 585
17.1 Regression and Classification Models....................... 588
17.2 Probability Distributions in Models 597
17.3 Fitting Models to Data........ i L. 600
17.4 Classification i 620
17.5 Transformationsc. i 628
Notes and Further Reading. o i .. 634
ExXercises ... 636
Appendices
Monte Carlo Studies in Statistics 643
A.1 Simulation as an Experiment.................. 644
A.2 Reporting Simulation Experiments. 645
A3 An Exampleo 646
A.4 Computer Experiments......... 653
Exercises ... 655
Some Important Probability Distributions 657
Notation and Definitions 663
C.1 General Notationc.o i 663
C.2 Computer Number Systems, 665
C.3 Notation Relating to Random Variables 666
C.4 General Mathematical Functions and Operators 668
C.5 Modelsand Data ..., 675
Solutions and Hints for Selected Exercises 677
Bibliography 689
E.1 Literature in Computational Statistics 690
E.2 References for Software Packages 693
E.3 References to the Literature 693

Part I

Preliminaries

Introduction to Part I

The material in Part I is basic to the field of computational statistics. It
includes some intermediate-level mathematics, and probability and statistics.
Many readers will be familiar with at least some of this material.

Although the presentation is rather terse, the single chapter in this part is
somewhat longer than most of the chapters in this book. That is due both to
the diversity of the topics and to their importance in the subsequent chapters.

We discuss the general objectives in statistical analyses and, in particular,
those objectives for which computationally intensive methods are appropriate.

After the introductory discussion of exploratory data analysis, we begin
with some definitions and general discussions of useful measures in vector
spaces and some of the operations on vectors, functions, and matrices.

When data are organized into a matrix, the mathematical properties of the
matrix can reveal a lot about the structure of the data. We therefore briefly
describe some of the important properties of matrices. We will encounter
various aspects of properties of matrices later. In Chapter 5 of Part II we
discuss computational methods, in Chapter 9 of Part III we describe various
transformations of data using matrix algebra, and in Chapters 16 and 17 of
Part IV we discuss methods of matrix algebra for understanding statistical
relationships among variables or observations.

We then describe briefly some of the methods of statistical inference that
are applicable generally whether in computational statistics or not. Although
much of this discussion may appear rather elementary, it does presuppose
some general familiarity with statistical theory and methods; otherwise the
material would be insufficient for the subsequent developments in the book.

We emphasize that computational inference is often a useful alternative to
the asymptotic inference used in many of the standard statistical methods.

The empirical cumulative distribution function (ECDF) plays a very ba-
sic role in statistical inference, especially in computational inference in such
methods as the bootstrap. Despite the fundamental nature of the ECDF, it
is not often given its due in textbooks on statistical inference.

4 Introduction to Part I

Many methods in statistical analysis can be couched as solutions to opti-
mization problems. In Section 1.8 we emphasize this perspective, and briefly
discuss some of the implications for the statistical properties of the methods.

Many statements made in Part I lack supporting arguments. The purpose
of this part is to state the highlights that are assumed in later parts of the
book. References to more complete presentations and other notes are given at
the end of the chapter.

1

Mathematical and Statistical Preliminaries

The purpose of an exploration of data may be rather limited, and it may be
ad hoc, or the purpose may be more general, perhaps to gain understanding
of some natural phenomenon.

The questions addressed in the data exploration may be somewhat open-
ended. The process of understanding often begins with general questions about
the structure of the data. At any stage of the analysis, our understanding is
facilitated by means of a model.

A model is a description that embodies our current understanding of a
phenomenon. In an operational sense, we can formulate a model either as a
description of a data-generating process, or as a prescription for processing
data.

The model is often expressed as a set of equations that relate data elements
to each other. It may include probability distributions for the data elements.

If any of the data elements are considered to be realizations of random
variables, the model is a stochastic model.

A model should not limit our analysis; rather, the model should be able
to evolve. The process of understanding involves successive refinements of the
model. The refinements proceed from vague models to more specific ones. An
exploratory data analysis may begin by mining the data to identify interesting
properties. These properties generally raise questions that are to be explored
further.

A class of models may have a common form within which the members
of the class are distinguished by values of parameters. For example, the class
of normal probability distributions has a single form of a probability density
function that has two parameters. Within this family of probability distribu-
tions, these two parameters completely characterize the distributional prop-
erties. If this form of model is chosen to represent the properties of a dataset,
we may seek confidence intervals for values of the two parameters or perform
statistical tests of hypothesized values of these two parameters.

In models that are not as mathematically tractable as the normal probabil-
ity model —and many realistic models are not — we may need to use compu-

J.E. Gentle, Computational Statistics, Statistics and Computing, 5
DOI: 10.1007/978-0-387-98144-4 1,
© Springer Science + Business Media, LLC 2009

6 1 Mathematical and Statistical Preliminaries

tationally intensive methods involving simulations, resamplings, and multiple
views to make inferences about the parameters of a model. These methods
are part of the field of computational statistics.

1.1 Discovering Structure in Data

The components of statistical datasets are “observations” and “variables” or
“features”. In general, “data structures” are ways of organizing data to take
advantage of the relationships among the variables constituting the dataset.
Data structures may express hierarchical relationships, crossed relationships
(as in “relational” databases), or more complicated aspects of the data (as
in “object-oriented” databases). Data structures, or more generally, database
management, is a relatively mature area of computer science.

In data analysis, “structure in the data” is of interest. Structure in the
data includes such nonparametric features as modes, gaps, or clusters in the
data, the symmetry of the data, and other general aspects of the shape of
the data. Because many classical techniques of statistical analysis rely on an
assumption of normality of the data, the most interesting structure in the
data may be those aspects of the data that deviate most from normality.

In identifying and studying structure, we use both numerical measures and
graphical views.

Multiple Analyses and Multiple Views

There are many properties that are more apparent from graphical displays of
the data.

Although it may be possible to express the structure in the data in terms
of mathematical models, prior to attempting to do so, graphical displays may
be used to discover qualitative structure in the data. Patterns observed in the
data may suggest explicit statements of the structure or of relationships among
the variables in the dataset. The process of building models of relationships
is an iterative one, and graphical displays are useful throughout the process.
Graphs comparing data and the fitted models are used to refine the models.

Effective use of graphics often requires multiple views. For multivariate
data, plots of individual variables or combinations of variables can be produced
quickly and used to get a general idea of the properties of the data. The data
should be inspected from various perspectives. Instead of a single histogram to
depict the general shape of univariate data, for example, multiple histograms
with different bin widths and different bin locations may provide more insight.
(See Figure 8.4 on page 347.)

Sometimes, a few data points in a display can completely obscure inter-
esting structure in the other data points. This is the case when the Euclidean
distances between various pairs of data points differ greatly. A zooming win-
dow to restrict the scope of the display and simultaneously restore the scale

1.1 Discovering Structure in Data 7

to an appropriate viewing size can reveal structure. A zooming window can
be used with any graphics software whether the software supports it or not;
zooming can be accomplished by deletion of the points in the dataset outside
of the window.

Scaling the axes can also be used effectively to reveal structure. The rel-
ative scale is called the “aspect ratio”. In Figure 1.1, which is a plot of a
bivariate dataset, we form a zooming window that deletes a single observa-
tion. The greater magnification and the changed aspect ratio clearly show a
relationship between X and Y in a region close to the origin that may not
hold for the full range of data. A simple statement of this relationship would
not extrapolate outside the window to the outlying point.

The use of a zooming window is not “deletion of outliers”; it is focusing
in on a subset of the data and is done independently of whatever is believed
about the data outside of the window.

& o) o
=2 -
)
o o
)
& ©
)
© o Yo
2 = o ~ oo
o
) ° >
o o
=) o ©
)
-
S ° ° o
> 2 > o O%
)
)
o
o)
N oo
o ©
o — oo)
)
)
=
P=T S o
o o®
S
o S
T T T T T T T T T
1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0
X X

Fig. 1.1. Scales Matter

Although the zooming window in Figure 1.1 reveals structure by changing
the aspect ratio as it focused on a subset of the data, views with different
aspect ratios may reveal meaningless structure just by differentially changing
the scales of measurement of the variables. Such structural characteristics of
data are sometimes just artificial structure. Artificial structure is structure
that can be changed meaningfully by univariately rescaling the data. Many
multivariate statistical analyses reveal artificial structure. Clustering (see Sec-
tion 16.1) and principal component analysis (see Section 16.3), for example,
are sensitive to artificial structure. This, of course, presents a real challenge
to the data analyst. The meaning of “artificial” is somewhat subjective; what

8 1 Mathematical and Statistical Preliminaries

is artificial to one person or in one application may be meaningful in another
application. Data analysis cannot be conducted in the abstract.

One type of structure that may go undetected is that arising from the
order in which the data were collected. For data that are recognized as a time
series by the analyst, this is obviously not a problem, but often there is a
time dependency in the data that is not recognized immediately. “Time” or
“location” may not be an explicit variable on the dataset, even though it may
be an important variable. The index of the observation within the dataset may
be a surrogate variable for time, and characteristics of the data may vary as
the index varies. Often it is useful to make plots in which one axis is the index
number of the observations. For univariate data x, 2, . .., quick insights can
be obtained by a “4-plot” (Filliben, 1982) that consists of the following four
plots, as in Figure 1.2:

e plot of x; versus i to see if there is any trend in the way the data are
ordered, which is likely to be the order in which the data were collected;
e plot of x; 11 versus z; to see if there are systematic lags (again, this is done
because of possible effects of the order in which the data were collected);
histogram;
normal probability plot of the data.

The DATAPLOT program distributed freely by NIST implements 4-plots; see
http://www.itl.nist.gov/div898/software.htm

The patterns of the data seen in Figure 1.2 are interesting. The shape
in the upper left plot may lead us to expect the data-generating process is
periodic, however, the nature of the periodicity is not very clear. The two
lower plots seem to indicate that the process is more-or-less normal. The
upper right plot shows the strongest structure, and so we should pursue what
it may suggest, namely to look at first-order differences. Following up on this,
in this particular dataset, we would see that the first-order differences seem to
be uncorrelated and to follow a normal distribution. (The dataset is, in fact,
an artificially-generated stationary martingale with normal marginals. Such a
data-generating process can yield some unexpected patterns, and in the more
interesting cases of nonstationarity and nonnormality the data can be very
difficulty to analyze. Martingales often can be used effectively in modeling
the behavior of stock prices.)

More subtle time dependencies are those in which the values of the vari-
ables are not directly related to time, but relationships among variables are
changing over time. The identification of such time dependencies is much
more difficult, and often requires fitting a model and plotting residuals. An-
other strictly graphical way of observing changes in relationships over time is
by using a sequence of graphical displays. The DATAPLOT program includes
a “6-plot”, which helps in exploring relationships between two variables that
may be changing over time, and whether the stochastic component of the
relationship follows a normal distribution.

1.1 Discovering Structure in Data 9

x Against Its Index x Lagged
&, L@
~ 4 oY ~ 4 ° @
qf o o o
o o 0. 8 %%c? —_ o - Qcm DB
® o) = Ocpt}b% °
o ® o S o S [0
x 1] @c& @ 2 oo§ s & OcPD
o 99 = o
¥ 4 B ég] 8 § < ¥ A ? 966
°® o ° 08 D§
9 - ® o5 P o0 %
Ko 00 &
@ ° ° ? 0°
T T T T T T T T T T T T
0 20 40 60 80 100 -8 6 -4 -2 0 2
Index x[2:n]
Histogram of x Normal Q-Q Plot
8 -] o ©
0 Rl
[SU 7]
2 o4
5 8- £
S]
S o] [SI
o] o
toe o g YA
&
0 €+
o - P o
I T T T T T 1 T T T T T
-8 -6 -4 -2 0 2 4 2 -1 0 1 2
X Theoretical Quantiles

Fig. 1.2. 4-Plot

Simple Plots May Reveal the Unexpected

Although in “computational statistics”, the emphasis is generally on interac-
tive graphical displays or on displays of high-dimensional data, as we have
seen, very simple plots are also useful. A simple plot of the data will often
reveal structure or other characteristics of the data that numerical summaries
do not.

An important property of data that is often easily seen in a graph is
the unit of measurement. Data on continuous variables are often rounded or
measured on a coarse grid. This may indicate other problems in the collection
of the data. The horizontal lines in Figure 1.3 indicate that the data do not
come from a continuous distribution, even if the data analyst thinks they
did, and is using a model based on the assumption that they did. Whether
we can use methods of data analysis that assume continuity depends on the
coarseness of the grid or measurement; that is, on the extent to which the
data are discrete or the extent to which they have been discretized.

10

1 Mathematical and Statistical Preliminaries

15
|

@o

o ao

©o o oo oo

o oo

o o
o @o o o

o oo

o ® o oo

o @ o 00 oo

oa o @
oo o oo o

o o
oo o@ ©0o0 o o

> 2 4 oo o oom o o o ©coo0o® o
coo oo o oo o o o @0 @ o
oo o omo ® ®@ o o @ o ®
o ® om® ® o ®o oo o oo
c@ ™ o ocoocow®@
w - oo@ coo o oo
oo w@o o o
o oo o
o o
o
T T T T T T
o] 2 4 6 8 10

Fig. 1.3. Discrete Data, Rounded Data, or Data Measured Imprecisely

We discuss graphical methods further in Chapter 8. The emphasis is on
the use of graphics for discovery. The field of statistical graphics is much
broader, of course, and includes many issues of design of graphical displays
for conveying (rather than discovering) information.

1.2 Mathematical Tools for Identifying Structure in Data

While the features of interest in a dataset may be such things as colors or other
nominal properties, in order to carry out a meaningful statistical analysis, the
data must be numeric or else must have been mapped into the real number
system.

We think of a set of n observations on a single variable or feature as a
vector in the n-dimensional vector space of real numbers, which we denote by
IR". Likewise, we think of a set of m variables or features that are associated
with a single observational unit as a vector in the m-dimensional vector space
of real numbers, IR™. The matrix whose elements are the n observations on the
m variables is in the space that we denote by IR™*™. I do not use different
notation to distinguish a vector from a scalar (that is, from a single real
number); hence, “z” may represent either a scalar or a vector, and “0” may
represent the scalar zero or a vector of zeros. I usually use an upper-case letter
to represent a matrix (but upper-case is also used for other things, such as
random variables).

1.2 Mathematical Tools for Identifying Structure in Data 11
Useful Measures in Vector Spaces

Three basic mathematical objects that we will work with are vectors, matri-
ces, and functions. These are special classes of objects. They are members of
vector spaces, which are mathematical structures consisting of a set and two
operations,

e an operation of addition for any two elements in the class that yields an
element in the class

e an operation of multiplication of any element in the class by a real scalar
that yields an element in the class,

and a special member called the additive identity, which when added to any
element in the vector space yields that same element.

In the following, we will generally refer to the members of a vector space as
“elements”, although occasionally we will call them “vectors”, although they
may not be vectors in the usual sense.

For any class of objects with these two operations and an additive identity,
that is, for vector spaces, we can define three useful types of functions. These
are inner products, norms, and metrics.

Inner Products

The inner product of two elements x and y, denoted by (z, y), is any function
into IR that satisfies the following conditions:

e nonnegativity for (z,z):
forallz #0, (z,z)>0; (1.1)
e mapping of (z,0) and (0, z):
for allz, (0,z) = (x,0) = (0,0) = 0; (1.2)

e commutativity:
forallz,y, (z,y) = (y,); (1.3)

e factoring of scalar multiplication in inner products:
for all z,y, and for alla € R, (az,y) = a{z,y); (1.4)
e relation of addition in the vector space to addition of inner products:
for all z,y,z, (x+y,z)={(x,2)+ (y,2). (1.5)

(In the above statements, “for all” means for all elements in the set for which
the function is defined.)
An important property of inner products is the Cauchy-Schwarz inequality:

12 1 Mathematical and Statistical Preliminaries

(z,y) < (@, a) 2 (y,y)'/2. (1.6)

This is easy to see by first observing that for every real number ¢,

0 < (((tz +y), (tz +y)))
(z,2)t* + 2(z,)t + (y,v)
= at® + bt +c,

where the constants a, b, and ¢ correspond to the inner products in the pre-
ceding equation. This nonnegative quadratic in ¢ cannot have two distinct real
roots, hence the discriminant, b — 4ac, must be less than or equal to zero;

that is,
1\2
(§b) < ac.

By substituting and taking square roots, we get the Cauchy-Schwarz inequal-
ity. It is also clear from this proof that equality holds only if t = 0 or if y = rx
for some scalar 7.

The inner product or dot product of two vectors x and y in IR™, also denoted
by zTy, is defined by

(@,y) =2y = (L.7)
i=1

Notice that (z,y) = (y,z) and 2Ty = (z%y)T =y a.
The inner product or dot product of the real functions f and g over the
domain D, denoted by (f, g)p or usually just by (f, g), is defined as

(f.a)p = /D f(@)g() da (18)

if the (Lebesgue) integral exists. By checking the defining properties of an
inner product, it is easy to see that the functions defined in equations (1.7)
and (1.8) are norms (exercise).

Dot products of functions (as well as of vectors and matrices) over the
complex number field are defined in terms of integrals (or sums) of complex
conjugates,

(f.a)p = /D f(2)g(x) da,

if the integral exists. The notation g(-) denotes the complex conjugate of the
function g(-). Often, even if the vectors and matrices in data analysis have
real elements, many functions of interest are complex. In this book, however,
we will generally assume the functions are real-valued, and so we do not write
inner product using the complex conjugate.

To avoid questions about integrability, we generally restrict attention to
functions whose dot products with themselves exist; that is, to functions that
are square Lebesgue integrable over the region of interest. The set of such

1.2 Mathematical Tools for Identifying Structure in Data 13

square integrable functions is denoted L?(D). In many cases, the range of
integration is the real line, and we may use the notation L?(IR), or often just
L?, to denote that set of functions and the associated inner product.

We can also define an inner product for matrices, but the matrix inner
product is not so useful for our purposes, so we will not define it here.

Norms

The “size” of an object with multiple elements can be quantified by a real-
valued function called a norm, often denoted by || - ||.
A norm is any function into IR that satisfies the following conditions:

e nonnegativity:

forallz #0, |z| >0 (1.9)
e mapping of the identity:
forz =0, || =0; (1.10)
e relation of scalar multiplication to real multiplication:
for all a € R and for all z, |laz| = |a|||x]||; (1.11)
e triangle inequality:
for all z,y, ||z +yl < 2l + lyll (1.12)

(Again, “for all” means for all elements in the set for which the function is
defined.)
For matrix norms we usually also require an additional condition:

e consistency property:
for all conformable matrices A, B, ||AB| < ||All|| B (1.13)

There are various kinds of norms. One of the most useful norms is that
induced by an inner product:

[zl = v/ (2, z). (1.14)

(In Exercise 1.3a you are asked to show that the function defined from an
inner product in this way is indeed a norm.)
A useful class of norms, called L, norms, for p > 1, are defined as

ey = ({Jal’2, japr2)) " (1.15)

(In the expression above, |z|P/? means the object of the same type as = whose
elements are the absolute values of the corresponding elements of x raised to
the p/2 power. For the n-vector z, |z|P/2 = (|z1[P/2, ..., |z, [P/?).)

14 1 Mathematical and Statistical Preliminaries

As above, we often use a subscript to designate a particular norm, for
example, ||z||, or ||A||r. For vectors, the norm arising from the inner prod-
uct (1.14) is denoted by ||z||2, although it is so commonly used that the
simple notation ||z| usually refers to this vector norm. It is sometimes called
the Euclidean norm or the Ly norm.

For matrices, the norm arising from the inner product (1.14) is called the
Frobenius norm, denoted by ||A|r, and is equal to (3, ; afj)l/Q. Usually a
matrix norm denoted without a subscript is the Frobenius matrix norm, but
this is not as universally used as the notation without subscript to denote the
Euclidean vector norm. (The Frobenius matrix norm is also sometimes called
the “Euclidean norm”, but in the case of matrices that term is more widely
used to refer to the Lo matrix norm defined below.)

Matrix norms can also be defined in terms of vector norms, and the Lo

vector norm results in a matrix norm that is different from the Frobenius

norm. For clarity, we will denote a vector norm as || - ||, and a matrix norm
as || - |lm- (This notation is meant to be generic; that is, || - ||, represents any
vector norm.) The matrix norm || - ||m induced by || - ||v is defined by

[Az]ly

[|A]lm = max (1.16)

w20l
It is easy to see that an induced norm is indeed a matrix norm. The first
three properties of a norm are immediate, and the consistency property can
be verified by applying the definition (1.16) to AB and replacing Bx with y;
that is, using Ay.

We usually drop the v or M subscript, and the notation || - || is overloaded
to mean either a vector or matrix norm. (Overloading of symbols occurs in
many contexts, and we usually do not even recognize that the meaning is
context-dependent. In computer language design, overloading must be recog-
nized explicitly because the language specifications must be explicit.)

From equation (1.16) we have the Ly matrix norm:

[All2 = max [[Az]l;.
lzll2=1

The induced norm of A given in equation (1.16) is sometimes called the
mazimum magnification by A. The expression looks very similar to the max-
imum eigenvalue, and indeed it is in some cases.

For any vector norm and its induced matrix norm, we see from equa-
tion (1.16) that

| Az]l < |1A] o] (1.17)

because ||z|| > 0.

Metrics

The distance between two elements of a vector space can be quantified by a
metric, which is a function A from pairs of elements in a vector space into IR
satisfying the properties

1.2 Mathematical Tools for Identifying Structure in Data 15
e nonnegativity:
for all z,y with x £y, A(x,y) > 0; (1.18)

e mapping of the identity:

for all z, A(z,z)=0; (1.19)
e commutativity:
for all z,y, A(x,y) = Ay, z); (1.20)
e triangle inequality:
for all z,y,z, A(z,z) < A(z,y) + Ay, 2). (1.21)

(Again, “for all” means for all elements in the set for which the function is
defined.)

There are various kinds of metrics, and we often use a subscript to des-
ignate a particular metric, for example, Aq(z,y) or Ap(z,y). Many useful
metrics are induced by norms. One of the most useful induced metrics for
vectors is the one induced by the Euclidean norm:

Alz,y) = [lz = yll2- (1.22)

Any norm applied in this way defines a metric (Exercise 1.3b).

For vectors, the metric (1.22) is called the Euclidean metric (or “Euclidean
distance”) or the Lo metric. Notice that this metric is the square root of the
inner product (xz —y)T(x — y). This suggests a generalization to

V@ —y)TA@ —y) (1.23)

for a given positive definite matrix A. This is the elliptic metric. If A is the
inverse of a variance-covariance matrix, the quantity in (1.23) is sometimes
called the Mahalanobis distance between x and y. The expression without the
square root is often used; it may also be called the Mahalanobis distance, but
more properly is called the Mahalanobis squared distance (see also page 392).
Notice that if A = I, the Mahalanobis squared distance is the square of
the Euclidean distance. The Mahalanobis squared distance is not a metric.
(Because of the square, it does not satisfy the triangle inequality.)

Norms and metrics play an important role in identifying structure in data.

Linear Combinations and Linear Independence

A very common operation in working with vectors is the addition of a scalar
multiple of one vector to another vector,

z=ax+vy, (1.24)

16 1 Mathematical and Statistical Preliminaries

where a is a scalar and « and y are vectors conformable for addition. Viewed
as a single operation with three operands, this is called an “axpy” for obvious
reasons. (Because the Fortran programs to perform this operation were called
saxpy and daxpy, the operation is also sometimes called “saxpy” or “daxpy”.)
The axpy operation is called a linear combination. Such linear combinations
of vectors are the basic operations in most areas of linear algebra. The com-
position of axpy operations is also an axpy; that is, one linear combination
followed by another linear combination is a linear combination. In general, for
the vectors vy,..., v, and scalars a; = --- = a = 0, we form

z=aiv1 + -+ apvk. (1.25)

Any linear combination such as (1.25) can be decomposed into a sequence of
axpy operations.

If a given vector can be formed by a linear combination of one or more
vectors, the set of vectors (including the given one) is said to be linearly
dependent; conversely, if in a set of vectors no one vector can be represented
as a linear combination of any of the others, the set of vectors is said to be
linearly independent.

Linear independence is one of the most important concepts both in linear
algebra and in statistics.

We can see that the definition of a linearly independent set of vectors
{v1,..., v} is equivalent to stating that if

a1vy + - apvg =0, (1.26)

then a1 = -+ =ay = 0.

If the set of vectors {v1,...,vr} is not linearly independent, then it is
possible to select a mazimal linearly independent subset; that is, a subset of
{v1,...,v;} that is linearly independent and has maximum cardinality. We
do this by selecting an arbitrary vector, v;,, and then seeking a vector that
is independent of v;,. If there are none in the set that is linearly independent
of v;,, then a maximum linearly independent subset is just the singleton,
because all of the vectors must be a linear combination of just one vector
(that is, a scalar multiple of that one vector). If there is a vector that is
linearly independent of v;, , say v;,, we next seek a vector in the remaining set
that is independent of v;, and v;,. If one does not exist, then {v;,v;,} is a
maximal subset because any other vector can be represented in terms of these
two and hence, within any subset of three vectors, one can be represented
in terms of the two others. Thus, we see how to form a maximal linearly
independent subset, and we see there is a unique maximum cardinality of any
subset of linearly independent vectors.

Basis Sets

If each vector in the vector space V can be expressed as a linear combination
of the vectors in some set GG, then G is said to be a generating set or spanning

1.2 Mathematical Tools for Identifying Structure in Data 17

set of V. If, in addition, all linear combinations of the elements of G are in V,
the vector space is the space generated by G.

A set of linearly independent vectors that generate or span a space is said
to be a basis for the space. The cardinality of a basis set for a vector space
consisting of n-vectors is n. The cardinality of a basis set may be countably
infinite, such as in the case of a vector space (or “linear space”) of functions.

Normalized Vectors

The Euclidean norm of a vector corresponds to the length of the vector x in a
natural way; that is, it agrees with our intuition regarding “length”. Although,
as we have seen, this is just one of many vector norms, in most applications
it is the most useful one. (I must warn you, however, that occasionally I will
carelessly but naturally use “length” to refer to the order of a vector; that is,
the number of elements. This usage is common in computer software packages
such as R and SAS IML, and software necessarily shapes our vocabulary.)

Dividing a given vector by its length normalizes the vector, and the re-
sulting vector with length 1 is said to be normalized; thus

1
==
[l

8

(1.27)

is a normalized vector. Normalized vectors are sometimes referred to as “unit
vectors”, although we will generally reserve this term for a special kind of
normalized vector that has Os in all positions except one and has a 1 in that
position. A normalized vector is also sometimes referred to as a “normal vec-
tor”. I use “normalized vector” for a vector such as Z in equation (1.27) and
use the “normal vector” to denote a vector that is orthogonal to a subspace.

Orthogonal Vectors and Orthogonal Vector Spaces
Two vectors v; and ve such that
<’U1,1)2> =0 (128)

are said to be orthogonal, and this condition is denoted by vy L vy. (Some-
times we exclude the zero vector from this definition, but it is not important
to do so.) Normalized vectors that are all orthogonal to each other are called
orthonormal vectors. (If the elements of the vectors are from the field of com-
plex numbers, orthogonality and normality are defined in terms of the dot
products of a vector with a complex conjugate of a vector.)

A set of nonzero vectors that are mutually orthogonal are necessarily lin-
early independent. To see this, we show it for any two orthogonal vectors and
then indicate the pattern that extends to three or more vectors. Suppose v;

18 1 Mathematical and Statistical Preliminaries

and vy are nonzero and are orthogonal; that is, (v1,v2) = 0. We see immedi-
ately that if there is a scalar a such that v; = avs, then a must be nonzero
and we have a contradiction because (v1,ve) = a(v1,v1) # 0. For three mutu-
ally orthogonal vectors, v1, v9, and v3, we consider v; = avs + bvs for a or b
nonzero, and arrive at the same contradiction.

Orthogonalization Transformations

Given m nonnull, linearly independent vectors, x1,...,Z.,, it is easy to form
m orthonormal vectors, Z1,...,Zmy, that span the same space. A simple way
to do this is sequentially. First normalize z; and call this Z;. Now, suppose
that xo is represented in an orthogonal coordinate system in which one axis
is 1, and determine the coordinate of x5 for that axis. This means the point
of intersection of an orthogonal line from 2 to 1. This is an orthogonal pro-
jection, so next, orthogonally project x2 onto £; and subtract this projection
from x5. The result is orthogonal to Z; hence, normalize this and call it Z».
These first two steps are

1
1 = 77 L1,
[E3Y
(1.29)
1

Tz — (@1, w2) 7|

({EQ — <(fl, {E2>£z1).

These are called Gram-Schmidt transformations. We discuss them further be-
ginning on page 219.

Series Expansions in Basis Sets

Basis sets are useful because we can represent any element in the vector space
uniquely as a linear combination of the elements in the basis set. If {vy, v2, ...}
is a given basis set for a vector space containing the element x, then there are
unique constants cq, ca, ... such that

T = chvk. (1.30)
k

(In this expression and many of those that follow, I do not give the limits of
the summation. The index k goes over the full basis set, which we assume to
be countable, but not necessarily finite.)

In the case of finite-dimensional vector spaces, the set {v1,ve, ...} is finite;
its cardinality is the dimension of the vector space.

The reason that basis sets and expansions in a basis set are important is for
the use of expansions in approximating and estimating vectors, matrices, and
functions. Approximations and estimation are major topics in later chapters
of this book.

1.2 Mathematical Tools for Identifying Structure in Data 19

A Dbasis set whose elements are normalized and mutually orthogonal is
usually the best to work with because they have nice properties that facilitate
computations, and there is a large body of theory about their properties.

If the basis set is orthonormal, we can easily determine the coeflicients cy,
in the expansion (1.30):

¢k = (z,vg). (1.31)

The coefficients {cx} are called the Fourier coefficients of x with respect to
the orthonormal basis {v}.

If = has the expansion above, the square of the Lo norm of the function is
the sum of squares of the Fourier coefficients:

(x,x) = <chvk, chvk>
k k
=3 el (1.32)
k

In applications, we approrimate an element of a vector space using a trun-
cated orthogonal series. In this case, we are interested in the residual,

J
T — Z CkUk, (1.33)
k=1
where j is less than the upper bound on the index in equation (1.30).

Series Expansions of Functions

The basic objects such as inner products, norms, and metrics can be defined
for functions in terms of integrals, just as these objects are defined for vectors
in terms of sums. With functions, of course, we need to consider the existence
of the integrals, and possibly make some slight changes in definitions.

We will change the notation slightly for functions, and then use it consis-
tently in later chapters such as Chapters 4 and 10 where we approximate or
estimate functions. We will start the index at 0 instead of 1, and we will use
g to denote the k' function in a generic basis set. We call this “0 equals
first” indexing.

After these basic objects are in place, we can define concepts such as linear
independence and orthogonality just as we have done above. For a given class
of functions, we may also be able to identify a basis set. If the class is very
restricted, such as say, the class of all real polynomials of degree k or less over
a finite interval [a, b], then the basis set may be finite and rather simple. For
more interesting classes of functions, however, the basis set must be infinite.
(See Section 4.2 for some basis sets for functions.) For approximating functions
using an infinite basis set, it is obviously necessary to use a truncated series.

20 1 Mathematical and Statistical Preliminaries

Because, in practice we deal with truncated series, the error due to that
truncation is of interest. For the function f, the error due to finite truncation
at j terms of the infinite series is the residual function f — > "7 _, ¢xq-

The mean squared error over the domain D is the scaled, squared Ly norm

of the residual,
2

j

f—= ch%) (1.34)

k=0
where d is some measure of the domain D. (If the domain is the interval [a, b],
for example, one choice is d = b — a.)

A very important property of Fourier coefficients is that they yield the
minimum mean squared error for an expansion in any given subset of a basis
set of functions {g¢;}; that is, for any other constants, {a;}, and any j,

J J
Hf—zck% ‘f—zaqu
k=0 k=0

1
d

2 2

< (1.35)

(see Exercise 1.4).

Another important property of the residuals, analogous to that of the
linear least squares estimator is that the residual or error, f — Zi:o CLqk, 18
orthogonal to the approximation, that is,

J J
<Z Crqk, f — Z Cka> =0. (136)
k=0 k=0

Partial sums of squares of Fourier coefficients, Zi:o ci, for any j are
bounded by ||f]|?, that is,

i
> lel® < NI£1P. (1.37)

k=0

This is called Bessel’s inequality, and, it follows from equation (1.32) or from
J
= crar
k=0

j
2
= AP = lenl®.
k=0

The optimality of Fourier coefficients, the orthogonality of the residual, and
Bessel’s inequality, that is, equations (1.35), (1.36), and (1.37), apply for or-
thogonal series expansions in any vector space.

There are some additional special considerations for expansions of func-
tions, which we will address in Chapter 4.

2

0<

1.2 Mathematical Tools for Identifying Structure in Data 21
Properties of Functions and Operations on Functions

There are many important properties of functions, such as continuity and
differentiability, that we will assume from time to time.
Another important property of some functions is convexity. A function f
is a convex function if for any two points x and y in the domain of f and
€ (0,1), then

flwz + (1 —w)y) Swf(z)+ (1 —w)f(y); (1.38)

that is, by the definition of convexity, f is convex if its value at the weighted
average of two points does not exceed the weighted average of the function at
those two points. If the inequality (1.38) is strict, then the function is said to
be strictly convex.

If f is a convex function, then — f is said to be a concave function. Many
interesting functions in statistical applications are concave.

If f is convex over D then there is a b such that for any x and ¢ in D,

bz —t) + f(t) < f(x). (1.39)

Notice that for a given b, L(x) = b(xz — t) + f(¢) is a straight line through the
point (¢, f(t)), with slope b.
For functions over the same domain, the axpy operation, such as in the
expansions in basis sets, is one of the most common operations on functions.
If the domain of the function f is a subset of the range of the function g,
then the composition of f and g, denoted f o g, is defined as

foglx) = flg(x)). (1.40)

The convolution of two functions f and g is the function, which we denote
as f * g, defined as

frg)= [1o =00t (1.41)

if the integral exists. Note that the range of integration (in the appropriate
dimension) must be such that the integrand is defined over it. (Either of the
functions may be defined to be zero over subdomains, of course.)

We often refer to a function with an argument that is a function as a
functional. Function transforms, such as Fourier transforms and probability
characteristic functions, are functionals. In probability theory, many parame-
ters are defined as functionals; see examples on page 31.

Kernel Functions

A function specifying operations involving two variables is often called a kernel
function. The function f in the integrand in the definition of the convolution
above is a simple type of kernel. In that case, the two variables are combined

22 1 Mathematical and Statistical Preliminaries

into a single variable, but to emphasize the role of the two arguments, we
could write K (z,t) = f(x —t).

Properties of a particular process involving some kernel function K(z,y)
can often be studied by identifying particular properties of the kernel.

If a kernel K is defined over the same region for each of its arguments and
if it has the property K (z,y) = K(y,) for all z and y for which it is defined,
then K is said to be symmetric.

We will encounter kernel functions in various applications in later chap-
ters. Kernels are often called “filters”, especially in applications in function
approximation or estimation. The conditional PDF py | in equation (1.69)
below can be thought of as a kernel. A kernel of that form is often called
a “transition kernel”. The properties of transition kernels are important in
Markov chain Monte Carlo methods, which we will discuss in later chapters.

Properties of Matrices and Operations on Matrices

A common data structure for statistical analysis is a rectangular array; rows
represent individual observational units, or just “observations”, and columns
represent the variables or features that are observed for each unit. If the values
of the variables are elements of a field, for example if they are real numbers, the
rectangular array is a matrix, and the mathematics of matrices can be useful
in the statistical analysis. (If the values of the variables are other things, such
as “red” or “green”, or “high” or “low”, those values can be mapped to real
numbers, and again, we have a matrix, but the algebra of matrices may or
may not be useful in the analysis.) We will concentrate on situations in which
numeric values appropriately represent the observational data.

If the elements of a matrix X represent numeric observations on variables
in the structure of a rectangular array as indicated above, the mathematical
properties of X carry useful information about the observations and about the
variables themselves. In addition, mathematical operations on the matrix may
be useful in discovering structure in the data. These operations include various
transformations and factorizations that we discuss in Chapters 5 and 9. We
also address some of the computational details of operations on matrices in
Chapter 5.

Symmetric Matrices

A matrix A with elements a;; is said to be symmetric if each element a;; has
the same value as a;;. Symmetric matrices have useful properties that we will
mention from time to time.

Symmetric matrices provide a generalization of the inner product. If A
is symmetric and z and y are conformable vectors, then the bilinear form
2T Ay has the property that 2T Ay = yT Az, and hence this operation on z
and y is commutative, which is one of the properties of an inner product.

1.2 Mathematical Tools for Identifying Structure in Data 23

More generally, a bilinear form is a kernel function of the two vectors, and a
symmetric matrix corresponds to a symmetric kernel.

An important type of bilinear form is zT Az, which is called a quadratic
form.

Nonnegative Definite and Positive Definite Matrices

A real symmetric matrix A such that for any real conformable vector x the
quadratic form T Az is nonnegative, that is, such that

zTAx >0, (1.42)

is called a nonnegative definite matriz. We denote the fact that A is nonneg-
ative definite by
A= 0.

(Note that we consider the zero matrix, 0, xn, to be nonnegative definite.)
A symmetric matrix A such that for any (conformable) vector x # 0 the
quadratic form
zT Az >0 (1.43)

is called a positive definite matriz. We denote the fact that A is positive
definite by
A= 0.

(Recall that A > 0 and A > 0 mean, respectively, that all elements of A are
nonnegative and positive.) When A and B are symmetric matrices of the same
order, we write A = B to mean A — B = 0 and A > B to mean A — B > 0.
Nonnegative and positive definite matrices are very important in applications.
We will encounter them often in this book.

A kernel function K defined as

K(z,y) = 2" Ay, (1.44)

is said to be nonnegative or positive definite if A has the corresponding prop-
erty. (More general types of kernel may also be described as nonnegative or
positive definite, but the meaning is similar to the meaning in the bilinear
form of equation (1.44).)

In this book we use the terms “nonnegative definite” and “positive defi-
nite” only for symmetric matrices or kernels. In other literature, these terms
may be used more generally; that is, for any (square) matrix that satis-
fies (1.42) or (1.43).

Systems of Linear Equations

One of the most common uses of matrices is to represent a system of linear
equations

24 1 Mathematical and Statistical Preliminaries

Az =b. (1.45)

Whether or not the system (1.45) has a solution (that is, whether or not for
a given A and b there is an z such that Az = b) depends on the number of
linearly independent rows in A (that is, considering each row of A as being a
vector). The number of linearly independent rows of a matrix, which is also
the number of linearly independent columns of the matrix, is called the rank
of the matrix. A matrix is said to be of full rank if its rank is equal to either
its number of rows or its number of columns. A square full rank matrix is
called a nonsingular matrix. We call a matrix that is square but not full rank
singular.
The system (1.45) has a solution if and only if

rank(A|b) < rank(A), (1.46)

where Alb is the matrix formed from A by adjoining b as an additional column.
(This and other facts cited here are proved in standard texts on linear algebra.)
If a solution exists, the system is said to be consistent. (The common regression
equations, which we will encounter in many places throughout this book, do
not satisfy the condition (1.46).)

We now briefly discuss the solutions to a consistent system of the form
of (1.45).

Matrix Inverses
If the system Ax = b is consistent then
xr=A"b (1.47)
is a solution, where A~ is any matrix such that
AATA=A, (1.48)

as we can see by substituting A~b into AA~ Ax = Ax.

Given a matrix A, a matrix A~ such that AA~ A = A s called a generalized
inverse of A, and we denote it as indicated. If A is square and of full rank,
the generalized inverse, which is unique, is called the inverse and is denoted
by A~1. It has a stronger property than (1.48): AA~! = A='A = I, where I
is the identity matrix.

To the general requirement AA~ A = A, we successively add three require-
ments that define special generalized inverses, sometimes called respectively
g2, g3, and g4 inverses. The “general” generalized inverse is sometimes called
a g1 inverse. The g4 inverse is called the Moore-Penrose inverse.

For a matrix A, a Moore-Penrose inverse, denoted by AT, is a matrix that
has the following four properties.

1.2 Mathematical Tools for Identifying Structure in Data 25

1. AATA = A. Any matrix that satisfies this condition is called a gener-
alized inverse, and as we have seen above is denoted by A~. For many
applications, this is the only condition necessary. Such a matrix is also
called a gy inverse, an inner pseudoinverse, or a conditional inverse.

2. ATAAT = AT. A matrix AT that satisfies this condition is called an outer
pseudoinverse. A gi inverse that also satisfies this condition is called a go
inverse or reflexive generalized inverse, and is denoted by A*.

3. AT A is symmetric.

4. AAT is symmetric.

The Moore-Penrose inverse is also called the pseudoinverse, the p-inverse, and
the normalized generalized inverse.

We can see by construction that the Moore-Penrose inverse for any matrix
A exists and is unique. (See, for example, Gentle, 2007, page 102.)

The Matrix XTX

When numerical data are stored in the usual way in a matrix X, the matrix
XTX often plays an important role in statistical analysis. A matrix of this
form is called a Gramian matrix, and it has some interesting properties.
First of all, we note that XTX is symmetric; that is, the (ij)"" element,
Yk TkiZr,; is the same as the (5i)t" element. Secondly, because for any y,
(Xy)* Xy >0, XTX is nonnegative definite.
Next we note that

XX =0 <= X=0. (1.49)

The implication from right to left is obvious. We see the left to right impli-
cation by noting that if XTX = 0, then the i*" diagonal element of XTX is
zero. The i*® diagonal element is) ; %, so we have that z;; for all j and i;
hence X = 0.

Another interesting property of a Gramian matrix is that, for any matrices
B and C (that are conformable for the operations indicated),

BXT'X =0x'Xx +— BXT'"=0Xx". (1.50)

The implication from right to left is obvious, and we can see the left to right
implication by writing

(BX'™X —ox*x)(B* - 0T = (BXT —oX")(BxT - Ccx™)T,

and then observing that if the left-hand side is null, then so is the right-
hand side, and if the right-hand side is null, then BXT — CX™ = 0 because
XTX =0 = X =0, as above. Similarly, we have

X'XB=X"XxC +— Xx'B=X"C (1.51)

26 1 Mathematical and Statistical Preliminaries

The generalized inverses of XTX have useful properties. First, we see
from the definition, for any generalized inverse (XTX)~, that (XTX)")7
is also a generalized inverse of XTX. (Note that (XTX)~ is not necessarily
symmetric.) Also, we have, from equation (1.50),

X(XTX)"XTx = X. (1.52)

This means that (XTX)~ X7 is a generalized inverse of X.
The Moore-Penrose inverse of X has an interesting relationship with a
generalized inverse of XTX:

XXt =X(xTx)"xT. (1.53)

This can be established directly from the definition of the Moore-Penrose
inverse.

An important property of X (XTX)~ X7 is its invariance to the choice of
the generalized inverse of X T X . Suppose G is any generalized inverse of XX
Then, from equation (1.52), we have X (XTX)"XTX = XGXTX, and from
the implication (1.50), we have

XGXT =Xx(XT"X)" X", (1.54)

that is, X (XTX)~ X" is invariant to the choice of generalized inverse (which
of course, it must be for the Moore-Penrose inverse to be unique, as we stated
above).

The matrix X (XTX)~ X" has a number of interesting properties in addi-
tion to those mentioned above. We note

(XXTX)" X)) (X(XTX)"X") = X(XTX)"(XTX)(XTX) x"
= X(xXTx)"xT, (1.55)

that is, X(XTX)~ X7 is idempotent. (A matrix A is idempotent if AA = A.
It is clear that the only idempotent matrix that is of full rank is the identity
I.) Any real symmetric idempotent matrix is a projection matriz.

The most familiar application of the matrix X (XTX)~ X7 is in the analy-
sis of the linear regression model y = X 3+e¢. This matrix projects the observed
vector y onto a lower-dimensional subspace that represents the fitted model:

7=XXTX)"XxTy. (1.56)

Projection matrices, as the name implies, generally transform or project
a vector onto a lower-dimensional subspace. We will encounter projection
matrices again in Chapter 9.

Eigenvalues and Eigenvectors

Multiplication of a given vector by a square matrix may result in a scalar
multiple of the vector. If A is an n X n matrix, v is a vector not equal to 0,
and c is a scalar such that

1.2 Mathematical Tools for Identifying Structure in Data 27

Av = cv, (1.57)

we say v is an eigenvector of A and c is an eigenvalue of A.

We should note how remarkable the relationship Av = cv is: The effect of
a matrix multiplication of an eigenvector is the same as a scalar multiplication
of the eigenvector. The eigenvector is an invariant of the transformation in
the sense that its direction does not change under the matrix multiplication
transformation. This would seem to indicate that the eigenvector and eigen-
value depend on some kind of deep properties of the matrix, and indeed, this
is the case.

We immediately see that if an eigenvalue of a matrix A is 0, then A must
be singular.

We also note that if v is an eigenvector of A, and ¢ is any nonzero scalar,
tv is also an eigenvector of A. Hence, we can normalize eigenvectors, and we
often do.

If A is symmetric there are several useful facts about its eigenvalues and
eigenvectors. The eigenvalues and eigenvector of a (real) symmetric matrix
are all real. The eigenvectors of a symmetric matrix are (or can be chosen to
be) mutually orthogonal. We can therefore represent a symmetric matrix A

as
A=vevT, (1.58)

where V' is an orthogonal matrix whose columns are the eigenvectors of A and
C is a diagonal matrix whose (ii)'" element is the eigenvalue corresponding to
the eigenvector in the i*" column of V. This is called the diagonal factorization
of A.

If A is a nonnegative (positive) definite matrix, and c¢ is an eigenvalue
with corresponding eigenvector v, if we multiply both sides of the equation
Av = cv, we have vTAv = cv™v > 0(> 0), and since vTv > 0, we have
¢ > 0(> 0). That is to say, the eigenvalues of a nonnegative definite matrix
are nonnegative, and the eigenvalues of a positive definite matrix are positive.

The maximum modulus of any eigenvalue in a given matrix is of interest.
This value is called the spectral radius, and for the matrix A, is denoted by
p(A):

p(A) = max|c;, (1.59)

where the ¢;’s are the eigenvalues of A.

The spectral radius is very important in many applications, from both
computational and statistical standpoints. The convergence of some itera-
tive algorithms, for example, depend on bounds on the spectral radius. The
spectral radius of certain matrices determines important characteristics of
stochastic processes.

Two interesting properties of the spectral radius of the matrix A = (a;;)
are

p(A) < mgxzi: laijl, (1.60)

28 1 Mathematical and Statistical Preliminaries

and

p(A) < m;ctxz |ais]. (1.61)

The spectral radius of the square matrix A is related to the Ly norm of A

by
[All2 = /p(ATA). (1.62)

We refer the reader to general texts on matrix algebra for proofs of the facts
we have stated without proof, and for many other interesting and important
properties of eigenvalues, which we will not present here.

Singular Values and the Singular Value Decomposition

Computations with matrices are often facilitated by first decomposing the ma-
trix into multiplicative factors that are easier to work with computationally, or
else reveal some important characteristics of the matrix. Some decompositions
exist only for special types of matrices, such as symmetric matrices or positive
definite matrices. One of most useful decompositions, and one that applies to
all types of matrices, is the singular value decomposition. We discuss it here,
and in Section 5.3 we will discuss other decompositions.
An n x m matrix A can be factored as

A=UDV", (1.63)

where U is an n x n orthogonal matrix, V' is an m x m orthogonal matrix, and
D is an n x m diagonal matrix with nonnegative entries. (An n x m diagonal
matrix has min(n, m) elements on the diagonal, and all other entries are zero.)

The number of positive entries in D is the same as the rank of A. The
factorization (1.63) is called the singular value decomposition (SVD) or the
canonical singular value factorization of A. The elements on the diagonal of
D, d;, are called the singular values of A. We can rearrange the entries in D
so that d; > ds > ---, and by rearranging the columns of U correspondingly,
nothing is changed.

If the rank of the matrix is r, we have dy > --- > d, > 0, and if r <

min(n,m), then d,41 = -+ = diin(n,m) = 0. In this case
D, 0
o-[%e).

where D, = diag(dy,...,d.).

From the factorization (1.63) defining the singular values, we see that the
singular values of AT are the same as those of A.

For a matrix with more rows than columns, in an alternate definition of the
singular value decomposition, the matrix U is n x m with orthogonal columns,
and D is an m x m diagonal matrix with nonnegative entries. Likewise, for a

1.3 Data-Generating Processes; Probability Distributions 29

matrix with more columns than rows, the singular value decomposition can be
defined as above but with the matrix V' being m x n with orthogonal columns
and D being m x m and diagonal with nonnegative entries.

If A is symmetric its singular values are the absolute values of its eigen-
values.

The Moore-Penrose inverse of a matrix has a simple relationship to its
SVD. If the SVD of A is given by UDVT, then its Moore-Penrose inverse is

AT =vDTUT, (1.64)

as is easy to verify. The Moore-Penrose inverse of D is just the matrix DT
formed by inverting all of the positive entries of D and leaving the other
entries unchanged.

Square Root Factorization of a Nonnegative Definite Matrix

If A is a nonnegative definite matrix (which, in this book, means that it is
symmetric), its eigenvalues are nonnegative, so we can write S = C %, where
S is a diagonal matrix whose elements are the square roots of the elements in
the C' matrix in the diagonal factorization of A in equation (1.58). Now we
observe that (VSVT)2 = VCVT = A; hence, we write

Az =VSVT, (1.65)

(Sl

)2 =A.

and we have (A

1.3 Data-Generating Processes; Probability
Distributions

The model for a data-generating process often includes a specification of a
random component that follows some probability distribution. Important de-
scriptors or properties of a data-generating process or probability distribution
include the cumulative distribution function (CDF), the probability density
function (PDF), and the expected value of the random variable or of certain
functions of the random variable. It is assumed that the reader is familiar
with the basics of probability distributions at an advanced calculus level, but
in the following we will give some definitions and state some important facts
concerning CDF's and PDFs.

For a random variable Y, the CDF, which we often denote with the same
symbols as we use to denote the distribution itself, is a function whose ar-
gument y is a real quantity of the same order as Y and whose value is the
probability that Y is less than or equal to y; that is,

Py(y) =Pr(Y <y |0). (1.66)

30 1 Mathematical and Statistical Preliminaries

We also sometimes use the symbol that represents the random variable as a
subscript on the symbol for the CDF, for example, Py (y).

A CDF is defined over the entire real line IR, or over the entire space IR%;
it is nondecreasing in y; and it is bounded between 0 and 1.

The notation for a CDF is usually an upper-case letter, and the notation for
the corresponding PDF is usually the same letter in lower case. We also may
use a subscript on the letter representing the PDF, for example, py (y). The
PDF is the derivative of the CDF (with respect to the appropriate measure),
and so

Pri) = [i (1.67)

The CDF or PDF of a joint distribution is denoted in an obvious fashion,
for example, py z(y, 2).

If Y = (Y1,Y2) with CDF Py (y), where Y is a dj-vector and Y3 is a da-
vector, then Py, (y1) = Pr(Y1 < y1) is called the marginal CDF of Y7, and is
given by

Pro) = [Pronae) i (1.68)

The CDF or PDF of a conditional distribution is denoted in an obvious
fashion, for example, py|z(y|z). Conditional functions are kernels, and a con-
ditional PDF may be interpreted as a transition density from the conditioning
random variable to the other random variable. We have the familiar relation-
ship

pyz(y,2) = py|z(yl2)pz(2). (1.69)

The region in which the PDF is positive is called the support of the distri-
bution.

The expected value of any (reasonable) function T" of the random variable
Y is denoted by E(T'(Y)), and if p(y) is the PDF of the random variable, is
defined as

BT = [Twrma. (1.70)

for a d-dimensional random variable. In the simplest form of this expression,
T is the identity, and E(Y) is the mean of the random variable Y.

Transforms of the CDF

There are three transforms of the CDF that are useful in a wide range of
statistical applications: the moment generating function, the cumulant gener-
ating function, and the characteristic function. They are all expected values
of a function of the variable of the transform.

The characteristic function, which is similar to a Fourier transform exists
for all CDFs. It is

o) = [exa(it™y) aP() (1.71)

1.3 Data-Generating Processes; Probability Distributions 31

A related function is the moment generating function,

MO = [exnli™)aP(), (1.72)

if the integral exists for ¢ in an open set that includes 0. In this case, note
that M (t) = ¢(t). The moment generating function is also called the Laplace
transform, although the usual definition of the Laplace transform is for an
integral over the positive reals, and the argument of the Laplace transform is
the negative of the argument ¢ in the moment generating function.

One of the useful properties of the characteristic function and the moment
generating function is the simplicity of those functions for linear combinations
of a random variable. For example, if we know the moment generating function
of a random variable Y to be My (t) and we have the mean Y of a random
sample of Y of size n, then the moment generating function of Y is just
Mg (1) = (My (t/n)".

Finally, the cumulant generating function is

K(t) = log(M(t)), (1.73)

if M(t) exists.
These functions are useful as generators of raw moments or cumulants.
For example, (assuming M (t) and E(Y) exist)

¢'(0) = M'(0) = E(Y).

These functions are also useful in series expansions and approximations of the
PDF or of other functions.

Statistical Functions of the CDF

In many models of interest, a parameter can be expressed as a functional of
the probability density function or of the cumulative distribution function of
a random variable in the model. The mean of a distribution, for example, can
be expressed as a functional M of the CDF P:

M(P) = /}R ydP(y). (1.74)

(Notice, following convention, we are using the same symbol M for the mean
functional that we use for the moment generating function. Using the same
symbol for in two ways, we have M (P) = M’(0).)

A functional that defines a parameter is called a statistical function.

For random variables in IR, the raw moment functionals

M, (P) = /]Ry dP(y), (1.75)

32 1 Mathematical and Statistical Preliminaries
and the quantile functionals
Z.(P) =P (n), (1.76)

are useful. (For a discrete distribution, the inverse of the CDF must be defined
because the function does not have an inverse. There are various ways of doing
this; see equation (1.142) for one way.)

An expected value, as in equation (1.70) is a functional of the CDF. Other
expectations are useful descriptors of a probability distribution; for example,

2(P) :/W (y—/IRdth(t)) (y—/IRdth(t))T dP(y)

= (E(Y - E(Y)) (E(Y —E(Y)))"
=E(YY") - (E(Y)) (EY))", (1.77)

which is the variance-covariance of Y, or just the variance of Y. The off-
diagonal elements in the matrix X'(P) are the pairwise covariances of the
elements of Y.

The variance-covariance is the second-order central moment. For univari-
ate random variables, higher-order central moments similar to equation (1.75)
are useful. For vector-valued random variables, moments higher than the sec-
ond are not very useful, except by considering the elements one at a time.
(What would be the third central moment analogous to the second central
moment defined in equation (1.77)7)

The covariances themselves may not be so useful for random variables that
do not have a normal distribution. Another approach to measuring the rela-
tionship between pairs of random variables is by use of copulas. A copula is a
function that relates a multivariate CDF to lower dimensional marginal CDF's.
The most common applications involve bivariate CDFs and their univariate
marginals, and that is the only one that we will use here. A two-dimensional
copula is a function C' that maps [0, 1] onto [0, 1] with the following proper-
ties for every u € [0,1] and every (u1,uz), (vi,v2) € [0,1]? with u; < vy and
U2 S Vg

C(0,u) = C(u,0) =0, (1.78)
C(1,u) =C(u,1) = u, (1.79)

and
C(u1,u2) — C(uy,v2) — C(vy,usz) + C(v1,v2) > 0. (1.80)

The arguments to a copula C' are often taken to be CDF's, which of course
take values in [0, 1]. The usefulness of copulas derive from Sklar’s theorem:

Let Py z be a bivariate CDF with marginal CDFs Py and Pz. Then
there exists a copula C' such that for every y, z € IR,

Py 2(y,2) = C(Py (y), P4 (). (181)

1.3 Data-Generating Processes; Probability Distributions 33

If Py and Pz are continuous everywhere, then C' is unique; otherwise
C is unique over the support of the distributions defined by Py and
Py.

Conversely, if C' is a copula and Py and Pz are CDFs, then the func-
tion Pyz(y,z) defined by equation (1.81) is a CDF with marginal
CDFs Py (y) and Pz(z).

Thus, a copula is a joint CDF of random variables with U(0, 1) marginals.
The proof of this theorem is given in Nelsen (2007), among other places.

For many bivariate distributions the copula is the most useful way to
relate the joint distribution to the marginals, because it provides a separate
description of the individual distributions and their association with each
other.

One of the most important uses of copulas is to combine two marginal
distributions to form a joint distribution with known bivariate characteristics.
We can build the joint distribution from a marginal and a conditional.

We begin with two U(0, 1) random variables U and V. For a given associ-
ation between U and V specified by the copula C(u,v), from Sklar’s theorem,
we can see that

Py (ulo) = -0,). (1.82)

We denote 8%C(u,v)|v by Cy(u).

Certain standard copulas have been used in specific applications. The cop-
ula that corresponds to a bivariate normal distribution with correlation coef-
ficient p is

e Hu) 27 (v)
Cnp(u,v) = / / Gp(t1,t2) dtadty, (1.83)

where ®(-) is the standard normal CDF, and ¢,(-,-) is the bivariate normal
PDF with means 0, variances 1, and correlation coefficient p. This copula
is usually called the Gaussian copula and has been wisely used in financial
applications.

A general class of copulas is called extreme value copulas. They have the
scaling property for all ¢ > 0,

C(u',v") = (C(u,v))". (1.84)

An extreme value copula can also be written as

O(u,v) = exp (1og(uv)A (log(u))) , (1.85)

log(uv)

for some convex function A(t), called the dependence function, from [0, 1] to
[1/2,1] with the property that max(t,1 —¢) < A(¢) < 1 for all ¢ € [0, 1].

A specific extreme value copula that is widely used (also in financial ap-
plications, for example) is the Gumbel copula:

34 1 Mathematical and Statistical Preliminaries

Cg(u,v) = exp (— ((— log(u))e + (= log(v))0)1/9> , (1.86)

where 6 > 1.
Another general class of copulas is called Archimedean copulas. These are
the copulas that can be written in the form

Clu,v) = f7H(f(u) + f(v)), (1.87)

where f, called the Archimedean generator, is a continuous, strictly decreas-
ing, convex function from the unit interval [0,1] to the positive reals, R4,
such that f(1) = 0.

One of the widely-used Archimedean copulas is the Joe copula:

Cilu,v) =1— (1 —w)’ + (1—v)° — (1 —u)’(1—v)?)"’ (1.88)
where 6 > 1.

The association determined by a copula is not the same as that determined
by a correlation; that is, two pairs of random variables may have the same
copula but different correlations. Kendall’s 7 (a correlation based on ranks;
see Lehmann, 1975, for example) is fixed for a given copula. (There are minor
differences in Kendall’s 7 based on how ties are handled; but for continuous
distributions, the population value of Kendall’s 7 is related to a copula by
T =4E(C(U,V)) — 1.

We will see examples of the use of copulas in random number generation
in Chapter 7 (see Exercise 7.5). Copulas are often used in the Monte Carlo
methods of computational finance, especially in the estimation of value at
risk; see, for example, Rank and Siegl (2002).

Families of Probability Distributions

It is useful to group similar probability distributions into families.

A family of distributions with probability measures Py for 6§ € © is called
a parametric family if © C R for some fixed positive integer d and @ fully
determines the measure. In that case, we call 8 the parameter and we call ©
the parameter space. A parameter can often easily be defined as a functional
of the CDF.

A family that cannot be indexed in this way is called a nonparametric fam-
ily. In nonparametric methods, our analysis usually results in some general
description of the distribution, rather than in a specification of the distribu-
tion.

The type of a family of distributions depends on the parameters that
characterize the distribution. A “parameter” is a real number that can take on
more than one value within a parameter space. If the parameter space contains
only one point, the corresponding quantity characterizing the distribution is
not a parameter.

1.3 Data-Generating Processes; Probability Distributions 35

Many common families are multi-parameter, and specialized subfamilies
are defined by special values of one or more parameters. For example, in a very
widely-used notation, the family of gamma distributions is characterized by
three parameters, -, called the “location”; (3, called the “scale”; and «, called
the “shape”. Its PDF is (I(a))~!'87%(z — 7)* le= @~/ . \(x). This is
sometimes called the “three-parameter gamma”, because often ~ is taken to
be a fixed value, usually 0.

Specific values of the parameters determine special subfamilies of distri-
butions. For example, in the three-parameter gamma, if « is fixed at 1, the
resulting distribution is the two-parameter exponential, and if, additionally,
v is fixed at 0, the resulting distribution is an exponential distribution.

Several of the standard parametric families are shown in Tables B.1
and B.2 beginning on page 660. The most important of these families is the
normal or Gaussian family. We often denote its CDF by ® and its PDF by
¢. The form of the arguments indicates various members of the family; for
example, ¢(z|u,0?) is the PDF of a univariate normal random variable with
mean 4 and variance o2, and ¢(z) is the PDF of a standard univariate normal
random variable with mean 0 and variance 1.

An important family of distributions is the exponential class, which in-
cludes a number of parametric families. The salient characteristic of a family
of distributions in the exponential class is the way in which the parameter
and the value of the random variable can be separated in the density func-
tion. Another important characteristic of the exponential family is that the
support of a distribution in this family does not depend on any “unknown”
parameter.

A member of a family of distributions in the exponential class is one with
density that can be written in the form

po(y) = exp ((n(0))"T(y) — £(0)) h(y), (1.89)

where 0 € O.

The exponential class is also called the “exponential family”, but do not
confuse an “exponential class” in the sense above with the “exponential fam-
ily”, which are distributions with density Ae™** I (g o) ().

Notice that all members of a family of distributions in the exponential
class have the same support. Any restrictions on the range may depend on y
through h(y), but they cannot depend on the parameter.

The form of the expression depends on the parametrization; that is, the
particular choice of the form of the parameters.

As noted above, if a parameter is assigned a fixed value, then it ceases to be
a parameter. This is important, because what are considered to be parameters
determine the class of a particular family. For example, the three-parameter
gamma is not a member of the exponential class; however, the standard two-
parameter gamma, with v fixed at 0, is a member of the exponential class.

In addition to the standard parametric families shown in Tables B.1
and B.2, there are some general families of probability distributions that are

36 1 Mathematical and Statistical Preliminaries

very useful in computational statistics. These families, which include the Pear-
son, the Johnson, Tukey’s generalized lambda, and the Burr, cover wide ranges
of shapes and have a variety of interesting properties that are controlled by a
few parameters. Some are designed to be particularly simple to simulate. We
discuss these families of distributions in Section 14.2.

Mixture Distributions

In applications it is often the case that a single distribution does not model
the observed data adequately. In many such cases, however, a mixture of two
or more standard distributions from the same or different parametric families
does provide a good model.

If we have m distributions with PDFs p;, we can form a new PDF as

puly) = ijpj(y 10), (1.90)

where w; > 0 and Z;nzl wj = 1. If all of the PDFs are from the same para-
metric family the individual densities would be p(y|6;).

If all of the densities have the same form, we can easily extend the idea
of a mixture distribution to allow the parameter to change continuously, so
instead of w;p(y|0;), we begin with w(8)p(y|6). If we have, analogously to
the properties above, w(f) > 0 over some relevant range of 6, say O, and
Jow(#)d# = 1, then w(f)p(y|0) is the joint PDF of two random variables,
and the expression analogous to (1.90),

par(y) = /e w(®)p(y|6) a6, (1.91)

is a marginal PDF. This type of mixture distribution is central to Bayesian
analysis, as we see in equations (1.104) and (1.105).

A linear combination such as equation (1.90) provides great flexibility, even
if the individual densities p;(y|6;) are from a restricted class. For example,
even if the individual densities are all normals, which are all symmetric, a
skewed distribution can be formed by a proper choice of the w; and 8; =

(/jfja 0]2)
We must be clear that this is a mixture of distributions of random vari-
ables, Y7,...,Y},, not a linear combination of the random variables them-

selves. Some linear properties carry over the same for mixtures as for linear
combinations. For example, if Y; ~ p; and ¥ ~ p in equation (1.90), and

m
Z = ijij
=1

then E(Z) = E(Y) = E;’;l w;E(Y;), assuming the expectations exist, but the

distribution of Z is not the same as that of Y.

1.4 Statistical Inference 37

The important linear transforms defined above, the moment generating
function and the characteristic function, carry over as simple linear combi-
nations. The cumulant generating function can then be evaluated from the
moment generating function using its definition (1.73). This is one of the
reasons that these transforms are so useful.

The PDF Decomposition

Probability distributions have useful applications even in situations where
there is no obvious data-generating process.

If f is a function such that fD f(z)dz < oo, then for some function g(z),
we can write

f(2) = gl@)px (=) (1.92)
where px is the probability density function of a random variable X with
support over the relevant domain of f. The decomposition of the function f
in this way is called probability density function decomposition or PDF decom-
position.

The PDF decomposition allows us to use methods of statistical estimation
for approximations involving f. We will see examples of the PDF decom-
position in various applications, such as Monte Carlo methods (pages 192
and 418), function estimation (Chapters 10 and 15), and projection pursuit
(Chapter 16).

1.4 Statistical Inference

For statistical inference, we generally assume that we have a sample of obser-
vations Y1,...,Y, on a random variable Y. A random sample, which we will
usually just call a “sample”, is a set of independent and identically distrib-
uted (i.i.d.) random variables. We will often use Y to denote a random sample
on the random variable Y. (This may sound confusing, but it is always clear
from the context.) A statistic is any function of Y that does not involve any
unobservable values. We may denote the actual observed values as y1,...,yn
since they are not random variables.

We assume that the sample arose from some data-generating process or,
equivalently, as a random sample from a probability distribution. Our objec-
tive is to use the sample to make inferences about the process. We may assume
that the specific process, call it Py, is a member of some family of probabil-
ity distributions P. For statistical inference, we fully specify the family P (it
can be a very large family), but we assume some aspects of Py are unknown.
(If the distribution P that yielded the sample is fully known, while there
may be some interesting questions about probability, there are no interesting
statistical questions.) Our objective in statistical inference is to determine a
specific Py € P, or some subfamily Py C P, that could likely have generated
the sample.

38 1 Mathematical and Statistical Preliminaries

The distribution may also depend on other observable variables. In general,

we assume we have observations Y7,...,Y, on Y, together with associated
observations on any related variable X or x. We denote the observed values
as (Yy1,21)s- -+, (Yn, Tn), Or just as y1, ..., y,. In this context, a statistic is any

function that does not involve any unobserved values.

In statistical inference, we distinguish observable random variables and
“parameters”, but we are not always careful in referring to parameters. We
think of two kinds of parameters: “kmown” and “unknown”. A statistic is a
function of observable random variables that does not involve any unknown
parameters. The “A” in the expression Py above may be a parameter, perhaps
a vector, or it may just be some index that identifies the distribution within
a set of possible distributions.

Types of Statistical Inference

There are three different types of inference related to the problem of deter-
mining the specific Py € P: point estimation, hypothesis tests, and confidence
sets. In point estimation, the estimand is often some function of the basic pa-
rameter . We often denote the estimand in general as g(6). Hypothesis tests
and confidence sets are associated with probability statements that depend
on Py. We will briefly discuss them in Section 1.5.

In parametric settings, each type of inference concerns a parameter, 6, that
is assumed to be in some parameter space, © C IR*. If © is not a closed set,
it is more convenient to consider the closure of ©, denoted by ©, because
sometimes a good estimator may actually be on the boundary of the open set
0. (If © is closed, O is the same set, so we can always just consider 0.)

A related problem in estimation is prediction, in which the objective is
to estimate the expected value of a random variable, given some informa-
tion about past realizations of the random variable and possibly, covariates
associated with those realizations.

Performance of Statistical Methods for Inference

There are many properties of a method of statistical inference that may be
relevant. In the case of point estimation a function of of the parameter 6, for
example, we may use an estimator T(Y) based on the sample Y. Relevant
properties of T(Y') include its bias, its variance, and its mean squared error.
The bias of T(Y) for g(0) is

Bias(T, g(0)) = E(T(Y)) — g(0). (1.93)

When it is clear what is being estimated, we often use the simpler notation
Bias(T).

If this quantity is 0, then T'(Y) is said to be unbiased for g(0). The mean
squared error (MSE) of T(Y) is

1.4 Statistical Inference 39
MSE(T, g(0)) = E(T(Y) — 9(8))%). (1.94)

Again, if it is clear what is being estimated, we often use the simpler notation
MSE(T). Note that

E(T(Y) - 9(0))*) = E(T(Y) - E(T(Y)) + E(T(Y)) — 9(6))°)
= (E(T(Y) - 9(9))* + E(T(Y) - E(T(Y))?)
= (Bias(T))? + V(T); (1.95)

that is, the MSE is the square of the bias plus the variance.

We may also be interested in other distributional properties of an estima-
tor, for example, its median. When T'(Y') is used as an estimator for g(8),
if

Med(T(Y)) = g(6), (1.96)
where Med(X) is the median of the random variable X, we say that T'(Y)
is median-unbiased for g(0). A useful fact about median-unbiasedness is that
if T' is median-unbiased for 6, and h is a monotone increasing function, then
h(T) is median-unbiased for h(6). This, of course, does not hold in general for
bias defined in terms of expected values. (If the CDF of the random variable
is not strictly increasing, or if in the last statement h is not strictly increas-
ing, we may have to be more precise about the definition of the median; see
equation (1.142) on page 62.)

Important research questions in statistics often involve identifying which
statistical methods perform the “best”, in the sense of being unbiased and
having the smallest variance, of having the smallest MSE, or of having other
heuristically appealing properties. Often the underlying probability distribu-
tions are complicated, and statistical methods are difficult to compare math-
ematically. In such cases, Monte Carlo methods such as discussed in Appen-
dix A may be used. In various exercises in this book, such as Exercise 1.18, you
are asked to use Monte Carlo simulation to compare statistical procedures.

There are several important properties of statistics that determine the
usefulness of those statistics in statistical inference. One of the most useful
properties of a statistic is sufficiency. (The previous sentences use the term
“statistic” to denote an observation or a function of observations that does
not involve an unknown quantity. Unfortunately, the plural “statistics” can
mean different things.)

Large Sample Properties

We are often interested in the performance of statistical procedures as the
sample size becomes unboundedly large. When we consider the large sample
properties, we often denote the statistics with a subscript representing the
sample size, for example, T5,.

If T, is a statistic from a sample of size n, and if lim,,_ s E(n) 0,
then T, is said to be unbiased in the limit for 6. If lim,, ., E((T}, — 6)?) =0,

40 1 Mathematical and Statistical Preliminaries

then T, is said to be consistent in mean-squared error. There are other kinds
of statistical consistency, but consistency in mean-squared error is the most
commonly used.

If T}, is a statistic from a sample of size n, and if E(T,,) = 0 + O(n~1/2),
then T, is said to be first-order accurate for 6; if E(T,,) = 0 + O(n~1), it is
second-order accurate. (See page 670 for the definition of O(-). Convergence
of T, or of E(T},) can also be expressed as a stochastic convergence of T}, in
which case we use the notation Op(-).)

The order of the mean squared error is an important characteristic of an
estimator. For good estimators of location, the order of the mean squared
error is typically O(n~1). Good estimators of probability densities, however,
typically have mean squared errors of at least order O(n~%/5) (see Chapter 15).

Sufficiency

Let Y be a sample from a population P € P. A statistic T(Y) is sufficient
for P € P if and only if the conditional distribution of Y given T does not
depend on P. In similar fashion, we define sufficiency for a parameter or for
an element in a vector of parameters. Sufficiency depends on P, the family
of distributions. If a statistic is sufficient for P, it may not be sufficient for a
larger family, Py, where P C P;.

In general terms, sufficiency implies the conditional independence from the
parameter of the distribution of any other function of the random variable,
given the sufficient statistic.

The reason that sufficiency is such an important property is that it may
allow reduction of data without sacrifice of information.

Another, more specific property of sufficiency is that the statistical prop-
erties of a given method of inference that is based on a statistic that is not
sufficient can often be improved by conditioning the statistic on a sufficient
statistic, if one is available. A well-known instance of this fact is stated in the
Rao-Blackwell theorem, one version of which states:

Let Y be a random sample from a distribution Py € P, and let S(Y)
be sufficient for P and have finite variance. Let T'(Y") be an unbiased
estimator for g(6) with finite variance. Let

T = E(T(Y)|S(Y)). (1.97)
Then T is unbiased for g(f) and
V(T) < V(T). (1.98)

There are several other ways of stating essentially equivalent results about a
statistic that is conditioned on a sufficient statistic. A more general statement
in a decision-theoretic framework for estimation is that if the loss function is
convex, a statistic conditioned on a sufficient statistic has no greater risk than
the statistic unconditioned. See Lehmann and Casella (1998) for a statement
in terms of convex loss functions and a proof.

1.4 Statistical Inference 41
Five Approaches to Statistical Inference

If we assume that we have a random sample of observations Y7,...,Y, on a
random variable Y from some distribution Py, which is a member of some
family of probability distributions P, our objective in statistical inference is
to determine a specific Py € P, or some subfamily Py C P, that could likely
have generated the sample.

Five approaches to statistical inference are

use of the empirical cumulative distribution function (ECDF)
definition and use of a loss function.

use of a likelihood function

fitting expected values

fitting a probability distribution

These approaches are not mutually exclusive.

The computational issues in statistical inference are varied. In most ap-
proaches an optimization problem is central, and many of the optimization
problems cannot be solved analytically. Some approaches, such as those us-
ing the ECDF, lead to computationally intensive methods that use simulated
datasets. The use of a loss function may yield very complicated integrals repre-
senting average loss. These cannot be evaluated analytically, and so are often
evaluated using Monte Carlo methods.

We will discuss use of the ECDF more fully in Section 1.7, and in the rest of
this section, we will briefly discuss the other approaches listed above. In Exer-
cise 1.21 you are asked to obtain various estimates based on these approaches.
You should pay particular attention to the specific model or assumptions that
underlie each approach.

A Decision-Theoretic Approach; Loss and Risk

In the decision-theoretic approach to statistical inference, we call the inference
a decision or an action, and we identify a cost or loss that depends on the
decision and the true (but unknown) state of nature modeled by P € P.

Obviously, we try to take an action that minimizes the expected loss.

We call the set of allowable actions or decisions the action space or decision
space, and we denote it as A. We base the inference on the random variable
X; hence, the decision is a mapping from X, the range of X, to A.

If we observe data X, we take the action T(X) = a € A. The statistical
procedure that leads to T'(+) is the decision rule.

Loss Function

A loss function, L, is a mapping from P x A to [0,00). The value of the
function at a given distribution P € P for the action a is L(P, a).

42 1 Mathematical and Statistical Preliminaries

If P is indexed by 6, we can write the value of the function at a given value
0 for the action a as L(6,a).

Depending on the parameter space O, the action space A, and our objec-
tives, the loss function often is a function only of g(#) — a; that is, we may
have L(6,a) = L(g(0) — a).

The loss function generally should be nondecreasing in |g(f) — a|. A loss
function that is convex has nice mathematical properties. A particularly nice
loss function, which is strictly convex, is the “squared-error loss”:

Ly(0,a) = (9(0) — a)*. (1.99)

Any strictly convex loss function over an unbounded interval is unbounded. It
is not always realistic to use an unbounded loss function. A common bounded
loss function is the 0-1 loss function, which may be

Lo1(0,0) =0 if]g(6) — al < a(n)
Lo—1(0,a) =1 otherwise.

Risk Function

To choose an action rule T so as to minimize the loss function is not a well-
defined problem. We can make the problem somewhat more precise by con-
sidering the expected loss based on the action T'(X), which we define to be
the risk:

R(P,T) = E(L(P,T(X))). (1.100)

The problem may still not be well defined. For example, to estimate g(0)
so as to minimize the risk function is still not a well-defined problem. We can
make the problem precise either by imposing additional restrictions on the
estimator or by specifying in what manner we want to minimize the risk.

Optimal Decision Rules

We compare decision rules based on their risk with respect to a given loss
function and a given family of distributions. If a decision rule T, has the

property
R(P,T.) < R(P,T) VPeP, (1.101)

for all T, then T is called an optimal decision rule.

Approaches to Minimizing the Risk

We use the principle of minimum risk in the following restricted ways. In all
cases, the approaches depend, among other things, on a given loss function.

e We may first place a restriction on the estimator and then minimize risk
subject to that restriction. For example, we may

1.4 Statistical Inference 43

— require unbiasedness
— require equivariance.
e We may minimize some global property of the risk (“global” over the values
of #). For example, we may
— minimize maximum risk
— minimize average risk.

These various ways of minimizing the risk lead to some familiar classical proce-
dures of statistical inference, such as UMVUE (uniformly minimum variance
unbiased estimation), UMPT (uniformly most powerful test), and minimax
rules.

To minimize an average risk over the parameter space requires some defi-
nition of an averaging function. If we choose the averaging function as A(9),
with [g dA(f) = 1, then the average risk is [o R(6, T)dA(6).

The decision that minimizes the average risk with respect to A(#) is called
the Bayes rule, and the minimum risk, [o R(6,Tx) dA(6), is called the Bayes
risk.

Bayesian Inference

The averaging function A(#) allows various interpretations, and it allows the
flexibility of incorporating prior knowledge or beliefs. The regions over which
A(0) is large will be given more weight; therefore the estimator will be pulled
toward those regions.

In formal Bayes procedures, we call the averaging function the prior prob-
ability density for the parameter, which we consider to be a random variable
in its own right. Thus, we think of the probability distribution of the observ-
able random variable Y as a conditional distribution, given the unobservable
random parameter variable, © = 6. We then form the joint distribution of
0 and Y, and then the conditional distribution of 6 given Y, called the pos-
terior distribution. We can summarize the approach in a Bayesian statistical
analysis as beginning with these steps:

1. identify the conditional distribution of the observable random variable;
assuming the density exists, call it

PY|@(3J|9) (1.102)

2. identify the prior (marginal) distribution of the parameter; assuming the
density exists, call it

pe() (1.103)

3. identify the joint distribution; if densities exist, it is

py,e(y,0) = pyjo(yl0)pe(0) (1.104)

44 1 Mathematical and Statistical Preliminaries

4. determine the marginal distribution of the observable; if densities exist, it
is

py(y) = /@py,@(y, 0)do (1.105)

5. determine the posterior conditional distribution of the parameter given
the observable random variable; this is the posterior; if densities exist, it
is

poyy(0lz) = py.e(y,0)/py (y). (1.106)

The posterior conditional distribution is then the basis for whatever deci-
sions are to be made.

The Bayes rule is determined by minimizing the risk, where the expectation
is taken with respect to the posterior distribution. This expectation is often
a rather complicated integral, and Monte Carlo methods, specifically, Markov
chain Monte Carlo (MCMC) techniques, are generally used to evaluate the
rule or to study the posterior distribution. We will discuss these techniques
in Chapter 11 and their applications in Chapter 17.

Likelihood

Given a sample Y7, ...,Y, from distributions with probability densities p;(y),
where all PDFs are defined with respect to a common o-finite measure, the
likelihood function is

La(pi; Y) = [[pi(Y). (1.107)
i=1

(Any nonnegative function proportional to L, (p;; Y) is a likelihood function,
but it is common to speak of L, (p;; Y) as “the” likelihood function.) We can
view the sample either as a set of random variables or as a set of constants,
the realized values of the random variables. Thinking of the likelihood as a
function of realized values, we usually use lower-case letters.

The log-likelihood function is the log of the likelihood:

I, (pisy) =log Ln(pi | i), (1.108)

It is a sum rather than a product.

The n subscript serves to remind us of the sample size, and this is often
very important in use of the likelihood or log-likelihood function particularly
because of their asymptotic properties. We often drop the n subscript, how-
ever. Also, we often drop the L subscript on the log-likelihood. (I should also
mention that some authors use the upper and lower cases in the opposite way
from that given above.)

In many cases of interest, the sample is from a single parametric family. If
the PDF is p(y ;) then the likelihood and log-likelihood functions are written
as

1.4 Statistical Inference 45

n

L(O; y) = Hp(yi; 0), (1.109)
and
1(0;y)=logL(8; y). (1.110)

We sometimes write the expression for the likelihood without the observations:

L(0) or 1(0).

The Parameter Is the Variable

Note that the likelihood is a function of 6 for a given y, while the PDF is a
function of y for a given 6.

While if we think of 8 as a fixed, but unknown, value, it does not make sense
to think of a function of that particular value, and if we have an expression
in terms of that value, it does not make sense to perform operations such as
differentiation with respect to that quantity. We should think of the likelihood
as a function of some dummy variable ¢, and write L(t; y) or I(t; y).

The likelihood function arises from a probability density, but it is not a
probability density function. It does not in any way relate to a “probability”
associated with the parameters or the model.

Although non-statisticians will often refer to the “likelihood of an obser-
vation”, in statistics, we use the term “likelihood” to refer to a model or a
distribution given observations.

In a multiparameter case, we may be interested in only some of the para-
meters. There are two ways of approaching this, use of a profile likelihood or
of a conditional likelihood.

Let 6 = (01, 62). If 05 is fixed, the likelihood L(#; ; 02,y) is called a profile
likelihood or concentrated likelihood of 6, for given 6> and y.

If the PDFs can be factored so that one factor includes 62 and some func-
tion of the sample, S(y), and the other factor, given S(y), is free of 05, then
this factorization can be carried into the likelihood. Such a likelihood is called
a conditional likelihood of 0, given S(y).

Maximum Likelihood Estimation
The mazimum likelihood estimate (MLE) of 0, 9, is defined as

§ = argmax L(t; Y), (1.111)
te®
where © is the closure of the parameter space.
The MLE in general is not unbiased for its estimand. A simple example
is the MLE of the variance in a normal distribution with unknown mean. If

Yi,...,Y, ~ ii.dN(u,0?), it is easy to see from the definition (1.111) that
the MLE of o2, that is, of the variance of Y is

46 1 Mathematical and Statistical Preliminaries
o n
VY)==) (v;-Y)% (1.112)
=1

Thus the MLE is (n — 1)5?/n, where S? is the usual sample variance:

1

5% =
n—1

zn:(Yi -Y)% (1.113)

Notice that the MLE of the variance depends on the distribution. (See
Exercise 1.16d.)

The MLE may have smaller MSE than an unbiased estimator, and, in fact,
that is the case for the MLE of ¢2 in the case of a normal distribution with
unknown mean compared with the estimator S? of o2.

We will discuss statistical properties of maximum likelihood estimation
beginning on page 70, and some of the computational issues of MLE in Chap-
ter 6.

Score Function

In statistical inference, we often use the information about how the likelihood
or log-likelihood would vary if 6 were to change. (As we have indicated, “6”
sometimes plays multiple roles. I like to think of it as a fixed but unknown
value and use “t” or some other symbol for variables that can take on dif-
ferent values. Statisticians, however, often use the same symbol to represent
something that might change.) For a likelihood function (and hence, a log-
likelihood function) that is differentiable with respect to the parameter, a
function that represents this change and plays an important role in statistical
inference is the score function:
o0 y)

sn(0;y) = 0 (1.114)

Likelihood Equation

In statistical estimation, if there is a point at which the likelihood attains
its maximum (which is, of course, the same point at which the log-likelihood
attains its maximum) that point obviously is of interest; it is the MLE in
equation (1.111).

If the likelihood is differentiable with respect to the parameter, the roots
of the score function are of interest whether or not they correspond to MLEs.
The score function equated to zero,

ol(9; y)
20 =0, (1.115)
is called the likelihood equation. The derivative of the likelihood equated to
zero, OL(0; y)/06 = 0, is also called the likelihood equation.

1.4 Statistical Inference 47

Equation (1.115) is an estimating equation; that is, its solution, if it exists,
is an estimator. Note that it is not necessarily an MLE; it is a root of the
likelihood equation, or RLE.

It is often useful to define an estimator as the solution of some estimating
equation. We will see other examples of estimating equations in subsequent
sections.

Likelihood Ratio

When we consider two different possible distributions for a sample y, we have
two different likelihoods, say Lo and L;. (Note the potential problems in
interpreting the subscripts; here the subscripts refer to the two different dis-
tributions. For example Ly may refer to L(fy |y) in a notation consistent with
that used above.) In this case, it may be of interest to compare the two like-
lihoods in order to make an inference about the two possible distributions. A
simple comparison, of course, is the ratio, and indeed

L(0o; y)
L(01; y)’

or Lo/L;y in the simpler notation, is called the likelihood ratio with respect
to the two possible distributions. Although in most contexts we consider the
likelihood to be a function of the parameter for given, fixed values of the
observations, it may also be useful to consider the likelihood ratio to be a
function of y.

The most important use of the likelihood ratio is as the basis for statistical
tests that are constructed following the Neyman-Pearson lemma for a simple
null hypothesis versus a simple alternative hypothesis (see page 53). If the
likelihood is monotone in #;, we can extend the simple hypotheses of the
Neyman-Pearson lemma to certain composite hypotheses. Thus, a monotone
likelihood ratio is an important property of a distribution.

The likelihood ratio, or the log of the likelihood ratio, plays an important
role in statistical inference. Given the data y, the log of the likelihood ratio is
called the support of the hypothesis that the data came from the population
that would yield the likelihood Lg versus the hypothesis that the data came
from the population that would yield the likelihood L;. The support of the
hypothesis clearly depends on both Ly and L, and it ranges over IR. The
support is also called the experimental support.

(1.116)

Likelihood Principle

The likelihood principle in statistical inference asserts that all of the informa-
tion which the data provide concerning the relative merits of two hypotheses
(two possible distributions that give rise to the data) is contained in the likeli-
hood ratio of those hypotheses and the data. An alternative statement of the
likelihood principle is that, if for x and vy,

48 1 Mathematical and Statistical Preliminaries

L#;x)
T0:y) c(x,y) V0,

where ¢(x,y) is constant for given 2 and y, then any inference about 6 based
on x should be in agreement with any inference about 6 based on y.

Fitting Expected Values

Given a random sample Y7,...,Y,, from distributions with probability densi-
ties py, (y:; 6), where all PDF's are defined with respect to a common o-finite
measure, if we have that E(Y;) = ¢;(0), then a reasonable approach to estima-
tion of # may be to choose a value § that makes the differences E(Y;) — gi(0)
close to zero.

We must define the sense in which the differences are close to zero. A
simple way to do this is to define a nonnegative scalar-valued function of
scalars, p(u,v), that is increasing in the absolute difference of its arguments.
We then define

S@,y) = p(y:,0), (1.117)
i=1
and a reasonable estimator is
g = argmin S(t,y). (1.118)
tc®

One simple choice for the function is p(u,v) = (u — v)2. In this case, the
estimator is called the least squares estimator. Another choice, which is more
difficult mathematically is p(u, v) = Ju—wv|. In this case, the estimator is called
the least absolute values estimator.

Compare the minimum residual estimator in equation (1.118) with the
maximum likelihood estimate of 6, defined in equation (1.111).

If the Y; are i.i.d., then all g;(0) are the same, say g(6).

In common applications, we have covariates, Zi,...,Z,, and the E(Y;)
have a constant form that depends on the covariate: E(Y;) = g(Z;,).

As with solving the maximization of the likelihood, the solution to the
minimization problem (1.118) may be obtained by solving

95(8; v)

0 =0 (1.119)

Like equation (1.115), equation (1.119) is an estimating equation; that is, its
solution, if it exists, is an estimator. There may be various complications, of
course; for example, there may be multiple roots of (1.119).

1.4 Statistical Inference 49
Fitting Probability Distributions

In an approach to statistical inference based on information theory, the true
but unknown distribution is compared with information in the sample using a
divergence measure between the population distribution and the sample dis-
tribution. The divergence measure may also be used to compare two hypothe-
sized distributions. A general type of divergence measure is called ¢-divergence
and for the PDFs p and ¢ of random variables with a common support D is

defined as
/D ¢ (%) dy, (1.120)

if the integral exists. The ¢-divergence is also called the f-divergence.
The ¢-divergence is in general not a metric because it is not symmetric.
One function is taken as the base from which the other function is measured.
A specific instance of ¢-divergence that is widely used is the Kullback-

Leibler measure,
/]Rp(y) log (%) dy. (1.121)

Functions of Parameters and Functions of Estimators

Suppose that instead of estimating the parameter 6, we wish to estimate
g(0), where g(-) is some function. If the function ¢(-) is monotonic or has
certain other regularity properties, it may be the case that the estimator that
results from the minimum residuals principle or from the maximum likelihood
principle is invariant; that is, the estimator of g(6) is merely the function g(-)
evaluated at the solution to the optimization problem for estimating 6. The
statistical properties of a T for estimating 8, however, do not necessarily carry
over to g(T') for estimating g(6).

As an example of why a function of an unbiased estimator may not be
unbiased, consider a simple case in which 7" and ¢g(7T') are scalars, and the
function g is convex (see page 21).

Now consider E(g(T)) and g(E(T)). If g is a convex function, then Jensen’s
inequality states that

B(¢(T)) < g(E(T)), (1.122)

This is easy to see by using the definition of convexity and, in particular,
equation (1.39). We have for some b and any z and ¢,

bz — 1)+ g(t) < gla).

Now, given this, let + = E(T) and take expectations of both sides of the
inequality.

The implication of this is that even though T is unbiased for 8, g(T') may
not be unbiased for g(f). Jensen’s inequality is illustrated in Figure 1.4.

50 1 Mathematical and Statistical Preliminaries

a(m)
E(g(T))—
g(E(T)))— T =
E(T)

Fig. 1.4. Jensen’s Inequality

If the function is strictly convex, then Jensen’s inequality (1.122) is also
strict, and so if T is unbiased for 6 then g(T') is biased for g(6).

An opposite inequality obviously also applies to a concave function, in
which case the bias is positive.

It is often possible to adjust g(7") to be unbiased for g(6); and properties
of T, such as sufficiency for §, may carry over to the adjusted g(T'). Some of
the applications of the jackknife and the bootstrap that we discuss later are
in making adjustments to estimators of g() that are based on estimators of
0.

The variance of g(T') can often be approximated in terms of the variance
of T. We will consider this for the more general case in which T and 6 are
m-vectors, and T is mean-square consistent for 6. Assume g(T') is a k-vector.
In a simple but common case, we may know that 7" in a sample of size n has an
approximate normal distribution with mean 6 and some variance-covariance
matrix, say V(T'), of order n~!, and g is a smooth function (that is, it can be
approximated by a truncated Taylor series about 6):

9(T) % g(0) + 3,(6)(T — 6) + 5(T — 6 H, (O)(T ~ 6),

where J, and Hy are respectively the Jacobian and the Hessian of g. Because
the variance of T is O(n~!), the remaining terms in the expansion go to zero
in probability at the rate of at least n 1.

This yields the approximations

E(g(T)) = g(8) (1.123)

and

1.4 Statistical Inference 51

V(g(T)) = J4(0) V(T) (J4(0)) " (1.124)

This method of approximation of the variance is called the delta method.
A common form of a simple estimator that may be difficult to analyze and
may have unexpected properties is a ratio of two statistics,

where S is a scalar. An example is a studentized statistic, in which T is a
sample mean and S is a function of squared deviations. If the underlying
distribution is normal, a statistic of this form may have a well-known and
tractable distribution. In particular, if 7" is a mean and S is a function of
an independent chi-squared random variable, the distribution is that of a
Student’s t. If the underlying distribution has heavy tails, however, the dis-
tribution of R may have unexpectedly light tails. An asymmetric underlying
distribution may also cause the distribution of R to be very different from a
Student’s ¢ distribution. If the underlying distribution is positively skewed,
the distribution of R may be negatively skewed (see Exercise 1.14).

Types of Statistical Inference

We began this section with an outline of the types of statistical inference that
include point estimation, confidence sets, and tests of hypotheses. (Notice
this section has the same title as the section beginning on page 38.) There is
another interesting categorization of statistical inference.

When the exact distribution of a statistic is known (based, of course, on
an assumption of a given underlying distribution of a random sample), use
of the statistic for inferences about the underlying distribution is called exact
inference.

Often the exact distribution of a statistic is not known, or is too compli-
cated for practical use. In that case, we may resort to approximate inference.
It is important to note how the terms “exact” and “approximate” are used
here. The terms are used in the context of assumptions. We do not address
reality.

There are basically three types of approximate inference.

One type occurs when a simple distribution is very similar to another
distribution. For example, the simpler Kumaraswamy distribution, with PDF
afz® (1 — z)P~! over [0,1], may be used as an approximation to the beta
distribution because it does not involve the more complicated beta functions.

Asymptotic inference is a commonly used type of approximate inference.
In asymptotic approximate inference we are interested in the properties of
a sequence of statistics T, (Y") as the sample size n increases. We focus our
attention on the sequence {7} for n = 1,2,..., and, in particular, consider
the properties of {T,,} as n — oo. Because asymptotic properties are often
easy to work out, those properties are often used to identify a promising

52 1 Mathematical and Statistical Preliminaries

statistical method. How well the method performs in the real world of finite,
and possibly small samples is a common topic in statistical research.

Another type of approximate inference, called computational inference, is
used when an unknown distribution can be simulated by resampling of the
given observations. Computational inference is a major topic of the present
book.

1.5 Probability Statements in Statistical Inference

There are two important instances in statistical inference in which statements
about probability are associated with the decisions of the inferential methods.
In hypothesis testing, under assumptions about the distributions, we base our
inferential methods on probabilities of two types of errors. In confidence inter-
vals the decisions are associated with probability statements about coverage
of the parameters. For both cases the probability statements are based on the
distribution of a random sample, Y7,...,Y,.

In computational inference, probabilities associated with hypothesis tests
or confidence intervals are estimated by simulation of a hypothesized data-
generating process or by resampling of an observed sample.

Tests of Hypotheses

Often statistical inference involves testing a “null” hypothesis, Hy, about the
parameter. In a simple case, for example, we may test the hypothesis

HO : 0= 90
versus an alternative hypothesis
H1 : 0= 61.

We do not know which hypothesis is true, but we want a statistical test
that has a very small probability of rejecting the null hypothesis when it is
true and a high probability of rejecting it when it is false. There is a tradeoff
between these two decisions, so we will put an upper bound on the probability
of rejecting the null hypothesis when it is true (called a “Type I error”),
and under that constraint, seek a procedure that minimizes the probability
of the other type of error (“Type II”). To be able to bound either of these
probabilities, we must know (or make assumptions about) the true underlying
data-generating process.

Thinking of the hypotheses in terms of a parameter # that indexes these
two densities by 6y and 6, for a sample X = z, we have the likelihoods
associated with the two hypotheses as L(fp; x) and L(61;z). We may be able
to define an a-level critical region for nonrandomized tests in terms of the

1.5 Probability Statements in Statistical Inference 53

ratio of these likelihoods: Let us assume that a positive number k exists such
that there is a subset of the sample space C' with complement with respect to
the sample space C, such that

L(6;;x)
>
T(00:7) >k VeeC -
L(Gl,x) = .
<
T(00:7) <k VzecC

and
a=Pr(X € C| Hy).

(Notice that such a k and C may not exist.)

The Neyman-Pearson Fundamental Lemma tells us that this test based
on the likelihood ratio is the most powerful nonrandomized test of the sim-
ple null Hy that specifies the density pg for X versus the simple alternative
H, that specifies the density p;. Let’s consider the form of the Lemma that
does not involve a randomized test; that is, in the case that an exact a-level
nonrandomized test exists, as assumed above. Let k and C be as above. Then
the Neyman-Pearson Fundamental Lemma states that C is the best critical
region of size « for testing Hy versus Hj.

Although it applies to a simple alternative (and hence “uniform” properties
do not make much sense), the Neyman-Pearson Lemma gives us a way of
determining whether a uniformly most powerful (UMP) test exists, and if so
how to find one. We are often interested in testing hypotheses in which either
or both of Oy and ©, are continuous regions of R (or R).

We must look at the likelihood ratio as a function both of 6 and x. The
question is whether, for given 6y and any 61 > 6y (or equivalently any 6, < 6g),
the likelihood is monotone in some function of x; that is, whether the family
of distributions of interest is parameterized by a scalar in such a way that
it has a monotone likelihood ratio (see page 47). In that case, it is clear that
we can extend the test in (1.125) to test to be uniformly most powerful for
testing Hy : 6 = 6y against an alternative Hy : 6 > 0y (or 61 < p).

The straightforward way of performing the test involves use of a test statis-
tic, T, computed from a random sample of data, Y7,...,Y,. Associated with
T is a rejection region C' such that if the null hypothesis is true, Pr (T € C)
is some preassigned (small) value, o, and Pr (T € C) is greater than « if the
null hypothesis is not true. Thus, C is a region of more “extreme” values of
the test statistic if the null hypothesis is true. If T € C, the null hypothesis is
rejected. It is desirable that the test have a high probability of rejecting the
null hypothesis if indeed the null hypothesis is not true. The probability of
rejection of the null hypothesis is called the power of the test.

A procedure for testing that is mechanically equivalent to this is to com-
pute the test statistic ¢ and then to determine the probability that T" is more
extreme than ¢. In this approach, the realized value of the test statistic de-
termines a region Cy of more extreme values. The probability that the test

54 1 Mathematical and Statistical Preliminaries

statistic is in C} if the null hypothesis is true, Pr (T € Cy|Hyp), is called the
“p-value” or “significance level” of the realized test statistic.

If the distribution of 7" under the null hypothesis is known, the critical re-
gion or the p-value can be determined. If the distribution of 7" is not known,
some other approach must be used. A common method is to use some ap-
proximation to the distribution. The objective is to approximate a quantile
of T under the null hypothesis. The approximation is often based on an as-
ymptotic distribution of the test statistic. In Monte Carlo tests, discussed in
Section 11.2, the quantile of T is estimated by simulation of the distribution
of the underlying data.

Confidence Intervals

Our usual notion of a confidence interval relies on a frequency approach to
probability, and it leads to the definition of a 1 — « confidence interval for the
(scalar) parameter as the random interval (T, Ty) that has the property

Pr(T, <0<Ty)=1-o. (1.126)

This is also called a (1 — «)100% confidence interval. The endpoints of the in-
terval, Ty, and Ty, are functions of a sample, Y7, ...,Y,. The interval (Ty, Ty)
is not uniquely determined.

The concept extends easily to vector-valued parameters. Rather than tak-
ing vectors Tp, and Ty, however, we generally define an ellipsoidal region,
whose shape is determined by the covariances of the estimators.

A realization of the random interval, say (¢, tyr), is also called a confidence
interval. Although it may seem natural to state that the “probability that 6
is in (tz, ty) is 1 — «”, this statement can be misleading unless a certain
underlying probability structure is assumed.

In practice, the interval is usually specified with respect to an estimator
of 0, say T. If we know the sampling distribution of T'— 6, we may determine
c1 and ¢o such that

Prici <T—-0 < e)=1—0y (1.127)

and hence
Pr(T—co <0< T—-c1)=1—q.

If exactly one of T, or Ty in equation (1.126) is chosen to be infinite or to
be a boundary point on the parameter space, the confidence interval is one-
sided. (In either of those cases, the T, or Ty would be a degenerate random
variable. Furthermore, the values must respect the relation T;, < Ty.) For
two-sided confidence intervals, we may seek to make the probability on either
side of T' to be equal, to make ¢; = —cg, and/or to minimize |¢1] or |cz|. This
is similar in spirit to seeking an estimator with small variance.

1.5 Probability Statements in Statistical Inference 55

For forming confidence intervals, we generally use a function of the sample
that also involves the parameter of interest, f(7T',6). The confidence interval
is then formed by separating the parameter from the sample values.

Whenever the distribution depends on parameters other than the one of
interest, we may be able to form only conditional confidence intervals that
depend on the value of the other parameters. A class of functions that are
particularly useful for forming confidence intervals in the presence of such
nuisance parameters are called pivotal values, or pivotal functions. A function
f(T,0) is said to be a pivotal function if its distribution does not depend on
any unknown parameters. This allows exact confidence intervals to be formed
for the parameter . We first form

Pr(fa/z < f(1,0) < flfa/Q) =1-aq, (1.128)
where f,/2 and fi_, /2 are quantiles of the distribution of f(T’,0); that is,
Pr(f(T,6) < fr) = .

If, as in the case considered above, f(T,0) = T — 6, the resulting confidence
interval has the form

For example, suppose that Y1,...,Y), is a random sample from a N(u,0?)
distribution, and Y is the sample mean. The quantity

_ W —1) (V)
fY) = =
> (Yi-Y)
has a Student’s ¢ distribution with n — 1 degrees of freedom, no matter what
is the value of o2. This is one of the most commonly used pivotal values.

The pivotal value in equation (1.129) can be used to form a confidence
value for 6 by first writing

(1.129)

Pr (toz/Q < f(?vu) < tl—a/Z) =1-aq,

where ¢, is a percentile from the Student’s ¢ distribution. Then, after making
substitutions for f(Y,), we form the familiar confidence interval for p:

(7—t1_a/2 R s/\/ﬁ), (1.130)

where s? is the usual sample variance, > (Y; — Y)?/(n — 1).

Other similar pivotal values have F' distributions. For example, consider
the usual linear regression model in which the n-vector random variable Y
has a N,,(X3,021) distribution, where X is an n x m known matrix, and the

56 1 Mathematical and Statistical Preliminaries

m-vector 3 and the scalar 02 are unknown. A pivotal value useful in making
inferences about g is
~ T ~
3 (X(B—p)) X(B-p)/m

) = = = , 1.131
YO0 = T XB Y — XB)jn—m) (131

where R

f=(XTX)*xTy.
The random variable g(g,) for any finite value of o has an F' distribution
with m and n — m degrees of freedom.

For a given parameter and family of distributions, there may be multiple
pivotal values. For purposes of statistical inference, such considerations as
unbiasedness and minimum variance may guide the choice of a pivotal value
to use. Alternatively, it may not be possible to identify a pivotal quantity for
a particular parameter. In that case, we may seek an approximate pivot. A
function is asymptotically pivotal if a sequence of linear transformations of
the function is pivotal in the limit as n — oo.

If the distribution of T is known, ¢; and ¢ in equation (1.127) can be
determined. If the distribution of 7" is not known, some other approach must
be used. A method for computational inference, discussed in Section 13.3, is
to use “bootstrap” samples from the ECDF.

1.6 Modeling and Computational Inference

The process of building models involves successive refinements. The evolution
of the models proceeds from vague, tentative models to more complete ones,
and our understanding of the process being modeled grows in this process.

A given model usually contains parameters that are chosen to fit a given
set of data. Other models of different forms or with different parameters may
also be fit. The models are compared on the basis of some criterion that
indicates their goodness-of-fit to the available data. The process of fitting and
evaluating is often done on separate partitions of the data. It is a general rule
that the more parameters a model of a given form has, the better the model
will appear to fit any given set of data. The model building process must use
criteria that avoid the natural tendency to overfit. We discuss this type of
problem further in Section 12.2.

The usual statements about statistical methods regarding bias, variance,
and so on are made in the context of a model. It is not possible to measure bias
or variance of a procedure to select a model, except in the relatively simple case
of selection from some well-defined and simple set of possible models. Only
within the context of rigid assumptions (a “metamodel”) can we do a precise
statistical analysis of model selection. Even the simple cases of selection of
variables in linear regression analysis under the usual assumptions about the
distribution of residuals (and this is a highly idealized situation) present more
problems to the analyst than are generally recognized.

1.6 Modeling and Computational Inference 57
Descriptive Statistics, Inferential Statistics, and Model Building

We can distinguish statistical activities that involve:

data collection;

descriptions of a given dataset;

inference within the context of a model or family of models; and
model selection.

In any given application, it is likely that all of these activities will come into
play. Sometimes (and often, ideally!), a statistician can specify how data are
to be collected, either in surveys or in experiments. We will not be concerned
with this aspect of the process in this text.

Once data are available, either from a survey or designed experiment, or
just observational data, a statistical analysis begins by considering general
descriptions of the dataset. These descriptions include ensemble characteris-
tics, such as averages and spreads, and identification of extreme points. The
descriptions are in the form of various summary statistics and graphical dis-
plays. The descriptive analyses may be computationally intensive for large
datasets, especially if there are a large number of variables. The computa-
tionally intensive approach also involves multiple views of the data, including
consideration of a large number of transformations of the data. We discuss
these methods in various chapters of Part III.

A stochastic model is often expressed as a PDF or as a CDF of a random
variable. In a simple linear regression model with normal errors,

Y =5+ iz + E, (1.132)

for example, the model may be expressed by use of the probability density
function for the random variable E. (Notice that ¥ and E are written in
uppercase because they represent random variables.)
If F in equation (1.132) has a normal distribution with variance o, which

we would denote by

E ~N(0,0?%),
then the probability density function for Y is

1

p(y) = mge—(y—ﬁo—ﬁ1x)2/(202). (1133)

In this model, x is an observable covariate; o, 3y, and [3; are unobservable
(and, generally, unknown) parameters; and 2 and 7 are constants. Statistical
inference about parameters includes estimation or tests of their values or
statements about their probability distributions based on observations of the
elements of the model.

The elements of a stochastic model include observable random variables,
observable covariates, unobservable parameters, and constants. Some random
variables in the model may be considered to be “responses”. The covariates

58 1 Mathematical and Statistical Preliminaries

may be considered to affect the response; they may or may not be random
variables. The parameters are variable within a class of models, but for a
specific data model the parameters are constants. The parameters may be
considered to be unobservable random variables, and in that sense, a specific
data model is defined by a realization of the parameter random variable. In
the model, written as

Y =f(z;8)+ E, (1.134)

we identify a “systematic component”, f(x; (), and a “random component”,
E.

The selection of an appropriate model may be very difficult, and almost
always involves not only questions of how well the model corresponds to the
observed data, but also the tractability of the model. The methods of com-
putational statistics allow a much wider range of tractability than can be
contemplated in mathematical statistics.

Statistical analyses generally are undertaken with the purpose of making
a decision about a dataset, about a population from which a sample dataset is
available, or in making a prediction about a future event. Much of the theory
of statistics developed during the middle third of the twentieth century was
concerned with formal inference; that is, use of a sample to make decisions
about stochastic models based on probabilities that would result if a given
model was indeed the data-generating process. The heuristic paradigm calls
for rejection of a model if the probability is small that data arising from the
model would be similar to the observed sample. This process can be quite
tedious because of the wide range of models that should be explored and
because some of the models may not yield mathematically tractable estimators
or test statistics. Computationally intensive methods include exploration of a
range of models, many of which may be mathematically intractable.

In a different approach employing the same paradigm, the statistical meth-
ods may involve direct simulation of the hypothesized data-generating process
rather than formal computations of probabilities that would result under a
given model of the data-generating process. We refer to this approach as
computational inference. We discuss methods of computational inference in
Chapters 11, 12, and 13. In a variation of computational inference, we may
not even attempt to develop a model of the data-generating process; rather,
we build decision rules directly from the data. This is often the approach in
clustering and classification, which we discuss in Chapter 16. Computational
inference is rooted in classical statistical inference, which was briefly sum-
marized in Sectionl.4, but which must be considered as a prerequisite for the
present book. In subsequent sections of the current chapter, we discuss general
techniques used in statistical inference.

1.7 The Role of the ECDF in Inference 59

1.7 The Role of the Empirical Cumulative Distribution
Function

Methods of statistical inference are based on an assumption (often implicit)
that a discrete uniform distribution with mass points at the observed values of
a random sample is asymptotically the same as the distribution governing the
data-generating process. Thus, the distribution function of this discrete uni-
form distribution is a model of the distribution function of the data-generating
process.

For a given set of univariate data, yi,...,y,, the empirical cumulative
distribution function, or ECDF, is

_ #{yi, sty <y}
n

Pu(y)

The ECDF is a CDF in its own right. It is the CDF of the discrete distribution
with n or fewer mass points, one at each sample value, and with a probability
mass at each point corresponding to the number of sample values at that point
times n 1. If all of the sample points are unique, it is the CDF of the discrete
uniform distribution. The ECDF is the basic function used in many methods
of computational inference. It contains all of the information in the sample.

Although the ECDF has similar definitions for univariate and multivariate
random variables, it is most useful in the univariate case.

An equivalent expression for univariate random variables, in terms of in-
tervals on the real line, is

Pu(y) = %ZI(—oo,y] (yi), (1.135)
i=1

where I is the indicator function. (See page 669 for the definition and some of
the properties of the indicator function. The measure dI(_ q)(7), which we
use in equation (1.139) below, is particularly interesting.)

It is easy to see that the ECDF is pointwise unbiased for the CDF; that is,
if the y; are independent realizations of random variables Y;, each with CDF
P(.), for a given y,

E(Pu(y)) = E (% IR <Y»>

= 3 B (e (1)

=Pr(Y <y)
= P(y). (1.136)

Similarly, we find

60 1 Mathematical and Statistical Preliminaries

V(Pul(y)) = P(y)(1 - P(y))/n; (1.137)

indeed, at a fixed point y, nP,(y) is a binomial random variable with parame-
ters n and m = P(y). Because P, is a function of the order statistics, which
form a complete sufficient statistic for P, there is no unbiased estimator of
P(y) with smaller variance.

We also define the empirical probability density function (EPDF) as the
derivative of the ECDF":

n

pnly) == D60~ o), (1.138)
i=1

where § is the Dirac delta function. The EPDF is just a series of spikes at
points corresponding to the observed values. It is not as useful as the ECDF.
It is, however, unbiased at any point for the probability density function at
that point.

The ECDF and the EPDF can be used as estimators of the corresponding
population functions, but there are better estimators (see Chapter 15).

Estimation Using the ECDF

As we have seen, there are many ways to construct an estimator and to make
inferences about the population. If we are interested in a measure of the
population that is expressed as a statistical function (see page 31), we may
use data to make inferences about that measure by applying the statistical
function to the ECDF. An estimator of a parameter that is defined in this
way is called a plug-in estimator. A plug-in estimator for a given parameter
is the same functional of the ECDF as the parameter is of the CDF.

For the mean of the model, for example, we use the estimate that is the
same functional of the ECDF as the population mean in equation (1.74),

—0Q0

o0 1 n
/ ydg Zl(foo,y] (yz)
0 i=1

>yl

- ydI(foo,y] (yz)
n i=1"7 "

1 n

~D i

n =1

=7 (1.139)

The sample mean is thus a plug-in estimator of the population mean. Such an
estimator is called a method of moments estimator. This is an important type

1.7 The Role of the ECDF in Inference 61

of plug-in estimator. For a univariate random variable Y, the method of mo-
ments results in estimates of the parameters E(Y™) that are the corresponding
sample moments.

Statistical properties of plug-in estimators are generally relatively easy to
determine, and often the statistical properties are optimal in some sense.

In addition to point estimation based on the ECDF, other methods of
computational statistics make use of the ECDF. In some cases, such as in
bootstrap methods, the ECDF is a surrogate for the CDF. In other cases, such
as Monte Carlo methods, an ECDF for an estimator is constructed by repeated
sampling, and that ECDF is used to make inferences using the observed value
of the estimator from the given sample.

A functional, ©, denotes a specific functional form of a CDF or ECDF.
Any functional of the ECDF is a function of the data, so we may also use
the notation @(Y7,...,Y,). Often, however, the notation is cleaner if we use
another letter to denote the function of the data; for example, T'(Y1,...,Ys),
even if it might be the case that

T(Yi,...,Y,) = O(Py).

We will also often simplify the notation further by using the same letter that
denotes the functional of the sample to represent the random variable com-
puted from a random sample; that is, we may write

T=T(,...,Y,).

As usual, we will use ¢ to denote a realization of the random variable T'.

Use of the ECDF in statistical inference does not require many assump-
tions about the distribution. Other methods, such as MLE and others dis-
cussed in Section 1.4, are based on specific information or assumptions about
the data-generating process.

Linear Functionals and Estimators

A functional O is linear if, for any two functions f and g in the domain of &
and any real number a,

Oaf +g) = aB(f) + O(g). (1.140)

A statistic is linear if it is a linear functional of the ECDF. A linear statistic
can be computed from a sample using an online algorithm, and linear statis-
tics from two samples can be combined by addition. Strictly speaking, this
definition excludes statistics such as means, but such statistics are essentially
linear in the sense that they can be combined by a linear combination if the
sample sizes are known.

62 1 Mathematical and Statistical Preliminaries
Quantiles

A useful distributional measure for describing a univariate distribution with
CDF P is is a quantity y,, such that

Pr(Y <yr)>m and Pr(Y > y,) > 1—m, (1.141)

for m € (0,1). This quantity is called a m quantile.
For an absolutely continuous distribution with CDF P,

yr = P71(7).

If P is not absolutely continuous, or in the case of a multivariate random
variable, y, may not be unique.

For a univariate distribution with CDF P, we define the 7 quantile as a
unique value by letting

Yr+ = min{y, s.t. P(y) > 7}
y

and
Yr— = min{y, s.t. P(y) <mand P(y) > P(z) for y > z},
y

and then Ply_)
T — P(ya.—
Yr = Yn— + Yot — Yrn—)- 1.142
" By - Plye)) -
For discrete distributions, the m quantile may be a quantity that is not in the
support of the distribution.
It is clear that y, is a functional of the CDF, say =, (P). For an absolutely
continuous distribution, the functional is very simple:

Z.(P) =P (n). (1.143)

For a univariate random variable, the m quantile is a single point. For a
d-variate random variable, a similar definition leads to a (d — 1)-dimensional
object that is generally nonunique. Quantiles are not so useful in the case of
multivariate distributions.

Empirical Quantiles

For a given sample, the order statistics constitute an obvious set of empirical
quantiles. The probabilities from the ECDF that are associated with the order
statistic y;) is i/n, which leads to a probability of 1 for the largest sample
value, y(), and a probability of 1/n for the smallest sample value, y1. (The
notation y; denotes the i*™ order statistic. We also sometimes incorporate
the sample size in the notation: y(;.,) to indicates the i*™® order statistic in a
sample of size n.

1.7 The Role of the ECDF in Inference 63

If Y(1),...,Y(n) are the order statistics in a random sample of size n from
a distribution with PDF py (-) and CDF Py (-), then the PDF of the i*® order
statistic is

o) = (1) Prive) ™ oy loo) (1= Prlu)) ™™+ (1141)

This expression is easy to derive by considering the ways the i*" element can
be chosen from a set of n, the probability that i — 1 elements are less than
or equal to this element, the density of the element itself, and finally the
probability that n — 7 elements are greater than this element.

Order statistics are not independent. The joint density of all order statistics
is

n! Hp(y(i))Iy(1>S~~Sy<n) (y(l); e »y(n))' (1145)

Interestingly, the order statistics from a U(0, 1) distribution have beta dis-
tributions. As we see from equation (1.144), the i*" order statistic in a sample
of size n from a U(0,1) distribution has a beta distribution with parameters
i and n — i + 1. Because of this simple distribution, it is easy to determine
properties of the order statistics from a uniform distribution. For example the
expected value of the it order statistic in a sample of size n from U(0, 1) is

1

E(U('Ln)) = n+ 1’

(1.146)

and the variance is
iln—i+1)

(n+1)2(n+2)

Order statistics have interesting, and perhaps unexpected properties. Con-
sider a sample of size 25 from a standard normal distribution. Some simple
facts about the maximum order statistic Y(25) are worth noting. First of all,
the distribution of Y{25) is not symmetric. Secondly, the expected value of the
standard normal CDF, @, evaluated at Y(,5) is not 0.960 (24/25) or 0.962
(25/26), and of course, it is certainly not 1, as is the value of the ECDF at
Y(25). Notice that if E(®(Y(25))) = E(U(25)), where Ulos) is the maximum or-
der statistic in a sample of size 25, the value would be 25/26, but the expected
value does not carry over through nonlinear functions. Because ® is a strictly
increasing function, however, we do have

V(Uiny) = (1.147)

Med(®(Y(25))) = Med(U25)), (1.148)

where Med (X)) is the median of the random variable X. (This comes from the
fact that median-unbiasedness carries over to monotone increasing functions.)
Filliben (1975) suggested fitting quantiles by equation (1.148). For the median
of the i*"" order statistic in a sample of size n from a U(0,1) distribution, he
suggested an expression of the form

64 1 Mathematical and Statistical Preliminaries

L=
_ 1.149
n—2y+1 ()

Filliben then fit various approximations to the order statistics and came up
with the fit

1—27Vn =1

Med(Uginy)) = =542 i=2,...,n—1 (1.150)
2~ 1/m i=n.

By Filliben’s rule for using the median of the uniform order statistics and
fitting them as above, we have ®(Y|25)) ~ 0.973; other reasonable empirical
adjustments may yield values as large as 0.982.

The foregoing raises the question as to what probability should correspond
to the " order statistic, Y(i), in a sample of size n. The probability is often
approximated as some adjustment of i/n as in equation (1.149), but clearly
it depends on the underlying distribution.

We use empirical quantiles in Monte Carlo inference, in nonparametric
inference, and in graphical displays for comparing a sample with a standard
distribution or with another sample. The most common of the graphs is the
q-q plot discussed beginning on page 348.

Estimation of Quantiles

Empirical quantiles can be used as estimators of the population quantiles, but
there are generally other estimators that are better, as we can deduce from
basic properties of statistical inference. The first thing that we note is that
the extreme order statistics have very large variances if the support of the
underlying distribution is infinite. We would therefore not expect them alone
to be the best estimator of an extreme quantile unless the support is finite.

A fundamental principle of statistical inference is that a sufficient statistic
should be used, if one is available. No order statistic alone is sufficient, except
for the minimum or maximum order statistic in the case of a distribution with
finite support. The set of all order statistics, however, is always sufficient.
Because of the Rao-Blackwell theorem (see page 40), this would lead us to
expect that some combination of order statistics would be a better estimator
of any population quantile than a single estimator.

The Kaigh-Lachenbruch estimator (see Kaigh and Lachenbruch, 1982) and
the Harrell-Davis estimator (see Harrell and Davis, 1982), use weighted com-
binations of order statistics. The Kaigh-Lachenbruch estimator uses weights
from a hypergeometric distribution, and the Harrell-Davis estimator uses
weights from a beta distribution. The Kaigh-Lachenbruch weights arise in-
tuitively from combinatorics, and the Harrell-Davis come from the fact that
for any continuous CDF P if Y is a random variable from the distribution with

1.8 The Role of Optimization in Inference 65

CDF P, then U = P(Y) has a U(0,1) distribution, and the order statistics
from a uniform have beta distributions.

The Harrell-Davis estimator for the m quantile uses the beta distribution
with parameters m(n + 1) and (1 — 7)(n + 1). Let Ps, (-) be the CDF of the
beta distribution with those parameters. The Harrell-Davis estimator for the
7 quantile is

U = Zwiy(i)v (1.151)
i=1

where
w; = Pg_(i/n) — Pa, ((i — 1)/n). (1.152)

Estimators of the form of linear combinations of order statistics, such as the
Harrell-Davis or Kaigh-Lachenbruch quantile estimators, are called “L statis-
tics”. In Exercise 1.18 you are asked to study the relative performance of the
sample median and the Harrell-Davis estimator as estimators of the popula-
tion median.

1.8 The Role of Optimization in Inference

Important classes of estimators are defined as points at which some function
that involves the parameter and the random variable achieves an optimum
with respect to a variable in the role of the parameter in the function. There
are, of course, many functions that involve the parameter and the random
variable. One example of such a function is the probability density function
itself, and as we have seen optimization of this function is the idea behind
maximum likelihood estimation.

In the use of function optimization in inference, once the objective func-
tion is chosen, observations on the random variable are taken and are then
considered to be fixed; the parameter in the function is considered to be a vari-
able (the “decision variable”, in the parlance often used in the literature on
optimization). The function is then optimized with respect to the parameter
variable. The nature of the function determines the meaning of “optimized”;
if the function is the probability density, for example, “optimized” would log-
ically mean “maximized”, which leads to maximum likelihood estimation.

In discussing the use of optimization in statistical estimation, we must be
careful to distinguish between a symbol that represents a fixed parameter and
a symbol that represents a “variable” parameter. When we denote a probabil-
ity density function as p(y | 6), we generally expect “6” to represent a fixed,
but possibly unknown, parameter. In an estimation method that involves op-
timizing this function, however, 8 is a variable placeholder. In the following
discussion, we will generally consider a variable ¢ in place of 8. We also use t,
t1, and so on to represent specific fixed values of the variable. In an iterative
algorithm, we use t(*) to represent a fixed value in the k' iteration. We do
not always do this, however, and sometimes, as other authors do, we will use

66 1 Mathematical and Statistical Preliminaries

0 to represent the true value of the parameter on which the random variable
observed is conditioned —but we consider it changeable. We may also use
0o, 61, and so on, to represent specific fixed values of the variable, or in an
iterative algorithm, #*) to represent a fixed value in the k*" iteration.

Some Comments on Optimization

The solution to an optimization problem is in some sense “best” for that
problem and its objective functions; this may mean it is considerably less
good for some other optimization problem. It is often the case, therefore, that
an optimal solution is not robust to assumptions about the phenomenon being
studied. Use of optimization methods is likely to magnify the effects of the
assumptions.

In the following pages we discuss two of the general approaches to statis-
tical inference that we mentioned on page 41 in which optimization is used.
One is to minimize deviations of observed values from what a model would
predict. This is an intuitive procedure which may be chosen without regard
to the nature of the data-generating process. The justification for a particular
form of the objective function, however, may arise from assumptions about a
probability distribution underlying the data-generating process.

Another common way in which optimization is used in statistical inference
is in maximizing the likelihood. The correct likelihood function depends on
the probability distribution underlying the data-generating process, which, of
course, is not known and can only be assumed. How good or how poor the
maximum likelihood estimator is depends on both the true distribution and
the assumed distribution.

In the discussion below, we briefly describe particular optimization tech-
niques that assume that the objective function is a continuous function of the
decision variables, or the parameters. We also assume that there are no a priori
constraints on the values of the parameters. Techniques appropriate for other
situations, such as for discrete optimization and constrained optimization, are
available in the general literature on optimization.

We must also realize that mathematical expressions below do not neces-
sarily imply computational methods. This is a repeating theme of this book.
There are many additional considerations for the numerical computations. A
standard example of this point is in the solution of the linear full-rank system
of n equations in n unknowns: Ax = b. While we may write the solution as
xr = A71b, we would almost never compute the solution by forming the inverse
and then multiplying b by it.

Estimation by Minimizing Residuals

In many applications, we can express the expected value of a random variable
as a function of a parameter (which might be a vector, of course):

1.8 The Role of Optimization in Inference 67
E(Y) = g(0). (1.153)

The expectation may also involve covariates, so in general we may write
g(z,0). The standard linear regression model is an example: E(Y) = zT23.
If the covariates are observable, they can be subsumed into g(6).

The more difficult and interesting problems, of course, involve the deter-
mination of the form of the function g(#). Here, however, we concentrate on
the simpler problem of determining an appropriate value of 6, assuming that
the form of the function g is known.

If we can obtain observations yi,...,y, on Y (and observations on the
covariates if there are any), a reasonable estimator of 6 is a value 9 that
minimizes the residuals,

ri(t) = yi — g(t), (1.154)
over all possible choices of ¢, where ¢ is a variable placeholder. This approach
makes sense because we expect the observed y’s to be close to g(6).

There are, of course, several ways we could reasonably “minimize the resid-
uals”. In general, we seek a value of ¢ to minimize some norm of r(t), the
n-vector of residuals. The optimization problem is

min[|r(1)]] (1.155)

We often choose the norm as the L, norm, so we minimize a function of an
L, norm of the residuals,

sp(t) = |yi — g7, (1.156)
=1

for some p > 1, to obtain an L, estimator. Simple choices are the sum of the
absolute values and the sum of the squares. The latter choice yields the least
squares estimator. More generally, we could minimize

for some nonnegative function p(-) to obtain an “M estimator”. (The name
comes from the similarity of this objective function to the objective function
for some maximum likelihood estimators.)

Standard techniques for optimization can be used to determine estimates
that minimize various functions of the residuals, that is, for some appropriate
function of the residuals s(+), to solve

mtin s(t). (1.157)

Except for special forms of the objective function, the algorithms to solve
expression (1.157) are iterative, such as Newton’s method, which we discuss
on page 266.

The function s(-) is usually chosen to be differentiable, at least piecewise.

68 1 Mathematical and Statistical Preliminaries
Statistical Properties of Minimum-Residual Estimators

There are, of course, two considerations. One involves the actual computa-
tions. We discuss those in Chapter 6. The other involves the statistical prop-
erties of the estimators.

It is generally difficult to determine the variance or other high-order sta-
tistical properties of an estimator defined as above (that is, defined as the
minimizer of some function of the residuals). In many cases, all that is possi-
ble is to approximate the variance of the estimator in terms of some relation-
ship that holds for a normal distribution. (In robust statistical methods, for
example, it is common to use a “scale estimate” expressed in terms of some
mysterious constant times a function of some transformation of the residuals.)

There are two issues that affect both the computational method and the
statistical properties of the estimator defined as the solution to the optimiza-
tion problem. One issue has to do with the acceptable values of the parameter
f. In order for the model to make sense, it may be necessary that the parame-
ter be in some restricted range. In some models, a parameter must be positive,
for example. In these cases, the optimization problem has constraints. Such a
problem is more difficult to solve than an unconstrained problem. Statistical
properties of the solution are also more difficult to determine. More extreme
cases of restrictions on the parameter may require the parameter to take val-
ues in a countable set. Obviously, in such cases, Newton’s method cannot be
used because the derivatives cannot be defined. In those cases, a combinato-
rial optimization algorithm must be used instead. Other situations in which
the function is not differentiable also present problems for the optimization
algorithm. In such cases, if the domain is continuous, a descending sequence
of simplexes can be used.

The second issue involves the question of a unique global solution to the
optimization problem (1.157). It may turn out that the optimization prob-
lem has local minima. This depends on the nature of the function f(-) in
equation (1.153). Local minima present problems for the computation of the
solution because the algorithm may get stuck in a local optimum. Local min-
ima also present conceptual problems concerning the appropriateness of the
estimation criterion itself. As long as there is a unique global optimum, it
seems reasonable to seek it and to ignore local optima. It is not so clear what
to do if there are multiple points at which the global optimum is attained.
That is not a question specifically for methods of computational statistics; it
is fundamental to the heuristic of minimizing residuals.

Least Squares Estimation

Least squares estimators are generally more tractable than estimators based
on other functions of the residuals. They are more tractable both in terms of
solving the optimization problem to obtain the estimate, and in approximating
statistical properties of the estimators, such as their variances.

1.8 The Role of Optimization in Inference 69

Assume in equation (1.153) that ¢ (and hence, 6) is an m-vector and that
f() is a smooth function. Letting y be the n-vector of observations, we can
write the least squares objective function corresponding to equation (1.156) as

s(t) = (r(1)) "r (). (1.158)

Often in applications, the residuals in equation (1.154) are not given equal
weight for estimating 6. This may be because the reliability or precision of
the observations may be different. For weighted least squares, instead of equa-
tion (1.158) we have the objective function

sw(t) =Y wi(ri(1))™. (1.159)
i=1

Variance of Least Squares Estimators

If the distribution of Y has finite moments, the sample mean Y is a consis-
tent estimator of g(). Furthermore, the minimum residual norm (r(@))Tr(H)
divided by (n —m) is a consistent estimator of the variance of Y, say o?; that
is, of
?=E(Y - g(0))?
o g .

A consistent estimator of o2 is

o2 = (r(8) "r(@)/(n —m).

This estimator, strictly speaking, is not a least squares estimator of o2. It is
based on least squares estimators of another parameter. (In the linear case, the
consistency of ;5, in fact, its unbiasedness, is straightforward. In other cases,
it is not so obvious. The proof can be found in texts on nonlinear regression
or on generalized estimating equations.)

The variance-covariance of the least squares estimator 5, however, is not
easy to work out, except in special cases. It obviously involves 2. In the
simplest case, g is linear and Y has a normal distribution, and we have the
familiar linear regression estimates of # and o2 and of the variance of the
estimator of 6.

Without the linearity property, however, even with the assumption of nor-
mality, it may not be possible to write a simple expression for the variance-
covariance matrix of an estimator that is defined as the solution to the least
squares optimization problem. Using a linear approximation, however, we may
estimate an approximate variance-covariance matrix for 6 as

-1

((Jr@))TJr@)) o2, (1.160)

Compare this linear approximation to the expression for the estimated variance-
covariance matrix of the least squares estimator § in the linear regression

~

model E(Y) = X3, in which J,(8) is just X.

70 1 Mathematical and Statistical Preliminaries

Taking derivatives of Vs(t), we express the Hessian of s in terms of the
Jacobian of r as

Ha(t) = (9:()) " Jo(0) + 3 ra®)H (1)

If the residuals are small, the Hessian is approximately equal to the cross-
product of the Jacobian, so an alternate expression for the estimated variance-
covariance matrix is

(H(8)) o2, (1.161)

See Exercises 1.19 and 1.20 for comparisons of these two expressions.

Although there may be some differences in the performance of these two
variance estimators, they usually depend on aspects of the model that are
probably not well understood. Which expression for the variance estimator is
used often depends on the computational method used. The expression (1.161)
is more straightforward than (1.160) if Newton’s method (equation (6.29) on
page 266) or a quasi-Newton method is used instead of the Gauss-Newton
method (equation (6.61) on page 292) for the solution of the least squares
problem because in these methods the Hessian or an approximate Hessian is
used in the computations.

Estimation by Maximum Likelihood

One of the most commonly used approaches to statistical estimation is maxi-
mum likelihood. The concept has an intuitive appeal, and the estimators based
on this approach have a number of desirable mathematical properties, at least
for broad classes of distributions.

Given a sample yq, ..., y, from a distribution with probability density or
probability mass function p(y |), a reasonable estimate of 6 is the value that
maximizes the joint density or joint probability with variable ¢ at the observed
sample value: [], p(y; |t). We define the likelihood function as a function of a
variable in place of the parameter:

n

Ln(t; y) = [[pvi |). (1.162)

=1

Note the reversal in roles of variables and parameters. The likelihood function
appears to represent a “posterior probability”, but, as emphasized by R. A.
Fisher who made major contributions to the use of the likelihood function in
inference, that is not an appropriate interpretation.

Just as in the case of estimation by minimizing residuals, the more difficult
and interesting problems involve the determination of the form of the function
p(y; | 6). In these sections, as above, however, we concentrate on the simpler
problem of determining an appropriate value of 6, assuming that the form of
p is known.

1.8 The Role of Optimization in Inference 71

The value of ¢ for which L attains its maximum value is the mazimum
likelihood estimate (MLE) of 0 for the given data, y. The data—that is, the
realizations of the variables in the density function — are considered as fixed,
and the parameters are considered as variables of the optimization problem,

max Ln(t; y). (1.163)

This optimization problem can be much more difficult than the optimiza-
tion problem (1.155) that results from an estimation approach based on min-
imization of some norm of a residual vector. As we discussed in that case,
there can be both computational and statistical problems associated either
with restrictions on the set of possible parameter values or with the exis-
tence of local optima of the objective function. These problems also occur in
maximum likelihood estimation.

Applying constraints in the optimization problem to force the solution
to be within the set of possible parameter values is called restricted maz-
imum likelihood estimation, or REML estimation. In addition to problems
due to constraints or due to local optima, other problems may arise if the
likelihood function is bounded. The conceptual difficulties resulting from an
unbounded likelihood are much deeper. In practice, for computing estimates
in the unbounded case, the general likelihood principle may be retained, and
the optimization problem redefined to include a penalty that keeps the func-
tion bounded. Adding a penalty to form a bounded objective function in the
optimization problem, or to dampen the solution is called penalized mazximum
likelihood estimation.

For a broad class of distributions, the maximum likelihood criterion yields
estimators with good statistical properties. The conditions that guarantee
certain optimality properties are called the “regular case”.

Although in practice, the functions of residuals that are minimized are al-
most always differentiable, and the optimum occurs at a stationary point, this
is often not the case in maximum likelihood estimation. A standard example
in which the MLE does not occur at a stationary point is a distribution in
which the range depends on the parameter, and the simplest such distribution
is the uniform U(0, §). In this case, the MLE is the max order statistic.

Maximum likelihood estimation is particularly straightforward for distri-
butions in the exponential class, that is, those with PDFs of the form in
equation (1.89) on page 35. Whenever) does not depend on 6, and 7(-) and
&(+) are sufficiently smooth, the MLE has certain optimal statistical proper-
ties. This family of probability distributions includes many of the familiar
distributions, such as the normal, the binomial, the Poisson, the gamma, the
Pareto, and the negative binomial.

The log-likelihood function,

I, (05 y) =log Ln(0; y), (1.164)

is a sum rather than a product. The form of the log-likelihood in the expo-
nential family is particularly simple:

72 1 Mathematical and Statistical Preliminaries

n
1,05 y) =Y 0"g(y) — na(d) +c,
i=1
where ¢ depends on the y; but is constant with respect to the variable of
interest.
The logarithm is monotone, so the optimization problem (1.163) can be
solved by solving the maximization problem with the log-likelihood function:

max I, (t; v). (1.165)

We usually drop the subscript n in the notation for the likelihood and the
log-likelihood, and we often work with the likelihood and log-likelihood as if
there is only one observation. (A general definition of a likelihood function is
any nonnegative function that is proportional to the density or the probability
mass function; that is, it is the same as the density or the probability mass
function except that the arguments are switched, and its integral or sum over
the domain of the random variable need not be 1.)

The log-likelihood function relates directly to useful concepts in statistical
inference. If it exists, the derivative of the log-likelihood is the relative rate of
change, with respect to the parameter placeholder ¢, of the probability density
function at a fixed observation. If @ is a scalar, some positive function of the
derivative such as its square or its absolute value is obviously a measure of the
effect of change in the parameter or in the estimate of the parameter. More
generally, an outer product of the derivative with itself is a useful measure
of the changes in the components of the parameter at any given point in the
parameter space:

ViL(0;y) (Vie(0;)"

The average of this quantity with respect to the probability density of the
random variable Y,

101Y) =Eo (Vi (0| V) (ViL(6|)7), (1.166)

is called the information matriz, or the Fisher information matrix, that an
observation on Y contains about the parameter 6. (As we mentioned when
discussing the score function, “8” sometimes plays multiple roles. I like to
think of it as a fixed but unknown value and use “t” or some other symbol for
variables that can take on different values. Statisticians, however, often use
the same symbol to represent something that might change.)

The expected value of the square of the first derivative is the expected
value of the negative of the second derivative:

(V05 y) (V05)") = ~E (L (0:). (1.167)

This is interesting because the expected value of the second derivative, or
an approximation of it, can be used in a Newton-like method to solve the
maximization problem. We will discuss this in Chapter 6.

1.8 The Role of Optimization in Inference 73

In some cases a covariate x; may be associated with the observed y;, and
the distribution of Y with given covariate x; has a parameter p that is a
function of x; and 6. (The linear regression model is an example, with p; =
z}6.) We may in general write p = z;(0).

Sometimes we may be interested in the MLE of 6; given a fixed value of ;.
Separating the arguments of the likelihood or log-likelihood function in this
manner leads to what is called profile likelihood, or concentrated likelihood.

Statistical Properties of MLE

As with estimation by minimizing residuals, there are two considerations in
maximum likelihood estimation. One involves the actual computations, which
we discuss in Chapter 6. The other involves the statistical properties of the
estimators.

Under suitable regularity conditions we referred to earlier, maximum likeli-
hood estimators have a number of desirable properties. For most distributions
used as models in practical applications, the MLEs are consistent. Further-
more, in those cases, the MLE 6 is asymptotically normal (with mean) with
variance-covariance matrix

(Eg(—HlL (0] Y)))_l, (1.168)

which is the inverse of the Fisher information matrix. A consistent estimator
of the variance-covariance matrix is the inverse of the Hessian at 6. (Note
that there are two kinds of asymptotic properties and convergence issues.
Some involve the iterative algorithm, and the others are the usual statistical
asymptotics in terms of the sample size.)

An issue that goes to the statistical theory, but is also related to the
computations, is that of multiple maxima. Here, we recall the last paragraph
of the discussion of the statistical properties of minimum residual estimators,
and the following is from that paragraph with the appropriate word changes.
It may turn out that the optimization problem (1.165) has local maxima. This
depends on the nature of the function f(-) in equation (1.164). Local maxima
present problems for the computation of the solution because the algorithm
may get stuck in a local optimum. Local maxima also present conceptual
problems concerning the appropriateness of the estimation criterion itself. As
long as there is a unique global optimum, it seems reasonable to seek it and to
ignore local optima. It is not so clear what to do if there are multiple points
at which the global optimum is attained. That is not a question specifically
for methods of computational statistics; it is fundamental to the heuristic of
maximizing a likelihood.

74 1 Mathematical and Statistical Preliminaries

Notes and Further Reading

The introductory material on vectors and matrices in Section 1.2 will evolve
in later chapters. In Chapter 5 we will discuss computational issues regarding
vectors and matrices, and in Chapter 9 we will describe some linear transfor-
mations that are useful in statistical analysis. A full-fledged course in “matri-
ces for statisticians” would be useful for someone working in computational
statistics.

The material on data-generating processes and statistical inference in Sec-
tions 1.3, 1.4 and 1.5 is generally considered to be prerequisite for the present
book. A few terms are defined in those sections, but many terms are men-
tioned without definition, and theorems are referenced without proof. The
reader should become familiar with all of those terms and facts because they
may be used later in the book. This material is covered in detail in Bickel
and Doksum (2001), Casella and Berger (2002), and Hogg et al. (2004), or
at a slightly higher level by Lehmann and Casella (1998) and Lehmann and
Romano (2005). Statistical theory is based on probability theory. There are
many good books on probability theory. The one I use most often is Billings-
ley (1995).

In addition to the general references on mathematical statistics and sta-
tistical inference, the reader should have texts on applied statistics and non-
parametric statistics available. A useful text on applied statistics is Kutner,
Nachtsheim, and Neter (2004), and one on nonparametric methods based on
ranks is Lehmann (1975, reprinted 2006).

There are many subtle properties of likelihood that I do not even allude
to in Section 1.4 or Section 1.8. Maximum likelihood estimation is particu-
larly simple in certain “regular” cases (see Lehmann and Casella, 1998, page
485, for example). Various nonregular cases are discussed by Cheng and Tray-
lor (1995).

The information-theoretic approach based on divergence measures men-
tioned on page 49 is described in some detail in the book by Pardo (2005).

For issues relating to building regression models, as discussed in Sec-
tion 1.6, see Kennedy and Bancroft (1971), Speed and Yu (1993), and Har-
rell (2001). A Bayesian perspective is presented in Chapter 6 of Gelman et
al. (2004).

For a more thorough coverage of the properties of order statistics alluded
to in Section 1.7, see David and Nagaraja (2004).

Dielman, Lowry, and Pfaffenberger (1994) provide extensive comparisons
of various quantile estimators, including the simple order statistics. Their
results were rather inconclusive, because of the dependence of the performance
of the quantile estimators on the shape of the underlying distribution. This
is to be expected, of course. If a covariate is available, it may be possible to
use it to improve the quantile estimate. This is often the case in simulation
studies. See Hesterberg and Nelson (1998) for a discussion of this technique.

Exercises 75

Section 1.8 shows that most statistical procedures can be set up as an op-

timization problem. This is explored more fully in Chapter 1 of Gentle (2009).
We discuss some issues in numerical optimization in Chapter 6.

Exercises

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

a) How would you describe, in nontechnical terms, the structure of the
dataset displayed in Figure 1.1, page 77

b) How would you describe the structure of the dataset in more precise
mathematical terms? (Obviously, without having the actual data, your
equations must contain unknown quantities. The question is meant to
make you think about how you would do this—that is, what would
be the components of your model.)

Show that the functions defined in equations (1.7) and (1.8) are norms,

by showing that they satisfy the defining properties of an inner product

given on page 11.

Inner products, norms, and metrics.

a) Prove that if (z,y) is an inner product, then +/(z,z) is a norm; that
is, it satisfies the properties of a norm listed on page 13 for z € R".

b) Prove the if ||z|| satisfies the properties of a norm listed on page 13
for x € R"™, then d(x,y) = ||z — y|| satisfies the properties of a metric
listed on page 14 for z,y € IR".

Prove that the Fourier coefficients form the finite expansion in basis el-

ements with the minimum mean squared error (that is, prove inequal-

ity (1.35) on page 20). Hint: Write ||z —ajv1]|> as a function of ay,

(z,x) — 2ao{w,v1) + ad{v1,v1), differentiate, set to zero for the minimum,

and determine a; = ¢; (equation (1.31)). Continue this approach for

asz, as, ..., ak, or else induction can be used from as on.

Matrix norms.

Consider the system of linear equations, Az = b:

1.000z1 + 0.500z2 = 1.500,

0.667x1 + 0.333z2 = 1.000. (1.169)

What are the norms ||A||1, |42, and || A|c?

We will consider this example further in Exercise 5.1.

Work out the moment generating function for the mean of a random
sample of size n from a N(u, 0?) distribution.

Let Y and Z have marginal distributions as exponential random variables
with parameters « and 3 respectively. Consider a joint distribution of Y’
and Z difined by a Gaussian copula (equation (1.83), page 33). What is
the correlation between Y and Z? (See also Exercise 7.5¢ on page 330.)
Assume a random sample Y7, ..., Y, from a normal distribution with mean
u and variance o2. Determine an unbiased estimator of ¢ based on the

76

1.9.

1.10.

1.11.
1.12.

1.13.

1.14.

1 Mathematical and Statistical Preliminaries

sample variance, S?, given in equation (1.113). (Note that S? is sufficient
and unbiased for 02.)

Both the binomial and normal families of distributions are in the exponen-
tial class. Show this by writing their PDF's in the form of equation (1.89)
on page 35. (The PDF's of these and other distributions are given in Ap-
pendix B.)

For the random variable Y with a distribution in the exponential class
and whose density is expressed in the form of equation (1.89), and as-
suming that the first two moments of T(Y") exist and that £(-) is twice
differentiable, show that

E(T(Y)) = VE(©o)

and
V(T(Y)) = He(0).

Hint: First, assume that we can interchange differentiation with respect
to 6 and integration with respect to y, and show that

E(Vlog(p(Y [6))) =0,

where the differentiation is with respect to 6. (To show this, write out the
derivative of the logarithm, cancel the PDF in the integrand, interchange
the integral and the derivative, and differentiate the resulting constant to
get 0.)
Derive equation (1.112) on page 46.
Discuss (compare and contrast) pivotal and sufficient functions. (Start
with the basics: Are they statistics? In what way do they both depend on
some universe of discourse, that is, on some family of distributions?)
Use the pivotal value g(g, B) in equation (1.131) on page 56 to form a
(1 — @)100% confidence region for 8 in the usual linear regression model.
Assume that {X7, X2} is a random sample of size 2 from an exponential
distribution with parameter . Consider the random variable formed as a
Student’s t,

X—0

VI

where X is the sample mean and S? is the sample variance,

ni S - X

(Note that n = 2.)

a) Show that the distribution of T is negatively skewed (although the
distribution of X is positively skewed).

b) Give a heuristic explanation of the negative skewness of T'.

1.15.

1.16.

1.17.

1.18.

Exercises 7

The properties illustrated in the exercise relate to the robustness of sta-
tistical procedures that use Student’s t. While those procedures may be
robust to some departures from normality, they are often not robust to
skewness. These properties also have relevance to the use of statistics like
a Student’s ¢ in the bootstrap.

Show that the variance of the ECDF at a point y is the expression in
equation (1.137) on page 60. Hint: Use the definition of the variance in

terms of expected values, and represent E((Pn (y))Q) in a manner similar

to how E(P,(y)) was represented in equations (1.136).

The variance functional.

a) Express the variance of a random variable as a functional of its CDF
as was done in equation (1.74) for the mean.

b) What is the same functional of the ECDF?

¢) What is the plug-in estimate of the variance?

d) Is the plug-in estimate of the variance an MLE? (The answer is no,
in general. Why not? For example, what is the MLE of the variance
in a gamma(a, 3), given a random sample from that distribution? See
Appendix B for the PDF and the mean and variance of a gamma
distribution.)

e) What are the statistical properties of the plug-in estimator of the
variance? (Is it unbiased? Is it consistent? etc.)

Give examples of

a) a parameter that is defined by a linear functional of the distribution
function (see equation (1.140)), and

b) a parameter that is not a linear functional of the distribution function.

¢) Is the variance a linear functional of the distribution function?

Comparison of estimators of the population median.

Conduct a small Monte Carlo study to compare the MSE of the sample

median with the MSE of the Harrell-Davis estimator (equation (1.151))

of the sample median. First, write a function to compute this estimator

for any given sample size and given probability. For example, in R:

hd <- function(y,p){
n <- length(y)
a <- px(n+1)
b <= (1-p)*(n+1)
q <-sum(sort(y)*(pbeta((1l:n)/n,a,b)-
pbeta((0: (n-1))/n,a,b)))
q

Use samples of size 25, and use 1000 Monte Carlo replicates. In each case,
for each replicate, generate a pseudorandom sample of size 25, compute
the two estimators of the median and obtain the squared error, using the
known population value of the median. The average of the squared errors

78 1 Mathematical and Statistical Preliminaries

over the 1000 replicates is your Monte Carlo estimate of the MSE. (See
Section 7.6 for information on software for generating random deviates.)
a) Use a normal distribution with mean 0 and variance 1. The median is
0.
b) Use a Cauchy distribution with center 0 and scale 1. The median is 0.
c¢) Use a gamma distribution with shape parameter 2 and scale parameter
3. There is no closed-form expression for the median, but
gqgamma(.5, 3, 7)
yields 0.382.
Summarize your findings in a clearly-written report. What are the dif-
ferences in relative performance of the sample median and the Harrell-
Davis quantile estimator as estimators of the population median? What
characteristics of the population seem to have an effect on the relative
performance?
1.19. Consider the least squares estimator of § in the usual linear regression
model, E(Y) = X .
a) Use expression (1.160) on page 69 to derive the variance-covariance
matrix for the estimator.
b) Use expression (1.161) to derive the variance-covariance matrix for
the estimator.
1.20. Assume a random sample yi, ..., ¥, from a gamma distribution with pa-
rameters o and (3.
a) What are the least squares estimates of « and 57 (Recall E(Y) = o8
and V(Y) = a3?.)
b) What is an approximation value of the variance-covariance matrix?
Use both expression (1.160) and expression (1.161).
¢) Formulate the optimization problem for determining the MLE of «
and (. Does this problem have a closed-form solution?
d) What is an approximation of the variance-covariance matrix? (Use
expression (1.168), page 73.)
1.21. Summary of types of estimators.
a) Assume a random sample Y7, ... Y, from a normal distribution with
mean £ and variance o2.
i. What is the MLE of u?
ii. What is the plug-in estimate of u, when p is defined by the func-
tional M in equation (1.74)7
iii. What is the plug-in estimate of u, when p is defined by the func-
tional =5 in equation (1.76)?
iv. What is the least squares estimate of y?
v. What is the least absolute values estimate of u?
vi. What is the Bayes estimate of y under the assumed prior PDF
1

2 2
par(p) = — e~ (B—pp)* /20,
v P

and with a squared-error loss?

Exercises 79

vii. Only if you know UMVUE theory: What is the UMVUE of u?
b) Assume a random sample Y7,...,Y, from a double exponential dis-
tribution with mean p and variance 2/\2.
i. What is the MLE of u?
ii. What is the plug-in estimate of p, when p is defined by the func-
tional M in equation (1.74)7
iii. What is the plug-in estimate of u, when p is defined by the func-
tional =5 in equation (1.76)?
iv. What is the least squares estimate of u?
v. What is the least absolute values estimate of u?
Note the similarities and the differences in your answers.

Part 11

Statistical Computing

Introduction to Part I1

The terms “computational statistics” and “statistical computing” are some-
times used interchangeably. The latter term, however, is often used more
specifically to refer to the actual computations, both numerical and nonnu-
merical. The emphasis of Part II is on the computations themselves.

Statistical computing includes relevant areas of numerical analysis, the
most important of which are computer number systems, algorithms and pro-
gramming, function approximation and numerical quadrature, numerical lin-
ear algebra, solution of nonlinear equations and optimization, and generation
of random numbers. These topics are the subjects of the individual chapters
of Part II.

No matter at what level of detail a statistician needs to be familiar with
the computational topics of this part, there are two simple, higher-level facts
all statisticians should be aware of:

Computer numbers are not the same as real numbers, and the arith-
metic operations on computer numbers are not exactly the same as
those of ordinary arithmetic.

and

The form of a mathematical expression and the way the erpression
should be evaluated in actual practice may be quite different.

These statements appear word for word in several places in this book. The
material in Chapter 2 illustrates the first statement in some detail. As for
the second statement, the difference between an expression and a computing
method can easily be illustrated by the problem of obtaining the solution
to the linear system of equations Ax = b. Assuming A is square and of full
rank, the solution can be written as A~'b. This is a simple expression, and it
is certainly appropriate to use it to denote the solution. This expression may
imply that to solve the linear system, we first determine A~! and then multiply
it by b on the right to obtain A~'b. This is not the way to obtain the solution.

84 Introduction to Part II

In Chapter 5 we will describe how the solution should be obtained. It does not
inwvolve inverting the matriz. This is just one example that a convenient form
of a mathematical expression and the way the expression should be evaluated
may be different.

Statistical computations, while motivated by computations in the field of
real numbers, IR, do not in actual practice conform to the rules of arithmetic
in a field. (A field is a mathematical structure consisting of a set of two closed,
associative, and commutative operations, usually called “addition” that has
an additive identity for which each element has an additive inverse, and “mul-
tiplication” that has a multiplicative identity for which each element except
the additive inverse has a multiplicative inverse, and such that multiplica-
tion distributes over addition.) In both the field IR and the computer number
arithmetic system, which we will denote as IF, there are two basic operations,
and the arithmetic operations in the computer simulate those in IR. A com-
puter engineer may identify a different set of “basic” operations, but those
differences are not relevant for our purposes here; the essential facts are that
addition on the computer simulates addition in the numbers of interest, IR,
and multiplication on the computer simulates multiplication in IR. The result
of an arithmetic operation in the computer may not yield the same value as
the operation that it simulates. Furthermore, the two important properties of
arithmetic in IR, which are common to all fields, that is, associativity of both
operations and distributivity of multiplication over addition, do not hold in
computer operations. These facts are very significant for statistical computing.

The mathematical properties of the two structures IR and IF are important,
and they are essential to the elements within each structure. In Chapter 2 we
describe standards that computer arithmetic must follow. In these standards
there are six basic operations, and the standard requires that each of these
operations be correct to within rounding. (Note that the exceptions mentioned
above involve more than one operation.)

How much a computer user needs to know about the way the computer
works depends on the complexity of the use and the extent to which the nec-
essary operations of the computer have been encapsulated in software that
is oriented toward the specific application. Although some of the details we
discuss will not be important for the computational scientist or for someone
doing routine statistical computing, the consequences of those details are im-
portant, and the serious computer user must be at least vaguely aware of the
consequences. The fact that multiplying two positive integers on the computer
can yield a negative number should cause anyone who programs a computer
to take care.

We next address, in Chapter 3, some basic issues related to computations,
such as algorithm/data interaction, programming principles and so on.

After these two general chapters, the next four chapters address the nu-
merical analysis for the four main classes of problems alluded to above.

2

Computer Storage and Arithmetic

Data represent information at various levels. The form of data, whether num-
bers, characters, or picture elements, provide different perspectives. Data of
whatever form are represented by groups of Os and 1s, called bits from the
words “binary” and “digits”. (The word was coined by John Tukey.) For
representing simple text (that is, strings of characters with no special rep-
resentation), the bits are usually taken in groups of eight, called bytes, or in
groups of sixteen, and associated with a specific character according to a fixed
coding rule. Because of the common association of a byte with a character,
those two words are often used synonymously.

For representing characters in bytes, “ASCII” (pronounced “askey”, from
American Standard Code for Information Interchange), was the first standard
code widely used. At first only English letters, Arabic numerals, and a few
marks of punctuation had codes. Gradually over time more and more symbols
were given codified representations. Also, because the common character sets
differ from one language to another (both natural languages and computer
languages), there are several modifications of the basic ASCII code set. When
there is a need for more different characters than can be represented in a byte
(28), codes to associate characters with larger groups of bits are necessary.
For compatibility with the commonly used ASCII codes using groups of 8
bits, these codes usually are for groups of 16 bits. These codes for “16-bit
characters” are useful for representing characters in some Oriental languages,
for example. The Unicode Consortium has developed a 16-bit standard, called
Unicode, that is widely used for representing characters from a variety of
languages. For any ASCII character, the Unicode representation uses eight
leading Os and then the same eight bits as the ASCII representation.

An important consideration in the choice of a method to represent data
is the way data are communicated within a computer and between the com-
puter and peripheral components such as data storage units. Data are usually
treated as a fixed-length sequence of bits. The basic grouping of bits in a
computer is sometimes called a “word” or a “storage unit”. The lengths of
words or storage units commonly used in computers are 32 or 64 bits.

J.E. Gentle, Computational Statistics, Statistics and Computing, 85
DOI: 10.1007/978-0-387-98144-4 2,
© Springer Science + Business Media, LLC 2009

86 2 Computer Storage and Arithmetic

Like the ASCII standard for representation of characters, there are also
some standards for representation of, and operations on, numeric data. The
Institute of Electrical and Electronics Engineers (IEEE) and, subsequently,
the International Electrotechnical Commission (IEC) have been active in pro-
mulgating these standards, and the standards themselves are designated by
an IEEE number and/or an IEC number.

The two mathematical models that are often used for numeric data are the
ring of integers, Z, and the field of reals, IR. We use two computer models, I
and IF, to simulate these mathematical entities. Neither II nor IF is a simple
mathematical construct, such as a ring or field.

2.1 The Fixed-Point Number System

Because an important set of numbers is a finite set of reasonably sized inte-
gers, efficient schemes for representing these special numbers are available in
most computing systems. The scheme is usually some form of a base 2 rep-
resentation and may use one computer storage unit (this is most common),
two storage units, or one half of a storage unit. For example, if a storage unit
consists of 32 bits and one storage unit is used to represent an integer, the
integer 5 may be represented in binary notation using the low-order bits, as
shown in Figure 2.1.

[o[o[olo[ofo[oo]olo[ofo[olo[olo[ofo[o[olofo[ofo[ololofofo[1]0]1]

Fig. 2.1. The Value 5 in a Binary Representation

The sequence of bits in Figure 2.1 represents the value 5, using one storage
unit. The character “5” is represented in the ASCII code shown previously,
00110101.

If the set of integers includes the negative numbers also, some way of
indicating the sign must be available. The first bit in the bit sequence (usually
one storage unit) representing an integer is usually used to indicate the sign;
if it is 0, a nonnegative number is represented; if it is 1, a negative number is
represented.

Special representations for numeric data are usually chosen so as to facil-
itate manipulation of data. A common method for representing negative in-
tegers, called “twos-complement representation”. The twos-complement repre-
sentation makes arithmetic operations particularly simple. In twos-complement
representation, the sign bit is set to 1 and the remaining bits are set to their
opposite values (0 for 1; 1 for 0), and then 1 is added to the result. If the bits
for 5 are ...00101, the bits for —5 would be ...11010 + 1, or ...11011. If there
are k bits in a storage unit (and one storage unit is used to represent a single

2.1 The Fixed-Point Number System 87

integer), the integers from 0 through 2~ — 1 would be represented in ordi-
nary binary notation using k¥ — 1 bits. An integer 7 in the interval [-2F~1, —1]
would be represented by the same bit pattern by which the nonnegative inte-
ger 2F=1 — j is represented, except the sign bit would be 1.

The sequence of bits in Figure 2.2 represents the value —5 using twos-
complement notation in 32 bits, with the leftmost bit being the sign bit and
the rightmost bit being the least significant bit; that is, the 1 position. The
ASCII code for “—5” consists of the codes for “~” and “5”; that is,
00101101 00110101.

lafol1]1]

Fig. 2.2. The Value —5 in a Twos-Complement Representation

It is easy to see that the largest integer that can be represented in the
twos-complement form is 2~ — 1 and that the smallest integer is —2F1.

A representation scheme such as that described above is called fixed-point
representation or integer representation, and the set of such numbers is de-
noted by II. The notation I is also used to denote the system built on this
set. This system is similar in some ways to a mathematical system called a
ring, which is what the integers Z are. (A ring is similar to a field, except
there is no requirement for multiplicative inverses, and the requirement that
multiplication be commutative is usually dropped.)

There are several variations of the fixed-point representation. The number
of bits used and the method of representing negative numbers are two aspects
that often vary from one computer to another. Even within a single computer
system, the number of bits used in fixed-point representation may vary; it is
typically one storage unit or half of a storage unit.

Fixed-Point Operations

The operations of addition, subtraction, and multiplication for fixed-point
numbers are performed in an obvious way that corresponds to the similar
operations on the ring of integers. Subtraction is addition of the additive
inverse. (In the usual twos-complement representation we described earlier, all
fixed-point numbers have additive inverses except —2*~1.) Because there is no
multiplicative inverse, however, division is not multiplication by the inverse.
The result of division with fixed-point numbers is the result of division with
the corresponding real numbers rounded toward zero. This is not considered
an arithmetic exception.

As we indicated above, the set of fixed-point numbers together with addi-
tion and multiplication is not the same as the ring of integers, if for no other
reason than that the set is finite. Under the ordinary definitions of addition

88 2 Computer Storage and Arithmetic

and multiplication, the set is not closed under either operation. The computer
operations of addition and multiplication, however, are defined so that the set
is closed. These operations occur as if there were additional higher-order bits
and the sign bit were interpreted as a regular numeric bit. The result is then
whatever would be in the standard number of lower-order bits. If the lost
higher-order bits are necessary, the operation is said to overflow. The result
depends on the specific computer architecture. Aside from the interpretation
of the sign bit, the result is essentially the same as would result from a modular
reduction. In many systems the sign bit is interpreted as an ordinary sign even
if it is mathematically inconsistent with the correct result of the operation.
(For example, addition of two large positive integers could result in a negative
integer because of overflow into the sign bit.) There are some special-purpose
algorithms that actually use this modified modular reduction, although such
algorithms would not be portable across different computer systems.

2.2 The Floating-Point Number System

In a fixed-point representation, all bits represent values greater than or equal
to 1; the base point or radixz point is at the far right, before the first bit. In
a fixed-point representation scheme using k bits, the range of representable
numbers is of the order of 2%, usually from approximately —2F~1 to 2+F—1.
Numbers outside of this range cannot be represented directly in the fixed-point
scheme. Likewise, nonintegral numbers cannot be represented directly. Large
numbers and fractional numbers are generally represented in a scheme similar
to what is sometimes called “scientific notation” or in a type of logarithmic
notation. Because within a fixed number of digits the radix point is not fixed,
this scheme is called floating-point representation, and the set of such numbers
is denoted by IF. The notation IF is also used to denote the system built on
this set. (The “system” includes operations in addition to the set itself.)

A floating-point number is also sometimes called “real”. Both computer
“integers”, II, and “reals”, IF, represent useful subsets of the corresponding
mathematical entities, Z and IR, but while the computer numbers called “in-
tegers” do constitute a fairly simple subset of the integers, the computer num-
bers called “real” do not correspond to the real numbers in a natural way. In
particular, the floating-point numbers do not occur uniformly over the real
number line.

Within the allowable range, a mathematical integer is exactly represented
by a computer fixed-point number, but a given real number, even a rational
number, of any size may or may not have an exact representation by a floating-
point number. This is the familiar situation where fractions such as % have
no finite representation in base 10. The simple rule, of course, is that the
number must be a rational number whose denominator in reduced form factors
into only primes that appear in the factorization of the base. In base 10, for
example, only rational numbers whose factored denominators contain only

2.2 The Floating-Point Number System 89

2s and 5s have an exact, finite representation; and in base 2, only rational
numbers whose factored denominators contain only 2s have an exact, finite
representation.

For a given real number z, we will occasionally use the notation

(2] (2.1)

to indicate the floating-point number that is “closest” to z, and we will refer
to the exact value of a floating-point number as a computer number. That
is, [z]c is a computer number, but x is a computer number if and only if
x = [z].. We will also use the phrase “computer number” to refer to the value
of a computer fixed-point number. While the definition of [z]. requires that
|[z]e — x| < |y — z| for any y € IF, standard-conforming computers have four
different rounding modes, as we describe on page 94. What we have defined
here for [z]. is “round to nearest”.

It is important to understand that computer numbers II and IF are finite.
The set of fixed-point numbers I is a proper subset of Z. The set of floating-
point numbers is almost a proper subset of IR, but it is not a subset because
it contains some numbers not in IR; see the special floating-point numbers
discussed on page 94. There are many concepts in IR, such as irrationality,
that do not exist in IF. (There are no irrational numbers in IF.)

Our main purpose in using computers, of course, is not to evaluate func-
tions of the set of computer floating-point numbers or the set of computer
integers; the main immediate purpose usually is to perform operations in the
field of real (or complex) numbers or occasionally in the ring of integers. (And,
in the famous dictum of Richard Hamming, “the purpose of computing is in-
sight, not numbers”.) Doing computations on the computer, then, involves
using the sets of computer numbers to simulate the sets of reals or integers.

The Parameters of the Floating-Point Representation

The parameters necessary to define a floating-point representation are the
base or radix, the range of the mantissa or significand, and the range of the
exponent. Because the number is to be represented in a fixed number of bits,
such as one storage unit or word, the ranges of the significand and exponent
must be chosen judiciously so as to fit within the number of bits available. If
the radix is b and the integer digits d; are such that 0 < d; < b, and there are
enough bits in the significand to represent no more than p digits, then a real
number is approximated by

:|:0.d1d2 s dp X be, (22)

where e is an integer. This is the standard model for the floating-point repre-
sentation. (The d; are called “digits” from the common use of base 10.)

The number of bits allocated to the exponent e must be sufficient to rep-
resent numbers within a reasonable range of magnitudes; that is, so that the

90 2 Computer Storage and Arithmetic

smallest number in magnitude that may be of interest is approximately bemi»
and the largest number of interest is approximately b°max where ey and epax
are, respectively, the smallest and the largest allowable values of the exponent.
Because ey, is likely negative and ey .y is positive, the exponent requires a
sign. In practice, most computer systems handle the sign of the exponent by
defining a bias and then subtracting the bias from the value of the exponent
evaluated without regard to a sign.

In order to ensure a unique representation for all numbers (except 0),
most floating-point systems require that the leading digit in the significand
be nonzero unless the magnitude is less than 6°™i». A number with a nonzero
leading digit in the significand is said to be normalized.

The most common value of the base b is 2, although 16 and even 10 are
sometimes used. If the base is 2, in a normalized representation, the first
digit in the significand is always 1; therefore, it is not necessary to fill that
bit position, and so we effectively have an extra bit in the significand. The
leading bit, which is not represented, is called a “hidden bit”. This requires a
special representation for the number 0, however.

In a typical computer using a base of 2 and 64 bits to represent one floating-
point number, 1 bit may be designated as the sign bit, 52 bits may be allocated
to the significand, and 11 bits allocated to the exponent. The arrangement of
these bits is somewhat arbitrary, and of course the physical arrangement on
some kind of storage medium would be different from the “logical” arrange-
ment. A common logical arrangement assigns the first bit as the sign bit, the
next 11 bits as the exponent, and the last 52 bits as the significand. (Com-
puter engineers sometimes label these bits as 0,1,..., and then get confused
as to which is the i*" bit. When we say “first”, we mean “first”, whether
an engineer calls it the “0*"” or the “15%”.) The range of exponents for the
base of 2 in this typical computer would be 2,048. If this range is split evenly
between positive and negative values, the range of orders of magnitude of
representable numbers would be from —308 to 308. The bits allocated to the
significand would provide roughly 16 decimal places of precision.

Figure 2.3 shows the bit pattern to represent the number 5, using b = 2,
p =24, epin = —126, and a bias of 127, in a word of 32 bits. The first bit on the
left is the sign bit, the next 8 bits represent the exponent, 129, in ordinary base
2 with a bias, and the remaining 23 bits represent the significand beyond the
leading bit, known to be 1. (The binary point is to the right of the leading bit
that is not represented.) The value is therefore 4+1.01 x 22 in binary notation.

[0[1]o[oJofofofo[1]o[1]oofo]o[o[ofo[o[ofo]ofo]oolo]ofofo[0]0]0]
A A J
Fig. 2.3. The Value 5 in a Floating-Point Representation

2.2 The Floating-Point Number System 91

As mentioned above, the set of floating-point numbers is not uniformly
distributed over the ordered set of the reals. (Exercise 2.9a and its partial
solution on page 677 may help you to see how the spacing varies.) There
are the same number of floating-point numbers in the interval [b%, b**!] as in
the interval [b*t1, b'2] for any integer emin < i < €max — 2, even though the
second interval is b times as long as the first. Figures 2.4 through 2.6 illustrate
this. The fixed-point numbers, on the other hand, are uniformly distributed
over their range, as illustrated in Figure 2.7.

0 2—2 o—1 20 21

Fig. 2.4. The Floating-Point Number Line, Nonnegative Half

—21 —20 —2—1 —2—2 0

Fig. 2.5. The Floating-Point Number Line, Nonpositive Half

0 4 8 16 32
Fig. 2.6. The Floating-Point Number Line, Nonnegative Half; Another View

0 4 8 16 32
Fig. 2.7. The Fixed-Point Number Line, Nonnegative Half

The density of the floating-point numbers is generally greater closer to
zero. Notice that if floating-point numbers are all normalized, the spacing be-
tween 0 and bemi» ig bmin (that is, there is no floating-point number in that
open interval), whereas the spacing between bémin and bpemintl jg pemin—p+1,
Most systems do not require floating-point numbers less than b°™i» in mag-
nitude to be normalized. This means that the spacing between 0 and Hcmi»
can be b°mi»~P which is more consistent with the spacing just above bcmin.
When these nonnormalized numbers are the result of arithmetic operations,
the result is called “graceful” or “gradual” underflow.

92 2 Computer Storage and Arithmetic

The spacing between floating-point numbers has some interesting (and,
for the novice computer user, surprising!) consequences. For example, if 1 is
repeatedly added to z, by the recursion

2+ k) |

the resulting quantity does not continue to get larger. Obviously, it could
not increase without bound because of the finite representation. It does not
eventually become Inf (see page 94). It does not even approach the largest
number representable! (This is assuming that the parameters of the floating-
point representation are reasonable ones.) In fact, if x is initially smaller in
absolute value than bm=x—P (approximately), the recursion

LU+ — (0

will converge to a stationary point for any value of ¢ smaller in absolute value
than pemax—P,

The way the arithmetic is performed would determine these values pre-
cisely; as we shall see below, arithmetic operations may utilize more bits than
are used in the representation of the individual operands.

The spacings of numbers just smaller than 1 and just larger than 1 are
particularly interesting. This is because we can determine the relative spac-
ing at any point by knowing the spacing around 1. These spacings at 1 are
sometimes called the “machine epsilons”, denoted €pin and €max (not to be
confused with e, and enmax defined earlier). It is easy to see from the model
for floating-point numbers on page 89 that

emin = b7 (2.3)

and
€max — blip; (24)

see Figure 2.8. The more conservative value, €,,,x, sometimes called “the ma-
chine epsilon”, € or €pach, provides an upper bound on the rounding that
occurs when a floating-point number is chosen to represent a real number. A
floating-point number near 1 can be chosen within €;,,,/2 of a real number
that is near 1. This bound, %blfp, is called the unit roundoff.

€min l
T TN T I I I | I I I | I I

1 1
o 1 1 1 2

Fig. 2.8. Relative Spacings at 1: “Machine Epsilons”

These machine epsilons are also called the “smallest relative spacing” and
the “largest relative spacing” because they can be used to determine the
relative spacing at the point x (see Figure 2.8).

2.2 The Floating-Point Number System 93

[[z]e = (1 = €min) [z]c]e 7 f[(l + €max)[z]e — [x]c]e

T

Fig. 2.9. Relative Spacings

If x is not zero, the relative spacing at x is approximately

r — (1 - emin)x (25)
T
or
At emaz =, (2.6)

x
Notice that we say “approximately”. First of all, we do not even know that x
is representable. Although (1 — €pin) and (1 4 €max) are members of the set of
floating-point numbers by definition, that does not guarantee that the product
of either of these numbers and [z]. is also a member of the set of floating-point
numbers. However, the quantities [(1 — €min)[z]c]c and [(1 4 emax)[2]c]c are rep-
resentable (by the definition of [-]. as a floating point number approximating
the quantity within the brackets); and, in fact, they are respectively the next
smallest number than [z]. (if [x]c is positive, or the next largest number other-
wise) and the next largest number than [z]. (if [z]c is positive). The spacings
at [z]. therefore are

[l — [(1 — €min)[7]c]c (2.7)
and

(1 + €max)[z]c — []c]e- (2.8)

As an aside, note that this implies it is probable that
(1 — €min)[2]e]c = [(1 + €min)[T]c]c-
In practice, to compare two numbers z and y, we do not ask if
r==y. (2.9)
We must compare [z]. and [y].. We consider z and y different if

[ylle < [|z]le — [€min[|z]]c]e (2.10)

or if
[1ylle > [lzl]e + [emax[l2]c]e- (2.11)

The relative spacing at any point obviously depends on the value repre-
sented by the least significant digit in the significand. This digit (or bit) is
called the “unit in the last place”, or “ulp”. The magnitude of an ulp depends
of course on the magnitude of the number being represented. Any real number
within the range allowed by the exponent can be approximated within % ulp
by a floating-point number.

94 2 Computer Storage and Arithmetic
Standardization of Floating-Point Representation

Although different computers represent numeric data in different ways, there
has been some attempt to provide standards for the range and precision of
floating-point quantities. The IEEE Standard 754-1985 (IEEE, 1985) is a bi-
nary standard that specifies the exact layout of the bits for two different
precisions, “single” and “double”. In both cases, the standard requires that
the radix be 2. For single precision, p must be 24, e;,,x must be 127, and ey,
must be —126. For double precision, p must be 53, enax must be 1023, and
€min Must be —1022.

The IEEE Standard 754 also defines two additional precisions, “single
extended” and “double extended”. For each of the extended precisions, the
standard sets bounds on the precision and exponent ranges rather than speci-
fying them exactly. The extended precisions have larger exponent ranges and
greater precision than the corresponding precision that is not “extended”.

The standard also defines four rounding modes: round down, round up,
round toward zero, and round to nearest, each with the obvious meaning. The
standard requires that round to nearest be the default rounding mode. (In the
case of a tie, round to nearest chooses a 0 in the least significant position.) The
standard requires that the result of add, subtract, multiply, divide, remainder,
and square root be correct to the specified rounding mode.

The IEEE Standard 754-1985 has been revised and is now IEEE Standard
754-2008. This standard now also allows a radix of 10; that is, it provides a
standard for decimal storage and arithmetic operations.

Special Floating-Point Numbers

It is convenient to be able to represent certain special numeric entities, such as
infinity or “indeterminate” (0/0), which do not have ordinary representations
in any base-digit system. Although 8 bits are available for the exponent in the
single-precision IEEE binary standard, ep.x = 127 and ey, = —126. This
means there are two unused possible values for the exponent; likewise, for
the double-precision standard, there are two unused possible values for the
exponent. These extra possible values for the exponent allow us to represent
certain special floating-point numbers.

An exponent of ey + 1 allows us to represent oo or the indeterminate
value. A floating-point number with this exponent and a significand of 0 rep-
resents +oo (the sign bit determines the sign, as usual). This value is called
Inf or -Inf.

Numerical operations with Inf or —Inf yield values consistent with those
in the extended real number system; that is, if x€ IF and 0<x<Inf, then
xxInf=Inf and —x*Inf=—Inf. We also have Inf+Inf=Inf and InfxInf=Inf, but
0xInf, Inf—Inf, and Inf/Inf are indeterminate.

A floating-point number with the exponent ey, + 1 and a nonzero signifi-

cand represents an indeterminate numerical value, such as %, or else a missing

2.2 The Floating-Point Number System 95

value. A missing value is an element of whatever type that has not been as-
signed a value. An indeterminate numerical value is called “not-a-number”,
or “NaN”, and a missing value is called “not-available”, or “NA”.

Any numerical operation involving a NaN and valid numerical values re-
sults in a NaN. Any operation involving a NA results in a NA.

Working with NaNs or NAs requires software to identify these values.
Ordinary computer language components, such as for determining whether
two variables have equal values, cannot directly determine whether or not a
variable has a value of NaN or NA. If a variable x has a value of NaN; it is not
true that x = NaN. (The value is indeterminate, so it is not true that it equals
itself.) Special functions should be used to determine if a value is NaN or
NA. Although it is not part of the standard definitions of the languages, most
Fortran and C compilers include a function isnan to test for a NaN. Many
C compilers include an additional function isinf to test for +oo. Neither of
these languages normally includes a function to test for unassigned values.
R includes a function is.nan to test for a NaN (it is false for a NA) and a
function is.na to test for a NA or a NaN (it is true for either a NA or a
NaN).

Determining the Numerical Characteristics of a Particular
Computer

Computer designers have a great deal of latitude in how they choose to rep-
resent data. The ASCII standards of ANSI and ISO have provided a common
representation for individual characters. The IEEE Standards 754-1985 and
754-2008 referred to previously (IEEE, 1985) brought some standardization to
the representation of floating-point data, but do not specify how the available
bits are to be allocated among the sign, exponent, and significand.

The environmental inquiry program MACHAR can be used to determine
the characteristics of a specific computer’s floating-point representation and
its arithmetic. The program, which is available in CALGO from netlib (see
page 692 in the Bibliography), was written in Fortran 77 and has been trans-
lated into C and R. In R, the results on a given system are stored in the
variable .Machine. Other R objects that provide information on a computer’s
characteristics are the variable .Platform and the function capabilities.

Computer Operations on Numeric Data

As we have emphasized above, the numerical quantities represented in the
computer are used to simulate or approximate more interesting quantities,
namely the real numbers or perhaps the integers. Obviously, because the sets
(that is, of computer numbers and real numbers) are not the same, we could
not define operations on the computer numbers that would yield the same
field as the familiar field of the reals. In fact, because of the nonuniform spac-
ing of floating-point numbers, we would suspect that some of the fundamental

96 2 Computer Storage and Arithmetic

properties of a field may not hold. Depending on the magnitudes of the quan-
tities involved, it is possible, for example, that if we compute ab and ac and
then ab+ ac, we may not get the same thing as if we compute (b4 ¢) and then
a(b + ¢). Just as we use the computer quantities to simulate real quantities,
we define operations on the computer quantities to simulate the familiar oper-
ations on real quantities. Designers of computers attempt to define computer
operations so as to correspond closely to operations on real numbers, but we
must not lose sight of the fact that the computer uses a different arithmetic
system.

The basic operational objective in numerical computing, of course, is that
a computer operation, when applied to computer numbers, yields computer
numbers that approximate the number that would be yielded by a certain
mathematical operation applied to the numbers approximated by the original
computer numbers. Just as we introduced the notation

[z]c

on page 89 to denote the computer floating-point number approximation to
the real number z, we occasionally use the notation

[0]e (2.12)

to refer to a computer operation that simulates the mathematical operation o.
Thus,
[+]e

represents an operation similar to addition but that yields a result in a set of
computer numbers. (We use this notation only where necessary for emphasis,
however, because it is somewhat awkward to use it consistently.) The failure
of the familiar laws of the field of the reals, such as the distributive law cited
above, can be anticipated by noting that

[lale [+]e [blc]e # [a + b, (2.13)

or by considering the simple example in which all numbers are rounded to one
decimal and so % + % * % (that is, .3+ .3 #.7).

The three familiar laws of the field of the reals (commutativity of addition
and multiplication, associativity of addition and multiplication, and distrib-
ution of multiplication over addition) result in the independence of the order
in which operations are performed; the failure of these laws implies that the
order of the operations may make a difference. When computer operations
are performed sequentially, we can usually define and control the sequence
fairly easily. If the computer performs operations in parallel, the resulting
differences in the orders in which some operations may be performed can
occasionally yield unexpected results.

Because the operations are not closed, special notice may need to be taken
when the operation would yield a number not in the set. Adding two num-
bers, for example, may yield a number too large to be represented well by

2.3 Errors 97

a computer number, either fixed-point or floating-point. When an operation
yields such an anomalous result, an exception is said to exist.

Floating-Point Operations

As we have seen, real numbers within the allowable range may or may not
have an exact floating-point operation, and the computer operations on the
computer numbers may or may not yield numbers that represent exactly the
real number that would result from mathematical operations on the numbers.
If the true result is r, the best we could hope for would be [r].. As we have
mentioned, however, the computer operation may not be exactly the same as
the mathematical operation being simulated, and furthermore, there may be
several operations involved in arriving at the result. Hence, we expect some
error in the result.

Summary: Comparison of Reals and Floating-Point Numbers

For most applications, the system of floating-point numbers simulates the
field of the reals very well. It is important, however, to be aware of some of
the differences in the two systems. There is a very obvious useful measure
for the reals, namely the Lebesgue measure, p, based on lengths of open
intervals. An approximation of this measure is appropriate for floating-point
numbers, even though the set is finite. The finiteness of the set of floating-point
numbers means that there is a difference in the cardinality of an open interval
and a closed interval with the same endpoints. The uneven distribution of
floating-point values relative to the reals (Figures 2.4 and 2.5) means that the
cardinalities of two interval-bounded sets with the same interval length may
be different. On the other hand, a counting measure does not work well at all.

Some general differences in the two systems are exhibited in Table 2.1.
The last four properties in Table 2.1 are properties of a field. The important
facts are that IR is an uncountable field and that IF is a more complicated
finite mathematical structure.

2.3 Errors

If the computed value is 7 (for the true scalar value r), we speak of the absolute

error,
|7 — 7], (2.14)

and the relative error,
F—r|

m (2.15)

(solong as r # 0). An important objective in numerical computation obviously
is to ensure that the error in the result is small.

98 2 Computer Storage and Arithmetic
Table 2.1. Differences in Real Numbers and Floating-Point Numbers
R F
cardinality: uncountable finite
measure: n((@,y)) = |z -yl v((x,y)) = v(lxy]) = x -yl
u((z,y)) = p(lz, yl) Ix,y,zu3d [x—y| =z -,
but #(x,y) # #(z,)
continuity: fr<y, Iz3z<2<y x<y,butnoz3>x<z<y
and and
w([z,y]) = pl(z,y)) #lx,y] > #(x,y)
convergence >oo°,x diverges >o2,x converges,
if interpreted as
(- ((1+2)+3)-)
closure: z,yeR=2x+yeR not closed wrt addition
z,ye R=2zy e R not closed wrt multiplication
(exclusive of infinities)
operations a = 0, unique a+x=b+x butb#a
with an a+x =z, for any z at+x=x,butat+y#y

identity, a or a:

r —x = a, for any x

at+x=x,butx—x#a

associativity: z,y,z € R =
(x+y)+2z=2z+ (y+ z)|not associative
(zy)z = z(yz) not associative
distributivity: ||z,y,z € R =

z(y+2)=zy+zz

not distributive

2.3 Errors 99

As mentioned above, if r is the result of one of the six basic operations
(addition, subtraction, multiplication, division, remaindering, and extraction
of a square root), then in conformance to IEEE Standard 754, 7 must be [r]c
(under default rounding). In this case, the absolute error is

|[rle =1,

which is as good as can be desired. Obviously, if more that one operation is
involved in obtaining the result, it may be the case that 7 # [r], and there is
no general way to ensure that 7 = [r]..

In Section 3.1, we expand on the discussion of computational errors, and
in that and the subsequent section, we mention some ways of reducing errors.

Addition of Several Numbers

When several numbers x; are to be summed, it is likely that as the operations
proceed serially, the magnitudes of the partial sum and the next summand
will be quite different. In such a case, the full precision of the next summand
is lost. This is especially true if the numbers are of the same sign. As we
mentioned earlier, a computer program to implement serially the algorithm
implied by Zf; 1 will converge to some number much smaller than the largest
floating-point number.

If the numbers to be summed are not all the same constant (and if they
are constant, just use multiplication!), the accuracy of the summation can
be increased by first sorting the numbers and summing them in order of
increasing magnitude. If the numbers are all of the same sign and have roughly
the same magnitude, a pairwise “fan-in” method may yield good accuracy. In
the fan-in method, the n numbers to be summed are added two at a time
to yield [n/2] partial sums. The partial sums are then added two at a time,
and so on, until all sums are completed. It is likely that the numbers to be
added will be of roughly the same magnitude at each stage. Remember we
are assuming they have the same sign initially; this would be the case, for
example, if the summands are squares.

Another way that is even better is due to W. Kahan:

S =X

a=20

fori=2,...,n

{

Yy=x; —a (2.16)
t=s+y

a=(t—s)—vy

s=1

}.

Often the nature of the addends is such that the sum just cannot be
computed. (See Exercise 2.2a, for which this statement is a tautology!) In

100 2 Computer Storage and Arithmetic

other cases, it may be helpful to change the problem. For example, consider
the evaluation of e® using the Taylor series

e =1+x+a?/20+23/3 .. (2.17)

This example is used only for illustration; this is not the way to evaluate e*.

Suppose x = 20. The R code shown in Figure 2.10 yields 485165100,
which is correct to 7 digits. (Actually, it yields 485165195., which is correct
to 9 digits.)

stop <- 100

ex <- 1

xi <=1

ifac <- 1

for (i in 1:stop) {
xi <- x*xi
ifac <- ixifac
ex <- ex+xi/ifac
}

ex

Fig. 2.10. Code to Compute e* Using a Taylor Series Approximation

Now, let z = —20. Using the code above, we get 4.992639e-09. The answer
to 7 digits is 2.061154e-09. The solution is correct to only 1 digit; the relative
error is over 100%. Notice, however, if we compute 1/e2°, we get 1/485165195,
or 2.061154e-09, which is again correct to 7 digits.

The problem in the evaluation of the series (2.17) arises not just from the
varying magnitude of the terms, but also in the signs of the terms, resulting
in cancellation. Cancellation can have even more dramatic effects. We call it
catastrophic cancellation.

Catastrophic Cancellation

Another type of error that results from the finite precision of floating-point
numbers is catastrophic cancellation. This can occur when two rounded values
of approximately equal magnitude and opposite signs are added. If the values
are exact, cancellation can also occur, but it is benign. After catastrophic
cancellation occurs, the digits left are just the digits that represented the
rounding.

Suppose z &~ y and that [z]. = [y].. The computed result will be zero,
whereas the correct (rounded) result is [x — y]c. The relative error is 100%.
This error is caused by rounding, but it is different from the “rounding error”
discussed above. Although the loss of information arising from the rounding
error is the culprit, the rounding would be of little consequence were it not
for the cancellation.

Notes and Further Reading 101

Additions of quantities of approximately equal magnitude and opposite
signs may arise often in numerical computations. To avoid catastrophic can-
cellation, we must carefully consider all additions, and when catastrophic can-
cellation may occur, rearrange the computations if possible. For a simple ex-
ample, consider the problem of computing the roots of a quadratic polynomial,

az?® + bz + c.

In the quadratic formula

o —b 4+ Vb% — dac

o (2.18)

the square root of the discriminant, (b? —4ac), may be approximately equal to
b in magnitude, meaning that one of the roots is close to zero and, in fact, may
be computed as zero. The solution is to compute only one of the roots, 1, by
the formula (the “—” root if b is positive and the “4” root if b is negative)
and then compute the other root, z2 by the relationship z1z2 = ¢/a.

Catastrophic cancellation results from only a few operations, however, the
effects of smaller cancellations may accumulate. In the example above for
evaluating e2° using the Taylor series, we have

1—-20+ 200 — 1333....46666.... —26666....4--- .
The partial sums are
1,—-19,181,—-1152....,4+5514....,—21152....,4+67736....,—186231.....

The practical question of interest is how can we tell that there are prob-
lems. In the simple example above, if we monitor the computations, we
find that on step 99 the computed approximation is 6.138260e-09. Getting
4.992639¢-09 tells us clearly that the process is not working.

Notes and Further Reading

Some of the material in this chapter is based on Chapter 10 in Gentle (2007). In
particular, Table 2.1 and some of the illustrations of bit-level representations
are from that book.

The details of representation and computation with computer numbers
discussed in this chapter may be important only to a subset of people working
in computational statistics. Every statistician, however, should understand the
conclusion of the section:

Computer numbers are not the same as real numbers, and the arith-
metic operations on computer numbers are not exactly the same as
those of ordinary arithmetic.

102 2 Computer Storage and Arithmetic

Standardization of numerical representation and operations has made the
work of applied numerical analysts much easier. There are not many com-
puters produced nowadays that do not implement the IEEE floating point
standard.

The work of Jim Cody and Velvel Kahan was instrumental in getting
computer manufacturers to improve the numerical operations. Kahan played
the key role in formulating the IEEE Standard 754. Once this standard was
adopted, computer manufacturers quickly began ensuring that their repre-
sentation of numeric quantities and the numeric operations in their CPUs
conformed to the standards.

More detail on computer arithmetic is covered by Kulisch (2008) and more
specifically for the IEEE Standard 754 by Overton (2001).

Topics not addressed in this chapter include higher precision computations,
including “exact” computations for rational numbers, and interval arithmetic,
in which each of the computer numbers used throughout the data input and
computations are interval bounds for the exact real number. Walster (2005)
and Moore et al. (2009) give general descriptions of interval data types and
discussions of ways they can be used in computations. The book edited by
Hu at al. (2008) contains chapters on the use of interval arithmetic in various
problems in numerical analysis, and the journal Reliable Computing is devoted
to research in this area. The book edited by Einarsson (2005) contains chapters
on several different issues in the accuracy of computations resulting from the
use of higher precision, of interval arithmetic, and of software features meant
to ensure a higher degree of reliability.

Exercises

2.1. In the IEEE Standard 754 single precision format, what is the value of
0.1 in the default rounding mode? What is the value in the round down
mode? What is the value in the round up mode? Answering these questions
requires representing the solution in base 2. Note an interesting fact: 1/10
is a rational number; therefore its representation in any integer base is a
“repeating fraction”, just as 1/3 is a repeating decimal fraction. (1/10 is
a repeating fraction in base 10, of course. The repeating decimal sequence
happens to be “0”.)

2.2. An important attitude in the computational sciences is that the computer
is to be used as a tool of exploration and discovery. The computer should
be used to check out “hunches” or conjectures, which then later should
be subjected to analysis in the traditional manner. There are limits to
this approach, however. An example is in limiting processes. Because the
computer deals with finite quantities, the results of a computation may be
misleading. Explore each of the situations below, using C or Fortran. A
few minutes or even seconds of computing should be enough to give you
a feel for the nature of the computations.

Exercises 103

In these exercises, you may write computer programs in which you perform
tests for equality. A word of warning is in order about such tests, however.
If a test involving a quantity x is executed soon after the computation of
%, the test may be invalid within the set of floating-point numbers with
which the computer nominally works. This is because the test may be
performed using the extended precision of the computational registers.
a) Counsider the question of the convergence of the series

o]
E 1.
i=1

Obviously, this series does not converge in IR. Suppose, however, that
we begin summing this series using floating-point numbers. Will the
computations overflow? If so, at what value of ¢ (approximately)? Or
will the series converge in IF? If so, to what value, and at what value
of i (approximately)? In either case, state your answer in terms of the
standard parameters of the floating-point model, b, p, emin, and emax
(page 89).
b) Consider the question of the convergence of the series
(oo}
> o
i=1
Same questions as above.
¢) Consider the question of the convergence of the series

=1

Same questions.
d) Consider the question of the convergence of the series

1
>
i=1
for p > 1. Same questions, except address the effect of the value of
the variable p.
2.3. We know, of course, that the harmonic series in Exercise 2.2c does not
converge (although the naive program to compute it does). It is, in fact,
true that

"1

H, = -

=y

=1
= f(n) +~+o(1),
where f is an increasing function and + is Euler’s constant. For various n,
compute H,. Determine a function f that provides a good fit and obtain
an approximation of Euler’s constant.

104

2 Computer Storage and Arithmetic

2.4. Machine characteristics.

a)
b)

c)

Write a program to determine the smallest and largest relative spac-
ings. Use it to determine them on the machine you are using.

Write a program to determine whether your computer system imple-
ments gradual underflow.

Write a program to determine the bit patterns of 400, —oco, and NaN
on a computer that implements the IEEE binary standard. (This may
be more difficult than it seems.)

2.5. What is the numerical value of the rounding unit (3 ulp) in the IEEE
Standard 754 double precision?
2.6. Consider the standard model (2.2) for the floating-point representation:

io.dldg s dp X be,

with emin < e < emax. Your answers may depend on an additional as-
sumption or two. Either choice of (standard) assumptions is acceptable.

a)
b)
)
)
)

o

2.7. a)

b)

How many floating-point numbers are there?

What is the smallest positive number?

What is the smallest number larger than 17

What is the smallest number X, such that X +1 = X7?

Suppose p = 4 and b = 2 (and e, is very small and enax is very
large). What is the next number after 20 in this number system?
Define parameters of a floating-point model so that the number of
numbers in the system is less than the largest number in the system.
Define parameters of a floating-point model so that the number of
numbers in the system is greater than the largest number in the sys-
tem.

2.8. Suppose that a certain computer represents floating point numbers in base

10,

using five decimal places for the mantissa, one decimal places for the

exponent, one decimal place for the sign of exponent, and one decimal
place for the sign of the number.

a)

b)
)

d)

What is the “smallest relative spacing” and the “largest relative spac-
ing”? (Your answer may depend on certain additional assumptions
about the representation; state any assumptions.)

What is the largest number g, such that 417 + g = 4177

Discuss the associativity of addition using numbers represented in this
system. Give an example of three numbers, a, b, and ¢, such that using
this representation, (a +b) + ¢ # a+ (b+ ¢), unless the operations are
chained. Then show how chaining could make associativity hold for
some more numbers, but still not hold for others.

Compare the maximum rounding error in the computation z+z+z+x
with that in 4 * z. (Again, you may wish to mention the possibilities
of chaining operations.)

2.9. Consider the same floating-point system of Exercise 2.8.

Exercises 105

a) Let X be a U(0,1) random variable. Develop a probability model
for the representation [X].. (This is a discrete random variable. How
many mass points does it have?)

b) Let X and Y be random variables uniformly distributed over the same
interval as above. Develop a probability model for the representation
[X +Y].. (How many mass points does it have?)

c¢) Develop a probability model for [X]. [+]c [Y].. (How many mass
points does it have?)

2.10. Give an example to show that the sum of three floating-point numbers
can have a very large relative error.
2.11. a) Write a single program in Fortran or C to compute

1.
Z (1;)) 0.25%0.7510—7

i=0
ii.

0.25%0.7520 ¢

iii.

N6
)
=0
50 (
1=0

00

> ("

=75

iv.

)

1?()) 0.25°0.75'00".

!) 0.25°0.75'00".

b) Generalize this problem to write a single program in Fortran or C
that will compute Pr(X < z|n,7) or 1 — Pr(X < z|n,) where X is a
binomial random variable with parameters n and 7.

2.12. We can think of the algorithm given in the R code in Figure 2.10 as an
iterative algorithm in i. At each value of i, there is a difference in the
value of ex and the true value e*. (The exact value of this difference is the
truncation error.) Modify the code (or use different code) to determine
the relative error in ex for each value of i. For z = 20, make a plot of
the relative error and the number of iterations (that is, of i) for 1 to 100
iterations. Now, repeat this for z = —20. Notice that the rounding error
completely overwhelms the truncation error in this case.

3

Algorithms and Programming

We will use the term “algorithm” rather loosely but always in the general
sense of a method or a set of instructions for doing something. Formally,
an “algorithm” must terminate. Sometimes we may describe an algorithm
that may not terminate simply following steps in our description. Whether
we expressly say so or not, there should always be a check on the number of
steps, and the algorithm should terminate after some large number of steps no
matter what. Algorithms are sometimes distinguished as “numerical”, “semi-
numerical”, and “nonnumerical”, depending on the extent to which operations
on real numbers are simulated.

Algorithms and Programs

Algorithms are expressed by means of a flowchart, a series of steps, or in a
computer language or pseudolanguage. The expression in a computer language
is a source program or module; hence, we sometimes use the words “algorithm”
and “program” synonymously.

The program is the set of computer instructions that implement the algo-
rithm. A poor implementation can render a good algorithm useless. A good
implementation will preserve the algorithm’s accuracy and efficiency, and will
detect data that are inappropriate for the algorithm. A robust algorithm is
applicable over a wide rand of data to which it is applied. A robust program,
which is more important, is one that will detect input data that are inappro-
priate either for the algorithm or for the implementation in the given program.

The exact way an algorithm is implemented in a program depends of course
on the programming language, but it also may depend on the computer and
associated system software. A program that will run on most systems without
modification is said to be portable, and this is an important property because
most useful programs will be run on a variety of platforms.

The two most important aspects of a computer algorithm are its accuracy
and its efficiency. Although each of these concepts appears rather simple on
the surface, each is actually fairly complicated, as we shall see.

J.E. Gentle, Computational Statistics, Statistics and Computing, 107
DOI: 10.1007/978-0-387-98144-4_3,
© Springer Science + Business Media, LLC 2009

108 3 Algorithms and Programming
Data Structures

The efficiency of a program can be greatly affected by the type of structures
used to store and operate on the data. As the size and complexity of the prob-
lem increase, the importance of appropriate database structures increases. In
some data-intensive problems, the data structure can be the single most im-
portant determinant of the overall efficiency of a program. The data structure
is not just a method of organization of data; it also can identify appropriate
algorithms for addressing the problem.

In many applications the data are organized naturally as a list, which is
a simple linearly ordered structure. The two main types of lists are stacks,
in which data elements are added and removed from the same end (last in
first out, LIFO), and queues, in which new data elements are added to one
end and elements already in the list are removed from the other end (first in
first out, FIFO). In many cases the space allocated to a given list is limited
a priori, so as the list grows, another region of storage must be used. This
results in a linked list, in which each list except one must contain, in addition
to its data elements, a link or pointer to the next list. In the extreme case of
this structure, each sublist contains only one piece of data and the link to the
next sublist.

The next most basic data structure is a tree, which is a finite set whose
elements (called “nodes”) consist of a special element called a “root” and, if
there is more than one element, a partition of the remaining elements such
that each member of the partition is a tree. If there are no remaining elements,
that is, if the tree contains only one element, which by definition is a root,
that element is also called a “leaf”. Many problems in modeling, classification,
and clustering require a tree data structure (see Chapter 16).

A generalization of the tree is a graph, in which the nodes are usually
called “vertices”, and there is no fixed method of partitioning. The other type
of component of this structure consists of connections between pairs of ver-
tices, called “edges”. Two vertices may be connected symmetrically, connected
asymmetrically, or not connected. Graphs are useful in statistical applications
primarily for identification of an appropriate method for addressing a given
problem.

There are many variations of these basic structures, including special types
of trees and graphs (binary trees, heaps, directed graphs, and so on).

An important problem in statistical computing may be another aspect
of the data organization, one that relates to the hardware resources. There
are various types of storage in the computer, and how fast the data can be
accessed in the various types may affect the efficiency of a program. We will
not consider these issues in any detail in this book.

3.1 Error in Numerical Computations 109

3.1 Error in Numerical Computations

An “accurate” algorithm is one that gets the “right” answer. Knowing that
the right answer may not be representable and that rounding within a set of
operations may result in variations in the answer, we often must settle for an
answer that is “close”. As we discuss in Section 2.3 for scalar quantities, we
measure error, or closeness, as either the absolute error or the relative error
of a computation.

Another way of considering the concept of “closeness” is by looking back-
ward from the computed answer and asking what perturbation of the original
problem would yield the computed answer exactly. This approach is called
backward error analysis. The backward analysis is followed by an assessment
of the effect of the perturbation on the solution. Although backward error
analysis may not seem as natural as “forward” analysis (in which we assess
the difference between the computed and true solutions), it is easier to perform
because all operations in the backward analysis are performed in IF instead of
in IR. Each step in the backward analysis involves numbers in the set IF', that
is, numbers that could actually have participated in the computations that
were performed. Because the properties of the arithmetic operations in IR do
not hold and, at any step in the sequence of computations, the result in IR
may not exist in IF, it is very difficult to carry out a forward error analysis.

There are other complications in assessing errors. Suppose the answer is a
vector, such as a solution to a linear system. How do we modify the definitions
of absolute and relative errors on page 977 The obvious answer is to use a
vector norm, but what norm do we use to compare the closeness of vectors?
Another, more complicated situation for which assessing correctness may be
difficult is random number generation. It would be difficult to assign a meaning
to “accuracy” for such a problem.

The basic source of error in numerical computations is the inability to work
with the reals. The field of reals is simulated with a finite set. This has several
consequences. A real number is rounded to a floating-point number; the result
of an operation on two floating-point numbers is rounded to another floating-
point number; and passage to the limit, which is a fundamental concept in
the field of reals, is not possible in the computer.

Rounding errors that occur just because the result of an operation is not
representable in the computer’s set of floating-point numbers are usually not
too bad. Of course, if they accumulate through the course of many operations,
the final result may have an unacceptably large accumulated rounding error.

Another, more pernicious, effect of rounding can occur in a single opera-
tion, resulting in catastrophic cancellation (see page 100).

Measures of Error and Bounds for Errors

If the result of computer operations that should yield the real number r instead
yield 7, we define absolute error, | — r|, and relative error, |¥ — r|/|r| (so long

110 3 Algorithms and Programming

as r # 0). The result, however, may not be a simple real number; it may
consist of several real numbers. For example, in statistical data analysis, the
numerical result, 7, may consist of estimates of several regression coefficients,
various sums of squares and their ratio, and several other quantities. We may
then be interested in some more general measure of the difference of # and r,

A7,),

where A(+,-) is a nonnegative, real-valued function. This is the absolute error,
and the relative error is the ratio of the absolute error to A(r,rq), where rqg
is a baseline value, such as 0.

If r is a vector, the measure may be based on some norm, and in that case,
A(7,r) may be [|(F — r)||. A norm tends to become larger as the number of
elements increases, so instead of using a raw norm, it may be appropriate to
scale the norm to reflect the number of elements being computed.

However the error is measured, for a given algorithm, we would like to have
some knowledge of the amount of error to expect or at least some bound on the
error. Unfortunately, almost any measure contains terms that depend on the
quantity being evaluated. Given this limitation, however, often we can develop
an upper bound on the error. In other cases, we can develop an estimate of an
“average error” based on some assumed probability distribution of the data
comprising the problem.

In Monte Carlo methods that we will discuss in later chapters, we estimate
the solution based on a “random” sample, so just as in ordinary statistical es-
timation, we are concerned about the variance of the estimate. We can usually
derive expressions for the variance of the estimator in terms of the quantity
being evaluated, and of course we can estimate the variance of the estimator
using the realized random sample. The standard deviation of the estimator
provides an indication of the distance around the computed quantity within
which we may have some confidence that the true value lies. The standard
deviation is sometimes called a “probabilistic error bound”.

Order of Error

It is often useful to identify the “order of the error” whether we are concerned
about error bounds, average expected error, or the standard deviation of an
estimator. In general, we speak of the order of one function in terms of another
function as a common argument of the functions approaches a given value.
A function f(t) is said to be of order g(t) at tg, written O(g(t)) (“big O of
g(t)”), if there exists a positive constant M such that

[F(O)] < Mlg(t)] ast — to.

This is the order of convergence of one function to another function at a given
point. Notice that this is pointwise convergence; we compare the functions
near the point tg.

3.1 Error in Numerical Computations 111

If our objective is to compute f(t) and we use an approximation f (t), the
order of the error due to the approximation is the order of the convergence.
In this case, the argument of the order of the error may be some variable
that defines the approximation. For example, if f(¢) is a finite series approx-
imation to f(t) using, say, k terms, we may express the error as O(h(k)) for
some function h(k). Typical orders of errors due to the approximation may be
O(1/k), O(1/k?), or O(1/k!). An approximation with order of error O(1/k!)
is to be preferred over one order of error O(1/k), for example, because the
error is decreasing more rapidly. The order of error due to the approximation
is only one aspect to consider; roundoff error in the representation of any
intermediate quantities must also be considered.

The special case of convergence to the constant zero is often of interest. A
function f(t) is said to be “little o of g(t)” at to, written o(g(t)), if

f(t)/g(t) =0 ast—to.

If the function f(t) approaches 0 at to, g(t) can be taken as a constant and
f(t) is said to be o(1).

Big O and little o convergences are defined in terms of dominating func-
tions. In the analysis of algorithms, it is often useful to consider analogous
types of convergence in which the function of interest dominates another func-
tion. This type of relationship is similar to a lower bound. A function f(t) is
said to be Q(g(t)) (“big omega of g(¢)”) if there exists a positive constant m
such that

[f@)] = mlg(t)] ast— to.

R

Likewise, a function f(t) is said to be “little omega of g(¢)” at to, written

w(g(t)), if
g(t)/f(t) =0 ast— to.

Usually the limit on ¢, that is, to, in order expressions is either 0 or oo, and
because it is obvious from the context, mention of it is omitted. The order of
the error in numerical computations usually provides a measure in terms of
something that can be controlled in the algorithm, such as the point at which
an infinite series is truncated in the computations. The measure of the error
usually also contains expressions that depend on the quantity being evaluated,
however.

Error of Approximation

Some algorithms are exact, such as an algorithm to multiply two matrices that
just uses the definition of matrix multiplication. Other algorithms are approx-
imate because the result to be computed does not have a finite closed-form
expression. An example is the evaluation of the normal cumulative distribution
function. One way of evaluating this is by using a rational polynomial approxi-
mation to the distribution function. Such an expression may be evaluated with
very little rounding error, but the expression has an error of approximation.

112 3 Algorithms and Programming

When solving a differential equation on the computer, the differential equa-
tion is often approximated by a difference equation. Even though the differ-
ences used may not be constant, they are finite and the passage to the limit
can never be effected. This kind of approximation leads to a discretization
error. The amount of the discretization error has nothing to do with rounding
error. If the last differences used in the algorithm are 0t, then the error is
usually of order O(dt), even if the computations are performed exactly.

Another type of error of approximation occurs when the algorithm uses a
series expansion. The series may be exact, and in principle the evaluation of all
terms would yield an exact result. The algorithm uses only a smaller number
of terms, and the resulting error is truncation error. (See Exercise 2.12.)

Often the exact expansion is an infinite series, and we approximate it with
a finite series. When a truncated Taylor series is used to evaluate a function
at a given point xg, the order of the truncation error is the derivative of the
function that would appear in the first unused term of the series, evaluated
at zg.

We need to have some knowledge of the magnitude of the error. For al-
gorithms that use approximations, it is often useful to express the order of
the error in terms of some quantity used in the algorithm or in terms of some
aspect of the problem itself. We must be aware, however, of the limitations
of such measures of the errors or error bounds. For an oscillating function,
for example, the truncation error may never approach zero over any nonzero
interval.

Consistency Checks for Identifying Numerical Errors

Even though the correct solution to a problem is not known, we would like to
have some way of assessing the accuracy of our computations. Sometimes a
convenient way to do this in a given problem is to perform internal consistency
checks.

When the computations result in more than one value, say a vector, an
internal consistency test may be an assessment of the agreement of various
parts of the output. Relationships among the output are exploited to ensure
that the individually computed quantities satisfy these relationships. Other
internal consistency tests may be performed by comparing the results of the
solutions of two problems with a known relationship.

Another simple internal consistency test that is applicable to many prob-
lems is the use of two different levels of precision in the computations. In using
this approach, one must be careful to make sure that the input data are the
same. Rounding of the input data in the lower precision may cause incorrect
output to result, but that is not the fault of the computational algorithm.

Internal consistency tests cannot confirm that the results are correct; they
can only give an indication that the results are incorrect.

3.2 Algorithms and Data 113

3.2 Algorithms and Data

The performance of an algorithm may depend on the data. We have seen
that even the simple problem of computing the roots of a quadratic polyno-
mial, az? + bx + ¢, using the quadratic formula, equation (2.18), can lead to
catastrophic cancellation. For many values of a, b, and ¢, the quadratic for-
mula works perfectly well. Data that are likely to cause computational prob-
lems are referred to as ill-conditioned data, and, more generally, we speak of
the “condition” of data. The concept of condition is understood in the context
of a particular set of operations. Heuristically, data for a given problem are
ill-conditioned if small changes in the data may yield large changes in the
solution.

Consider the problem of finding the roots of a high-degree polynomial,
for example. Wilkinson (1959) gave an example of a polynomial that is very
simple on the surface yet whose solution is sensitive to small changes of the
values of the coefficients:

fle) =(z—-1)(z-2)-(z - 20)
=220 — 2102 4 - .- +20. (3.1)

While the solution is easy to see from the factored form, the solution is very
sensitive to perturbations of the coefficients. For example, changing the coef-
ficient 210 to 210+ 2723 changes the roots drastically; in fact, ten of them are
now complex. Of course, the extreme variation in the magnitudes of the coeffi-
cients should give us some indication that the problem may be ill-conditioned.

Condition of Data

We attempt to quantify the condition of a set of data for a particular set of
operations by means of a condition number. Condition numbers are defined
to be positive and in such a way that large values of the numbers mean that
the data or problems are ill-conditioned. A useful condition number for the
problem of finding roots of a function can be defined to be increasing as the
reciprocal of the absolute value of the derivative of the function in the vicinity
of a root. We will discuss this kind of condition number on pages 257 and 260.

In the solution of a linear system of equations, the coefficient matrix de-
termines the condition of this problem. The most commonly used condition
number is the number associated with a matrix with respect to the problem
of solving a linear system of equations. We will discuss this kind of condition
number beginning on page 207.

Condition numbers are only indicators of possible numerical difficulties for
a given problem. They must be used with some care. For example, according to
the condition number for finding roots based on the derivative (see page 257),
Wilkinson’s polynomial, equation (3.1), is well-conditioned.

114 3 Algorithms and Programming
Robustness of Algorithms

A very poor algorithm may be able to give accurate solutions in the presence
of well-conditioned data. Our interest is in identifying algorithms that give
accurate solutions when the data are ill-conditioned.

The ability of an algorithm to handle a wide range of data and either to
solve the problem as requested or else to determine that the condition of the
data does not allow the algorithm to be used is called the robustness of the
algorithm.

A robust algorithm does not give a
“right” answer, it says so and stops.

4

‘wrong” answer; if it cannot give a

Stability of Algorithms

Another desirable property of algorithms is stability. Stability is quite different
from robustness. An algorithm is said to be stable if it always yields a solution
that is an ezact solution to a perturbed problem; that is, for the problem of
computing f(z) using the input data x, an algorithm is stable if the result it
yields, f(z), is such that

f(z) = f(z +dz)

for some small perturbation dx of z. Stated another way, an algorithm is
stable if small perturbations in the input or in intermediate computations do
not result in large differences in the results.

The concept of stability for an algorithm should be contrasted with the
concept of condition for a problem or a dataset. If a problem is ill-conditioned,
even a stable algorithm (a “good algorithm”) will produce results with large
differences for small differences in the specification of the problem. This is
because the exact results have large differences. An algorithm that is not
stable, however, may produce large differences for small differences in the
computer description of the problem, which may involve rounding, in the
input even in well-conditioned problems. Perturbations to the input data may
occur because of truncation or discretization.

The concept of stability arises from backward error analysis. The stability
of an algorithm may depend on how continuous quantities are discretized,
such as when a range is gridded for solving a differential equation.

Reducing the Error in Numerical Computations

An objective in designing an algorithm to evaluate some quantity is to avoid
accumulated rounding error and to avoid catastrophic cancellation. In the dis-
cussion of floating-point operations above, we have seen two examples of how
an algorithm can be constructed to mitigate the effect of accumulated round-
ing error (using equations (2.16) on page 99 for computing a sum) and to avoid

3.2 Algorithms and Data 115

possible catastrophic cancellation in the evaluation of the expression (2.18)
for the roots of a quadratic equation.
Another example familiar to statisticians is the computation of the sample

sum of squares:
n n

Z(xi —7)* = fo — nz?. (3.2)
i=1 i=1
This quantity is (n — 1)s?, where s? is the sample variance.

Either expression in equation (3.2) can be thought of as describing an algo-
rithm. The expression on the left-hand side implies the “two-pass” algorithm:

a = I

fori=2,...,n

{

a=x;+a

}

a=a/n (3.3)
b= (r; —a)?

fori=2,...,n

{
b= (z; —a)®>+b

).

This algorithm yields Z = a and then (n—1)s? = b. Each of the sums computed
in this algorithm may be improved by using equations (2.16). A major problem
with this algorithm, however, is the fact that it requires two passes through the
data. Because the quantities in the second summation are squares of residuals,
they are likely to be of relatively equal magnitude. They are of the same sign,
so there will be no catastrophic cancellation in the early stages when the terms
being accumulated are close in size to the current value of b. There will be
some accuracy loss as the sum b grows, but the addends (x; — a)? remain
roughly the same size. The accumulated rounding error, however, may not be
too bad.
The expression on the right-hand side of equation (3.2) implies the “one-
pass” algorithm:
a = I
b= 22
fori=2,...,n
{
a=x;+a (3.4)
b=z?+b
}
a=a/n
b=b—na?.
This algorithm requires only one pass through the data, but if the z;’s have
magnitudes larger than 1, the algorithm has built up two relatively large

116 3 Algorithms and Programming

quantities, b and na?. These quantities may be of roughly equal magnitudes;
subtracting one from the other may lead to catastrophic cancellation.

Another algorithm is shown in equations (3.5) below. It requires just one
pass through the data, and the individual terms are generally accumulated
fairly accurately.

a = I

b=0

fori=2,...,n

{

d=(zi—a)/i (3.5)
a=d+a

b=i(i—1)d>+b
}.
A condition number that quantifies the sensitivity in s, the sample stan-
dard deviation, to the data, the x;’s, is

Z?:l xf
vn—1s’

where s? is the sample variance, as above. This is a measure of the “stiffness”
of the data. It is clear that if the mean is large relative to the variance, this
condition number will be large, and a dataset with a large mean relative to the
variance is said to be stiff. (Recall that we define condition numbers so that
large values imply ill-conditioning. Also recall that condition numbers must
be interpreted with some care.) Notice that the condition number x achieves
its minimum value of approximately s for data with zero mean. Hence, for
data y1, ..., Yn, if we form x; = y; — ¥ and the computations for y and y; — y
are exact, then the data in the last part of the algorithm in equations (3.3)
would be well-conditioned.

Often when a finite series is to be evaluated, it is necessary to accumulate
a subset of terms of the series that have similar magnitudes, and then combine
it with similar partial sums. It may also be necessary to scale the individual
terms by some very large or very small multiplicative constant while the terms
are being accumulated and then remove the scale after some computations
have been performed.

K= (3.6)

3.3 Efficiency

The efficiency of an algorithm refers to its usage of computer resources. The
two most important resources are the processing units and the memory (“stor-
age”). The amount of time the processing units are in use and the amount of
memory required are the key measures of efficiency. In the following, we will

3.3 Efficiency 117

generally emphasize the time the processing units are in use, rather than the
amount of storage used.

A processing unit does more than just arithmetic; it also must perform
“fetch” and “store” from and to memory. A common operation that takes
time but does not involve arithmetic is “exchange a and b” (as in sorting
methods, described on page 122; of course, in the sorting application there was
also a comparison that had to executed prior to the exchange). The exchange
saves storage space, but the simple operation of exchange involves fetching a,
storing it somewhere, fetching b and putting it where a was, and then putting
a where b was. By contrast, the operation “add a and b and store the result
as ¢’ involves fetching a, fetching b, adding them, and storing the result as
¢. Some computers are designed to perform these operations with a minimum
of fetches and stores; nevertheless, the operations must be considered part of
the overall operation.

A limiting factor for the time the processing units are in use is the number
and type of operations required. Some operations take longer than others; for
example, the operation of adding floating-point numbers may take more time
than the operation of adding fixed-point numbers. This, of course, depends
on the computer system and on what kinds of floating-point or fixed-point
numbers we are dealing with. If we have a measure of the size of the problem,
we can characterize the performance of a given algorithm by specifying the
number of operations of each type or just the number of operations of the
slowest type.

In numerical computations, the most important types of computation are
usually the floating-point operations. The actual number of floating-point op-
erations divided by the number of seconds required to perform the operations
is called the flops (floating-point operations per second) rate.

Measuring Efficiency

Often, instead of the exact number of operations, we use the order of the
number of operations in terms of the measure of problem size. If n is some
measure of the size of the problem, an algorithm has order O(f(n)) if, as
n — oo, the number of computations — c¢f(n), where ¢ is some constant
that does not depend on n. For example, to multiply two n X n matrices
in the obvious way requires O(n?®) multiplications and additions; to multiply
an n X m matrix and an m x p matrix requires O(nmp) multiplications and
additions. In the latter case, n, m, and p are all measures of the size of the
problem.

Notice that in the definition of order there is a constant c¢. The order of an
algorithm is a measure of how well the algorithm “scales”; that is, the extent
to which the algorithm can deal with truly large problems. Two algorithms
that have the same order may have different constants and in that case are
said to “differ only in the constant”.

118 3 Algorithms and Programming

In addition to the constant ¢ there may be some overhead work to set up
the problem. If we let h(n) represent overhead work and g(n) represent the
remainder of work for a problem of size n, then the total amount of work
is g(n) + h(n). If the overhead work does not grow very fast as the problem
grows, that is, if h(n) = og(n), then we may have

g9(n) + h(n) = g(n) — cf(n),

and in this case the algorithm is O(f(n)). The constant ¢ is relevant for
evaluating the large-scale properties of the algorithm, but h(n) may also be
relevant for evaluating the speed of the algorithm in any real application.

Let n be a measure of the problem size, and let b and ¢ be constants.
An algorithm of order O(b™) has exponential order, one of order O(n?) has
polynomial order, and one of order O(logn) has log order. Notice that for
log order it does not matter what the base is. Also, notice that O(logn?) =
O(logn). For a given task with an obvious algorithm that has polynomial
order, it is often possible to modify the algorithm to address parts of the
problem so that in the order of the resulting algorithm one n factor is replaced
by a factor of logn. This often happens in a divide and conquer strategy, as
we discuss below.

Although it is often relatively easy to determine the order of an algo-
rithm, an interesting question in algorithm design involves the order of the
problem; that is, the order of the most efficient algorithm possible. A problem
of polynomial order is usually considered tractable, whereas one of exponen-
tial order may require a prohibitively excessive amount of time for its solution.
An interesting class of problems are those for which a solution can be veri-
fied in polynomial time yet for which no polynomial algorithm is known to
exist. Such a problem is called a nondeterministic polynomial, or NP, prob-
lem. “Nondeterministic” does not imply any randomness; it refers to the fact
that no polynomial algorithm for determining the solution is known. Most
interesting NP problems can be shown to be equivalent to each other in order
by reductions that require polynomial time. Any problem in this subclass of
NP problems is equivalent in some sense to all other problems in the subclass
and so such a problem is said to be NP-complete. Some common types of
problems that are NP-complete are combinatorial optimization (Section 6.3),
data partitioning (Chapter 12), and tessellations, spanning trees, and other
methods discussed in Chapter 16.

For many problems it is useful to measure the size of a problem in some
standard way and then to identify the order of an algorithm for the problem
with separate components. A common measure of the size of a problem is L,
the length of the stream of data elements. An n x n matrix would have length
proportional to L = n2, for example. To multiply two n x n matrices in the
obvious way requires O(L3/ 2) multiplications and additions, as we mentioned
above.

The order of an algorithm (or, more precisely, the “order of operations of
an algorithm”) is an asymptotic measure of the operation count as the size

3.3 Efficiency 119

of the problem goes to infinity. The order of an algorithm is important, but
in practice the actual count of the operations is also important. In practice,
an algorithm whose operation count is approximately n? may be more useful
than one whose count is 1000(nlogn + n), although the latter would have
order O(nlogn), which is much better than that of the former, O(n?). When
an algorithm is given a fixed-size task many times, the finite efficiency of the
algorithm becomes very important.

The number of computations required to perform some tasks depends not
only on the size of the problem but also on the data. For example, for most
sorting algorithms, it takes fewer computations (comparisons) to sort data
that are already almost sorted than it does to sort data that are completely
unsorted. We sometimes speak of the average time and the worst-case time of
an algorithm. (It is not always easy to define “average”.) For some algorithms,
these may be very different, whereas for other algorithms or for some problems
these two may be essentially the same.

Our main interest is usually not in how many computations occur but
rather in how long it takes to perform the computations. Because some com-
putations can take place simultaneously, even if all kinds of computations
required the same amount of time, the order of time could be different from
the order of the number of computations.

In addition to the actual processing, the data may need to be copied from
one storage position to another. Data movement slows the algorithm and may
cause it not to use the processing units to their fullest capacity. When groups
of data are being used together, blocks of data may be moved from ordinary
storage locations to an area from which they can be accessed more rapidly
(called “caching”). The efficiency of a program is enhanced if all operations
that are to be performed on a given block of data are performed one right after
the other. Sometimes a higher-level language prevents this from happening.

Although there have been orders of magnitude improvements in the speed
of computers because the hardware is better, the order of time required to
solve a problem is almost entirely dependent on the algorithm. The improve-
ments in efficiency resulting from hardware improvements are generally dif-
ferences only in the constant. The practical meaning of the order of the time
must be considered, however, and so the constant may be important.

In addition to the efficiency of an algorithm, an important issue is how fast
the program implementing the algorithm runs. Because of data movement and
other reasons, a program that implements a fast algorithm may be slow. We
address this issue further on page 136.

Recursion

In addition to techniques to improve the efficiency and the accuracy of com-
putations, there are also special methods that relate to the way we build
programs or store data. Before proceeding to consider ways of improving effi-

120 3 Algorithms and Programming

ciency, we consider recursion of algorithms, which is often useful in organizing
algorithms and programs.

The algorithm for computing the mean and the sum of squares (3.5) on
page 116 can be derived as a recursion. Suppose we have the mean a; and
the sum of squares sy, for k elements x1,xo,..., 7, and we have a new value
Zk+1 and wish to compute ag41 and sg41. The obvious solution is

Tp+1 — Ok

ak4+1 = a
a K k+1

and
k(l‘k+1 - ak)Q
k+1
These are the same computations as in equations (3.5).
Another example of how viewing the problem as an update problem can
result in an efficient algorithm is in the evaluation of a polynomial of degree
d7

Sk+1 = Sk +

pa(z) = car® + cg 12V + ez + o

Doing this in a naive way would require d — 1 multiplications to get the powers
of x, d additional multiplications for the coefficients, and d additions. If we
write the polynomial as

pa(x) = z(caz™ " + ca12" P+ -+ 1) + o,

we see a polynomial of degree d— 1 from which our polynomial of degree d can
be obtained with but one multiplication and one addition; that is, the number
of multiplications is equal to the increase in the degree—mnot two times the
increase in the degree. Generalizing, we have

pa(x) = x(- - x(x(cqx + cg—1) + -+)+ ¢1) + co, (3.7)

which has a total of d multiplications and d additions. The method for evalu-
ating polynomials in equation (3.7) is called Horner’s method. (See page 169
for more on evaluation of polynomials, and equation (4.41) on that page for
a slightly different form of equation (3.7).)

A computer subprogram that implements recursion invokes itself. Not only
must the programmer be careful in writing the recursive subprogram, but the
programming system must maintain call tables and other data properly to
allow for recursion. Once a programmer begins to understand recursion, there
may be a tendency to overuse it. To compute a factorial, for example, the
inexperienced C programmer may write the code in Figure 3.1.

The problem is that this C program is implemented by storing a stack of
statements. Because n may be relatively large, the stack may become quite
large and inefficient. It is just as easy to write the function as a simple loop,
and it would be a much better piece of code.

Both C and Fortran allow for recursion. Many versions of Fortran have
supported recursion for years, but it was not part of the Fortran standards
before Fortran 90.

3.3 Efficiency 121

float Factorial(int n)
{
if (n==0)
return 1;
else
return n*Factorial(n-1);

Fig. 3.1. Recursive Code

Improving Efficiency

There are many ways to attempt to improve the efficiency of an algorithm.
Often the best way is just to look at the task from a higher level of detail and
attempt to construct a new algorithm. Many obvious algorithms are serial
methods that would be used for hand computations, and so are not the best
for use on the computer.

Divide and Conquer

An effective general method of developing an efficient algorithm is called di-
vide and conquer. In this method, the problem is broken into subproblems,
each of which is solved, and then the subproblem solutions are combined into
a solution for the original problem. In some cases, this can result in a net
savings either in the number of computations, resulting in an improved order
of computations, or in the number of computations that must be performed
serially, resulting in an improved order of time.

Let the time required to solve a problem of size n be t(n), and consider
the recurrence relation

t(n) = pt(n/p) +cn (3.8)

for p positive and ¢ nonnegative. Then t(n) = O(nlogn).

The basic fact is that recursively dividing a problem in half is an O(logn)
operation. Divide and conquer strategies can sometimes be used together with
a simple method that would be O(n?) if applied directly to the full problem
to reduce the order to O(nlogn).

One of the simplest examples of a divide and conquer approach is in sort-
ing. The simple sorting problem is given an n-vector x, determine a vector s
such each element of = is an element of s, but s; < s5 < -+ < s,. One obvious
method works on pairs, starting with 27 and z2 and puts x5 in the first posi-
tion if zo < x1, then proceeds to consider the value in the i*" position, call it
:cl(.”), starting with 7 = 1 and comparing it with x;”) , exchanging the values if
, incrementing j and continuing this process until j = ¢ — 1, then
incrementing i, resetting j to 1, and continuing the process (until ¢ = n). This
is called a “bubble sort”. It is an O(n?) algorithm. You are asked to analyze

2 < o

122 3 Algorithms and Programming

this method in Exercise 3.9. A divide and conquer algorithm for sorting, how-
ever, successively divides the data to be sorted into two smaller datasets and
thereby becomes O(nlogn).

There are several divide and conquer sorting algorithms that follow the
same general approach but differ in their details. One such algorithm is gener-
ically called mergesort. It follows two distinct steps, one of which is divide and
conquer and one of which is a simple merge of sorted lists. Mergesort provides
a good example of how a problem that at first glance appears to be of O(n?)
can be solved in O(nlogn) steps. In sorting methods, the question of auxil-
iary storage is an issue. In the bubble sort method described above there is
no extra storage required, but in our description of MergeSort below we will
use about n/2 units of extra storage.

The divide and conquer idea of MergeSort depends on the fact that two
sorted lists each of length n/2 can be merged into a sorted list in n operations.
One way of doing this is given in Algorithm 3.1, where auxiliary storage of
size n/2 is used. In Algorithms 3.1 and 3.2, we pass three indexes, 1o, hi, and
mid, to a single vector 1ist that is to be sorted.

Algorithm 3.1 Merge(list,lo,mid,hi).

work[1: (mid-1lo+1)] = list[lo:mid]
i=1; j=lo; k=mid
while (j<k && k<=hi) {
if (work[il<=list[k]) {
list[j] = work[il]

i=i+l; j=j+1
}

else {
list[jl=1list[k]
j=j+1; k=k+1

}

}

while (j<k) {
list[j] = work[i]
j=j+1; i=i+1

Once we can merge two lists of roughly the same length, as in Algo-
rithm 3.1, we merely need a way of recursively dividing the problem into
problems of sorting shorter lists, and Algorithm 3.2 does this.

Algorithm 3.2 MergeSort(list,lo,hi).

if (lo<hi) {
mid = (lo+hi)/2
MergeSort (list,lo,mid)

3.3 Efficiency 123

MergeSort (list, (mid+1) ,hi)
Merge(list, lo, mid, hi)

Note what is done by these algorithms. The basic idea of divide and con-
quer should emerge clearly from a study of the MergeSort algorithm. At the
beginning the vector is split into two; the subvector on the left is spit into
two; this continues until the subvectors contain only one element each (and
of course they are each sorted); these are merged into a sorted vector with
two elements; then the operations move to the right to work on the subvec-
tors containing only one element each (the fourth and fifth elements from the
left in the original vector); these are merged into a sorted vector with two
elements; then the two two-element sorted vectors are merged into a sorted
vector with four elements; and so on.

If the number of elements is not a power of 2, at some point in the Merge-
Sort process, the subvectors will not be of equal length. (That is what the last
loop in Merge takes care of.) The overall efficiency is not affected very much,
and of course, in any event it is still O(nlogn).

There are several other sorting methods that are O(nlogn). They vary
in the constant, in the overhead, in relative worst-case to average-case per-
formance, and also in the amount of auxiliary storage required. Probably the
most widely used sorting method is Quicksort. To sort a list Quicksort does
the following:

1. select an element in the list as a “pivot”

2. rearrange the elements in the list into a left sublist and a right sublist
such that no element in the left sublist is larger than the pivot, and no
element in the right sublist is smaller than the pivot

3. recursively sort (by going back to step 1) the left and the right sublists.

Quicksort has poor worst-case performance, but its average-case performance
(under most reasonable “average-case” models) is the best of any known sort-
ing method.

Another example of a divide and conquer algorithm is Strassen’s algorithm
for matrix multiplication (see Gentle, 2007, page 437). It is an O(n!°827)
algorithm for a problem in which the standard algorithm is O(n?). While the
savings may not seem like a lot, for large n the difference between n® and
n?8! can be significant.

The “fan-in algorithm” (see page 99) is an example of a divide and conquer
strategy that allows O(n) operations to be performed in O(logn) time if the
operations can be performed simultaneously. The number of operations does
not change materially; the improvement is in the time.

Divide and conquer algorithms are particularly appropriate for implemen-
tation in parallel computing environments. The number of processors may be

124 3 Algorithms and Programming

an important consideration. In the fan-in algorithm, for example, the improve-
ment in order is dependent on the unrealistic assumption that as the problem
size increases without bound, the number of processors also increases without
bound. Divide and conquer strategies do not require multiple processors for
their implementation, of course.

Convolutions

We discussed the convolution f * g of two functions on page 21. If f and g are
PDFs of stochastically independent random variables U and V, then f x g is
the PDF of U + V. (This is true whether the random variables are continuous
or discrete. See a text on mathematical statistics if this fact is not familiar.) In
many cases, transforms, either moment generating functions or characteristic
functions, can be used to work out the distribution of U + V more easily. This
follows from the fact that if () is the characteristic function of U and s (t)
is that of V, the characteristic function of U 4+ V' is just ¢1(t)p2(t). The PDF
can be obtained by inverting the characteristic function. In some cases, this
is easy, possibly because its form is recognized as some standard function.
Similar to the convolution of two functions, the discrete convolution of two
vectors x and y is the vector, which we denote as x * y, whose m'* element is

THYm = Z Tn—jYj- (3.9)
J

Note that the limits of the summation must be such that the vectors are
defined over the range of their indices. The convolution is an inner product.

Discrete Transforms

Some computational methods can be performed more efficiently by first mak-
ing a transform on the operands, performing a related operation on the trans-
formed data, and then inverting the transform. These problems arise in vari-
ous areas, such as time series, density estimation, and signal processing. The
canonical problem for which a transform is useful is the evaluation of a con-
volution of two objects that are indexed over the similar domains.

A discrete transform produces the elements of an n-vector Z from a given
n-vector by an inner product with another vector. (In the context of dis-
crete transforms, the argument of the “functions” is the index of the vectors.)
Because they have a wide range of applications, it is important to be able to
compute transforms with high efficiency.

The index of summation of a discrete transform often occurs in the expo-
nent of one of the factors in the summands. For that reason, it is convenient
to use “0 equals first” indexing, as we did with series expansion of functions
on page 20.

One of the most important and most commonly used discrete transforms
is the discrete Fourier transform (DFT), which, for the n-vector x is

3.3 Efficiency 125

n—1
- 2mi ;
T = g zje ™ form=0,...,n—1. (3.10)
j=0
The inverse, that is, z; for j =0,...,n — 1 in terms of the ’s, is
n—1
1 2ni ;
vl - m
Tj=— Tme n I,
n
m=0

Equation (3.10) is readily seen to be equivalent to the linear transformation
of = by the matrix A, that is, &,, = Az, where

27mi

Apj =50,

Multiplying an n-vector by an n x n matrix is essentially an O(n?) task. If the
matrix has special form, however, it may be possible to reduce the number of
computations. This is the idea of the fast Fourier Transform (FFT).

Another way of looking at the transform is to think of xg,...,z,_1 as the
coeflicients of a polynomial in z:

2(2) = xp_12" "4 @2 + 20 (3.11)

. m
The Fourier element ., is the value of x(z) at z = (e%) . For simplicity,

27i

let w=-¢e"n.

Now, by Horner’s method (equation (3.7)) we know we need no more than
n operations to evaluate an n'" degree polynomial. We can do better than
this, however, when we consider the very special form of the points at which
we need to evaluate the polynomial. These points are called primitive roots
of unity. A number w is a primitive n*® root of unity if w # 1, w™ = 1, and
EZ;& wP =0forj=1,...,n—1. As examples, —1 is a primitive n*® root of
h

unity for n = 2, i is a primitive n*" root of unity for n = 4. In general, e’n s
a primitive n'" root of unity, as we can see by checking the conditions.

The relevance of this for the FFT are two facts about primitive n*" roots
of unity when n is an even integer. If n = 2m and w is a primitive n'" root of
unity, then —w’ = w/*™, and, secondly, w? is a primitive m'" root of unity.
Both of these are easily seen from the definition.

Let us assume n is even and let m = n/2. Break the polynomial (3.11)
into two parts:

2(2) = xp_12" 4+ T2 34 a2
Tp_02" 2 4+ w92 + 0.

2

Letting y = 2°, we can write z(z) as the sum of two polynomials,

C(y) = Z(xnflynil + (En,3yn72 4+t 961)

126 3 Algorithms and Programming

and
b(y) = (Tn—2y™ "+ n_ay" P+ -+ x0).
Our interest is in computing the Fourier coefficients, x(w’) for j =
0,...,n—1, We can write the first half, for j =0,...,k— 1, as

z(w?) = c(w¥)w! + b(w?),
and the second half as
z(w) = —c(w?)w’! + b(w?),

again for j =0,...,k — 1.

We have now divided the problem in half. The FFT continues this process
of dividing what was an O(n?) operation into an O(nlogn) operation, just as
we did with the sorting operation above.

As with many divide and conquer methods, the FFT can be conveniently
expressed recursively. We do this Algorithm 3.3. Following a notational con-
vention for Fourier transforms, we denote the & as X. In the algorithm, we

assume n = 2P, w is a primitive n*® root of unity, X is a complex array of
length n with values w7 for j =0,...,n— 1, and B, C, and ws are complex
arrays.

Algorithm 3.3 FFT(n,x,w,X)
if n=1 X=x[0]

else {
k = n/2
b = (x[n-2],...,x[2],x[0])
c = (x[n-11,...,x[3],x[1])

FFT(k,b,w"2,B)

FFT(k,c,w"2,C)

ws[0] = 1/w

for j=0 to n-1 {
ws[j+1] = wxws[j]
X[3] = BLjl+wp[j+11*C[j]
X[j+k] = B[jl-wp[j+11*C[j]

Greedy Methods

Some algorithms are designed so that each step is as efficient as possible, with-
out regard to what future steps may be part of the algorithm. An algorithm
that follows this principle is called a greedy algorithm. A greedy algorithm is
often useful in the early stages of computation for a problem or when a prob-
lem lacks an understandable structure. An example of a greedy algorithm is
a steepest descent method (see page 265).

3.3 Efficiency 127
Bottlenecks and Limits

There is a maximum flops rate possible for a given computer system. This rate
depends on how fast the individual processing units are, how many process-
ing units there are, and how fast data can be moved around in the system.
The more efficient an algorithm is, the closer its achieved flops rate is to the
maximum flops rate.

For a given computer system, there is also a maximum flops rate possible
for a given problem. This has to do with the nature of the tasks within the
given problem. Some kinds of tasks can utilize various system resources more
easily than other tasks. If a problem can be broken into two tasks, T; and
T5, such that 77 must be brought to completion before T5 can be performed,
the total time required for the problem depends more on the task that takes
longer. This tautology has important implications for the limits of efficiency
of algorithms.

The efficiency of an algorithm may depend on the organization of the
computer, the implementation of the algorithm in a programming language,
and the way the program is compiled.

High-Performance Computing

In “high-performance” computing, major emphasis is placed on computational
efficiency. The architecture of the computer becomes very important, and the
programs are often designed to take advantage of the particular characteristics
of the computer on which they are to run.

The three main architectural elements are memory, processing units, and
communication paths. A controlling unit oversees how these elements work
together.

There are various ways memory can be organized. There is usually a hier-
archy of types of memory with different speeds of access. The controlling unit
will attempt to retain data in a high-speed memory area, often called a cache,
if it is anticipated that the data will be used in subsequent computations.
The various levels of memory can also be organized into banks with separate
communication links to the processing units.

There are various types of processing units. Three general types are called
central processing units (CPU), vector processors (VP), and graphics process-
ing units (GPU). A CPU is the standard type, but the term covers a wide range
of designs. A CPU usually has separate areas for floating-point and fixed-point
operations. The number of operations it directly implements varies. A RISC
(“reduced instruction set computer”) can perform only a relatively small num-
ber of operations, so a complex operation may require multiple operations. The
tradeoff is in the speed of execution of any single operation. Vector processors
are particularly suited for computations on all of the elements in a linear ar-
ray or on the elements in two linear arrays. Finally, GPUs generally provide
only a limited number of different operations, but they are designed for a

128 3 Algorithms and Programming

large number of simultaneous operations. They are said to be ideally suited
for “super computing” on the “desktop”; that is, they are inexpensive and
environmentally robust. When they are used for general-purpose numerical
computations, the name “graphics processing unit” is merely a legacy refer-
ring to the applications for which this type of unit was originally developed.
Any processing unit may consist of multiple processors within the same unit,
often called a core.

If more than one processing unit is available, it may be possible to perform
operations simultaneously. In this case, the amount of time required may be
drastically smaller for an efficient parallel algorithm than it would for the
most efficient serial algorithm that utilizes only one processor at a time. An
analysis of the efficiency must take into consideration how many processors
are available, how many computations can be performed in parallel, and how
often they can be performed in parallel.

The most effective way of decreasing the time required for solving a compu-
tational problem is to perform the computations in parallel if possible. There
are some computations that are essentially serial, but in almost any problem
there are subtasks that are independent of each other and can be performed
in any order. Parallel computing remains an important research area.

3.4 Iterations and Convergence

We use the word “iteration” in a nontechnical sense to mean a step in a se-
quence of computations. The iteration may be one single arithmetic operation,
but usually it refers to a group of operations.

We may speak of iterations in any algorithm, but there are certain types
of algorithms that are “iterative”; that is, methods in which groups of compu-
tations form successive approximations to the desired solution. This usually
means a loop through a common set of instructions in which each pass through
the loop changes the initial values of operands in the instructions. When we
refer to an iterative algorithm or iterative method, we mean this type of al-
gorithm.

In an algorithm that is not iterative, there are a fixed, finite number of op-
erations or iterations. The algorithm terminates when that number is reached.
In an iterative algorithm, the number of iterations may not be known in ad-
vance; the algorithm terminates when it appears that the problem has been
solved, or when it is decided that the method used is not going to solve the
problem.

We use the word “converge”, and the various derivatives of this root word,
to refer to a condition in the progress of an algorithm in which the values no
longer change.

The steps in simple summations, in which we have a sequence of partial
sums, are iterations. A finite sequence converges to the exact sum (it is hoped).

3.4 Tterations and Convergence 129

An infinite sequence may or may not converge. Our interest, clearly, is in eval-
uating sequences that do converge. The computations themselves may not be
a reliable indicator of whether or not the sequence converges; see Exercise 2.2.

In working with iterative methods, we will generally use the notation z(*)
to refer to the computed value of z at the k*" iteration.

Testing for Convergence

The term “algorithm” refers to a method that terminates in a finite number of
steps. We should never implement a method on the computer unless we know
that this will occur, no matter what kind of data is input to the method.

In iterative numerical algorithms, the most important issues are conver-
gence of the algorithm and convergence of the algorithm to the “correct” so-
lution to the problem. If the algorithm converges, presumably it terminates,
but if it does not converge, we can always make it terminate by placing a limit
on the number of iterations.

In the actual computations, an iterative algorithm terminates when some
convergence criterion or stopping criterion is satisfied.

An example is to declare that an algorithm has converged when

A (a®, 21 <, (3.12)
where A(z®,2z(*=1)) is some measure of the difference of z*) and z(*~1)
and € is a small positive number. Because £ may not be a single number, we
must consider general measures, usually metrics, of the difference of z(*) and
z(*=1 Tt may be the case, however, that even if z(*) and z(*= happen to
be close, if the computations were allowed to continue, z(*+1) would be very
different from z(*),

Even though the computed values may stop changing, that is, algorithmic
convergence has occurred, the question of convergence to the correct value
remains. (Recall the “convergent” series of Exercise 2.2.) The assessment of
convergence to the “correct” value is often an ad hoc process that depends on
some analysis of the problem. Perhaps a perturbation of the problem can be
used to assess correctness, as suggested on page 112. Also, if something about
the behavior of the function at the point of convergence is known, in addition
to first order comparisons as in equation (3.12), higher order differences may
be useful.

There are basically three reasons to terminate an algorithm.

It is known that the problem is solved.
The iterations converge, that is, the computed values quit changing.
The number of iterations is too large, or the problem appears to diverge.

The first two of these indicate algorithmic convergence. The first one has
limited applicability. For most problems we do not know when it is solved.

130 3 Algorithms and Programming

An example of when we do know is solving an equation; specifically, finding
the roots of an equation. If the problem is to solve for x in f(x) =0, and if

‘f(x““))‘ <e, (3.13)

for some reasonable €, then we can take z(*) as the best solution we are likely
to get. Is 2(F) the correct solution however? Possibly. Consider f(z) = e~*,
however. Clearly, f(z) = 0 has no solution, but z(*) = —log(e) will satisfy
the convergence criterion.

The second reason can be used in a wide range of cases, but we must be
careful because the iterates may not change monotonically, as we indicated
above.

If termination occurs because of the third reason, we say that the algorithm
did not converge.

On closer consideration of the criteria in (3.12) and (3.13) an important
point becomes obvious. We should choose € with some care. Consideration of
this leads us to the realization that it is problem dependent. Without even
knowing the objectives of the problem, which, of course, would determine how
we really should make the decisions, we realize that often the data themselves
determine the important magnitudes. In either case, therefore, instead of the
absolute comparison with €, perhaps we should use a relative comparison using
some other value, say €,:

A (a:(k),m(k‘”) <e ’x(k_l)‘ ; (3.14)

for example.

The point of this discussion is although assessment of convergence is very
important, it is difficult and, unfortunately, may be somewhat ad hoc.

A computer program implementing an iterative algorithm should allow the
user to set convergence and termination criteria.

An iterative algorithm usually should have more than one stopping crite-
rion. Often a maximum number of iterations is set so that the algorithm will
be sure to terminate whether it converges or not. In any event, it is always a
good idea, in addition to stopping criteria based on convergence of the solu-
tion, to have a stopping criterion that is independent of convergence and that
limits the number of operations.

Rate of Convergence

In addition to the question of how to decide when an algorithm has actually
converged and we should stop the iterations, we may be interested in how fast
the iterations are converging.

The convergence ratio of the sequence z®) to a constant To is

lim A(x(kJrl)) -1:0)

—_— 1
k—o00 A(Jt(k),xo) (3 5)

3.4 Tterations and Convergence 131

if this limit exists. If the convergence ratio is greater than 0 and less than
1, the sequence is said to converge linearly. If the convergence ratio is 0, the
sequence is said to converge superlinearly.

The convergence rate is often a function of k, say g(k). The convergence
is then expressed as an order in k, O(g(k)).

We can often determine the order of convergence experimentally, merely
by fitting a curve to the fraction in expression (3.15) for k =1,2,....

Other measures of the rate of convergence are based on

A(J)(k—H) J)Q)
1. 7’ = .1
ke (A@®, z0)r (3.16)

(again, assuming the limit exists; i.e., ¢ < c0). In equation (3.16), the exponent
r is called the rate of convergence, and the limit c is called the rate constant.
If r = 2 (and c is finite), the sequence is said to converge quadratically. It is
clear that for any r > 1 (and finite c), the convergence is superlinear.

Convergence defined in terms of equation (3.16) is sometimes referred to
as “Q-convergence” because the criterion is a quotient. Types of convergence
may then be referred to as “Q-linear”, “Q-quadratic”, and so on.

Speeding Up Convergence by Extrapolation

An iterative algorithm involves a certain amount of work at each step. For a
given application, the amount of this work is relatively constant for a given
approach.

We can speed up an iterative algorithm either by changing the computa-
tions in a given step so as to reduce the amount of work at each step, or else
by reducing the number of steps until convergence.

Sometimes the amount of work in each step can be reduced by using some
approximations. This is the idea, for example, in some of the quasi-Newton
methods discussed beginning on page 269. When approximations are used,
the number of steps may increase but the overall work may decrease.

We now look at some ways of reducing the number of steps by perhaps
doing a small amount of extra work in each step.

We must be aware, however, that generally there are no modifications of
an algorithm that are guaranteed to speed up the convergence. Even worse,
an algorithm with relatively reliable convergence properties may lose these
properties after modifications; that is, we may begin with an iterative algo-
rithm that is relatively robust, and after modifications, will fail to converge
for a wider range of problems.

We will now consider two general methods. The first is a simple approach
called Aitken’s A2-extrapolation, or Aitken acceleration.

We begin with a convergent sequence {zy}, and consider the forward dif-
ference

A.l?k = Tk+1 — Tk-

132 3 Algorithms and Programming
Now we apply the difference operator a second time to get

Az, = A(Azy,)
= ($n+2 - xn—l) - ($n+1 - xn)

= Tn42 — 2Tp_1 + Tn.

Now, assume {z}} converges linearly to z, and that xy # z for all £ > 0. If
there exists r with |r| < 1 such that

. T — Tk41
lim ——— L

k—oo X — T ’

we can improve the speed of convergence by using the sequence {Zj} defined
by

- (A.l?k)Q
Tk = Tk Aka
)2
— (Th1 — k) (3.17)

Thy2 — 2Tp_1 + Tk

We will consider an example of this on page 246.

Use of the sequence {Z1} in place of {x} is called Aitken acceleration or
Aitken’s A2 process.

The only guarantee is that the Aitken sequence will converge faster. If the
original sequence {xj} is linearly convergent, in most cases {Zj} will only be
linearly convergent also, but its asymptotic error constant will be smaller than
that of the original sequence.

When Aitken’s acceleration is combined with a fixed-point method, the
resulting process is called Steffensen acceleration (see page 246).

Another acceleration method arises in the context of a discrete grid over
a continuous domain. It is based on the idea of decreasing the grid size. Nu-
merical computations are performed on a discrete set that approximates the
reals or IR?. This may result in discretization errors. By “discretization er-
ror”, we do not mean a rounding error resulting from the computer’s finite
representation of numbers. The discrete set used in computing some quantity
such as an integral is often a grid. If h is the interval width of the grid, the
computations may have errors that can be expressed as a function of h. For
example, if the true value is x and, because of the discretization, the exact
value that would be computed is zj, then we can write

x =z +e(h).

For a given algorithm, suppose the error e(h) is proportional to some power
of h, say h™, and so we can write

x =xp + ch” (3.18)

3.4 Tterations and Convergence 133

for some constant c.
Now, suppose we use a different discretization, with interval length rh
where 0 < r < 1. We have

T = Tpp, + c(rh)" (3.19)
and, after subtracting from equation (3.18), we have
0=z —xpn +c(h™ — (rh)")

or ()
n Th — Trh

ch™ = ETR (3.20)
This analysis relies on the assumption that the error in the discrete algo-
rithm is proportional to A™. Under this assumption, ch™ in equation (3.20)
is the discretization error in computing x, using exact computations, and is
an estimate of the error due to discretization in actual computations. A more
realistic regularity assumption is that the error is O(h™) as h — 0; that is,

instead of (3.18), we have
T = zp + ch™ + O(h" %) (3.21)

for a > 0.

Whenever this regularity assumption is satisfied, equation (3.20) provides
us with an inexpensive improved estimate of x:
Trp —T"Th

1—rm
It is easy to see that |z — zp| is less than the absolute error using an interval
size of either h or rh.

The process described above is called Richardson extrapolation, and the
value in equation (3.22) is called the Richardson extrapolation estimate.
Richardson extrapolation is also called “Richardson’s deferred approach to the
limit”. It has general applications in numerical analysis, but is most widely
used in numerical quadrature. We will encounter it on page 188, where we use
it to develop Romberg integration by accelerating simpler quadrature rules.

Extrapolation can be extended beyond just one step as in the presentation
above.

Reducing the computational burden by using extrapolation is very impor-
tant in higher dimensions. In many cases, for example in direct extensions
of quadrature rules, the computational burden grows exponentially with the
number of dimensions. This is sometimes called “the curse of dimensionality”
and can render a fairly straightforward problem in one or two dimensions
unsolvable in higher dimensions.

A direct extension of Richardson extrapolation in higher dimensions would
involve extrapolation in each direction, with an exponential increase in the
amount of computation. An approach that is particularly appealing in higher
dimensions is called splitting extrapolation, which avoids independent extrap-
olations in all directions.

TR = (3.22)

134 3 Algorithms and Programming

3.5 Programming

Although I like to think of programming as a science, there are many ele-
ments of programming that resemble art. Programming is only learned by
programming. (Read that again.)

The advancement of science depends on high-quality software. Most sci-
entific software is not developed ab initio by professional programmers. Most
evolves from rudimentary, ad hoc programs. This type of development presents
a serious risk; the range of applicability (robustness) may be quite limited. The
writer of the program may or may not be aware of this. If the writer continues
to use the program this limitation may become apparent very quickly. The
real danger, however, usually comes from the usage by the writer’s colleagues.
After a few years of usage on easy problems or on problems very similar to
the one for which the program was originally written, the program has stood
the “test of time” and may be generally accepted as a solid piece of software.
There is a significant amount of anecdotal evidence that much of the code
incorporated in R packages evolved in this way, and it is not robust.

Of lesser concern is the extent to which the computer program utilizes
coding methods to speed up its execution. Although an algorithm may state,
for example, “for (¢ in 1 to n) do ...” the competent programmer may write
a do-loop that includes a number, say k, of successive steps within the do-
loop, and then has a small bit of code at the end of the loop to handle the n
mod k remaining cases. This is called unrolling the loop, and, depending on
the computer hardware, can result in significant speedup.

No matter how a code is written, the compiler may cause the order of
execution to be different from what the programmer expected. A compiler
attempts to maximize the speed of execution. Some compilers work harder
than others at optimizing the code. These are called optimizing compilers.
Some optimizing compilers will unroll do-loops, for example. As one might
guess, it is not easy for a program (the compiler) to decide how the statements
in another program should best be executed. The first practical optimizing
compiler was selected by Computing in Science & Engineering as one of the
Top 10 algorithms of the twentieth century; see page 138.

Translating Mathematics into Computer Programs

Although one of the important mantras of statistical computing is that a
mathematical expression does not necessarily imply a reasonable computa-
tional method, it is often the case that the mathematical expression is at the
appropriate level of abstraction. An expression such as ATB, for example,
may prompt a Fortran or C programmer to envision writing code to imple-

ment loops to compute
SN aibuy. (3.23)
i j ok

3.5 Programming 135

If the computer language supports a construct directly similar to ATB, as
Fortran (but not C) and R do, it is likely that use of that construct will result
in a much more efficient program than use of the nested loops.

The point is that while the mathematical expression does not specify the
computations, we should begin with code (or pseudocode) that is similar to
the mathematical expression, and then refine the code for accuracy, stability,
and efficiency.

Computations without Storing Data

For computations involving large sets of data, it is desirable to have algorithms
that sequentially use a single data record, update some cumulative data, and
then discard the data record. Such an algorithm is called a real-time algorithm,
and operation of such an algorithm is called online processing. An algorithm
that has all of the data available throughout the computations is called a batch
algorithm.

An algorithm that generally processes data sequentially in a similar man-
ner as a real-time algorithm but may have subsequent access to the same data
is called an online algorithm or an “out-of-core” algorithm. (This latter name
derives from the erstwhile use of “core” to refer to computer memory.) Any
real-time algorithm is an online or out-of-core algorithm, but an online or
out-of-core algorithm may make more than one pass through the data. (Some
people restrict “online” to mean “real-time” as we have defined it above.)

If the quantity ¢ is to be computed from the data zi,zo,...,z,, a real-
time algorithm begins with a quantity ¢(©) and from ¢(®) and z; computes
tM). The algorithm proceeds to compute t***+1) using x;41 and so on, never
retaining more than just the current value, t(*). The quantities ¢(*) may of
course consist of multiple elements. The point is that the number of elements
in t™) is independent of n.

Many summary statistics can be computed in online processes. For exam-
ple, the algorithms discussed beginning on page 115 for computing the sample
sum of squares are real-time algorithms. The algorithm in equations (3.3) re-
quires two passes through the data, so it is not a real-time algorithm, although
it is out-of-core. There are stable online algorithms for other similar statis-
tics, such as the sample variance-covariance matrix. The least squares linear
regression estimates can also be computed by a stable one-pass algorithm that,
incidentally, does not involve computation of the variance-covariance matrix
(or the sums of squares and cross products matrix). There is no real-time
algorithm for finding the median. The number of data records that must be
retained and reexamined depends on n.

In addition to the reduced storage burden, a real-time algorithm allows
a statistic computed from one sample to be updated using data from a new
sample. A real-time algorithm is necessarily O(n).

136 3 Algorithms and Programming
Measuring the Speed of a Program

Beginning on page 117 we discussed the efficiency of algorithms. For them to
be useful, algorithms must be translated into computer programs, and it is
ultimately the speed of these programs that matter. The arrangement of loops,
the movement of data, and other factors can degrade the performance of an
algorithm. One of the useful tools in programming is a function to measure
the time the computer spends on a given task — this is not the elapsed time,
because the computer may be working on other tasks.

It is important that the programmer know which parts of the program are
more computationally intensive. Of course, this may vary for different datasets
or problems. Any program intended for frequent use should be profiled over
different problems; that is, for a range of problems, the proportional average
execution time for each module should be empirically measured. Even the
proportional times may be different on different types of computers, so for
important, widely-used programs, profiling should be performed on a range
of computers.

There is an intrinsic function in Fortran 95, cpu_time (time) that returns
the current processor time in seconds. (If the processor is unable to provide a
timing, a negative value is returned instead.) The exact nature of the timing is
implementation dependent; a parallel processor might return an array of times
corresponding to the various processors. In C, clock() in the time.h library
returns the number of clock steps, and an associated constant CLOCKS_PER_SEC
can be used to convert clock steps to seconds. In R, proc.time() returns the
“user” time, the “system time”, and the elapsed time in seconds. The distinc-
tion between “user” time and the “system time” depends on the operating
system and the hardware platform. There is another useful timing function
in R, system.time, which gives the same three times for the evaluation of an
expression. (The “expression” is a program module to be timed. It must be
specified as an argument to system.time.)

Computer functions to provide timing information are notoriously unreli-
able. They should always be used over multiple runs and average times taken.
The resolution of all of these functions is system dependent. In most cases, the
time for a certain computation is obtained by subtracting two different calls
to the timing routine, although doing this can only yield an elapsed system
time.

Code Development

An important aspect of statistical computing is the formulation of both the
data and the computational methods in a way that can be used by the com-
puter. This can be done by using some application such as a spreadsheet
program, or it can be done by writing a program in a programming language.
We will not address use of higher level application programs for computational
statistics in this book.

3.6 Computational Feasibility 137

In general we distinguish two types of programming languages: the lan-
guages in which programs are compiled before execution, such as C and For-
tran, and the languages that issue immediate commands to the computer, such
as Octave and R. We sometimes refer to interactive systems such as Octave
and R as “higher-level” languages. Systems such as Octave and R also allow
a sequence of commands to be issued together, so we can think of “programs”
or “scripts” in these higher-level systems. For large-scale computations we
should use a compiled language, because the execution is much faster. There
are, of course, many general issues and many more details to consider. We
will not address them here, but computational and programming aspects will
be a theme throughout this book.

3.6 Computational Feasibility

Data must be stored, transported, sorted, searched, and otherwise rearranged,
and computations must be performed on it. The size of the dataset largely
determines whether these actions are feasible. Huber (1994, 1996) proposed a
classification of datasets by the number of bytes required to store them (see
also Wegman, 1995). Huber described as “tiny” those requiring on the order of
102 bytes; as “small” those requiring on the order of 10 bytes; as “medium”
those requiring on the order of 10° bytes (one megabyte); as “large”, 103
bytes; “huge”, 10'° bytes (10 gigabytes); and as “massive”, 1012 bytes (one
terabyte). (“Tera” in Greek means “monster”.) This log scale of two orders
of magnitude is useful to give a perspective on what can be done with data.
Online or out-of-core algorithms are generally necessary for processing massive
datasets.

For processing massive datasets, the order of computations is a key mea-
sure of feasibility. We can quickly determine that a process whose computa-
tions are O(n?) cannot be reasonably contemplated for massive (10'2 bytes)
datasets. If computations can be performed at a rate of 102 per second (ter-
aflop), it would take over three years to complete the computations. (A rough
order of magnitude for quick “year” computations is m x 107 seconds equals
approximately one year.) A process whose computations are O(nlogn) could
be completed in 230 milliseconds for a massive dataset. This remarkable dif-
ference in time required for O(n?) and O(nlogn) processes is the reason that
the fast Fourier transform (FFT) algorithm was such an important advance.

Exponential orders can make operations even on tiny (102 bytes) datasets
infeasible. A process whose computations require time of O(2") may not be
completed in four centuries.

Sometimes, it is appropriate to reduce the size of the dataset by forming
groups of data. “Bins” can be defined, usually as nonoverlapping intervals
covering IR?, and the number of observations falling into each bin can be
determined. This process is linear in the number of observations. The amount
of information loss, of course, depends on the sizes of the bins. Binning of data

138 3 Algorithms and Programming

has long been used for reducing the size of a dataset, and earlier books on
statistical analysis usually had major sections dealing with “grouped data”.

Another way of reducing the size of a dataset is by sampling. This must be
done with some care, and often, in fact, sampling is not a good idea. Sampling
is likely to miss the unusual observations just because they are relatively rare,
but it is precisely these outlying observations that are most likely to yield new
information.

Advances in computer hardware continue to expand what is computation-
ally feasible. It is interesting to note, however, that the order of computations
is determined by the problem to be solved and by the algorithm to be used,
not by the hardware. Advances in algorithm design have reduced the order of
computations for many standard problems, while advances in hardware have
not changed the order of the computations. Hardware advances change the
constant in the order of time.

Notes and Further Reading

Algorithms

A good general and comprehensive coverage of computer algorithms is in the
very large book by Cormen et al. (2001). Garey and Johnson (1979) did an
early study of the class of NP-complete problems, and their book contains an
extensive list of problems that are known to be NP-hard.

The January/February, 2000, issue of Computing in Science & Engineering
was devoted to the Top 10 Algorithms of the twentieth century. Guest editors
Jack Dongarra and Francis Sullivan discuss the role that efficient compu-
tational algorithms have played in the advancement of science. As we have
pointed out, the replacement of an O(n?) algorithm with an O(nlogn) al-
gorithm, as is often the case in divide and conquer strategies, has allowed
problems to be solved that could not be solved before. The special issue con-
tains brief articles on all of the Top 10 algorithms. Some of the Top 10 are
rather simple methods that can be described in just a few steps and oth-
ers require many steps. Some are collections of several methods, and instead
of being algorithms, they are general approaches. Some can be implemented
in a computer program reliably by an amateur, while others involve many
numerical subtleties.

The Top 10, in the chronological order of their development are

Metropolis algorithm for Monte Carlo

simplex method for linear programming

Krylov subspace iteration methods

the decompositional approach to matrix computations
the Fortran optimizing compiler

QR algorithm for computing eigenvalues

quicksort algorithm

Notes and Further Reading 139

e fast Fourier transform
e integer relation detection
e fast multipole method

We have discussed two of these algorithms and mentioned another in this
chapter and we will encounter others in later chapters of Part II.

Developing algorithms can be an enjoyable exercise in problem solving.
The book by Bentley (2000) provides very readable descriptions of a number
of problems, and then gives elegant algorithms for them. (A teaser is given in
Exercise 3.9; a solution for which is provided on page 679.)

Extrapolation

Richardson’s ideas for extrapolation appeared in 1910, but it took fifty years
before the technique was widely used. Today most numerical computations
that use discrete approximations to evaluate a quantity that is defined in terms
of a continuous function, such as an integral, use some form of extrapolation.

The use of extrapolation in higher dimensions is even more important, but
it should not be done as independent extrapolations in each of the dimensions.
The splitting extrapolation method is described in some detail by Liem, Lii,
and Shih (1995).

Programming and Software

Statisticians depend on high-quality software, and many statisticians are ama-
teur software developers for their own computing needs. Much of the software
used by any statistician, even one working in statistical computing, however, is
written by someone else, possibly a team at a commercial or semi-commercial
software company.

Reviews of software, whether published formally or distributed through
blogs, are useful, but the target is moving and evaluations frequently go awry.
McCullough (1999) discusses some of the methods of reviewing statistical
software, and the complexities of this activity.

Often a statistician needs to write new code to address a specific problem
or to implement a new statistical method. In this case a programming language
and possibly a programming system must be used. The common programming
languages for statistical applications are R, S-Plus, and Matlab, or Fortran, C,
and C++. Obviously, there are many other languages to choose from, but the
user should consider the length of time the program may be used. (I personally
have written thousands of lines of PL/I that several years later I had to have
high-paid programmers translate into Fortran.)

Any serious programming effort needs a programming system for the cho-
sen language. A programming system includes a language-aware editor, a good
debugger, and a version control system. A programming system is built around

140 3 Algorithms and Programming

some specific application program interface (API), and understanding the de-
tails of the API is necessary for effective programming.

Thinking of the various components of code as representing objects, and
thinking of the objects systematically as members of classes with common
characteristics is a good way to approach code design and development. Vir-
ius (2004) provides a general description of the object-oriented approach, “ob-
ject oriented programming”, (OOP). There is a dogma associated with OOP
(that reminds me of the dogmas of BCLSs and structured programming de-
scribed in Kennedy and Gentle, 1980), but like earlier movements, the atti-
tudes engendered are more important than strict adherence to the religion.

The issue of ensuring reliable and correct software during the development
of the software is important. It should not be necessary to correct unreliable
software after the fact. Chapter 8 of the book edited by Einarsson (2005)
specifically addresses facilities in various languages such as Fortran or C for
implementing reliable and correct software. Chapter 1 of that book also con-
tains a number of interesting examples where unreliable or incorrect software
has endangered lives and cost a lot of money to correct.

A good book on programming is Lemmon and Schafer (2005), who provide
many guidelines for developing software in Fortran 95. They also describe
system integration, primarily in the context of Microsoft Visual Basic NET
system.

Chambers (2008) discusses principles of programming, with particular em-
phasis on the R system. Much of the material in both Lemmon and Schafer
(2005) and Chambers (2008) applies to programming in any language. Cham-
bers also covers system integration with less dependence on a particular plat-
form.

Software development is not just about writing programs. There are many
issues including interface design, algorithm selection and implementation, doc-
umentation, and maintainability that the amateur software developer is not
likely to consider. Klinke (2004) discusses many issues of the design of the
interface, and the book by McConnell (2004) provides a good coverage of this
as well as other issues, such as code design and documentation.

R and S-Plus

The software system called S was developed at Bell Laboratories in the mid-
1970s by John Chambers and colleagues. S was both a data-analysis system
and an object-oriented programming language.

S-Plus is an enhancement of S, including graphical interfaces, more statis-
tical analysis functionality, and support.

The freely available package called R provides generally the same func-
tionality in the same language as S (see Gentleman and Thaka, 1997). The R
system includes a useful feature for incorporation of new “packages” into the
program. See
http://www.r-project.org/

Notes and Further Reading 141

for a current description of R and a listing of packages available over the
web. A large number of research workers have contributed packages to the R
system. Many of these packages have overlapping capabilities, and, unfortu-
nately, some are not of high-quality. The most serious flaw is usually lack of
robustness.

There are a number of useful books on R or on various statistical methods
using R, such a Gentleman (2009), Murrell (2006), and Rizzo (2007). The
Springer series Use R! includes a number of books such as Albert (2007),
Sarkar (2008), and Spector (2008) that address specific topics relating to R.

Computations in Parallel

I have said very little about parallel computations in this book. It is, however,
clearly the most important approach for increasing computational power, and
it is absolutely necessary for addressing very computationally intensive prob-
lems. Parallel computers are becoming more widely available. Even personal
computers generally have multiple processing units.

Someone doing research and development in statistical computing must
be fluent in parallel computations. Nakano (2004) provides a good summary
of the techniques.

The first issue for parallel computations is how to divide up the work (the
program) and the data. The most common model is SPMD, “single-program-
multiple-data”. In SPMD the most important issue is passing of data, and for
that a standard API, called the Message Passing Interface (MPI) has been
developed. There are various Fortran and C libraries implementing the MPI.

There are evolving standards for compiler support of parallel computa-
tions. In Fortran, the most important concept is co-arrays. Various Fortran 95
compilers have supported this for years, and they are now codified in the For-
tran 2008 standard. This allows for direct memory copies, achieving the same
result as message passing, but at a significantly faster rate. (As of this writing,
this standard has not been published.)

There is current work on a C standard called Uniform Parallel C (UPC)
to promote portability of parallel codes in C.

The main challenge is to be able to develop long-lasting software that
takes advantage of multiple processors, and the development of standards
should help to preserve the value of parallel code.

Data Structure

Another important topic that I have not discussed in much detail is database
structure. The brevity of my discussion of data structures is not indicative of
its importance. Detailed consideration of data structures is outside of the scope
of this book. For further information on this topic, the reader is referred to
general books on algorithms, such as Cormen et al. (2001), which address data
structures that are central to the construction of many algorithms. Some of the

142 3 Algorithms and Programming

issues of database structure that are most relevant in statistical applications
are discussed by Boyens, Gilinther, and Lenz (2004).

Exercises

3.1. In standard mathematical libraries there are functions for log(z) and
exp(z), called log and exp respectively. There is a function in the IMSL
Libraries to evaluate log(1 + x) and one to evaluate (exp(z) — 1)/z. (The
names in Fortran, for single precision, are alnrel and exprl.)

a) Explain why the designers of the libraries included those functions,
even though log and exp are available.

b) Give an example in which the standard log loses precision. Evaluate it
using log in the standard math library of Fortran or C. Now evaluate
it using a Taylor series expansion of log(1 + x).

3.2. Suppose you have a program to compute the cumulative distribution func-
tion for the chi-squared distribution. The input for the program is z and
v, the degrees of freedom, and the output is Pr(X < z). Suppose you are
interested in probabilities in the extreme upper range and high accuracy
is very important. What is wrong with the design of the program for this
problem?

3.3. Errors in computations.

a) Explain the difference in truncation and cancellation.
b) Why is cancellation not a problem in multiplication?

3.4. Assume we have a computer system that can maintain 7 digits of precision

(base 10). Evaluate the sum of squares for the data set {9000, 9001, 9002}.

a) Use the algorithm in (3.4), page 115.

b) Use the algorithm in (3.5).

¢) Now assume there is one guard digit. Would the answers change?
3.5. Develop algorithms similar to (3.5) to evaluate the following.

a) The weighted sum of squares:

n
Z W; (.131 — i‘)Q
=1

b) The third central moment:

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

Exercises 143

Hint: Look at the difference in partial sums,

Given the recurrence relation

t(n) = pt(n/p) + cn,

for p positive and ¢ nonnegative. Show that ¢(n) is O(nlogn). Hint: First
assume n is a power of p.

Suppose all of the n addends in a summation are positive. Why is the
computation of the sum by a fan-in algorithm likely to have less roundoff
error than computing the sum by a standard serial algorithm? (This does
not have anything to do with the parallelism, and the reason does not
involve catastrophic cancellation.)

Consider the problem of computing w = x - y + z, where each of x, y,
and z is nonnegative. Write a robust expression for this computation.
Searching.

Given an array of length n containing real numbers, find a subarray with
maximum sum. (If all of the contents are nonnegative, obviously the full
array is a subarray that satisfies the requirement.) The subarray may not
be unique. The best algorithm is O(n).

Sorting.

Write pseudo code similar to for the bubble sort method described on
page 122 for a single vector. Show that its operation count is O(n?).
Sorting.

Write either a C function or a Fortran subroutine that accepts a vector
and sorts it using Quicksort (page 123). Test your program to ensure that
it is working correctly.

Sorting and merging.

a) Consider a very simple sorting method for an array a, consisting of n
elements, which is to be sorted in place. (This algorithm is not a good
one; it is just used for illustration. It is similar to the bubble sort.)

0. Set i = 1.
1. Set r =.
2. For j =i+ 1 ton,if a(i) > a(j), then r = j.
3. If r > i, then
interchange a(i) and a(r) and go to step 1;
otherwise
if i < n, then
set i =i+ 1 and go to step 1,
otherwise
end.

144

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

3 Algorithms and Programming

Describe carefully how you might implement this algorithm on k&
processors with a shared memory. What is the order of this algorithm?
Discuss the algorithm critically. Consider the case in which k ~ n.

b) Now consider the problem of merging two sorted lists. The arrays b
and c are each sorted and we wish to merge them into a new list d that
is sorted. Describe carefully how you might do this using k processors
with a shared memory.

Consider again the series

1

p

oo
)

>

i=1

~

for p > 1 from Exercise 2.2d. For p = 1.5,2.0,2.5,...4.0, experimentally
determine the order of convergence. Now express the order of convergence
in terms of n and p.

While a series of computations may converge, the question of the conver-
gence of the error remains. In Exercise 2.12, using the algorithm in Fig-
ure 2.10, we saw that for x = 20, the Taylor series approximation yielded
a fairly good value for e®. We know the order of errors of a truncated
Taylor series, in terms of derivatives. Now, experimentally determine the
order of the error for approximating e* with the Taylor series for x = 20
in terms of the number of iterations (that is, the number of terms in the
Taylor series).

Design and write either a C function or a Fortran subroutine that accepts
two addends in vectors and a required precision level, and that returns the
sum in a vector to the precision required. (Think of the elements of the
vectors as being digits in some base.) Write a user-oriented description of
your module.

Develop a set of test programs that will probe the accuracy of a given
module to compute a sample sum of squares. You should consider various
ways that the given module could go wrong and the various types of data
that could cause it to have problems, and provide tests for all of them.
Assume the problem P has solution s (unknown, of course). An algo-
rithm/program F' is available to solve P. Ideally, of course, F(P) = s.
Discuss the issues and the methods you would employ to determine that
F(P) is an adequate approximation to s.

Write either a C function or a Fortran subroutine that accepts the three
coefficients of a quadratic polynomial and evaluates one of the roots by
means of the quadratic formula, equation (2.18), and computes the other
root in an appropriate manner. (See the discussion on page 101.) Write
your function or subroutine as a standard software part. Write the part
specification very carefully, but succinctly, as comments in the program-
ming language. (What do you do if b*> < 4ac? You do not have to provide
a solution in this case, i.e., complex roots, but your software part must
handle that case.)

3.19.

3.20.

3.21.

3.22.

Exercises 145

Design and write either a C function or a Fortran subroutine that uses

a real-time algorithm for the method you developed in Exercise 3.5¢ to

compute the mean vector and variance-covariance matrix for multivariate

data in the standard n x m rectangular layout (that is, as a matrix). Your

program module should accept as input

e the number of variables

e the number of observations input in the current invocation (this is a
number between 0 and n) — call this number n; (a 0 value only makes
sense if the current invocation is the final one for the given problem,
and only wrap-up operations are to be performed)

e a subset of the rows of the overall data matrix (this is an n; x m
matrix)

e an indicator of whether this invocation is the first one for the given
problem, an intermediate one, or the final one

e the total number of observations that have been processed before the
current invocation — and output as the updated total, to include the
observations in the current invocation

e the vector of means of the observations that have been processed before
the current invocation — and output as the updated means, to include
the observations in the current invocation

e the matrix of sums of squares and cross-products of the observations
that have been processed before the current invocation — and output as
the updated sums of squares and cross-products to include the obser-
vations in the current invocation. On the final invocation, the sums of
squares and cross-products should be scaled by the appropriate divisor
to form variances and covariances.

Discuss design issues for your program module of Exercise 3.19 if the data

may contain missing values.

In statistical data analysis, it is common to have some missing data. This

may be because of nonresponse in a survey questionnaire or because an

experimental or observational unit dies or discontinues participation in the

study. When the data are recorded, some form of missing-data indicator

must be used. Discuss the use of NaN as a missing-value indicator. What

are some advantages and disadvantages?

Timing.

Write a program to time the C function or Fortran subroutine (or you

can use R) that you wrote in Exercise 3.11 to sort a vector using Quick-

sort. Experiment with the performance of your code using input vectors

with various orderings. (You must use large vectors to be able to tell any

difference, but you must also use different sizes of vectors to assess the

performance.) Examine the timing as a function of the size of the problem,

on average.

What is the worst case problem for Quicksort? Examine the timing as a

function of the size of the problem for the worst cases.

Summarize your findings in a clearly-written report.

4

Approximation of Functions and Numerical
Quadrature

Often in applied mathematics, we encounter a functional model that we ex-
press as

y = f(2),

but yet we do not know f fully, or else we cannot evaluate it in closed form.

We may only have some general knowledge about the shape of f and know
its value at certain points, f(x1), f(x2),.... In that case, our objective may be
just to determine some “nice” function, say a polynomial, that goes through
those known values. We say it “interpolates” those points.

Even if we know the values at certain points, we may take a slightly dif-
ferent approach in which we determine a nice function that goes “close” to
the points, but does not necessarily interpolate them. We say it “smoothes”
the points. In this case there is an adjustment term at each of the points that
is not interpolated.

Alternatively the function may be parameterized, and we have full knowl-
edge of the function except for the values of the parameters; that is, we form
the model as

y = f(z;0),

and we know f(x;0) all except for 6. If there is a value of 6 so that the
function interpolates all known values, that value provides us full knowledge
of f (conditional on the known values). It may be the case that there is no
value of # such that f(x;6) fits all of the known values (z;,y;). In this case
we must recognize that y = f(x;6) is not really correct; it needs some kind of
adjustment term.

If our objective is to interpolate the known points, there are several ways
we can do that, so we set some reasonable criteria about the form of the
interpolating function, and then proceed. We will discuss ways of interpolation
in this chapter.

If our objective is to smooth the data or if the functional model cannot
interpolate all of the known points, then we must deal with an adjustment
term. There are two possible approaches. One is set some reasonable criteria

J.E. Gentle, Computational Statistics, Statistics and Computing, 147
DOI: 10.1007/978-0-387-98144-4_4,
© Springer Science + Business Media, LLC 2009

148 4 Approximation of Functions and Numerical Quadrature

about the form of the smoothing function and about what kinds of adjustment
terms to allow, and then proceed. That approach is a topic of this chapter;
the objective is to approzrimate the function. In another approach, we assume
that the adjustment terms are random variables, and so we can use statistical
techniques to estimate the function; that is the topic of Chapter 10.

There are many reasons for approximating a function. One reason for doing
this, which we will address in later sections of this chapter, is to evaluate an in-
tegral involving the function. Another reason, which we address in Chapter 8,
is to draw lines in a graphical display. An additional reason for approximating
a function is to put the function in a form that is amenable for estimation; that
is, we approximate a function and then estimate the approximating function.

Before proceeding to the main topic of this chapter, that is, methods of ap-
proximation of functions, we review some general topics of linear spaces devel-
oped in Section 1.2 for the special case of function spaces. This discussion leads
to the notions of basis functions in Section 4.2. In Sections 4.3, 4.4, and 4.5,
we discuss methods of approximation, first using a basis set of orthogonal
polynomials and truncated series in those basis functions, then using finite
sets of spline basis functions, and then using a kernel filter. In Sections 4.6
and 4.7 we discuss numerical quadrature. Some methods of quadrature are
based on the function approximations.

Inner Products, Norms, and Metrics

The inner products, norms, and metrics that we defined beginning on page 11
are useful in working with functions, but there are a few differences that result
from the fact that the “dimension” is essentially uncountable.

The inner product of functions is naturally defined in terms of integrals of
the products of the functions, analogously to the definition of the dot product
of vectors in equation (1.7). Just as the inner product of vectors is limited
to vectors with the same length, the inner product of functions is defined for
functions over some fixed range of integration (possibly infinite).

Also, just as we sometimes define vector inner products and vector norms
in terms of a weight vector or matrix, we likewise define inner products for
scalar-valued functions with respect to a weight function, w(x), or with respect
to the measure p, where dy = w(z)dz,

(.)y = /D F(@)g()w(z) dx, (4.1)

if the integral exists. Often, both the weight and the range are assumed to
be fixed, and the simpler notation (f, g) is used. We remind the reader that
in this book, we will generally assume the functions are real-valued, and so
we usually do not write inner products using the complex conjugate. The
inner product in equation (4.1) is also called the dot product, just as in the
analogous case with vectors.

4 Approximation of Functions and Numerical Quadrature 149

We can define norms of functions in the same general way we have defined
any norm. There are two differences we must be aware of, however. First of all
is the question of integrability of the integrand that defines the norm. While for
finite-dimensional vectors, this was not a problem, we must identify the class
of functions for which we are defining the norm so as to ensure integrability.
We will use the notation L?(D) to represent the space of functions that take
values in the same vector space and that are square-integrable over D; that
is, f € L*(D) if and only if

/ (F(2))2w(z)dz < oo. (4.2)
D

In the following, we will often assume that the function is scalar-valued. If
the function is not scalar-varlued, then the integrands in equations (4.1) and
(4.2) would be replaced by norms of vectors.

Secondly, the nonnegativity property of a norm is somewhat awkward
in working with functions. This is because the inner product defined as an
integral would not induce a norm that satisfies the nonnegativity property. It
is clearly possible that f(zo) > 0 for some value g, yet [},(f(z))?w(z)dz = 0.

We note, however, that if Dy is a set of x for which f(z) > 0 and
[p, (f(2))?w(z)dz = 0, then [, w(z)dz = 0; that is, D; is a set with mea-
sure 0 with respect to the weighting in the definition of the inner product.

With this in mind, we often define a more useful function, a pseudonorm,
in which the nonnegativity requirement is relaxed to allow a zero value of the
pseudonorm to imply only that the function is 0 almost everywhere, where
almost everywhere means “everywhere except on a set of measure 0” (with
respect to some measure). Any norm is obviously a pseudonorm, but not
vice versa. Unless the distinction is important, however, we often refer to a
pseudonorm just as a “norm”. We may use the term “pseudonorm” for techni-
cal correctness, but in computations, the distinction is generally meaningless.
The whole space IF has Lebesgue measure 0. (See Section 2.2.)

A common L, function pseudonorm is the Ly pseudonorm, which is de-
noted by || f]|2. Because this pseudonorm is so commonly used, we often denote
it simply by || f]|. This pseudonorm is related to the inner product:

I fllz = (f, £)12. (4.3)

The space consisting of the set of functions whose Ly pseudonorms over IR
exist together with this pseudonorm itself is denoted L?. (To be more precise,
the measure p from equation (4.1) is the Lebesgue measure. Notice that the
space L? consists of both a set of functions S and the special function, the
pseudonorm, whose domain is S.)

Another common L, function pseudonorm is the L., pseudonorm, espe-
cially as a measure of the difference between two functions. This pseudonorm,
which is called the Chebyshev norm or the uniform norm, is the limit of equa-
tion (1.15) on page 13 as p — oo (with the inner product in equation (4.1)).
In most cases, this pseudonorm has the simpler relationship

150 4 Approximation of Functions and Numerical Quadrature
[flloe = sup |f(@)w(z)]. (4.4)

(Notice that the expression on the right side of equation (4.4) is actually a
norm instead of just a pseudonorm. We may not want to define || || in this
manner, however, because f could be very large on some discrete points, and
so the sup would not capture the relevant size of f. On the other hand, we
could define the class of relevant functions in such a way that this is not an

issue.)
To emphasize the measure of the weighting function, the notation || f]|, is
sometimes used. (The ambiguity of the possible subscripts on || - ||, whether

they refer to a type of norm or to the measure, is usually resolved by the
context.) For functions over finite domains, the weighting function is most
often the identity.

A normalized function is one whose norm is 1. Although this term can be
used with respect to any norm, it is generally reserved for the Lo norm (that
is, the norm arising from the inner product). A normalized function is also
sometimes called a “normal function”, but we usually use that latter term
to refer to a function whose integral (over a relevant range, usually R) is 1.
Density functions and weight functions are often normalized (that is, scaled
to be normal).

Sequences; Complete Spaces

For approximation methods, it may be important to know that a sequence of
functions (or vectors) within a given space converges to a function (or vector)
in that space.

A sequence {f;} in an inner product space is said to converge to f in a
given norm || -|| if, given € > 0, there exists an integer M such that || f;— f]| < e
for all 4 > M. This convergence of the norm is uniform convergence; that is,
at all points. We also often consider pointwise convergence of a sequence of
functions, which depends on the argument of each function in the sequence.

A sequence is said to be a Cauchy sequence if, given € > 0, there exists an
integer M such that ||f; — f;|| < eforalld,j > M.

A space in which every Cauchy sequence converges to a member of the
space is said to be complete.

A complete space together with a norm defined on the space is called a
Banach space. A closed Banach space in which the norm arises from an inner
product, as in equation (4.3), is called a Hilbert space.

The finite-dimensional vector space IR? and the space of square-integrable
functions L? are both Hilbert spaces. (See a text on real analysis, such as He-
witt and Stromberg, 1965.) They are, by far, the two most important Hilbert
spaces for our purposes. The convergence properties of the iterative methods
we often employ in smoothing and in optimization methods generally derive
from the fact that we limit our domain of discourse to Hilbert spaces.

4 Approximation of Functions and Numerical Quadrature 151
Roughness

We use the terms “roughness” and “variation” in referring to functions in
a nontechnical sense, and the terms are more-or-less synonymous. We often,
however, refer to a specific measure of roughness or variation. (Notice that we
Y
try to avoid use of the term “variance” in a nontechnical sense.)
A reasonable measure of the variation of a scalar function is

vin= [(r0- [f(t)dt)zdx- (45)

This quantity is the variance of f(Y), where Y is a random variable with a
uniform distribution over D (see expression (4.86) on page 194).

If the integral [;, f(x)dz is constrained to be some constant (such as 1 in
the case that f(x) is a probability density), then the variation can be measured
by the square of the Lo norm,

S(f) = /D 1 (@)1 da. (4.6)

Another intuitive measure of the roughness of a twice-differentiable and
integrable univariate function f is the integral of the square of the second
derivative:

R(f) = /D 7)) da. (4.7)

A function constructed so as to approximate a given function often is
very rough. We sometimes constrain the approximating function in some way
so that its roughness is small or else that it is similar in magnitude to the
roughness of the given function if we know it or if we have an approximation
for it.

Linear Operators

Approximations of functions are often formed by use of a functional or an
operator.

A functional is a mapping of a function space into a vector space; for our
purposes we will consider a functional to be a mapping of a function into the
finite-dimensional vector space IR?. An operator is a mapping of a function
space into a function space.

We are interested in properties of functionals and operators because those
properties relate to the magnitude of the error in function approximation.

We will denote functions using an upper case letter, and operators using
a calligraphic font, for example, we may write v = L(f) and g = L(f), where
f is a function, v is a real vector, and g is a function. Depending on the
emphasis or the need for clarity, we also may write the functions with formal

152 4 Approximation of Functions and Numerical Quadrature

arguments, g(t) = L£(f(x)); or with actual arguments, g(to) = L£(f(z0)); and
we may write the operator without parentheses, g = Lf or g(t) = Lf(x).
For a given function f, the measure of the goodness of the function g to
approximate f is the functional L(g) = || f — g|.
The most commonly used functionals and operators are linear. The func-
tional L is a linear functional if for any two functions fi; and fo within the
domain of L and for any constant c,

L(cfi + f2) = cL(f1) + L(f2). (4.8)

Likewise, the operator L is a linear operator if for any two functions f; and
f2 within the domain of £ and for any constant c,

L(cfi+ f2) = cL(f1) + L(f2). (4.9)

An example of a linear operator on functions with domain [a, b] is the one
that results in a straight line through the function values at a and b. A similar,
more general linear operator is

L(f) = 3 cif (s). (4.10)

The Lagrange interpolating polynomial, which we consider below in equa-
tion (4.16), is an example of this linear operator.

Another example is a finite Taylor series approximation of a differentiable
function:

L(f) = f(xo) + (t — z0) f'(20)- (4.11)

Convolutions and covariances are also important linear operators.

Norms of Operators

Norms of functionals and operators measure their variation. Because of the
way we use functionals and operators in approximation, the most useful norms
are often those that capture maximal deviations. Hence, we define the norms
as Chebyshev norms. We define the norm of functionals and operators in
terms of their use on normalized functions; that is, on functions whose norm
is 1. The norm || - || used to define the normalized function is not necessarily
a Chebyshev norm. The norm of functional, ||L||, in terms of a normalized
function, is the vector norm:

L] = max (- (4.12)

The norm of an operator, ||L]], in terms of a normalized function, is the func-

tion norm:
L] = sup [[L(f)I- (4.13)
Iflly=1

4.1 Function Approximation and Smoothing 153

It is clear that these norms satisfy the properties that define a norm (see
page 13).

For example, the norm of the linear interpolant operator mentioned above
that is the straight line between the points (a, f(a)) and (b, f(b)) is easily seen

to be
max(|f(a)], [f()]). (4.14)

The norm of the interpolant operator serves to measure the sup error of
the approximation.

4.1 Function Approximation and Smoothing

We often need to approximate a given function f by another function f This
may be because we know f only at some specific points; it may be because the
approximation f may be easier to work with than f; or it may be because we
have good ways of estimating f, but do not have a direct way of estimating
f-

By “to approximate f” we may mean to approximate an integral of f, to
approximate a derivative of f, or just to approximate some values of f that
may be unknown or may be difficult to evaluate directly.

There are a number of ways we can approximate the function f:

globally, as a truncated series of other, basic functions
globally, as a ratio of other, basic functions
piecewise, using different forms of another, basic function in different re-
gions of the domain

e globally, with a weighting function that is centered at different places
within the domain.

In Sections 4.2 and 4.3 we will consider the first approach. This is reminis-
cent of the discussion beginning on page 18 for representing vectors as linear
combinations of the elements in a basis set.

An approximation that sometimes provides a better fit is a ratio of two
truncated power series or of two polynomials:

)~ P@)

This type of approximation, which is an instance of a rational approximation,
is called a Padé approzimation. Although Padé approximation may be useful,
particularly when the function to be approximated contains poles, we will not
cover this approach.

The most common piecewise approach to approximating a function is to
use splines, which are functions with different forms in different regions of the
domain but which join smoothly at the juncture of two adjacent regions. We
will discuss this method in Section 4.4.

154 4 Approximation of Functions and Numerical Quadrature

A global approach that allows different treatment at all points within the
domain is to use a moving weight function. This is the idea behind kernel
methods, which we will discuss in Section 4.5.

In Section 4.6 we consider the use of function approximation for evaluation
of definite integrals. We also consider in that section other approaches to
numerical quadrature. B

The approximating function f should be easy to evaluate, easy to differ-
entiate, and easy to integrate. It should also of course be easy to determine,
given a function f that we wish to approximate.

How well one function approximates another function is usually measured
by a norm of the difference in the functions over the relevant range. If f is used
to approximate f, the Chebyshev norm, ||f — f|lc, is likely to be the norm
of interest. This is the norm most often used in numerical analysis when the
objective is interpolation or quadrature and when we make assumptions about
continuity of the functions or their derivatives. Chebyshev approximation is
approximation in which this norm is minimized over a set of approximating
functions f. B

_In problems with noisy data, or when f may be very different from f,
IIf — fl2 may be the more appropriate norm. This is the norm most often used
in estimating probability density functions (see Chapter 15) or in projection
pursuit (see Section 16.5), for example.

To use fas an approximation for a function f, given a known set of values
{(yi,x;)} such that y; = f(z;), we may require that f(z;) = f(x;) at each
of the known points. This is interpolation. Alternatively, we may require that
f(z;) =~ f(z;) and that f not be very rough, by some measure of roughness.
This is smoothing.

Models for Interpolation

The model y = f(x) can be viewed as expressing an exact relationship for
a fixed set of values. Given a set {(x;,y;)} of values for which y; = f(x;),
it is reasonable to require that the approximating function f be such that
f(x;) = f(xz;). That exact fit would provide an approximation at other values
that x may assume. This approach of fitting a function to the given y and x
is called interpolation.

There are several possibilities for choosing a continuous function to inter-
polate the data. An interpolant is likely not to be very smooth or else it may
exhibit wide variation. The requirement to fit all data values exactly may also
mean that the relationship is not a (single-valued) function. It is unlikely that
a single easily-defined function, other than a polynomial, could interpolate
the data. A polynomial of degree n — 1 can, of course, interpolate n data
points (assuming no two points have the same ordinate values), but such a
polynomial may have wild swings; that is, it may be very rough.

If a functional form for f is chosen, say f(z;6), where 6 is a parameter, it
may be difficult or impossible to determine a value of 6 that would interpolate

4.1 Function Approximation and Smoothing 155

a given dataset; that is, a value of 8 that would yield an equality at each data
point. For interpolation, there must be considerable freedom to choose the
function f. Rather than a single function, however, we may choose a piecewise
set of functions, each of which interpolates a subsequence of the given points
that have adjacent abscissas. Two piecewise interpolating polynomials are
shown in Figure 4.1.

Linear Cubic Polynomial

() [{€9)

Fig. 4.1. Interpolation

A general form of an interpolating function for two-dimensional data can
be built from Lagrange polynomials. Given xz1,xs,...,z,, we define n — 1
Lagrange polynomials each of degree n—1, so that the j*" Lagrange polynomial
is
T —x;
L) =] L. (4.15)

Ly = T
it Y

lifi=4
lj(ﬂ%)Z{ J

0 otherwise;

It is clear that

therefore, if the function values at the given points are yi,¥ys,...,Yn, the
function

h(z) = Z Li(z)yi (4.16)

156 4 Approximation of Functions and Numerical Quadrature

is an interpolating polynomial of degree n — 1.

A single Lagrange polynomial of degree n — 1 could be used over the full
range, but it would be very rough. Another way is to use different piecewise
Lagrange polynomials over subsets of the points. For a set of k£ adjacent points,
a polynomial of degree kK — 1 could interpolate them. The piecewise linear
function in Figure 4.1 is a piecewise Lagrange polynomial of degree 1 each
piece of which is defined on two points, and the interpolating curve shown
on the right in Figure 4.1 is a piecewise cubic polynomial interpolating three
adjacent points.

The sharp increase at the first two points in Figure 4.1 causes large values
for the derivatives. Instead of joining the polynomials at data points, we could
force them to be joined between points. A polynomial of degree k — 1 can
interpolate k points whether or not two of the points are endpoints of the
polynomial.

The breakpoints are called knots, and this kind of interpolation, in which
polynomials of degree k — 1 can interpolate k points and such that the poly-
nomials join smoothly at the knots, is called spline interpolation, and we will
consider it in more detail in Section 4.4.

Error in Function Approximation

From equation (4.10) on page 152, the norm of the Lagrange interpolating
polynomial (4.16) is the sum of the norms of the individual Lagrange polyno-
mials; that is, if

then

€] = Z 11:(2)]- (4.17)

This is easily seen by observing

1] =

> f@)l(x)
i=1

< S (@)l
=1
< max|f(z)| Y (o))

< Il leli(fc)l\-

Take f as a function such that || f|| = 1, and the result follows.

4.1 Function Approximation and Smoothing 157

With this, we have the sup norm on the error of approximation by a
Lagrange interpolating polynomial for any function with finite Chebyshev
norm.

Models for Smoothing Data

A function that interpolates the data can be very wiggly. A continuous func-
tion with continuous low-order derivatives may be more useful, even if it does
not interpolate the points exactly. The process of selecting a relatively simple
model that provides a good approximation to the data is called “smoothing”.

One way to smooth data is to choose some simple functional form f with
a parameter ¢ that can chosen so that the observed values y; are close to
the smoothed values f(z;;0), for some . In Figure 4.2, we see two differ-
ent smoothing models for the same data. In the plot on the left, we have a
simple straight line that approximates the data. This functional form has a
parameter 6 that is a 2-vector (the slope and the intercept). No matter how
the parameter is chosen, the straight line does not fit the observations very
well. A different functional form is used in the plot on the right in Figure 4.2.
This approximation seems to fit the data better, and it captures an important
apparent structure in the data. (Although it is not important for our purposes
here, the function on the right is y = (I'(a)8*) *z* 'e=*/8 and the values
of & and 3 are chosen by least squares.)

For approximation, just as for interpolation, we could also use different
functional forms over different regions of the data.

Multivariate Approximation

Conceptually, most of the discussion applies immediately to multivariate func-
tions defined over subspaces of IR?. Practical difficulties, however, prevent
direct methods of multivariate approximation from being very useful.

In multivariate function approximation, the function values are usually
known at points on a grid in IR?. The most common way of approximating a
multivariate function is by successive univariate approximations. Sometimes
successive univariate approximations are easy to construct. For example, if
the function to be approximated is the bivariate function f(z,y), and the
values of the function are known at a rectangular grid of points (z1,...,x,) X
(Y15---,Ym), suppose we wish to approximate f(z,y) at the point (x*,y*).
In successive univariate approximation, we first approximate f(x;,y) at each
given point z; by a function g,,(y). (This is univariate approximation in the
variable y.) Now, with the values g,, (y*) for each i, we approximate f(z*,y*)
using univariate approximation in the variable x. Often, of course, the grid of
known values is unstructured, and we could not use this grid-line approach
of successive univariate approximations because for a given x; there may be
only one known value of .

158 4 Approximation of Functions and Numerical Quadrature

Linear Approximation Gamma Curve Approximation

f(x) o

Fig. 4.2. Smoothing

The method of successive univariate approximation extends to higher di-
mensions, but the number of computations obviously grows exponentially.

Evaluation of Special Functions

Some of the most important and most common numerical computations
in scientific applications are the evaluation of the so-called “special func-
tions”. These functions, such as the exponential and logarithmic functions, the
trigonometric functions, and functions that arise in the solutions of differen-
tial equations, are rarely evaluated for their own sake; rather, their evaluations
are generally performed as part of some larger computational problem. The
functions are often evaluated repeatedly in the solution of the larger problem.
It is therefore important not only that they be evaluated accurately, but that
the computations be very efficient.

Abramowitz and Stegun (1964) describe computational methods for evalu-
ating many special functions. The basic algorithms they discussed are in many
cases still the best ways of evaluating the special functions. Abramowitz and
Stegun classified special function into various groups that remain the general
organization of numerical libraries for the functions. The Guide to Available
Mathematical Software (GAMS) (see the bibliography), follows the general
structure of Abramowitz and Stegun (1964). There is also another grouping
of special functions in GAMS for probability distributions.

4.1 Function Approximation and Smoothing 159

We will not consider the particular algorithms for the special functions;
rather, we discuss general techniques that are applicable to various types of
functions. For a given function, of course, some methods are better than oth-
ers, and it is important that very good methods be used on special functions
that arise frequently in numerical computations.

Evaluation of Distribution Functions and Their Inverses

Application of most methods of statistical inference involve computation of
probabilities or of rejection regions corresponding to an estimator or a test
statistic. Two simple examples are the computation of the probability that
a standard normal random variable Z is larger in absolute value than some
given value zp, and the computation of the value ¢, such that a Student’s ¢
random variable with given degrees of freedom would have a given probability
of being greater than ¢,. For the more common distributions, tables with
three or four decimals of precision for these probabilities and critical values
have been available for many years. For setting confidence intervals and doing
significance tests, this level of precision for the distribution function of the
random variable being used is quite adequate.

It is not always the case, however, that three or four decimals of precision
is adequate for a distribution function. Perhaps the simplest example of the
need for high precision is in the evaluation of the distribution function of an
order statistic. The distribution function of the k*" order statistic in a sample
of size n from a population with distribution function P(-) is

n

PI‘(X(k) < {E()) = Z <7) (P(;CO))J(]_ — P({EO))"—J.
j=k

Obviously, if this relationship is used, even if only three or four decimals of

precision is required for the distribution function of the order statistic, it is

necessary to have much greater precision in the evaluation of P(:).

In addition to the computational problems resulting from the need for
higher precision in computing a standard, relatively simple distribution func-
tion, distribution functions such as for the doubly noncentral F' random vari-
able are exceedingly complicated and require different algorithms for evalua-
tion at different points in the argument/parameter space.

We will not consider the particular algorithms for the particular distri-
butions; rather, we discuss general techniques that are applicable to various
types of distribution functions. For a given distribution, of course, some meth-
ods are better than others, and it is important that very good methods be
available for distributions that arise frequently in statistics.

160 4 Approximation of Functions and Numerical Quadrature

4.2 Basis Sets in Function Spaces

If each function in a linear space can be expressed as a linear combination of
the functions in a set G, then G is said to be a generating set or a spanning
set for the linear space.

Linear independence for functions is defined similarly to linear indepen-
dence of vectors, as on page 16. A difference is the phrase “almost everywhere”.

A set of functions fi, fa, ... is linearly independent if
a1 f1 + asfa + -+ = 0 almost everywhere
implies that a; = as = --- = 0. A simple set of linearly independent functions

over any real interval is the set of monomials, 1,z, 22,

If the functions in the generating set are linearly independent then the
set is a basis set. The basis sets for finite-dimensional vector spaces are finite;
for most function spaces of interest, the basis sets are infinite. The set of
monomials is a basis set for a large class of functions.

Expansions in Monomials

As in our discussion of vectors on page 18, our objective is to represent a
function of interest as a linear combination of the functions in some basis set.
A common example is the Taylor series expansion of a univariate function
(whose Taylor expansion exists) about some given point in its domain. This
is an expansion in the basis set of monomials:

4(k) (5
1) = fao) + 3 T 0, (4.18)
k=1)

where f(¥)(xq) is the k*® derivative of f evaluated at .
The Taylor series approzimation of f(z) is

- T k) (g
Fla) = flao) + 3 T4 @ g (4.19)

k=1

For j = 2, this approximation has an immediate extension to a multivariate
function.
If f is nonnegative, letting g(x) = log(f(z)), we can express f as

f(z) =e9®), (4.20)

Many interesting functions in statistical applications are concave. If f is
concave and differentiable, and zg is a point at which f is maximum, then
' (z0) = ¢'(zo) = 0; hence, in this case, we have another approximation of f
in terms of g at zq:

4.2 Basis Sets in Function Spaces 161

f(x) = exp (g’(:co) + Wg"(xo)) , (4.21)

which we recognize as exp(g'(zg)) times the normal PDF with mean zy and
variance —1/¢" (zg):

f(z) = exp (¢'(20)) ¢(x | 0, —1/9" (x0)). (4.22)

If in addition to its being nonnegative, we also assume that it has a finite
integral over (—o0,00), that is, f is essentially a PDF, then this type of ex-
pansion can be extended so as to lead to more general expansions of PDF's as
in equation (4.31) on page 165.

Because of the factor of the form exp(t), the approximation f(x) is an ex-
ponentially tilted measure. Exponential tilting is often a useful transformation
of PDFs, so as to form more tractable functions.

The approximation (4.22) also leads us immediately to the Laplace ap-
prozimation for the integral of a nonnegative concave function f, which is

/f(x)dx ~ e9(@0) (—%(mo)) v . (4.23)

This approximation is often useful in numerical quadrature, a topic which we
consider in more detail in Section 4.6.

Series Expansions in Orthogonal Basis Functions

A set of functions {gx} is orthogonal over the domain D with respect to the
nonnegative weight function w(x) if the inner product with respect to w(x) of
qr and qr, {qk,q), is 0 if k # I; that is,

/D a(x)g(@)w(z)de =0 k#IL. (4.24)

If, in addition,
/ qr(2)qr (z)w(z)dx = 1,
D

the functions are called orthonormal.

In the following, we will be concerned with real functions of real arguments,
so we can take gx(x) = g (x).

The weight function can also be incorporated into the individual functions
to form a different set,

G () = gr(@)w'/? ().

This set of functions also spans the same function space and is orthogonal
over D with respect to a constant weight function.

162 4 Approximation of Functions and Numerical Quadrature

Basis sets consisting of orthonormal functions are generally easier to work
with and can be formed from any basis set using the Gram-Schmidt function
transformations (see pages 18 and 219).

As in the case of basis sets for vectors, it is often desirable to use a basis set
of orthonormal functions. We represent a function of interest, f(x), over some
domain D, as a linear combination of orthonormal functions, go(z), ¢1 (), .. .:

fl@) =" crar(). (4.25)
k=0

There are various ways of constructing the g functions. We choose a set
{qx} that spans some class of functions over the given domain D. A set of
orthogonal basis functions is often the best choice because they have nice
properties that facilitate computations and also there is a large body of theory
about their properties.

If the function f(x) is continuous and integrable over a domain D, the
orthonormality property allows us to determine the coefficients ¢; in the ex-
pansion (4.25), just as in equation (1.31):

ck = (fs ar), (4.26)

and the coefficients {cy} are called the Fourier coefficients of f with respect
to the orthonormal functions {gx}.
We then approximate a function using a truncated orthogonal series:

f@) =) engr(@). (4.27)
k=0

The important quantity that provides a measure of the goodness of the
approximation is proportional to the mean squared error,

J
‘ f- Z CrAk
k=0

and an important property of Fourier coefficients is that they yield the min-
imum mean squared error for a given subset of basis functions {g;}. (See
equation (1.35) and Exercise 1.4.)

2
: (4.28)

Estimation

In applications of statistical data analysis, after forming the approximation,
we may then estimate the coefficients from equation (4.26) after doing a PDF
decompisition (see page 404.) Note the difference in “approximation” and
“estimation”. Function estimation is the topic of Chapter 10 and, for special
types of functions, in Chapter 15. Expected values can be estimated using
observed or simulated values of the random variable and the approximation
of the probability density function.

4.2 Basis Sets in Function Spaces 163
Complete Series

By Bessel’s inequality (1.37) on page 20, we see that the monotone sequence
{3 1o lck*} is bounded by || f||?. This implies that {>"}_, ckqr} is a Cauchy
sequence in L2(IR) (or even in L2(IR?)), and since L?(IR) is a complete space
the sequence must converge in the Ly sense to a member of L?(IR). We of
course want it to converge to f, the function we are trying to approximate.

In order to insure that, we need to require that the orthogonal system {qy }
have another property. We say that an orthogonal system {gx} is complete in
L?(D) if no nontrivial ¢ € L?(D) is orthogonal to all the gx’s; that is, if
(q,qx) =0, for k =0,1,2,... for ¢ € L?(D), then g = 0 almost everywhere. A
system that is complete in a given function space is a generating set for that
function space.

For any function f € L?*(D) with D C IR?, a linear combination formed
by Fourier coefficients with functions from a complete orthonormal system
converges to f; that is, if {gx} is a complete orthonormal system in L?(D),
and ¢, = (f, qx), then

Hf—chqk — 0 asn — oo. (4.29)

k=1

To see this, we first note that {} ;- , ckqr} converges to some member, say g,
of L?(D), and hence,

oo
F=> ear—f—g
k=0
(This is because {>_,_, cxqr} is a Cauchy sequence and L?(D) is a complete
space.) Now the Fourier coefficients of g, as in equation (4.26), are given by

n
{9,qr) = lim <Z Cka;Qk>
k=0
= Ck.

These are the same as the Fourier coefficients of f, and hence the coefficients
of f — g are all zero. By the completeness of the system {gi}, f = ¢ almost
everywhere. Because {Z;O:O ckqr} converges to g, it must also converge to f.

The theorem expressed by (4.29) has a converse: If all of the coefficients
are zero, then f must be zero almost everywhere, and hence the system is
complete.

In addition to the requirement of completeness, the basis functions are
generally chosen to be easy to use in computations. As mentioned before, the
monomials form a set of basis functions for a large class of functions, and a
common type of expansion of many functions in that basis set is a Taylor series
expansion. The monomials of course are not orthogonal. Common examples of
orthogonal basis sets include the Fourier trigonometric functions sin(kt) and

164 4 Approximation of Functions and Numerical Quadrature

cos(kt) for k = 1,2,..., orthogonal polynomials such as Legendre or Hermite,
and wavelets. We discuss Fourier series below and orthogonal polynomials in
Section 4.3.

Another approach to function approximation is to partition the domain of
the function into regions within which good approximations can be achieved
by functions that are easy to work with, such as low-degree polynomials. This
approach leads to the use of splines. We discuss splines in Section 4.4.

Fourier Series

While any expansion in an orthonormal basis set such as equation (4.25) may
be called a Fourier series, this term is often used explicitly to refer to an
expansion in sines and cosines. Because, for j, k =0,1,2,...,

/ sin(jz) sin(kz)dr = mdj i,

—T

/ cos(jz) cos(kz)dr = wd,p,

—T

/ sin(jz) cos(kz)dz = 0,

—T

/ sin(jz)dz = 0,

and .

/ cos(jz)dz =0,
where §1, is the Kronecker delta, and for any (x¢, yo) € [—m, 7] x [—1, 1], there
is a j and k such that yo = sin(jzo) and yo = cos(kzy), the set

{sin(jz),cos(kx) ; j,k=0,1,2,...} (4.30)

is a complete orthogonal system in [—m, 7], and consequently in any finite
interval [a,b]. This is called the Fourier basis set or the trigonometric basis
set.

Because of the periodic nature of the trigonometric functions, a Fourier
series is often used to approximate periodic functions, although the series can
also be used to approximate other functions. The Fourier series may be used in
the estimation of probability density functions, as we mention in Section 15.5.
It is also of course related to the Fourier transform, referred to in Chapter 3,
and also to the characteristic function of a probability distribution.

4.2 Basis Sets in Function Spaces 165
Expansion of Probability Density Functions

While we may expand a probability density function in terms of an orthogonal
system (as we will do in Section 15.5), it is often useful to represent a compli-
cated or unknown probability density function as a series of functions related
to a known and well-understood distribution. Alternatively, the characteristic
function of the complicated or unknown distribution may be represented as a
series of moments or cumulants of a known distribution. The most common
distribution, of course, is the standard normal. There are three related series
expansions based on a normal distribution. These are the Gram-Charlier se-
ries, the Edgeworth series, and the Cornish-Fisher expansion. The general
form of these expansions is

Lo @)+ (4.31)

p(e) = 9la) + £ () + o

where ¢(z) is the PDF of the standard normal distribution. (Compare this
with equation (4.22) on page 161.)

The normal distribution pervades statistical theory and methods for two
reasons. The first is that this distribution serves so well to model natural
phenomena. Even if finite samples follow some other distribution, it is likely
that following a suitable transformation, the normal distribution is a good
asymptotic approximation. The second reason follows from the first. A wealth
of methods have been developed that are directly applicable to the normal
distribution. If another distribution can be related to the normal, the vast
array of statistical methods for the normal distribution may become available
for that other distribution.

Saddlepoint Approximations

A series such as Edgeworth or Gram-Charlier may be expressed in terms of
derivatives of the characteristic function or of the cumulant generating func-
tion. (Recall that the derivatives of the characteristic function, or of the mo-
ment generating function if it exists, evaluated at zero yield the raw moments
of a distribution. The derivatives of the cumulant generating function, if it
exists, evaluated at zero yield the cumulants of a distribution, and cumulants
are uniquely determined by the moments.) Given an expansion in the mo-
ments, or given the characteristic function, it may be of interest to determine
(or approximate) the PDF.

An important theorem that relates a univariate PDF to the associated
characteristic function provides the inverse of equation (1.71) on page 30. We
have -

p(z) = i/ e o (t)dt. (4.32)
2 J_ o
This is called the inversion formula, and is similar to the inversion formula
for the Fourier transform. See Billingsley (1995) for a proof.

166 4 Approximation of Functions and Numerical Quadrature

If the cumulant function K (t) (see equation (1.73)) exists, we have

L% k)it
= — e, 4.33
pa) =5 [e (13
We can express the integral in equation (4.33) in terms of a real integrand in
a neighborhood of 0 by a change of variable, » = it. The imaginary unit goes
into the limits of integration and into the Jacobian:

1 e+ico
p(z) = —/ K=z gy, (4.34)

2mi e—ico

Next, we seek a point ro(z) such that
K'(ro(z)) =, (435)

and expanding K (r) — rz about this 7o in a truncated Taylor series, we have
the approximation

K//Q(?”o) (’I“ B 7“0)2.

Equation (4.35) is called the saddlepoint equation. This yields
1

)R ————

)~ s

There are some technical details that have been ignored here; see Daniels (1954)
for a more precise development.

Notice that rg is a function in z, as we originally wrote it. The point 7o (z)
in the complex plane is a saddlepoint; hence the approximation (4.36) is called
a saddlepoint approximation to the PDF.

The saddlepoint approximation can often be improved by renormalizing it
so that its integral is 1, as that of a PDF should be. In practice, the integra-
tion to determine this normalizing constant must be performed by numerical
quadrature, using methods similar to those discussed in Section 4.6 or 4.7.

The saddlepoint approximation is useful in the approximation of densities
of various useful statistics such as the mean, a maximum likelihood estima-
tor, a likelihood ratio statistic, and a score statistic. It can also be used in
approximating tail probabilities for various distributions.

An example of the use of a saddlepoint approximation is to approximate
the PDF of the mean from a mixture distribution. As we mentioned in the
general description of mixtures on page 36, the moment generating function
for a mixture can be formed easily from the moment generating functions of
the individual distributions, and then the cumulant generating function can
be determined from the moment generating functions (assuming all exist). In
Exercise 4.5 you are led through a step by step derivation of the saddlepoint
approximation of the PDF of the expected value of a mixture of two normal
distributions.

K(r) —rz ~ K(rg) —rox +

eft(ro)=roz, (4.36)

4.3 Orthogonal Polynomials 167

4.3 Orthogonal Polynomials

The most useful type of basis function depends on the nature of the function
being approximated or estimated. Orthogonal polynomials are useful for a
very wide range of functions.

Various systems of orthonormal functions can be constructed as polyno-
mials. Because a system of nontrivial polynomials of degrees 0,1, 2, ... is inde-
pendent and complete in any finite nonnull interval of L? (and hence, can be
orthonormalized), by the theorem in expression (4.29), we know that orthogo-
nal polynomials can be used to approximate any function in L? to any degree
of accuracy. The familiar Weierstrass approximation theorem is explicit for
polynomials:

Let f be a continuous real function defined on [a,b] and let € > 0
be given. Then there exists a polynomial p with real coefficients such
that |f(z) — p(z)| < € for all z in [a, b].

This theorem is proved in many texts on real analysis, such as Hewitt and
Stromberg (1965).

In the following, we use the notation p;(z) or ¢;(z) to denote a general
polynomial of nonnegative integral degree i; hence, the first item in the se-
quence has an index of 0. (In the previous sections, we have used ¢;(z) to
denote any member of an orthogonal basis set, and we began the index at 1
instead of 0. Later in this section, we will discuss specific types of polynomials,
and we will use different letters to represent them.)

We often work with unnormalized orthogonal polynomials; hence, the
reader must be careful to note whether we are using an orthonormal sequence
or one that is possibly not normalized. The reason we often use unnormal-
ized orthogonal polynomials is partly historical, but also because of the sim-
plicity of the coefficients in some standard systems. Any scalar multiple of
any member of an orthogonal system leaves the system orthogonal (but not
orthonormal). The normalizing factor is the scalar that normalizes a given
polynomial.

Systems of orthogonal polynomials can be developed from series solutions
to differential equations, or by orthogonalizing a set of independent polyno-
mials. We will use the latter approach.

Construction of Orthogonal Polynomials
The simplest set of linearly independent polynomials, that is, the monomials,
1, z, 2, ... (4.37)

can be orthogonalized and normalized by Gram-Schmidt transformations,

168 4 Approximation of Functions and Numerical Quadrature

(4.38)

_ (L% — (@), 2%)a (@)
L) = o 1) — (@), D)l

and so on (see page 18). Sometimes the polynomials are not normalized, but
it is usually better to work with orthonormal polynomials.

The specific inner products in the Gram-Schmidt transformations deter-
mine the specific form of the system of polynomials. The inner product de-
pends on the domain and on the weight function. Orthogonal polynomials of
real variables are their own complex conjugates, so the inner products involve
just the polynomials themselves.

In some applications it is important that the orthogonal polynomials have
full sets of distinct real roots. Also, applications are often simpler if the coef-
ficient of the term of largest degree is 1. As mentioned above, we sometimes
work with unnormalized polynomials. Within a given system, it is generally
not possible both to normalize the polynomials and to scale them so that the
coefficient of the term of largest degree is 1.

Orthogonal vectors can be formed by evaluating orthogonal polynomials
over a grid. These orthogonal vectors are discrete versions of the correspond-
ing polynomials. Orthogonal vectors are useful in forming independent linear
hypotheses in analysis of variance.

Relations among the Members of an Orthogonal System

It is clear that for the k' polynomial in the orthogonal sequence, we can
choose a constant r; that does not involve x, such that

Qk(l“) - Tk$<]k—1(33)

is a polynomial of degree k — 1. Now, because any polynomial of degree k — 1
can be represented by a linear combination of the first & members of any
sequence of orthogonal polynomials (which necessarily includes a polynomial
of degree at least k — 1), we can write

k—1
gr(r) — rragra (@) = Y cigi(@).
=0

Because of orthogonality, however, all ¢; for i < k — 3 must be 0. Therefore,
collecting terms, we have, for some constants ry, si, and tg, the three-term
recursion that applies to any sequence of orthogonal polynomials:

qr(z) = (rex + sk)qr—1(x) — teqr—o(x), fork=2,3,.... (4.39)

4.3 Orthogonal Polynomials 169

The coefficients r, si, and ¢ in this recursion formula depend on the specific
sequence of orthogonal polynomials, of course.

The three-term recursion formula applies for an unnormalized orthogonal
sequence, and so it also applies to a orthonormal sequence. The coefficients
would be different, of course.

This three-term recursion formula can also be used to develop a formula
for the sum of products of orthogonal polynomials. For ¢;(x) and ¢;(y) in an
orthonormal sequence, with a; the coefficient of the 4™ power in the polyno-
mial, we derive

zk:%‘(x)%‘(y): ak_ @i+1(1)3e(y) = ar(@)a1 () (4.40)

k41 r—Yy

=0

This expression, which is called the Christoffel-Darboux formula, is useful in
evaluating the product of arbitrary functions that have been approximated
by finite series of orthogonal polynomials. Notice that the equation (4.40)
applies to normalized orthogonal polynomials. For unnormalized orthogonal
polynomials, it can easily be modified to include the normalizing factors.

Computations Involving Polynomials

Horner’s method, which we mentioned on page 120 as an example of a re-
cursive algorithm, is the most efficient way to evaluate a general polynomial.
There may be other issues such as accuracy, however. In a polynomial of mod-
erate degree, it is quite possible that the magnitude of the individual terms
will vary considerably, and that could result in accumulated rounding error
or even catastrophic cancellation.

The polynomial pg(z) = cqz? + --- + c12 + co together with constants
ai,...,aq can be written as

pa(r) = (r—a1)(- - (z — ag—2)((x — ag—1)(ca(z — aq) +ca—1) +---) +c1) + co.
(4.41)
This is called the nested Newton form. It has the computational efficiency of
Horner’s method, and also, for careful choice of the “centers” a;, it has good
numerical stability. The centers are chosen so as to keep the magnitude of the
product similar to that of cg.
If a function f is approximated by a truncated expansion,

f@) = pi(x) = crar(), (4.42)
k=0

it is necessary to evaluate all j 4+ 1 polynomials and their sum. If we have
the coefficients 7y, si, and t; in the three-term recurrence formula (4.39),
we can use the nested Newton form (without centering) to evaluate p;(z) in
equation (4.42). We show the steps in Algorithm 4.1 for j > 2.

170 4 Approximation of Functions and Numerical Quadrature

Algorithm 4.1 Evaluation of a Truncated Expansion in Orthogonal
Polynomials at x

1. Let f; =¢;.
2. Let fj_1 =cj_1 + qj(rj_lx — Sj_l).
3. Fork=j—2,j—3,...,0,
let fiy = cx + Q1 (Te® — $k) — 2ttt
4. Set pi(z) = fo. |

Standard Systems of Univariate Orthogonal Polynomials

A system of orthogonal polynomials is defined by the weight function and the
domain. The main thing that determines which system to use is the domain,
although the shape of the weight function may be important in achieving
better finite series approximations.

There are several widely-used complete systems of univariate orthogonal
polynomials. The different systems are characterized by the one-dimensional
intervals over which they are defined and by their weight functions. The Legen-
dre, Chebyshev, and Jacobi polynomials are defined over [—1,1], and hence
can be scaled into any finite interval. The weight function of the Jacobi poly-
nomials is more general, so a finite sequence of them may fit a given function
better, but the Legendre and Chebyshev polynomials are simpler and so are
often used. The Laguerre polynomials are defined over the half line [0, 00)
and the Hermite polynomials are defined over the reals, (—oo, c0). Table 4.1
summarizes the ranges and weight functions. The weight functions correspond
to common PDFs. Note that any finite range [a, b] can be shifted and scaled
into [—1, 1], and any half finite range [a, 00) or [—o0, b) can be shifted and,
possibly, scaled (by —1) into [0, 00).

Table 4.1. Orthogonal Polynomials

Polynomial Weight
Series Range Function

Legendre [—1, 1] 1 (uniform)

Chebyshev [—1, 1] (1 — x?)'/2 (finite Chebyshev)
Jacobi [—1, 1] (1 —2)*(1+2)? (beta)
Laguerre [0, co) z* 'e™™ (gamma)
Hermite (—o0, 00) e’ (normal)

Most of these systems have particularly simple expressions for the co-
efficients in the recurrence relation (4.39), so they are relatively simple to
compute. The k*"-degree polynomial in each system has k distinct real roots.

4.3 Orthogonal Polynomials 171

The usefulness of the standard orthogonal polynomials derives from their
use in approximations and also from their use as solutions to standard classes
of differential equations.

These systems of orthogonal polynomials are described below. For some
systems, different forms of the weight functions are used in the literature.
The properties of the orthogonal polynomials are essentially the same for the
differing forms of the weight functions, but the coefficients of the polynomials
are different. In some cases, also, the polynomials may be normalized.

The first system we consider is the Jacobi system. There are two special
and simpler cases of the Jacobi system, with which we will begin.

Legendre Polynomials

The Legendre polynomials have a constant weight function and are defined
over the interval [—1, 1]. Building the Legendre polynomials from the mono-
mials (4.37), it is easy to see that the first few unnormalized Legendre poly-
nomials are

Py(z) =1 Pi(z)==x
Py(z) = (32% — 1)/2 Ps(z) = (523 — 3z)/2 (4.43)
Py(z) = (352% — 3022 +3)/8 Ps(x) = (632° — 7023 + 15z)/8.

Graphs of these polynomials are shown in Figure 4.3.
The normalizing constant for the k" Legendre polynomial is determined
by noting that

/_ (Pl = %i - (4.44)

and hence it is (Py(1))Y/2.
The recurrence formula (4.39) for the Legendre polynomials, for k > 2, is
2k —1 k-1

k

Notice that for the recursion formula (4.39),
Tk = (2]6 -].)k, S — 0, tk = (k - 1)/k (446)

These are the quantities to use in Algorithm 4.1.

Notice that if the Legendre polynomials (or, in general, the Jacobi poly-
nomials) are to be used over the finite interval [a, b], it is necessary to make a
change of variable:

y=(0b-a)x/2+ (b+a)/2. (4.47)

This transformation would change the normalizing constant (by the Jaco-
bian of the transformation) and also the coefficient 7 in the recursion for-
mula (4.39).

172 4 Approximation of Functions and Numerical Quadrature

1.0

05

P(x)
0.0
|

-0.5
|

-1.0

Fig. 4.3. Legendre Polynomials

As mentioned above, orthogonal polynomials can also be developed as solu-
tions to differential equations. The standard series of orthogonal polynomials
arise from differential equations that are important in applied mathematics.
The Legendre polynomials are the solutions to Legendre’s equation,

(1 — 2" — 2z’ + k(k + 1)u = 0. (4.48)

This equation describes an inverse 72 potential.

Also as mentioned above, vectors whose elements are orthogonal polyno-
mials evaluated over a grid are discrete versions of the orthogonal polynomials.
The discrete Legendre polynomials can be formed easily by setting x; to the
values of a grid over [—1, 1], forming a Vandermonde matrix evaluated at those
grid points, and then forming the QR decomposition of the matrix. (The first
column of the Vandermonde matrix is 1, the second column is z, the third is
22, and so on.) The discrete Legendre polynomials are often used in statistical
analysis of linear models. (They form contrasts.)

Chebyshev Polynomials

The Chebyshev polynomials have a weight function proportional to the Cheby-
shev density, w(z) = (1 — 22)~/2. They are defined over the interval [—1,1].
The first few Chebyshev polynomials are

4.3 Orthogonal Polynomials 173

To(z) =1 T (z) =x
Ty(x) =222 — 1 Ts(z) = 42 — 3z (4.49)
Ty(z) =8z* — 82 +1 Ts(x) = 1625 — 202° + 5z.

The normalizing constant for the k** Chebyshev polynomial is T} (1), sim-
ilar to that for the Legendre polynomial.
The recurrence formula for the Chebyshev polynomials is

Ty ({E) . 2LET]€,1((E) + Tk,Q({E) =0. (450)

Notice that for the recursion formula (4.39), rr = 2, s = 0, and t; = 1. This
means that Algorithm 4.1 is especially efficient for the Chebyshev polynomials.
The sequence of Chebyshev polynomials is the only sequence for which the
coefficients in formula (4.39) are the same for all k.

These polynomials are sometimes called Chebyshev polynomials of the
first kind; similar polynomials with weight function w(x) = (1 — 22)/? are
called Chebyshev polynomials of the second kind.

Jacobi Polynomials

The Jacobi polynomials are defined over the interval [—1, 1], with a beta weight
function, w(x) = (1 — x)%(1 + z)P, for a, 3 > —1. The Legendre polynomials
are Jacobi polynomials with & = = 0, and the Chebyshev polynomials are
Jacobi with a = = —1/2.

For various values of o and 3 the weight function can assume a wide
variety of shapes. If « is large and 3 is small, for example, the weight function
is large near —1 and small near 1. This may be an appropriate weight to use
to construct orthogonal polynomials for approximating a function that varies
more near —1 than it does near 1.

Laguerre Polynomials

The Laguerre polynomials are defined over [0, 00), with a gamma weight func-
tion, w(x) = 2% le™®. The ;' Laguerre polynomial is often denoted by
Lg-a_l) (z). The parameter a provides some flexibility for fitting functions of
different shapes. The most commonly used series of Laguerre polynomials have
a = 1, however, and in this case, the notation L;(x) is used. The first few
Laguerre polynomials with o = 1 are

L(){E =1
Li(x)=—ax+1
La(x) = (22 — 4z +2)/2

()

-

(z) = (=2 + 92 — 182+ 6) /6 (4.51)
()

()

(
= (2% — 162> + 722% — 962 + 24) /24
z) = (—2° + 252* — 20023 + 60022 — 600z + 120)/120.

174 4 Approximation of Functions and Numerical Quadrature

The recurrence formula (4.39) for these Laguerre polynomials is

Li(w) — (%k_ Ly) L (o) + %Lk,g(x) ~0.

Hermite Polynomials

The Hermite polynomials are defined over (—oo,00) with a weight function
proportional to the error function density, w(z) = e, Building the Hermite
polynomials from the monomials, it is easy to see that the first few Hermite
polynomials are

Hy(z) =1 Hy(x) =2z
Hy(z) = 422 — 2 Hy(z) = 8% — 122 (4.52)
Hy(z) = 162* — 4822 + 12 Hs(x) = 322° — 16023 + 120.

In an alternative definition of Hermite polynomials, the normal weight
function, w(z) = e_’cz/Q, is used. This form is more widely used in statisti-
cal applications than the form defined above. These polynomials also called
Chebyshev-Hermite polynomials. (This distinction does not seem to be com-
mon, and most statisticians refer to the alternate polynomials just as “Her-
mite”. I will follow this usage, although usually I will remind the reader when
I use the alternate form.) The alternate Hermite polynomials are sometimes
denoted in the same way as the ones defined above, Hy, H1, .. ., although they
are often denoted by Heg, Hey,.... We will use the notation Hg, HY, The
polynomials are related by

HE(x) = 27F2 Hy (2/V?2).

The alternate Hermite polynomials are often used in statistical applica-
tions because the weight function is proportional to the normal density. Also,
because the coefficient of the term of largest degree is 1, some applications
involve simpler expressions. The first few alternate Hermite polynomials are

Hi(x) =1 Hi(z) ==
H§(z) =22 -1 Hf(z) = 2® — 3z (4.53)
H§(x) = 2* — 622 +3 HE(x) = 2° — 1023 + 152.

The recurrence formula (4.39) for these alternate Hermite polynomials is
particularly simple:

He(x) — 2HE () + (k — 1)HE_,(z) = 0. (4.54)

One use of the Hermite polynomials in in Gram-Charlier or Edgeworth
expansions of PDFs of the form of equation (4.31). The Edgeworth expansion
of a PDF p(x) of a distribution with finite moments g, 3, ..., and p; = 0, is

4.3 Orthogonal Polynomials 175

pla) = = (1 5~ DIH3(0) + GuaH3(0) + g0 — Oa + HHI0) + oo
(4.55)

This is derived by expanding the characteristic function of the distribution.
Another use of Hermite polynomials we encounter in Chapter 16 is in provid-
ing an index of the difference in the distribution of a given random variable
from a standard normal distribution for use in projection pursuit.

Orthogonal Functions Related to the Orthogonal Polynomials

Sometimes applications are simpler when the weight function is incorporated
into the orthogonal functions. The resulting functions are orthogonal with
respect to a constant weight.

In the case of the Hermite polynomials, for example, this results in the
exponentially tilted polynomials,

Hi(z) = Hy(z)e ™ /2. (4.56)

The set HS, Hf HE, ... is an orthogonal set with respect to a constant weight:

/ Hf(x)ij(x)dx =0 fori#j.

These orthogonal functions are called Hermite functions.

It is more convenient to have a constant weight function, of course, but the
exponential tilting may also make the computations simpler for some functions
that are being approximated (see also equation (4.22)).

Even and Odd functions

An even function is a function f such that f(—z) = f(x), and an odd function
is one such that f(—z) = —f(z). The Legendre, Chebyshev, and Hermite
polynomials are either even or odd functions, depending on their degree. In
each case, a polynomial of even degree is an even function and one of odd
degree is an odd function; for example, the Chebyshev polynomials satisfy
the relation

Expansion of Functions in Orthogonal Polynomials

Complicated functions or functions that are intractable for certain operations
can often be approximated with a finite sum of orthogonal polynomials. An im-
portant application of this type of approximation is in evaluation of integrals
by expansion of the integrand using orthogonal polynomials. This method
of numerical integration is called Gaussian quadrature, and is discussed in
Section 4.6, page 190.

176 4 Approximation of Functions and Numerical Quadrature

Another reason that we study the expansion of functions in orthogonal
systems is for use in function estimation, which we discuss in Chapter 10 for
general functions and in Chapter 15 for probability density functions.

To represent a given function in a standard series of orthogonal polynomi-
als, the first consideration is the domain of the function. The three types of
domain and the possible polynomials to use are

e a finite interval, [a, b], Jacobi polynomials (or the special cases, Legendre
and Chebyshev);
a half-infinite interval, [a, oo] or [—o0, b], Laguerre polynomials;
an infinite interval, [—oo, co], Hermite polynomials.

An Example

As an example of the use of orthogonal polynomials to approximate a given
function, consider the expansion of f(x) = e™* over the interval [—1,1]. Be-
cause the range is finite, we use the Jacobi system of polynomials, and in this
case, we do not need to make a transformation to the basic interval of the
definition of the Jacobi polynomials.

In this example we use the Legendre polynomials.

The Fourier coefficients are determined by equation (4.26). In using this
formula, we can either normalize the polynomials (using equation (4.44)) or we
can include the normalizing factor in the Fourier coefficients. Using the nor-
malized polynomials, we have ¢y = (e* —e™1)/2 and we obtain the remaining
¢;’s by integration by parts; ¢; = —Qeflm, and so on. After we have the
Fourier coefficients, we identify the recurrence coefficients (equation (4.46)),
and finally we use Algorithm 4.1 to compute the approximation at the point
x.

Forming a grid in z over [—1, 1], and evaluating the approximation at each
grid point, we can construct graphs of the function and the approximation.
Figure 4.4 shows the exact function f, and the different truncated series ap-
proximations using up to six terms (j =0,1,...,5),

fl@)=>" erPi(x). (4.57)
k=0

Each truncated series is the best linear combination of the Legendre poly-
nomials (in terms of the Ly norm) of the function using no more than j + 1
terms. Notice that the convergence is very slow after j = 1.

Smoothing Data with Orthogonal Polynomials

In the previous section we considered the approximation of a function with
known form by a series of orthogonal polynomials. In many applications, we

4.3 Orthogonal Polynomials 177

2.5

2.0

exp(-x) and approximations
15

1.0

degree O
degree 1
---- degree 2
degree 3
-—-— degree 4
—— degree 5

0.5
I
I
I

T T T T T
-1.0 -0.5 0.0 0.5 1.0

Fig. 4.4. Approximations with Legendre Polynomials

do not have a function with a closed form; we may have a discrete function
composed of observations with two components corresponding to an argument,
z;, and a function value, y;. If we assume the data represent exact values,
we may interpolate the data to form a continuous function. If, however, the
data are assumed to arise from a process with noise, we may build a smooth
approximation of the function as a finite series of orthogonal polynomials,

f~(x) = Z crqr(x).
k=1

Because we do not know the form of f(x), we choose the ¢i so as to minimize
the differences

Yi — ch%(fﬂi). (4.58)
k=1

Instead of a function norm, as in equation (4.28), we consider a norm of
the vector:

(4.59)

J
Yi — Z Ckr(Ti)
k=1

The norm is most often chosen as the Lo norm, and the resulting approxima-
tion is the least squares fit. Other appropriate norms include the L; norm,
resulting in an approximation with the least absolute deviations, and the Lo,

178 4 Approximation of Functions and Numerical Quadrature

norm, resulting in an approximation with the minimum maximum deviation.
The latter type of fit is called a minimax or Chebyshev approximation.

Multivariate Orthogonal Polynomials

Multivariate orthogonal polynomials can be formed easily as tensor products
of univariate orthogonal polynomials. The tensor product of the functions
f(z) over D, and g(y) over D, is a function of the arguments z and y over
Dy x Dy:

h(z,y) = f(z)g(y).

If {q1k(z1)} and {go,(x2)} are sequences of univariate orthogonal polynomi-
als, a sequence of bivariate orthogonal polynomials can be formed as

gri(z1, 22) = q1,6(z1)g2,1(22). (4.60)

These polynomials are orthogonal in the same sense as in equation (4.24),
where the integration is over the two-dimensional domain. Similarly as in
equation (4.25), a bivariate function can be expressed as

o0 o0
Fer,we) =Y cngui(e1, 22), (4.61)

k=0 1=0

with the coefficients being determined by integrating over both dimensions.

Although obviously such product polynomials, or radial polynomials,
would emphasize features along coordinate axes, they can nevertheless be use-
ful for representing general multivariate functions. Often, it is useful to apply
a rotation of the coordinate axes, as we discuss in Section 9.1, beginning on
page 373.

The weight functions, such as those for the Jacobi polynomials, that have
various shapes controlled by parameters can also often be used in a mixture
model of the function of interest. This is the way the Bernstein polynomi-
als (8.4) are used in Bézier curves, as discussed on page 342, except in that
case the coeflicients are determined to approximate a fixed set of points, sub-
ject to some smoothness conditions. The weight function for the Hermite
polynomials can be generalized by a linear transformation (resulting in a nor-
mal weight with mean g and variance ¢2), and the function of interest may
be represented as a mixture of general normals.

4.4 Splines

The approach to function approximation that we pursued in the previous
section makes use of a finite subset of an infinite basis set consisting of poly-
nomials of degrees p = 0,1, This approach yields a smooth approximation

4.4 Splines 179

f~(x) (“Smooth” means an approximation that is continuous and has con-
tinuous derivatives. These are useful properties of the approximation.) The
polynomials in f(x), however, cause oscillations that may be undesirable. The
approximation oscillates a number of times one less than the highest degree
of the polynomial used. Also, if the function being approximated has quite
different shapes in different regions of its domain, the global approach of using
the same polynomials over the full domain may not be very effective.

Another approach is to subdivide the interval over which the function is
to be approximated and then on each subinterval use polynomials with low
degree. The approximation at any point is a sum of one or more piecewise poly-
nomials. Even with polynomials of very low degree, if we use a large number
of subintervals, we can obtain a good approximation to the function. Zero-
degree polynomials, for example, would yield a piecewise constant function
that could be very close to a given function if enough subintervals are used.
Using more and more subintervals, of course, is not a very practical approach.
Not only is the approximation a rather complicated function, but it may be
discontinuous at the interval boundaries. We can achieve smoothness of the
approximation by imposing continuity restrictions on the piecewise polyno-
mials and their derivatives. This is the approach in spline approximation and
smoothing.

The polynomials are of degree no greater than some specified number,
often just 3. This means, of course, that the class of functions for which these
piecewise polynomials form a basis is the set of polynomials of degree no
greater than the degree of polynomial in the basis; hence, we do not begin
with an exact representation as in equation (4.25).

In spline approximation, the basis functions are polynomials over given
intervals and zero outside of those intervals. The polynomials have specified
contact at the endpoints of the intervals; that is, their derivatives of a specified
order are continuous at the endpoints. The endpoints are called “knots”. The
finite approximation therefore can be smooth and, with the proper choice of
knots, is close to the function being approximated at any point. The approx-
imation, f(x), formed as a sum of such piecewise polynomials by (z) is called
a “spline”:

fla)=>" cbr(x). (4.62)
k=1

The “order” of a spline is the number of free parameters in each interval. (For
polynomial splines, the order is the degree plus 1.)
There are three types of spline basis functions commonly used:

e truncated power functions (or just power functions). For k knots and degree
p, there are k + p + 1 of these:

]-a z, '"»mpv ((LE - Zl)Jr)pv) ((x - Zk)Jr)pv

where (t)4+ means t if ¢ is positive and 0 otherwise. Sometimes, the constant
is not used, so there are only k + p functions. These are nice when we are

180 4 Approximation of Functions and Numerical Quadrature

adding or deleting knots. Deletion of the i*" knot, z;, is equivalent to
removal of the basis function ((z — 2z;)4)P.

e B-splines. B-splines are probably the most widely used set of splines, and
they are available in many software packages. The IMSL Library, for exam-
ple, contains three routines for univariate approximations using B-splines,
with options for variable knots or constraints, and routines for two- and
three-dimensional approximations using tensor product B-splines. The in-
fluence of any particular B-spline coefficient extends over only a few inter-
vals, so B-splines can provide good fits to functions that are not smooth.
The B-spline functions also tend to be better conditioned than the power
functions. The mathematical development of B-splines is more complicated
than the power functions.

o ‘“natural” polynomial splines. These basis functions are such that the sec-
ond derivative of the spline expansion is 0 for all x beyond the boundary
knots. This condition can be imposed in various ways. An easy way is just
to start with any set of basis functions and replace the degrees of freedom
from two of them with the condition that every basis function have zero
second derivative for all x beyond the boundary knots. For natural cubic
splines with k knots, there are k basis functions. There is nothing “nat-
ural” about the natural polynomial splines. A way of handling the end
conditions that is usually better is to remove the second and the penul-
timate knots and to replace them with the requirement that the basis
functions have contact one order higher. (For cubics, this means that the
third derivatives match.)

Some basis functions for various types of splines over the interval [—1, 1]
are shown in Figure 4.5.

Interpolating Splines

Splines can be used for interpolation, approximation, and estimation. An in-
terpolating spline fit matches each of a given set of points. Each point is
usually taken as a knot, and the continuity conditions are imposed at each
point. It makes sense to interpolate points that are known to be exact.

The reason to use an interpolating spline is usually to approximate a func-
tion at points other than those given (maybe for quadrature), so applied
mathematicians may refer to the results of the interpolating spline as an “ap-
proximation”. An interpolating spline is used when a set of points are assumed
to be known exactly (more or less).

Consider again the example of approximating the function f(x) = e™* over
the interval [—1, 1] using natural cubic spline interpolation with 2, 3, and 4
knots. Graphs of the function and the approximations are shown in Figure 4.6.
Notice that the approximation is very good with 4 knots. The approximations
were computed using the R function spline.

Compare the use of splines with the use of orthogonal polynomials on
page 177 to approximate this same function. We do not need to compute

4.4 Splines 181

B-Splines; Order = 4; 4 Knots B-Splines; Order = 2; 4 Knots
(=] (=]
— 7 ! — 7
1
o _| ! o _|
o © b w ©
o =
i<} © o ©
S IS S IS
= =
=] =]
@ = @ =
-2 S B oS
© ©
o)
(S N
o o
o _| <
e T T T T T e T T T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
x and the knots x and the knots
Powers; Order = 4; 4 Knots Natural Cubic Splines; 4 Knots
o -
o _| o _| e
{2} < » o . . -
= f= -
i<} © o © -
g S g S
=] =] -
2 = 2 3 7
B S w O e
© © -
o o -
o | o - -
(=3 . o 4 . PEie
o ’/ o ,.-"""»,,"/
S S DA A A
T T T T T T
-1.0 -1.0 -0.5 0.0 0.5 1.0
x and the knots x and the knots

Fig. 4.5. Spline Basis Functions

any coefficients that depend on integrals. Furthermore, we get a much better
approximation, even though we use only a small number of known function
values.

Smoothing Splines

The other way of using splines is for approximation or smoothing. The indi-
vidual points may be subject to error, so the spline may not go through any
of the given points. In this usage, the splines are evaluated at each abscissa
point, and the ordinates are fitted by some criterion (such as least squares)
to the spline.

Choice of Knots in Smoothing Splines

The choice of knots is a difficult problem when the points are measured subject
to error. One approach is to include the knots as decision variables in the
fitting optimization problem. This approach may be ill-posed. A common

182 4 Approximation of Functions and Numerical Quadrature

o
N
<
1) N
2
E=]
=
£
>
e w]
Qo —
Qo
G
o
=<1
@©
¥ 2o
s -
>
@
|
o
-+ 2knots
el 3 knots
-A- 4 knots
<
o

Fig. 4.6. Approximations with Natural Cubic Splines with Different Numbers of
Knots

approach is to add (pre-chosen) knots in a stepwise manner. Another approach
is to use a regularization method (addition of a component to the fitting
optimization objective function that increases for roughness or for some other
undesirable characteristic of the fit).

Multivariate Splines

Multivariate splines are easily formed as tensor products of univariate splines
in the same way as the bivariate orthogonal polynomials were formed from uni-
variate polynomials in equation (4.60). Although conceptually, this is straight-
forward, there are a number of practical difficulties in applications.

4.5 Kernel Methods

Another approach to function approximation and estimation is to use a filter
or kernel function to provide local weighting of given points. The basic method
of this approach is to convolve the given function, f(z), with a filter or the
kernel, K (t), (see page 21):

K f(z) = /D F)K(x —y) dy, (4.63)

4.5 Kernel Methods 183

if the integral exists. If K(¢) a unimodal function that decreases rapidly away
from a central point, then K * f(z) is “close” to f(x).

In practice, we use a given set of points, z1,...,x;, in a discrete version
of equation (4.63):

f@) =3 fla Kz —). (4.64)
k=1

The kernel approximation does not interpolate this set of points, but each
of those points exerts the strongest influence on the approximation at nearby
points z.

Kernel Functions

Some examples of univariate kernel functions are shown in equations (4.65)
through (4.67).

1
uniform : K,(t) = o I () (4.65)
. 3
quadratlc : Kq(t) = m(A - t2) I[,)\’)\] (t) (466)
1
normal : Ky(t) = e (#/A)?/2 (4.67)

V2r

Notice that all of these kernels are nonnegative and integrate to 1, hence, they
are PDFs. Often, multivariate kernels are formed as products of these or other
univariate kernels.

As in the discussion on page 21, a kernel is actually a function of two
arugments, K (x,y), but often the two arguments are combined into a single
argument as in the kernels above. A bilinear form (see page 23) is one of the
most common types of kernel.

Kernel Windows

In kernel methods, the locality of influence is controlled by a smoothing para-
meter. In equations (4.65) through (4.67), the A is the smoothing parameter.
We sometimes also refer to the window or the window width around the point
of interest. In equations (4.65) and (4.66), the window is a finite interval. In
equation (4.67) the window is the real line, but we nevertheless sometimes
speak of the “window” in a vague way as a synonym for the smoothing pa-
rameter. The choice of the size of the window is the most important issue in
the use of kernel methods. The window width must be great enough to allow
multiple known points or observations to enter in the sum of equation (4.64).
In practice, this generally means that use of kernels for approximation is
limited to situations in which there are a large number of known values or
observations. Probability density function estimation usually is only done in

184 4 Approximation of Functions and Numerical Quadrature

such situations, and kernel methods are very useful in that case, as we see in
Section 15.3.

For a given choice of the size of the window, the argument of the kernel
function is transformed to reflect the size. The transformation is accomplished
using a positive definite matrix, V', whose determinant measures the volume
(size) of the window.

In Exercise 4.13 you are asked to use kernels to approximate the func-
tion f(x) = e~* over the interval [—1,1], as we have done with orthogonal
polynomials and with splines.

Multivariate Kernels

Kernel methods extend immediately to higher dimensions. The kernel is often
chosen as a product kernel of a univariate kernel:

d
Ka(tr,....ta) = [K(t;). (4.68)

J=1

4.6 Numerical Quadrature

One of the most common mathematical operations in scientific computing
is quadrature, the evaluation of a definite integral. It is used to determine
volume, mass, or total charge, for example. In the evaluation of probabilities,
of expectations, and of marginal or conditional densities, integration is the
basic operation.

Most of the integrals and differential equations of interest in real-world
applications do not have closed-form solutions; hence, their solutions must be
approximated numerically.

There are two ways of approximating an integral. One type of approxima-
tion is based on direct approximation of the Riemann sum, which we take as
the basis for the definition of the integral. The other type of approximation is
based on an approximation of the function using one of the methods discussed
above.

We begin with approximations that are based on Riemann sums. We also
generally limit the discussion to univariate integrals.

Evaluation of a Single Integral

Although some of the more interesting problems are multivariate and the
region of integration is not rectangular, we begin with the simple integral,

b
I:/ f(z)dz. (4.69)

4.6 Numerical Quadrature 185

There are various definitions of the integral (4.69), each of which makes
certain assumptions about the integrand f(z) that are required for the ex-
istence of the integral. The Riemann integral is defined as the limit of the

Riemann sums:
n

% > (@i —zioa) (@), (4.70)
i=1

where a = z9 < 21 < -+ <z, = b and T; € [z;_1,2;]. Where Z; is within the

interval would make no difference in the limit if the function is well-behaved.

When the location of z; makes a difference, the Riemann integral may not

be undefined, but in most applications of numerical quadrature, the Riemann

integral does exist.

This definition extends to multiple integrals in a natural way.

One way of approaching the problem of evaluating (4.69) is to approxi-
mate it directly by a sum of areas under the curve. The Riemannian definition
of the integral leads to a set of rectangles, the sum of whose areas approx-
imates the integral. More generally an approximation of the integral results
from a piecewise approximation of f(x) using simpler functions that can be
integrated in closed form. If the piecewise approximants are step functions,
the approximation is similar to a Riemann sum.

The Trapezoid Rule

Instead of a simple step function, the function f(x) may be approximated as
shown in Figure 4.7 by a piecewise linear function p;(z) that agrees with f
at each of the points a = 29 < 1 < T3 < ... < x, = b. In that case, the
integral (4.69) can be approximated by a sum of integrals,

/) de~ Z / pr(2) dz,

each of which is particularly easy to evaluate. Because p; is linear over each
interval, the integral in the i'" interval is just the area of the trapezoid, that
is,

h(f (i) + f(@i1)) /2.
The integral (4.69) is therefore approximated by

T(f) = h(f(a)+2f(x1) +2f(x2) + -+ 2f (xn1) + f(D) /2. (4.71)

The expression (4.71) is called the trapezoid rule.

Figure 4.7 shows how the areas in the trapezoids may be used to approx-
imate areas under the curve.

A simple choice for the points is to make them equally spaced, that is,

(@it1 — ;) = (b—a)/n.

186 4 Approximation of Functions and Numerical Quadrature

Fig. 4.7. The Trapezoid Rule

The number of points n, or the width of the interval, say h,
h = (b - a)/n,

is a tuning parameter of the quadrature algorithm. Subject to the rounding
induced by working with floating point numbers instead of real numbers, the
larger is n, or the smaller is h, the better the approximation of the finite
sum to the integral. Because of the rounding, however, after a certain level of
refinement, no further gains can be achieved by simply making the intervals
smaller.

Many other quadrature rules can be built using this same idea of an
approximating function that agrees with f at each of some set of points
a=1x9 < 21 < 22 < ... < xp = b. Quadrature formulas that result from
this kind of approach are called Newton-Cotes formulas. (Roger Cotes was an
eighteenth century English mathematician who worked closely with Newton.)

Simpson’s Rules

Rather than the linear functions of the trapezoid rule, a more accurate ap-
proximation would probably result from use of quadratic functions that agree
with f at each of three successive points. If po(x) is a quadratic that agrees
with f(z) at the equally-spaced points x;, x; + h, x; + 2h, then the piece of
the integral (4.69) from x; to ;42 can be approximated by

4.6 Numerical Quadrature 187

/I"” pa(w) dz = %h(f(ﬁi) +4f @i+ h) + [(@i +2h)). 47

k3

If an even number of intervals is chosen, and the integrals like (4.72) are
summed, the integral (4.69) is approximated by

S (F(@+47@0) + 20 (e2) + 40 () + o+ 4fwa 1)+ 10)). (473)

The formula (4.73) is called Simpson’s & rule.

Fig. 4.8. Simpson’s 1/3 Rule

Figure 4.8 shows how the areas under the quadratics may be used to
approximate areas under the curve. Comparison with Figure 4.7 indicates that
approximation by a higher degree polynomial (quadratic instead of linear)
does not always guarantee an improvement.

A better approximation can be constructed using the same idea, except
instead of using three points at a time and fitting a quadratic, we use four
points at a time, and fit a cubic function. For equal-spaced points, the analog
to (4.72) is

/M pa(z) dz = gh(f(xi) £ 3f(xi + h) + 3F (2 + 2h) + flxi + 3h)),

i

and over the entire range of integration that has been divided into a multiple
of three equal-length intervals, we have, analogously to (4.73),

188 4 Approximation of Functions and Numerical Quadrature

S0 (@) 37 (00)+3f(22) + 20 (25) + 31 (@0) £+ +3f (2-1) + (1)) (474

The formula (4.74) is called Simpson’s 2 rule.

Error in Newton-Cotes Quadrature

It is important to analyze the error in numerical computations. As we dis-
cussed in Section 3.1, there are generally multiple sources of error. The error
in approximations must be considered separately from the error in rounding,
although at some level of discretization, the rounding error may prevent any
decrease in approximation error, even though the approximation is really the
source of the error.

Quadrature operators are linear, and the results of linear operators and
functions on page 151 can be useful in analyzing errors in numerical quadra-
ture.

For algorithms that use a discrete number system to approximate quan-
tities that depend on a continuous number system, such as integrals, our ob-
jective is generally to express the error in terms of the order of some function
of a discretizing unit. In Newton-Cotes quadrature, this means an expression
of the form O(g(h)).

In the examples shown in Figures 4.7 and 4.8, the actual error is the
total area of the regions between the polygonal line and the curve defined
by f. Of course, if we could evaluate this, we would not have an error. To
approximate the error as an integral in that region, we consider a polynomial
of degree n over that region, because we could have a single such polynomial
that corresponds to f at each of the break points. We omit the details here,
which involve an expansion of the polynomial in finite differences similar to
a Taylor series, evaluation of the error in one interval, and addition of the
errors. (See Kennedy and Gentle, 1980, pages 86 through 89.) The error in
use of the trapezoid rule can then be expressed as

1
——(b—a h2 " T+
(b) ()
for some z* € [a, b]. This is not very useful in practice. It is important, however
to note that the error is O(h?).
Using similar approaches we can determine that the error for both Simp-

son’s 1 rule and 2 rule is O(h?).

Extrapolation in Quadrature Rules

We can use Richardson extrapolation (see page 133) to improve the approx-
imation in Newton-Cotes formulas. In the trapezoid rule, for example, we
consider various numbers of intervals. Let Tyx represent the value of the ex-
pression in equation (4.71) when n = 2%; that is, when there are n intervals,

4.6 Numerical Quadrature 189

and we examine the formula for 1, 2,4, ... intervals, that is, Too, To1, To2, - - --
Now, we use Richardson extrapolation to form
Ty, = (470 k+1 — To.x)/3. (4.75)

Generalizing this, we define
Toe = A" D10 — Tn—1,6—1)/ (4™ = 1). (4.76)

Notice in T}, i, m represents the extent of extrapolation, and k determines the
number of intervals. (This kind of scheme is used often in numerical analysis.
It can be represented as a triangular table in which the i*® row consists of the
1 terms TQ77;_1, ce ’Ti—l,O-)

This application of Richardson extrapolation in quadrature with the trape-
zoid rule is called Romberg quadrature.

Each T, 1 is an approximation of the integral. The approximation is ex-
act for a function that is a piecewise polynomial of degree 2m + 2 on the
subintervals of length (b — a)/2*. Not only are the T}, » good approximations
of the integral, their relative values give some idea of the convergence of the
approximation (assuming in a general way, that the integrand is ever bet-
ter approximated by polynomials of higher degree). As to be expected with
higher degree polynomials, however, at some point the wild fluctuations of the
polynomials result in significant rounding error. The extent of the rounding is
assessed by the relative values of T, j for successive values of m. If the values
change significantly, it may be due to rounding error. On the other hand, it
could be due to a large fluctuation in the integrand, so three successive values
should be inspected before deciding to terminate the extrapolation process.

Adaptive Quadrature Rules

It is never obvious how to choose the interval width in Newton-Cotes formulas.
Obviously if the interval width is too large, finer structure in the integrand will
be missed. On the other hand, if the interval width is too small, in addition
to increased cost of evaluation of the integrand, rounding error can become
significant. There are various ways of trying to achieve a balance between
accuracy and number of function evaluations. In most cases these involve
approximation of the integral over different subintervals with different widths
used in each of the subintervals. Initially, this may identify subintervals of
the domain of integration that require smaller widths in the Newton-Cotes
formulas (that is, regions in which the integrand is rougher). Evaluations at
different widths over the different subintervals may lead to a good choice of
both subintervals and widths within the different subintervals. This kind of
approach is called adaptive quadrature.

From the description, it should be obvious that it is not easy to do adap-
tive quadrature well. Software that does a good job is very complicated, and
amateurs need not attempt to develop it. A very good routine for adaptive
quadrature is dcadre in the IMSL Library.

190 4 Approximation of Functions and Numerical Quadrature
Quadrature Following Expansions of the Integrand

The approximation of a given function is formed by some linear combination
of other functions.

With a basis set {gx}, the function f(z) in the space spanned by the basis
set can be represented exactly as

flz) = Z crqr(), (4.77)
k=1

and so a finite series expansion such as

f@) =) crgr() (4.78)
P

may be used. When the ¢y, in equation (4.78) are the Fourier coefficients, that
is, the coefficients from equation (4.77), the approximation in equation (4.78)
is the least squares approximation of the given form; that is, using the same
basis functions (see page 162).

One of the simplest examples of quadrature following an expansion of the
function is Laplace approximation that uses the Taylor series of a function
exponential. We considered a special case of this approximation for a nonneg-
ative concave function on page 161. Jensen (1995) covers Laplace approxima-
tions in more general settings.

Gaussian Quadrature

We now briefly discuss another approach to the evaluation of the inte-
gral (4.69) called Gaussian quadrature. Gaussian quadrature uses the idea
of expansion of the integrand. Like the Newton-Cotes approaches, Gaussian
quadrature arises from the Riemann sum (4.70), except here we interpret the
interval widths as weights:

w(w;) f (). (4.79)

n
=0

In Newton-Cotes rules, we generally choose the intervals and the points
within the intervals where we evaluate the function to be equally spaced. In
Gaussian quadrature, we put more emphasis on choosing the points, and by
so doing, we need a smaller number of points. Whether or not this is a good
idea of course depends on how we choose the points and how we define w(z;).

If f is a polynomial of degree 2n — 1, it is possible to represent the integral
f; f(z)dz exactly in the form (4.79). We can illustrate this easily for n = 2.
Before proceeding, however, let us first map f over [a,b] onto [—1,1]. (This

4.6 Numerical Quadrature 191

clearly can be done by a simple change of variables. We do it just for simplifi-
cation of the problem.) Now consider the integration of f(z) = 2® + 2% +x+1.
We want to determine wq, we, 1, x2. We have

fildx =2= wi+ wsy

f_ll rde =0= wiz) +wazs (4.80)
f_ll 2?de = 2/3 = wi2? + wax3 '
f_ll wddz =0= wia} + wers.
Solving this system of equations yields
w1 = 1
Wo = 1
(4.81)

Tr, = —1/\/§
o = 1/\/5

This simple example illustrates that the idea is feasible, but indicates that
there may be some difficulty if we need a large number of points. Gaussian
quadrature is based on the formula (4.79) in which the x;’s and w;’s are
chosen so that the approximation is correct when f is a polynomial, and it
can provide a approximation in many cases with a relatively small n. Often
only 5 or 6 points provide a good approximation.

To make this a useful method for any given (reasonable) integrand over
a finite range, the obvious approach is to represent the function as a series
in a standard sequence of orthogonal polynomials as described in Section 4.3.
(That is, the g in equation (4.77) are polynomials.) This results in the ap-
proximation

f(z) = g(x), (4.82)

where g is a polynomial.

If go,q1,... is a sequence of polynomials orthogonal to the weight w(w)
over (a,b), with full sets of distinct real roots in (a,b), and if we choose the
x; in (4.79) as the distinct roots of g, (x), then the weights are given by

_Cn+1 1
Cn QnJrl(xi)QZ(xi) ’

w; =

where ¢; is the coefficient of the term of degree j in ¢;. These weights are all
positive. The derivation of this requires the kind of integration and algebra
used in deriving the system of equations (4.80) and getting the solution in
equations (4.81).

Error in Gaussian Quadrature

The error in Gaussian quadrature is

192 4 Approximation of Functions and Numerical Quadrature

b n
[f@de =Y wigw),
a =0

which we can write as

b g™
/a (dx — Z wzg xz - 2n)('02) 5 (483)

for some point z* in (a, b).

As with many expressions for errors in numerical computations, we can
feel good when we have the expression, but its usefulness in applications may
be very limited.

A problem with Gaussian quadrature is that it is not easy to use the
results for n to compute results for n, and hence the kinds of extrapolation
and adaptation we discussed above for Newton-Cotes quadrature are not very
useful for Gaussian quadrature.

4.7 Monte Carlo Methods for Quadrature

In the Monte Carlo method of quadrature we first formulate the integral to
be evaluated as an expectation of a function of a random variable, then simu-
late realizations of the random variable, and take the average of the function
evaluated at those realizations. This is analogous to a standard method of sta-
tistical estimation, in which we use a sample mean to estimate a parameter of
the distribution of a random variable. In applications, the realizations of the
random variable are pseudorandom numbers; nevertheless, our analysis relies
on statistical estimation theory.

The deterministic methods of quadrature, such as Newton-Cotes and
Gaussian, yield approzrimations; Monte Carlo quadrature yields estimates.
Use of Monte Carlo methods for quadrature is sometimes called stochastic
integration.

An advantage of Monte Carlo quadrature is that the nature of the domain
of integration is not as critical as in the other quadrature methods we have
discussed above. We consider an integral similar to (4.69), except with a more
general domain of integration, D. To estimate the integral using Monte Carlo,
we first formulate the integral as

I:/Df(:v)dx
:/ h(z)px (z) dz, (4.84)
D

where px is the probability density function of a random variable X with sup-
port on D. We encountered this decomposition of the function f in Chapter 1.
It is called probability density function decomposition or PDF decomposition.

4.7 Monte Carlo Methods for Quadrature 193

This step may benefit from some familiarity with probability density func-
tions. For one-dimensional interval domains, appropriate probability density
functions are similar to the weight functions for orthogonal polynomials shown
in Table 4.1, page 170, depending on whether neither, one, or both limits of
integration are infinite.

If D is the interval (a,b), as in (4.69), a and b are finite, the trivial uniform
density may always be used. The uniform density over [a,b] is the constant
1/(b — a), so one possible formulation (4.84) is

b
I:(b—a)/ f(x)biadx.

As we will see below, however, this may not be a good choice because the per-
formance of the Monte Carlo method degrades for h(x) with large variation,
so the Monte Carlo estimates will be better (in a sense to be defined below) if
h(z) is nearly constant. Also, if a or b is infinite, the uniform density cannot
be used because of the (b — a) factor.

The decomposition in (4.84) results in

I:/ h(z)px (x)dx
D
= E(h(X)),
where E(h(X)) is the expectation (or “average” over the full distribution of
X) of the function h(X).

If 21,29,...,2y is a random sample (or pseudorandom sample) of the
random variable X, the sample average,

3

W) = = 3 hiaw)

is an estimate of the integral, E(h(X)), or I. We often denote an estimate of
I as I, so in this case

I= % f: h(z;). (4.85)

If we formulate the estimator I as a sum of functions of independent
random variables, each with density px, instead of a sum of realizations of
random variables, the estimator itself is a random variable. (Note the dis-
tinction in “estimate” and “estimator”.) An obviously desirable property of
this random variable is that its expectation be equal to the quantity being
estimated. Assuming the expectations exist, this is easily seen to be the case:

194 4 Approximation of Functions and Numerical Quadrature
T
E(I) E(E ; h(Xi))
T
— ; E(h(X:))

1 m
—Nr
s

=1

We therefore say the estimator is unbiased.

Variance of Monte Carlo Estimators

Monte Carlo methods are sampling methods; therefore the estimates that
result from Monte Carlo procedures have associated sampling errors. The fact
that the estimate is not equal to its expected value (assuming the estimator
is unbiased) is not an “error” or a “mistake”; it is just a result of the variance
of the random (or pseudorandom) data. The sampling errors mean that we
get different estimates of the integral if we evaluate it on different occasions.

In the case of scalar functions, the variance of the estimator I is a rather
complicated function involving the original integral (assuming the integrals
exist):

V(1) = B (000 - Ehx)?)
-/ (h(x)— / h(y)px<y>dy>2px<x>dx. (4.86)

If px(z) is constant, that is, if the sampling is uniform over D, then the
expression (4.86) is merely the variance of the mean of the roughness defined
in equation (4.5) on page 151. Loosely speaking, this variance is a measure of
how variable the Monte Carlo estimates would be if we were to evaluate the
integral on different occasions.

We see that the magnitude of the variance depends on the variation in

) - /D h(y)px (4) dy.

which depends in turn on the variation in h(x). If h(z) is constant, the variance
of T is 0. Of course, in this case, we do not need to do the Monte Carlo
estimation; we have the solution I = h(-).

While the variance in (4.86) is complicated, we have a very simple esti-
mate of the variance; it is the sample variance of the elements composing the
estimate of the integral, divided by the sample size m:

4.7 Monte Carlo Methods for Quadrature 195

V()= (ﬁ > (e —Wf) . (4.87)

The second factor in this expression is the sample variance of the observations
h(l‘z)

An important fact to be observed in equation (4.86) is that a similar ex-
pression would hold if the integrand was multivariate. Therefore, the variance
of the Monte Carlo estimate is independent of the dimensionality. This is one
of the most important properties of Monte Carlo quadrature.

Reducing the Variance

As we see from equation (4.86) the variance of the Monte Carlo estimator is
linear in m~!; hence, the variance is reduced by increasing the Monte Carlo
sample size. More effective methods of variance reduction include use of anti-
thetic variates, importance sampling, and stratified sampling, as discussed in
Section 11.5, beginning on page 425.

Combining Monte Carlo Estimators

The Monte Carlo estimator (4.85) is linear in h(x;). This implies that the
estimator can be evaluated as separate partial sums, either computed in par-
allel or computed at different times. Separate computations yield separate

estimators, I, Io, ..., Ix, which can be combined to yield
~ k ~
I=> al; (4.88)
i=1

where the a; are constants. If each of the I: is unbiased, this estimator is
unbiased so long as Zle a; =1:

k
B(D) =B} o)
X i=1 i
= ZaiE(Ii)
=1
k
= Zail
=1
= 1.

If all of the individual estimators are uncorrelated, the variance of the com-
bined estimator is

196 4 Approximation of Functions and Numerical Quadrature

k
S av(i).
=1

To minimize the variance of the linear combination (4.88), the a;’s are
chosen inversely proportional to the variances of the component random vari-

ables, that is,
c

V(I;)

a; = ;

for some ¢ > 0.

Error in Monte Carlo Quadrature

As we have emphasized, Monte Carlo quadrature differs from quadrature
methods such as Newton-Cotes methods and Gaussian quadrature in a funda-
mental way; Monte Carlo methods involve random (or pseudorandom) sam-
pling. The expressions in the Mont Carlo quadrature formulas do not involve
any approximations, so questions of bounds of the error of approximation do
not arise. Instead of error bounds or order of the error as some function of the
integrand as we discuss for the deterministic methods on pages 188 and 191,
we use the variance of the random estimator to indicate the extent of the
uncertainty in the solution.

The square root of the variance, that is, the standard deviation of the
estimator, is a good measure of the range within which different estimators of
the integral may fall. Under certain assumptions, using the standard deviation
of the estimator, we can define statistical “confidence intervals” for the true
value of the integral I. Loosely speaking, a confidence interval is an interval
about an estimator I; that in repeated sampling would include the true value
I a specified portion of the time. (The specified portion is the “level” of the
confidence interval, and is often chosen to be 90% or 95%. Obviously, all other
things being equal, the higher the level of confidence the wider must be the
interval.)

Because of the dependence of the confidence interval on the standard devi-
ation the standard deviation is sometimes called a “probabilistic error bound”.
The word “bound” is misused here, of course, but in any event, the standard
deviation does provide some measure of a sampling “error”.

The important thing to note from equation (4.86) is the order of error in
the Monte Carlo sample size; it is O(m~2). This results in the usual dimin-
ished returns of ordinary statistical estimators; to halve the error, the sample
size must be quadrupled.

We should be aware of a very important aspect of this discussion of error
bounds for the Monte Carlo estimator. It applies to random numbers. The
pseudorandom numbers we actually use only simulate the random numbers,
so “unbiasedness” and “variance” must be interpreted carefully.

Notes and Further Reading 197
Variations of Monte Carlo Quadrature

The method of estimating an integral described above is sometimes called
“crude Monte Carlo”. Another method, which may be more familiar, called
“hit-or-miss” Monte Carlo is not to be recommended (see Gentle, 2003, Ex-
ercise 7.2, page 271).

Another Monte Carlo method can be developed as suggested in Exer-
cise 4.15, page 202. To estimate the integral

I:/abf(x)dx

first generate a random sample of uniform order statistics (1) T(2)5 -+ -3 L(n)
on the interval (a,b), and define z(yy = a and x(,41) = b. Then estimate I as

~ 1 (&

I=35 (Z(x(i—i-l) =2 f(@@) + (2@ —a) f(z@) + (b - x(n—u)f(x(n)))
i=1

(4.89)

This method is similar to approximation of the integral by Riemann sums,

except in this case the intervals are random.

Higher Dimensions

The Monte Carlo quadrature methods extend directly to multivariate inte-
grals, although, obviously, it takes larger samples to fill the space. It is, in
fact, only for multivariate integrals that Monte Carlo quadrature should or-
dinarily be used. The preference for Monte Carlo in multivariate quadrature
results from the independence of the pseudoprobabilistic error bounds and the
dimensionality mentioned above.

An important property of the standard deviation of a Monte Carlo esti-
mate of a definite integral is that the order in terms of the number of function
evaluations is independent of the dimensionality of the integral so the order
of the error remains O(m*%). On the other hand, the usual error bounds for
numerical quadrature are O((g(n))~), where d is the dimensionality, and
g(n) is the order for one-dimensional quadrature.

Notes and Further Reading

I have made frequent reference to Hewitt and Stromberg (1965). This is just
because that is where I first learned real analysis. Many newer and more
readily accessible texts would serve just as well.

198 4 Approximation of Functions and Numerical Quadrature
Function Approximation and Computations Involving Polynomials

Extensive discussions of function approximation are available in texts on nu-
merical methods, such as Rice (1993).

Horner’s method is so called because William George Horner described
it in 1819. The method, however, was known to Isaac Newton many years
earlier. Newton also was aware of the need to shift the values in a polynomial
prior to raising them to a power, and the form described by Newton utilizes
the nesting of Horner’s method.

Function Expansions

A hundred years ago, expansion of functions, especially of probability density
functions, or of general functions following a PDF decomposition, were widely
studied and used. The Gram-Charlier series, the Edgeworth series, and the
Cornish-Fisher expansion were very important topics in mathematical sta-
tistics. These expansions, of course, remain useful, but their use seems to
wax and wane, and, at best, remain among the techniques in the background
memory of most statisticians and applied mathematicians.

The paper by Barndorff-Nielsen and Cox (1979) revived interest and ap-
plication of expansions, and brought the saddlepoint approximation method
of Daniels (1954) to the wider attention of statisticians. Although approxima-
tions similar to the saddlepoint approximation had been used in various appli-
cations previously, Daniels derived it in its currently-used form and illustrated
its usefulness for the density of a sample mean. The book by Jensen (1995)
and the article by Goutisand and Casella (1999) provide good introductions
to the saddlepoint method.

Special Functions

GAMS is a good source of information about software for evaluating the spe-
cial functions. Programs for evaluation of special functions are available in the
IMSL Libraries (a function is available for each entry in the list above), in the
Maple and Mathematica packages, and in CALGO (see page 692), as well as in
more specialized collections, such as Cody (1993) or Cody and Coonen (1993).

Spanier and Oldham (1987) and Thompson (1997) provide general de-
scriptions of many special functions. Both books discuss relationships among
the special functions and describe methods for evaluating the special func-
tions. They also contain many graphs of the functions. Abramowitz and Ste-
gun (1964) provide tables of the values of special functions for many argu-
ments. Note that an update of this book is currently under production. The
new version is called the Digital Library of Mathematical Functions (DLMF).
See

http://dlmf.nist.gov/

Exercises 199

The extent and the form in which DLMF will exist in hardcopy is not clear. A
portion of DLMF, supplement with discussions of the computational methods,
is available in Gil, Segura, and Temme (2007).

Orthogonal Systems

The standard treatment of orthogonal polynomials is Szeg6 (1958), in which
several other systems are described and more properties of orthogonal poly-
nomials are discussed. A general reference on multivariate orthogonal polyno-
mials is Dunkl and Yu (2001).

A type of orthogonal system that I mentioned, but did not discuss, are
wavelets. For this I refer the reader to Walter and Ghorai (1992) or to Vi-
dakovic (2004).

Splines

De Boor (2002) provides a comprehensive development of splines and an ex-
tensive discussions of their properties. The emphasis is on B-splines and he
gives several Fortran routines for using B-splines and other splines.

A good introduction to multivariate splines is given by Chui (1988).

Numerical Quadrature

Evans and Schwartz (2000) provide a good summary of methods for numerical
quadrature, including both the standard deterministic methods of numerical
analysis and Monte Carlo methods.

The most significant difficulties in numerical quadrature occur in multiple
integration. The papers in the book edited by Flournoy and Tsutakawa (1991)
provide good surveys of specific methods, especially ones with important ap-
plications in statistics.

Monte Carlo Quadrature

Monte Carlo quadrature, of course, requires a source of random numbers. Sec-
tion 7.6 describes software for generation of pseudorandom numbers. In higher
dimensional quadrature, rather than the usual pseudorandom numbers, it may
be better to use quasirandom numbers. Software for quasirandom number gen-
eration is not as widely available, but a reference is given on page 322.

Exercises

4.1. For any function f with finite, nonzero norm, show that the L; norm of
fa(ax), for any given a # 0, is the same as the Ly norm of f(z), and show
that the Ly norm of f,(ax) is not the same as the Ly norm of f(x).

200

4.2.

4.3.

4.4.
4.5.

4.6.

4.7.

4.8.

4.9.

4 Approximation of Functions and Numerical Quadrature

Let)
- —2?/(20%)
p(x) N
(the normal density with mean equal to 0).
a) Compute R(p) (from equation (4.6) on page 151).
b) Compute S(p).
¢) Compute S(p”) = R(p).
Develop an extension of the roughness definition given in equation (4.7)
for functions of more than one variable. (You obviously use the Hessian.
How do you map it to IR?)
Derive equation (4.26) from equation (4.25).
Consider a mixture of two normal distributions N(u1,0%) and N(usa,03)
with mixing parameter w (that is, w are from the first distribution and
1 — w are from the second distribution).
a) Determine the moment generating function for each component in the
mixture. (This is a standard result; it is M (t) = exp(ut + o2t/2).)
b) Determine the moment generating function for the mean of each com-
ponent in the mixture.
¢) Determine the moment generating function for the mean of the mix-
ture distribution.
d) Determine the cumulant generating function for the mean of the mix-
ture distribution.
e) For a fixed value of the mean, say Z, determine ry that solves the
saddlepoint equation (4.35).
f) Determine the saddlepoint approximation for the PDF of the mean of
the mixture distribution.
g) Use Monte Carlo with a normal PDF to estimate the normalizing
constant of your approximation. (See Section 4.7.)
Let {gx : k=1,...,m} be a set of orthogonal functions. Show that

m 2 m
Soa] =D llaxl?,
k=1 k=1

where || - || represents an Ly norm. What is the common value of the
expressions above if the g are orthonormal?

Would a similar equation hold for a general L, norm?

Suppose that the Legendre polynomials are to be used to approximate a
function over the interval [0, 10].

a) What are the normalizing factor?

b) What is the recurrence formula?

Using the recurrence equation (4.50) and beginning with Ty(¢f) = 1 and
T, (t) =t, derive the first four Chebyshev polynomials, Ty(t), T1(t), T2(t),
and T5(t), which are given in (4.49).

Show that the normalizing constant for the & Chebyshev polynomial is
Tk (1).

4.10.

4.11.

4.12.

4.13.

4.14.

Exercises 201

Approximate f(t) = e! over [—1,1] as

5
Z Ck Tk (t))
k=0

where the Ty (t) are the Chebyshev polynomials. (Compare this with the
example on page 176 that uses Legendre polynomials to approximate e~%.)
a) Write a program to use Algorithm 4.1 to compute the approximation
at a given point .
Graph the function and your approximation.
Determine the error at t = 0.
Determine the integrated squared error.
Would some more general sequence of Jacobi polynomials form a bet-
ter approximation? Why do you think so? What values of a and (3
might be more appropriate?
f) For reasonable values of o and g from the previous question, derive
Jéa’ﬁ) (t), Jl(a’ﬁ)(t), JQ(a’ﬁ) (t), and J3a’ﬁ)(t). Now, approximate f(t) =
e’ over [—1, 1] with your polynomials and determine the error at ¢t = 0
and the integrated squared error.
Compute roughness measures of your Chebyshev-polynomial approxima-
tion in Exercise 4.10. Compute S(f) in equation (4.6), V(f) in equa-
tion (4.5), and R(f) in equation (4.7).
Now, assume that we have 19 data points, (x;,y;), with 1 = —.9, 2 =
—.8 -+ x19 = .9, and y; = e~ *i. We want to fit a function y = f(x),
but we do not know the form of f; all we know are the 19 data points.
Use expression (4.58) in (4.59) to obtain the Fourier coefficients for an
expansion in the first 6 Chebyshev polynomials that yields a least squares
fit to the given data.
Use kernel method to approximate the function f(z) = e~ over the
interval [—1,1], as we did in the text with orthogonal polynomials and
with splines. Use both K,(t) and K,(¢) with A chosen as 1/2, 1/4, and
1/8. Evaluate f(x) at enough points to have at least two known points
within one window at any point in the interval.
Notice that this (and our other examples with this function) are artificial,
in the sense that we would rarely in applications encounter a problem just
like this— if we can evaluate f(x), we likely would not be interested in ap-
proximating it (although, if our approximations were simpler to compute,
we might want to do this). The point of the examples and of the exer-
cise, however, is to assess the performance of the approximation method
in more realistic situations, in which we do not know the function every-
where, we only know it at a few select points. This, of course, is the type
of situation we face in statistical estimation.
Show that equation (4.75) results from Richardson extrapolation (equa-
tion (3.22)) of the Ty representing the values of the expression in equa-
tion (4.71) with successively smaller intervals.

o A& o T
S N e N

202 4 Approximation of Functions and Numerical Quadrature

4.15. Consider the following Monte Carlo method to evaluate the integral:

I:/abf(x)dx.

Generate a random sample of uniform order statistics z(1),z(2),- -, Z(n)
on the interval (a,b), and define x(g) = a and (,41) = b. Estimate I by
equation (4.89) on page 197. This method is similar to approximation of
the integral by Riemann sums except that in this case the intervals are
random. Determine the variance of I. What is the order of the variance
in terms of the sample size? How would this method compare in efficiency
with the crude Monte Carlo method?

5

Numerical Linear Algebra

Many scientific computational problems involve vectors and matrices. It is
necessary to work with either the elements of vectors and matrices individually
or with the arrays themselves. Programming languages such as C provide the
capabilities for working with the individual elements but not directly with the
arrays. Fortran and higher-level languages such as Octave or Matlab and R
allow direct manipulation with vectors and matrices.

The distinction between the set of real numbers, IR, and the set of floating-
point numbers, IF, that we use in the computer has important implications
for numerical computations. An element x of a vector or matrix is approxi-
mated by [z]., and a mathematical operation o is simulated by a computer
operation [o].. As we emphasized in Section 2.2, the familiar laws of algebra
for the field of the reals do not hold in IF.

These distinctions, of course, carry over to arrays of floating-point numbers
that represent real numbers, and the mathematical properties of vectors and
matrices may not hold for their computer counterparts. For example, the dot
product of a nonzero vector with itself is positive, but (x., z.). = 0 does not
imply . = 0. (This is reminiscent of the considerations that led us to discuss
pseudonorms on page 149, but the issues here are entirely different.)

The elements of vectors and matrices are represented as ordinary numeric
data in either fixed-point or floating-point representation. In the following, we
will consider the floating-point representation and the computations in IF.

Storage Modes

The elements of an array are generally stored in a logically contiguous area of
the computer’s memory. What is logically contiguous may not be physically
contiguous, however.

Because accessing data from memory in a single pipeline may take more
computer time than the computations themselves, computer memory may be
organized into separate modules, or banks, with separate paths to the central
processing unit. Logical memory is interleaved through the banks; that is,

J.E. Gentle, Computational Statistics, Statistics and Computing, 203
DOI: 10.1007/978-0-387-98144-4_5,
© Springer Science + Business Media, LLC 2009

204 5 Numerical Linear Algebra

two consecutive logical memory locations are in separate banks. In order to
take maximum advantage of the computing power, it may be necessary to be
aware of how many interleaved banks the computer system has, but we will
not consider such details here.

There are no convenient mappings of computer memory that would allow
matrices to be stored in a logical rectangular grid, so matrices are usually
stored either as columns strung end-to-end (a “column-major” storage) or as
rows strung end-to-end (a “row-major” storage). Sometimes it is necessary to
know which way the matrix is stored in the computer’s logical address space;
that is, whether a; ; is stored logically next to a;+1,; or to a; j+1. (Physically,
in the hardware, it may be next to neither of these.)

For some software to deal with matrices of varying sizes, the user must
specify the length of one dimension of the array containing the matrix. (In
general, the user must specify the lengths of all dimensions of the array except
one.) In Fortran subroutines, it is common to have an argument specifying
the leading dimension (number of rows), and in C functions it is common
to have an argument specifying the column dimension. In an object-oriented
system, this information is bundled in the object, and it is the object itself
(the matrix, rather than a computer memory address) that is passed from one
program module to another.

Notation

It is assumed that the reader is generally familiar with the basics of linear
algebra, at least to the level covered in the relevant parts of Section 1.2.

An n-vector is an ordered structure with n real elements. We denote the
sapce of n-vectors along with the axpy and inner product operators as IR"™.
We identify the elements of a vector z by a display of the form

x=(21,...,Tn).

There is no need to call this display a “transpose”. How z is displayed has no
relevance for how matrix-vector operations are interpreted. For matrix-vector
operations, we interpret a vector as an n X 1 matrix and then use the usual
matrix-matrix rules for operations. Stating this another way, we interpret
vectors as “column vectors”, although we display them horizontally.

An nxm matrix A4 is an element of IR™*™. It is often denoted as A = (a;;).
Its transpose, denoted by AT, is (aj;). The Moore-Penrose generalized inverse
is denoted by A™T. If the inverse exists, that is, if A is square and of full rank,
it is denoted by A~1.

The i*" row of the matrix A = (a;;) is denoted by a;., and the j** column
is denoted by a.;. Both a;, and a.; are treated as ordinary vectors. They are
both “column” vectors, as are all vectors in this book.

5.1 General Computational Considerations for Vectors and Matrices 205
Sparsity

If a matrix has many elements that are zeros, and if the positions of those
zeros are easily identified, many operations on the matrix can be speeded up.

Matrices with many zero elements are called sparse matrices. They occur
often in certain types of problems; for example, in the solution of differential
equations, and in statistical designs of experiments.

The first consideration is how to represent the matrix and to store the
matrix and the location information. Different software systems may use dif-
ferent schemes to store sparse matrices. An important consideration is how to
preserve the sparsity during intermediate computations. We mention one way
this may be done in an iterative algorithm on page 226, however, most of the
computational issues for dealing with sparse matrices are beyond the scope of
this book,

5.1 General Computational Considerations for Vectors
and Matrices

Because many of the computations in linear algebra are sums of elements in a
list, the discussion of such computations beginning on page 99 must be borne
in mind. Catastrophic cancellation is of special concern.

One common situation that gives rise to numerical errors in computer
operations is when a quantity « is transformed to ¢(z) but the value computed

is unchanged:
(t(@)]e = [x]c; (5.1)

that is, the operation actually accomplishes nothing. A simple type of trans-
formation that has this problem is just the addition

t(r) =x +e, (5.2)

where |e| is much smaller than |z|. If all we wish to compute is = + ¢, the fact
that we get x is probably not important. Usually, however, this simple com-
putation is part of some larger set of computations in which € was computed.
This, therefore, is the situation we want to anticipate and avoid.

Another instance of this problem is the addition to x of a computed quan-
tity y that overwhelms z in magnitude. In this case, we may have

[.13 + y]c = [y]c (5'3)

Again, this is a situation we want to anticipate and avoid.

In later sections in this chapter we will consider various types of compu-
tations in numerical linear algebra. We distinguish these methods as being
either direct, meaning that the number of computations is set a priori, or it-
erative, meaning that the results of the computations in each step determine

206 5 Numerical Linear Algebra

whether to perform additional computations. We discuss iterative methods in
Section 5.4. (Recall from our discussion in Chapter 3 that the steps in a direct
method may also be called “iterations”.)

In the remainder of this section, we discuss the very important issue of
identifying the level of accuracy we can expect in computations involving
matrices. This depends on the condition of the data.

Condition

A measure of the worst-case numerical error in numerical computation in-
volving a given mathematical entity is the “condition” of that entity for the
particular computations. The condition, quantified in some way, provides a
bound on the relative norms of a “correct” solution to a linear system and a
solution to a nearby problem. Hence, the condition of data depends on the
particular computations to be performed. For example, the “stiffness” mea-
sure in equation (3.6) is an appropriate condition measure of the extent of the
numerical error to be expected in computing variances.
Many computations in linear algebra are related to the basic problem of
solving a system of equations:
Az =b. (5.4)

This is the canonical problem to which much of this chapter is devoted.

If A is square and nonsingular, the solution is x = A~'b. Actual computa-
tions, however, yield the solution Z, which we might identify as the solution
to a nearby problem: Solve ~

Az =0, (5.5)

where # = = + 6z and b = b + 6b. Here we are using the symbol 8, not as
a multiplier, but as a perturbation operation; that is, dz is a perturbation
about x. If the original problem is well behaved, we would expect that if b
is small, then dx is small and the solution Z is “close to” x.

We quantify the condition of the matrix by a condition number. To develop
this quantification for the problem of solving linear equations, consider a linear
system Az = b, with A nonsingular and b # 0, as above. Now perturb the
system slightly by adding a small amount, b, to b, and let b = b + §b. The
system has a solution # = 6z + z = A~'b. (Notice that b and dz do not
necessarily represent scalar multiples of the respective vectors.) If the system is
well-conditioned, for any reasonable norm, if ||§b||/||b] is small, then |0z /||x]|
is likewise small.

From §z = A716b and the inequality (1.17) (on page 14), for an induced
norm on A, we have

[< [l A7 [|6b]]. (5.6)
Likewise, because b = Ax, we have

1 1
<A 5.7
D] (6.7)

5.1 General Computational Considerations for Vectors and Matrices 207
and equations (5.6) and (5.7) together imply

ox _
Ioll y appayy
2]

This provides a bound on the change in the solution ||dz||/||z|| in terms of the
perturbation ||5b||/]b]|.

The bound in equation (5.8) motivates us to define the condition number
with respect to inversion denoted by (-) as

[160]]

ol (5.8)

r(A) = [A] A7 (5.9)

for nonsingular A. The specific condition number therefore depends on the
specific norm.

In the context of linear algebra, the condition number with respect to
inversion is so dominant in importance that we generally just refer to it as the
“condition number”. A condition number is a useful measure of the condition
of A for the problem of solving a linear system of equations. There are other
condition numbers useful in numerical analysis, however, such as the condition
number for computing the sample variance or a condition number for a root
of a function.

We can write equation (5.8) as

52| 155
< w422l (5.10
el o)
or analogously as
b 5]
O < oy lozll. (5.11
o el)

These inequalities are sharp, as we can see by letting A = I.

Because the condition number is an upper bound on a quantity that we
would not want to be large, a large condition number is “bad”.

Notice that our definition of the condition number does not specify the
norm; it only requires that the norm be an induced norm. (An equivalent
definition does not rely on the norm being an induced norm.) We sometimes
specify a condition number with regard to a particular norm, and just as we
sometimes denote a specific norm by a special symbol, we may use a special
symbol to denote a specific condition number. For example, k,(A) may denote
the condition number of A in terms of an L, norm. Most of the properties of
condition numbers (but not their actual values) are independent of the norm
used.

An interesting relationship for the Lo condition number is

maseg o 1!
x
mMiNg-£0o

=l

208 5 Numerical Linear Algebra

which can be shown directly from the definition (5.9) of condition number and
of the Lo norm and from properties of eigenvalues. The numerator and de-
nominator in equation (5.12) look somewhat like the maximum and minimum
eigenvalues. Indeed, the Ly condition number of a nonsingular square matrix
is just the ratio of the largest eigenvalue in absolute value to the smallest (see
Gentle, 2007, page 131).

Some useful facts about condition numbers are:

R(A) = K(A7Y),

(5.13)

K(cA) = k(A), forc#0, (5.14)
K(A) > 1, (5.15)

R1(A) = Koo(AT), (5.16)
ka(AT) = Ka(A), (5.17)

ka(ATA) = K2(A)
> ka(A). (5.18)

All of these facts follow immediately from the definitions or from properties
of the matrix norms.

Equation (5.18) is of some interest, and there are similar results for other
condition numbers. The point is that the condition number of AT A is larger,
possibly much larger, than the condition number of A. (Recall that a matrix
that appears often in regression analysis is X T X.)

Even though the condition number provides a very useful indication of the
condition of the problem of solving a linear system of equations, it can be
misleading at times. Consider, for example, the coefficient matrix

A= [(1)2] (5.19)

where € < 1. The condition numbers are

r1(A) = Ra(A) = koo (A) =

1
€)
and so if € is small, the condition number is large. It is easy to see, however,
that small changes to the elements of A or b in the system Az = b do not
cause undue changes in the solution (which is our heuristic definition of ill-
conditioning). In fact, the simple expedient of multiplying the second row of
A by 1/e (that is, multiplying the second equation, ag1x1 + azaxe = be, by
1/€) yields a linear system that is very well-conditioned.

This kind of apparent ill-conditioning is called artificial ill-conditioning.
It is due to the different rows (or columns) of the matrix having a very dif-
ferent scale; the condition number can be changed just by scaling the rows or

5.2 Gaussian Elimination and Elementary Operator Matrices 209

columns. This usually does not make a linear system any better or any worse
conditioned, but this fact emphasizes the importance of scaling in data analy-
sis. (Scaling has implications not only for numerical computations; it also
affects the results of many multivariate analyses, even if the computations
are exact. As we mentioned in Section 1.1 scaling induces artificial structure
and it affects such analytic methods as clustering and principal component
analysis.)

Condition of Singular or Nonsquare Matrices

We have discussed condition in the context of the solution of a full-rank, con-
sistent linear system. The same kinds of issues of numerical accuracy arise
in non-full-rank systems and in overdetermined systems. A general condition
number for such matrices can be defined as an extension of the Ly condi-
tion number in equation (5.12) based on singular values. The singular value
condition number of a general matrix A is

o (4) = 2L, (5.20)

Ok

where o7 is the largest singular value of A and oy is the smallest positive
singular value of A.

5.2 Gaussian Elimination and Elementary Operator
Matrices

The most common direct method for the solution of linear systems is Gaussian
elimination. The basic idea in this method is to form equivalent sets of equa-
tions, beginning with the system to be solved, Az = b, and ending with a
system Uz = Tb, where U is an upper triangular matrix, and 7T is some
matrix that makes the system equivalent to the original one.

Consider the individual equations

alT*x =b;
a2.% = by (5.21)
al.z = by,

where a;, is the jth row of A. (Recall that aj« is a vector and all vectors
are “column” vectors.) An equivalent set of equations can be formed by a
sequence of elementary operations on the equations in the given set.

These elementary operations on equations are essentially the same as the
elementary operations on the rows of matrices. The two most important kinds
of elementary operations are an interchange of two equations,

210 5 Numerical Linear Algebra

T T
a;,r =bj — ajx = b, -
T b T b (5)
Ajeu® = b — aj,x = bj,

and a replacement of a single equation with a sum of it and a scalar multiple
of another equation,

apx=b; a;r*x + caj,x = bj + cby. (5.23)

(The operation (5.23) is an axpy with a = ¢, x = by, and y = b;.)

These operations can be effected by premultiplication by elementary opera-
tor matrices, which are matrices formed by performing the indicated operation
on the identity matrix. The elementary operator matrix that exchanges rows j
and k, which we denote as Ej, is the identity matrix with rows j and k inter-
changed. The elementary operator matrix that performs the operation (5.23),
which we denote as Ej;(c), is the identity matrix with the 0 in position (7, k)
replaced by c.

The elementary operation on the equation

T .
a5, % = ba

in which the first equation is combined with it using ¢ = —as1 /a1 will yield an
equation with a zero coefficient for x;. The sequence of equivalent equations,
beginning with Ax = b, is

Egl (Cél))AJ? = Egl(cél))b
Esi () Bt (V) Az = Es1 (§V) Ear (¢57)b

B () - Eai () Bor (¢57) Az = By (e)) - Eaa (e§V) B ()b,

(5.24)
where)
cz(-) — —a;1/as.
At this stage, the equations (5.21) are
al,r = by
T
~(1
(ag*)> z=be (5.25)

(dgl*)) z = by,
(

~(1 . . o
where the vector aj*) has a zero in its first position.
In Gaussian elimination we continue this process by using elementary op-

erator matrices of the form EiQ(C,EQ)), where ¢ > 3 and c§2) = —dg)/délz).
After n — 2 such operations, we have a system of equations similar to equa-
tions (5.25), in which now for j > 3, the vector d(z) has zeros in its first two

J
positions.

5.2 Gaussian Elimination and Elementary Operator Matrices 211

Continuing this process, we form systems of equations with more and more
zeros as coefficients of x’s. Finally, we have a completely triangular system,
Uz, on the left side. This system is easy to solve because the coefficient matrix

is upper triangular. The last equation in the system yields
657,”71)

G

Ty =

By back substitution, we get
T(n—2) ~(n—2
B0 — e,

(n—2) ’
n—1,n—1

Tn—1=

a
and we obtain the rest of the z’s in a similar manner.
Gaussian elimination consists of two steps: the forward reduction, which
is of order O(n?), and the back substitution, which is of order O(n?).
While Gaussian elimination is mathematically equivalent to a sequence
of matrix multiplications, the actual computations would not appear to be
matrix multiplications. This reminds us that:

The form of a mathematical expression and the way the expression
should be evaluated in actual practice may be quite different.

Furthermore, there are many details of the computations that must be
performed carefully. It is clear that if, at some step in the process above,
&,(j;l) = 0, we would have to do something differently. If this happens, then
we would have to interchange two rows before proceeding. (This is called

pivoting; see below.) But before proceeding with this simple fix, we recall:

Computer numbers are not the same as real numbers, and the arith-
metic operations on computer numbers are not exactly the same as
those of ordinary arithmetic.

If d,(!;;l) = 0, it may be the case that the computations in the first £ — 1
steps did not yield an exact 0 in the (k, k) position.

In arithmetic with floating-point numbers, checking for an exract 0
rarely makes sense.

Other problems may arise. Suppose, for example, that d,(!;;

in absolute value, and some dg:fl) is very large. In that case, it is quite possible

that
0] =))

Another type of problem may arise if at some stage cgk)&gﬁ._l) R —&z(-f_l).
This is the standard setup for catastrophic cancellation (see page 100). The
~ (k)
a;;

1)

is very small

resulting value [} may have only one or two units of precision.
C

212 5 Numerical Linear Algebra

Pivoting
The divisors agz_l)s are called “pivot elements”. The obvious problem with
the method of Gaussian elimination mentioned above arises if some of the
pivot elements are zero (or very small in magnitude).

Suppose, for example, we have the equations Ax = b, where

0.000121 + 22 =1,

1 + o = 2. (527)

The solution is ;7 = 1.0001 and x5 = 0.9999. Suppose we are working with
three digits of precision (so our solution is z; = 1.00 and zz = 1.00). After
the first step in Gaussian elimination, we have

0.0001z; + Ty = L,
—10,000z2 = —10, 000,

and so the solution by back substitution is z5 = 1.00 and x; = 0.000. The
Ly condition number of the coefficient matrix is 2.618, so even though the
coefficients vary greatly in magnitude, we certainly would not expect any
difficulty in solving these equations.

A simple solution to this potential problem is to interchange the equation
having the small leading coefficient with an equation below it. Thus, in our
example, we first form

1 + T3 = 2,
0.0001x1 4+ z2 =1,

so that after the first step we have

1 + 22 = 2,
LEQZ].,

and the solution is x5 = 1.00 and 7 = 1.00, which is correct to three digits.
Another strategy would be to interchange the column having the zero or
small leading coefficient with a column to its right. Both the row interchange
and the column interchange strategies could be used simultaneously, of course.
These processes, which obviously do not change the solution, are called pivot-
ing. The equation or column to move into the active position may be chosen
in such a way that the magnitude of the new diagonal element is the largest
possible.
Performing only row interchanges, so that at the k' stage the equation
with
n o (k-1)
nax laz, |
is moved into the k' row, is called partial pivoting. Performing both row
interchanges and column interchanges, so that
n;n k—1)

max |az(-v
i=kyj=k

5.2 Gaussian Elimination and Elementary Operator Matrices 213

is moved into the k*" diagonal position, is called complete pivoting.

An elementary permutation matriz can be used to interchange rows or
columns in a matrix. An elementary permutation matrix that interchanges
rows p and ¢ in another matrix is the identity with the pt" and ¢** rows
interchanged. It is denoted by E,,. So E,4 is the identity, except the ™ row
is the ¢'" unit vector e, and the ¢*® row is the p*® unit vector e,. Note that
E,; = E4p. Thus, for example, if the given matrix is 4 x m, to interchange
the second and third rows, we use

1000
0010
0100
0001

Ey3 = E3p =

It is easy to see from the definition that an elementary permutation matrix
is symmetric. Note that the notation F,, does not indicate the size of the
elementary permutation matrix; that must be specified in the context.

Premultiplying a matrix A by a (conformable) E,, results in an inter-
change of the p'" and ¢*" rows of A as we see above. Any permutation of rows
of A can be accomplished by successive premultiplications by elementary per-
mutation matrices. Note that the order of multiplication matters. Although
a given permutation can be accomplished by different elementary permuta-
tions, the number of elementary permutations that effect a given permutation
is always either even or odd; that is, if an odd number of elementary per-
mutations results in a given permutation, any other sequence of elementary
permutations to yield the given permutation is also odd in number. Any given
permutation can be effected by successive interchanges of adjacent rows.

Postmultiplying a matrix A by a (conformable) E,, results in an inter-
change of the p'" and ¢'" columns of A:

a1l ai2 a13 100 a1l ai3 a12
Ga21 22 423 001 = Ga21 a23 G22
az1 a32 as3 010 as1 a33 as2
Q41 G42 43 Q41 (43 Q42

Note that
A= EpEpgA = AEp Epg;

that is, as an operator, an elementary permutation matrix is its own inverse
operator: B, F,, = I.

Because all of the elements of a permutation matrix are 0 or 1, the trace
of an n X n elementary permutation matrix is n — 2.

The product of elementary permutation matrices is also a permutation
matriz in the sense that it permutes several rows or columns. For example,
premultiplying A by the matrix Q = E,, F,, will yield a matrix whose p'!* row
is the 7" row of the original A, whose ¢'* row is the p*" row of A, and whose
r*® row is the ¢*" row of A. We often use the notation E, to denote a more

214 5 Numerical Linear Algebra

general permutation matrix. This expression will usually be used generically,
but sometimes we will specify the permutation, 7.

A general permutation matrix (that is, a product of elementary permuta-
tion matrices) is not necessarily symmetric, but its transpose is also a per-
mutation matrix. It is not necessarily its own inverse, but its permutations
can be reversed by a permutation matrix formed by products of elementary
permutation matrices in the opposite order; that is,

EYE,. =1

In complete pivoting, we may permute both rows and columns, so we often

have a representation such as

B=FE; AE.,,

where E, is a permutation matrix to permute the rows and E, is a permu-
tation matrix to permute the columns.

The pivoting in the simple example of equation (5.27) would be accom-
plished by multiplying both sides of the equation by the matrix

01
o)

It is always important to distinguish descriptions of effects of actions from
the actions that are actually carried out in the computer. Pivoting is inter-
changing rows or columns. In the computer, a row or a column is determined
by the index identifying the row or column. All we do for pivoting is to keep

track of the indices that we have permuted; we do not move data around in
the computer’s memory. This is another, trivial instance of the dictum:

The form of a mathematical expression and the way the expression
should be evaluated in actual practice may be quite different.

There are many more computations required in order to perform complete
pivoting than are required to perform partial pivoting. Gaussian elimination
with complete pivoting can be shown to be stable; that is, the algorithm
yields an exact solution to a slightly perturbed system, (A + 0A)x = b. (We
discuss stability on page 114.) For Gaussian elimination with partial pivot-
ing, there are examples that show that it is not stable. These examples are
somewhat contrived, however, and experience over many years has indicated
that Gaussian elimination with partial pivoting is stable for most problems
occurring in practice. For this reason, together with the computational sav-
ings, Gaussian elimination with partial pivoting is one of the most commonly
used methods for solving linear systems.

Partial pivoting does not require as many computations as complete piv-
oting does, and there are modifications of partial pivoting that result in stable
algorithms (see Gentle, 2007, page 210).

5.3 Matrix Decompositions 215
Nonfull Rank and Nonsquare Systems

The existence of an x that solves the linear system Ax = b depends on that
system being consistent; it does not depend on A being square or of full rank.
The methods discussed above apply even if A is nonsquare or non-full rank.

In applications, it is often annoying that many software developers do not
provide capabilities for handling nonfull-rank or nonsquare systems. Many of
the standard programs for solving systems provide solutions only if A is square
and of full rank. This is a poor software design decision.

5.3 Matrix Decompositions

In Chapter 1 we described two types of matrix factorization or decomposition,
the singular value decomposition (SVD) in equation (1.63), and the square
root factorization of positive definite matrices in equation (1.65). The use of
decompositions in matrix computations has been listed as one of the top 10
algorithms of the twentieth century (see page 138).

The term “decomposition” could refer to an additive decomposition or a
multiplicative decomposition, which we also call a factorization. The most im-
portant decompositions are factorizations, and when we use the term “decom-
position” in regard to matrices, we will almost always mean “factorization”.

We will now discuss some other types of factorization or decomposition of
matrices, and then in Table 5.1 summarize important matrix factorizations.

Gaussian Elimination and the LU Decomposition

Generalizing the computations in equations (5.24), we perform elementary
operations on the second through the n*" equations to yield a set of equivalent
equations in which all but the first have zero coefficients for x;.

Next, we perform elementary operations using the second equation with
the third through the n'® equations, so that the new third through the n*®
equations have zero coefficients for zs.

Let U denote the upper triangular matrix E,, ,—1(cp) - - - E32(c2)Fa1(c1)A4,
and L denote the inverse of the matrix E,, ,—1(cn) - - - E32(c2)E21(c1), then we
can write the last system as Uz = L~1b.

This back substitution is equivalent to forming

x=U"L"", (5.28)

or x = A™'b with A = LU. The expression of A as LU is called the LU
decomposition or the LU factorization of A. An LU factorization exists and
is unique for nonnegative definite matrices. For more general matrices, the
factorization may not exist, and the conditions for the existence are not so easy
to state. (Golub and Van Loan (1996), for example, describe the conditions.)

216 5 Numerical Linear Algebra
QR Factorization

A very useful factorization is
A= QR, (5.29)

where () is orthogonal and R is upper triangular or trapezoidal. This is called
the QR factorization.
If A is square and of full rank, R has the form

XXX
0XX
00X

If A is nonsquare, R is nonsquare, with an upper triangular submatrix.
If A has more columns than rows, R is trapezoidal and can be written as
[R;1 | R2], where Ry is upper triangular.

If A is n x m with more rows than columns, which is the case in common
applications of QR factorization, then

r— | , 5.30
B (5.30)

where R; is m X m upper triangular.

When A has more rows than columns, we can likewise partition @ as
[@1]Q2], and we can use a version of () that contains only relevant rows or
columns,

A= Q1R (5.31)

where Q1 is an n X m matrix whose columns are orthonormal. This form is
called a “skinny” QR. It is more commonly used than a full Q R decomposition
with a square Q.

It is interesting to note that the Moore-Penrose inverse of A with full
column rank is immediately available from the QR factorization:

At =[R{'0]QT. (5.32)

Nonfull Rank Matrices
If A is square but not of full rank, R has the form

XXX
0XX|. (5.33)
000

In the common case in statistical applications in which A has more rows
than columns, if A is not of full (column) rank, R; in equation (5.30) will
have the form shown in matrix (5.33).

5.3 Matrix Decompositions 217

If A is not of full rank, we apply permutations to the columns of A by
multiplying on the right by a permutation matrix. The permutations can be
taken out by a second multiplication on the right. If A is of rank r (< m),
the resulting decomposition consists of three matrices: an orthogonal @, a T
with an r x r upper triangular submatrix, and a permutation matrix E},

A=QTEF. (5.34)
The matrix T has the form
T T
T_[OO}’ (5.35)

where T} is upper triangular and is r x . The decomposition in equation (5.34)
is not unique because of the permutation matrix. The choice of the permuta-
tion matrix is the same as the pivoting that we discussed in connection with
Gaussian elimination. A generalized inverse of A is immediately available from
equation (5.34):
- 7' 0
A-=P|"! T :
ol (5.36)

where P is the permutation matrix F.

Additional orthogonal transformations can be applied from the right-hand
side of the n x m matrix A in the form of equation (5.34) to yield

A=QRU", (5.37)
where R has the form
r= |0 (5.38)
00|’ ’

where R is 7 x r upper triangular, @ is nxn and as in equation (5.34), and U™
is n x m and orthogonal. (The permutation matrix in equation (5.34) is also
orthogonal, of course.) The decomposition (5.37) is unique, and it provides
the unique Moore-Penrose generalized inverse of A:

-1

At =U {Rl 0} Q. (5.39)
0 0

(Compare equation (1.64) on page 29 relating the SVD to the Moore-Penrose

inverse.)

It is often of interest to know the rank of a matrix. Given a decomposition
of the form of equation (5.34), the rank is obvious, and in practice, this QR
decomposition with pivoting is a good way to determine the rank of a matrix.
The QR decomposition is said to be “rank-revealing”. The computations are
quite sensitive to rounding, however, and the pivoting must be done with some
care.

The QR factorization is particularly useful in computations for overdeter-
mined systems, and in other computations involving nonsquare matrices.

218 5 Numerical Linear Algebra

There are three good methods for obtaining the QR factorization: House-
holder transformations or reflections; Givens transformations or rotations; and
the (modified) Gram-Schmidt procedure, all of which we discuss in Chapter 9.
Different situations may make one of these procedures better than the two
others. The Householder transformations described in the next section are
probably the most commonly used. If the data are available only one row at
a time, the Givens transformations are very convenient. Whichever method is
used to compute the QR decomposition, at least 2n®/3 multiplications and
additions are required. The operation count is therefore about twice as great
as that for an LU decomposition.

Cholesky Factorization

If the matrix A is symmetric and positive definite (that is, if 2T Az > 0 for
all # 0), another important factorization is the Cholesky decomposition. In
this factorization,

A=T'T, (5.40)

where T is an upper triangular matrix with positive diagonal elements. We
occasionally denote the Cholesky factor of A (that is, T' in the expression
above) as Ac.

The factor T" in the Cholesky decomposition is sometimes called the square
root, but we have defined a different matrix as the square root, Az , on page 29.
The Cholesky factor is more useful in practice, but the square root has more
applications in the development of the theory.

A factor of the form of T" in equation (5.32) is unique up to the sign, just
as a square root is. To make the Cholesky factor unique, we require that the
diagonal elements be positive. The elements along the diagonal of T" will be
square roots. Notice, for example, that ¢; is \/a11.

Algorithm 5.1 is a method for constructing the Cholesky factorization.

Algorithm 5.1 Cholesky Factorization

1. Let t11 = /a11.
2. FOI‘jZQ,...,’I’L7 let tljzalj/tn.
3. Fort=2,...,n,

{
let t“‘ =1/ Qi — 7];_:11 tii’ and

forj=i+1,...,n,

{
let iy = (aij — Yy thitn) /i
}
1. |
It can be shown that the elements a;; — 22;11 ¢, in this algorithm are non-
negative if A is nonnegative definite. (See Gentle, 2007, page 194.)

5.3 Matrix Decompositions 219

There are other algorithms for computing the Cholesky decomposition.
The method given in Algorithm 5.1 is sometimes called the inner product
formulation because the sums in step 3 are inner products. The algorithms for
computing the Cholesky decomposition are numerically stable. Although the
order of the number of computations is the same, there are only about half as
many computations in the Cholesky factorization as in the LU factorization.
Another advantage of the Cholesky factorization is that there are only n(n +
1)/2 unique elements as opposed to n? + n in the LU decomposition.

The Cholesky decomposition can also be formed as ZNlTDf, where D is
a diagonal matrix that allows the diagonal elements of T to be computed
without taking square roots.

The Cholesky decomposition also exists for a nonnegative definite matrix
that is not of full rank. This is accomplished by a simple modification in
Algorithm 5.1. For any t;; that is zero, we merely fill the corresponding row
of the matrix T" with zeros and proceed.

Table 5.1. Matrix Factorizations

Factorization Restrictions Properties of Factors

none

SVD, page 28

U orthogonal
V orthogonal
D nonnegative diagonal

variations: for symmetric A, A = VCVT
LU, page 215 A square, (others) L full-rank lower triangular
Ann = LnnUnn U upper triangular
variations: with partial pivoting, A = LUP
with full pivoting, PLAP> = LU
A = LDU, with D diagonal and u;; = 1
QR, page 216 none Q@ orthogonal

variations:

R upper triangular
skinny QR for n > m, A = Q1R

Cholesky, page 216

A nonnegative definite L full-rank lower triangular
U upper triangular

diagonal, page 27

A symmetric V orthogonal

C diagonal

square root, page 29
1

T
A nonnegative definite A2,, nonnegative definite

“Modified” and “Classical” Gram-Schmidt Transformations

Pivoting, discussed on page 212, is a method for avoiding a situation like that
in equation (5.3). In Gaussian elimination, for example, we do an addition,

220 5 Numerical Linear Algebra

x4y, where the y is the result of having divided some element of the matrix by
some other element and z is some other element in the matrix. If the divisor is
very small in magnitude, y is large and may overwhelm z as in equation (5.3).

Another example of how to avoid a situation similar to that in equa-
tion (5.1) is the use of the correct form of the Gram-Schmidt transformations,
which we give in Algorithm 5.2 on page 220.

Given two nonnull, linearly independent vectors, x1 and xs, it is easy to
form two orthonormal vectors, Z; and Zs, that span the same space:

- T
= —,

llz1]l2

R (5.41)
‘%2: 2 14241

lz2 — ET 222 ||z

These are called Gram-Schmidt transformations. It is easy to confirm by mul-
tiplication that £; and Zs are orthonormal. Further, because they are orthog-
onal and neither is 0, they must be independent; hence, they span the same
space as 1 and xo. We can see that they are independent also by observing
that

[531532] =A [.131])2] s
where A is an upper triangular (that is, full rank) matrix.

The Gram-Schmidt transformations can be continued with all of the vec-
tors in the linearly independent set. There are two straightforward ways equa-
tions (5.41) can be extended. One method generalizes the second equation in
an obvious way:

fork=2,3...,
k—1 k—1
Tp = (xk — Z<{fi,$k>fi> / T — Z<£i;xk>‘%i .
i=1 =1

(5.42)

In this method, at the k" step, we orthogonalize the k" vector by comput-
ing its residual with respect to the plane formed by all the previous k — 1
orthonormal vectors.

Another way of extending the transformations of equations (5.41) is, at
the k' step, to compute the residuals of all remaining vectors with respect
just to the k*® normalized vector. We describe this method explicitly in Al-
gorithm 5.2.

Algorithm 5.2 Gram-Schmidt Orthonormalization of a Set of
Linearly Independent Vectors, x1,...,%m
0. For k=1,...,m,

{

set T; = x;.

}

5.4 Iterative Methods 221

1. Ensure that &1 # 0;
set Lﬁl = {fl/Hle
2. fm>1fork=2,...,m,
{
forj=Fk,...,m,
{ ~ ~ ~ ~ ~
set T; = &; — (Tp—1,Tj)Th—1.
}
ensure that z # 0;
set T = -ik/Hi‘kH
} |
Although the method indicated in equation (5.42) is mathematically equiv-
alent to this method, the use of Algorithm 5.2 is to be preferred for compu-
tations because it is less subject to rounding errors. (This may not be im-
mediately obvious, although a simple numerical example can illustrate the
fact —see Exercise 5.3c. We will not digress here to consider this further, but
the difference in the two methods has to do with the relative magnitudes of
the quantities in the subtraction. The method of Algorithm 5.2 is sometimes
called the “modified” Gram-Schmidt method. We will discuss this method
again on page 219.) This is an instance of an important principle:

The form of a mathematical expression and the way the expression
should be evaluated in actual practice may be quite different.

5.4 Iterative Methods

As we mentioned earlier, we distinguish computational methods for matrices
as being either direct, meaning that the number of computations is fixed a
priori, or iterative, meaning that the results of the computations in each step
determine whether to perform additional computations. The methods we have
discussed so far in this chapter are direct. Iterative methods are especially
useful in very large linear systems. They are also usually the favored methods
for sparse systems.

Tterative methods are based on a sequence of approximations that (it is
hoped) converge to the correct solution. The most important considerations
in an iterative method involve its convergence, in terms of both speed and
accuracy.

A fundamental trade-off in iterative methods is between the amount of
work expended in getting a good approximation at each step and the number
of steps required for convergence.

The Gauss-Seidel Method with Successive Overrelaxation

One of the simplest iterative procedures for solving a system of linear equa-
tions is the Gauss-Seidel method. In this method, we begin with an initial

222 5 Numerical Linear Algebra

approximation to the solution, z(?). We then compute an update for the first
element of x:

1 n
xﬁl) = — b1 — Zaljx§0)
j=2

ari
Continuing in this way for the other elements of = for ¢ = 2,...,n, we get
the next approximation to the solution, z(1). After getting the approximation
(1), we then continue this same kind of iteration for z(?),z®) ... in which

we compute the i*? element as

i—1 n
1 -
xgk) =—|b— E aijxg-k) - E aijxgk v, (5.43)
i=1

Qi
i j=i+1

where no sums are performed if the upper limit is smaller than the lower limit.
We continue the iterations until a convergence criterion is satisfied. This
criterion may be of the form

A (xoc)’x(k—l)) <e

where A (x(k) , x(kfl)) is a measure of the difference of z(*) and z(*~1 such as
|2 —2(*=1)||. We may also base the convergence criterion on ||r*) — (=1,
where 7(F) = b — Az(F),

The Gauss-Seidel iterations can be thought of as beginning with a re-
arrangement of the original system of equations as

a1z = b1 —az2 - — a1pTn
a21T1 + a22%2 = b Coe— A2pTn
+
A(n-1)121 + A(n—1)222 + = by — Qpndn
Ap1T1 + ap2T2 + -t ApnTy - bn

In this form, we identify three matrices: a diagonal matrix D, a lower trian-
gular L with Os on the diagonal, and an upper triangular U with Os on the
diagonal:

(D+Lyx=b—-"Ux.

We can write this entire sequence of Gauss-Seidel iterations in terms of these
three fixed matrices:

2+ — (D 4+ L) (~Uz™ +b). (5.44)

This method will converge for any arbitrary starting value z(°) if and only
if the spectral radius of (D + L)~1U is less than 1. (See Golub and Van Loan,
1996, for a proof of this.) Moreover, the rate of convergence increases with
decreasing spectral radius.

5.4 Tterative Methods 223
Successive Overrelaxation

The Gauss-Seidel method may be unacceptably slow, so it may be modified
so that the update is a weighted average of the regular Gauss-Seidel update
and the previous value. This kind of modification is called successive overre-
lazation, or SOR. Instead of equation (5.44), the update is given by

1 1

~(D+ L)z*) = Z((1 —w)D — wlU)z® +b, (5.45)

w w
where the relaxation parameter w is usually chosen to be between 0 and 1. For
w = 1 the method is the ordinary Gauss-Seidel method; see Exercises 5.2c,
5.2e, and 5.2f.

Conjugate Gradient Methods for Symmetric Positive Definite
Systems

In the Gauss-Seidel methods the convergence criterion is based on successive
differences in the solutions #(®¥) and z(*=1) or in the residuals #(*) and r*=1).
Other iterative methods focus directly on the magnitude of the residual

r*) = p— Az, (5.46)

We seek a value z(®) such that the residual is small (in some sense). Meth-
ods that minimize |r(*) ||y are called minimal residual (MINRES) methods or
generalized minimal residual (GMRES) methods.

For a system with a symmetric positive definite coefficient matrix A, it
turns out that the best iterative method is based on minimizing the “conju-

gate” Lo norm
H?"(k)TA_lr(k)Hg.

A method based on this minimization problem is called a conjugate gradient
method.

The problem of solving the linear system Ax = b is equivalent to finding
the minimum of the function

flx) = %J)TAJ? —zTb. (5.47)
By setting the derivative of f to 0, we see that a stationary point of f occurs
at the point x where Az = b.

If A is positive definite, the (unique) minimum of f is at # = A~!b,
and the value of f at the minimum is —%bTAb. The minimum point can be
approached iteratively by starting at a point z(®), moving to a point z(!)
that yields a smaller value of the function, and continuing to move to points
yielding smaller values of the function. The &*® point is z(¥~1) 4 (k=1 p(k=1)
where a*=1 is a scalar and p(*~1 is a vector giving the direction of the
movement. Hence, for the k*" point, we have the linear combination

224 5 Numerical Linear Algebra
G () a(l)p(l) RS a(kfl)p(kfl)'

At the point z(®), the function f decreases most rapidly in the direction
of the negative gradient, —V f(z(®)), which is just the residual,

—Vf(:v(k)) — R

If this residual is 0, no movement is indicated because we are at the solution.

Moving in the direction of steepest descent may cause a very slow con-
vergence to the minimum. (The curve that leads to the minimum on the
quadratic surface is obviously not a straight line. The direction of steepest
descent changes as we move to a new point x(k“).) A good choice for the
sequence of directions p™), p(?), ... is such that

(P*NTAp® =0, fori=1,...,k—1. (5.48)

Such a vector p*) is said to be A-conjugate to p(M,p@ .. p*=1 Given a
current point z(®) and a direction to move p*) to the next point, we must
also choose a distance a®|[p(*)|| to move in that direction. We then have the
next point,

D) = () 4 (k) (k) (5.49)

(Notice that here, as often in describing algorithms in linear algebra, we use
Greek letters, such as a, to denote scalar quantities.)

A conjugate gradient method for solving the linear system is shown in
Algorithm 5.3. The paths defined by the directions p™),p3), ... in equa-
tion (5.48) are called the conjugate gradients.

Algorithm 5.3 The Conjugate Gradient Method for Solving the
Symmetric Positive Definite System Az = b, Starting with (%)

0. Input stopping criteria, € and kpyax-
Set k= 0; r*) = b — Az®); s) = Ar(0); p(k) = s(): and (k) = ||s(F)||2,

L. If y®) <¢, set x = 2(¥) and terminate.
2. Set ¢®) = Ap().
3. Set alk) = %
4. Set z(F+1) = z(k) 4 (k) p(k)
5. Set r(k+1) = p(k) _ o (k) g (k)
6. Set s(F+1) = Ap(k+1)
7. Set AkHD = || s+ 12,
8. Set pk+1) = g(k+1) | v;’“(:)“pw),
9. If k < kmax,
set k =k + 1 and go to step 1;
otherwise

issue message that
“algorithm did not converge in kp,.x iterations”. |

5.4 Iterative Methods 225

This algorithm is a simple example of Newton’s method (see page 249), which
specifies the directions of the steps as Ar(®), where r*) is the residual, b —
Az®) | at the k™ step.

There are various ways in which the computations in Algorithm 5.3 could
be arranged. Although any vector norm could be used in Algorithm 5.3, the
Lo norm is the most common one.

This method, like other iterative methods, is more appropriate for large
systems. (“Large” in this context means bigger than 1000 x 1000.)

In exact arithmetic, the conjugate gradient method should converge in n
steps for an n X n system. In practice, however, its convergence rate varies
widely, even for systems of the same size. Its convergence rate generally de-
creases with increasing Lo condition number (which is a function of the max-
imum and minimum nonzero eigenvalues), but that is not at all the complete
story. The rate depends in a complicated way on all of the eigenvalues. The
more spread out the eigenvalues are, the slower the rate. For different sys-
tems with roughly the same condition number, the convergence is faster if all
eigenvalues are in two clusters around the maximum and minimum values.

Preconditioning

In order to achieve acceptable rates of convergence for iterative algorithms, it
is often necessary to precondition the system; that is, to replace the system
Ax = b by the system

M YAz =M1

for some suitable matrix M. The choice of M involves some art, and we will
not consider the issues further here.

Restarting and Rescaling

In many iterative methods, not all components of the computations are up-
dated in each iteration. As we mentioned in Chapter 3, there is sometimes a
tradeoff between the number of iterations required for convergence and the
amount of work done in each iteration.

An approximation to a given matrix or vector may be adequate during
some sequence of computations without change, but then at some point the
approximation is no longer close enough, and a new approximation must be
computed. An example of this is in the use of quasi-Newton methods in op-
timization in which an approximate Hessian is updated (see Chapter 6). We
may, for example, just compute an approximation to the Hessian every few
iterations, perhaps using second differences, and then use that approximate
matrix for a few subsequent iterations.

226 5 Numerical Linear Algebra
Preservation of Sparsity

In computations involving large sparse systems, we may want to preserve
the sparsity, even if that requires using approximations. Fill-in (when a zero
position in a sparse matrix becomes nonzero) would cause loss of the compu-
tational and storage efficiencies of software for sparse matrices.

In forming a preconditioner for a sparse matrix A, for example, we may
choose a matrix M = LU, where L and U are approximations to the matrices
in an LU decomposition of A. These matrices are constructed so as to have
zeros everywhere A has, and A ~ LU. This is called incomplete factorization,
and often, instead of an exact factorization, an approximate factorization may
be more useful because of computational efficiency.

Iterative Refinement

Once an approximate solution (%) to the linear system Az = b is available,
iterative refinement can yield a solution that is closer to the true solution.
The residual

r=b— Az

is used for iterative refinement. Clearly, if h = A*r, then 2(9) + h is a solution
to the original system.

The problem considered here is not just an iterative solution to the linear
system discussed above. Here, we assume z(?) was computed accurately given
the finite precision of the computer. In this case, it is likely that r cannot be
computed accurately enough to be of any help. If, however, r can be computed
using a higher precision, then a useful value of h can be computed. This process
can then be iterated as shown in Algorithm 5.4.

Algorithm 5.4 Iterative Refinement of the Solution to Ax = b,
Starting with z(©)

0. Input stopping criteria, € and kpyax-
Set k= 0.
Compute 7¥) = b — Az(®) in higher precision.
Compute h(F) = Aty
Set z*:+1) = z(k) 4 p(k),
If ||A®) || < e||lz*+D)]|, then
set & = z**D and terminate; otherwise,
if £ < kmax,
set k =k + 1 and go to step 1;
otherwise,
issue message that
“algorithm did not converge in k. iterations”. |

=W N

In step 2, if A is of full rank then A% is A~!. Also, as we have emphasized
already, the fact that we write an expression such as ATr does not mean that

5.5 Updating a Solution to a Consistent System 227

we compute AT. The norm in step 4 is usually chosen to be the oo norm.
The algorithm may not converge, so it is necessary to have an alternative exit
criterion, such as a maximum number of iterations.

The use of iterative refinement as a general-purpose method is severely
limited by the need for higher precision in step 1. On the other hand, if
computations in higher precision can be performed, they can be applied to
step 2— or just in the original computations for z(°). In terms of both accu-
racy and computational efficiency, using higher precision throughout is usually
better.

5.5 Updating a Solution to a Consistent System

In applications of linear systems, it is often the case that after the system
Ax = b has been solved, the right-hand side is changed and the system Az = ¢
must be solved. If the linear system Ax = b has been solved by a direct method
using one of the factorizations discussed above, the factors of A can be used
to solve the new system Ax = c. If the right-hand side is a small perturbation
of b, say ¢ = b+ 0b, an iterative method can be used to solve the new system
quickly, starting from the solution to the original problem.

If the coefficient matrix in a linear system Ax = b is perturbed to result
in the system (A + 0 A)x = b, it may be possible to use the solution xq to the
original system efficiently to arrive at the solution to the perturbed system.
One way, of course, is to use xq as the starting point in an iterative procedure.
Often, in applications, the perturbations are of a special type, such as

g:A—uvT,

where u and v are vectors. (This is a “rank-one” perturbation of A, and
when the perturbed matrix is used as a transformation, it is called a “rank-
one” update. As we have seen, a Householder reflection is a special rank-one
update.) Assuming A is an n x n matrix of full rank, it is easy to write A~!
in terms of A71:

AP = A oA) (0TATY) (5.50)

with
1
1—0vTA- 1y
These are called the Sherman-Morrison formulas. A~ exists so long as
vT A7 u # 1. Because g = A~'b, the solution to the perturbed system is

(A=) (vl o)
(1 —vTA-1y)’

a =

To = xo +

If the perturbation is more than rank one (that is, if the perturbation is

A=A-UVT, (5.51)

228 5 Numerical Linear Algebra

where U and V are n X m matrices with n > m), a generalization of the
Sherman-Morrison formula, sometimes called the Woodbury formula, is

A=A 4 AU, - VTAT) VT AT (5.52)
The solution to the perturbed system is easily seen to be
Fo=mx0+ AU, — VEATIU) 'V Ty,

As we have emphasized many times, we rarely compute the inverse of a ma-
trix, and so the Sherman-Morrison-Woodbury formulas are not used directly.
Having already solved Az = b, it should be easy to solve another system,
say Ay = u;, where u; is a column of U. If m is relatively small, as it is in
most applications of this kind of update, there are not many systems Ay = u;
to solve. Solving these systems, of course, yields AU, the most formidable
component of the Sherman-Morrison-Woodbury formula. The system to solve
is of order m also.

Occasionally the updating matrices in equation (5.51) may be used with a
weighting matrix, so we have A=A—UWVT. An extension of the Sherman-
Morrison-Woodbury formula is

A-UwWvhHt=Aa"t Al uw— —vTAa~tu)y"tvTa~t. (5.53)

This is sometimes called the Hemes formula.
Another situation that requires an update of a solution occurs when the
system is augmented with additional equations and more variables:

] 2] =[]

Ag1 Ago T4 N b+ '

A simple way of obtaining the solution to the augmented system is to use the
solution x(to the original system in an iterative method. The starting point
for a method based on Gauss-Seidel or a conjugate gradient method can be
taken as (zg,0), or as (zo, xf)) if a better value of xf) is known.

In many statistical applications, the systems are overdetermined, with A
being n x m and n > m. In the next section, we consider the general problem
of solving overdetermined systems by using least squares, and then we discuss
updating a least squares solution to an overdetermined system.

5.6 Overdetermined Systems; Least Squares

Linear models are often used to express a relationship between one observable
variable, a “response”, and another group of observable variables, “predictor
variables”. Consider a simple linear model in an equation of the form y = by +
bT2. The model is unlikely to fit exactly any set of observed values of responses

5.6 Overdetermined Systems; Least Squares 229

and predictor variables. This may be due to effects of other predictor variables
that are not included in the model, measurement error, the relationship among
the variables being nonlinear, or some inherent randomness in the system.

In such applications, we generally take a larger number of observations
than there are variables in the system; thus, with each set of observations on
the response and associated predictors making up one equation, we have a
system with more equations than variables. This results in an overdetermined
system of linear equations, so instead of having the canonical problem of
equation (5.4), we have a situation that cannot fit a simple linear equations
relating the y and x.

An overdetermined system may be written as

Xb=y, (5.54)

where X is nxm and rank(X|y) > m; that is, the system is not consistent. We
have changed the notation slightly from the consistent system (5.4) Az = b
that we have been using because now we have in mind statistical applications,
and in those the notation y ~ X is more common. The problem is to de-
termine a value of b that makes the approximation close in some sense. In
applications of linear systems, we refer to this as “fitting” the system, which
is referred to as a “model”.

Overdetermined systems arise frequently in fitting equations to data. The
usual linear regression model is an overdetermined system and we discuss
statistical regression problems further in Chapter 17.

We should not confuse statistical inference with fitting equations to data,
although the latter task is a component of the former activity, but in this
section, we consider some of the more mechanical and computational aspects
of the problem.

Least Squares Solution of an Overdetermined System

Although there may be no b that will make the system in (5.54) an equation,
the system can be written as the equation

Xb=y—r, (5.55)

where r is an n-vector of possibly arbitrary residuals or “errors”.

A least squares solution b to the system in (5.54) is one such that the
Euclidean norm of the vector of residuals is minimized; that is, the solution
to the problem

min [y — Xbl|2. (5.56)

The least squares solution is also called the “ordinary least squares” (OLS)
fit.
By rewriting the square of this norm as

230 5 Numerical Linear Algebra
(y — Xb)"(y — Xb), (5.57)

differentiating, and setting it equal to 0, we see that the minimum (of both
the norm and its square) occurs at the b that satisfies the square system

XTxb=XxTy. (5.58)

The system (5.58) is called the normal equations. As we mentioned on
page 208, the condition number of XT X is the square of the condition number
of X. Because of this, it may be better to work directly on X in (5.54) rather
than to use the normal equations. The normal equations are useful expressions,
however, whether or not they are used in the computations. This is another
case where a formula does not define an algorithm. We should note, of course,
that any information about the stability of the problem that the Gramian
may provide can be obtained from X directly.

Special Properties of Least Squares Solutions

The least squares fit to the overdetermined system has a very useful property
with two important consequences. The least squares fit partitions the space
into two interpretable orthogonal spaces. As we see from equation (5.58), the
residual vector y — Xb is orthogonal to each column in X:

XT(y— Xb) =0. (5.59)

A consequence of this fact for models that include an intercept is that the
sum of the residuals is 0. (The residual vector is orthogonal to the 1 vector.)
Another consequence for models that include an intercept is that the least
squares solution provides an exact fit to the mean.

These properties are so familiar to statisticians that some think that these
facts are essential characteristics of any regression modeling; they are not.
We will see in later sections that they do not hold for other approaches to
fitting the basic model y &~ Xb. The least squares solution, however, has some
desirable statistical properties under fairly common distributional assump-
tions. We discuss statistical aspects of least squares solutions in Chapter 17,
beginning on page 604.

Weighted Least Squares

One of the simplest variations on fitting the linear model Xb = y is to allow
different weights on the observations; that is, instead of each row of X and
corresponding element of y contributing equally to the fit, the elements of X
and y are possibly weighted differently.

The relative weights can be put into an n-vector w and the squared norm
in equation (5.57) replaced by a quadratic form in diag(w). More generally,
we form the quadratic form as

5.6 Overdetermined Systems; Least Squares 231
(y — Xb)"W (y — Xb), (5.60)

where W is a positive definite matrix. Because the weights apply to both y
and Xb, there is no essential difference in the weighted or unweighted versions
of the problem.

The use of the QR factorization for the overdetermined system in which
the weighted norm (5.60) is to be minimized is similar to the development
above. It is exactly what we get if we replace y — Xb in equation (5.61) by
We(y — Xb), where W is the Cholesky factor of W.

There are other variations on ordinary least squares for fitting the linear
model, and we will discuss some of them in Section 17.3.

We now continue to address some of the computational issues of least
squares.

Least Squares with a Full Rank Coefficient Matrix

If the n x m matrix X is of full column rank, the least squares solution, from
equation (5.58), is b = (XTX)~1 X Ty and is obviously unique. A good way to
compute this is to form the QR factorization of X.

First we write X = QR, as in equation (5.29) on page 216, where R is as

in equation (5.30),
r= |18
=10 |

with Ry an m x m upper triangular matrix. The residual norm (5.57) can be
written as

(y — Xb)"(y — Xb) = (y — QRb)" (y — QRD)
= (Q"y — Rb)"(Q"y — Rb)
= (Cl — Rlb)T(Cl — Rlb) + CQTCQ, (561)

where ¢y is a vector with m elements and ¢, is a vector with n — m elements,

such that
c
QTy = <C;>) (5.62)

Because quadratic forms are nonnegative, the minimum of the residual norm
in equation (5.61) occurs when (c¢; — Rib)T(c; — Rib) = 0; that is, when
(¢c1 — R1b) =0, or

Rlb =C1. (563)

We could also use the same technique of differentiation to find the minimum
of equation (5.61) that we did to find the minimum of equation (5.57).
Because R; is triangular, the system is easy to solve: b= Rflcl. From
equation (5.32), we have
Xt =[R{'0],

232 5 Numerical Linear Algebra

and so we have R
b=X"Ty. (5.64)

We also see from equation (5.61) that the minimum of the residual norm
is c3 co. This is called the residual sum of squares in the least squares fit.

Least Squares with a Coefficient Matrix Not of Full Rank

If X is not of full rank (that is, if X has rank r < m), the least squares
solution is not unique, and in fact a solution is any vector b= (XTX)~XTy,
where (XTX)~ is any generalized inverse. This is a solution to the normal
equations (5.58). The residual corresponding to this solution is

y— X(XTX)" XTy =T - X(XTX)"XxT)y.

The residual vector is invariant to the choice of generalized inverse, as we see
from equation (1.54) on page 26.

An Optimal Property of the Solution Using the Moore-Penrose
Inverse

The solution corresponding to the Moore-Penrose inverse is unique because, as
we have seen, that generalized inverse is unique. That solution is interesting
for another reason, however: the b from the Moore-Penrose inverse has the
minimum Lo-norm of all solutions.
To see that this solution has minimum norm, first factor X, as in equa-
tion (5.37) on page 217,
X = QRU",

and form the Moore-Penrose inverse as in equation (5.39):

RO
+ __ 1 T
X —U{ 0 O}Q .
Then R
b=X1y (5.65)

is a least squares solution, just as in the full rank case. Now, let

Qly = <2>

as in equation (5.62), except ensure that ¢; has exactly r elements and ¢ has

n — r elements, and let
UTh=
z9 ’

5.6 Overdetermined Systems; Least Squares 233

where z; has r elements. We proceed as in the equations (5.61). We seek
to minimize ||y — Xb||2 (which is the square root of the expression in equa-
tions (5.61)); and because multiplication by an orthogonal matrix does not
change the norm, we have

ly — Xbll2 = [|QT (y — XUUb)| 2
=) -5 0] ()
<[(o)

The residual norm is minimized for z; = Rflcl and zo arbitrary. However, if
z3 = 0, then ||z||2 is also minimized. Because UTb = z and U is orthogonal,

2

(5.66)

2

||3H2 =||2z||2, and so H/I;HQ is the minimum among all least squares solutions.

Updating a Least Squares Solution of an Overdetermined System

In regression applications, after fitting the linear model, we may obtain ad-
ditional observations. Alternatively, we may decide to include more predictor
variables in the model. The original overdetermined system is modified by
adding either some rows or some columns to the coefficient matrix X. This
corresponds to including additional equations in the system,

(X X,] [bﬂ ~y.

In either case, if the QR decomposition of X is available, the decomposition
of the augmented system can be computed readily. Consider, for example,
the addition of k equations to the original system Xb = y, which has n
approximate equations. With the QR decomposition, for the original full rank
system, putting QT X and QTy as partitions in a matrix, we have

R1 C1
0 Co

or to adding variables,

|=amx).

Augmenting this with the additional rows yields

RCl T
_ Q70 Xy
0 co _[0 I Xy, | (5.67)
X4+ yy

234 5 Numerical Linear Algebra

All that is required now is to apply orthogonal transformations, such as Givens
rotations, to the system (5.67) to produce

|:R* Cl*:|
0 Cox ’
where R, is an m X m upper triangular matrix and ¢, is an m-vector as
before but ca. is an (n — m + k)-vector.

The updating is accomplished by applying m rotations to system (5.67)
so as to zero out the (n + ¢)™ row for ¢ = 1,2,...,k. These operations

go through an outer loop with p = 1,2,...,n and an inner loop with ¢ =

1,2,...,k. The operations rotate R through a sequence R"% into R,, and
they rotate X through a sequence XJ(rp D into 0. We consider these rotations
further on page 377. As we see there, at the p, ¢ step, the rotation matrix @,

corresponding to equation (9.4) has

(p,9)
cosh = 22—
r
and)
(Xer,q)
sin = ——2
r
where

r= \/<R§,§’,’Q))2 + ((XSf"”)qp)Q.

Other Solutions of Overdetermined Systems

A solution to an inconsistent, overdetermined system
Xbry,

where X is n x m and rank(X|y) > m, is some value b that makes y — Xb
close to zero. We define “close to zero” in terms of a norm on y — Xb. The
most common norm, of course, is the Ly norm as in expression (5.56), and
the minimization of this norm is straightforward, as we have seen. In addition
to the simple analytic properties of the Lo norm, the least squares solution
has some desirable statistical properties under fairly common distributional
assumptions, as we have seen.

There are various norms that may provide a reasonable fit. In addition to
the use of the Lo norm, that is, an ordinary least squares (OLS) fit, there are
various other ways of approaching the problem. We will return to this topic,
and consider variations on least squares as well as use of other norms in fitting
a linear model in Section 17.3.

5.7 Other Computations with Matrices 235

As we have stated before, we should not confuse statistical inference with
fitting equations to data, although the latter task is a component of the for-
mer activity. In statistical applications, we need to make statements (that is,
assumptions) about relevant probability distributions. These probability dis-
tributions, together with the methods used to collect the data, may indicate
specific methods for fitting the equations to the given data.

5.7 Other Computations with Matrices

There are several other kinds of computational problems that we will not ad-
dress in this book. One important example is the extraction of eigenvalues.
The most common method for this problem is the Q R method, which was se-
lected as one of the Top 10 algorithms of the twentieth century (see page 138).
The QR method for computing eigenvalues is described in Gentle (2007), Sec-
tion 7.4.

In the next section we briefly discuss the problem of determining a reduced-
rank matrix that approximates a given matrix. We close with a section on the
use of consistency checks, as discussed on page 112, for the specific problem
of solving a linear system.

Matrix Approximation

We may wish to approximate the matrix A with a matrix A, of rank r <
rank(A). The singular value decomposition provides an easy way to do this,

A, =UD, VT,

where D, is the same as D, except with zeros replacing all but the r largest
singular values. It can be shown that A, is the rank r matrix closest to A as
measured by the Frobenius norm,

A= Arllr,

(see Gentle, 2007). This kind of matrix approximation is the basis for dimen-
sion reduction by principal components. We discuss principal components in
Chapter 16.

Consistency Checks for Identifying Numerical Errors

In real-life applications, the correct solution is not known, but we would still
like to have some way of assessing the accuracy using the data themselves.
Sometimes a convenient way to do this in a given problem is to perform inter-
nal consistency tests. An internal consistency test may be an assessment of the
agreement of various parts of the output. Relationships among the output are

236 5 Numerical Linear Algebra

exploited to ensure that the individually computed quantities satisfy these re-
lationships. Other internal consistency tests may be performed by comparing
the results of the solutions of two problems with a known relationship.

The solution to the linear system Az = b has a simple relationship to the
solution to the linear system Ax = b+ ca;, where a; is the j'' column of A
and ¢ is a constant. A useful check on the accuracy of a computed solution
to Az = b is to compare it with a computed solution to the modified system.
Of course, if the expected relationship does not hold, we do not know which
solution is incorrect, but it is probably not a good idea to trust either. If the
expected relationships do not obtain, the analyst has strong reason to doubt
the accuracy of the computations.

Another simple modification of the problem of solving a linear system with
a known exact effect is the permutation of the rows or columns. Although this
perturbation of the problem does not change the solution, it does sometimes
result in a change in the computations, and hence it may result in a different
computed solution. This obviously would alert the user to problems in the
computations.

Another simple internal consistency test that is applicable to many prob-
lems is to use two levels of precision in the computations. In using this test,
one must be careful to make sure that the input data are the same. Rounding
of the input data may cause incorrect output to result, but that is not the
fault of the computational algorithm.

Internal consistency tests cannot confirm that the results are correct; they
can only give an indication that the results are incorrect.

Notes and Further Reading

More complete coverage of the computational issues in linear algebra are cov-
ered in Cizkova and Cizek (2004), in Part IIT of Gentle (2007), and in Golub
and Van Loan (1996).

Computational methods for sparse matrices are discussed in some detail
in Saad (2003).

Software for Numerical Linear Algebra

Mathematical software for linear algebra has traditionally been some of the
best software, from the earlier days when libraries in various programming
languages were widely distributed to the interpretive systems that allowed
direct manipulation of vectors and matrices. Currently, there are several rel-
atively mature interactive systems, including Matlab and Octave from an
applied mathematics heritage, and S-Plus and R that emphasize statistical
applications. There continues to be a need for specialized software for very
large linear systems or for rather specialized applications. There are many

Exercises 237

libraries for these needs in Fortran or C/C++ that are freely available. A list
of such software is maintained at

http://www.netlib.org/utk/people/JackDongarra/la-sw.html

The R system is widely used by statisticians. This system provides a wide
range of operations for vectors and matrices. It treats vectors as special kind
of list and matrices as special kinds of rectangular arrays. An impact of this
is in writing functions that accept matrices; a vector will not be accepted just
as a matrix with one dimension being 1. A vector has a length attribute but
not a dim attribute.

Certain aspects of the result of operations that involve both vectors and
matrices do not correspond with what the user might expect. For example,
if A is a matrix and x is a vector, A%*%x is an array instead of a vector;
A%+t (x) is not an allowable operation but x%*%A is allowable and is the
same as t(x)%*%A and they are both arrays instead of vectors; and x¥%*%x
is the same as t(x)%*%x and they are both arrays instead of scalars. The
functions as.vector and as.matrix can be used to convert the results to the
expected class.

Exercises

5.1. Matrix norms and condition numbers.
In the system of linear equations (1.169) in Exercise 1.5 on page 75 (see
also solution on page 677), the solution is easily seen to be z; = 1.000 and
x9 = 1.000. Figure 5.1 illustrates the original system and this modified
one.
Now consider a small change in the right-hand side:

1.000z1 + 0.500z2 = 1.500,

0.667x1 + 0.333z5 = 0.999. (5.68)

This system has solution x; = 0.000 and x5 = 3.000.
Alternatively, consider a small change in one of the elements of the coef-

ficient matrix:
1.000z1 + 0.500z2 = 1.500,

0.667x1 + 0.334z2 = 1.000.

The solution now is z; = 2.000 and x> = —1.000.

In both cases, small changes of the order of 1072 in the input (the elements
of the coefficient matrix or the right-hand side) result in relatively large
changes (of the order of 1) in the output (the solution). Solving the system
(either one of them) is an ill-conditioned problem.

The nature of the data that cause ill-conditioning depends on the type
of problem. In this case, the problem is that the lines represented by the
equations are almost parallel, as seen in Figure 5.1, and so their point of

(5.69)

238 5 Numerical Linear Algebra

~ — ~ —
o — o —
o — o —
2 - = -
o - o
T T
o o~
I I
T T T T T T
o 1 2 o 1 2
X4 X

Fig. 5.1. Almost Parallel Lines: Ill-Conditioned Coefficient Matrices, Equa-
tions (1.169) and (5.68)

intersection is very sensitive to slight changes in the coefficients defining
the lines.
The problem can also be described in terms of the angle between the lines.
When the angle is small, but not necessarily 0, we refer to the condition
as “collinearity”.
We would expect that these properties of the system of equations would
be reflected in the condition number of the coefficient matrix A.
Evaluate k1(A), k2(A), and ko (A). (Notice that the condition numbers
are not exactly the same, but they are close. Notice also that the condition
numbers are of the order of magnitude of the ratio of the output pertur-
bation to the input perturbation in those equations. These numbers are
“large” only in a relative sense to 10~3. They are not nearly large enough
to cause any problems on the computer.)

5.2. Consider the system of linear equations

1 + 4xe + x3 =12,
2x1 + 5x2 4 3x3 = 19,
T1 + 229 + 223 = 9.

a) Solve the system using Gaussian elimination with partial pivoting.

b) Solve the system using Gaussian elimination with complete pivoting.

¢) Determine the D, L, and U matrices of the Gauss-Seidel method
(equation (5.44), page 222) and determine the spectral radius of

(D+ L) 'U.

d)

g)

Exercises 239

We stated that the convergence rate of the Gauss-Seidel method in-
creases as the spectral radius p of (D+ L)~ 1U decreases. We also know
that p(cA) = ep(A). Why don’t we just scale the problem to increase
the convergence rate?

Do two steps of the Gauss-Seidel method starting with (%) = (1,1, 1),
and evaluate the Ly norm of the difference of two successive approxi-
mate solutions.

Do two steps of the Gauss-Seidel method with successive overrelax-
ation using w = 0.1, starting with 2(®) = (1,1,1), and evaluate the Ly
norm of the difference of two successive approximate solutions.
Do two steps of the conjugate gradient method starting with a(
(1,1,1), and evaluate the Ly norm of the difference of two successive
approximate solutions.

0) _

5.3. Gram-Schmidt orthonormalization.

a)

Write a program module (in Fortran, C, R or S-Plus, Octave or Mat-
lab, or whatever language you choose) to implement Gram-Schmidt
orthonormalization using Algorithm 5.2. Your program should be for
an arbitrary order and for an arbitrary set of linearly independent
vectors.

Write a program module to implement Gram-Schmidt orthonormal-
ization using equations (5.41) and (5.42).

Experiment with your programs. Do they usually give the same re-
sults? Try them on a linearly independent set of vectors all of which
point “almost” in the same direction. Do you see any difference in the
accuracy? Think of some systematic way of forming a set of vectors
that point in almost the same direction. One way of doing this would
be, for a given z, to form = + ee; for ¢ = 1,...,n — 1, where e; is
the i*® unit vector, that is, the vector with Os in all positions except
the *" position, which is 1, and € is a small positive number. The
difference can even be seen in hand computations for n = 3. Take
r1 = (1,1075,107°), 25 = (1,1075,0), and =3 = (1,0,1075).

5.4. Generalized inverses.

2)
b)

Confirm that A* = [R;' 0] QT (equation (5.32)).
With A decomposed as in equation (5.34), confirm that

_ 7 0] o
Nt

is a generalized inverse of A

5.5. Solving an overdetermined system Xb =y, where X is n x m.

a)

Count how many multiplications and additions are required to form
XTX. (A multiplication or addition such as this is performed in float-
ing point on a computer, so the operation is called a “flop”. Sometimes
a flop is considered a combined operation of multiplication and addi-
tion; at other times, each is considered a separate flop. The distinction
is not important here; just count the total number.)

240 5 Numerical Linear Algebra

b) Count how many flops are required to form X Ty.

c¢) Count how many flops are required to solve XTXb = X Ty using a
Cholesky decomposition.

d) Count how many flops are required to form a QR decomposition of X
using reflectors.

e) Count how many flops are required to form a QTy.

f) Count how many flops are required to solve R1b = ¢1 (equation (5.63),
page 231).

g) If nis large relative to m, what is the ratio of the total number of flops
required to form and solve the normal equations using the Cholesky
method to the total number required to solve the system using a QR
decomposition? Why is the QR method generally preferred?

6

Solution of Nonlinear Equations and
Optimization

As we discussed in Section 1.8, most problems in statistical inference can be
posed as optimization problems.
An optimization problem is to solve

argmin f(x) (6.1)
zeD

for z. The scalar-valued function f is called the objective function. The variable
x, which is usually a vector, is called the decision variable, and its elements
are called decision variables. The domain D of the decision variables is called
the feasible set.

In this chapter, after some preliminary general issues, we will consider dif-
ferent methods, which depend on the nature of D. First we consider problems
in which D is continuous. The methods for continuous D often involve solving
nonlinear equations, so we discuss techniques for solving equations in Sec-
tion 6.1, before going on to the topic of optimization over continuous domains
in Section 6.2. In Section 6.3 we consider the problem of optimization over a
discrete domain. We mention a variety of methods, but consider only one of
these, simulated annealing, in any detail.

In Section 6.2 we assume that D = IR™, that is, we assume that there
are no constraints on the decision variables, and in Section 6.3 we likewise
generally ignore any constraints imposed by D. In Section 6.4, we consider
the necessary changes to accommodate constraints in D.

In the final sections we consider some specific types of optimization prob-
lems that arise in statistical applications.

Categorizations of Optimization Problems

This basic problem (6.1) has many variations. A simple variation is the max-
imization problem, which is addressed by using — f(x). The general methods
do not depend on whether we are minimizing or maximizing. We use the term

J.E. Gentle, Computational Statistics, Statistics and Computing, 241
DOI: 10.1007/978-0-387-98144-4_6,
© Springer Science + Business Media, LLC 2009

242 6 Solution of Nonlinear Equations and Optimization

“optimum” generally to mean either a minimum or maximum, depending on
how the problem is stated.

If D is essentially irrelevant (that is, if D includes all for which f(x) is
defined), the problem is called an unconstrained optimization problem. Oth-
erwise, it is a constrained optimization problem.

Two distinct classes of problems can be associated with the cardinality of
D. In one class, D is continuous, dense, and uncountable. In the other class,
D is discrete and countable. The techniques for solving problems in these two
classes are quite different, although techniques for one type can be used as
approximations in the other type.

In this chapter, we will address all of these types of problems, but not with
equal time. We will give most attention to the case of continuous D. The na-
ture of f determines how the problem must be addressed, and this is especially
true in the case of continuous D. If f is linear, the unconstrained problem is
either trivial or ill-posed. If f is linear and the problem is constrained, the
nature of D determines what kinds of algorithms are appropriate. If D is a
convex polytope, for example, the problem is a linear program. The simplex
method, which is a discrete stepping algorithm, is the most common way to
solve linear programming problems. (This method was chosen as one of the
Top 10 algorithms of the twentieth century; see page 138.) Linear programs
arise in a limited number of statistical applications, for example, in linear re-
gression fitting by minimizing either the L; or the Lo, norm of the residuals.
We will only briefly discuss linear programming in this chapter.

In the more general case of f over a continuous domain, the continuity of
f is probably the most important issue. If f is arbitrarily discontinuous, there
is very little that can be done in a systematic fashion. For general methods in
continuous domains, we will limit our consideration to continuous objective
functions. After continuity, the next obvious issue is the differentiability of
f, and for some methods, we make assumptions about its differentiability.
These assumptions are of two types: about existence, which affects theoretical
properties of optimization methods, and, assuming they exist, about the cost
of computation of derivatives, which affects the choice of method for solving
the problem.

The other broad class of optimization problems are those in which D is
discrete and countable. These are essentially problems in combinatorics. They
must generally be attacked in very different ways from the approaches used
in continuous domains.

Optimization problems over either dense or countable domains may have
more than one solution; that is, there may be more than one point at which
the minimum is attained. In the case of dense domains, the set of optimal
points may even be uncountable. A more common case is one in which within
certain regions of the domain, there is a local optimum, and within another
region, there is another local optimum. We use the terms “global optimum?”
to refer to an optimum over the domain D. We use the term “local optimum”

6 Solution of Nonlinear Equations and Optimization 243

to refer to an optimum within some region of D. (“Region” is not precisely
defined, and of course, in any event, it must depend on the nature of D.

It is generally difficult for an optimization method to detect the existence
of local optima. In fact, in the case of optimization problems over dense do-
mains, after a given problem is solved, we could always look back over the
iterations and change the given objective function so that it retains its original
continuity and differentiability characteristics and the iterations would pro-
ceed exactly as they did for the given problem, yet the new objective function
is arbitrarily smaller at some point other than the computed solution. We will
not go through the details to prove this, but it should be obvious because we
can stretch any function over the “holes” in a grid and still retain continuity
and differentiability. This fact means that we could never have a computer
algorithm that is guaranteed to determine a global optimum.

Two other issues involve the evaluation of the objective function. The ob-
jective function may be “noisy”; that is, for given x, we may compute or
observe f(z) + €. The noise may be due either to computational approxima-
tions or to the underlying model of the problem we are attempting to solve.
From the standpoint of the mechanical techniques of optimization, the source
of the noise is not relevant. The existence of the noise, however, may have
implications for the organization of the computations in the algorithm. An-
other issue is whether the evaluation of the objective function is easy and
cheap, or difficult and expensive. The cost of evaluating the objective func-
tion may affect the way we arrange the computations within an iteration of
an optimization algorithm.

Another categorization relevant to optimization concerns the nature of the
algorithm, rather than of the problem. An algorithm may involve deterministic
steps, or it may follow random paths. We refer to algorithms of the latter type
as “stochastic algorithms”. They are particularly useful in problems that have
multiple optima, and in combinatorial problems, in which they are used to
sample points in the domain.

Testing for Convergence

On page 129 in Chapter 3, we discussed some of the issues in testing for
convergence in iterative algorithms. As we indicated there, the problem is
difficult and the methods are often necessarily ad hoc.

Convergence tests usually involve comparisons such as (3.12) or (3.14):

A (xac)’x(kfl)) <e

or
A (xac),x(kfl)) <e,

Other tests may involve change in the function; that is,

(s (e). () =

x(kfl)‘ .

244 6 Solution of Nonlinear Equations and Optimization

B (050) < ()

These tests are only for algorithmic convergence, of course.

As we discuss algorithms in the following sections, for simplicity, we will
not include the convergence tests in the algorithms themselves. Instead, we
will refer to a logical value of a function “converged(-)” that has an argument
or multiple arguments on which convergence tests are based:

or

converged(dy, da, . . .). (6.2)

This logical function may have several built-in tolerance factors and may
employ various tests. For example, if d; = z*) and dy = (*~1, one test in
converged(dy, da, . ..) might be based on the comparison

2 — k=D < ¢

In the descriptions of algorithms, we will use the term “converged” to
indicate that some convergence criterion has been satisfied. For example, a
step in an algorithm may contain the phrase

“if converged(dy, da,...)...”

which would mean that the convergence test is based on the current values of
di,da, It does not specify the convergence test, however.

An algorithm should always be defined in such a way that it will termi-
nate. (The formal definition of algorithm requires that it terminate in a finite
number of steps.) This means that an iterative algorithm should always have
a limit on the number of iterations. In the iterative algorithms we describe in
this chapter, we often have a step “Set k = k + 17, where k is an iteration
counter. At the point at which k is incremented, any program implementing
the algorithm should include a test for the limit on the number of iterations.
Because this test is not included explicitly in the algorithms described in this
chapter, technically whether or not they are “algorithms” depends on the
problems to which they are applied.

When an algorithm terminates because of reaching the limit on the number
of iterations, we say that it did not converge.

6.1 Finding Roots of Equations

We will describe several general methods for solving a system of nonlinear
equations.

For convergence tests in the case of finding roots of an equation, in addition
to measures of changes within the domain of the function, we also often can
use a comparison such as (3.13):

6.1 Finding Roots of Equations 245
[F@®)| < e

so in statements of algorithms, we may use the phrase
“if converged (d, f(x(k)))...”

A program implementing any of these algorithms should be set to termi-
nate if the number of iterations exceeds some fixed number before algorithmic
convergence has occurred. In this case, the program should inform the user
that the algorithm has not converged.

Basic Methods for a Single Equation

We first consider methods for a single equation in a scalar variable. For the
problem of a single equation, there are several methods:

simple fixed-point method,
bisection method,
Newton’s method,

secant method,

regula falsi method.

We also introduce and briefly discuss stochastic approximation in the context
of a single equation.

Also for a single equation, we consider the condition of the problem, and
define a condition number for finding a root of an equation.

Each of the methods discussed may be the best for some given problem,
and it is important to understand how these methods work. There are some
specialized methods, such as for finding the roots of a polynomial, but we will
not discuss them.

Consider a scalar-valued function f of a scalar variable x. Our objective
is to find a value of = for which

f(z) =0. (6.3)

If there is no closed form for the inverse f~!(-), and if f is continuous,
then the solution is effected by an iterative process. As mentioned above,
the iterative process must have a convergence criterion to decide when the
solution is “close enough”, and the number of iterations allowed must also be
bounded.

In the following discussion, we assume f is a continuous function, and that
a solution x(exists. We will sometimes use x without the subscript. There may
be multiple solutions, of course, and in some cases we may wish to know if there
are multiple solutions, and if so, to find all of them. If f can be factored, we
may reduce the function and continue to find additional roots. That is rarely
the case, so the more common approach is to use different starting points and
hope that the iterative algorithm will converge to a different solution.

We will illustrate various methods using the function

246 6 Solution of Nonlinear Equations and Optimization
f(z) = 2% — 42 + 182 — 115, (6.4)

which has a single root at © = 5. (There are special algorithms for roots of
polynomials, but we will not discuss them here.)

Fixed-Point Method

A general type of iteration for problems such as (6.3) is called a fized-point
method, or fixed-point iteration. In this problem the fixed-point method uses
the fact that at the solution

xro = f((Eo) “+ xp.

The fixed-point iteration is then
= (A0) 40 03

after starting with any value J)(()O).

This iterative process can be speeded up by use of Aitken’s A%-extrapolation
(see page 132), as shown in Algorithm 6.1. Aitken’s extrapolation in this set-
ting is also called Steffensen’s method.

Algorithm 6.1 Steffensen’s Fixed-Point Method to Find a Root of
an Equation

0. Set k = 0, and determine an approximation z(°).
1. Set f1 = f(=®) + 2,
2. Set fa = f(f1)+ f1.
3. Set d = f2 _f1~
4. If converged(fo, f1, f(z™)),
terminate and return the solution as (%),

5. Set s = (51 —) /d.
6. Set 2t = fo +-d/(s —1).
7. Set k =k + 1 and go to step 1. |

Notice that the basic iteration formula in Algorithm 6.1 is

fa®)
2R+ (k) Y T @)) (6.6)

Bisection Method

One of the simplest iterative methods for solving f(x) = 0 is the bisection
method. The method begins with two values that bracket the solution, and
then tightens the interval by halves. We assume that there are values x;, xz,,
and xzg, with 2; < z,, and x; < x¢ < z, such that

6.1 Finding Roots of Equations 247
flz) <0,

f(zu) >0,

and
f((Eo) = 0

If f(z;) > 0 and f(x,) < 0, we merely relabel the points. The method is
shown in Algorithm 6.2.

Algorithm 6.2 Bisection to Find a Root of an Equation

0. Set k=0, and
find an interval [z;, x,] in which a solution lies.
1. Set k = k41 and set F) = (z,, 4+ 1) /2.
2. If sign (f (z™™)) = sign(f(21)), then
2.a. set x; = z(F);
otherwise
2.b. set x, =).
3. If converged(xu,acl, f(:v(k))),
terminate and return the solution as z(*).
otherwise,
set k =k + 1 and go to step 1. |

As an example, we will now use the bisection method to find a root of
equation (6.4). The steps are shown in Figure 6.1. The interval is successively
halved, first by moving the upper bound down, then moving the lower bound
up, then moving the lower bound up again, and so on. In each step the approx-
imation to the solution x(()k) is the midpoint of an interval, and then becomes
an endpoint of the interval in the next step.

The bisection method is very easy to understand and to implement. The
solution always remains within a known interval. After k steps, the length of
that interval is 2% times its initial length, so the error of the approximation
is of order 27%. Each iteration gains one more bit of accuracy. Because the
ratios of the lengths of successive intervals is constant, the bisection method
converges linearly. The iterations beginning with those shown in Figure 6.1,
and continuing until 11 digits of accuracy are shown in Table 6.1. The length
of the interval is 7 initially. After 35 steps, it is approximately 7 - 2735,

The stopping rule in Algorithm 6.2 is based on the length of the interval,
among other things. If one of the stopping rules is x,, — z; < ¢, it is clear that,
beginning with z; and x,,, the algorithm terminates after exactly

[logy(zu — x1)/€) |

steps.
The bisection method requires that the function be continuous within the
initial interval. The function need not be differentiable, however.

248 6 Solution of Nonlinear Equations and Optimization
/;\ o |
T T T T
2 4 6 8 10
Fig. 6.1. Bisection to Find zo, so that f(zo) =0
Table 6.1. Bisection Iterations
k x Ty k Ty Tu

0 2.00000000000000 9.00000000000000
1 2.00000000000000 5.50000000000000
2 3.75000000000000 5.50000000000000
3 4.62500000000000 5.50000000000000
4 4.62500000000000 5.06250000000000
5 4.84375000000000 5.06250000000000
6 4.95312500000000 5.06250000000000
7 4.95312500000000 5.00781250000000
8 4.98046875000000 5.00781250000000
9 4.99414062500000 5.00781250000000
10 4.99414062500000 5.00097656250000
11 4.99755859375000 5.00097656250000
12 4.99926757812500 5.00097656250000
13 4.99926757812500 5.00012207031250
14 4.99969482421875 5.00012207031250
15 4.99990844726563 5.00012207031250
16 4.99990844726563 5.00001525878906
17 4.99996185302734 5.00001525878906

18 4.99998855590820 5.00001525878906
19 4.99998855590820 5.00000190734863
20 4.99999523162842 5.00000190734863
21 4.99999856948853 5.00000190734863
22 4.99999856948853 5.00000023841858
23 4.99999940395355 5.00000023841858
24 4.99999982118607 5.00000023841858
25 4.99999982118607 5.00000002980232
26 4.99999992549419 5.00000002980232
27 4.99999997764826 5.00000002980232
28 4.99999997764826 5.00000000372529
29 4.99999999068677 5.00000000372529
30 4.99999999720603 5.00000000372529
31 4.99999999720603 5.00000000046566
32 4.99999999883585 5.00000000046566
33 4.99999999965075 5.00000000046566
34 4.99999999965075 5.00000000005821
35 4.99999999985448 5.00000000005821

6.1 Finding Roots of Equations 249
Newton’s Method

Newton’s method for a differential function is based on the first-order Taylor
series of the function about a point near the solution:

f@) = f(2§) + (2=) 1 (o). (6.7)

As before, the solution is approached through the iterates, xék),xékﬂ), e

The update is obtained by solving the Taylor series approximation
A =)+) (o)

in which we assume that

f (J:(()kﬂ)) =0.

If f/ (x(()k)) = 0, this approximation yields

(k))

ey _ oy T (”“"0

To =70 7 (=)
ol)

Newton’s method uses the slope of the function at one point to choose the

next point, which is the direction of a smaller value of the function, indicated
by the slope. The method is given in Algorithm 6.3.

(6.8)

Algorithm 6.3 Newton’s Method to Find a Root of an Equation

0. Set k =0, and determine an approximation z(°).
1. Solve for z(*+1) in

7 (xw)) (x<k+1> _ N)) — (xuc))

(k)
240 g _ S @)
fr (@®)

that is, set

if f/ (:v“”)i1 exists.
2. If converged(x(k“),x(’“), f(x(’“rl)))’
terminate and return the solution as z(*+1).

otherwise,
set k =k + 1 and go to step 1. |

The stopping rule in Algorithm 6.3 is based on the interval between two
successive approximations, just as the stopping rule of the bisection method
is based on the length of the interval. As in the other cases of root finding,

f (x(()k))’ could also be used as a stopping criterion.

250 6 Solution of Nonlinear Equations and Optimization

150
|

(2)

s)

Fig. 6.2. Newton’s Method to Find zo, so that f(xo) =0

Newton’s method is easy to understand and to implement if the derivative
is available. In Figure 6.2, we show Newton’s method applied to the same func-
tion we used bisection on in Figure 6.1. In the example in Figure 6.2, Newton’s
method proceeds in an orderly fashion toward the zero of the function.

Notice in Figure 6.2 that the derivatives (the slopes) are decreasing, as the
solution is approached from the right side. This could cause some problems
with the method, because the denominator in step 1 of Algorithm 6.3 becomes
small. In our example problem (6.4), the derivative,

f'(z) = 32% — 8x + 18,

is not zero at the solution. (See Exercise 6.6, page 301. The derivative of the
function in Exercise 6.6b is zero at the solution.)

A modification of Newton’s method is to use a numerical approximation
to the derivative:

(k) _ (k)
f! (x(()k)) ~ d <ka " hl)z / <ka) . (6.9)

This is sometimes called the “discrete Newton’s method”. It is also essentially
the same as the secant method discussed below.

Newton’s method can also be speeded up by use of Aitken’s A2-extrapolation.
In this case, starting with xg, two steps of Newton’s method are use to com-
pute

6.1 Finding Roots of Equations 251

PO (C)
f'(@o)
and
U | (1)
f(z1)’
and then Aitken’s A% process is used to compute
~ (A$0)2
To = x9 — ,
0 0 Az,
which is continued by setting zyg = %y and repeating the previous steps.

Aitken’s extrapolation in this setting is also called Steffensen’s method.

Convergence or Failure of Newton’s Method

To investigate the convergence of Newton’s method, consider the first-order
Taylor series with remainder, expanded about a point near the solution, x()

and evaluated at the solution zg:

Fla) = 1 (a) + (a0 =) 1 () + 5 (a0 = 6) " 1706)
= 0.

Using equation (6.8), we have

(k+1)
(z0-"") 1 e
2 T 5)\
(mo _ x(()k)) 2 f (xé))
So, if the limit, as £ — oo, of the ratio on the right exists, the convergence
is quadratic (see page 131). It is clear that if f’ (x(()k)> = 0 at any point, the
method may fail.

Even if the derivatives are not zero, however, Newton’s method may di-
verge unless the starting point is sufficiently close to the solution. Two ways
in which Newton’s method can go wrong are illustrated in Figures 6.3 and 6.4.

In both of these examples, the failure of Newton’s method occurs because
the starting point is too far away from the zero. The possibility of this oc-
curring makes the choice of starting value very important. In the bisection

method, we do not have to be concerned about this, so long as we can find
values that bracket the solution.

Secant Method

The secant method is similar to Newton’s method in using the slope to deter-
mine successive points in the iteration. Newton’s method uses the derivative

252 6 Solution of Nonlinear Equations and Optimization

1.0

0.5

-0.5
|

-1.0

Fig. 6.3. Failure of Newton’s Method

or the tangent at a given point, and the secant method uses the slope of the

0.2

X(§1) Xéz)

0.0
|

-0.6
|

-08
|

-1.0

-3 -2 -1 [0} 1 2

)

Fig. 6.4. Failure of Newton’s Method; Another Example

6.1 Finding Roots of Equations 253

function between two given points to choose the next point. The method is
given in Algorithm 6.4.

Algorithm 6.4 Secant Method to Find a Root of an Equation
0. Set k = 1, and determine approximations z(?) and z(1.
7 () 7 G T)
2. If converged (z(*1) 2®) | f (z(+FD)),
terminate and return the solution as z(*+1).

otherwise,
set k =k + 1 and go to step 1. |

1. Set x(*k+1) = z(k)

The intersection of the line between the two points on the function and
the z-axis is taken as the next point at which to evaluate the function, as we
see in Figure 6.5. The choice of xéo) and x(()l) is arbitrary, although just as in
Newton’s method, if they are too far away from the solution, the method may
not converge.

100
|

—
Xé4) Xés)xéz) Xéo) Xé‘)

-50
|

Fig. 6.5. Secant Method to Find o, so that f(xo) =0

The two points in the secant method may or may not bracket a root.

Regula Falsi Method

The regula falsi or false position method is similar to the secant method,
except that the two starting points are chosen so as to bracket a solution,

254 6 Solution of Nonlinear Equations and Optimization

and as in the bisection method, each successive point is chosen so that it,
together with one of the two previous points, brackets a solution. The method
given in Algorithm 6.5 is a slight modification of the ordinary regula falsi
method, and is sometimes called the “modified” regula falsi method. Because
the “unmodified” regula falsi method (which omits steps 2.a.ii and 2.b.ii in
Algorithm 6.5) should not even be used, we just refer to the method given here
as regula falsi. Algorithm 6.5 is also sometimes called the “Illinois method”.

Algorithm 6.5 Regula Falsi to Find a Root of an Equation

0. Set k = 0;
find an interval [z;, z,] in which a solution lies;
set fi = f(x1);
set fu, = f(zu); and
set (0 = x.

1. Set pkt+1) — zifu—aufi

u—Jl
2. If fif (zFD) <fO,fthen
2.a.i. set z, = 2F) and f, = f (z*TD).
2.aii. if f () f (z*+D) > 0, then set f; = f,/2.
Otherwise,
2.b.i. set z; = ¥+ and f; = f (aFFD).
2.b.l. if f (z®) f (z**D) > 0, then set f, = f./2.
3. If converged (zy, z;, f (zF+1)),
terminate and return the solution as z(*+1).
otherwise,
set k =k + 1 and go to step 1. |

The regula falsi method generally converges more slowly than the secant
method, but it is more reliable, because the solution remains bracketed. Fig-
ure 6.6 illustrates two iterations of the method.

Stochastic Approximation

In practical applications we often cannot evaluate f(x) precisely. Instead, we
make observations that are contaminated with random errors or noise. At

x(()k) , instead of f xék) , we observe

=7 () e

A fixed-point iteration of the form
xékﬂ) = x(()k) + f(xék)) (6.10)

could be used, where f(a:(()k) is an estimate of the value of f at ac(()k), based

. k
on some observations of y(()),

6.1 Finding Roots of Equations 255

150
|

Xéu) Xo

x®

Fig. 6.6. Regula Falsi to Find zo, so that f(zo) =0

Alternatively, the model of interest may be a random process, and we may
be interested in some function of the random process, f(x). For example, we
may model an observable process by a random variable Y with probability
density function py (y,), where x is a parameter of the distribution. We may
be interested in the mean of Y as a function of the parameter x,

flz) = /y py (y,) dy.

If we know py (y, z) and can perform the integration, the problem of finding a
zero of f(z) (or, more generally, finding x such that the mean, f(x), is some
specified level curve) is similar to the other problems we have discussed. Often
in practice we do not know py (y, z), but we are able to take observations on Y.

These observations could be used to obtain f(x(()k)), and the recursion (6.10)

used to find z.
Each observation on Y is an estimate of f(x), so the recursion (6.10) can
be rather simple. For a sequence of observations on Y,

Y1,Y2,-- -,

we use the recursion
xékﬂ) = x(()k) + a(k>yk, (6.11)

where %) is a decreasing sequence of positive numbers similar to 1/f’ (x(()k))
in Newton’s method (6.8), page 249, when the approach is from the left. Use

256 6 Solution of Nonlinear Equations and Optimization

of this recursion is called the Robbins-Monro procedure. Convergence in the
Robbins-Monro procedure is stochastic, rather than deterministic, because of
the random variables.

Multiple Roots

It is possible that the function has more than one root, and we may want to
find them all. A common way of addressing this problem is to use different
starting points in the iterative solution process. Plots of the points evaluated
in the iterations may also be useful. In general, if the number of different roots
is unknown, there is no way of finding all of them with any assurance.

Accuracy of the Solution

As with most problems in numerical computations, the accuracy we can ex-
pect in finding the roots of a function varies from problem to problem; some
problems are better conditioned than others. A measure of the condition of
the problem of finding the root zy can be developed by considering the error
in evaluating f(z) in the vicinity of 2y. Suppose a bound on this error is €, so

| Flao) - f(ao)| < e,

or
‘J?(l“o)‘ <ke

~

where f(zg) is the computed value approximating f(zo). Let [z}, z,] be the
largest interval about zg such that

lf(@)] <e if x€ [z, m,]. (6.12)

Within this interval, the computed value f(a:) can be either positive or nega-
tive just due to error in computing the value. A stable algorithm for finding
the root of the function yields a value in the interval, but no higher accuracy
can be expected. If f(z) can be expanded in a Taylor series about x(, we have

f(@) = f(zo) + (o) (x — o),

f(@) = f(z0)(x — o).

Now applying the bound in (6.12) to the approximation, we have that the

interval is approximately
1

—e
f(xo)

if the derivative exists and is nonzero. Therefore, if the derivative exists and
is nonzero, a quantitative measure of the condition of the problem is

(Eo:l:

6.1 Finding Roots of Equations 257

_ 1
f'(xo)

This quantity is a condition number of the function f with respect to finding
the root xy. Of course, to know the condition number usually means to know
the solution. Its usefulness in practice is limited to situations where it can
be approximated. In Figure 6.7, we can see the sensitivity of a root-finding
algorithm to the condition number.

(6.13)

@ — @ —
N — N —
|
x®
= o - . > o 4
— (K =
: X
‘
‘ :
‘
T T
o o
I I
™ _| @ _|
I I
T T T T T T T T T T T T T T
2 3 4 5 6 7 8 2 3 4 5 6 7 8
X X

Fig. 6.7. Condition of the Root of f(z) = 0: Two Possibilities

Wilkinson (1959) considered the polynomial
flx) = (@ =1)(x=2)--(z - 20)

for studying rounding error in determining roots (see page 113). Very small
perturbations in the coeflicients of the polynomial lead to very large changes in
the roots; hence, we referred to the problem as ill-conditioned. The derivative
of that function in the vicinity of the roots is very large, so the condition num-
ber defined above in equation (6.13) would not indicate any conditioning prob-
lem. As we pointed out, however, the Wilkinson polynomial is ill-conditioned
for the problem of finding its roots because of the extreme variation in the
magnitude of the coefficients. This kind of situation is common in numerical
analysis. Condition numbers do not always tell an accurate story; they should
be viewed only as indicators, not as true measures of the condition.

258 6 Solution of Nonlinear Equations and Optimization
Systems of Equations

If the argument of the function is an m-vector and the function value is an
n-vector, equation (6.3),

represents a system of equations:

f1($1,.132,...,1‘m) =

0
f2($1,$2, s 7:Cm) =0
) .. (6.14)

fn($17$27"'7m7n) =0.

Each of the functions f; is a scalar-valued function of the vector x. Solution
of systems of nonlinear equations can be a significantly more computationally
intensive problem than solution of a single equation.

Whether or not the system of equations (6.14) has a solution is not easy
to determine. A nonlinear system that has a solution is said to be consistent,
just as a consistent linear system. Unfortunately, we cannot write a simple
necessary and sufficient condition as we did for the linear system in equa-
tion (1.46). If n > m, the system may be overdetermined, and it is very likely
that no solution exists. In this case, a criterion, such as least squares, for a
good approximate solution must be chosen. Even if n = m, we do not have
easy ways of determining whether a solution exists, as we have for the linear
system.

There are not as many different methods for solving a system of equations
as those that we discussed for solving a single equation. We will only consider
one approach, Newton’s method, which is similar to the Newton’s method we
have described for a single equation. There are several variations of Newton’s
method. Rather than considering them here, we will defer that discussion to
the applications of Newton’s method to the main problem of interest, that is,
optimization.

Newton’s method requires the derivatives, so we will assume in the follow-
ing that the functions are differentiable.

Newton’s Method to Solve a System of Equations

As we have seen in the previous sections, the solution of nonlinear equations
proceeds iteratively to points ever closer to zero. The derivative or an approx-
imation to the derivative is used to decide which way to move from a given
point. For a scalar-valued function of several variables, say fi(z), we must
consider the slopes in various directions, that is, the gradient V f(x).

In a system of equations such as (6.14), we must consider all of the gradi-
ents; that is, the slopes in various directions of all of the scalar-valued func-
tions. The matrix whose rows are the transposes of the gradients is called the

6.1 Finding Roots of Equations 259

Jacobian. We denote the Jacobian of the function f by J;. The transpose of
the Jacobian, that is, the matrix whose columns are the gradients, is denoted
by Vf for the vector-valued function f. (Note that the symbol V can denote
either a vector or a matrix, depending on whether the function to which it is
applied is scalar- or vector-valued.) Thus, the Jacobian for the system above
is

Ofh Ofh .. ON
Oxr1 Oxs OT.m
Of2 Ofs . . Of2
Jf = Ox1 Oxa OTm
Ofn Ofs ... Ofa
Oz, Oz Oz,
= (VH*. (6.15)

Notice that the Jacobian is a function, so we often specify the point at which
it is evaluated, using the ordinary function notation, J¢(z). Newton’s method
described above for a single equation in one variable can be used to determine
a vector x that solves this system, if a solution exists, or to determine that
the system does not have a solution.

For the vector-valued function in the system of equations (6.14), the first-

order Taylor series about a point :v(()k) is

fz) = f(xék)) —|—Jf(xék)) (x - x(()k)).

This first-order Taylor series is the basis for Newton’s method, shown in Al-
gorithm 6.6.

Algorithm 6.6 Newton’s Method to Solve a System of Equations
(Compare with Algorithm 6.3, page 249.)

0. Set k = 0, and determine an approximation z(*).
1. Solve for z(*+t1) in

I, (xw)) (x<k+1> _ x(k)> —f (xuc)) .

2. If converged (z(*1) — 2(®) | f(z(k+1)y)),
terminate and return the solution as z(**1.
otherwise,
set k =k + 1 and go to step 1. |

Note the similarity of this method to Algorithm 6.3, Newton’s method to find
the root for a single equation. In Algorithm 6.6, however, the convergence
criterion would be based on ||z**1) — z(*)||, for some appropriate norm.

Notice in general that m and n are not equal, and the system in step 1
is n equations in m unknowns. If, however, m = n, and the Jacobian is
nonsingular, the solution in step 1 is

260 6 Solution of Nonlinear Equations and Optimization

A0 =l = (1) 1), 610

It is important to remember that this expression does not imply that the Ja-
cobian matriz should be inverted. Linear systems are not solved that way (see
Sections 5.2 through 5.4.) Expressions involving the inverse of a matrix pro-
vide a compact representation, and so we often write equations such as (6.16).

Sometimes, just as the approximate derivative in equation (6.9) may be
used for the single equation, the Jacobian is replaced by a finite-difference
approximation,

<%) N <fi(x1,x2,...,:cj +h,.xy) = fi(z, 20, 25, T)

81‘]' - h ’
(6.17)

for h > 0. Use of this approximation in place of the Jacobian is called the

“discrete Newton’s method”. This, of course, doubles the number of function

evaluations per iteration, but it does avoid the computation of the derivatives.

The number of computations in Newton’s method may be reduced by
assuming that the Jacobian (or the discrete approximation) does not change
much from one iteration to the next. A value of the Jacobian may be used in
a few subsequent iterations.

The number of computations can also be reduced if the Jacobian has a
special structure, as is often the case in important applications, such as in
solving systems of differential equations. It may be sparse or banded. In these
cases, use of algorithms that take advantage of the special structure will reduce
the computations significantly.

Other ways of reducing the computations in Newton’s method use an es-
timate of the derivative that is updated within each iteration. This kind of
method is called quasi-Newton. We will discuss quasi-Newton methods for
optimization problems beginning on page 269. The ideas are the same.

The generalization of the condition number in equation (6.13) for a single
equation is

#(Jr (20)) (6.18)

for a matrix condition number k for solving a linear system, as discussed
beginning on page 207. The quantity in equation (6.18) is a condition number
of the function f with respect to finding the root z.

If the ranges of the variables in a nonlinear system are quite different,
the solution may not be very accurate. This is similar to the artificial ill-
conditioning discussed on page 208. The accuracy can often be improved con-
siderably by scaling the variables and the function values so that they all have
approximately the same range. Scaling of a variable z; is just a multiplicative
transformation: y; = ox;. Of course, the ranges of the values of the variables
may not be known in advance, so it may be necessary to do some preliminary
computations in order to do any kind of useful scaling.

6.2 Unconstrained Descent Methods in Dense Domains 261

6.2 Unconstrained Descent Methods in Dense Domains

We now return to the optimization problem (6.1). We denote a solution as
T4; that is,
2, = argmin f(x), (6.19)
zED

where x is an m-vector and f is a continuous real scalar-valued function.

In this section, we assume f(z) is defined over R™ and D = IR™; that is,
it is a continuous, unconstrained optimization problem.

In this section we also generally assume the function is differentiable in all
variables, and we often assume it is twice differentiable in all variables.

For a convex function f of a scalar variable, if its first derivative exists,
the derivative is nondecreasing. If its second derivative f” exists, then

f’(x) >0 forall z. (6.20)

Strict convexity implies that the second derivative is positive. Likewise, the
second derivative of a concave function is nonpositive, and it is negative if the
function is strictly concave.

If f is convex, —f is concave. A concave function is sometimes said to be
“concave down”, and a convex function is said to be “concave up”.

For a differentiable function of a vector argument, the vector of partial
derivatives provides information about the local shape of the function. This
vector of derivatives is called the gradient, and is denoted by V f(z):

Vi) - (agif) e ag;j)) |

(We often write a vector in the horizontal notation as in the equation above,
but whenever we perform multiplication operations on vectors or subsetting
operations on matrices, we consider a vector to be a column vector; that is,
it behaves in many ways as a matrix with one column.)

For a convex function f of a vector variable, if its gradient exists, it is
nondecreasing in each of its elements.

As in the scalar case, if a function f of a vector argument is twice-
differentiable, more information about a stationary point can be obtained
from the second derivatives, which are organized into a matrix, called the
Hessian, denoted by H¢, and defined as

Hy = V(Vf(z))
= V?f(z)

- (752 622

P f(x)
T 9x0xT’

(6.21)

262 6 Solution of Nonlinear Equations and Optimization

Notice that the Hessian is a function, so we often specify the point at which it
is evaluated in the ordinary function notation, Hy(z). The symbol V2 f(x) is
also sometimes used to denote the Hessian, but because V2 f(z) is often used
to denote the Laplacian (which yields the diagonal of the Hessian), we will
use Hy(x) to denote the Hessian.

For a convex function of a vector variable, if the Hessian exists, it is positive
semidefinite, and the converse holds. Strict convexity implies that the Hessian
is positive definite. This is analogous to the condition in inequality (6.20).
These conditions are also sufficient.

Sometimes, rather than using the exact derivatives it is more efficient to use
approximations such as finite differences. If the function is not differentiable,
but is “well-behaved”, the methods based on finite differences often also allow
us to determine the optimum.

For the time being we will consider the problem of unconstrained opti-
mization. The methods we describe are the basic ones whether constraints
are present or not.

Solution of an optimization problem is usually an iterative process, moving
from one point on the function to another. The basic things to determine are

e direction or path, p, in which to step and
e how far to step. (The step length is «||p||, for the scalar a.)

Direction of Search

For a differentiable function, from any given point, an obvious direction to
move is the negative gradient, or a direction that has an acute angle with the
negative gradient. We call a vector p such that

pTVf(z) <0

a descent direction at the point x. For a function of a single variable, this
direction of course is just the sign of the derivative of f at x.
If Vf(z) # 0, we can express p as

Rp = -V f(z), (6.23)

for some positive definite matrix R. A particular choice of R determines the
direction. A method that determines the direction in this manner is called a
“gradient method”.

Numerical computations for quantities such as pTV f () that may be close
to zero must be performed with some care. We sometimes impose the require-
ment

p'Vf(z) < —¢

for some positive number €, so as to avoid possible numerical problems for
quantities too close to zero.

6.2 Unconstrained Descent Methods in Dense Domains 263

Once a direction is chosen, the best step is the longest one for which the
function continues to decrease.

These heuristic principles of choosing a “good” direction and a “long” step
guide our algorithms, but we must be careful in applying the principles.

Line Searches

Although the first thing we must do is to choose a descent direction, in this
section we consider the problem of choosing the length of a step in a direction
that has already been chosen. In subsequent sections we return to the problem
of choosing the direction.

We assume the direction chosen is a descent direction. The problem of
finding a minimum in a given direction is similar to, but more complicated
than, the problem of finding a zero of a function that we discussed in Sec-
tion 6.1. In finding a root of a continuous function of a single scalar variable,
two values can define an interval in which a root must lie. Three values are
necessary to identify an interval containing a local minimum. Nearby points
in a descent direction form a decreasing sequence, and any point with a larger
value defines an interval containing a local minimum.

After a direction of movement p*) from a point z(*) is determined, a new
point, z(¥*1) is chosen in that direction:

PG S ORPN QIO (6.24)

where a¥) is a positive scalar, called the step length factor. (The step length
itself is [|a®p*)]||.)

Obviously, in order for the recursion (6.24) to converge, a® must approach
0. A sequence of a®) that converges to 0, even in descent directions, clearly
does not guarantee that the sequence z(*) will converge to x,, however. This
is easily seen in the case of the function of the scalar z,

fla) = a?,

starting with (® = 3 and o(® = 1, proceeding in the descent direction
—z, and updating the step length factor as a1 = %oz(k). The step lengths
clearly converge to 0, and while the sequence z(*) goes in the correct direction,
it converges to 1, not to the point of the minimum of f, z, = 0.
Choice of the “best” a*) is an optimization problem in one variable:
min f (2 + a®)p®), (6.25)

a(k)

for fixed () and p(*). An issue in solving the original minimization problem
for f(z) is how to allocate the effort between determining a good p*) and
choosing a good a*). Rather than solving the minimization problem to find
the best value of a(®) for the k*® direction, it may be better to get a reasonable
approximation, and move on to choose another direction from the new point.

264 6 Solution of Nonlinear Equations and Optimization

One approach to choosing a good value of a(*) is to use a simple approxi-
mation to the one-dimensional function we are trying to minimize:

pla) = (=) +ap®).

A useful approximation is a second- or third-degree polynomial that interpo-
lates p(«) at three or four nearby points. The minimum of the polynomial can
be found easily, and the point of the minimum may be a good choice for (%),

A simpler approach, assuming p(«) is unimodal over some positive interval,
say [au, o], is just to perform a direct search along the path p®). A bisection
method or some other simple method for finding a zero of a function as we
discussed in Section 6.1 could be modified and used.

Another approach for developing a direct search method is to choose two
points a; and as in [aq, ay], with a1 < @2, and then, based on the function
values of p, to replace the interval I = [y, o] with either [} = [ay, a3 or
I, = [a1, ay]. In the absence of any additional information about p, we choose
the points a1 and ap symmetrically, in such a way that the lengths of both I,
and I, are the same proportion, say 7, of the length of the original interval
I. This leads to 72 = 1 — 7, the golden ratio. The search using this method of
reduction is called the golden section search, and is given in Algorithm 6.7.

Algorithm 6.7 Golden Section Search

0. Set 7 = (v/5—1)/2 (the golden ratio).
Set a1 =y + (1 — 7)(a, —) and set as = a; + 7(an, —).
Set p1 = p(aq) and pa = p(a2).
LIf p1 > P2,
l.a. set oy = g,
set a1 = aa,
set ag = o + 7(a, —),
set p1 = p2, and
set pa = p(s);
otherwise,
1.b. set o, = s,
set as = a7y,
set an =+ (1 — 7)(w — aq),
set po = p1, and
set p1 = p(aq).
2. If converged (o, o),
terminate and return the solution as aq;
otherwise,
go to step 1. |

The golden section search is robust, but it is only linearly convergent, like
the bisection method of Algorithm 6.2. (This statement about convergence
applies just to this one-dimensional search, which is a subproblem in our
optimization problem of interest.)

6.2 Unconstrained Descent Methods in Dense Domains 265

Another criterion for a direct search is to require

FE® 1+ a®p®) < F(2®) 4 ral® (pE) Ty f (W), (6.26)
for some 7 in (0, %) This criterion is called the sufficient decrease condition,
and the approach is called the Goldstein-Armijo method after two early inves-
tigators of the technique. After choosing 7, the usual procedure is to choose
« as the largest value in 1, %, i, %, ... that satisfies the inequality.

If the step length is not too long, the descent at 2(*) in the given direction
will be greater than the descent in that direction at z(®) +a*)p(*) This leads

to the so-called curvature condition:
|(6%) "9 (20 + a®p®)| < 9 (p9) ws@®)], (6.27)

for some 7 in (0, 1).

Steepest Descent

We now turn to the problem of choosing a descent direction. Most methods
we will consider are gradient methods, that is, they satisfy (6.23):

From a given point z(%), the function f decreases most rapidly in the
direction of the negative gradient, —V f (J:(k)). A greedy algorithm uses this
steepest descent direction; that is,

p™ = -V f(a®), (6.28)
and so the update in equation (6.24) is

2D = 3 407 f(0))

The step length factor a*) is chosen by a line search method described be-
ginning on page 263.

The steepest descent method is robust so long as the gradient is not zero.
The method, however, is likely to change directions often, and the zigzag
approach to the minimum may be quite slow (see Exercise 6.10a). For a func-
tion with circular contours, steepest descent proceeds quickly to the solution.
For a function whose contours are ellipses, as the function in Exercise 6.10
(page 302), for example, the steepest descent steps will zigzag toward the so-
lution. A matrix other than the identity may deform the elliptical contours
so they are more circular. In Newton’s method discussed next, we choose the
Hessian as that matrix.

266 6 Solution of Nonlinear Equations and Optimization
Newton’s Method for Unconstrained Optimization

To find the minimum of the scalar-valued function f(z), under the assump-
tions that f is convex and twice differentiable, we can seek the zero of V f(x)
in the same way that we find a zero of a vector-valued function using the
iteration in equation (6.16), page 260. We begin by forming a first-order Tay-
lor series expansion of V f(z), which is the second-order expansion of f(z).
In place of a vector-valued function we have the gradient of the scalar-valued
function, and in place of a Jacobian, we have the Hessian Hy, which is the
Jacobian of the gradient.

This first-order Taylor series expansion of Vf is equivalent to a second-
order Taylor series expansion of f. Setting the gradient to zero, we obtain an
iteration similar to equation (6.16):

SO+ _ (R (Hf (xoc)))‘l Vi (®). (6.29)

Use of this recursive iteration is Newton’s method. The method is also often
called the Newton-Raphson method. (Joseph Raphson, was a late seventeenth
century English mathematician, who developed this same iteration, unaware
that Newton had used the same method several years earlier.)

In one dimension, the Newton recursion is just

Vf(x(k))
2D ())
_ (k) f’(x(k))
f (x(k)) ’

The second-order Taylor series approximation to f about the point x,,
1
f(x) ~ f(z.) + (x — 2) "V f(2) + 5(33 —2)THy () (x — 24), (6.30)

is exact if f is a quadratic function. In that case, Hy is positive definite,
and the terms in equation (6.29) exist and yield the solution immediately.
When f is not quadratic, but is sufficiently regular, we can build a sequence
of approximations by quadratic expansions of f about approximate solutions.
This means, however, that the Hessian may not be positive definite and its
inverse in (6.29) may not exist.

Once more, it is important to state that we do not necessarily compute
each term in an expression.

The form of a mathematical expression and the way the expression
should be evaluated in actual practice may be quite different.

We choose mathematical expressions for their understandability; we choose
computational method for their robustness, accuracy, and efficiency. Just as

6.2 Unconstrained Descent Methods in Dense Domains 267

we commented on page 260 concerning inversion of the Jacobian, we comment
here that we do not compute the Hessian and then compute its inverse, just
because that appears in equation (6.29). We solve the linear systems

Hy (o9 =~ (o) (6.31)

by more efficient methods such as Cholesky factorizations. Once we have the
solution to equation (6.31), equation (6.29) becomes

gD — (0 4 (k) (6.32)

Newton’s method, by scaling the path by the Hessian, is more likely to
point the path in the direction of a local minimum, whereas the steepest
descent method, in ignoring the second derivative, follows a path along the
gradient that does not take into account the rate of change of the gradient.
This is illustrated in Figure 6.8.

steepest
descent

Fig. 6.8. Steepest Descent and Newton Steps

For functions that are close to a quadratic within a region close to the
minimum, Newton’s method can be very effective so long as the iterations
begin close enough to the solution. In other cases Newton’s method may be
unreliable. The problems may be similar to those illustrated in Figures 6.3
and 6.4 (page 252) for finding a root.

One way of increasing the reliability of Newton’s method is to use a
damped version of the update (6.32),

268 6 Solution of Nonlinear Equations and Optimization

2D g6 | (R p(k)

for which a line search is used to determine an appropriate step length factor
(k)
al®),

When the function is not quadratic, the Hessian may not be positive defi-
nite, and so a modified Cholesky factorization may be used. In this approach,
positive quantities are added as necessary during the decomposition of the
Hessian. This changes the linear system (6.31) to the system

(Hf (z®)) + D(k))p(k) = —Vf(®), (6.33)

where D) is a diagonal matrix with nonnegative elements.

Another method of increasing the reliability of Newton’s method is to
restrict the movements to regions where the second-order Taylor expan-
sion (6.30) is a good approximation. This region is called a “trust region”.
At the k' iteration, the second-order Taylor series approximation provides a
scaled quadratic model ¢(®:

q®(s) = f(xik)) + sTVf(xﬁk)) + %sTHf (xik))s, (6.34)
where s = 2 — z{").

When the Hessian is indefinite, ¢ is unbounded below, so it is obviously
not a good model of f(xik) + 5) if s is large. We therefore restrict ||, or
better, we restrict ||D®s]|| for some scaling matrix D). For some 7 we
require

|D®s|| < 7+, (6.35)

and we choose s(®) as the point where the quadratic ¢*) achieves its minimum
subject to this restriction. How much we should restrict s depends on how
good the quadratic approximation is. If

k k
F@) = f@® 4 s0)
77) — g (50)
is close to 1, that is, if the approximation is good, we increase 7(*); if it is

small or negative, we decrease 7(%). Implementation of these methods requires
some rather arbitrary choices of algorithm parameters.

Accuracy of Optimization Using Gradient Methods

The problem of finding a minimum of a function is somewhat more difficult
than that of finding a zero of a function discussed in Section 6.1. Our intuition
should tell us this is the case. In one dimension, a zero of a function can be
determined by successively bracketing a zero with two points. An interval
containing a minimum of a function requires three points to determine it.

6.2 Unconstrained Descent Methods in Dense Domains 269

Another way of comparing the accuracy of the solution of a nonlinear
equation and the determination of the minimum of such an equation is to
consider the Taylor expansion:

fl@)=f@)+ (@ -8)f' @) + 5@ -2 @)+

1
2
In the problem of finding a zero xg, f'(x) is generally nonzero, and for &
close to zg, (f(x) — f(&)) is approximately proportional to (x — &), where the
constant of proportionality is f/(Z). A small value of the difference (z — %)
results in a proportionate difference (f(x) — f(Z)). On the other hand, in the
problem of finding the minimum ., f’(x.) is zero, and for & close to .,
(f(x) — f(7)) is approximately proportional to (z — %)2, where the constant
of proportionality is f”(Z). A small value of the difference (x — Z) results in
a smaller difference (f(z) — f(Z)). In finding roots of an equation we may
set a convergence criterion proportional to the machine epsilon, €pnach. In
optimization problems, we often set a convergence criterion proportional to

v/ €mach-

Quasi-Newton Methods

All gradient descent methods determine the path of the step by the system of
equations,
R®)pk) — _Vf(x(k)), (6.36)

The difference in the methods is the matrix R*).

The steepest descent method chooses R*) as the identity, I, in these equa-
tions. As we have seen, for functions with eccentric contours, the steepest
descent method traverses a zigzag path to the minimum. Newton’s method
chooses R¥) as the Hessian, Hy (:cgk)), which results in a more direct path
to the minimum. Aside from the issues of consistency of the resulting equa-
tion (6.33) and the general problems of reliability, a major disadvantage of
Newton’s method is the computational burden of computing the Hessian,
which is O(m?) function evaluations, and solving the system, which is O(m?)
arithmetic operations, at each iteration.

Instead of using the Hessian at each iteration, we may use an approxima-
tion, B*). We may choose approximations that are simpler to update and/or
that allow the equations for the step to be solved more easily. Methods us-
ing such approximations are called quasi-Newton methods or variable metric
methods.

Because

Hy («®+D) (25D — 20) & Vi (25) - 7 f(2®),
we choose B*+1 g0 that

B (o) _ g0y — v f (D) — v f (2. (6.37)

270 6 Solution of Nonlinear Equations and Optimization

This is called the secant condition. (Note the similarity to the secant method
for finding a zero discussed in Section 6.1.)
We express the secant condition as

B g(R) (k) (6.38)

where
sB) — p(k+1) _ (k)

and
y = V) - viED).

The system of equations in (6.38) does not fully determine B®*) of course.
Because B is approximating Hy (J:(k)), we may want to require that it be
symmetric and positive definite.

The most common approach in quasi-Newton methods is first to choose
a reasonable starting matrix B(®) and then to choose subsequent matrices by
additive updates,

B+ — k) B((Lk),

subject to preservation of symmetry and positive definiteness.

The general steps in a quasi-Newton method are

. Set k=0 and choose z(*) and B,
. Compute s*) as a®p*) where
B®Rpk) = _7 f(2(k).
. Compute z**+1) and V f(x(F+1).
. Check for convergence and stop if converged.
. Compute B*+1),
. Set k=k+1, and go to 1.

= O

T W N

Within these general steps there are two kinds of choices to be made: the
way to update the approximation B¥) and, as usual, the choice of the step
length factor a(¥).

There are several choices for the update Bt(lk) that preserve symmetry and
positive definiteness (or at least nonnegative definiteness). One simple choice
is the rank-one symmetric matrix

1
(y(k) — B(k) (k)T g(k) (

B® — Yy — BE) (48 _ BRI sENT - (6.39)

This update results in a symmetric matrix that satisfies the secant condition
no matter what the previous matrix B*) is. (You are asked to do the simple
algebra to show this in Exercise 6.11.) If B (k) is positive definite, this update
results in a positive definite matrix B**1 so long as ¢*) < 0, where ¢ is

the denominator:
k) — (y(k) _ B(k)s(k))TS(k).

6.2 Unconstrained Descent Methods in Dense Domains 271

Even if ¢(®)

&) g0 that

> 0, positive definiteness can be preserved by shrinking ¢*) to

éh < !
W — BWsM)T (B (0 — BEsE)’

Although this adjustment is not as difficult as it might appear, the computa-
tions to preserve positive definiteness and, in general, good condition of the
B®*) account for a major part of the effort in quasi-Newton methods.

Other, more common choices for B((Lk) are the rank-two Broyden updates
of the form

1

k) — = R (BHE (NT
Ba Gyt Emsm o (BT
1
= By (T
10 (58T BHI 599 o8 ()T
where o) is a scalar in [0, 1], and

1 1
(k) — = (k) _ = pk) (k) gk) (k)
v (y(k))Ts(k)y (S(k))TB s\ B\ g\

Letting 0® = 0 in (6.40) yields the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update, which is one of the most widely used methods. If ¢(*) = 1,
the method is called the Davidon-Fletcher-Powell (DFP) method.

The Broyden updates will preserve the positive definiteness of B*) so long
as

(y(k))TS(k) > 0.

This is the curvature condition (see (6.27) on page 265). If the curvature
condition is not satisfied, s**) could be scaled so as to satisfy this inequality.
(Scaling s™) of course changes y*) also.) Alternatively, the update of B*)
can just be skipped, and the updated step is determined using the previous
value, B*). This method is obviously quicker, but it is not as reliable.

Inspection of either the rank-one updates (6.39) or the rank-two up-
dates (6.40) reveals that the number of computations is O(m?). If the up-
dates are done to the inverses of the B*)’s or to their Cholesky factors, the
computations required for the updated directions are just matrix-vector mul-
tiplications and hence can also be computed in O(m?) computations.

It is easily seen that the updates can be done to the inverses of the B*)’s
using the Sherman-Morrison formula (equation (5.50) on page 227) for rank-
one updates, or the Woodbury formula (equation (5.52)) for more general
updates. Using the Woodbury formula, the BFGS update, for example, results
in the recursion,

272 6 Solution of Nonlinear Equations and Optimization

(B(kJrl))_1 =

(1~ Gt s) (80) (1 = o ")

+ Ws(k) (y T,
(6.41)
The best way of doing the inverse updates is to perform them on the Cholesky
factors instead of on the inverses. The expression above for updating the
inverse shows that this can be done.

Another important property of the quasi-Newton methods is that they
can be performed without explicitly storing the B*)’s, which could be quite
large in large-scale optimization problems. The storage required in addition
to that for B®*) is for the vectors s*) and y*®. If B() is a diagonal matrix,
the total storage is O(m). In computing the update at the (k + 1)*! itera-
tion, limited-memory quasi-Newton methods assume that B(*~7) is diagonal
at some previous iteration. The update for the (k+ 1)*® iteration can be com-
puted by vector-vector operations beginning back at the (k — ;) iteration.
In practice, diagonality is assumed at the fourth or fifth previous iteration;
that is, 7 is taken as 4 or 5.

Quasi-Newton methods are available in most of the widely-used math-
ematical software packages. Broyden updates are the most commonly used
in these packages, and of the Broyden updates, BFGS is probably the most
popular. Some empirical results indicate, however, that the simple rank-one
update (6.39) is often an adequate method.

Truncated Newton Methods

Another way of reducing the computational burden in Newton-type methods
is to approximate the solution of the path direction

R®p® = g f(z0),

where R is either the Hessian, as in Newton’s method, or an approximation,
as in a quasi-Newton method. In a truncated Newton method, instead of solving
for p(*), we get an approximate solution using only a few steps of an iterative
linear equation solver, such as the conjugate gradient method. The conjugate
gradient method is particularly suitable because it uses only matrix-vector
products, so the matrix R*) need not be stored. This can be very important
in large-scale optimization problems that involve a large number of decision
variables. How far to continue the iterations in the solution of the linear system
is a major issue in tuning a truncated Newton method.

Nelder-Mead Simplex Method

The Nelder-Mead simplex method (Nelder and Mead, 1965) is a derivative-
free, direct search method. The steps are chosen so as to ensure a local descent,

6.2 Unconstrained Descent Methods in Dense Domains 273

but neither the gradient nor an approximation to it is used. In this method,
to find the minimum of a function, f, of m variables, a set of m + 1 extreme
points (a simplez) is chosen to start with, and iterations proceed by replacing
the point that has the largest value of the function with a point that has a
smaller value. This yields a new simplex, and the procedure continues. The
method is given in Algorithm 6.8 and illustrated for a bivariate function in
Figure 6.9.

Algorithm 6.8 Nelder-Mead Simplex Method

0.

w

Set tuning factors: reflection coefficient, a > 0; expansion factor, v > 1;
contraction factor, 0 < 8 < 1; and shrinkage factor, 0 < § < 1.

Choose an initial simplex, that is, m + 1 extreme points (points on the
vertices of a convex hull).

. Evaluate f at each point in the current simplex, obtaining the values

f1§f2§§fm§fm+1

Label the points correspondingly, that is, let x,,4+1 correspond to fi,4+1,
and so on.

. Reflect the worst point: let z, = (1 + a)za — axym41, where z, =

Yot xi/m, and let f, = f(zy).

I fi < fy < fin, accept reflection: replace x,, 11 by z,, and go to step 6.
. If fi < f1, compute expansion: e = vy, + (1 — ¥)Za.

If f(z0) < fi,

4.a. accept expansion: replace x,,+1 by Z,;
otherwise,

4.b. replace x;,+1 by ;.
Go to step 6.

A fo < fy < ft1, let fn = fi; otherwise, let fi, = fi41. Let a2y be the

corresponding point. Compute contraction: z. = By + (1 — B)x,.
If f(xc) < f(xh)v

5.a. accept contraction: replace Z,,4+1 by ;
otherwise,

5.b. shrink simplex: for ¢ = 2,3,...,m + 1, replace z; by

ox; + (1 — 5).131

. If convergence has not occurred (see below) or if a preset limit on the

number of iterations has not been exceeded, go to step 1;
otherwise, return the solution as x7. |

There are three common ways of assessing convergence of the Nelder-Mead

algorithm. All three, or variations of them, may be used together.

The amount of variation in the function values at the simplex points. This
is measured by the sample variance,

274 6 Solution of Nonlinear Equations and Optimization

2 1 72
Sf - m4+1 (f’L f))
where f is the sample mean of fi, fa,..., fms+1. Convergence is declared
if sfc < €. This stopping criterion can lead to premature convergence, just
because the simplex points happen to lie close to the same level curve of
the function.

e The total of the norms of the differences in the points in the new simplex
and those in the previous simplex. (In any iteration except shrinkage, there
is only one point that is replaced.) This is one of several possible stopping
criteria.

e The size of the simplex, as measured by

max ||z; — z1]|
max (1, [|z1]])
The iterations are terminated when this measure is sufficiently small.

Figure 6.9 illustrates one iteration of the algorithm in a two-dimensional
problem. In two dimensions, the iterations are those of a triangle tumbling
downhill vertex over edge and deforming itself as it goes.

Fig. 6.9. One Nelder-Mead Iteration (In this step, z2 becomes x3; x1 becomes w2;
and z, becomes x1.)

Although the Nelder-Mead algorithm may be slow to converge, it is a very
useful method for several reasons. The computations in any iteration of the

6.3 Unconstrained Combinatorial and Stochastic Optimization 275

algorithm are not extensive. No derivatives are needed; in fact, not even the
function values themselves are needed, only their relative values. The method
is therefore well-suited to noisy functions; that is functions that cannot be
evaluated exactly.

There have been many suggestions for improving the Nelder-Mead method.
Most have concentrated on the stopping criteria or the tuning parameters. The
various tuning parameters allow considerable flexibility, but there are no good
general guidelines for their selection.

It is a simple matter to introduce randomness in the decisions made at
various points in the Nelder-Mead algorithm, similar to what we do in sto-
chastic methods, such as simulated annealing, which we discuss beginning on
page 277. This may be useful for finding the global optimum of a function
with many local optima. If some decisions are made randomly, however, the
convergence criteria must be modified to reflect the fact that the iterations
may no longer be strictly descending.

6.3 Unconstrained Combinatorial and Stochastic
Optimization

If the objective function is differentiable and the derivatives are available,
methods described in the previous section that make use of the gradient and
Hessian or simple approximations to the gradient and Hessian are usually the
most effective ones. Even if the derivatives are not available or do not exist
everywhere for a continuous objective function, methods that use approxima-
tions to gradients are usually best.

If the objective function is not differentiable, or if it is very rough, some
kind of direct search for the optimum may be necessary. In some cases the
objective function is noisy, perhaps with an additive random error term that
prevents exact evaluation. In these cases also it may not be effective to use
gradient or approximate-gradient methods.

Another important type of optimization problem is one in which the de-
cision variables are discrete. The solution may be a configuration of a finite
set of points, that is, a graph. In the traveling salesperson problem, for exam-
ple, we seek a configuration of cities that provides a path with minimal total
length that visits each point in a set. In the vehicle routing problem, a fleet
of vehicles stationed at a depot must make deliveries to a set of cities, and
it is desired to route them so as to minimize the time required to make all
the deliveries. In a resource scheduling problem, a set of machines or workers
are to be assigned to a set of tasks, so as to minimize the time required to
complete all the tasks, or so as to minimize idle time of the resources. These
kinds of problems are examples of combinatorial optimization.

In combinatorial optimization problems it is often more natural to re-
fer to the points in the domain as “states”. The objective is to minimize a

276 6 Solution of Nonlinear Equations and Optimization

scalar-valued function of the states, f(s). We will use “point” and “state”
interchangeably in the following.

Although the state space is countable, it is often extremely large, and so
we must use stochastic methods that do not consider every point in the space.

Search Methods

Direct search methods move from point to point using only the values of
the function; they do not use derivative information, or approximations to
derivatives. In some methods new points are chosen randomly, and then the
decision to move to a new point is based on the relative values of the function
at the old and new points. A tree or other graph of points may help to organize
the points to visit in the search. There are several variations of direct searches.
Some search methods use heuristics that mimic certain natural systems.

Sometimes, based on points that have already been evaluated, sets of other
points can be ruled out. In tree-based search methods, such fathoming or
branch-and-bound techniques may greatly enhance the overall efficiency of the
search. “Tabu” methods keep lists of points that are not likely to lead to an
optimum.

If the state space is relatively small, or if good fathoming or branch-and-
bound techniques are available, it may be possible to do an exhaustive search;
that is, a search in which every point in the state space is considered, either
explicitly or implicitly. In other cases, a random selection scheme may be used
that initially gives every point in the state space a positive probability of being
considered. At the end of the iterations, however, not all points in the space
may have been considered.

In all direct search methods the new points are accepted or rejected based
on the objective function values. Some search methods allow iterations that
do not monotonically decrease the objective function values. These methods
are especially useful when there are local minima.

In these iterations, if the new point is better, then it is used for picking a
point in the next iteration.

If the new point is not better, there are three possible actions:

discard the point and find another one to consider
accept the new point anyway
declare the search to have converged

Random decisions may be made in two places in this general scheme. First,
the new point may be chosen randomly. Of course, this does not necessarily
mean with uniform probability. Any knowledge of the state space, or any infor-
mation from previous iterations may be used to put a probability distribution
on the state space.

Secondly, if the new candidate point is not better than the current point
the decision to accept it may be made randomly. The probability distribution

6.3 Unconstrained Combinatorial and Stochastic Optimization 277

is Bernoulli and its parameter (probability of accepting) may depend on how
much worse the candidate point is, and on the current count of iterations.

Convergence

In the methods for optimization of continuous functions over dense domains,
the convergence criteria are based on interval lengths, which may be used in
a norm, as indicated by our discussion of the “converged(ds,ds,...)” function
on page 244. If termination of the algorithm occurs due to an excessive number
of iterations, we declare that the algorithm had not converged.

In many cases in which the domain is discrete, there are no reasonable
norms that can be used over the domain. We may, however, identify some ad
hoc measure that indicates the amount of movement within the domain, and
we can easily measure the distance that the objective function changes from
one point to another. Nevertheless, often the main basis for terminating an
algorithm for optimization over a discrete domain is the number of iterations.
In that case, unless the algorithm is exhaustive, we cannot say that it has
converged. This is a situation that is endemic to the problem. We must rely
on indications that it is very likely that the algorithm converged to a correct
solution.

Simulated Annealing

Simulated annealing is a method that simulates the thermodynamic process
in which a metal is heated to its melting temperature and then is allowed to
cool slowly so that its structure is frozen at the crystal configuration of low-
est energy. In this process the atoms go through continuous rearrangements,
moving toward a lower energy level as they gradually lose mobility due to the
cooling. The rearrangements do not result in a monotonic decrease in energy,
however. The density of energy levels at a given temperature ideally is expo-
nential, the so-called Boltzmann distribution, with a mean proportional to the
absolute temperature. (The constant of proportionality is called “Boltzmann’s
constant”). This is analogous to a sequence of optimization iterations that oc-
casionally go uphill. If the function has local minima, going uphill occasionally
is desirable.

Metropolis et al. (1953) developed a stochastic relaxation technique that
simulates the behavior of a system of particles approaching thermal equilib-
rium. (This is the same paper that they described the Metropolis sampling
algorithm, selected as one of the Top 10 algorithms of the twentieth century;
see page 138.) The energy associated with a given configuration of particles is
compared to the energy of a different configuration. If the energy of the new
configuration is lower than that of the previous one, the new configuration is
immediately accepted. If the new configuration has a larger energy, it is ac-
cepted with a nonzero probability. This probability is larger for small increases
than for large increases in the energy level. One of the main advantages of

278 6 Solution of Nonlinear Equations and Optimization

simulated annealing is that the process is allowed to move away from a local
optimum.

Although the technique is heuristically related to the cooling of a metal, it
can be successfully applied to a broader range of problems. It can be used in
many kinds of optimization problem, but it is particularly useful in problems
that involve configurations of a discrete set, such as a set of particles whose
configuration can continuously change, or a set of cities in which the interest
is an ordering for shortest distance of traversal.

The Basic Algorithm

In simulated annealing, a “temperature” parameter controls the probability of
moving uphill; when the temperature is high, the probability of acceptance of
any given point is high, and the process corresponds to a pure random walk.
When the temperature is low, however, the probability of accepting any given
point is low; and in fact, only downhill points are accepted. The behavior at
low temperatures corresponds to a gradient search.

As the iterations proceed and the points move lower on the surface (it
is hoped), the temperature is successively lowered. An “annealing schedule”
determines how the temperature is adjusted.

In the description of simulated annealing in Algorithm 6.9, recognizing the
common applications in combinatorial optimization, we refer to the argument
of the objective function as a “state”, rather than as a “point”. We also de-
scribe the convergence slightly differently from how we have done it in the
deterministic algorithms. The steps in Algorithm 6.9 are generic. A particu-
lar step, such as “generate a new state ...” may mean quite different things
in different problems. Following the general statement of the algorithm, we
consider some specific methods.

Algorithm 6.9 Simulated Annealing

Set k =1 and initialize state s.
Compute the temperature T'(k).
Set i =0 and j = 0.
Generate a new state r and compute §f = f(r) — f(s).
Based on d f, decide whether to move from state s to state r.
Iféf <o,
accept state r;
otherwise,
accept state r with a probability P(df, T'(k)).
If state r is accepted, set s =r and ¢ =i + 1.
5. If i is equal to the limit for the number of successes at a given temperature,
go to step 1.
6. Set j = j + 1. If j is less than the limit for the number of iterations at
given temperature, go to step 3.

W o

6.3 Unconstrained Combinatorial and Stochastic Optimization 279

7. If i =0,
deliver s as the optimum; otherwise,
if & < kEmax,
set k =k + 1 and go to step 1;
otherwise,
issue message that
‘algorithm did not converge in kyax iterations’. |

For optimization of a continuous function over a region, the state is a point
in that region. A new state or point may be selected by choosing a radius r and
point on the d dimensional sphere of radius r centered at the previous point.
For a continuous objective function, the movement in step 3 of Algorithm 6.9
may be a random direction to step in the domain of the objective function.
In combinatorial optimization, the selection of a new state in step 3 may be a
random rearrangement of a given configuration, as we mention below for the
traveling salesperson problem.

Parameters of the Algorithm: The Probability Function

There are a number of tuning parameters that must be chosen in the simu-
lated annealing algorithm. These include such relatively simple things as the
number of repetitions or when to adjust the temperature. The probability of
acceptance and the type of temperature adjustments present more compli-
cated choices.

One approach is to assume that at a given temperature, T, the states
have a known probability density (or set of probabilities, if the set of states
is countable), ps(s,T'), and then to define an acceptance probability to move
from state si to sgy1 in terms of the relative change in the probability den-
sity from pg(sk,T) to ps(sk+1,T). In the original applications, the objective
function was the energy of a given configuration, and the probability of an
energy change of §f at temperature 7' is proportional to exp(—df/T).

Even when there is no underlying probability model, the probability in
step 4 of Algorithm 6.9 is often taken as

P(5f,T(k)) = e 0f/TH) (6.42)

although a completely different form could be used. The exponential distrib-
ution models energy changes in ensembles of molecules, but otherwise it has
no intrinsic relationship to a given optimization problem.

The probability can be tuned in the early stages of the computations so
that some reasonable proportion of uphill steps are taken. In some optimiza-
tion problems, the value of the function at the optimum, f*, is known, and
the problem is only to determine the location of the optimum. In such cases
a factor (f — f*)9 could be used in the probability of acceptance. If the value
f* is not known but a reasonable estimate is available, it could be used. The
estimate could also be updated as the algorithm proceeds.

280 6 Solution of Nonlinear Equations and Optimization
Parameters of the Algorithm: The Cooling Schedule

There are various ways the temperature can be updated in step 1.

The probability of the method converging to the global optimum depends
on a slow decrease in the temperature. In practice, the temperature is generally
decreased by some proportion of its current value:

T(k+1) = b(k)T(k), (6.43)

for 0 < b(k) < 1. We would like to decrease T as rapidly as possible, yet have
a high probability of determining the global optimum. Geman and Geman
(1984) showed that under the assumptions that the energy distribution is
Gaussian and the acceptance probability is of the form (6.42), the probability
of convergence goes to 1 if the temperature decreases as the inverse of the
logarithm of the time, that is, if b(k) = (log(k))~! in equation (6.43). Under
the assumption that the energy distribution is Cauchy, a similar argument
is based on b(k) = k=1, and a uniform distribution over bounded regions is
based on b(k) = exp(—cipk!'/?), where ¢, is some constant, and d is the number
of dimensions.

A constant temperature is often used in simulated annealing for optimiza-
tion of continuous functions. A constant temperature may also be appropriate
for optimization of noisy functions. The adjustments are usually taken as con-
stants, rather than varying with k.

For functions of many continuous variables, it may be more efficient to use
the basic simulated annealing approach on a sequence of lower-dimensional
spaces. This approach can reduce the total number of computations, and
would be particularly useful when the cost of evaluation of the function is
very high.

In some cases it may desirable to exercise more control over the random
walk that forms the basis of simulated annealing. For example, we may keep
a list of “good” points, perhaps the m best points found so far. After some
iterations, we may return to one or more of the good states and begin the
walk anew.

We may use the number of times a point is visited to estimate the optimal
solution.

Simulated annealing is often used in conjunction with other optimization
methods, for example, to determine starting points for other optimization
methods. Multiple starting points may allow the subsequent optimization
method to identify more than one local optimum.

When gradient information is available, even in a limited form, simulated
annealing is generally not as efficient as other methods that use that informa-
tion. The main advantages of simulated annealing include its simplicity, its
ability to move away from local optima, and the wide range of problems to
which it can be applied.

It may be useful periodically to “re-anneal” by increasing the temperature.
This might be done to get out of what might appear to be a local minimum.

6.3 Unconstrained Combinatorial and Stochastic Optimization 281

In this case, the best value within that local area should be preserved in order
to return to it in case no better points are found quickly.

Simulated annealing proceeds as a random walk through the domain of
the objective function. There are many opportunities for parallelizing such a
process. The most obvious is starting multiple walks on separate processors.

Applications

Simulated annealing has been successfully used in a range of optimization
problems, including probability density smoothing classification, construction
of minimum volume ellipsoids, and optimal experimental design.

The Canonical Example: The Traveling Salesperson Problem

The traveling salesperson problem can serve as a prototype of the problems in
which the simulated annealing method has had good success. In this problem,
a state is an ordered list of points (“cities”), and the objective function is
the total distance between all the points in the order given (plus the return
distance from the last point to the first point. One simple rearrangement of
the list is the reversal of a sublist, that is, for example,

(1,2,3,4,5,6,7,8,9) — (1,6,5,4,3,2,7,8,9).

Another simple rearrangement is the movement of a sublist to some other
point in the list, for example,

(1,2,3,4,5,6,7,8,19) — (1,7,8,2,3,4,5,6,9).

(Both of these rearrangements are called “2-changes”, because in the graph
defining the salesperson’s circuit, exactly two edges are replaced by two others.
The circuit is a Hamilton closed path.)

Evolutionary Algorithms

There are many variations of methods that use evolutionary strategies. These
methods are inspired by biological evolution, and the descriptions of the meth-
ods often use terminology from biology. Genetic algorithms mimic the behav-
ior of organisms in a competitive environment in which only the fittest and
their offspring survive. Decision variables correspond to “genotypes” or “chro-
mosomes”; a point or a state is represented by a string (usually a bit string);
and new values of the decision variables are produced from existing points
by “crossover” or “mutation”. The set of points at any stage constitutes a
“population”. The points that survive from one stage to another are those
yielding lower values of the objective function.

In most iterations it is likely that the new population includes a higher
proportion of fit organisms (points yielding better values of the objective
function) than the previous population, and that the best of the organisms is
better than the best in the previous population.

282 6 Solution of Nonlinear Equations and Optimization
Coding of Points

The first step in using a genetic algorithm is to define a coding of the points
in the domain into strings that can be manipulated easily. One simple coding
scheme is a binary representation of the index of each point. Of course, this
must be preceded by an assignment of an index to each point. In some cases,
if the points have an ordinal relationship, this indexing is natural. In other
cases, such as the traveling salesperson problem, each point (or path) in the
domain must be assigned a bit pattern following some heuristic scheme, or,
lacking that, following arbitrary choices.

Evolution Method

Algorithm 6.10 provides an outline of a genetic algorithm. There are several
decisions that must be made in order to apply the algorithm. The first, as
mentioned above, is to decide how to represent the values of decision variables,
that is, the states, in terms of chromosomes, and to decide how to evaluate
the objective function in terms of a chromosome. Then, an initial population
must be chosen.

Algorithm 6.10 Genetic Algorithm

0. Determine a representation of the problem, and define an initial popula-
tion, xgo), xéo), e ,:cglo). Set k = 0.
1. Compute the objective function (the “fitness”) for each member of the

population, f(x(k)

;) and assign probabilities p; to each item in the popu-
lation, perhaps proportional to its fitness.

2. Choose (with replacement) a probability sample of size m < n. This is
the reproducing population.

3. Randomly form a new population :cgkﬂ),xgkﬂ), . ,mgﬁl) from the re-

producing population, using various mutation and recombination rules

(see Table 6.2). This may be done using random selection of the rule for

each individual of pair of individuals.

4. If convergence criteria are met, stop, and deliver argmin_x+1) f (J:Ekﬂ))

as the optimum; otherwise, set kK = k 4+ 1 and go to step 1. |

Mutation and Recombination Rules

There are several possibilities for producing a new generation of organisms
from a given population. Some methods mimic sexual reproduction, that is,
the combining of chromosomes from two organisms, and some methods are
like asexual reproduction or mutation. A genetic algorithm may involve all of
these methods, perhaps chosen randomly with fixed or varying probabilities.

Three simple methods are crossover, for combining two chromosomes, and
inversion and mutation, for yielding a new chromosome from a single one. In

6.3 Unconstrained Combinatorial and Stochastic Optimization 283

crossover of two chromosomes each containing m bits, for a randomly selected
j from 1 to [, the first j bits are taken from the chromosome of the first
organism and the last [— j bit are taken from the chromosome of the second
organism. In inversion, for j and k randomly selected from 1 to [, the bits
between positions j and k are reversed, while all others remain the same. In
mutation, a small number of bits are selected randomly and are changed, from
0 to 1 or from 1 to 0. The number of bits to change may be chosen randomly,
perhaps from a Poisson distribution, truncated at [. These operations are
illustrated in Table 6.2.

Table 6.2. Reproduction Rules for a Genetic Algorithm

Generation k Generation k + 1

Crossover
«® 11001001
— 2 11011010
2" 00111010

Inversion
M 11101011 — 2% 11010111

Mutation
«® 11101011 — «**Y 10111011

Clone
11101011 — 2T 11101011

In the example operations shown in Table 6.2, crossover occurs between
the third and fourth bits; inversion occurs for the bits between (and including)
the third and the sixth; and mutation occurs at the second and fourth bits.

As with simulated annealing, indeed, as with almost any optimization
method, for a given problem, genetic algorithms may require a good deal
of ad hoc tuning. In the case of genetic algorithms, there are various ways
of encoding the problem, of adopting an overall strategy, and of combining
organisms in a current population to yield the organisms in a subsequent
population.

Genetic algorithms can be implemented in parallel rather directly.

Other Combinatorial Search Methods

There are a number of other methods of combinatorial optimization. One
general type of method are guided direct search methods, in which at each

284 6 Solution of Nonlinear Equations and Optimization

stage there is an attempt to use the history of the search to choose new
directions to explore.

Tabu search simulates the human memory process in maintaining a list of
recent steps. The list is called a tabu list. The purpose of the list is to prevent
the search from backtracking. Before a potential step is selected the search
procedures checks the tabu list to determine if it is in the recent path to this
point. The tabu list can be implemented by penalizing the objective function.

Artificial neural networks are another type of algorithm for decision mak-
ing that is analogous to a biological process.

A number of other stochastic combinatorial search methods have been
developed. Some of these methods derive from the stochastic approximations
in the Robbins-Monro procedure (equation (6.11)).

6.4 Optimization under Constraints

The general optimization problem for a scalar-valued function in m variables
with r constraints is

n;in f(z) (6.44)
<

s.t. g(x) <b,

where x is m-dimensional and g(z) < b is a system of r inequalities. This
formulation can include equality constraints by expressing an equality as two
inequalities.

A point satisfying the constraints is called a feasible point, and the set of
all such points is called the feasible region. For a given point x;, a constraint
g; such that g;(x;) = b; is called an active constraint.

Any of the unconstrained optimization methods we have described can be
modified to handle constraints by first insuring that the starting points satisfy
the constraints and then explicitly incorporating checks at each iteration to
insure that any new point also satisfies the constraints. If the new point does
not satisfy the constraints, then some of the parameters of the algorithm
may be adjusted and a new point generated (this is a possible approach in
the Nelder-Mead simplex method, for example), or, in random methods such
as simulated annealing, the new point is simply discarded and a new point
chosen. Although this is a straightforward procedure, it is unlikely to be very
efficient computationally.

Unconstrained methods can be used efficiently if a sequence of uncon-
strained problems that converges to a problem of interest can be defined.
Although it may not be possible to evaluate the objective function in regions
that are not feasible, this method can often be very effective.

Another approach to solving constrained problems is to incorporate the
constraints into the objective function. One way in which this is done is by

6.4 Optimization under Constraints 285

use of supplementary variables, as discussed below. Another way is to de-
fine transformations of the variables so that the objective function increases
rapidly near constraint boundaries.

Constrained Optimization in Dense Domains

In a constrained optimization problem over a dense domain, the most impor-
tant concerns are the shape of the feasible region and the smoothness of the
objective function. The problem is much easier if the feasible region is convex,
and fortunately many constrained real-world problems have convex feasible
regions. The smoothness of the objective function is important, because if it
is twice-differentiable, we may be able to use the known properties of deriva-
tives at function optima to find those optima. For methods that incorporate
the constraints into the objective function, the shape of the feasible region is
important because the derivatives of the combined objective function depend
on the functions defining the constraints.

Equality Constraints

We will first consider some simple problems. Equality constraints are generally
much easier to handle than inequalities. This is a special case of problem (6.44)
with a pair of inequalities, one a negative multiple of the other. The equality
constraint problem is

néin f(z) (6.45)
s.t. g(z) = b.

For any feasible point, all equality constraints are active constraints.

An optimization problem with equality constraints can often be trans-
formed into an equivalent unconstrained optimization problem.

An important form of equality constraints are linear constraints, Az = b,
where A is an r x m (with » < m) matrix of rank s. With g(x) = Az, we have

mwin f(z) (6.46)
s.t. Az =b.

If the linear system is consistent (that is, rank([A|b]) = s), the feasible set is
nonnull. The rank of A must be less than m, or else the constraints completely
determine the solution to the problem. If the rank of A is less than r, however,
some rows of A and some elements of b could be combined into a smaller
number of constraints. We will therefore assume A is of full row rank; that is,
rank(A) = r.

If x. is any feasible point, that is, Az. = b, then any other feasible point
can be represented as z.+p, where p is any vector in the null space of 4, N/(4).

286 6 Solution of Nonlinear Equations and Optimization

The dimension of N'(A) is m—r, and its order is m. If B is an m X m—r matrix
whose columns form a basis for N'(A), all feasible points can be generated by
Ze + Bz, where z € R™ ™",

Hence, we need only consider the restricted variables

x =z, + Bz, (6.47)

and the function
h(z) = f(zc + Bz). (6.48)
The argument of this function is a vector with only m — r elements, instead
of m elements, as in the original function f. The unconstrained minimum of
h, however, is the solution of the original constrained problem.
Now, if we assume differentiability, the gradient and Hessian of the reduced
function can be expressed in terms of the the original function:

Vh(z) = BTV f(x. + Bz)
= BTV f(x), (6.49)

and

Hy(z) = B"H (2. + B2)B
= BTH(z)B. (6.50)

The relationship of the properties of stationary points to the derivatives are
the conditions that determine a minimum of this reduced objective function;
that is, z, is a minimum if and only if

° BTVf(x*) =0,
e BTH¢(x.)B is positive definite, and
o Az, =0.

These relationships then provide the basis for the solution of the optimization

problem. Hence, the simple constrained optimization problem (6.45) can be
solved using the same methods as discussed in Section 6.2.

Lagrange Multipliers

Consider again the equality-constrained problem (6.45) and the matrix B in
equation (6.47). Because the m xm matrix [B|AT] spans IR, we can represent
the vector V f(z.) as a linear combination of the columns of B and AT, that
is,

Vf(xe) = (Bzo|ATA)T,

where z, is an (m — r)-vector and A, is an r-vector. Because Vh(z,) = 0, Bz,
must also vanish, and we have

Vi(z.) = AT\,
= Jy(z) T\ (6.51)

6.4 Optimization under Constraints 287

Thus, at the optimum, the gradient of the objective function is a linear com-
bination of the columns of the Jacobian of the constraints. The elements of
the linear combination vector A, are called Lagrange multipliers.

The condition expressed in (6.51) implies that the objective function can-
not be reduced any further without violating the constraints.

We can see this in a simple example with equality constraints:

min f(x) = 2z1 + x2
x

st.g(x) =2% — 20 = 1.

In this example the objective function is linear, and the single equality con-
straint is quadratic. The optimum is ., = (—1,0). The gradient of f(z) is
Vi(z) = (2,1), that of g(z) is Vg(x) = (221,—1), and Vg(z.) = (-2, -1).
As we see in Figure 6.10 at the optimum,

Vf(x.) = =Vg(x.)
_Jg(x*)T-

The Lagrangian Function

The relationship between the gradient of the objective function and the Ja-
cobian of the constraint function, motivates the definition of the Lagrangian
Sfunction:

L(z,\) = f(z) + AT (g(z) = b), (6.52)

where A is an m-vector, the elements of which are the Lagrange multipliers.

The derivatives of the Lagrangian function can be analyzed in a manner
similar to the analysis of the derivatives of the objective function to deter-
mine necessary and sufficiency conditions for a minimum subject to equality
constraints.

Linear Programming

The basic linear program, which is often written as

min z = ¢tz (6.53)

st. x>0
Ax < b,

is a problem over a dense domain. A solution to the problem, however, occurs
at a vertex of the polytope formed by the constraints. (The polytope may be
unbounded; that is, it may have “open” sides.) Because this is a finite set,
the solution can be determined by inspecting a finite number of possibilities.
It is in this sense that the linear programming problem is similar to other
combinatorial optimization problems.

288 6 Solution of Nonlinear Equations and Optimization

X2

-2

X4

Fig. 6.10. Linear Objective and Quadratic Equality Constraint

The linear programming problem is generally most easily solved by a sim-
plex method, which steps through the vertices efficiently.

More efficient methods for very large-scale linear programs are based on
interior-point methods (see Griva, Nash, and Sofer, 2008, for a description).
An interior-point method may proceed along interior points until the algo-
rithm appears to slow, and then move to a vertex at some step and switch
over to a simplex algorithm for the final iterations toward the solution .. The
interior-point method uses a barrier function to proceed through the dense in-
terior of the feasible region. This approach treats the problem a combinatorial
optimization problem only in the latter stages.

Linear programming is a good example of how a specialized algorithm
can perform very differently for some variation of the underlying optimization
problem.

Special formulations of the simplex method make very significant differ-
ences in the speed of the solution. The problem of fitting a linear regression
under the criterion of least absolute values is a linear programming problem,

6.4 Optimization under Constraints 289

| o

Fig. 6.11. A Linear Programming Problem. The Parallel Lines Are in the Direction
of the Coefficient Vector ¢

but its solution is much more efficient when the simplex method is accelerated
by taking into account its special structure. (See Kennedy and Gentle, 1980,
Chapter 11, for a description of the modified linear programming methods
applied to the L; and Lo, fitting problems.)

An important variation of linear programming is integer programming, in
which the decision variables are restricted to be integers. In mixed integer
programming some variables are restricted to be integers and others are not.

General Constrained Optimization over Dense Domains

Inequality constraints present significant challenges in optimization problems.
The extent of the difficulty depends on the type of the constraint. The simplest
constraints are “box constraints”, or simple bounds on the variables. Next
are linear constraints of the form | < Az < wu. Finally, general nonlinear
constraints are the most complicated.

As in other cases of optimization over dense domains, we will usually
assume that the objective function is twice differentiable in all variables. We
will only indicate some of the general approaches.

When there are both equality and inequality constraints, it is more conve-
nient for the discussion to write the equality constraints explicitly as equalities,
rather than as a pair of inequalities in the form of problem (6.44):

290 6 Solution of Nonlinear Equations and Optimization

min f(z (6.54)

s.t. g1(x) =
g2(x)

~

bla
bs.

IA

For any feasible point all equality constraints are active, while the any of the
inequality constraints gz2(x) < by may or may not be active.

The following well-known theorem is proved in many texts on optimization,
such as Griva, Nash, and Sofer (2008).

Let L(z,A\) be the Lagrangian, and let z, be a solution to prob-

lem (6.54). If the gradients of the active constraints at z., Vgga)(x*),
are linearly independent, then there exists A, such that

VoL(z,,\) =0,

and for all active constraints, géa) with corresponding A\(®),

A <o

and
M5 (@) = 0.

These necessary conditions are called the Karush-Kuhn-Tucker conditions,
or just Kuhn-Tucker conditions. The Karush-Kuhn-Tucker conditions allow
identification of potential solutions. These conditions, together with sufficient
conditions involving second derivatives of L(z, A), form the basis for a variety
of algorithms for constrained optimization of differentiable functions.

Another approach to solving constrained problems is to formulate a se-
quence of simpler problems that converges to problem of interest. The method
is often called the sequential unconstrained minimization technique (SUMT).
A possible problem arises in this approach if the behavior of the objective
function is different outside the feasible region from its behavior when the
constraints are satisfied.

Quadratic Objective Function with Linear Inequality Constraints

A common form of the general constrained optimization problem (6.44) has
a quadratic objective function and linear inequality constraints:

min ¢tz + 2TCx (6.55)
x
s.t. Az <b.

This is called a quadratic programming problem. If C' is positive semidef-
inite, the problem is particularly simple, and there are efficient methods for
solving a quadratic programming problem that make use of the fact that if
T4 is a solution, then there exists A, such that

6.5 Computations for Least Squares 291
2Cx, + AT\, =T (6.56)

A number of algorithms based on sequential quadratic programming prob-
lems are used for more general constrained optimization problems. As in the
unconstrained sequences, the violations of the constraints are built into the
objective functions of later stages.

The fact that the sequence of approximate problems does not maintain
feasibility of the solution to the original problem can be a major disadvantage.
In some cases the objective function may not even be defined outside of the
feasible region.

Constrained Combinatorial Optimization

Constraints in combinatorial optimization problems are usually handled by
restricting the mechanism that generates new points to generate only feasible
points. In a simulated annealing method, for example, the feasibility of each
potential state r is determined prior to the acceptance/rejection step.

6.5 Computations for Least Squares

One of the most common problems in applications in statistics and data analy-
sis is the least squares problem. The usual context is in fitting the model

E(Y;) = f(z4,0.), (6.57)

given observations (z;,y;).
For any given 6, we form the residuals

7i(0) = yi — f(xi,0).

We will assume that f(-) is a smooth function and 6 is an m-vector. Letting
y be the n-vector of observations, we can write the least squares objective
function as

s(6) = (r(8)) " (). (6.58)

The gradient and the Hessian for a least squares problem have special
structures that involve the Jacobian of the residuals, J,(#). The gradient of s
is

Vs(0) = 2 (J.(0)" r(0). (6.59)

Taking derivatives of Vs(6), we see that the Hessian of s can be written in
terms of the Jacobian of r and the individual residuals:

H,(0) = 2(3,(0)" 3,(0) + 23" ri(0)1,, 0). (6.60)
=1

292 6 Solution of Nonlinear Equations and Optimization

In the vicinity of the solution 5, the residuals r;(#) should be small, and
so H,(#) may be approximated by neglecting the second term:

H, () ~ 2 (J,(0)" J.(0).

Using equation (6.59) and this approximation for equation (6.60) in the gra-
dient descent equation (6.36), we have the system of equations

(Jr(ﬂ(k_l)))TJr(H(k_l))d(’“) = - (Jr(G(k_l)))Tr(é)(k_l)) (6.61)

that is to be solved for d*), where
d®) ~ gk _ g(k=1)

It is clear that the solution d®) is a descent direction; that is, if Vs(e(k_l)) #0,
then

(@) TVs(9k—D) = — ((w(kl)))Td(m)T (JT(Q(kfl)))Td(k)
< 0.

The update step is determined by a line search in the appropriate direction:

pR) _ gh=1) — (k) gk

The method just described that uses the Gramian matrix formed from
the Jacobian, rather than the Hessian, is called the Gauss-Newton algorithm.
(The method is also sometimes called the “modified Gauss-Newton algorithm”
because many years ago no damping was used in the Gauss-Newton algorithm,
and o®) was taken as the constant 1. Without an adjustment to the step, the
Gauss-Newton method tends to overshoot the minimum in the direction d(®).)

In practice, rather than a full search to determine the best value of a(*),
we just consider the sequence of values 1, %, i, ... and take the largest value so
that s(0%)) < s(#*~Y)). The algorithm terminates when the change is small.

If the residuals are not small, that is, if the Gramian is not a good approx-
imation of the Hessian, or if J,(6(®)) is poorly conditioned, the Gauss-Newton
method can perform very poorly.

If the condition is poor, one possibility is to add a conditioning matrix to
the coeflicient matrix in equation (6.61). A simple choice is A® T, and the
equation for the update becomes

<<Jr(9(k1)))TJr(9(k1)) +)\(k)Im) de — _ ({]T(Q(k*l)))T7n(9(lc71))7

where I,,, is the m xm identity matrix and A(*) is nonnegative. A better choice
may be an m x m scaling matrix, S*), that takes into account the variability
in the columns of J,.(*~1); hence, we have for the update equation

6.5 Computations for Least Squares 293

((Jr(@(k—l)))TJr(g(k—l)) + A0 (50)T S(k)) dk)

6.62
B)
The basic requirement for the matrix (S (k))T S(*) is that it improve the condi-
tion of the coefficient matrix. There are various ways of choosing this matrix.
One is to transform the matrix (Jr(e(k_l)))TJ,«(H(k_l)) so that it has 1’s
along the diagonal (this is equivalent to forming a correlation matrix from a
variance-covariance matrix), and to use the scaling vector to form S (%) The
nonnegative factor A(*) can be chosen to control the extent of the adjustment.
The sequence A*) must go to 0 for the algorithm to converge.
Equation (6.62) can be thought of as a Lagrange multiplier formulation of
the constrained problem,

min 4 1, (60%~)z 4 r(6%=D) |
(6.63)
s.t. HS(’“):UH < 0.

The Lagrange multiplier A®) is zero if d*) from equation (6.61) satisfies
[|[d®)|| < 6y; otherwise, it is chosen so that || S d®) || = 5.

Use of an adjustment such as in equation (6.62) in a Gauss-Newton al-
gorithm is called the Levenberg-Marquardt algorithm. It is probably the most
widely used method for nonlinear least squares.

Iteratively Reweighted Least Squares

In the weighted least squares problem, we have the objective function equation
from page 69:

Sw(0) = Zw (ri(6))>.

The weights add no complexity to the problem, and the Gauss-Newton
methods of the previous section apply immediately, with

7(0) = Wr(0),

where W is a diagonal matrix containing the weights.

The simplicity of the computations for weighted least squares suggests a
more general usage of the method. Suppose that we are to minimize some
other L, norm of the residuals r;, as in equation (1.156) on page 67. The
objective function can be written as

5(0) = Y e = S0)* (6.64)

so long as y; — f(0) # 0.

294 6 Solution of Nonlinear Equations and Optimization

This leads to an iteration on the least squares solutions. Beginning with
yi — f(0(9) =1, we form the recursion that results from the approximation

n

s (0F)) ~ 1 o w 9
o ;\yi—f(mk—l))f—? (y’ I)>- (6.65)

Hence, we solve a weighted least squares problem, and then form a new
weighted least squares problem using the residuals from the previous problem.

The method using the recursion (6.65) is called iteratively reweighted least
squares, or IRLS. The iterations over the residuals are outside the loops of
iterations to solve the least squares problems, so in nonlinear least squares,
IRLS results in nested iterations.

There are some problems with the use of reciprocals of powers of residuals
as weights. The most obvious problem arises from very small residuals. This
is usually handled by use of a fixed large number as the weight.

Tteratively reweighted least squares can also be applied to other norms,

The weights at the k' step are just p(y; — f(0F=D))/(y; — fF(OF—D))2.
The approximations for the updates may not be as good as for L, norms.
No matter what norm is used, very small residuals can cause problems.

6.6 Computations for Maximum Likelihood

Although methods based on the maximum of the likelihood function require
strong assumptions about the underlying probability distributions, they are
widely used in statistics and data analysis. Instead of the model of only the
expectation (6.57), E(Y;) = f(xs, 6.), as for approaches based on least squares,
for maximum likelihood, we must have a model of the PDF. We assume it to
be of a given form,

py; (i | f (i, 04). (6.66)

Again, the objective is to determine an estimate of 6.

We should be aware of the strength of the assumptions we must make
about the probability distribution. The assumption underlying the maximum
likelihood approach is stronger than an assumption about expected values,
which underlies approaches based on minimizing residuals.

Given the PDF, we form the likelihood L(6;y) or the log-likelihood
1,(0; y) as describe beginning on page 44. The maximum likelihood estimate
of 6, is

argmaxl!y(6; y).
0

6.6 Computations for Maximum Likelihood 295

If the likelihood is twice differentiable and if the range does not depend on
the parameter, Newton’s method (see equation (6.36)) could be used to solve
the optimization problem. Newton’s equation

Hy, (0715 y)d™ = Vi (0% ;5 y) (6.67)

is used to determine the step direction in the kP iteration. A quasi-Newton
method, as we mentioned on page 269, uses a matrix H;, (§%*~1) in place of
the Hessian H;, (#*~1)). At this point, we should remind the reader:

The form of a mathematical expression and the way the erpression
should be evaluated in actual practice may be quite different.

There are many additional considerations for the numerical computations,
and the expressions below, such as equations (6.68), (6.70), and (6.71), rarely
should be used directly in a computer program.

The optimization problem can be solved by Newton’s method, equa-
tion (6.29) on page 266, or by a quasi-Newton method. (We should first note
that this is a maximization problem, so the signs are reversed from our pre-
vious discussion of a minimization problem.)

A common quasi-Newton method for optimizing I, (0 ; y) is Fisher scoring,
in which the Hessian in Newton’s method is replaced by its expected value.
The expected value can be replaced by an estimate, such as the sample mean.
The iterates then are

~ —1
gu) — gle=1) _ (E(E)(’“*l))) Vip (051 ;), (6.68)

where E(#%*~1)) is an estimate or an approximation of
B(H, (0% [V), (6.69)

which is itself an approximation of Eg(H,, (¢ ‘ Y)). By equation (1.167) on
page 72, this is the negative of the Fisher information matrix if the differ-
entiation and expectation operators can be interchanged. (This is one of the
“regularity conditions” we alluded to earlier.) The most common practice is
to take E (%=1 as the Hessian evaluated at the current value of the itera-
tions on 6; that is, as H;, (9%~ ;). This is called the observed information
matrix.

In the case of a covariate x; where we have u = x;(), another quasi-
Newton method may be useful. The Hessian in equation (6.67) is replaced

by
(X(é)(k‘l)))T K(0%=1) X (k1) (6.70)

where K (9(’“’1)) is a positive definite matrix that may depend on the current
value §*~1) . (Again, think of this in the context of a regression model, but
not necessarily linear regression.) This method is called the Delta algorithm
because of its similarity to the delta method for approximating a variance-
covariance matrix (described on page 50).

296 6 Solution of Nonlinear Equations and Optimization
Maximization over Subvectors

In some cases, when 6 is a vector, the optimization problem can be solved by
alternating iterations on the elements of §. In this approach, with 8 = (6;,6;),
iterations based on equations such as (6.67) are

Hi, (60705 6070) d® = v, (6570 05V), 67

where d; is the update direction for 6;, and 6; is considered to be constant in
this step. In the next step, the indices ¢ and j are exchanged. This is compo-
nentwise optimization. For some objective functions, the optimal value of 6;
for fixed 6; can be determined in closed form. In such cases, componentwise
optimization may be the best method.

Sometimes, we may be interested in the MLE of ; given a fixed value of
0;, so the iterations do not involve an interchange of ¢ and j as in component-
wise optimization. Separating the arguments of the likelihood or log-likelihood
function in this manner leads to what is called profile likelihood, or concen-
trated likelihood.

As a purely computational device, the separation of # into smaller vectors
makes for a smaller optimization problem for which the number of computa-
tions is reduced by more than a linear amount. The iterations tend to zigzag
toward the solution, so convergence may be quite slow. If, however, the Hessian
is block diagonal, or almost block diagonal (with sparse off-diagonal submatri-
ces), two successive steps of the alternating method are essentially equivalent
to one step with the full §. The rate of convergence would be the same as that
with the full . Because the total number of computations in the two steps is
less than the number of computations in a single step with a full 8, however,
the method may be more efficient in this case. EM methods, which we discuss
next, are special cases of this general approach.

EM Methods for Maximum Likelihood

EM methods alternate between updating #*) by maximization of a likelihood
and use of conditional expected values. This method is called the EM method
because the alternating steps involve an expectation and a maximization.

The EM methods can be explained most easily in terms of a random sam-
ple that consists of two components, one observed and one unobserved or
missing. A simple example of missing data occurs in life-testing, when, for
example, a number of electrical units are switched on and the time when each
fails is recorded. In such an experiment, it is usually necessary to curtail the
recordings prior to the failure of all units. The failure times of the units still
working are unobserved. The data are said to be right censored. The num-
ber of censored observations and the time of the censoring obviously provide
information about the distribution of the failure times.

6.6 Computations for Maximum Likelihood 297

The missing data can be missing observations on the same random variable
that yields the observed sample, as in the case of the censoring example; or the
missing data can be from a different random variable that is related somehow
to the random variable observed.

Many common applications of EM methods do involve missing-data prob-
lems, but this is not necessary. Often, an EM method can be constructed based
on an artificial “missing” random variable to supplement the observable data.

Let Y = (U,V), and assume that we have observations on U but not on
V. We wish to estimate the parameter 6, which figures in the distribution of
both components of Y. An EM method uses the observations on U to obtain a
value of 8%) that increases the likelihood and then uses an expectation based
on V that increases the likelihood further.

Let L.(0 ; u,v) and I1, (0 ; u,v) denote, respectively, the likelihood and
the log-likelihood for the complete sample. The likelihood for the observed U
is

L(0; u) = /Lc(é); u,v) dv,

and {,(0 ; u) = log L(# ; u). The EM approach to maximizing L(6 ; u) has
two alternating steps. The first one begins with a value 6(°). The steps are
iterated until convergence.

e E step : compute ¢(¥)(0) = Eyju0t:-1 (L0] u,V)).
e M step : determine %) to maximize ¢(¥)(6), subject to any constraints on
acceptable values of 6.

The sequence 81,0 ... converges to a local maximum of the observed-data
likelihood L(6 ; w) under fairly general conditions. The EM method can be
very slow to converge, however.

As is usual for estimators defined as solutions to optimization problems, we
may have some difficulty in determining the statistical properties of the esti-
mators. There are various ways that we might estimate the variance-covariance
matrix using computations that are part of the EM steps. The most obvious
method is to use the gradient and Hessian of the complete-data log-likelihood,
Ip, (05 u,v).

It is interesting to note that under certain assumptions on the distribution,
the iteratively reweighted least squares method discussed on page 294 can be
formulated as an EM method (see Dempster, Laird, and Rubin, 1980).

For a simple example of the EM method, see Exercise 6.12, in which the
problem in Dempster, Laird, and Rubin (1977) is described. As a further ex-
ample of the EM method, consider an experiment described by Flury and
Zoppe (2000). It is assumed that the lifetime of light bulbs follows an expo-
nential distribution with mean 6. To estimate 6, n light bulbs were tested until
they all failed. Their failure times were recorded as uq, ..., u,. In a separate
experiment, m bulbs were tested, but the individual failure times were not
recorded. Only the number of bulbs, r, that had failed at time ¢ was recorded.

298 6 Solution of Nonlinear Equations and Optimization

The missing data are the failure times of the bulbs in the second experiment,
Vly...,Uy. We have

.0 ; u,v) = —n(logh+u/0) — Z (log 0 + v;/9).
i=1
The expected value, Ey|, g1, of this is

¢™(8) = —(n+m)log 9—% (nu + (m—)t + 0F=D) 4 p(gk=D — th(’“*l))) ,

where h*~1 is given by

/g1
o—t/0

(k—1) _
S

The k™ M step determines the maximum, which, given 6%~ occurs at

ok —

- _ (k—1) (k=1) _ 43 (k—1)
e (nu—i— (m—r)(t+6)+ (0 th)) . (6.72)

Starting with a positive number #(9)| equation (6.72) is iterated until conver-
gence.

This example is interesting because if we assume that the distribution of
the light bulbs is uniform, U(0, 8) (such bulbs are called “heavybulbs”!), the
EM algorithm cannot be applied. As we have pointed out above, maximum
likelihood methods must be used with some care whenever the range of the
distribution depends on the parameter. In this case, however, there is another
problem. Tt is in computing ¢*) (#), which does not exist for § < (=1,

Notes and Further Reading

Rootfinding

The problem I have called “solving equations” or “finding roots” is often
associated with the keyword “zero”. (In the IMSL Library, the routines for
“finding zeros” were in Chapter Z.)

General Methods for Optimization

Griva, Nash, and Sofer (2008) provide a comprehensive coverage of the basic
ideas and methods of optimization in dense domains. They present the meth-
ods in the form of what they call a General Optimization Algorithm, which
consists of two steps, an optimality convergence test, and a step that improves
the current solution. In this chapter, I have described the second step as itself

Notes and Further Reading 299

consisting of two steps: finding a new possible point, and the deciding whether
or not to accept that point. Many stochastic methods may accept a new point
even when the current solution is better.

For differentiable objective functions, the first and second derivatives can
be used to move toward an optimum and to decide when a local optimum
has been achieved. Conn, Scheinberg, and Vicente (2009) describe various
algorithms for optimization in dense domains that do not require derivatives
of the objective function.

Methods for Specialized Optimization Problems

One of the most widely-encountered specialized optimization problems is the
linear programming problem and related problems in network optimization.
Griva, Nash, and Sofer (2008) describe methods for such problems.

Stochastic Optimization and Evolutionary Methods

Stochastic optimization is discussed in some detail by Spall (2004). De Jong
(2006) describes the basic ideas of evolutionary computation and how the
methods can be used in a variety of optimization problems.

Optimization for Statistical Applications

Many of the relevant details of numerical optimization for statistical applica-
tions are discussed by Rustagi (1994) and by Gentle (2009).

The EM method for optimization is covered in some detail by Ng, Krish-
nan, and McLachlan (2004). The EM method itself was first described and
analyzed systematically by Dempster, Laird, and Rubin (1977).

Numerical Software for Optimization

Most of the comprehensive scientific software packages such as the IMSL Li-
braries, Matlab, and R have functions or separate modules for solution of
systems of nonlinear equations and for optimization.

The R function uniroot (which is zbrent in the IMSL Libraries) is based
on an algorithm of Richard Brent that uses a combination of linear inter-
polation, inverse quadratic interpolation, and bisection to find a root of a
univariate function in an interval whose endpoints evaluate to values with
different signs. The R function polyroot (which is zpolrc or zpolcc in the
IMSL Libraries) is based on the Traub-Jenkins algorithm to find the roots of
a univariate polynomial.

It is difficult to design general-purpose software for optimization problems
because the problems tend to be somewhat specialized and different solution

300 6 Solution of Nonlinear Equations and Optimization

methods are necessary for different problems; hence, there are several spe-
cialized software packages for optimization. Some address general optimiza-
tion problems for continuous nonlinear functions, with or without constraints.
There are several packages for linear programming. These often also handle
quadratic programming problems, as well as other variations, such as mixed
integer problems and network problems.

Another reason it is difficult to design general-purpose software for op-
timization problems is because the formulation of the problems in simple
computer interfaces is difficult.

The need for an initial guess may also complicate the design of optimiza-
tion software, especially for the unsophisticated user. The software would be
hardpressed to decide on a reasonable starting value, however. Sometimes an
obvious default such as z(?) = 0 will work, and there are some software pack-
ages that will choose such a starting value if the user does not supply a value.
Most packages, however, require the user to input a starting value.

Many of the standard routines for optimization use derivative-free meth-
ods. For optimization of univariate functions, in R the function optimize,
based on an algorithm of Richard Brent, uses a combination of golden section
search and successive parabolic interpolation, for optimization of a univariate
function. The IMSL routine uvmif, based on a method of Mike Powell, uses
a safeguarded interpolation, and tends to be somewhat more robust.

For optimization of multivariate functions, in R the function nlm uses
a Newton-type method either with a user-supplied gradient and Hessian or
with numerically-approximated derivatives along with a simple bisection line
search. The R function optim uses a method that the user can choose, includ-
ing Nelder-Mead.

There is a wide range of software for least squares problems. Most of the
general-purpose software includes special routines for least squares. Packages
for statistical data analysis often include functions for nonlinear least squares.
For example, in the IMSL Libraries the routine rnlin performs least squares
fits of general models and in R the function nls performs the computations
for nonlinear least squares regression.

Because the development of a mathematical model that can be commu-
nicated easily to the computer is an important, but difficult aspect of opti-
mization problems, there are packages that implement modeling languages,
and many of the general packages accept optimization problems expressed in
these languages.

It is also possible for a user to access computational servers for optimiza-
tion over the internet, so that the user client does not need to run the software.
The site is

http://www-neos.mcs.anl.gov/

Hans Mittelmann maintains a useful guide to non-commercial optimization
software at

http://plato.la.asu.edu/guide.html

Exercises 301

This website also provides additional items such as benchmarks and test-

beds, annotated bibliography, and a glossary for optimization.

Exercises

6.1.
6.2.

6.3.

6.4.

6.5.

6.6.

Apply Aitken’s A%-extrapolation to equation (6.5) to obtain equation (6.6).
Apply Algorithm 6.1 to equation (6.4) and collect data similar to the
bisection iterations shown in Table 6.1.

Use a plain Newton’s method to construct a linearly convergent sequence
{z,} that converges slowly to the multiple root z = 1 of the function
f(x) = 2% — 3z + 2. Then use Aitken acceleration to construct {Z,},
which converges faster to the root z = 1. Use Newton’s method and
Steffensen’s acceleration method to find numerical approximations to the
multiple root, starting with zg = 1. Compare the number of iterations for
the two methods.

Use a plain Newton’s method to construct a linearly convergent sequence
{x,} that converges slowly to the multiple root 2 = /2 of the function
f(x) = sin(z? — 2)(2? — 2). Then use Aitken acceleration to construct
{#,}, which converges faster to the root x = /2. Use Newton’s method
and Steffensen’s acceleration method to find numerical approximations to
the multiple root, starting with zy = 1. Compare the number of iterations
for the two methods.

Bisection method.

Write a program module to implement the bisection method to find a
root of a given function, which is input together with values that bracket
a root, and an epsilon as the stopping criterion. Your program should
check that the two starting values are legitimate.

Use your bisection program to determine the first zero of the Bessel func-
tion of the first kind, of order O:

Jo(z) = l/ cos(z sin 0) df.
T Jo

(This function is available in Matlab, besselj; in PV-Wave, beselj; in

the IMSL Library, bsj0/dbsj0; and in the Unix math library, jO.)

Newton’s method.

Write a program module similar to that of Exercise 6.5 to implement

Newton’s method to find a root of a given function, which is input together

with its derivative, a starting value, and two stopping criteria: an epsilon

and a maximum number of iterations.

a) Observe the performance of the method on the function
f(z) = 2® — 142% + 68z — 115,

which is the function used in the examples in this chapter. Start with

x(()o) = 9. Print x(()k) to 10 digits, and observe the number of correct

302 6 Solution of Nonlinear Equations and Optimization

digits at each iteration until the solution is accurate to 10 digits.
Produce a table similar to Table 6.1 on page 248. What is the rate of
convergence?

b) Now observe the performance of the method on the function

f(z) = 2% — 152% 4 752 — 125,

whose solution is also 5. Again start with x(()o) = 9. What is the rate
of convergence? What is the difference?
6.7. Secant method.
Write a program module similar to that of Exercise 6.5 to implement the
secant method to find a root of a given function, which is input together
with two starting values, and two stopping criteria: an epsilon and a max-
imum number of iterations. Observe the performance of the method on
the function
f(z) = 2® — 142% 4 682 — 115.

Produce a table similar to Table 6.1 on page 248.
6.8. Regula falsi method.

Write a program module similar to that of Exercise 6.5 to implement
the regula falsi method to find a root of a given function, which is input
together with two starting values and two stopping criteria: an epsilon
and a maximum number of iterations. Your program should check that
the two starting values are legitimate. Observe the performance of the
method on the function

f(z) = 2® — 142% 4 682 — 115.

Produce a table similar to Table 6.1 on page 248.
6.9. Compare the performance of the four methods in Exercises 6.5 through 6.8
and that of the bisection method for the given polynomial.
Summarize your findings in a clearly-written report. Consider such things
as rate of convergence and ease of use of the method.
6.10. Consider the function
f(x) =z} + 523,

whose minimum obviously is at (0, 0).

a) Plot contours of f. (You can do this easily in R, S-Plus or Matlab, for
example.)

b) In the steepest descent method, determine the first 10 values of at®),
f(x(k)), Vf(x(k)), and z®), starting with 2(®) = (5,1). For the step
length, use the optimal value (equation (6.25), page 263).

¢) Plot contours of the scaled quadratic model (6.34) of f at the point
(5,1).

d) Repeat Exercise 6.10b using Newton’s method. (How many steps does
it take?)

6.11.

6.12.

6.13.

Exercises 303

Show that the rank-one update of equation (6.39), page 270, results in a

matrix B*+1) that satisfies the secant condition (6.37).

Assume a random sample y1,...,y, from a gamma distribution with pa-

rameters o and (. (Refer to Exercise 1.20 on page 78.)

a) Write a function in a language such as R, Matlab, or Fortran that
accepts a sample of size n and computes the least squares estimator
of @ and 8 and an approximation of the variance-covariance matrix
using both expression (1.160) and expression (1.161).

b) Try out your program in Exercise 6.12a by generating a sample of
size 500 from a gamma(2,3) distribution and then computing the es-
timates. (The sample can be generated by rgamma in R or S-Plus and
by rngam in IMSL.)

¢) Write a function in a language such as R, Matlab, or Fortran that
accepts a sample of size n and computes the maximum likelihood
estimator of a and 3 and computes an approximation of the variance-
covariance matrix using expression (1.168), page 73.

d) Try out your program in Exercise 6.12c by computing the estimates
from an artificial sample of size 500 from a gamma(2,3) distribution.

Dempster, Laird, and Rubin (1977) consider the multinomial distribution

with four outcomes, that is, the multinomial with probability function,

n! T _To T3 T4

p(x1, T2, T3, T4) = T Mo M3 Ty,

.131!])2!],‘3!]}4!

with n = z1 + z2 + 3+ x4 and 1 = my 4+ w2 + w3 + m4. They assumed that
the probabilities are related by a single parameter, 6:

mzé—f—i@
1 1
7'('2:%—%9
7r3=%—19
7r4=19,

where 0 < 6 < 1. (This model goes back to an example discussed by
Fisher, 1925, in Statistical Methods for Research Workers.) Given an ob-
servation (z1, 2, x3,x4), the log-likelihood function is

1(0) = x11log(2 + 0) + (z2 + x3) log(1 — 0) + x4 log(h) + ¢

and
T To+2x3 X4

2+6 1-46 6"

di(6)/dg =

The objective is to estimate 6.

304

a)

b)

c)

d)

)

6 Solution of Nonlinear Equations and Optimization

Determine the MLE of 6. (Just solve a simple polynomial equation.)
Evaluate the estimate using the data that Dempster, Laird, and Rubin
used: n = 197 and = = (125, 18,20, 34).

Although the optimum is easily found as in the previous part of this
exercise, it is instructive to use Newton’s method (as in equation (6.29)
on page 266). Write a program to determine the solution by Newton’s
method, starting with 8(0) = 0.5.

Write a program to determine the solution by scoring (which is the
quasi-Newton method given in equation (6.68) on page 295), again
starting with 90 = 0.5.

Write a program to determine the solution by the EM algorithm, again
starting with 90 = 0.5.

How do these methods compare? (Remember, of course, that this is a
particularly simple problem.)

7

Generation of Random Numbers

Monte Carlo simulation is a core technology in computational statistics. Monte
Carlo methods require numbers that appear to be realizations of random
variables. Obtaining these numbers is the process called “generation of random
numbers”.

Our objective is usually not to generate a truly random sample. Deep un-
derstanding of the generation process and strict reproducibility of any applica-
tion involving the “random” numbers is more important. We often emphasize
this perspective by the word “pseudorandom”, although almost anytime we
use a phrase similar to “generation of random numbers”, we refer to “pseudo-
random” numbers.

The quality of a process for random number generation is measured by
the extent to which the sample generated appears, from every imaginable
perspective, to be a random sample (that is, i.i.d.) from a given probability
distribution. Some methods of random number generation are better than
others.

7.1 Randomness of Pseudorandom Numbers

The initial step in random number generation is to obtain a sequence that
appears to be independent realizations from a uniform distribution over the
open interval (0,1). We denote this distribution by U(0,1).

While mathematically there is no difference in a continuous distribution
over [0,1] C IR and one over (0,1) C IR, there is a difference in a distribution
over [0,1] C IF and over (0,1) C IF. Because of the computations we may
perform with samples that appear to be from U(0, 1), we must make sure that
we exclude the zero-probability events of 0 and 1. (See Exercise 2.9a and its
solution on page 677 for a different situation, which may superficially appear
to be the same as this.)

J.E. Gentle, Computational Statistics, Statistics and Computing, 305
DOI: 10.1007/978-0-387-98144-4 7,
© Springer Science + Business Media, LLC 2009

306 7 Generation of Random Numbers

Generation of Pseudorandom Numbers from a Uniform
Distribution

There are several methods for generating uniform numbers. Most of these are
sequential congruential methods; that is, methods in which if a subsequence
of length j of positive numbers ug_1,...up—; is given, the next value in the
sequence is

ug = f(ug—1,...up—;)modm (7.1)

for some function f and some positive number m and with uj chosen so that
0 < ux < m. In this recursion, j is often chosen as 1.

It is clear that if the subsequence ug—_1,...ur—; ever occurs again, the
next value in the sequence will always be the same; hence, it is clear that on
a computer, for any f, the sequence will be periodic in IF or Z because those
sets are finite. In practice, however, the form of f is such that the sequence will
also be periodic within IR. The period is an important property of a random
number generator. Obviously the period must be great enough that we do not
expect to exhaust it in applications.

A simple instance of equation (7.1) in which m and the u; are integers is

up = aup_1modm with 0 < ug < m. (7.2)

This is called a linear congruential generator. Because the u; are integers, it
is clear that the period cannot exceed m — 1.

Another type of modular reduction scheme works at the bit level, doing
circular shifts and additions of selected bits to the popped bit. One class of
such methods is called a generalized feedback shift register (GFSR) method
in which numbers between 0 and 1 are formed by successively circularly shift-
ing the bits in a fixed-size register while adding a bit from a fixed location
within the register. (This is the “feedback”.) After a fixed number of circular
shifts with the feedback, the bits in a fixed subset of the register are selected
to represent a random number. The process continues, with a new random
number being delivered after each fixed number of feedback circular shifts.

One of the best of the current methods for generating U(0,1) is the
Mersenne twister described in Matsumoto and Nishimura (1998). This genera-
tor “twists” the terms in a sequence from a GFSR by a matrix multiplication.
It is called “Mersenne” because the period is a Mersenne prime (which is
a prime of the form 2P — 1, where p is a prime). One widely-used form of
the Mersenne twister that was constructed by Matsumoto and Nishimura is
called MT19937. It has a period of 219937 — 1 and can be implemented so as
to execute very fast.

A problem in any random sampling, of course, is that a particular sample
might not very well reflect the distribution of interest. Use of a pseudorandom
number generator can yield “good” or “bad” samples. Another approach to
random number generation is not to try to simulate randomness, but rather
to ensure that any generated sequence is more like a “good” random sample.

7.2 Generation of Nonuniform Random Numbers 307

Sequences generated in this way are called “quasirandom” numbers. We will
not describe this approach here.

A sequence of pseudorandom numbers generated by a computer program is
determined by a seed; that is, an initial state of the program. In the generator
of equation (7.2), the seed is . The seed for the generator of equation (7.1)
is the initial sequence of j positive numbers. A given seed generates the same
sequence of pseudorandom numbers every time the program is run. The abil-
ity to control the sequence is important because this allows the experimenter
to reproduce results exactly and also to combine experiments that use pseudo-
random numbers.

There are various algorithms for generating pseudorandom numbers, and
various computer programs that implement these algorithms. Some algorithms
and programs are better than others. Statistical tests for randomness ap-
plied to samples of pseudorandom numbers generated by good random num-
ber generators yield results consistent with hypotheses of randomness. The
pseudorandom numbers simulate random samples. A large set of statistical
tests for random number generators is TESTUO01, developed by L’Ecuyer and
Simard (2007). The tests can be run at three different levels.

Although the algorithms for random number generation seem fairly simple,
there are a number of issues that must be taken into account when implement-
ing these algorithms in computer programs. Rather than writing code from
scratch, it is generally better to use existing computer code. In Section 7.6 we
describe available software in Fortran or C and in R or S-Plus.

7.2 Generation of Nonuniform Random Numbers

Samples from other distributions are generated by using transformations of
sequences of a stream of U(0,1) random numbers. We will briefly describe
some of these methods below. These techniques are sometimes called “sam-
pling methods”.

To generate a realization of a random variable, X, with any given distri-
bution, we seek a transformation of one or more independent U(0, 1) random
variables, Uy, ..., U,

X = f(Uy,...,Uy),

such that X has the desired distribution. In some cases, the transformation f
may be a simple transformation of a single uniform variable. For example, to
obtain a standard exponential random variable, the transformation

X = —log(U)

yields one exponential for each uniform variable. In other cases, the trans-
formation may involve multiple stages in which we first transform a set of
uniform variables to a set of variables with some other joint distribution and

308 7 Generation of Random Numbers

then identify a marginal or conditional distribution that corresponds to the
desired distribution.

The transformations must be done with care and must respect the non-
randomness in the underlying uniform generator.

For example, for a double exponential distribution, with density

1
p(x) = Eei‘w‘a

consider the simple method:
Generate Uy and Us; set X = log(U7); then if Us > 0.5, set X = —X.

Often such mathematically correct transformations must be performed
with special care on the computer. In this example, if the uniform stream is
from a linear congruential generator with a relatively small multiplier, the
method will yield a stream of double exponentials in which all extreme values
are positive. (Because if U; is very small, Us will be also.)

Inverse CDF Method

If X is a scalar random variable with a continuous cumulative distribution
function (CDF) Px, then the random variable

U= Px(X)

has a U(0, 1) distribution.
This fact provides a very simple relationship with a uniform random vari-
able U and a random variable X with CDF Py, namely,

X = P HU), (7.3)

where the inverse of the CDF exists. Use of this straightforward transforma-
tion is called the inverse CDF technique. The log transformation mentioned
above that yields an exponential random variable uses the inverse CDF.

For a discrete random variable, although the inverse of the CDF does not
exist, the inverse CDF method can still be used. The value of the discrete
random variable is chosen as the smallest value within its countable range
such that the CDF is no less than the value of the uniform variate.

For a multivariate random variable, the inverse CDF method yields a level
curve in the range of the random variable; hence, the method is not directly
useful for multivariate random variables. Multivariate random variates can be
generated using the inverse CDF method first on a univariate marginal and
then on a sequence of univariate conditionals.

Acceptance/Rejection Methods

Acceptance/rejection methods for generating realizations of a random variable
X make use of realizations of another random variable Y whose PDF gy is

7.2 Generation of Nonuniform Random Numbers 309

similar to the PDF of X, px. The random variable Y is chosen so that we
can easily generate realizations of it and so that its density gy can be scaled
to majorize px using some constant ¢; that is, so that cgy (z) > px (z) for all
z. The density gy is called the majorizing density, and cgy is called the ma-
jorizing function. The majorizing density is also called the “proposal density” .
The density of interest, px, is called the “target density”. The support of the
target density must be contained in the support of the majorizing density; for
densities with infinite support, the majorizing density must likewise have in-
finite support. In the case of infinite support, it is critical that the majorizing
density not approach zero faster than the target density.

Acceptance /rejection methods can also be used for discrete random vari-
ables. We use the term “probability density” to include a probability mass
function, and all of the discussion in this section applies equally to probabil-
ity functions and probability densities.

Unlike the inverse CDF method, acceptance/rejection methods apply im-
mediately to multivariate random variables.

Algorithm 7.1 The Acceptance/Rejection Method to Convert
Uniform Random Numbers

1. Generate y from the distribution with density function gy .
2. Generate u from a uniform (0,1) distribution.
3. If u < px(y)/cgy(y), then
3.a. take y as the desired realization;
otherwise,
3.b. return to step 1. |

It is easy to see that Algorithm 7.1 produces a random variable with the
density px. Let Z be the random variable delivered. For any z, because Y
(from the density g) and U are independent, we have

Pr(Z <z)=Pr <Y <z|U< ;58%)

. Jpx@lear® oo (1) ds dt
e /e ® gy dsdt

- /_ L

which is the CDF corresponding to px. (Differentiating this quantity with
respect to x yields px(z).) Therefore, Z has the desired distribution.

It is easy to see that the random variable corresponding to the number of
passes through the steps of Algorithm 7.1 until the desired variate is delivered
has a geometric distribution. This random variable is a measure of the ineffi-
ciency of the algorithm. Because both cgy and px are densities, it is easy to
see that the expected value of this random variable is ¢. (See Exercise 7.3.)

310 7 Generation of Random Numbers

A straightforward application of the acceptance/rejection method is very
simple. For distributions with finite support, the density g can always be cho-
sen as a uniform. For example, to generate deviates from a beta distribution
with parameters a and §—that is, the distribution with density,

1 a—1 —1
T)=——x 1—x)° for0<z<1
Po) = gy 00T ro<ast,
where B(a,) is the complete beta function —we could use a uniform ma-
jorizing density, as shown in Figure 7.1.

o
@
R
o
N
<]
U
= R
‘@
5 w |
5 =2
2 A
w0
o
o
o
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 7.1. Beta (2, 7) Density with a Uniform Majorizing Density

The value of ¢ by which we scale the uniform density should be as small as
possible to minimize the frequency with which we reject the candidate points.
This requires determination of the maximum value of the beta density, which
we can compute very easily in S-Plus or R just by evaluating the density at
the mode:

xmode <- (alpha-1.)/(alphatbeta-2.)
dmax <- xmode~” (alpha-1.)*(1-xmode)~ (beta-1)*
gamma (alphat+beta) / (gamma(alpha)*gamma (beta))

To generate deviates from the beta using the uniform majorizing density,
we could write the following R statements:

y<-runif (1000)

7.2 Generation of Nonuniform Random Numbers 311

x<-na.omit (ifelse(
runif (1000)<=dbeta(y,alpha,beta)/dmax, y, NA))

Of course, in these statements, the number of beta variates delivered in x will
not be known a priori; in fact, the number will vary with different executions
of the statements. Instead of using a program that holds all the values in
vectors, we generally form an explicit loop in the program to obtain a given
number of deviates.

Considering the large area between a scaled uniform density and the beta
density shown in Figure 7.1, it is clear that the uniform is not a very efficient
density to use for the majorizing density, even though it is extremely easy to
use. When a random uniform point falls in the areas marked “R”, the point
is rejected; when it falls in the area marked “A”, the point is accepted. Only
1 out of dmax (a2 3.18) will be accepted.

As another example just for illustration, consider the use of a normal with
mean 0 and variance 2 as a majorizing density for a normal with mean 0 and
variance 1, as shown in Figure 7.2. A majorizing density like this whose shape
more closely approximates that of the target density is more efficient. The
problem in this case, obviously, is that if we could generate deviates from the
N(0,2) distribution, we could generate ones from the N(0, 1) distribution.

density
0.2 0.3 04
l

0.1

0.0

Fig. 7.2. Normal (0, 1) Density with a Normal (0, 2) Majorizing Density

The value of ¢ required to make the density of N(0,2) majorize that of
N(0,1) is v/2. Hence, one out of ~ 1.41 candidate points will be accepted.

312 7 Generation of Random Numbers

Although the acceptance/rejection method can be used for multivariate
random variables, in that case the majorizing distribution must also be mul-
tivariate. For higher dimensions, another problem is the relationship of the
rejection region to the acceptance region. In the one-dimensional case, as
shown in Figure 7.2, the acceptance region is the area under the lower curve,
and the rejection region is the thin shell between the two curves. In higher
dimensions, even a thin shell contains most of the volume, so the rejection
proportion would be high. See Section 16.7, page 573, and Exercise 16.10,
page 583.

Use of Conditional Distributions

Sometimes, the density of interest, px, can be represented as a marginal den-
sity of some joint density, pxy, that has tractable conditional densities, px|y
and py|x. If we can generate realizations from the conditional distributions,
observations on X can often be generated as a discrete-time Markov process
whose elements have densities

pY}'lXifla pXilyLW pYYiﬁ»l‘X’i’ pXi+1‘Y'i+17 et (74)

This is possible if the distribution of the X; in the sequence converges to that
of X. (A note on terminology: The term “Markov chain” is often restricted
to a Markov process with a countable state space. If the support of X or Y
is continuous, the state space of the bivariate sequence {(X;,Y;)} is uncount-
able. Current terminology in random number generation for such a process,
however, is “Markov chain”. There are some differences, and Tierney, 1994,
1996, discusses some of the additional complexities arising from a continuous
state space that are relevant to the use of such processes in random number
generation.)
The transition kernel of X; in the Markov chain is

Px; X (@ilzioa) = /pxim(%ﬂy) Py X (YlTio1) dy.

Starting with Xy and stepping through the transitions, we have

Px;|1xo (LE|LEO) = /pXi\Xi—l ({E|t) Px;_1|Xo (t|$0) dt. (75)

As i — o0, the density in equation (7.5) converges to px under very mild
regularity conditions on the densities px, and py,|x,. (Existence and absolute
continuity are sufficient; see, for example, Nummelin, 1984.) The problem is
analogous to the more familiar one involving a discrete-state Markov chain,
where convergence is assured if all of the entries in the transition matrix
TX\X = Tylex‘y are positive.

The usefulness of this method for random number generation depends on
identifying a joint density with conditionals that are easy to simulate.

7.3 Acceptance/Rejection Method Using a Markov Chain 313

For example, if the distribution of interest is a standard normal for the
mndom2 variable X, and Y is a random variable conditionally uniform over
(0,e=X"), the joint density

1 1
pxy(z,y) = Worralek

x

2
for —co<zr<oo, O<y<e ™,

has a marginal density corresponding to the distribution of interest, and it
has simple conditionals. The conditional distribution of Y| X is U(0,e=X"),
and the conditional of XY is U(—+/—logY,+/—logY). Starting with zg in
the range of X, we generate y; as a uniform conditional on zg, then z; as a
uniform conditional on y;, and so on.

The auxiliary variable Y that we introduce just to simulate X is called
a “latent variable”. Use of conditional distributions to generate random vari-
ables in this way is called Gibbs sampling, which we consider again on page 317.

A chain of conditional distributions can also be used for discrete random
variables. In that case, the Markov process is a discrete-state Markov chain,
and the analysis is even simpler.

Conditional distributions can also be used for a multivariate random vari-
able, and in fact that is one of the most important applications of the method.
We discuss the Gibbs algorithm further, for generation of multivariate random
variables, on page 317.

7.3 Acceptance/Rejection Method Using a Markov
Chain

A discrete-time Markov chain is the basis for several schemes for generating
random numbers, either continuous or discrete, and multivariate as well as
univariate. The differences in the various methods using Markov processes
come from differences in the transition kernel. Sometimes, the transition kernel
incorporates an acceptance/rejection decision. The elements of the chain can
be accepted or rejected in such a way as to form a different chain whose
stationary distribution is the distribution of interest. Simulation methods that
make use of a Markov chain to generate samples are called Markov chain
Monte Carlo, or MCMC, methods. The interest is not in the sequence of the
Markov chain itself. Methods based on Markov chains are iterative because
several steps must be taken before the stationary distribution is achieved. In
practice, it is very difficult to determine the length of the “burn-in” period,
that is, to determine when a stationary distribution has been achieved.

For a distribution with density p, the Metropolis algorithm or Metropolis
random walk introduced by Metropolis et al. (1953), generates a random walk
and performs an acceptance/rejection based on p evaluated at successive steps
in the walk. In the simplest version, the walk moves from the point y; to the

314 7 Generation of Random Numbers

point y;+1 = y; + s, where s is a realization from U(—a,a), and accepts y;+1
if

p(yiv1) / p(yi) = u, (7.6)
where u is an independent realization from U(0, 1).

If the range of the distribution is finite, the random walk is not allowed to
go outside of the range.

Hastings (1970) developed an algorithm that is based on a transition kernel
with a more general acceptance/rejection decision. The Metropolis-Hastings
sampler to generate deviates from a distribution with density px uses deviates
from a Markov chain with a completely different density, gy, ,|y,- The con-
ditional density gy,, |y, is chosen so that it is easy to generate deviates from
it, and realizations from this distribution are selectively chosen as realizations
from the distribution with density px.

Algorithm 7.2 Metropolis-Hastings Algorithm

0. Set i = 0, and choose z; in the support of p.

L. Generate y from the density gy, .|y, (y|7:).

2. Set 1

9Yialv: (zily)

Px(xi)gytmyt (y|zs) '

r=px(y)

3. If r > 1, then
3.a. set zi11 = y;
otherwise
3.b. generate u from the uniform(0,1) distribution and
if w < r, then
3.b.i. set x;41 =y,

otherwise
3.b.ii. set x;41 = ;.
4. Set i =i+ 1 and go to step 1. |

The r in step 2 is called the Hastings ratio, and step 3 is called the
“Metropolis rejection”. The conditional density, gy, , |y, (:|-), is called the “pro-
posal density” or the “candidate generating density”. Notice that because the
majorizing function contains px as a factor, we only need to know px to
within a constant of proportionality. This is an important characteristic of
the Metropolis algorithms, including the random walk that only uses the ra-
tio in (7.6).

We can illustrate the use of the Metropolis-Hastings algorithm in using a
Markov chain in which the density of X1 is normal with a mean of X; and
a variance of 0. Let us use this density to generate a sample from a standard
normal distribution (that is, a normal with a mean of 0 and a variance of
1). We start with xg, chosen arbitrarily. We take logs and cancel terms in
the expression for r. The output from an R implementation of the method
is shown in Figure 7.3. Notice that the values descend very quickly from the
starting value, which would be a very unusual realization of a standard normal.

7.4 Generation of Multivariate Random Variates 315

10

-2
|

(0] 200 400 600 800 1000

Fig. 7.3. Sequential Output from a N(0,1) Distribution Using a Markov Chain,
N(X¢,0?%)

In practice, we generally cannot expect such a short burn-in period. Notice
also the horizontal line segments where the underlying Markov chain did not
advance.

7.4 Generation of Multivariate Random Variates

For multivariate distributions with a very large number of variables, the stan-
dard acceptance/rejection method is difficult to apply because it is difficult to
determine a usable majorizing density. In addition, the acceptance/rejection
method is not very efficient because the rejection rate becomes higher in higher
dimensions, as we mentioned when discussing Figure 7.2.

The most common ways of generating multivariate random variates are by
use of either i.i.d. (independent, identically distributed) univariates followed
by a transformation or else by a sequence of conditional univariates.

Transformations Based on the Variance-Covariance Matrix

If Y1,...,Y; is a sequence of i.i.d. univariate random variables with variance
1, the variance-covariance matrix of the random d-vector Y composed of those
elements is the identity I;. Assume that the mean of Y is 0. This is without
loss of generality because the mean can always be adjusted by an addition.

316 7 Generation of Random Numbers

Consider the random d-vector X, where X = AY for the nonsingular matrix
A. The variance-covariance matrix of this transformed random variable is
AAT. Suppose that we want to determine a transformation of i.i.d. random
variables with unit variances that yields a random variable with variance-
covariance matrix X. If Y is the vector of the i.i.d. random variables, and A
is a matrix such that AAT = X, then X = AY is the transformation. The
matrix A could be either the Cholesky factor or the square root of X, for
example (see Gentle, 2007, Section 5.9).

This transformation is a very good way of generating multivariate normal
random variables. For other multivariate distributions, however, its usefulness
is more limited.

Sequences of Conditional Distributions

The other common way of generating a multivariate random number is by
use of a sequence of univariate random numbers from conditional univariate
distributions that combine to yield the desired multivariate distribution.

Again, for the multivariate normal distribution, this is a simple method.
For example, consider a multivariate normal with mean of 0 and variance-
covariance matrix X, with elements o;;. If

X1 is generated as N(0, o11),
X is generated as N(012X1 /011, 022 — 0%5/011),
and so on,

then
X =(X1,Xo,...)

has a multivariate normal distribution with variance-covariance matrix /.
Some other multivariate distributions can also be easily generated by a se-
quence of conditional distributions, but for many distributions, the method
may be considerably more complicated.

Covariances or correlations are the natural way to define multivariate nor-
mal distributions, but for other distributions, copulas may be more appro-
priate for expressing the associations (see page 32). If marginal distributions
are given, a multivariate distribution with bivariate associations expressed
through copulas can be formed by use of the inverse CDF method applied
both to a marginal CDF and a conditional CDF, using equation (1.82). Sup-
pose we have two marginal CDFs Px, and Px,, and a joint CDF defined by
the copula C(Px,, Px,). In notation following that of equation (1.82), let C,,
be the partial derivative of C' with respect to its first argument. We then gen-
erate independent uniforms U; and Us, and set V = C;; L(Uy). Next we form
our desired deviates (X1, X2) as X1 = P);ll(Ul) and Xy = P);zl(V). The same
idea can be extended to more than two random variables, working first with
uniforms as above and then transforming all of the uniforms by the inverses of
the marginal CDFs. In Exercise 7.5 you are asked to use copulas to generate
bivariate distributions.

7.4 Generation of Multivariate Random Variates 317

Gibbs Sampling

In some cases, it is possible to reduce the problem to a sequence that begins
with a univariate marginal distribution and then builds up the random vector
by conditional distributions that include the generated elements one at a time.
This is possible by decomposing the multivariate density into a marginal and
then a sequence of conditionals:

PX1X2X5+Xqg = PX1|X2X3--Xgq ~ PXo|X3--Xg ~" " PXa-
In other cases, we may have a full set of conditionals:
DX |{ X 35574} -
In this case, we can sample from a Markov process by updating individual
random variables given the values of the other random variables at a previous
time, in the same way as the process (7.4) on page 312. This iterative technique

is called “Gibbs sampling”. It was introduced by Geman and Geman (1984)
and further developed by Gelfand and Smith (1990), among others.

The Gibbs sampler begins with an arbitrary starting point, xgo)’ xgo)’ ey xfio);
generates xgl) from knowledge of p PRIMONNOE generates xgl) from knowl-
Dz al
edge of pxz(l)‘x(ll)7xé0)7“.7x(do); and so on.
The process is then iterated in this systematic fashion to get x?), méQ), ceey ng),

and so on. A full iteration requires generation of d random variables. Because
of the arbitrary starting point, the iterations may not immediately yield de-
viates from the target distribution.

Geman and Geman showed that (Xl(i), XQ(i), o ,Xéi)) converges in distri-
bution to (X1, Xa,...,X4) so that each component individually converges.
This result does not depend on the conditional generations at each iteration
being done in the same order.

Algorithm 7.3 Gibbs Sampling Method

0. Set k£ = 0 and choose z(®.

1. Generate xgkﬂ) conditionally on z

Generate xékﬂ) conditionally on z

k k k
CRNCIC)

k+1 k k
k1) (k) (k)

Generate xffjll) conditionally on x

Generate x&kﬂ) conditionally on x

2. If convergence has occurred, then
2.a. deliver z = g+,
otherwise,
2.b. set k = k4 1, and go to step 1. |

k+1 k+1 k
R e

(k+1) _ (k+1) (k+1)
i , Ty >

Gibbs sampling can be extremely slow to converge. Furthermore, it is often
difficult to determine when convergence has occurred (see the discussion be-
ginning on page 420). The convergence is slower when the correlations among
the variables are larger (see Exercise 7.6).

318 7 Generation of Random Numbers
Probability Densities Known Only Proportionally

It is often easy to specify a model up to a constant of proportionality. For
example, let ¢ be a vector-valued statistic over some sample space and let

h(z) = e{t®)0)

where (t(x),6) denotes the dot product of ¢(x) and €. This specifies a family

of densities 1
— = o(t(2),0)
fa(ﬂ?) 0(9)6)

where

c(9) = /e<t(’”)’9> du(z).

In general, if A is a nonnegative integrable function that is not zero almost
everywhere, a probability density p can be defined by normalizing h:

where
- / h(z) du(z).

We may know h but not ¢, and ¢ may not be easy to evaluate, especially if & is
multivariate. Some Markov chain Monte Carlo methods are particularly useful
in dealing with such multivariate distributions that have densities known up
to a constant of proportionality. In the ratio (7.6) in the Metropolis random
walk or in the Hastings ratio in Algorithm 7.2, the constant ¢ would not be
required; h alone could be used to simulate realizations from p.

There are many problems in Bayesian inference in which densities are
known only up to a constant of proportionality. In such problems h is the
likelihood times the prior. Normalizing h—that is, determining the integral
c—may be difficult, but Markov chain Monte Carlo methods allow simula-
tions of realizations from the posterior without knowing c.

7.5 Data-Based Random Number Generation

Often we have a set of data and wish to generate pseudorandom variates from
the same data-generating process that yielded the given data. How we do
this depends on how much we know or what assumptions we make about the
data-generating process. At one extreme, we may assume full knowledge of
the data-generating process; for example, we may assume that the given set of
data came from a normal distribution with known mean and variance. In this
case, we use the well-known techniques for generating pseudorandom variates
from a N(u, 0?) distribution.

7.5 Data-Based Random Number Generation 319

A slightly weaker assumption is that the data came from a normal dis-
tribution, but we do not know the mean or variance. In this case, a simple
approach may be to use the given data to estimate the mean and standard
deviation and then proceed as if the estimates were the true values. (Notice
that if we want the process to be unbiased, we cannot use the square root
of the sample variance as the estimate of the standard deviation.) Use of a
parametric model, such as the normal distribution, with given or estimated
values of the parameters, is a parametric approach. Because the parameters
are estimated from the data, we call it the empirical parametric method. In
Section 11.3 on page 424, we discuss the use of estimated parameters in boot-
strap simulations for statistical inference such as hypothesis testing or setting
confidence bounds. The empirical parametric method is also sometimes called
a “parametric bootstrap”.

For many of the parametric families shown in Tables B.1 and B.2 begin-
ning on page 660 there are standard methods of generating random variables.
The empirical parametric method is appropriate when the parameters can be
estimated from a given dataset.

In addition to the standard parametric families shown in Tables B.1
and B.2, there are some general families of probability distributions that are
very useful in data-based random number generation because they cover wide
ranges of shapes and have a variety of interesting properties that are controlled
by a few parameters. Some, such as Tukey’s generalized lambda distribution
are designed to be particularly simple to simulate. We discuss these families
of distributions in Section 14.2.

A strong assumption that does not involve parameters in the usual sense
is that the given data resulted from a discrete data-generating process (that
is, one that can yield only a countable set of distinct values). In this case,
we would generate pseudorandom variates by sampling (or “resampling”) the
given set of data.

Even for a given sample of univariate data from a continuous data-
generating process, the ECDF could be used in place of the CDF in a standard
inverse CDF method, as described on page 308. We discuss direct use of the
ECDF in Sections 11.2 and 11.4. The ECDF defines a distribution with a finite
range [y(1), Y)| corresponding to the smallest and largest order statistics of
the data. Instead of using the ECDF to generate random data, we may choose
to use the probabilities associated with the empirical quantiles, as discussed
on page 62, if they can be determined.

For a given sample of multivariate data, our pseudorandom samples must
capture probabilities of general regions. The correlations in the given sample
must be replicated.

As we have mentioned above, it is not practical to use the inverse CDF
method directly for multivariate distributions.

Taylor and Thompson (1986) suggest a different way that avoids the step of
estimating a density. The method has some of the flavor of density estimation;
however, in fact it is essentially equivalent to fitting a density with a normal

320 7 Generation of Random Numbers

kernel. It uses the m nearest neighbors of a randomly selected point; m is
a smoothing parameter. The method is particularly useful for multivariate
data. Suppose that the given sample is {z1,z9,...,2,} (the as are vectors).
A random vector deviate is generated by the steps given in Algorithm 7.4.

Algorithm 7.4 Thompson—Taylor Data-Based Simulation

1. Randomly choose a point, z;, from the given sample.

2. Identify the m nearest neighbors of z; (including x;), xj,, %5, ..., Zj,.,
and determine their mean, z;.
3. Generate a random sample, uy,uso, ..., Uy, from a uniform distribution

with lower bound £ — 1/271 and upper bound L4y %

m m?
4. Deliver the random variate

m
2= up(y, — &) + ;.
k=1

The limits of the uniform weights and the linear combination for z are
chosen so that the expected value of the i*" element of a random variable Z
that yields z is the i*" element of the sample mean of the xs, Z;; that is,

E(Z) = z;.

(The subscripts in these expressions refer to the elements of the data vec-
tors rather than to the element of the sample.) Likewise, the variance and
covariance of elements of Z are close to the sample variance and covariance of
the elements of the given sample. If m = 1, they would be exactly the same.
For m > 1, the variance is slightly larger because of the variation due to the
random weights. The exact variance and covariance, however, depend on the
distribution of the given sample because the linear combination is of nearest
points. The routine rndat in the IMSL Libraries implements this method.

7.6 Software for Random Number Generation

Random number generators are widely available in a variety of software pack-
ages. Although the situation may not be as dire as when Park and Miller
(1988) stated, “good ones are hard to find”, the user must be careful in se-
lecting a random number generator.

Basic Uniform Generators

Some programming languages, such as C, Fortran, and Ada 95, provide built-
in random number generators. In C, the generator is the function rand() in

7.6 Software for Random Number Generation 321

stdlib.h. This function returns an integer in the range 0 through RAND_MAX,
so the result must be normalized to the range (0, 1). (The scaling should be
done with care. It is desirable to have uniform numbers in (0, 1) rather than
[0,1].) The seed for the C random number generator is set in srand ().

In Fortran, the generator is the subroutine random_number, which returns
U(0, 1) numbers. (The user must be careful, however; the generator may yield
either a 0 or a 1.) The seed can be set in the subroutine random seed. The
design of the Fortran module as a subroutine yields a major advantage over
the C function in terms of efficiency. (Of course, because Fortran has the basic
advantage of arrays, the module could have been designed as an array function
and would still have had an advantage over the C function.)

A basic problem with the built-in generator of C, Fortran, and Ada 95 is
lack of portability. The standards do not specify the algorithm. The bindings
are portable, but none of these generators will necessarily generate the same
sequence on different platforms.

Other Distributions

Given a uniform random number generator, it is usually not too difficult to
generate variates from other distributions. For example, in Fortran, the inverse
CDF technique for generating a random deviate from a Bernoulli distribution
with parameter 7 can be implemented by the code in Figure 7.4.

integer, parameter ::n = 100 ! INITIALIZE THIS
real, parameter (pi) :: pi = .5 | INITIALIZE THIS
real, dimension (n) :: uniform

real, dimension (n) :: bernoulli

call random_number (uniform)
where (uniform .le. pi)
bernoulli = 1.0
elsewhere
bernoulli = 0.0
endwhere

Fig. 7.4. A Fortran Code Fragment to Generate n Bernoulli Random Deviates with
Parameter 7

Implementing one of the simple methods to convert a uniform deviate to
that of another distribution may not be as efficient as a special method for the
target distribution, and those special methods may be somewhat complicated.
The IMSL Libraries and S-Plus and R have a number of modules that use
efficient methods to generate variates from several of the more common distri-
butions. Matlab has a basic uniform generator, rand, and a standard normal
generator, randn. The Matlab Statistics Toolbox also contains generators for
several other distributions.

322 7 Generation of Random Numbers

A number of Fortran or C programs are available in collections published
by Applied Statistics and by ACM Transactions on Mathematical Software.
These collections are available online at statlib and netlib, respectively.
See page 692 in the bibliography for more information.

The freely distributed GNU Scientific Library (GSL) contains several C
functions for random number generation. There are several different basic uni-
form generators in the library. Utility functions in the library allow selection
of a uniform generator for use by the functions that generate nonuniform num-
bers. In addition to a number of newer uniform generators, including quasiran-
dom number generators, there are basic uniform generators that yield output
sequences that correspond (or almost correspond) to legacy generators pro-
vided by various systems developers, such as the IBM RANDU and generators
associated with various Unix distributions. The random number generators in
GSL can be accessed from R by use of the gs1 package.

Information about the GNU Scientific Library, including links to sites from
which source code can be obtained, is available at

http://wuw.gnu.org/software/gsl/

The Guide to Available Mathematical Software, or GAMS (see the Bibli-
ography) can be used to locate special software for various distributions.

The User Interface for Random Number Generators

Software for random number generation must provide a certain amount of
control by the user, including the ability to:

e set or retrieve the seed;
e select seeds that yield separate streams;
e possibly select the method from a limited number of choices.

Whenever the user invokes a random number generator for the first time
in a program or session, the software should not require the specification of
a seed but should allow the user to set it if desired. If the user does not
specify the seed, the software should use some mechanism, such as accessing
the system clock, to form a “random” seed. On a subsequent invocation of
the random number generator, unless the user specifies a seed, the software
should use the last value of the seed from the previous invocation. This means
that the routine for generating random numbers must produce a “side effect”;
that is, it changes something other than the main result. It is a basic tenet of
software engineering that side effects must be carefully noted. At one time, side
effects were generally to be avoided. In object-oriented programming, however,
objects may encapsulate many entities, and as the object is acted upon, any
of the components may change. Therefore, in object-oriented software, side
effects are to be expected. In object-oriented software for random number
generation, the state of the generator is an object.

7.6 Software for Random Number Generation 323

Another issue to consider in the design of a user interface for a random
number generator is whether the output is a single value (and an updated
seed) or an array of values. Although a function that produces a single value
as the C function rand() is convenient to use, it can carry quite a penalty
in execution time because of the multiple invocations required to generate
an array of random numbers. It is generally better to provide both single-
and multivalued procedures for random number generation, especially for the
basic uniform generator.

Random Number Generation in IMSL Libraries

For doing Monte Carlo studies, it is usually better to use a software system
with a compilable programming language, such as Fortran or C. Not only do
such systems provide more flexibility and control, but the programs built in
the compiler languages execute faster. To do much work in such a system,
however, a library or routines both to perform the numerical computations in
the inner loop of the Monte Carlo study and to generate the random numbers
driving the study are needed.

The IMSL Libraries contain a large number of routines for random number
generation. The libraries are available in both Fortran and C, each providing
the same capabilities and with essentially the same interface within the two
languages. In Fortran the basic uniform generator is provided in both function
and subroutine forms.

The uniform generator allows the user to choose among seven different
algorithms: a linear congruential generator with modulus of 23! — 1 and with
three choices of multiplier, each with or without shuffling, and the generalized
feedback shift generator described by Fushimi (1990), which has a period of
2521 _ 1. The multipliers that the user can choose are the “minimal stan-
dard” one of Park and Miller (1988), which goes back to Lewis, Goodman,
and Miller (1969) and two of the “best” multipliers found by Fishman and
Moore (1982, 1986).

The user chooses which of the basic uniform generators to use by means
of the Fortran routine rnopt or the C function imsls_random_option. For
whatever choice is in effect, that form of the uniform generator will be used
for whatever type of pseudorandom events are to be generated. The states of
the generators are maintained in a common block (for the simple congruential
generators, the state is a single seed; for the shuffled generators and the GFSR
generator, the state is maintained in a table). There are utility routines for
setting and saving states of the generators and a utility routine for obtaining
a seed to skip ahead a fixed amount.

There are routines to generate deviates from most of the common distrib-
utions. Most of the routines are subroutines but some are functions. The algo-
rithms used often depend on the values of the parameters to achieve greater
efficiency. The routines are available in both single and double precision. (Dou-

324 7 Generation of Random Numbers

ble precision is more for the purpose of convenience for the user than it is for
increasing accuracy of the algorithm.)

A single-precision IMSL Fortran subroutine for generating from a specific
distribution has the form

raname (number, parameter_1, parameter_2, ..., output_array)

where “name” is an identifier for the distribution, “number” is the number of
random deviates to be generated, “parameter_i’ are parameters of the distri-
bution, and “output_array’ is the output argument with the generated devi-
ates. The Fortran subroutines generate variates from standard distributions,
so location and scale parameters are not included in the argument list. The
subroutine and formal arguments to generate gamma random deviates, for
example, are

rngam (nr, a, r)

where a is the shape parameter (a) of the gamma distribution. The other
parameter in the common two-parameter gamma distribution (usually called
B) is a scale parameter. The deviates produced by the routine rngam have a
scale parameter of 1; hence, for a scale parameter of b, the user would follow
the call above with a call to a BLAS routine:

sscal (ar, b, r, 1)

Identifiers of distributions include those shown in Tables B.1 and B.2 begin-
ning on page 660. In addition to the ones shown in those tables there are IMSL
random number generators for random two-way tables, exponential mixtures,
correlation matrices, points on a circle or sphere, order statistics from a normal
or uniform, an ARMA process, and a nonhomogeneous Poisson process.

For general distributions, the IMSL Libraries provide routines for an alias
method and for table lookup, for either discrete or continuous distributions.
The user specifies a discrete distribution by providing a vector of the proba-
bilities at the mass points and specifies a continuous distribution by giving the
values of the cumulative distribution function at a chosen set of points. In the
case of a discrete distribution, the generation can be done either by an alias
method or by an efficient table lookup method. For a continuous distribution,
a cubic spline is first fit to the given values of the cumulative distribution
function, and then an inverse CDF method is used to generate the random
numbers from the target distribution. Another routine uses the Thompson-
Taylor data-based scheme (Taylor and Thompson, 1986) to generate deviates
from an unknown population from which only a sample is available.

Other routines in the IMSL Libraries generate various kinds of time series,
random permutations, and random samples. The routine rnuno, which gen-
erates order statistics from a uniform distribution, can be used to generate
order statistics from other distributions.

All of the IMSL routines for random number generation are available in
both Fortran and C. The C functions have more descriptive names, such as

7.6 Software for Random Number Generation 325

random normal. Also, the C functions may allow specification of additional ar-
guments, such as location and scale parameters. For example, random_normal
has optional arguments IMSLS_MEAN and IMSLS_VARIANCE.

Controlling the State of the Generators

Figure 7.5 illustrates the way to save the state of an IMSL generator and then
restart it. The functions to save and to set the seed are rnget and rnset.

call rnget (iseed) ! save it

call rnun (nr, y) ! get sample, analyze, etc.
call rnset (iseed) ! restore seed

call rnun (nr, yagain) ! will be the same as y

Fig. 7.5. Fortran Code Fragment to Save and Restart a Random Sequence Using
the IMSL Library

In a library of numerical routines such as the IMSL Libraries, it is likely
that some of the routines will use random numbers in regular deterministic
computations, such as an optimization routine generating random starting
points. In a well-designed system, before a routine in the system uses a random
number generator in the system, it will retrieve the current value of the seed
if one has been set, use the generator, and then reset the seed to the former
value. IMSL subprograms are designed this way. This allows the user to control
the seeds in the routines called directly.

Random Number Generation in R and S-Plus

Both R and S-Plus provides some choices for the basic type of random number
generator, but R and S-Plus do not use the same random number generators.
Monte Carlo studies conducted using one system cannot reliably be reproduced
exactly in the other system.

In R, the function RNGkind can be used to choose the type of the generator.
The default currently is the Mersenne twister MT19937.

Random number generation in either R or S-Plus is done with basic func-
tions of the form

rname (number [, parameters|)

where “name” is an identifier for the distribution, “number” is the number of
random deviates to be generated, which can be specified by an array argu-
ment, in which case the number is the number of elements in the array, and
“parameters’ are parameters of the distribution, which may or may not be
required.

326 7 Generation of Random Numbers

For distributions with standard forms, such as the normal, the parame-
ters may be optional, in which case they take on default values if they are
not specified. For other distributions, such as the gamma or the ¢, there are
required parameters. Optional parameters are both positional and keyword.

For example, the normal variate generation function is

rnorm (n, mean=0, sd=1)

so
rnorm (n) yields n normal (0,1) variates
rnorm (n, 100, 10) yields n normal (100,100) variates
rnorm (n, 100) yields n normal (100,1) variates
rnorm (n, sd=10) yields n normal (0,100) variates

(Note that R and S-Plus consider one of the parameters of the normal distri-
bution to be the standard deviation or the scale rather than the variance, as
is more common.)

For the gamma distribution, at least one parameter (the shape parameter)
is required. The function reference

rgamma (100,5)

generates 100 random numbers from a gamma distribution with a shape pa-
rameter of 5 and a scale parameter of 1 (a standard gamma distribution).

Identifiers of distributions include those shown in Tables B.1 and B.2 be-
ginning on page 660.

The function sample generates a random sample with or without replace-
ment. Sampling with replacement is equivalent to generating random numbers
from a (finite) discrete distribution. The mass points and probabilities can be
specified in optional arguments:

xx <- sample(massp, n, replace=T, probs)

Order statistics in R and S-Plus can be generated using the beta distrib-
ution and the inverse distribution function. For example, 10 maximum order
statistics from normal samples of size 30 can be generated by

x <- gnorm(rbeta(10,30,1))

Controlling the State of the Generators

Both R and S-Plus use an object called .Random. seed to maintain the state of
the random number generators. In R, .Random.seed also maintains an indi-
cator of which of the basic uniform random number generators is the current
choice. Anytime random number generation is performed, if .Random.seed
does not exist in the user’s working directory, it is created. If it exists, it is
used to initiate the pseudorandom sequence and then is updated after the

7.6 Software for Random Number Generation 327

sequence is generated. Setting a different working directory will change the
state of the random number generator.

The function set.seed (i) provides a convenient way of setting the value
of the .Random. seed object in the working directory to one of a fixed number
of values. The argument i is an integer between 0 and 1023, and each value
represents a state of the generator, which is “far away” from the other states
that can be set in set.seed.

To save the state of the generator, just copy .Random.seed into a named
object, and to restore, just copy the named object back into .Random.seed,
as in Figure 7.6.

oldseed <- .Random.seed # save it
y <- runif (1000) # get sample, analyze, etc.

.Random.seed <- oldseed # restore seed
yagain <- rnorm(1000) # will be the same as y

Fig. 7.6. Code Fragment to Save and Restart a Random Sequence Using R or
S-Plus

A common situation is one in which computations for a Monte Carlo study
are performed intermittently and are interspersed with other computations,
perhaps broken over multiple sessions. In such a case, we may begin by setting
the seed using the function set.seed (i), save the state after each set of com-
putations in the study, and then restore it prior to resuming the computations,
similar to the code shown in Figure 7.7.

set.seed(10) # set seed at beginning of study
. # perform some computations for the Monte Carlo study
MClseed <- .Random.seed # save the generator state
. # do other computations
.Random.seed <- MClseed # restore seed
. # perform some computations for the Monte Carlo study
MClseed <- .Random.seed # save the generator state

Fig. 7.7. Starting and Restarting Monte Carlo Studies in S-Plus or R

The built-in functions in S-Plus that use the random number generators
have the side effect of changing the state of the generators, so the user must
be careful in Monte Carlo studies where the computational nuclei, such as
ltsreg for robust regression, for example, invoke an S-Plus random number
generator. In this case, the user must retrieve the state of the generator prior
to calling the function and then reset the state prior to the next invocation of
a random number generator.

328 7 Generation of Random Numbers

To avoid the side effect of changing the state of the generator, when writing
a function in R or S-Plus, the user can preserve the state upon entry to the
function and restore it prior to exit. The assignment

.Random.seed <- oldseed

in Figure 7.6, however, does not work if it occurs within a user-written function
in R or S-Plus. Within a function, the assignment must be performed by the
<<- operator. A well-designed R or S-Plus function that invokes a random
number generator would have code similar to that in Figure 7.8.

oldseed <- .Random.seed # save seed on entry

.Random.seed <<- oldseed # restore seed on exit
return(...)

Fig. 7.8. Saving and Restoring the State of the Generator within an S-Plus or R
Function

Monte Carlo in R and S-Plus

Explicit loops in R or S-Plus execute slowly. In either package, it is best to
use array arguments for functions rather than to loop over scalar values of the
arguments. Consider, for example, the problem of evaluating the integral

2
/ log(z + 1)2%(2 —) da.
0

This could be estimated in a loop as follows:

First, initialize n.

uu <- runif(a, 0, 2)

eu <- 0

for (i in 1:n) eu <- eu + log(uulil+1)*uuli] "2*x(2-uul[i])"3
eu <- 2%eu/n

A much more efficient way, without the for loop, but still using the uniform,
is

uu <- runif(n, 0, 2)

eu <- 2xsum(log(uu+l)*uu”2*(2-uu)"3)/n

Alternatively, using the beta density as a weight function, we have

eb <- (16/15)*sum(log(2*rbeta(n,3,4)+1))/n

Exercises 329

(Of course, if we recognize the relationship of the integral to the beta distri-
bution, we would not use the Monte Carlo method for integration.)

For large-scale Monte Carlo studies, an interpretive language such as S-
Plus or R may require an inordinate amount of running time. These systems
are very useful for prototyping Monte Carlo studies, but it is often better to
do the actual computations in a compiled language such as Fortran or C.

Notes and Further Reading

There are a number of books and review papers on random number genera-
tion. I am most familiar with Gentle (2003). Chapter 1 in that book has an
extensive discussion of recursive methods for generating sequences of U(0, 1)
random numbers; Chapter 2 addresses quality of random number generators
and methods of testing their quality; Chapter 3 discusses quasirandom num-
bers; and Chapters 4 and 5 describe methods of transforming a uniform se-
quence into a sequence from a given distribution. Section 4.14 in that book
describes methods for generating random variates to simulate a general mul-
tivariate distribution.

L’Ecuyer (2004) gives an overview of random number generation, with an
emphasis on the basic uniform generators and testing their quality.

The use of Markov chains to form a “proposal” distribution has become
a very useful tool in Bayesian statistical analyses. Random number genera-
tion using a stationary Markov chain majorizing density for applications in
Bayesian analyses is discussed and illustrated extensively in Albert (2007) and
Marin and Robert (2007).

In Appendix B, for the standard distributions, we give the root name of
the R/S-Plus and IMSL functions for generating deviates from those distrib-
utions.

Exercises

7.1. Prove that if X is a random variable with an absolutely continuous distrib-
ution function Px, the random variable Px (X) has a U(0, 1) distribution.
7.2. Acceptance/rejection methods.

a) Give an algorithm to generate a normal random deviate using the ac-
ceptance /rejection method with the double exponential density as the
majorizing density. After you have obtained the acceptance/rejection
test, try to simplify it.

b) What would be the problem with using a normal density to make a
majorizing function for the double exponential distribution (or using
a half-normal for an exponential)?

¢) Write a program to generate bivariate normal deviates with mean
(0,0), variance (1, 1), and correlation p. Use a bivariate product double

330 7 Generation of Random Numbers

exponential density as the majorizing density. Now, set p = 0.5 and
generate a sample of 1,000 bivariate normals. Compare the sample
statistics with the parameters of the simulated distribution.

7.3. Acceptance/rejection methods.

Let T be the number of passes through the steps of the algorithm until a

variate is accepted.

a) Determine the mean and variance of T for the method described in
Algorithm 7.1.

b) Consider a modification of the acceptance/rejection method given in
Algorithm 7.1, in which steps 1 and 2 are reversed and the branch in
step 3 is back to the new step 2; that is:

1. Generate u from a uniform (0,1) distribution.
2. Generate y from the distribution with density function gy .
3. If u < px(y)/cgy(y), then take y as the desired realization;
otherwise, return to step 2.
Is this a better method? Determine the mean and variance of T for
this method. (This method was suggested by Sibuya, 1961.)

7.4. Use the Metropolis-Hastings algorithm (page 314) to generate a sample
of standard normal random variables. Use as the candidate generating
density, g(x|y), a double exponential density in x with mean y; that is,
glzly) = %e“”_y‘. Experiment with different burn-in periods and differ-
ent starting values. Plot the sequences generated. Test your samples for
goodness-of-fit to a normal distribution. (Remember that they are corre-
lated.) Experiment with different sample sizes.

7.5. Let Y and Z have marginal distributions as exponential random variables
with parameters o and 3 respectively.

a) Counsider a joint distribution of Y and Z defined by a Gumbel copula
(equation (1.86), page 34). Write an algorithm to generate a random
pair (Y, Z).

b) Consider a joint distribution of ¥ and Z difined by a Gaussian cop-
ula (equation (1.83)). Write an algorithm to generate a random pair
(Y, 2).

¢) Write a program to implement your algorithm in Exercise 7.5b. (For
any serious random number generation, you should use a compiled
language such as Fortran or C, but for this, you can use any language.
The point of the question is more important than the programming.)
Now generate 10,000 bivariate exponentials defined by the Gaussian
copula with p = 0.5. Compute an estimate of the correlation coefficient
of Y and Z. Compare this with Exercise 1.7 on page 75. (Although
the correlation coefficient may not have much meaning for bivariate
exponentials, it is still defined in the usual way.)

7.6. Consider the use of Gibbs sampling to generate samples from a bivariate
normal distribution. Let the means be 0, the variances be 1, and the
correlation be p. Both conditional distributions have the same form, which
is given in the discussion of the use of marginal/conditional distributions

Exercises 331

on page 316. Let p = 0,0.2,0.5,0.8. Generate samples with varying lengths
of burn-in and assess the fidelity of the samples by computing summary

statistics and by plots of your samples. Describe the efficiency of Gibbs
sampling for this problem.

Part 111

Methods of Computational Statistics

Introduction to Part III

The field of computational statistics includes a set of statistical methods that
are computationally intensive. These methods may involve looking at data
from many different perspectives and looking at various subsets of the data.
Even for moderately sized datasets, the multiple analyses may result in a
large number of computations. Statistical methods may be computationally
intensive also because the dataset is extremely large. With the ability to collect
data automatically, ever-larger datasets are available for analysis.

Viewing data from various perspectives often involves transformations such
as projections onto multiple lower-dimensional spaces. Interesting datasets
may consist of subsets that are different in some important way from other
subsets of the given data. The identification of different subsets and the prop-
erties that distinguish them is computationally intensive because of the large
number of possible combinations.

Another type of computationally intensive method useful in a wide range
of applications involves simulation of the data-generating process. Study of
many sets of artificially generated data helps to understand the process that
generates real data. This is an exciting method of computational statistics
because of the inherent possibilities of unexpected discoveries through exper-
imentation.

Monte Carlo experimentation is the use of simulated random numbers to
estimate some functional of a probability distribution. In simple applications
of Monte Carlo, a problem that does not naturally have a stochastic com-
ponent may be posed as a problem with a component that can be identified
with an expectation of some function of a stochastic variable. The problem
is then solved by estimating the expected value by use of a simulated sample
from the distribution of a random variable. In such applications, Monte Carlo
methods are similar to other methods of numerical analysis.

Monte Carlo methods differ from other methods of numerical analysis,
however, in yielding an estimate rather than an approximation. The “numer-
ical error” in a Monte Carlo estimate is due to a pseudovariance associated
with a pseudorandom variable; but the numerical error in standard numerical

336 Introduction to Part III

analysis is associated with approximations, including discretization, trunca-
tion, and roundoff.

Monte Carlo methods can also be used to make inferences about para-
meters of models and to study random processes. In statistical inference, real
data are used to estimate parameters of models and to study random processes
assumed to have generated the data. Some of the statistical methods discussed
in Part IIT use simulated data in the analysis of real data. There are several
ways this can be done.

If the simulated data are used just to estimate one or more parameters,
rather than to study the probability model more generally, we generally use
the term Monte Carlo to refer to the method. Whenever simulated data are
used in the broader problem of studying the complete process and building
models, the method is often called simulation. This distinction between a
simulation method and a Monte Carlo method is by no means universally
employed; and we will sometimes use the terms “simulation” and “Monte
Carlo” synonymously.

In either simulation or Monte Carlo, an actual dataset may be available;
but it may be supplemented with artificially generated data. The term “resam-
pling” is related to both “simulation” and “Monte Carlo”, and some authors
use it synonymously with one or both of the other terms. In this text, we
generally use the term “resampling” to refer to a method in which random
subsamples are generated from a given dataset; that is, there is no additional
artificially generated data.

In the chapters in Part III, we discuss the general methods of computa-
tional statistics. These include:

graphical methods;

projection and other methods of transforming data and approximating
functions;

Monte Carlo methods and simulation;

randomization and use of subsets of the data;

bootstrap methods.

Some of the chapters in Part III have close correspondence to chapters
in Part II. The methods of Chapter 9 rely heavily on Chapter 5; those of
Chapter 10, on Chapter 4; and those of Chapter 11, on Chapter 7. Of course,
the basic methods of random number generation (Chapter 7) underlie many
of the methods of computational statistics.

8

Graphical Methods in Computational Statistics

One of the first steps in attempting to understand data is to visualize it.
Visualization of data and information provides a wealth of tools that can be
used in detecting features, in discovering relationships, and finally in retaining
the knowledge gained.

Graphical displays have always been an important part of statistical
data analysis, but with the continuing developments in high-speed computers
and high-resolution devices, the usefulness of graphics has greatly increased.
Higher resolution makes for a more visually pleasing display, and occasionally
it allows features to be seen that could not be distinguished otherwise. The
most important effects of the computer on graphical methods in statistics,
however, arise from the ease and speed with which graphical displays can
be produced, rather than from the resolution. Rapid production of graphical
displays has introduced motion and articulated projections and sections into
statistical graphics. Such graphical methods are important tools of computa-
tional statistics. The multiple views are tools of discovery, not just ways of
displaying a set of data that has already been analyzed. Although the power
of graphical displays has greatly increased, some of the most useful graphs are
the simple ones, as illustrated in Section 1.1, and they should not be ignored
just because we can do more impressive things.

Proper design of a graphical display depends on the context of the ap-
plication and the purpose of the graphics, whether it is for the analyst to
get a better understanding of the data or to present a picture that conveys
a message. Our emphasis in the following discussion is on methods useful in
exploratory graphics.

One thing that is lagging in the statistical literature is the use of color
in graphical displays. The simple mechanics used in producing popular maga-
zines are yet to be incorporated in the production of learned journals. Journals
available in electronic form do not have these production problems, and it is
likely that the paper versions of many journals will be discontinued before the
production of color is mastered.

J.E. Gentle, Computational Statistics, Statistics and Computing, 337
DOI: 10.1007/978-0-387-98144-4_8,
© Springer Science + Business Media, LLC 2009

338 8 Graphical Methods in Computational Statistics

Data of three or fewer dimensions can be portrayed on a two-dimensional
surface fairly easily, but for data of higher dimensions, various transformations
must be employed. The simplest transformations are just projections onto two
dimensions, but transformations of points into other geometric objects may
often reveal salient features. It is useful to have multiple views of the data
in which graphical objects are linked by color or some other visual indicator.
This linking is called brushing. An interactive graphics program may allow
interesting sets points to be “roped” by the data analyst using a pointing
device to draw a curve around the representations of the observations. When
the analyst associates a particular color or other identifying attribute with
given observations in one view, those same observations are endowed with the
same attribute simultaneously in the other views. The analyst may also wish
to magnify the region of the graph containing these special observations or
perform other transformations selectively.

The number of variables and the number of observations may determine
the way that graphical displays are constructed. If the number of observations
is large we may first make a few plots of samples of the full dataset. Even
for multivariate data, some initial plots of single variables may be useful. A
preliminary 4-plot for each variable on a dataset can be a useful, automatic
part of almost any analysis of data (see page 9).

Most often we are interested in graphical representations of a dataset, but
we can distinguish three basic types of objects that a graphical display may
represent:

e discrete data;
e mathematical functions;
e geometrical objects.

The graphical elements that represent discrete data are simple plotting sym-
bols: dots, circles, and so on. The graphical elements that represent functions
or geometrical objects may be curves or surfaces. Because of the discrete na-
ture of the picture elements (pixels) of a graphical display, both continuous
functions and geometrical objects must be converted to discrete data to pro-
duce a graph. Hence, beginning with either functions or geometrical objects,
we arrive at the task of graphing discrete data. The data, at the lowest level,
correspond to adjacent pixels.

The Graphical Coordinate System

The basic activity in producing a graphical display is to translate data rep-
resented in a “world coordinate system” into a representation in a graphics
“device coordinate system”. Positions in the world coordinate system are rep-
resented in the computer in its floating-point scheme. Positions in the device
coordinate system correspond to picture elements, or “pixels”, which can ap-
pear as black or white dots or dots of various colors. The graphical display
is the pointillistic image produced by the pixels. The type of the coordinate

8 Graphical Methods in Computational Statistics 339

system used, cartesian or homogeneous, may depend on the types of transfor-
mations on the data to be performed in the graphical analysis.

For display on a flat surface, such as a sheet of paper, the graphical coor-
dinate system is necessarily two-dimensional. This means that the data in a
world coordinate system, which may be multidimensional, must be projected
onto a two-dimensional system. An orthogonal projection of the points onto
the two-dimensional system are just the two-tuples of coordinates of the points
in the graphical coordinate system. If the world coordinate system of the data
is two-dimensional, this projection does not sacrifice information. If, however,
the data in the world coordinate system are three-dimensional, the relative
orientation of the two coordinate systems becomes important because the
amount of information conveyed in a given two-dimensional system is usually
less than the information available in the full coordinate system. This ori-
entation corresponds to the angle from which we view the three-dimensional
data. Not only is the angle important, the distance from which the three-
dimensional data are viewed is important. For objects that are not transpar-
ent, this distance may determine which object can be seen from the given
angle. In any event, the distance determines the perspective, which provides
a sense of depth. These ideas of the viewing angle and the “eye position” for
a two-dimensional perspective extends to data of any dimension.

Images

The images themselves are usually constructed in one of two ways: as a raster
or as a vector. A raster image is a fixed set of pixels. It is resolution-dependent,
so if it is displayed at a higher resolution or its size is increased, jagged edges
may appear. A vector image is made up of mathematically defined lines and
curves. The definitions do not depend on the resolution. Modifications to the
image, such as moving it or changing its size, are relatively simple and scalable
because they are made to the mathematical definition.

Displays of Large Data Sets

As the number of observations increases, information should increase. A prob-
lem with many graphical displays, however, is that large amounts of data result
in too dense a graph, and there may actually be a loss of information. Data
points are overplotted. There is too much “ink” and too little information.
If there were no low-dimensional structure in the data shown in Figure 9.4
on page 379 in Chapter 9, for example, the plot, which represents only 1,000
points, would just be an almost solid blob.

When overplotting occurs for only a relatively small number of points, and
especially if the data are not continuous (that is, data points occur only on a
relatively coarse lattice), the overplotting problem can be solved by jittering,
which is the process of plotting the data at nearby points rather than at the
exact point (“exact” subject to the resolution of the plot).

340 8 Graphical Methods in Computational Statistics

For large datasets we may associate each observation with a single pixel.
The number of observations in a dataset may be even larger than the number
of pixels, in which case we must locally smooth the data.

For very large datasets where the number of observations is greater than
the number of pixels, it is clear that some other approach must be used to rep-
resent the data. It is necessary either to sample the data, to smooth the data
and plot the smoothed function, and/or to plot a representation of the density
of the data. Gray scale or relative sizes of the plotting symbols can also be ef-
fective for representing the data density, especially for univariate or bivariate
data. It can also be used in two-dimensional projections of multivariate data.

Smoothing and graphing of data are activities that go well together.
Smoothing provides a better visual display, and conversely, the display of
the smoothed data provides a visual assessment of smoothing.

Datasets that are large because of the number of variables present a more
difficult problem. The nature of the variables may allow special representations
that are useful for that type of data.

Data Analysis and Human Perception

Visual perception by humans is a complex process. We may identify three
fairly distinct aspects. The first is the physical and physiological, the optics,
the retinal photoreceptors and their responses, and the matching of colors.
The second phase is the representation, that is, the analysis of images in the
neural retina and the visual cortex. This involves sensitivity to and recogni-
tion of patterns, requiring multiresolution of images. The third aspect is the
interpretation of information in the visual representation. Perception of color,
motion, and depth plays an important role in all of these phases.

Although color can be very useful in the visual representation of data,
poorly chosen colors are a major distraction in statistical graphics. Many
statisticians and other data analysts are aware of the importance of carefully
chosen colors for enhancing visual displays. There are two issues that need
emphasis, however. One is the differences in the effects of color in different
media. A color scheme that appears very useful on one computer monitor may
not be appropriate on other monitors or on printed media. Another problem
arises from the not insignificant proportion of persons who are color-blind
but in all other ways are normally-sighted. Color-blindness usually involves
only two colors, often complementary ones. The most common type of color-
blindness in America is red-green; that is, the inability to distinguish red and
green. For normally-sighted persons, however, these two colors show up well
and are easily distinguished; hence, they are obvious choices for use in color
graphics.

Other senses, such as hearing and touch, may be usefully employed in
coming to a better understanding of a set of data.

Immersive techniques in which data are used to simulate a “virtual reality”
may help in understanding complicated data. Such systems consist of various

8.1 Smoothing and Drawing Lines 341

projectors, mirrors, and speakers; eyeglasses with alternating shutters; and
user controls for feedback.

8.1 Smoothing and Drawing Lines

In typical applications, the observed data represent points along some con-
tinuous range of possibilities. Hence, although we begin with discrete data,
we wish to graph a continuous function. We assume a continuous function as
an underlying model of the process that generated the data. The process of
determining a continuous function from the data is called smoothing.

Smoothing is often an integral process of graphing discrete data. A smooth
curve helps us to visualize relationships and trends.

Graphing Continuous Functions

There are two common situations in statistics that lead to approximation
and estimation of functions. Sometimes, one of the variables in a dataset is
modeled as a stochastic function of the other variables, and a model of the
form

y~ f(x) (8.1)

is used. The “dependent” or “response” variable y is related to the variable x
by an unknown function f.

In another type of situation, the variable x is assumed to be a realization of
a random variable X, and we are interested in the probability density function

px(z). (8.2)

In both of these cases, x may be a vector.

In the former case, in which relationships of variables are being modeled as
in model (8.1), the dataset consists of pairs (y;, x;). A smooth curve or surface
that represents an estimate or an approximation of f helps us to understand
the relationship between y and z. Fitting this curve smoothes the scatter plot
of y; versus x;. There are, of course, several ways of smoothing the data, as
discussed from various perspectives in Chapters 4, 10, and 17.

Bézier Curves

In graphical applications and in geometric modeling, Bézier curves are used ex-
tensively because they are quickly computed. Bézier curves are smooth curves
in two dimensions that connect two given points with a shape that depends on
points in between. For a given set of points in two dimensions, pg, p1,. .., Pn,
called control points, Bézier curves are required to satisfy two conditions:

1. The two endpoints py and p,, must be interpolated.

342 8 Graphical Methods in Computational Statistics

2. The ** derivatives at po and p, are determined by r adjacent points to
produce a smooth curve. The first derivative at pg, for example, is the line
determined by pg and p;.

These conditions obviously do not uniquely determine the curves.
The Bézier curve is determined by the set of points {po,...,p,} (that is,
in two dimensions, p; = (x,y)), defined parametrically by

p(u) = ZpiBi,n(u)a (8.3)

where u € [0,1] and B, ,,(u) is the Bernstein polynomial,

n!

Bin(u) = mu (1—w) for we|0,1]. (8.4)
For example,
Bos(u) = (1 -u)?,
Bis(u) = 3u(l —u)?,
Ba3(u) = 3u*(1 - u),
Bg,g(u) = ’U;B.

The Bernstein polynomial B; ,, is proportional to the PDF of a standard beta
distribution with parameters « =i+ 1 and 8 = n—i+1. (They are essentially
the same as the beta weight function used in defining the Jacobi polynomials
on page 170, except those beta weights were over the interval [—1,1]. The
standard beta is over [0, 1].) The Bernstein polynomials are not orthogonal
polynomials.

For n+ 1 control points, (o, v0), (€1,91),- - -, (Tn, Yn), we use the series of
Bernstein polynomials B; ,,(u) for i =0...n.

Note that because of the form of the Bernstein polynomials, the sequence
of points could be reversed without changing the curve.

In Figure 8.1, we show four Bézier curves of various degrees. In the top
left panel, there are three control points, (0, 5), (10,4), (9, 2) and the quadratic
Bernstein polynomials are used. In the top right panel, an additional control
point is inserted between the second and third: (0,5), (10,4), (12, 3), (9,2) and
the cubic Bernstein polynomials are used. Notice, how the additional point
pulls the curve farther to the right, so that the curve doubles back onto itself.

In the bottom panels of Figure 8.1, we form closed Bézier curves by making
the first and last control points the same. In the lower left panel there are two
control points (points 1 and 2) that pull the cubic curve out into a narrow
loop. In the lower right panel, two more control points have been added and
the quintic curve forms a more open loop.

8.1 Smoothing and Drawing Lines 343

3 points 4 points
o
© 1o
o
< o4
> - >

o
e
o
i 2
N5 T T T T T

60 2 4 & 8 10 12

X X
4 points 6 points
2 A o 2 4 [} o
1 1 2
0 — o -
> >
+ 3 « 45
N - o~ -
2 4 3

o — O o o]]

T T T T T T T T T T T

0 2 4 6 8 10 0 2 4 6 8 10

X X

Fig. 8.1. Bézier Curves and Control Points

Bézier curves are widely used in graphics because they can be computed
quickly. They can be implemented in interactive graphics software to allow
the user to adjust curves smoothly. They are also used by graphic designers
to define characters or logos that are immediately scalable.

Continuous Densities

If no particular variable in a multivariate dataset is considered a dependent
variable, we may be interested in the probability density function p that de-
scribes the distribution of a multivariate random variable. A histogram is
one representation of the probability density. The histogram is a method of

344 8 Graphical Methods in Computational Statistics

smoothing data, but the histogram itself can be smoothed in various ways,
or, alternatively, other smooth estimates of the density can be computed.

Fitting models using observed data is an important aspect of statistical
data analysis. Distributional assumptions may be used to arrive at precise
statements about parameters in the model. Smoothing for graphical displays
is generally less formal. The purpose is to help us to visualize relationships
and distributions without making formal inferences about models.

8.2 Viewing One, Two, or Three Variables

Plots of one or two variables are easy to construct and often easy to interpret.
Plots of three variables can use some of the same techniques as for one or two
variables. For datasets with more variables, it is often useful to look at the
variables one, two, or three at a time, or to look at projections of all variables
into a two- or three-dimensional subspace.

One of the most important properties of data is the shape of its distribu-
tion, that is, a general characterization of the density of the data. The density
of the data is measured by a nonnegative real number. The density is thus an
additional variable on the dataset. The basic tool for looking at the shape of
the distribution of univariate data is the histogram. A histogram is a graph
of the counts or the relative frequency of the data within contiguous regions
called bins. Graphs such as histograms that represent the density have one
more dimension than the dimension of the original dataset.

A scatter plot, which is just a plot of the points on cartesian axes repre-
senting the variables, is useful for showing the distribution of two-dimensional
data. The dimension of the scatter plot is the same as the dimension of the
data. In a scatter plot, data density is portrayed by the density of the points
in the plot.

We use the phrases “two-dimensional” and “three-dimensional” in refer-
ence to graphical displays to refer to the dimension of the space that the
display depicts in a cartesian system. Thus, the dimension of a scatter plot
of either two or three variables is the same as the dimension of the data, al-
though in either case the actual display either on a monitor or on paper is
two-dimensional. In statistical displays, we often are interested in an addi-
tional dimension that represents the distribution or density of the data. As
noted above, plots representing densities have one more dimension than the
data.

Histograms and Variations

A histogram is a presentation, either graphical or tabular, of the counts of
binned or discrete data. The vertical axis in a histogram may be the counts
(frequencies) in the bins or may be proportions representing densities such
that the total area adds up to 1.

8.2 Viewing One, Two, or Three Variables 345

The formation of bins for grouping data is one of the most fundamental
aspects of visualizing and understanding data. The bins in a histogram gen-
erally all have the same width, but this is not necessary; sometimes, if there
are only a small number of observations over a wide range, the bins over that
range can be made wider to smooth out the roughness of the variation in the
small counts.

The number of bins in a histogram can markedly affect its appearance, es-
pecially if the number of observations is small. In Figure 8.2, four histograms
are shown, each of the same dataset. The data are a pseudorandom sample of
size 30 from a gamma distribution with shape parameter 3 and scale parame-
ter 10. In this simple example, we get different pictures of the overall shape
of the data depending on the number of bins. It is worthwhile to consider
this example of a small dataset because the same issues may arise even in
very large datasets in high dimensions. In large datasets in high dimension,
we also sometimes have “small sample” problems, especially when we focus
on “slices” of the data.

"

30

Frequency
20

10

Frequency
0 10 20 30 40 50 60

15

10

Frequency

Frequency
10 15 20 25 30

05

NZ7AZ72 -
) T T T 1) T T T 1

o 20 40 60 80 (o] 20 40 60 80

x x

Fig. 8.2. Histograms of the Same Data with Different Fixed Bin Sizes (Data from
a Gamma Distribution)

More bins give a rougher appearance of the histogram. Either too few or
too many bins can obscure structure in the data. In Figure 8.2, when only
three or four bins are used, the curvature of the density is not apparent;
conversely, when twelve bins are used, it is difficult to ascertain any simple

346 8 Graphical Methods in Computational Statistics

pattern in the data. In general, the number of bins should be greater for a
larger number of observations. A simple rule for the approximate number of
bins to use is

1+ logy n,

where n is the number of observations.

Figure 8.3 shows the same data as used in Figure 8.2 and with the same
cutpoints for the bins as the histogram with seven bins, except that some bins
have been combined. The appearance of the histogram is smoother and, in
fact, is closer to the appearance expected of a histogram of a sample from a
gamma distribution with a shape parameter of 3. (Notice that this is a density
histogram, rather than a frequency histogram, as in Figure 8.2. The actual
counts are less relevant when the bin widths are variable.)

0.020 0.025
| |

Density
0.015
|

0.010
|

0.005
|

Z.

I T T T T T T 1
(0] 20 40 60 80 100 120 140

0.000
L

Fig. 8.3. Density Histogram of the Gamma Data with Bins of Variable Widths

Exploring the data by using histograms with different bin widths is useful
in understanding univariate data. The objective is not to match some known
or desired distribution but rather to get a better view of the structure of
the data. Obviously, the histogram of a random sample from a particular
distribution may never look like the density of that distribution. Exploration
of the data for gaining a better understanding of it is not to be confused
with manipulation of the data for presentation purposes, which is a common
objective in statistical graphics.

8.2 Viewing One, Two, or Three Variables 347

The appearance of a histogram can also be affected by the location of
the cutpoints of the bins. The cutpoints of the histogram in the lower left of
Figure 8.2, which has seven bins, are

0,10, 20, 30, 40, 60, 70.
Shifting the cutpoints by 2, so that the cutpoints are
2,12,22, 32,42, 62,72,

results in the histogram in the upper right-hand corner of Figure 8.4, and
further shifts in the cutpoints result in the other histograms in that figure.
Notice the changes in the apparent structure in the data.

Frequency

0 2 4 6 8 10 12
Frequency

02 4 6 8 10 12

NAZA -4
) T T T 1) T T T 1
o 20 40 60 80 o 20 40 60 80
X X
o
- A o 2
*® : co
= =
3 3
£ £ 7
g < ~ 7 g
w w ~
o~ o
- g - XA
) T T T 1) T T T 1
o 20 40 60 80 o 20 40 60 80
X X

Fig. 8.4. Histograms of the Same Set of Gamma Data with Different Locations of
Bins

The use of histograms with different widths and locations of bins is an
example of a method of computational statistics. In the analysis of a dataset,
we should consider a number of different views of the same data. The emphasis
is on exploration of the data rather than on confirmation of hypotheses or
graphical presentation.

In the toy example that we considered, we could attribute the problems to
the relatively small sample size and so perhaps decide that the problems are
not very relevant. These same kinds of problems, however, can occur in very
large datasets if the number of variables is large.

348 8 Graphical Methods in Computational Statistics

The Empirical Cumulative Distribution Function and g-q Plots

The empirical cumulative distribution function, or ECDF, is one of the most
useful summaries of a univariate sample. The ECDF is a step function, with
a saltus of % at each point in a sample of size n. A variation of the ECDF,
the broken-line ECDF, with lines connecting the points, is often more useful.
A plot of the broken-line ECDF is shown in the graph on the left-hand side
in Figure 8.5.

Another variation of an ECDF plot is one that is flipped or folded at some
point of interest, such as the median. Such a plot is called a mountain plot. It
is often easier to see certain properties, such as symmetry, in a mountain plot.
A folded ECDF plot, or mountain plot, is shown on the right in Figure 8.5.

10

ECDF(x)
0.6
Folded Percentie
03
|

04

02

Fig. 8.5. Plots of a Broken-Line ECDF and a Folded ECDF or Mountain Plot of
Data from a Gamma Distribution

The plot of the ECDF provides a simple comparison of the sample with
the uniform distribution. If the sample were from a uniform distribution, the
broken-line ECDF would be close to a straight line, and the folded ECDF
would be close to an isosceles triangle. The ECDF of a unimodal sample is
concave. The ECDF of a multimodal sample is convex over some intervals. The
plots of the sample of gamma variates in Figure 8.5 show a skewed, unimodal
pattern.

A sample can be compared to some other distribution very easily by a
transformation of the vertical axis so that it corresponds to the cumulative
distribution function of the given distribution. If the vertical axis is trans-
formed in this way, a broken-line ECDF plot of a sample from that distribu-

8.2 Viewing One, Two, or Three Variables 349

tion would be close to a straight line. A plot with a transformed vertical axis
is called a probability plot.

A related plot is the quantile-quantile plot or g-q plot. In this kind of plot,
the quantiles or “scores” of the reference distribution are plotted against the
sorted data. The 1/n'" quantile is plotted against the first order statistic in
the sample of size n, and so on. As we mentioned on page 62, the probabilities
associated with the empirical quantiles depend on the underlying distribution,
and in any event, are difficult to work out.

However the probability is chosen, the p}}h quantile (or “population quan-
tile”) is the value, z,, , of the random variable, X, such that

Pr(X < zp,) = ps.

In the case of the normal distribution, this value is also called the p};h normal

score.

A g-q plot with a vertical axis corresponding to the quantiles of a gamma
distribution with a shape parameter of 4 is shown on the left-hand side in
Figure 8.6. This plot was produced by the R statement

plot (qgamma(ppoints(length(x)),4) ,sort(x))

40
|
X

&
o
&
©
o
o o
N &
S5
(o] (o]
T T T T T T T T T
2 4 6 8 (o] 1 2 3 4
Gamma(4) scores Gamma(1) scores

Fig. 8.6. Quantile-Quantile Plot for Comparing the Sample to Gamma Distribu-
tions

If the relative values of the sample quantiles correspond closely to the
distribution quantiles, the points fall along a straight line, as in the plot on the

350 8 Graphical Methods in Computational Statistics

left-hand side in Figure 8.6. The data shown were generated from a gamma
distribution with a shape parameter of 4. When the sample quantiles are
compared with the quantiles of a gamma distribution with a shape parameter
of 1, as in the plot on the right-hand side in Figure 8.6, the extremes of the
sample do not match the quantiles well. The pattern that we observe for the
smaller observations (that is, that they are below a straight line that fits most
of the data) is characteristic of data with a heavier left tail than the reference
distribution to which it is being compared. Conversely, the larger observations,
being below the straight line, indicate that the data have a lighter right tail
than the reference distribution.

The sup absolute difference between the ECDF and the reference CDF
is the Kolmogorov distance, which is the basis for the Kolmogorov test (and
the Kolmogorov-Smirnov test) for distributions. The Kolmogorov distance,
however, does poorly in measuring differences in the tails of the distribution.
A g-q plot, on the other hand, generally is very good in revealing differences
in the tails.

An important property of the g-q plot is that its shape is independent of
the location and the scale of the data. In Figure 8.6, the sample is from a
gamma distribution with a scale parameter of 10, but the distribution quan-
tiles are from a population with a scale parameter of 1.

For a random sample from the distribution against whose quantiles it is
plotted, the points generally deviate most from a straight line in the tails.
This is because of the larger variability of the extreme order statistics. Also,
because the distributions of the extreme statistics are skewed, the deviation
from a straight line is in a specific direction (toward lighter tails) more than
half of the time (see Exercise 8.2, page 368).

The ECDF is most useful for univariate data. Plots based on the ECDF
for a multivariate dataset are generally difficult to interpret.

Representation of the Third Dimension

A three-dimensional plot on a two-dimensional surface is sometimes called
a “perspective plot”. Important characteristics of a perspective plot are the
viewing angle and the assumed position of the eye that is viewing the plot. In
a perspective plot, the simulated location of the eye determines the viewing
angle or line of sight and also affects the perspective.

A perspective plot attempts to give the appearance of a three-dimensional
space. It may consist of the individual three-dimensional data points, or, if
one of the coordinate variables is considered to be a function of the other two,
that variable usually is made to correspond to the vertical coordinate in the
display and the display itself is of a surface. We show a perspective plot on
page 382, which was produced by the R function persp.

Another simple way of reducing a three-dimensional display to a two-
dimensional one is by use of contour lines, or contour bands (usually of dif-

8.2 Viewing One, Two, or Three Variables 351

ferent colors). A contour line represents a path over which the values in the
dimension not represented are constant.

Contours represent one extra dimension, so three-dimensional data are
often represented on a two-dimensional surface in a contour plot. A contour
plot is especially useful if one variable is a “dependent” variable (that is, one
for which we are interested in its relationship or dependence on the two other
variables). In a contour plot, lines or color bands are used to represent regions
over which the values of the dependent variable are constant.

For representing three-dimensional data in which one variable is a depen-
dent variable, an image plot is particularly useful. An image plot is a plot of
three-dimensional data in which one dimension is represented by color or by
a gray scale.

Image plots are especially useful in identifying structural dependencies.
They are often used when the two “independent” variables are categorical.
In such cases, the ordering of the categories along the two axes has a major
effect on the appearance of the plot. Figure 8.7 shows four image plots of the
same set of data representing gene expression activity for 500 genes from cells
from 60 different locations in a human patient. In the plot in the upper left,
the cells and genes are arbitrarily positioned along the axes, whereas in the
other plots there has been an attempt to arrange the cells and/or genes along
their respective axes to discover patterns that may be present.

Exploration with image plots is a powerful tool for discovering structure
and relationships. Clustering methods discussed in Chapter 16 can be used to
suggest orderings of the categorical variables. A “clustered image map” can be
particularly useful in detecting structural differences. See the programs and
data at

http://discover.nci.nih.gov

Both contour plots and image plots can be effective for large datasets in
which overplotting would be a serious problem in other types of plots.

Contour plots are produced by the contour function in both S-Plus and
R, and image plots are produced by the image function in both packages.

Other methods of representing the third dimension use color or some other
noncartesian property, such as discussed for general multivariate data begin-
ning on page 359. Another approach for three-dimensional data is to simulate
a visual perception of depth.

Rendering

Some methods of representing three-dimensional data attempt to simulate a
geometric object. These methods include direct volume rendering and surface
rendering. In either case, an important consideration is the point, called the
viewpoint, from which the space is viewed. In some cases, the viewpoint may
be a pair of points corresponding to the viewer’s two eyes.

In direct volume rendering, we attempt to display the density of material
or data along imaginary rays from the viewer’s eyes through the dataset. This

352 8 Graphical Methods in Computational Statistics

[,II

e L

A

Genes Genes

Cells
Cells

NI
1100
L]

| 110 ‘ II IIII T Illt "

[I II: I II"LII

Cells
Cells

Fig. 8.7. Image Plots with Different Orderings of the Categorical Variables

procedure is called ray tracing. The volume is rendered by assigning values
to voxels (three-dimensional equivalents of pixels). In one form, called binary
voxel volume rendering, the first object along the ray from the viewer’s eye
results in an opaque voxel that hides objects farther along the ray. Binary
rendering is often done by “z-buffering”. In this technique, a value representing
the depth of each point (discretized as a pixel) is stored, and the minimum
such depth (discretized) from the viewpoint is stored in a “z-buffer”. (It is
called this because in graphics for three dimensions, a cartesian coordinate
system (x,y, z) is commonly used, and by custom the plane of the display is
the z-y plane, or that plane moved slightly.) A point is hidden if its depth is
greater than the value in the z-buffer for that direction. In another form, called
semitransparent volume rendering, a transparency is assigned to a voxel based
on the value of the parameter that is being rendered. This allows visualization
of the interior of an object. This technique is widely used in medical imaging.

The simplest method of representing a surface is by use of a “wire frame”,
which is a grid deformed to lie on the surface. Generally, in a wire frame, the
grid lines on regions of surfaces that would be obscured by other surfaces are

8.2 Viewing One, Two, or Three Variables 353

not shown. This is usually done by z-buffering. An example of a wire frame
surface is shown in Figure 9.5 on page 382. Sometimes, however, it is useful
to show the hidden lines in a wire frame, and with different line types, it is
possible to show lines that would be hidden but make clear that those lines are
in the background. It is often useful to combine a wire frame with a contour
plot on the flat surface representing the plane of two variables.

Other ways of depicting the surface, which use a continuous representation,
require consideration of the surface texture and the source of light that the
surface reflects.

Stereograms

A perception of depth or a third dimension in a two-dimensional display can
be induced by use of two horizontally juxtaposed displays of the same set of
points and a mechanism to cause one of the viewer’s eyes to concentrate on
one display and the other eye to concentrate on the other display. The stereo
pair may be in different colors, and the viewer uses glasses with one lens of
one color and the other lens of the other color (the colors are chosen so that
a lens of one color cancels the other color). Such a pair is called an anaglyph.
Another type of stereo pair, called a stereogram, requires the viewer to defocus
each separate view and fuse the two views into a single view. This fusion can
be aided by special glasses that present one view to one eye and the other
view to the other eye. Many people can perform the fusion without the aid
of glasses by focusing their eyes on a point either beyond the actual plane
of the display or in front of the plane. Either way works. The perspective in
one way is the reverse of the perspective in the other way. For some displays
and for some people, one way is easier than the other. In either type of stereo
pair, the features on the two displays are offset in such a way as to appear in
perspective.

Figure 8.8 shows a stereogram of data with three variables, x, y, and z.
The stereoscopic display is formed by two side-by-side plots of x and y in
which z is on the horizontal axes and z determines the depth. The perception
of depth occurs because the values of = are offset by an amount proportional
to the depth. The depth at the i** point is

X — Tmi
di =cC- (Zmax — Zi)ﬁ. (85)

The choice of ¢ in equation (8.5) depends on the separation of the displays
and on the units of measurement of the variables. The left-hand plot is of the
vectors x — d and y, and the right-hand plot is of + d and y. If the eyes are
focused behind the plane of the paper, the vertex that is lowest on the graphs
in Figure 8.8 is at the front of the image; if the eyes are focused in front of the
plane of the paper (that is, if the eyes are crossed) the vertex that is highest
on the graphs in Figure 8.8 is at the front of the image.

354 8 Graphical Methods in Computational Statistics

Fig. 8.8. Trivariate Data in a Stereogram

Although statisticians have experimented with anaglyphs and stereograms
for many years, these visual devices have generally had more value as enter-
tainment than as effective as tools of discovery. They may be useful, however,
for displaying features of the data that are already known.

Changing the Viewing Angle

The perception of depth can also be induced by rotating a single three-
dimensional scatter plot on a monitor. The perception of a third dimension
ceases when the movement stops, however. One way of preserving the motion
and hence the depth perception while still maintaining the viewing angle is to
rock the scatter plot (that is, to rotate the scatter plot back and forth through
a small angle).

In addition to the induced perception of depth, rotations, because they
give different perspectives on the data, often prompt discoveries of structure
in the data. For example, observations that are outliers in a direction that does
not correspond to the axis of any single variable may become apparent when a
three-dimensional scatter plot is rotated. We discuss rotation transformations
in some detail in Chapter 9 beginning on page 375.

Different people have differing abilities to interpret graphical displays. The
stereoscopic devices discussed above are not very useful for people with vision
in only one eye and for the growing number of people who use artificial lenses
to provide near vision in one eye and distance vision in the other.

Contours in Three Dimensions

Contour plots in three dimensions are surfaces that represent constant values
of a fourth variable. Methods for drawing contours for three-dimensional data
are similar to those for two-dimensional data; a three-dimensional mesh is

8.3 Viewing Multivariate Data 355

formed, and the values of the function or of a fourth variable at the lattice
points of the mesh are used to decide whether and how a contour surface
may cut through the mesh volume element. The most widely used method for
drawing contours in three dimensions is “the marching cubes” method. (See
Schroeder, Martin, and Lorensen, 1996, for a good description of the method.)

Contours of three-dimensional data can also be represented in stereograms
using the same offsets as in equation (8.5). See Scott (2004, Section 4.4) for
examples.

8.3 Viewing Multivariate Data

Graphical displays are essentially limited to the two dimensions of a com-
puter monitor or a piece of paper. Various devices that simulate depth allow
visualization of a third dimension using just the two-dimensional surface. The
simplest such devices are reference objects, such as color saturation or perspec-
tive lines, that provide a sense of depth. Because of our everyday experience
in a three-dimensional world with an atmosphere, visual clues such as dimin-
ished color or converging lines readily suggest distance from the eye. Other,
more complicated mechanisms making use of the stereo perspective of the two
human eyes may suggest depth more effectively, as we discuss on page 353.
There are not many situations in which these more complicated devices pro-
vide more understanding of data than would be available by looking at various
two-dimensional views. They are more fun, however.

There are basically two ways of displaying higher-dimensional data on a
two-dimensional surface. One is to use multiple two-dimensional views, each
of which relates points in a cartesian plane with a projection of the points
in higher dimensions. The number of separate two-dimensional views of d-
dimensional data that convey the full information of the original data is O(d?).
The projections do not have to be orthogonal, of course, so the number of
projections is uncountable.

The other way is to use graphical objects that have characteristics other
than just cartesian coordinates that are associated with values of variables in
the data. These graphical objects may be other geometric mappings, or they
may be icons or glyphs whose shapes are related to specific values of variables.
The number of graphical objects is n, the number of observations, so some
of these methods of displaying high-dimensional data are useful only if the
number of observations is relatively small.

Projections

Numeric data can easily be viewed two variables at a time using scatter plots
in two-dimensional cartesian coordinates. Each scatter plot represents a pro-
jection from a given viewing angle. The projection may also be scaled to
simulate an eye position.

356 8 Graphical Methods in Computational Statistics

An effective way of arranging these two-dimensional scatter plots of mul-
tidimensional data is to lay them out in a square (or triangular) pattern. All
scatter plots in one row of the pattern have the same variable on the vertical
axis, and all scatter plots in one column of the pattern have the same variable
on the horizontal axis, as shown in Figure 8.9. In this case, the various two-
dimensional graphical coordinate systems correspond directly to orthogonal
projections of the world coordinate system in which the data are represented.

Each view is a two-dimensional projection of a multidimensional scatter
plot, so all observations are represented in each view. This arrangement is
sometimes called a scatter plot matrix, or “SPLOM”. One is shown in Fig-
ure 8.9. The plot shows pairwise relationships among the variables and also
that the observations fall into distinct groups. (The plot in Figure 8.9 was
produced by the R function pairs. The plot uses the “Fisher iris data”. This
is a relatively small dataset that has been widely studied. The data are four
measurements on each of 50 iris plants from each of three species. The data
are available in S-Plus and R as iris.)

Iris Data

2.0 25 3.0 35 4.0

Sepal.Length

45 55 65 75

Sepal.Width

20 25 30 35 40

Petal.Length

Petal.Width

05 1.0 15 20 25

Fig. 8.9. Scatter Plot Matrix of Fisher Iris Data

The two-dimensional scatter plots represent the data in the n x 2 ma-
trix, X; = X|[ejlex], where [ejleg] is a d x 2 matrix and e; is the i*" unit
column vector of length d. More general two-dimensional projections of the
d-dimensional data may also be useful. The n x d matrix X that contains the
data is post-multiplied by a d x d projection matrix of rank 2, and then the

8.3 Viewing Multivariate Data 357

data are plotted on cartesian axes that form an orthogonal basis of the two-
dimensional space. (A projection matrix is any real symmetric idempotent
matrix. The projection matrix used in the formation of X, above, if j < k, is
the d x d matrix consisting of all zeros except for ones in the (4, j) and (k, k)
positions. We will encounter projection matrices again in Chapter 9.)

The scatter plots in a SPLOM as described above are plots of unadjusted
marginal values of the individual variables. Davison and Sardy (2000) suggest
use of a partial scatter plot matrix (that is, scatter plots of residuals from
linearly adjusting each variable for all others except the other one in the
current scatter plot). This has the advantage of showing more precisely the
relationship between the two variables, because they are conditioned on the
other variables that may be related. Davison and Sardy also suggest forming a
scatter plot matrix using the marginal values in one half (say, the plots above
the diagonal) and using the adjusted values or residuals in the other half of
the matrix.

A sequence of projections is useful in identifying interesting properties of
data. In a “grand tour”, a plane is moved through a d-dimensional scatter
plot. As the plane moves through the space, all points are projected onto
the plane in directions normal to the plane. We discuss the grand tour on
page 363. Projection pursuit, as discussed in Section 16.5, is another technique
for successively considering lower-dimensional projections of a dataset in order
to identify interesting features of the data.

Projections cannot reveal structure of a higher dimension than the di-
mension of the projection. Consider, for example, a sphere, which is a three-
dimensional structure. A two-dimensional projection of the sphere is the same
as that of a ball; that is, the projection does not reveal the hollow interior.

A matrix of image plots can be useful in simultaneously exploring the
relationship of a response variable to pairs of other variables. The plot in
Figure 8.10 is an image plot matrix, or IMPLOM, showing values of a response
variable in gray scale at various combinations of levels of three independent
variables. In Figure 8.10, the ordering of each of the independent variables is
the same above the diagonal as below it, but this is not necessary. Orderings
can be compared by using different ones in the two images that correspond
to the same two independent variables.

Conditioning Plots

Another type of lower-dimension view of a dataset is provided by a section.
A section of a space of d dimensions is the intersection of the space with a
lower-dimensional object. The lower-dimensional object is often chosen as a
hyperplane.

A two-dimensional section of a three-dimensional sphere can reveal the
hollow interior if the section passes through the sphere. The ability of a section
to determine a feature depends on where the section is relative to the feature.

358 8 Graphical Methods in Computational Statistics

Fig. 8.10. Matrix of Image Plots

Projections and sections can be used together to help in identifying structure
in data.

Sectioning leads to another way of forming an interesting lower-dimensional
dataset, which is to restrict the full dataset to its intersection with a given
lower-dimensional subset. That intersection has the dimensions of the given
lower-dimensional subset. The idea is to look at specific slices of the data, one
at a time. For example, if a plane is passed through a trivariate space, the
result is a plane. In such a case, however, the resulting dataset may be quite
sparse. If the lower-dimensional subset is determined by specific values of nom-
inal variables, however, the intersection may contain a meaningful proportion
of the observations. In another approach, the subset used in the intersection
may represent a range of values, and if the range is relatively narrow, it may
be the case that a projection preserves most of the information. This approach
yields a conditional dataset, and the displays of the conditional datasets are
called called conditioning plots, or coplots.

When a multivariate dataset has different subsets of interest, perhaps de-
termined by the values of a nominal variable, it is convenient to view the data
in separate panels corresponding to the different subsets. Such a multipaneled
graphic is called a “casement display”.

In a conditioning plot, the overall graphical display is divided into two
parts, a panel for the conditioning slices and a set of dependence panels show-
ing the bivariate relationship between the dependent variable and the panel
variable, at each level of the conditioning slices.

8.3 Viewing Multivariate Data 359

Conditioning is also called splitting or nesting. The “trellis” displays of
S-Plus are designed to do this. The trellis displays are implemented in the
Lattice system in R; see Sarkar (2008). The coplot function in both S-Plus
and R produces conditioning plots.

In conditioning plots, even if the dataset is very large, if the dimensionality
is high, the sizes of the dataset in each panel of the display may be relatively
small.

Noncartesian Displays

Noncartesian displays are often developed to aid in identification of specific
features. The box plot is very useful in seeing the overall shape of the data
density and in highlighting univariate outliers.

One way of dealing with multivariate data is to represent each observation
as a more complicated object than just a point. The values of the individual
variables that make up the observation are represented by some aspect of
the iconic object. For some kinds of displays, each observation takes up a
lot of space, so the use of those techniques is generally limited to datasets
with a small number of observations. Other displays use curves to represent
observations, and those kinds of displays can be used with larger datasets,
although at some point they may suffer from extreme overplotting.

A limitation to the usefulness of such noncartesian displays is that the
graphical elements may not have any natural correspondence to the variables.
This sometimes makes the plot difficult to interpret until the viewer has estab-
lished the proper association between the graphical features and the variables.
Even so, it often is not easy to visualize the data using the icons or curves.

Glyphs and Icons

Various kinds of glyphs and icons can be used to represent multivariate data.
In many cases, a separate glyph or icon is used for each observation. One
of the most typical is a star diagram, of which there are several variations.
In a star diagram, for each observation of d-dimensional data, rays pointing
from a central point in d equally spaced directions represent the values of the
variables.

An issue in noncartesian displays is how to represent magnitudes. In one
variation of the star diagram, the lengths of the rays correspond to the mag-
nitude of the value of the variable. In another variation, sometimes called
“snowflakes”, the lengths of the rays are linearly scaled individually so that
the minimum of any variable in the dataset becomes 0 and the maximum
becomes 1.

Once the rays are drawn, their endpoints are connected. Once a mental
association is made between a direction and the variable that corresponds to
it, one can get a quick idea of the relative values of the variables in a given
observation.

360 8 Graphical Methods in Computational Statistics

Chernoff (1973) suggested the use of stylized human faces for representing
multivariate data. Each variable is associated with some particular feature of
the face, such as height, width, shape of the mouth, and so on. Because of our
visual and mental ability to process facial images rapidly, it is likely that by
viewing observations represented as faces, we can identify similarities among
observations very quickly.

As with star diagrams, the features of Chernoff faces can be associated
with the variables and their values in different ways, for example, the area of
face may correspond to the first variable, the shape of face to the second, the
length of nose to the third, and so on.

In star diagrams, each variable is represented in the same way: as a ray.
The stars have different appearances based only on the order in which the
variables are assigned to rays. In faces, however, the variables correspond to
very different features of the diagram, so there are many more differences in
appearance that can result from the same dataset. Perhaps for this reason,
faces are not used nearly as often as stars.

Anderson (1957) proposed use of a glyph consisting of a circle and from
one to seven rays emanating from its top. Variations of these glyphs yield
“feather plots”, “compass plots”, and “rose plots”. Of course there are several
other types of icons and glyphs that can be used for representing multivariate
data.

Stars, faces, and other kinds of icons that individually represent a single
observation are not very useful if the number of observations is more than 20
or 30. The usefulness of such graphics, however, results from their ability to
represent 20 or 30 variables.

Parallel Coordinates: Points Become Broken Line Segments

Another type of curve for representing a multivariate observation is a piece-
wise linear curve joining the values of the variables on a set of parallel axes,
each of which represents values of a given variable. This type of plot is called
a “parallel coordinates plot”. A parallel coordinates plot is similar to a nomo-
gram.

With parallel coordinates, a point in the multidimensional space becomes a
curve (a broken line) in a two-dimensional space. The scales on the horizontal
lines in a parallel coordinates plot are generally scaled linearly to cover the
range of the value in the sample.

Parallel coordinates help to identify relationships between variables. Pair-
wise positive correlations between variables represented by adjacent coordi-
nate lines result in the line segments of the observations having similar slopes,
whereas negative correlations yield line segments with different slopes. Corre-
lations between variables on adjacent coordinate lines are most easily recog-
nized. If the columns in the dataset are reordered, the adjacency pattern in
the parallel coordinates plot changes, so other relationships may be observed.

8.3 Viewing Multivariate Data 361

Observations that are similar tend to have lines that have similar tracks.
Parallel coordinates plots are therefore useful in identifying groups in data. If
a variable on the dataset indicates group membership, all of the lines will go
through the points on that coordinate that represent the (presumably small
number of) groups. The visual impact is enhanced by placing this special
coordinate either at the top or the bottom of the parallel coordinates plot
(although if this special coordinate is placed in the middle, sometimes the
groups are more obvious, because there may be fewer line crossings).

In Figure 8.11 we show the parallel coordinates plot of four artificially-
generated points from a 7-variate normal distribution. The points were from
independent distributions except for two, which had a correlation of 0.9. The
two lines that track each other very closely represent those two points.

V7

Ve

va

V3

v2

Min Max

Fig. 8.11. Parallel Coordinates Plot

For large numbers of observations with little structure, parallel coordinates
plots will suffer from too much overplotting. If there is low-dimensional struc-
ture, however, a parallel coordinates plot may help to uncover it. Figure 9.4
on page 379 in Chapter 9, for example, shows a parallel coordinates plot of
data that have been rotated so a to show more interesting structure. The same
plot in the unrotated coordinates, would just be a mass of ink.

362 8 Graphical Methods in Computational Statistics
Trigonometric Series: Points Become Curves

Another way of depicting a multivariate observation is with a curve in two
dimensions. One type of curve is built by a sum of trigonometric functions.
Plots of this type are called “Fourier series curves”, or “Andrews curves” after
David Andrews. An Andrews curve representing the point

= (21,T2,...,%d)
is
s(t) = x1/V2 + zosint + x3 cost + x4 sin(2t) + x5 cos(2t) + ... (8.6)

Each observation in a data set yields one Andrews curve. The curves can
be useful in identifying observations that are similar to each other. If the
number of observations is large, however, the amount of overplotting generally
becomes excessive.

In Figure 8.12 we show the Andrews curves for the same four artificially-
generated points used in Figure 8.11. The points were from independent dis-
tributions except for points 3 and 4, which were generated from a distribution
with correlation of 0.9. The lines representing those points are seen to track
each other very closely.

As t goes from 0 to 27, the curve traces out a full period, so the plot is
shown just over that range. It is often useful, however, to make plots of two
full periods of these periodic curves.

In Andrews curves, the value of the first feature (variable) determines the
overall height of the curve; hence Andrews curves are very dependent on the
order of the variables. It is generally a good idea to reorder the variables, so
that the ones of most interest occur before others.

Andrews curves are also sometimes plotted in polar coordinates, resulting
in a star-shaped figure with four arms.

Rotations and Dynamical Graphics

When a cluster of points or a surface in three dimensions is rotated (or alter-
natively, when the viewing direction is changed), patterns and structures in
the data may be more easily recognized. Changing the eye position, that is,
the distance from which a projection of the data is viewed, can also help to
identify structure.

Rotations are orthogonal transformations that preserve norms of the data
vectors and angles between the vectors. The simplest rotation to describe is
that of a plane defined by two coordinates about the other principal axes.
Such a rotation changes two elements of a vector that represents cartesian
coordinates in the plane that is rotated and leaves all the other elements,
representing the other coordinates, unchanged. A rotation matrix, introduced

8.3 Viewing Multivariate Data 363

o ki 2n

Fig. 8.12. Fourier Curves Plot

on page 233 and shown in a general form in equation (9.4) on page 377, is the
same as an identity matrix with four elements changed.

A generalized rotation matrix, @, can be built as a product of (d* — d)/2
such);; simple rotation matrices,

Q = Q12Q13 T QldQ23Q24 T QQd T Qdfl,d~

Rotating a plot in all directions, along with various projections, is called
a “grand tour”. In one method of performing a grand tour, the angles for the
rotations are taken as

t(ﬁm mod 27T, (87)
where the ¢;; are fixed constants that are linearly independent over the inte-
gers; that is, if for any set of integers k12, k13, ..., ki—1,4,

d-1 d
>) kij¢i; | mod 2w =0,
i=1 j=i+1

then all k;; = 0. As t is stepped over time, the angle in the rotation matrix Q;
is taken as t¢;; and the generalized rotation matrix is computed and applied
to the dataset.

The rotated datasets can be viewed in various ways. In the most common
grand tour, the point cloud is projected onto a representation of a three-
dimensional cartesian system. In the grand tour, the data points appear to

364 8 Graphical Methods in Computational Statistics

be in continuous motion on the computer monitor. The motion of the sys-
tem, or equivalently, the apparent continuous rotations of the data, provide a
perception of the third dimension.

Rotated datasets can also be viewed using parallel coordinates or Andrews
curves. Structure appears in various ways in these plots. A hyperplane, for
example, appears as a point on a parallel coordinate axis that corresponds to
the coefficients of the hyperplane.

After we consider general rotations in Chapter 9 we show an example
on page 379 of how a dataset can be rotated before plotting. You are asked
to develop systematic rotation and plotting methods for producing Andrews
curves and parallel coordinates plots in Exercises 9.4 and 9.5.

There is another way of “touring the data” by using the Andrews curves,
s(t), of equation (8.6) on page 362. These representations have a natural
dynamic quality. The variable ¢ in s(t) of equation (8.6) can be interpreted as
“time” and varied continuously.

Wegman and Shen (1993) modify and generalize the Andrews curves as

r(t) = x1 sin(w1t) + x2 cos(wit) + x3 sin(wat) + x4 cos(wat) + . . .
= (a(t)) ", (8.8)
where the vector a(t) is chosen as
a(t) = (sin(wit), cos(wit), sin(wst), cos(wat), ...).

Wegman and Shen (1993) then consider an orthogonal linear combination,
q(t) = (b(t))Tz, where

b(t) = (cos(wit), —sin(wit), cos(wat), —sin(wat), ...). (8.9)

They define a two-dimensional “pseudo grand tour” as the plots of r(t) and
q(t) as t varies continuously. For the pseudo grand tour, they suggest defining
a(t) and b(t) so that each has an even number of elements (if d is odd, the data
vector x can be augmented with a 0 as its last element) and then normalizing
both a(t) and b(t). They also recommend centering the data vectors about 0.

If the w’s are chosen so that w;/w; is irrational for all ¢ and j not equal (2
and j range from 1 to [d/2]), a richer set of orientations of the data are en-
countered when ¢ is varied. The generalized curves are not periodic in this case.
Specialized graphics software often provides interaction that allows “guided
tours” using controlled rotations. In a guided tour, the data analyst, using
knowledge of the dataset or information provided by previous views of the
data, actively decides which portions of the data space are explored. This,
of course, is an instance in which concepts of real numbers do not have an
analogue in IF. (There are no irrational numbers in IF; see Section 2.2.)

Projection pursuit, as discussed in Section 16.5 on page 564, can be used to
determine the rotations in any grand tour using either the standard cartesian
coordinates or the other types of displays.

Notes and Further Reading 365

Notes and Further Reading

There is a wealth of statistical literature on graphics, and visualization is being
used ever more widely in data analysis. Developments in statistical graphics
are reported in several journals, most notably, perhaps, Journal of Computa-
tional and Graphical Statistics, as well as in unrefereed conference proceedings
and newsletters, such as Statistical Computing & Graphics Newsletter, pub-
lished quarterly by the Statistical Computing and the Statistical Graphics
sections of the American Statistical Association. Many of the advances in
computer graphics are reported at the annual ACM SIGGRAPH Conference.
The proceedings of these conferences, with nominal refereeing, are published
as Computer Graphics, ACM SIGGRAPH xx Conference Proceedings (where
“xx” is a two-digit representation of the year).

Hardware and Low-Level Software for Graphics

Hardware for graphics includes the computational engine, input devices, and
various display devices. Rapid advances are being made for almost all types
of graphics hardware, and the advances in the quality and capabilities of the
hardware are being accompanied by decreases in the costs of the equipment.
The image is the result of the collage of pixels displayed on these devices.

Software for graphics often interacts very closely with the hardware, taking
advantage of specific design features of the hardware.

Because a graph may require many computations to produce lines and
surfaces that appear smooth, the speed of the computational engine is very
important. The appropriate pixels must be identified and set to the proper
value to make the entire graph appear correctly to the human eye. The need
for computer speed is even greater if the object being displayed is to appear
to move smoothly.

A typical computer monitor has a rectangular array of approximately one
to two million pixels. (Common monitors currently are 1,280 by 1,024, 1,600
by 1,200, or 1,920 by 1,200.) This is approximately 100 pixels per inch. This
resolution allows arbitrary curves to appear fairly smooth. Whether graphical
displays can respond to real-time motion depends on how fast the computer
can perform the calculations necessary to update 10° pixels fast enough for
the latency period of the human eye.

Color is determined by the wavelength of light. Violet is the shortest and
red the longest. (Here, “color” is assumed to refer to something visible.) White
color is a mixture of waves of various lengths.

Most light sources generate light of various wavelengths. Our perception
of color depends on the mix of wavelengths. A single wavelength in light is a
highly saturated single color. Multiple wavelengths reduce the saturation and
affect the overall hue and lightness. Multiple wavelengths are perceived as a
different single color that is a combination of the individual colors.

366 8 Graphical Methods in Computational Statistics
Cyan
(0,255,255)

White
55,255,255)

Blue Magenta
(0,0,255) (255,0,255)
(%13%‘) Yellow
Y (255,255,0)
Red
(255,0,0)

Fig. 8.13. RGB Color Cube

A given color can be formed by combining up to three basic colors. Red,
green, and blue are often used as the basic colors. Colors can be combined
additively using different light sources or in a subtractive way by filters or
absorptive surfaces.

To specify a given color or mix of colors and other characteristics of the
light, we use a color system. Color values are defined in the given color system
and then used by the software and hardware to control the colors on the out-
put device. Different systems use different combinations of values to describe
the same color and the same overall effect. The common color systems are
RGB (red, green, blue), CMY (cyan, magenta, yellow), HLS (hue, lightness,
saturation), and HSV (hue, saturation, value).

The RGB color system uses a vector of three elements ranging in value
from 0 to 255. The system can be illustrated as in Figure 8.13 by a cube whose
sides are 255 units long. Three corners correspond to the primary colors of
red, green, and blue; three corners correspond to the secondary colors of cyan,
magenta, and yellow; and two corners correspond to black and white. Each
color is represented by a point within or on the cube. The point (255, 255, 255)
represents an additive mixture of the full intensity of each of the three primary
colors. Points along the main diagonal are shades of gray because the intensity
of each of the three primaries is equal.

Digital display devices represent each component of an RGB color coor-
dinate in binary as an integer in the range of 0 to 2™ — 1, for some n. Each
displayable color is an RGB coordinate triple of n-bit numbers, so the total
number of representable colors is 237, including black and white. An m-bit
pixel can represent 2" different colors. If m is less than 3n, a color translation
table (or just color table) with 2™ entries is used to map color triples to values
of the pixels.

Notes and Further Reading 367

Low-Level Software

Software for producing graphics must interact very closely with the display
devices. Because the devices vary in their capabilities, the approach generally
taken is to design and produce the software at various levels so that graphics
software at one level will interface with different software at another level in
different environments.

The lowest-level software includes the device drivers, which are programs
in the machine language of the particular display device. The next level of
software provides the primitive graphics operations, such as illuminating a
pixel or drawing a line. There have been a number of efforts to standardize
the interface for this set of graphics primitives. The Open Graphics Library,
or OpenGL, is a library of primitive graphics functions developed by Sili-
con Graphics, Inc. It was standardized by the OpenGL Architecture Review
Board (1992), and it is now controlled by the Khronos Group, which is an in-
dustry consortium. For each of these sets of standard graphics functions there
are bindings for Fortran, C, and C++. Glaeser and Stachel (1999) describe
the use of OpenGL in a C++ graphics system called Open Geometry.

Software for Graphics Applications

There are a number of higher-level graphics systems ranging from Fortran,
C, or Java libraries to interactive packages that allow modification of the
display as it is being produced. Many graphics packages have a number of
preconstructed color tables from which the user can select to match the colors
a given device produces to the desired colors.

Gnuplot is an interactive plotting package that provides a command-
driven interface for making a variety of data- and function-based graphs. The
system is primarily for two-dimensional graphics, but there are some three-
dimensional plotting capabilities. The graphs produced can be exported into
a number of formats. The package is freeware and is commonly available on
both Unix/Linux systems and MS Windows.

Xfig is a graphics package for Unix/Linux windowing systems (X11) that
provides capabilities for the basic objects of vector graphics, including lines
and various curves such as Bézier curves.

Advanced Visual Systems, Inc., develops and distributes a widely used
set of graphics and visualization systems, AVS5 and AVS/Express together
with various associated products. These systems run on most of the common
platforms.

The Visualization Toolkit, or vtk, developed by Schroeder, Martin, and
Lorensen (2004), is an object-oriented system that emphasizes three-dimensional
graphics. The software manual also has good descriptions of the algorithms
implemented.

Because making graphical displays is generally not an end in itself, graph-
ics software is usually incorporated into the main application software. Soft-
ware systems for statistical data analysis, such as S-Plus, R, and SAS, have

368 8 Graphical Methods in Computational Statistics

extensive graphics capabilities. Some of the graphical capabilities in S-Plus
and R are similar. Most features in one package are available in the other
package, but there are differences in how the two packages interact with the
operating system, and this means that there are some differences in the way
that graphics files are produced. The function expression in R is a useful
feature for producing text containing mathematical notation or Greek letters.
The function can be used in most places that expect text, such as xlab. For
example,

main = expression(paste("Plot of ",

Gamma(x) ," versus",hat(beta) x"hat(gamma)))
produces the main title R
Plot of I'(x) versus 27

The actual appearance is device dependent and in any event is unlikely to
have the beauty of a display produced by TEX.

There is also a very useful system in R, called Grid Graphics, that facili-
tates layout design; see Murrell (2006). A higher-level system for visualization
of multivariate data, called Lattice, has been built on Grid Graphics; see
Sarkar (2008).

Cook and Swayne (2008) describe a system for interactive graphics called
GGobi that is integrated with R.

Wilkinson (2004) provides a unified structure for the production of mean-
ingful graphical displays from data in tabular or matrix form.

Exercises

8.1. Generate a sample of size 200 of pseudorandom numbers from a mixture
of two univariate normal distributions. Let the population consist of 80%
from a N(0, 1) distribution and 20% from a N(3,1) distribution. Plot the
density of this mixture. Notice that it is bimodal. Now plot a histogram of
the data using nine bins. Is it bimodal? Choose a few different numbers of
bins and plot histograms. (Compare this with Exercise 15.9 of Chapter 15
on page 512.)

8.2. Generate a sample of pseudorandom numbers from a normal (0,1) distri-
bution and produce a quantile plot of the sample against a normal (0,1)
distribution, similar to Figure 8.6 on page 349. Do the tails of the sample
seem light? (How can you tell?) If they do not, generate another sample
and plot it. Does the erratic tail behavior indicate problems with the ran-
dom number generator? Why might you expect often (more than 50% of
the time) to see samples with light tails?

8.3. Stereoscopic displays.

a) Show that equation (8.5) on page 353, is the offset, in the plane of the
display, for each eye in viewing points at a depth z. Hint: Draw rays
representing the lines of sight through the plane of the graph.

8.4.

8.5.

8.6.

8.7.

Exercises 369

b) Using any graphics software, reproduce the stereogram in Figure 8.14
that represents a cone resting on its base being viewed from above. (If
the eyes focus in front of the plane of the paper, the view of the cone
is from below.)

Fig. 8.14. A Cone Resting on Its Base

Write a program for the simple linear congruential random number gen-
erator
r; = 259x;_1 mod 215,

Generate a sequence of length 1,008. Look for structure in triples of se-
quential values, (z;, 41, Ti+2), by plotting two-dimensional sections of a
three-dimensional scatter plot.

Plot the ellipse 22 + 4y?> = 5 in cartesian coordinates. Now, plot it in
parallel coordinates. What is the shape of the parallel coordinates plot of
an ellipse?

Generate 1,000 pseudorandom 4-variate normal deviates with mean 0
and the identity as the variance-covariance matrix. Now, delete from the
dataset all deviates whose length is less than 2. This creates a dataset
with a “hole” in it. Try to find the hole using various graphic displays.
Generate 100 pseudorandom trivariate normal variates with mean 0 and
variance-covariance matrix

1.00 —.90 .90
—-.90 1.81 -1.71
90 —-1.71 2.62

The Cholesky factor of the variance-covariance matrix is

1.00
—.90 1.00
.90 —.90 1.00

370 8 Graphical Methods in Computational Statistics

a) Plot the data using parallel coordinates. What shapes result from the
correlations?

b) Plot the data using Andrews curves. What shapes result from the
correlations?

8.8. Program a modification of parallel coordinates in which there is a common
scale for all coordinates (that is, one in which a vertical line would pass
through the same value on all parallel coordinate lines). Plot the Fisher
iris data in a display in which all coordinates have the same scale and
compare it to a display in which the coordinates have their original scales.
Now, try some other datasets. How would you recommend that the scales
on the parallel coordinate lines be constructed? What are the advantages
and disadvantages of a fixed scale for all lines?

Summarize your findings in a clearly-written report.

9

Tools for Identification of Structure in Data

In recent years, with our increased ability to collect and store data, have come
enormous datasets. These datasets may consist of billions of observations and
millions of variables. Some of the classical methods of statistical inference,
in which a parametric model is studied, are neither feasible nor relevant for
analysis of these datasets. The objective is to identify interesting structures in
the data, such as clusters of observations, or relationships among the variables.
Sometimes, the structures allow a reduction in the dimensionality of the data.

Many of the classical methods of multivariate analysis, such as principal
components analysis, factor analysis, canonical correlations analysis, and mul-
tidimensional scaling, are useful in identifying interesting structures. These
methods generally attempt to combine variables in such a way as to preserve
information yet reduce the dimension of the dataset. Dimension reduction
generally carries a loss of some information. Whether the lost information is
important is the major concern in dimension reduction.

Another set of methods for reducing the complexity of a dataset attempts
to group observations together, combining observations, as it were.

In the following we will assume that an observation consists of a vector
x = (Z1,...,Zm). In most cases, we will assume that x € IR™. In statistical
analysis, we generally assume that we have n observations, and we use X to
denote an n X m matrix in which the rows correspond to observations.

In practice, it is common for one or more of the components of z to be
measured on a nominal scale; that is, one or more of the variables represents
membership in some particular group within a countable class of groups. We
refer to such variables as “categorical variables”. Although sometimes it is im-
portant to make finer distinctions among types of variables (see Stevens, 1946,
who identified nominal, ordinal, interval, and ratio types), we often need to
make a simple distinction between variables whose values can be modeled
by IR and those whose values essentially indicate membership in a particular
group. We may represent the observation x as being composed of these two
types, “real” or “numerical”, and “categorical”:

J.E. Gentle, Computational Statistics, Statistics and Computing, 371
DOI: 10.1007/978-0-387-98144-4 9,
© Springer Science + Business Media, LLC 2009

372 9 Tools for Identification of Structure in Data

x = (zf, z°).

In the following, we often use the phrase “numerical data” to indicate that
each element of the vector variable takes on values in IR, that the relevant
operations of IR are available, and that the properties of the reals apply.

Major concerns for methods of identifying structure are the number of
computations and amount of storage required.

In this chapter, we introduce some of the tools that are used for identifying
structure in data. There are two distinct tools: transformations of data, and
internal measures of structure. Although these two topics are to some extent
independent, transformations may change the internal measures or may help
us to use them more effectively. Transformations also play important roles in
exploration of data, as in the graphical displays discussed in Chapter 8.

In Chapter 16, using the tools covered in this chapter, we discuss various
methods of exploring data.

Linear Structure and Other Geometric Properties

Numerical data can conveniently be represented as geometric vectors. We can
speak of the length of a vector, or of the angle between two vectors, and relate
these geometric characteristics to properties of the data. We will begin with
definitions of a few basic terms.

The Euclidean length or just the length of an n-vector x is the square root
of the sum of the squares of the elements of the vector. We generally denote
the Euclidean length of z as ||z||2 or just as ||z||:

n 1/2
]| = (Zﬁ) :
i=1

The Euclidean length is a special case of a more general real-valued function
of a vector called a “norm”, which is defined on page 13.

The angle 6 between the vectors x and y is defined in terms of the cosine
by

COS(H) _ <.’E,y>

V@ 2y y)

(See Figure 9.1.)

Linear structures in data are the simplest and often the most interesting.
Linear relationships can also be used to approximate other more complicated
structures.

Flats

The set of points & whose components satisfy a linear equation

9.1 Transformations 373
bix1 + - bgrg =c¢

is called a flat. Such linear structures often occur (approximately) in observa-
tional data, leading to a study of the linear regression model,

xq = Po+ Brx1 + -+ Bmam te
A flat through the origin, that is, a set of points whose components satisfy
bizy + - baxg =0,

is a vector space. Such equations allow simpler transformations, so we often
transform regression models into the form

Ta—Zqa = Pi(x1—T1) 4+ + On(@m — Trm) + €

The data are centered to correspond to this model.

9.1 Transformations

Transformations of data often give us a better perspective on its structure,
and may allow us to use simpler models of the structure. Nonlinear transfor-
mations, such as logarithmic transformations, may allow us to use a linear
model of the relationships among variables. In this section, however, we will
focus mainly on linear transformations.

Linear Transformations

Linear transformations play a major role in analyzing numerical data and
identifying structure.

A linear transformation of the vector z is the vector Az, where A is a
matrix with as many columns as the elements of z. If the number of rows of
A is different, the resulting vector has a dimension different from x.

Orthogonal Transformations

An important type of linear transformation is an orthogonal transformation,
that is, a transformation in which the matrix of the transformation, @, is
square and has the property that

QTQ=1,

where QT denotes the transpose of @, and I denotes the identity matrix.
If @ is orthogonal, for the vector x, we have

Q[= []]. (9-1)

374 9 Tools for Identification of Structure in Data

(This is easily seen by writing ||Qz|| as v/(Qz)TQx, which is \/2TQTQz.)
Thus, we see that orthogonal transformations preserve Euclidean lengths.
If Q is orthogonal, for vectors = and y, we have

(Qz,Qy) = (Qz)"(Qy) =" QT Qy =z"y = (z,y),

r (0z.Q)): r ((,9))
“°°S<|Qx||2||@y||2 arecos { Tzl Mol ©-2)

Thus, we see that orthogonal transformations preserve angles.

hence,

Geometric Transformations

In many important applications of linear algebra, a vector represents a point
in space, with each element of the vector corresponding to an element of a
coordinate system, usually a cartesian system. A set of vectors describes a
geometric object. Algebraic operations are geometric transformations that ro-
tate, deform, or translate the object. Although these transformations are often
used in the two or three dimensions that correspond to the easily perceived
physical space, they have similar applications in higher dimensions.

Important characteristics of these transformations are what they leave un-
changed (that is, their invariance properties). We have seen, for example, that
an orthogonal transformation preserves lengths of vectors (equation (9.1))
and angles between vectors (equation (9.2)). A transformation that preserves
lengths and angles is called an isometric transformation. Such a transforma-
tion also preserves areas and volumes.

Another isometric transformation is a translation, which for a vector z is
just the addition of another vector:

Tr=ux+t.

A transformation that preserves angles is called an isotropic transforma-
tion. An example of an isotropic transformation that is not isometric is a
uniform scaling or dilation transformation, £ = ax, where a is a scalar.

The transformation Z = Ax, where A is a diagonal matrix with not all
elements the same, does not preserve angles; it is an anisotropic scaling.

Another anisotropic transformation is a shearing transformation, & = Ax,
where A is the same as an identity matrix except for a single row or column
that has a one on the diagonal but possibly nonzero elements in the other
positions; for example,

10 ai
01 a9
001

Although they do not preserve angles, both anisotropic scaling and shear-
ing transformations preserve parallel lines. A transformation that preserves

9.1 Transformations 375

parallel lines is called an affine transformation. Preservation of parallel lines
is equivalent to preservation of collinearity, so an alternative characterization
of an affine transformation is one that preserves collinearity. More generally,
we can combine nontrivial scaling and shearing transformations to see that
the transformation Az for any nonsingular matrix A is affine. It is easy to see
that addition of a constant vector to all vectors in a set preserves collinearity
within the set, so a more general affine transformation is £ = Az +t for a
nonsingular matrix A and a vector ¢.

All of these transformations are linear transformations because they pre-
serve straight lines. A projective transformation, which uses the homogeneous
coordinate system of the projective plane, preserves straight lines but does
not preserve parallel lines. These transformations are very useful in computer
graphics.

The invariance properties are summarized in Table 9.1.

Table 9.1. Invariance Properties of Linear Transformations

Transformation Preserves

general lines

affine lines, collinearity

shearing lines, collinearity

scaling lines, angles (and, hence, collinearity)
translation lines, angles, lengths

rotation lines, angles, lengths

reflection lines, angles, lengths

Rotations

Two major tools in seeking linear structure are rotations and projections of the
data matrix X. Rotations and projections of the observations are performed
by postmultiplication of X by special matrices. In this section, we briefly
review these types of matrices for use in multivariate data analysis.

The simplest rotation of a vector can be thought of as the rotation of
a plane defined by two coordinates about the other principal axes. Such a
rotation changes two elements of all vectors in that plane and leaves all of the
other elements, representing the other coordinates, unchanged. This rotation
can be described in a two-dimensional space defined by the coordinates being
changed, without reference to the other coordinates.

Consider the rotation of the vector x through the angle 6 into Z. The
length is preserved, so we have ||Z|| = ||z||. Referring to Figure 9.1, we can
write

iy = ||z(| cos(¢ + 0),
To = ||| sin(¢ +).

376 9 Tools for Identification of Structure in Data

>t

X2

X1

Fig. 9.1. Rotation of x

Now, from elementary trigonometry, we know that
cos(¢ + 0) = cos ¢ cos — sin psin 6,
sin(¢ + 0) = sin ¢ cos @ + cos ¢ sin 6.

Because cos ¢ = x1/||z|| and sin ¢ = z2/||x||, we can combine these equations

to get
T1 = x1c0860 — x98inb, 9.3)

To = x18In6 + x5 cosb.

Hence, multiplying x by the orthogonal matrix

cosf —sinf
sinf cos@

performs the rotation of x.
This idea easily extends to the rotation of a plane formed by two coordi-

nates about all of the other (orthogonal) principal axes. The m x m orthogonal

matrix

9.1 Transformations 377

o
o
o

[10--- .0 0 0---
01---0 0 O0---0 O O---

00---1 0 0---0 O O0---0
00---0 cos#
00---0 O
qu(e): .) (9-4)

00---0 0 O0---1 0 0---0
00---0—sinf0---0cosf0---0
00---0 O O0---0 O 1---0

=)
o O
)
=
o=
>
o O
o O

in which p and ¢ denote the rows and columns that differ from the identity,
rotates the data vector x; through an angle of 4 in the plane formed by the p*®
and ¢*® principal axes of the m-dimensional cartesian coordinate system. This
rotation can be viewed equivalently as a rotation of the coordinate system in
the opposite direction. The coordinate system remains orthogonal after such
a rotation. In the matrix X @, all of the observations (rows) of X have been
rotated through the angle 6.

How a rotation can reveal structure can be seen in Figures 9.2 and 9.3. In
the original data, there do not appear to be any linear relationships among
the variables. After applying a rotation about the third axis, however, we see
in the scatter plot in Figure 9.3 a strong linear relationship between the first
and third variables of the rotated data.

Rotations of the data matrix provide alternative views of the data. There is
usually nothing obvious in the data to suggest a particular rotation; however,
dynamic rotations coupled with projections that are plotted and viewed as
they move are very useful in revealing structure.

Figure 9.4 shows 1,000 points in three-space that were generated by a ran-
dom number generator called RANDU. The data have been rotated by postmul-
tiplication by a 3 x 3 orthogonal matrix whose second column is proportional
to (9,—6,1). We see from the figure that there are exactly 15 planes in that
rotation. (See Gentle, 2003, page 18, for further discussion of data generated
by RANDU. Because of the sharp indentations between the axes in the plot
in Figure 9.4, we may conclude that there are strong negative correlations
between these orthogonal linear combinations of the original data. This is
a further indication that the random number generator is not a good one.
In Exercise 9.3, you are asked to consider similar problems.) You are asked
to develop systematic rotation and plotting methods for producing Andrews
curves and parallel coordinates plots in Exercises 9.4 and 9.5.

A rotation of any plane can be formed by successive rotations of planes
formed by two principal axes. Furthermore, any orthogonal matrix can be
written as the product of a finite number of rotation matrices; that is, any

378 9 Tools for Identification of Structure in Data

02 04 06 08 10 12
T R R R B |

3 3
° o L
o o o0
o 0o ® o
o o
oo & o 00 09 o
9% o ° & °
X1 $% 8 oo, e B % .
o o o o
o @
¢ o °%
o o o % o L
o o © ° . o
o o I
¥Po
° 8
B) o
o 8 o &
o °, 8
. ® ©° 0o 6 °0©
©
° e e ° o * % °
o
o2 0o o0 © Xo S8 50y oo
3
500 o o °
. ° °°%qe ° ° % ° o
s fo0 % © w® © o
o S
o oo °
84 15 o
o o
°g 3
3
&8
o o ° °o o I
o S o o
o o
o
oo ° ° 00
o0 %W o 000% @
o o X3 L
o o oo
o o
o 0% o °Fo, r
og oo
S & 008
o 0° 0 o ® oo r
8 08
o o L
— T — T T
-06 -04 -02 00 02 04 20 25 30 35 40 45

Fig. 9.2. Scatter Plot Matrix of Original Data

B
)
° o o of
o ° 0
° °
o
0%00 0 ® % r
° °
1 o o L
° ° 8
%,
° 0o o
o o
00, %% off L
o 8 ° o
H o ® o®
° S
° o L
g g
® ° @° °
@ | o ° o o o ° o o
s 7 ° 00? o 8
° °
o | 8 9
s ° o o ~ ° o o o
° o
02 X, ° o
<) ° °
° ° %o ° %o
0 8 00 f
o ° o o ©
o N o o
8 000 o o 0% °
o °© o o o ° S 6 o o
° °
o X
g ° ¢ F
° °
o © o o
° °
. L
& ° 0% ®
o o %o o O ~
o ° o
00 o o X3
°
8 o 8o -
00 °
o 00
o35 0% © 8
oo o o © o o L
0¥ 08
o ° L
e e e L T T T T T
00 02 04 06 08 20 25 30 35 40 45

Fig. 9.3. Scatter-Plot Matrix of Rotated Data

0.4

0.2

-06 -04 -02 00

0.8

9.1 Transformations 379

o of
B
o o o ° 0o 3
° °
° <
0%ge° o ° ci%% F S
- ° o o
X4 ° ° °° L«
o o ° o X S
3o o S
° =)
oo ©°%° £
° ° ogo L«
o 8 ° ° s
° ° ® &
° ° °° L =
3
g g
® ° ° = ° o
o | o ° ° ° o o
P=; o 0@ ° EL
° °
= ° s ° o
< ° o © oy — o % ° o
02 X5 ° o
= oo pyss e
S ° °
o 8o ° 0 & °©
° ° ° > ° °
S ° °
S) ° o) ° °
° ° o o ° ° S o o °
° °
= 2 °
'S ° % Lo
$ ° o <
o o ° °
° ° .
° <
< ° 9 °,
eqp ° © ©°o o © = 0
° ° 2
oo ° X3
° =
8 ° e° o
éﬂﬁ °
° oo ©
oS o ° 3§ P’
Fo © o ° o o [o
Chd o ®
° ° L 2
T T T T T T T T T T T o«
00 02 04 06 08 20 25 30 35 40 45

Fig. 9.4. 1,000 Triples from RANDU Rotated onto Interesting Coordinates

orthogonal transformation can be viewed as a sequence of rotations. These
rotations, which are sometimes called Givens rotations, play an important role
in numerical linear algebra (see Gentle, 2007, Chapter 7). It should be noted
that the computations for Givens rotations can be subject to severe numerical
inaccuracies. As with many numerical problems accurate computations are not
nearly as simple as they may appear (see Gentle, 2007, page 185).

Projections

Another way of getting useful alternative views of the data is to project the
data onto subspaces. A symmetric idempotent matrix P projects vectors onto
the subspace spanned by the rows (or columns) of P. Except for the identity
matrix, a projection matrix is of less than full rank; hence, it projects a full-
rank matrix into a space of lower dimension. Although we may only know that
the rows of the data matrix X are in IR™, the rows of X P are in the subspace
spanned by the rows of P. It may be possible to identify relationships and
structure in this space of lower dimension that are obscured in the higher-
dimensional space.

Projection transformations are often performed by rotating a given orthog-
onal coordinate system into a new orthogonal coordinate system in which one
or more of the axes are chosen to reveal some aspect of the data, such a dif-
ferent groups in the data, as in linear discrimination (which we will discuss
on page 623). The coordinates corresponding to any subset of the new set

380 9 Tools for Identification of Structure in Data

of coordinate axes immediately represent the projection of the data onto the
subspace defined by that set of axes.

Translations

Translations are relatively simple transformations involving the addition of
vectors. Rotations and other geometric transformations such as shearing in-
volve multiplication by an appropriate matrix, as we have seen. In applications
where several geometric transformations are to be made, it would be conve-
nient if translations could also be performed by matrix multiplication. This
can be done by using homogeneous coordinates.

Homogeneous coordinates, which form the natural coordinate system for
projective geometry, have a very simple relationship to cartesian coordinates.

The point with cartesian coordinates (1,2, ...,2q) is represented in homo-
geneous coordinates as (z,z}, 24, ... ,mg), where, for arbitrary = not equal

to zero, 2 = zlxq, 24 = 28x,, and so on.

Each value of 2} corresponds to a hyperplane in the ordinary cartesian
coordinate system. The special plane 2} = 0 does not have a meaning in the
cartesian system. It corresponds to a hyperplane at infinity in the projective
geometry.

Because the point is the same, the two different symbols represent the
same thing, and we have

(z1,22,...,xq) = (xb, a8 b .. 2h). (9.5)
Alternatively, of course, the hyperplane coordinate may be added at the end,
and we have

(z1,22,...,xq) = (zh, 2b, ... 2h zh). (9.6)

An advantage of the homogeneous coordinate system is that we can easily
perform translations by matrix multiplications. We can effect the translation
Z = x + t by first representing the point z as (1,z1,x2,...,24) and then
multiplying by the (d + 1) x d matrix

10---0
e
tg0--- 1

We will use the symbol 2" to represent the vector of corresponding homoge-
neous coordinates:
xh = (1a L1, X2, 7:Cd)'

The translated point can be represented as & = Tz".

We must be careful to distinguish the point x from the vector of coor-
dinates that represents the point. In cartesian coordinates, there is a nat-
ural correspondence, and the symbol x representing a point may also rep-
resent the vector (z1,za2,...,24). The vector of homogeneous coordinates

9.1 Transformations 381

of the result T'z" corresponds to the vector of cartesian coordinates of Z,
(T +t1, 22 +ta, ..., xq + tq).

Homogeneous coordinates are used extensively in computer graphics not
only for the ordinary geometric transformations but also for projective trans-
formations. A standard use of homogeneous coordinates is in mapping three-
dimensional graphics to two dimensions. The perspective plot function persp
in R, for example, produces a 4 x 4 matrix for projecting three-dimensional
points represented in homogeneous coordinates onto two-dimensional points
in the displayed graphic. R uses homogeneous coordinates in the form of equa-
tion (9.6) rather than equation (9.5). If the matrix produced is 7" and if a®
is the representation of a point (24, ¥y, 2.) in homogeneous coordinates, in
the form of equation (9.6), then a"T yields transformed homogeneous coordi-
nates that correspond to the projection onto the two-dimensional coordinate
system of the graphical display. Consider the graph in Figure 9.5. The wire
frame plot, which is of the standard bivariate normal density, was produced
by the following simple R statements.

<- seq(-3,3,.1)
seq(-3,3,.1)

<- function(x,y){dnorm(x)*dnorm(y)}

<- outer(x,y,f)
persp(x,y,z,theta=-30,phi=30,zlab="p(x,y)",ylab="y",xlab="x"
) => trot

N H< X
N
|

The angles theta and phi are the azimuthal and latitudinal viewing angles,
respectively, in degrees. The matrix trot is the rotation matrix that will carry
a point in the three-dimensional space that was plotted, which is represented
in homogeneous coordinates, into the two-dimensional plane on which the plot
is displayed.

Now, suppose we want to plot a single point on the surface, say the point
corresponding to x = 0 and y = —1. We compute the corresponding z value,
represent the vector in homogeneous coordinates, with the coordinate of the
hyperplane being 1, rotate it onto the two-dimensional plane on which the
plot is displayed using trot, and finally plot the point. The following simple
R statements do this, and the point is seen in Figure 9.5.

x1 <- 0

yl <- -1

zl <= £(x1,y1)

tp <- cbind(x1l,yl,z1,1)%*)trot
pl <- tpl1,11/tpl1,4]

p2 <- tpl1,2]1/tpl1,4]

text (pl,p2,"*",cex=2)

382 9 Tools for Identification of Structure in Data

Fig. 9.5. Illustration of the Use of Homogeneous Coordinates to Locate Three-
Dimensional Points on a T'wo-Dimensional Graph

General Transformations of the Coordinate System

Although the transformations that we have discussed above can be thought
of either as transforming the data within a fixed coordinate system or as
transforming the coordinate system, the coordinate system itself remains es-
sentially a cartesian coordinate system. Homogeneous coordinates correspond
in a simple way to cartesian coordinates, as we see in equation (9.5).

We can make more general transformations of the coordinate system that
can be useful in identifying structure in the data. Two kinds of coordinate
transformations especially useful in graphical displays are parallel coordi-
nates, which we discuss on page 360, and Fourier curves, which we discuss
on page 362.

Polar coordinates are useful in a variety of applications. They are par-
ticularly simple for bivariate data, but they can be used in any number of
dimensions. The point

x=(x1,22,...,24)

is represented in polar coordinates by a length,

9.2 Measures of Similarity and Dissimilarity 383
r =[],

and d — 1 angles, 61, ...,04_1. There are various ways that the relationships
among the cartesian coordinates and the polar coordinates could be defined.
One way is given by Kendall (1961). The relationships among the coordinates
are given by

r1 =rcosb; . cosbfy_ocosby_1
r9 =rcosbt . cosbBy_osinfy_1q
xj =1cosby---cosby_;sinbqg_;i1 (9.7)

Tg—1 = rcos By sin by
rg = rsinfy,

where
—m/2<6; <m/2, for j=1,2,...,d—2,

and
0<04-1 <2

In a variation of this definition, the sines and cosines are exchanged, with
an appropriate change in the limits on the angles. In this variation, for d = 2,
we have the usual polar coordinates representation; and for d = 3, we have
what is sometimes called the spherical coordinates representation.

9.2 Measures of Similarity and Dissimilarity

There are many ways of measuring the similarity or dissimilarity between two
observations or between two variables. For numerical data, the most familiar
measures of similarity are covariances and correlations.

Dissimilarities in numerical data are generally distances of some type. The
dissimilarity or distance function is often a metric (see page 14).

Other measures of dissimilarity can often be useful. Nonmetric functions,
such as ones allowing ties and that do not obey the triangle inequality, can
also be used for defining dissimilarity, especially in applications in which there
is some noise or in which there is some subjectivity in the data. Distance
measures defined on a finite set of points, x1,xs, ..., x,, may be required to
satisfy the “ultrametric” inequality:

Az, xp) < max(A(xi, xj), Az, ack)),
J

instead of just the triangle inequality. Ultrametric distances are sometimes
used as dissimilarity measures in clustering applications.

384 9 Tools for Identification of Structure in Data

Other measures of both similarity and dissimilarity must be used for cate-
gorical data or for mixed data (that is, for data consisting of some numerical
variables and categorical variables),

x = (z", z°).

The measures may involve ratings of judges, for example. The measures may
not be metrics.

In some cases, it is useful to allow distance measures to be asymmetric.
If d(z;,z;) represents the cost of moving from point z; to point z; it may
be the case that d(z;,z;) # d(z;, ;). If the distance represents a perceptual
difference, it may also be the case that d(z;,x;) # d(z;,x;). Sullivan (2002)
has developed a theory for asymmetric measures of dissimilarity, and explored
their use in clustering and other applications.

Similarities: Covariances and Correlations

Measures of similarity include covariances, correlations, rank correlations, and
cosines of the angles between two vectors. Any measure of dissimilarity, such
as the distances discussed in the next section, can be transformed into a
measure of similarity by use of a decreasing function, such as the reciprocal.
For example, whereas the cosine of the angle formed by two vectors can be
considered a measure of similarity, the sine can be considered a measure of
dissimilarity.

Although we can consider similarities/dissimilarities between either columns
(variables) or rows (observations), in our common data structures, we often
evaluate covariances and correlations between columns and distances among
rows. We speak of the covariance or the correlation between columns or be-
tween variables. The covariance between a column (variable) and itself is its
variance.

For an n x m data matrix X, we have the m X m wvariance-covariance
matriz (or just the covariance matriz):

S11 812 " Sim
$21 S22 " Som
= , (9.8)
Sml Sm2 " Smm
where . ~ ~
(i — i — @
sjk — Skg _ Zz—l(1] J)(ik k)’ (99)

n—1

If X is the matrix in which each column consists of the mean of the corre-
sponding column of X, we see that
1 — _

S = n_l(X—X)T(X—X). (9.10)

9.2 Measures of Similarity and Dissimilarity 385

The matrix S is therefore nonnegative definite. The matrix X — X is called
the “centered data matrix”; each column sums to 0.

Assuming none of the variables is constant, the correlation is often a more
useful measure because it is scaled by the variances. For an n x m data matrix,
the m x m correlation matriz is

1 7o Tlm
rig 1 o0 ropy
r=| . T, (9.11)
Tim T2m = 1
h
o P = Ty = —2k (9.12)
Jk kj —Sjjskkv .
that is,

R = (diag(v/s11, /5225 - - /3mm)) S (diag(v/511, v/533, - - v/Smm)) -

The data matrix X together with either S or R is a complete graph in
which the columns of X constitute the vertices.

Notice that covariances and correlations are based on the Ly norm. They
are sometimes called “product-moment” covariances and correlations.

Because the concepts of covariance and correlation are also used to re-
fer to properties of random variables, we sometimes refer to the quantities
that we have defined above as “sample covariance” or “sample correlation” to
distinguish them from the “population” quantities of abstract variables.

There are variations of these such as rank correlations and robust co-
variances. Rank correlations are computed by first replacing the elements of
each column of X by the ranks of the elements within the column and then
computing the correlation as above. Robust covariances and correlations are
computed either by using a different measure than the Lo norm or by scaling
of the covariance matrix based on an expectation taken with respect to a nor-
mal (or Gaussian) distribution. (“Robustness” usually assumes a normal or
Gaussian distribution as the reference standard.) See page 395 for a specific
robust alternative to S.

Similarities When Some Variables Are Categorical

If all of the variables are measured on a scale that can be modeled as a real
number, covariances and/or correlations or similar measures are the obvious
choice for measuring the similarity between two points, z; and x. If, however,
some of the variables are categorical variables, that is, if the generic x can be
represented in the notation introduced earlier,

x = (f, 2%,

386 9 Tools for Identification of Structure in Data

a different measure of similarity must be chosen.

Sometimes, the values of the categorical variables represent such differ-
ent situations that it does not make sense to consider similarities between
observations from different groups. In such a case, the similarity between

zj = (25, 75)

and
Tk = (J)};, 552)
may be measured by the function

2oima (@ —) (), — T)

n—1

: Cc __ C
, it af =g,

s(@jm) = (9.13)

=0, otherwise.

Instead of requiring an exact match of the categorical variables, we can
allow some degrees of similarity between observations with different values of
their categorical variables. One way would be by using the count of how many
variables within x5 and zj, agree. Such a simple count can be refined to take
into account the number of possible values each of the categorical variables
can assume. The measure can also be refined by incorporating some measure
of the similarity of different classes.

Similarities among Functional Observations

Interest-bearing financial instruments such as bonds or U.S. Treasury bills
have prices that depend on the spot or current interest rate and so-called
forward rates at future points in time. (A forward rate at time ¢ for a future
time to can be thought of as the value of cash or a riskless security at time
ta > t1 discounted back to time ¢;.) The forward rates depend on, among
other things, the investors’ perception of future spot or actual rates. At any
point, a set of forward rates together with the spot rate determine the “yield
curve” or the “term structure” for a given financial instrument:

r(t).

Observational data for measuring and comparing term structures consist of
functions for a set of securities measured at different time points.

Another example of observations that are functions are the measurements
on various units of individual features of developing organisms taken over
time. For example, the observational unit may be a developing organism, the
features may be gene expressions, and the data elements may be measures of
these expressions taken at fixed times during the development of the organism.
The observations on feature j may consist of measurements (z;1, 2, - - ., jm)
taken at times t1,to,...,t,. The overall patterns of the measurements may
be of interest. The underlying model is a continuous function,

9.2 Measures of Similarity and Dissimilarity 387

x(t).

The observation on each feature is a discrete function, evaluated at discrete
points in its time domain.
Consider, for example, the three observations

r1 = (17 27 1)7

T2 = (17 27 3)7
and

xr3 = (4, 8, 4)

Because of the obvious patterns, we may wish to consider x; and x3 more
similar than are 1 and xs.

There are several ways to define a similarity measure to capture this kind
of relationship. A very simple one in this case is the relative changes over
time. We may first of all augment the existing data with measures of changes.
In the example above, taking a simplistic approach of just measuring changes
and scaling them, and then augmenting the original vectors, we have

- 1
Tl = (17 27 17 ’ 17 _§>7

- 1
T2 = (17 27 37 ’ 17 5)7

Fg = (4, 8, 4, ‘ 1, —%)
After transforming the data in this way, we may employ some standard simi-
larity measure, possibly one that downweights the first three elements of each
observation.

Another approach is to fit a smoothing curve to each observational vector
and then form a new vector by evaluating the smoothing curve at fixed points.
A standard similarity measure would then be applied to the transformed vec-
tors.

There are many issues to consider when comparing curves. Whereas the
data-generating process may follow a model z(t), the data are of the form
zi(ti;). In the model, the variable ¢ (usually “time”) may not be measured in
an absolute sense, but rather may be measured relative to a different starting
point for each observational unit. Even when this shift is taken into considera-
tion two responses that are similar overall may not begin at the same relative
time; that is, one observational unit may follow a model z(¢) and another
x(t 4+ §). To proceed with the analysis of such data, it is necessary to regis-
ter the data (that is, to shift the data to account for such differences in the
time). More generally, two observational units may follow the same functional
process under some unknown transformation of the independent variable:

and

388 9 Tools for Identification of Structure in Data
z1(t) = z2(h(1)).

Unraveling this transformation is a more difficult process of registration.

We may want to base similarity among observations on some more general
relationship satisfied by the observations. Suppose, for example, that a subset
of some bivariate data lies in a circle. This pattern may be of interest, and we
may want to consider all of the observations in the subset lying in the circle
to be similar to one another and different from observations not lying in the
circle.

Many such similarity measures depend on the context (that is, on a subset
of variables or observations, not just on the relationship between two variables
or two observations). Similarities defined by a context are of particular use in
pattern recognition.

Similarities between Groups of Variables

We may want to combine variables that have similar values across all observa-
tions into a single variable, perhaps a linear combination of some of the orig-
inal variables. This is an objective of the methods discussed in Sections 16.3
and 16.4.

The general problem of studying linear relationships between two sets of
variables is addressed by the method of canonical correlations. We will not
pursue that topic here.

Dissimilarities: Distances

There are several ways of measuring dissimilarity. One measure of dissimilarity
is distance, and there are several ways of measuring distance. Some measures
of distance between two points are based only on the elements of the vectors
defining those two points. These distances, which are usually defined by a
commutative function, are useful in a homogeneous space. Other measures of
distance may be based on a structure imposed by a set of observations.

In a homogeneous space, there are several commonly used measures of
distance between two observations. Most of these are based on some norm of
the difference between the two numeric vectors representing the observations.
A norm of the difference between two vectors is a metric, as we have observed
in Chapter 1.

Some of the commonly used measures of distance between observations of
numerical data represented in the vectors x; and xj are the following:

e Euclidean distance, the root sum of squares of differences:
;= nll2 (9.14)

or

9.2 Measures of Similarity and Dissimilarity 389

1/2
m

D (wig —aig)?

j=1
The Euclidean distance is sometimes called the Lo norm.
maximum absolute difference:

i — k[l (9.15)

or
mjax|xij — Tyl

Manhattan distance, the sum of absolute differences:

7 — 2kl (9.16)
or
m
> lwij —).
j=1
Minkowski or L, distance:
s =kl (9.17)
or
1/p

m
D lwij — wg P
j=1

The L, distance is the L, norm of the difference in the two vectors. Euclid-
ean distance, maximum difference, and Manhattan distance are special
cases, with p = 2, p — oo, and p = 1, respectively.

Canberra distance (from Lance and Williams, 1966):

Z ||x” k| (9.18)

x| + |xk1

as long as |zi;| + |xg;| # 0; otherwise, 0 (sometimes normalized by m to
be between 0 and 1).
correlation-based distances:

f(rik)-
The correlation between two vectors 75, (equation (9.12)) can also be used
as a measure of dissimilarity. Values close to 0 indicate small association.
The absolute value of the correlation coefficient is a decreasing function
in what is intuitively a dissimilarity, so a distance measure based on it,
f(rik), should be a decreasing function of the absolute value. Two common
choices are

1-— |Tik|

and

390 9 Tools for Identification of Structure in Data

e distances based on angular separation:

T
T; Tk

i TR 9.19
Tl Tl (9-19)

or
Zj:l LijTkj

m 2 xm o
\/Zj:ﬁ% =1 Tkj

This measure of angular separation is the cosine of the angle; hence, it is a
decreasing function in what is intuitively a dissimilarity. Other quantities,
such as the sine of the angle, can be used instead. For centered data, the
angular separation is the same as the correlation of equation (9.12).

For categorical data, other measures of distance must be used. For vec-
tors composed of zeros and ones, for example, there are two useful distance
measures:

e Hamming distance: the number of bits that are different in the two vectors;

e binary difference: the proportion of non-zeros that two vectors do not have
in common (the number of occurrences of a zero and a one, or a one and
a zero divided by the number of times at least one vector has a one).

Lance and Williams (1967a, 1967b, and 1968) provide a general framework
for definitions of distances and discuss the differences in the measures in cluster
analysis.

Notice that generally the distances are between the observations, whereas
the covariances discussed above are between the variables.

The distances are elements of the n x n dissimilarity matrix,

0 d12 d13 dln
d21 0 d23 d2n
D=1\] (9.20)
| dp1 dpo dps -+ 0

All of the distance measures discussed above are metrics; in particular, they
satisfy A(z1,22) = A(xg, 1) for all 21,22 € IR™. This means, among other
things, that any dissimilarity matrix D, in which the elements correspond to
those measures, is symmetric.

The data matrix X together with D is a complete graph. In this graph,
the rows of X constitute the vertices.

The measures of distance listed above are appropriate in a homogeneous
space in which lengths have the same meaning in all directions. A scaling

9.2 Measures of Similarity and Dissimilarity 391

of the units in any of the cardinal directions (that is, a change of scale in
the measurement of a single variable) may change the distances. In many
applications, the variables have different meanings. Because many statistical
techniques give preferential attention to variables with larger variance, it is
often useful to scale all variables to have the same variance. Sometimes, it is
more useful to scale the variables so that all have the same range.

Notice that the angular separation, as we have defined it, is based on the
Ly norm. A transformation that preserves Lo distances and angles is called
an “isometric transformation”. If @ is an orthogonal matrix, the Euclidean
distance between Qx; and Qx; and the angular separation between those two
vectors are the same as the distance and angle between x; and x. Hence, an
orthogonal matrix is called an isometric matrix because it preserves Euclidean
distances and angles.

Other Dissimilarities Based on Distances

The various distance measures that we have described can be used to define
dissimilarities in other ways. For example, we may define the distance from
x; to xy, dR(xj, xk), as the rank of an ordinary distance d;i in the set of all
distances dj;. If . is the point closest to x;, then dR(xj,xk) = 1. This type
of dissimilarity depends on the “direction”; that is, in general,

d®(xj, ap) # d¥(wp, 25).

A distance measure such as d2(, -) is dependent on the neighboring points,
or the “context”.

If we think of the distance between two points as the cost or effort required
to get from one point to another, the distance measure often may not be
symmetric. (It is therefore not a metric.) Common examples in which distances
measured this way are not symmetric arise in anisotropic media under the
influence of a force field (say, electrical or gravitational) or in fluids with a
flow (see Exercise 9.11).

Dissimilarities in Anisometric Coordinate Systems: Scaling and
Sphering Data

If the elements of the observation vectors represent measurements made on
different scales, it is usually best to scale the variables so that all have the
same variance or else have the same range. A scaling of the data matrix X so
that all columns have a variance of 1 is achieved by postmultiplication by a
diagonal matrix whose elements are the square roots of the diagonal elements
of S in equations (9.8):

Xn = Xdiag(y/si:)- (9.21)

We refer to Xy or any data matrix whose columns have a variance of 1 as
“scaled data” or “normalized data”.

392 9 Tools for Identification of Structure in Data

If the scaling is applied to centered data, we have the “standardized” data
matrix:

Xs = (X — X) diag(+/sii)- (9.22)
This scaling is what is done in computing correlations. The correlation matrix
in equation (9.11) can be computed as Xd Xs/(n — 1).
If there are relationships among the variables whose observations comprise
the columns of X, and if there are more rows than columns (that is, n > m),
it may be appropriate to perform an oblique scaling,

Xw = (X - X)H, (9.23)

where H is the Cholesky factor of S=! (equation (9.8)); that is,

H™H =(n-1)((X -X)"(X -X)) "
SL.

(If the matrix S is not of full rank, the generalized inverse is used in place of the
inverse. In any case, the matrix is nonnegative definite, so the decomposition
exists.) The matrix Xw is a centered and sphered matrix. It is sometimes
called a white matrix. The matrix is orthonormal; that is, X\F,FVXW =1.

In general, a structure may be imposed on the space by (X — X)T(X —
X) or S. A very useful measure of the distance between two vectors is the
Mahalanobis squared distance. The Mahalanobis squared distance between the

it" and k' observations, z; and xy, (the i*® and k*® rows of X) is
(25 — 21) TS ay —). (9.24)

Notice that the Mahalanobis squared distance is the squared Euclidean dis-
tance after using S~1/2 to scale the data. It is the squared Euclidean distance
between rows in the Xg matrix above. It is often more natural to use the
Mahalanobis distance, that is, the square root of expression (9.24), because it
is a metric (see page 15).

There are other types of distance. Certain paths from one point to another
can be specified. The distance can be thought of as the cost of getting from one
node on a graph to another node. Although distances are usually considered
to be symmetric (that is, the distance from point z; to point zy is the same as
the distance from point zj to point x;), a more general measure may take into
account fluid flow or elevation gradients, so the dissimilarity matrix would not
be symmetric.

Another type of data that presents interesting variations for measuring
dissimilarities or similarities is directional data, or circular data (that is, data
that contain a directional component). The angular separation (9.19) mea-
sures this, of course, but often in directional data, one of the data elements is
a plane angle. As the size of the angle increases, ultimately it comes close to a
measure of 0. A simple example is data measured in polar coordinates. When

9.2 Measures of Similarity and Dissimilarity 393

one of the data elements is an angle, the component of the overall distance
between two observations ¢ and j attributable to their angles, 6; and 6;, could
be taken as

d?j =1—cos(6; — 6;).

The directional component must be combined additively with a component
due to Euclidean-like distances, d;;. In polar coordinates, the radial compo-
nent is already a distance, so d;; may just be taken as the absolute value of
the difference in the radial components r; and 7;. The overall distance d;; may
be formed from d?j and dj; in various ways that weight the radial distance
and the angle differently.

There are many examples, such as wind direction in meteorology or cli-
matology, in which directional data arise.

Properties of Dissimilarities

A dissimilarity measure based on a metric conforms generally to our intuitive
ideas of distance. The norm of the difference between two vectors is a metric,
that is, if

A(xlaxQ) = ||{E1 - £E2||,

then A(x1,z2) is a metric. Distance measures such as the L, distance and
the special cases of Euclidean distance, maximum difference, and Manhattan
distance, which are based on norms of the difference between two vectors,
have useful properties, such as satisfying the triangle inequality:

dik < dij + dj.

There are many different measures that may be useful in different appli-
cations.

Dissimilarities between Groups of Observations

In clustering applications, we need to measure distances between groups of
observations. We are faced with two decisions. First, we must choose the
distance metric to use, and then the points in the two groups between which
we measure the distance. Any of the distance measures discussed above could
be used.

Once a distance measure is chosen, the distance between two groups can
be defined in several ways, such as the following;

e the distance between a central point, such as the mean or median, in one
cluster and the corresponding central point in the other cluster;

e the minimum distance between a point in one cluster and a point in the
other cluster;

e the largest distance between a point in one cluster and a point in the other
cluster;

394 9 Tools for Identification of Structure in Data

e the average of the distances between the points in one cluster and the
points in the other cluster.

The average of all of the pairwise point distances is the most common type
of measure used in some applications. This type of measure is widely used
in genetics, where the distance between two populations is based on the dif-
ferences in frequencies of chromosome arrangements (for example, Prevosti’s
distance) or on DNA matches or agreement of other categorical variables (for
example, Sanghvi’s distance).

Effects of Transformations of the Data

In the course of an analysis of data, it is very common to apply various trans-
formations to the data. These transformations may involve various operations
on real numbers, such as scaling a variable (multiplication), summing all val-
ues of a variable (addition), and so on. Do these kinds of operations have an
effect on the results of the data analysis? Do they change the relative values
of such things as measures of similarity and dissimilarity?

Consider a very simple case in which a variable represents length, for
example. The actual data are measurements such as 0.11 meters, 0.093 meters,
and so on. These values are recorded simply as the real numbers 0.11, 0.093,
and so on. In analyzing the data, we may perform certain operations (summing
the data, squaring the data, and so on) in which we merely assume that the
data behave as real numbers. (Notice that 0.11 is a real number but 0.11
meters is not a real number; 0.11 meters is a more complicated object.) After
noting the range of values of the observations, we may decide that millimeters
would be better units of measurement than meters. The values of the variable
are then scaled by 1,000. Does this affect any data analysis we may do?

Although, as a result of scaling, the mean goes from approximately p (for
some value y) to 1,000u, and the variance goes from o2 (for some value o) to
1,000, 00002, the scaling certainly should not affect any analysis that involves
that variable alone.

Suppose, however, that another variable in the dataset is also length and
that typical values of that variable are 1,100 meters, 930 meters, and so on.
For this variable, a more appropriate unit of measure may be kilometers. To
change the unit of measurement results in dividing the data values by 1,000.
The differential effects on the mean and variance are similar to the previous
effects when the units were changed from meters to millimeters; the effects on
the means and on the variances differ by a factor of 1,000. Again, the scaling
certainly should not affect any analysis that involves that variable alone.

This scaling, however, does affect the relative values of measures of similar-
ity and dissimilarity. Consider, for example, the Euclidean distance between
two observations, 1 = (x11,x12) and xa = (221, x22). The squared distance
prior to the scaling is

(x11 — x21)2 + (z12 — $22)2~

9.2 Measures of Similarity and Dissimilarity 395
Following the scaling, it is
10%(21y — 221)% + 1075 (210 — 200)%

The net effect depends on the relative distances between x; and zs as mea-
sured by their separate components.

As we mention above, an orthogonal transformation preserves Euclidean
distances and angular separations; that is, it is an isometric transformation.
An orthogonal transformation also preserves measures of similarity based on
the Ly norm. An orthogonal transformation, however, does not preserve other
measures of similarity or distance.

Outlying Observations and Robust Measures

Many methods of data analysis may be overly affected by observations that lie
at some distance from the other observations. Using a least squares criterion
for locating the center of a set of observations, for example, can result in a
“central point” that is outside of the convex hull of all of the data except for
just one observation. As an extreme case, consider the mean of 100 univariate
observations, all between 0 and 1 except for one outlying observation at 100.
The mean of this set of data is larger than 99% of the data.

An outlier may result in one row and column in the dissimilarity matrix
D having very large values compared to the other values in the dissimilarity
matrix. This is especially true of dissimilarities based on the Lo norm. Dis-
similarities based on other norms, such as the L; norm, may not be as greatly
affected by an outlier.

Methods of data analysis that are not as strongly affected by outlying
observations are said to be “robust”. (There are various technical definitions of
robustness, which we will not consider here.) The variance-covariance matrix S
in equation (9.8), because it is based on squares of distances from unweighted
means, may be strongly affected by outliers. A robust alternative is

SR = (SRjk)7 (9.25)

where the sgj; are robust alternatives to the s in equation (9.9).

There are various ways of defining the srjx. In general, they are formed
by choosing weights for the individual observations to decrease the effect of
outlying points; for example,

>y Wi (xij — Try) (Tik — Tr)

SRjk = D)
! Dic wz'Q -1

(9.26)

where . .
ij = Zwixij/z wW;, (927)
=1 =1

for a given function w,

396 9 Tools for Identification of Structure in Data

and
di = (z; — Tr)" Sy (zi — Tr). (9.29)

(In this last expression, x; represents the m-vector of the i*" observation,

and TR represents the m-vector of the weighted means. These expressions are
circular and require iterations to evaluate them.)
The function w is designed to downweight outlying observations. One pos-
sibility, for given constants by and b, is
w(d)=d if d<dp
= ()ef%(didof/bg if d > dp,

(9.30)

where do = /m + b1 /V/2.

Instead of defining the “center” as a weighted mean as in equation (9.27),
we may use some other measure of the center, such as a median, a geometric
mean, or a harmonic mean. The effect of outlying observations on these mea-
sures is different. Similarity measures based on these measures may be more
robust to outlying observations. Some comparisons are given by Sebe, Lew,
and Huijsmans (2000).

Collinear Variables

A problem of a different type arises when the variables are highly correlated.
In this case, the covariance matrix S and the correlation matrix R, which
are based on the Lo norm, are both ill-conditioned. The ranking transfor-
mation mentioned on page 385 results in a correlation matrix that is better
conditioned.

Depending on the application, some type of regularization may be useful
when the variables are highly correlated. We consider some regularization
methods in Chapter 17.

Multidimensional Scaling: Determining Observations that Yield a
Given Distance Matrix

Given an n x n distance matrix such as D in equation (9.20), could we re-
construct an n x m data matrix X that yields D for some metric A(:,-)? The
question, of course, is constrained by m (that is, by the number of variables).
The problem is to determine the elements of rows of X such that

LL‘J‘ = A({Ei, {Ej)

~ d”

This is called multidimensional scaling.

Exercises 397

The approximation problem can be stated precisely as an optimization

problem to minimize }
> 20 fdij — dij)
iy fldy)

where f(-) is some function that is positive for nonzero arguments and is
monotone increasing in the absolute value of the argument, and f(0) = 0. An
obvious choice is f(t) = t2. Clarkson and Gentle (1986) describe an alternating
iteratively reweighted least squares algorithm to compute the minimum when
f is of the form f(t) = |¢|P. If the distances in D do not arise from a metric,
they discussed ways of transforming the dissimilarities so that the least squares
approach would still work. ~

The larger the value of m, of course, the closer the d;; will be to the
di;. If m < n and the approximations are good, significant data reduction is
achieved.

There are various modifications of the basic multidimensional scaling prob-
lem, and software programs are available for different ones. The S-Plus and R
function cmdscale performs computations for multidimensional scaling when
the dissimilarities are Euclidean distances. (In R, cmdscale is in the mva
package.)

Notes and Further Reading

Because many of the similarity and dissimilarity measures are based on least
squares approaches, they may be sensitive to heavy tailed distributions or to
samples with outliers. Ammann (1989) and (1993) discusses ways of robusti-
fying the measures prior to such analyses as principal components. Amores,
Sebe, and Radeva (2006) discuss robust measures of distance for use in nearest
neighbor classification.

Exercises

9.1. Determine the rotation matrix that transforms the vector z = (5,12) into
the vector Z = (0, 13).

9.2. Reproduce the surface shown in the wire frame of Figure 9.5, and then
add a circular band around the surface centered at (0,0), and with radius
1.

9.3. Write a program for the simple linear congruential random number gen-
erator

x; = 35x;_1 mod 2'°.

Generate a sequence of length 1008. Look for structure in d-tuples of
sequential values, (z;, Tit1,- .-, Titd—1), for 3 < d < 1005.

398

9.4.

9.5.

9.6.

9.7.

9 Tools for Identification of Structure in Data

Compare this with the output of the similar generator in Exercise 8.4

where we consider d = 3.

a) Use a program that plots points in three dimensions and rotates the
axes. Now, look for structure in higher dimensions. Hint: All of the
points lie on the hyperplanes

Li+3 — 91‘1'-{-2 + 27]}“_1 —27x; = Js

where j is an integer.

b) Examine this structure using parallel coordinates.

Develop a grand tour in parallel coordinates plots. Apply it to data gen-
erated by the random number generator in Exercise 9.3.

Develop a grand tour in Andrews curves. Apply it to data generated by
the random number generator in Exercise 9.3. What is the difference in
the grand tour and the pseudo grand tour in Andrews curves discussed
on page 3647

Data exploration.

a) Generate 25 numbers independently from U(0, 1), and form five five-
dimensional vectors, x;, from them by taking the first five, the second
five, and so on. Now, using Gram-Schmidt orthogonalization, form a
set of orthogonal vectors y; from the z’s. You now have two multivari-
ate datasets with very different characteristics. See if you can discover
the difference graphically using either cartesian or noncartesian dis-
plays.

b) Now, generate five n-dimensional vectors, for n relatively large. Do
the same thing as in the previous part. (Now, you can decide what is
meant by “n relatively large”.) In this exercise, you have two datasets,
each with five variables and n observations. Your graphical displays
have been of the variables instead of the observations.

¢) Now, use the two datasets of the previous part and graph them in
the traditional way using displays in which the upper-level graphical
objects are the n observations.

Summarize your findings in a clearly-written report.

Consider the relative interpoint distances between the three 3-vectors

T = ($1179€1279€13),

Ty = (T21,T22, T23),
and

x3 = (231,732, T33)-
For each of the other distance measures listed on pages 389 and 390, give
specific values (small integers) for the x;; such that, for the Euclidean
distance, the distance between the first and second, dio, is less than the
distance between the second and third, ds3, but for that other distance
measure, dio > dogz. For the Hamming and binary distances, use the binary
representations of the elements.

Exercises 399

9.8. Show that the Mahalanobis distance (9.24), on page 392, between any two
observations is nonnegative.
9.9. Show that the norm of the difference between two vectors is a metric; that
is, if
A(z1,22) = [lz1 — 22,
A(z1,22) is a metric.

9.10. a) Show that all of the distance measures in equations (9.14) through (9.18),
as well as the Hamming distance and the binary difference, are met-
rics.

b) Which of those distance measures are based on norms?

¢) Why are the correlation-based distances, including equation (9.19),
not metrics?

9.11. Consider a two-dimensional surface with an orthogonal coordinate system
over which there is a fluid flow with constant velocity f = (f1, f2). Suppose
that an object can move through the fluid with constant velocity v with
respect to the fluid and measured in the same units as f. (The magnitude
of the velocity is ||v|| = \/v} + v3.) Assume that ||v|| > || f]|.

a) Define a distance measure, d, over the surface such that for two points
z; and z;, the distance from z; to x; is proportional to the time
required for the object to move from z; to z;.

b) Compare your distance measure with those listed on page 388.

¢) What properties of a norm does your distance measure possess?

9.12. Consider the problem of a dissimilarity measure for two-dimensional data
represented in polar coordinates, as discussed on page 392. One possibil-
ity, of course, is to transform the data to cartesian coordinates and then
use any of the distance measures for that coordinate system. Define a
dissimilarity measure based on d?j and dj;. Is your measure a metric?

9.13. Given two n-vectors, x7 and zo, form a third vector, z3, as 3 = a1x1 +
asxs + €, where € is a vector of independent N(0, 1) realizations. Although
the matrix X = [x1 22 x3] is in IR™*3, the linear structure, even obscured
by the noise, implies a two-dimensional space for the data matrix (that
is, the space IR"™*?).

a) Determine a rotation matrix that reveals the linear structure. In other
words, determine matrices () and P such that the rotation X @ fol-
lowed by the projection (X Q)P is a noisy line in two dimensions.

b) Generate x; and z3 as realizations of a U(0,1) process and z3 as
5x1 + x2 + €, where € is a realization of a N(0, 1) process. What are Q
and P from the previous question?

9.14. Given the distance matrix

0 4.344.58 7.68 4.47
434 0 1.414.004.36
D= 458141 0 5.105.00 |,
7.684.005.10 0 6.56
4.474.36 5.00 6.56 0

400 9 Tools for Identification of Structure in Data

where the elements are Euclidean distances, determine a 5 X m matrix
with a small value of m that has a distance matrix very close to D.

10

Estimation of Functions

An interesting problem in statistics, and one that is generally difficult, is the
estimation of a continuous function, such as a probability density function or
a nonlinear regression model. The statistical properties of an estimator of a
function are more complicated than statistical properties of an estimator of a
single parameter or of a countable set of parameters.

In Chapter 4 we discussed ways of numerically approzimating functions.
In this brief chapter we will discuss ways of statistically estimating functions.
Many of these methods are based on approximation methods such as orthog-
onal systems, splines, and kernels discussed in Chapter 4. The PDF decom-
position plays an important role in the estimation of functions.

We will discuss the properties of an estimator in the general case of a real
scalar-valued function over real vector-valued arguments (that is, a mapping
from R? into IR). One of the most common situations in which these prop-
erties are relevant is in nonparametric probability density estimation, which
we discuss in Chapter 15. (In that application, of course, we do not have
to do a PDF decomposition.) The global statistical properties we discuss in
Section 10.3 are the measures by which we evaluate probability density esti-
mators.

First, we say a few words about notation. We may denote a function by a
single letter, f, for example, or by the function notation, f(-) or f(z). When
f(z) denotes a function, z is merely a placeholder. The notation f(x), however,
may also refer to the value of the function at the point x. The meaning is
usually clear from the context. L

Using the common “hat” notation for an estimator, we use f or f(z) to
denote the estimator of f or of f(z). Following the usual terminology, we use
the term “estimator” to denote a random variable, and “estimate” to denote
a realization of the random variable.

The hat notation is also used to denote an estimate, so we must determine
from the context whether f or f(x) denotes a random variable or a realization
of a random variable.

J.E. Gentle, Computational Statistics, Statistics and Computing, 401
DOI: 10.1007/978-0-387-98144-4_10,
© Springer Science + Business Media, LLC 2009

402 10 Estimation of Functions

The estimate or the estimator of the value of the function at the point x

may also be denoted by f(z). Sometimes, to emphasize that we are estimating
the ordinate of the function rather than evaluating an estimate of the function,

—

we use the notation f(x). In this case also, we often make no distinction in
the notation between the realization (the estimate) and the random variable

~ —

(the estimator). We must determine from the context whether f(z) or f(z)
denotes a random variable or a realization of a random variable. In most of the
following discussion, however, the hat notation denotes a random variable. Its
distribution depends on the underlying random variable that yields the sample
from which the estimator is computed.

The usual optimality properties that we use in developing a theory of
estimation of a finite-dimensional parameter must be extended for estimation
of a general function. As we will see, two of the usual desirable properties of
point estimators, namely unbiasedness and maximum likelihood, cannot be
attained globally or in general by estimators of functions.

There are many similarities in estimation of functions and approzimation
of functions, but we must be aware of the fundamental differences in the two
problems. Estimation of functions is similar to other estimation problems: We
are given a sample of observations; we make certain assumptions about the
probability distribution of the sample; and then we develop estimators. The
estimators are random variables, and how useful they are depends on proper-
ties of their distribution, such as their expected values and their variances.

Approximation of functions is an important aspect of numerical analysis.
Functions are often approximated to interpolate functional values between
directly computed or known values. Functions are also approximated as a
prelude to quadrature. In this chapter, we will often approximate a function
as a step in the statistical estimation of the function.

In the problem of function estimation, we may have observations on the
function at specific points in the domain, or we may have indirect measure-
ments of the function, such as observations that relate to a derivative or an
integral of the function. In either case, the problem of function estimation
has the competing goals of providing a good fit to the observed data and
predicting values at other points. In many cases, a smooth estimate satisfies
this latter objective. In other cases, however, the unknown function itself is
not smooth. Functions with different forms may govern the phenomena in dif-
ferent regimes. This presents a very difficult problem in function estimation,
but it is one that we will not consider in any detail here.

There are various approaches to estimating functions. Maximum likelihood
(see page 70) has limited usefulness for estimating functions because in gen-
eral the likelihood is unbounded. A practical approach is to assume that the
function is of a particular form and estimate the parameters that character-
ize the form. For example, we may assume that the function is exponential,
possibly because of physical properties such as exponential decay. We may
then use various estimation criteria, such as least squares, to estimate the

10.1 General Approaches to Function Estimation 403

parameter. An extension of this approach is to assume that the function is a
mixture of other functions. The mixture can be formed by different functions
over different domains or by weighted averages of the functions over the whole
domain. Estimation of the function of interest involves estimation of various
parameters as well as the weights.

Another approach to function estimation is to represent the function of
interest as a linear combination of basis functions, that is, to represent the
function in a series expansion. The basis functions are generally chosen to be
orthogonal over the domain of interest, and the observed data are used to
estimate the coefficients in the series. We discuss the use of basis functions
beginning on page 18 and again on page 161.

It is often more practical to estimate the function value at a given point.
(Of course, if we can estimate the function at any given point, we can effec-
tively have an estimate at all points.) One way of forming an estimate of a
function at a given point is to take the average at that point of a filtering func-
tion that is evaluated in the vicinity of each data point. The filtering function
is called a kernel, and the result of this approach is called a kernel estimator.
We discussed use of kernels in approximation of functions in Section 4.5. Ker-
nel methods have limited use in function approximation, but they are very
useful in function estimation. We briefly discuss the use of kernel filters in
function estimation on page 406, but we discuss those kinds of methods more
fully in the context of probability density function estimation in Section 15.3,
beginning on page 499.

In the estimation of functions, we must be concerned about the properties
of the estimators at specific points and also about properties over the full
domain. Global properties over the full domain are often defined in terms of
integrals or in terms of suprema or infima.

10.1 General Approaches to Function Estimation

The theory of statistical estimation is based on probability distributions. In
order to develop an estimation procedure, we need to identify random vari-
ables, and make some assumptions about their distributions. In the case of
statistical estimation of a function, this may involve decomposing the function
of interest so as to have a factor that is a PDF. This PDF decomposition is a
preliminary step in function estimation.

Once a random variable and a probability distribution are identified, meth-
ods for estimation of functions often parallel the methods of approximation
of functions as in Chapter 4.

Function Decomposition and Estimation of the Coefficients in an
Orthogonal Expansion

In the following, we will work with functions that are square-integrable over
some domain D; that is, functions in L?(D).

404 10 Estimation of Functions

The estimation approach follows the approximation approach discussed in
Sections 4.2 and 4.3. It begins, however, with a PDF decomposition.

We decompose the function of interest to have a factor that is a probability
density function, say

f(x) = g(z)p(x), (10.1)

/Dp(x)dx =1

and p(z) > 0 on D; that is, p is a PDF and the distribution has support D.

This PDF decomposition is important, because now we can introduce the
expectation of a random variable. We expand the function as in equation (4.25)
on page 162, and then from equation (4.26), we have

Cr = <fa qk>
- /D ar(2)g(2)p(a)dz
— B(gs(X)g(X)), (10.2)

where

where X is a random variable whose probability density function is p.
If we have a random sample, x1, ..., x,, from the distribution with density
p, an estimator of ¢, is

= % Z(Ik(xi)g(xi)' (10.3)
i=1

It is clear that this estimator is unbiased for the expectation in equation (10.2),
if we assume that the expectation is finite.

The series estimator of the function for all x using the truncated series
approximation, as in equation (4.27), therefore is

3|>—‘
MQ
M=
§

g9(zi)ar(w) (10.4)

for some truncation point j. Note that this estimator assumes a random sample
from a known distribution over the domain of f.

The random sample, x1, ..., x,, may be an observed dataset, or it may be
the output of a random number generator.

For univariate function, the basis functions in the expansion above are
often chosen from the standard series of univariate orthogonal polynomials,
such as the Legendre, Laguerre, or Hermite polynomials. (See Table 4.1 on
page 170.)

10.1 General Approaches to Function Estimation 405
Use of Splines

The approach to function estimation that we pursued in the previous section
makes use of a finite subset of an infinite basis set which often consists of
polynomials of degrees p = 0,1,.... This approach yields a smooth estimate
f(z). The polynomials in f(z), however, cause oscillations that may be unde-
sirable. This is because of the approximation used prior to the estimation. The
approximation oscillates a number of times one less than the highest degree
of the polynomial used. Also, if the function being approximated has quite
different shapes in different regions of its domain, the global approach of using
the same polynomials over the full domain may not be very effective.

Another approach is to subdivide the interval over which the function is
to be approximated and then on each subinterval use polynomials with low
degree. The approximation at any point is a sum of one or more piecewise poly-
nomials. Even with polynomials of very low degree, if we use a large number
of subintervals, we can obtain a good approximation to the function. Zero-
degree polynomials, for example, would yield a piecewise constant function
that could be very close to a given function if enough subintervals are used.
Using more and more subintervals, of course, is not a very practical approach.
Not only is the approximation a rather complicated function, but it may be
discontinuous at the interval boundaries. We can achieve smoothness of the
approximation by imposing continuity restrictions on the piecewise polyno-
mials and their derivatives. This is the approach in spline approximation and
smoothing, which we discussed in Section 4.4.

As described on page 178, there are three types of spline basis functions
commonly used:

truncated power functions (or just power functions),
B-splines,
“natural” polynomial splines.

Some basis functions for various types of splines over the interval [—1, 1]
are shown in Figure 4.5 on page 181.

Smoothing Splines

Smoothing splines are generally more useful in function estimation than are
interpolating splines. The individual points may be subject to error, so the
approximating spline may not go through any of the given points. In this
usage, the splines are evaluated at each abscissa point, and the ordinates are
fitted by some criterion (such as least squares) to the spline.

The choice of knots is a difficult problem. One approach is to include the
knots as decision variables in the optimization problem for determining the fit.
Other approaches are to add (pre-chosen) knots in a stepwise manner or to use
a regularization method (addition of a component to the fitting optimization

406 10 Estimation of Functions

objective function that increases for roughness or for some other undesirable
characteristic of the fit).

In an important type of application of splines, we have assumed a linear
relationship similar to equation (4.62) on page 179, but with an error term:

J
y=> cxbr(z) +e (10.5)
k=1
If we have a sample (y1,21), ..., (Yn,Zn), we first evaluate each of the spline

basis functions by at each x;, yielding Z;i, where
Tik = bk(xz) (10.6)

The observations on the dependent variable y; are then fit to the spline func-
tion values by choosing appropriate values of ¢;. The fit can be based on any
of the criteria that we discussed in Section 1.8. A least squares fit is most
commonly used; that is, the c; are chosen to minimize

j 2

zn: (yi — Z Ck£ik> . (107)

i=1 k=1

Kernel Methods

An approach to function approximation discussed in Section 4.5 is to use a
filter or kernel function to provide local weighting of the observed data. This
approach ensures that at a given point the observations close to that point
influence the estimate at the point more strongly than more distant obser-
vations. A standard method in this approach is to convolve the observations
with a unimodal function that decreases rapidly away from a central point.
This function is the filter or the kernel. A kernel has two arguments represent-
ing the two points in the convolution, but we typically use a single argument
that represents the distance between the two points.

The univariate kernel functions equations (4.65) through (4.67) are often
used in function estimation. These are the uniform,

Ku(t) =1/2NI-ax (),
the quadratic,
Kq(t) = 3/(A(6 = 2X)) (A =)T\ 5 (1),

and the normal,

_ L e
Kn(t) me)
each with a smoothing parameter A. Kernel methods are often used in the
estimation of probability density functions which we discuss in Chapter 15,
and in Section 15.3, we will discuss some more kernels.

10.2 Pointwise Properties of Function Estimators 407

In kernel methods, the locality of influence is controlled by a smoothing
parameter or a window around the point of interest. The choice of the size
of the window is the most important issue in the use of kernel methods. In
practice, for a given choice of the size of the window, the argument of the kernel
function is transformed to reflect the size. In general, the transformation is
accomplished using a positive definite matrix, V', whose determinant measures
the volume (size) of the window.

To estimate the function f at the point z, we first form a PDF decompo-
sition of f, as in equation (10.1),

f(@) = g(2)p(z),
where p is a probability density function. In the multivariate case, for a given
set of data, x1, ..., x,, and a given scaling transformation matrix V', the kernel
estimator of the function at the point x is

fle)=mV])~ Zg o). (10.8)
In the univariate case, the size of the window is just the width h. The

argument of the kernel is transformed to s/h, so the function that is convolved
with the function of interest is K(s/h)/h. The univariate kernel estimator is

7 = o Sotor (452,

10.2 Pointwise Properties of Function Estimators

The statistical properties of an estimator of a function at a given point are
analogous to the usual statistical properties of an estimator of a scalar para-
meter. The statistical properties involve expectations or other properties of
random variables. In the following, when we write an expectation, E(-), or
a variance, V(+), the expectations are usually taken with respect to the (un-
known) distribution of the underlying random variable. Occasionally, we may
explicitly indicate the distribution by writing, for example, E,(-), where p is
the density of the random variable with respect to which the expectation is
taken.

Bias
The bias of the estimator of a function value at the point x is
E(f(2) - f(@).

If this bias is zero, we would say that the estimator is unbiased at the point
z. If the estimator is unbiased at every point z in the domain of f, we say
that the estimator is pointwise unbiased. Obviously, in order for f(-) to be
pointwise unbiased, it must be defined over the full domain of f.

408 10 Estimation of Functions
Variance

The variance of the estimator at the point z is

v (flw) =5 ((Fo) -2 (Fi))))

Estimators with small variance are generally more desirable, and an optimal
estimator is often taken as the one with smallest variance among a class of
unbiased estimators.

Mean Squared Error

The mean squared error, MSE, at the point = is
MSE (f(x)) —E ((f(:c) - f(a:))z) . (10.9)
The mean squared error is the sum of the variance and the square of the bias:
MsE (7)) =& ((F0)” - 27w + (0)?)
-V (f(x)) + (E (f(:c)) - f(x))Q. (10.10)

Sometimes, the variance of an unbiased estimator is much greater than
that of an estimator that is only slightly biased, so it is often appropriate to
compare the mean squared error of the two estimators. In some cases, as we
will see, unbiased estimators do not exist, so rather than seek an unbiased
estimator with a small variance, we seek an estimator with a small MSE.

Mean Absolute Error

The mean absolute error, MAE, at the point x is similar to the MSE:

MAE (f(x)) —E Qf(x) - f(a:)‘) . (10.11)

It is more difficult to do mathematical analysis of the MAE than it is for the
MSE. Furthermore, the MAE does not have a simple decomposition into other
meaningful quantities similar to the MSE.

Consistency

Consistency of an estimator refers to the convergence of the expected value of
the estimator to what is being estimated as the sample size increases without

bound. A point estimator T}, based on a sample of size n, is consistent for 6
if

10.2 Pointwise Properties of Function Estimators 409

T,—60—0 asn — oo.

The convergence is stochastic, of course, so there are various types of con-
vergence that can be required for consistency. The most common kind of
convergence considered is weak convergence, or convergence in probability.

In addition to the type of stochastic convergence, we may consider the
convergence of various measures of the estimator. In general, if m is a function
(usually a vector-valued function that is an elementwise norm), we may define
consistency of an estimator 7, in terms of m if

E(m(T, — 0)) — 0. (10.12)

For an estimator, we are often interested in weak convergence in mean
square or weak convergence in quadratic mean, so the common definition of
consistency of T;, is

E (T, —0)" (T, — 0)) — 0,

where the type of convergence is convergence in probability. Consistency de-
fined by convergence in mean square is also called Lo consistency.

If convergence does occur, we are interested in the rate of convergence. We
define rate of convergence in terms of a function of n, say r(n), such that

E(m(T,, — 0)) = O(r(n)).

A common form of r(n) is n®, where o < 0. For example, in the simple case
of a univariate population with a finite mean p and finite second moment, use
of the sample mean Z as the estimator T},, and use of m(z) = 22, we have

E(m(z — 1)) = E ((@ — p)?)
— MSE(z)
=0(n7").

See Exercise 10.1, page 414. R
In the estimation of a function, we say that the estimator f,, of the function
f is pointwise consistent if

E (fn(x)) — f(x) (10.13)

for every x the domain of f. Just as in the estimation of a parameter, there
are various kinds of pointwise consistency in the estimation of a function. If
the convergence in expression (10.13) is in probability, for example, we say
that the estimator is weakly pointwise consistent. We could also define other
kinds of pointwise consistency in function estimation along the lines of other
types of consistency.

410 10 Estimation of Functions
10.3 Global Properties of Estimators of Functions

Often, we are interested in some measure of the statistical properties of an
estimator of a function over the full domain of the function. The obvious way
of defining statistical properties of an estimator of a function is to integrate
the pointwise properties discussed in the previous section.

Statistical properties of a function estimator, such as the bias of the esti-
mator, are often defined in terms of a norm of the function.

o~

For comparing f(z) and f(z), the L, norm of the error is

(/D [Flw) —)| d:c)l/p, (10.14)

where D is the domain of f. The integral may not exist, of course. Clearly,
the estimator f must also be defined over the same domain.

Three useful measures are the L; norm, also called the integrated absolute
error, or IAE,

IAB(f) = /D }f(:c) — f(x)} dz, (10.15)
the square of the Ly norm, also called the integrated squared error, or ISE,
- ~ 2
SE(F) = [(7o)~ f@) " d. (10.16)
D

and the L., norm, the sup absolute error, or SAE,

SAE(f) = sup ‘f(x) - f(x)‘ . (10.17)

The L; measure is invariant under monotone transformations of the coor-
dinate axes, but the measure based on the Ly norm is not. See Exercise 4.1
on page 199.

The Lo norm, or SAE, is the most often used measure in general function
approximation. In statistical applications, this measure applied to two cumu-
lative distribution functions is the Kolmogorov distance. The measure is not
so useful in comparing densities and is not often used in density estimation.

Other measures of the difference in f and f over the full range of x are
the Kullback-Leibler measure,

7 f(@)
/Df(x) log <m> dz,

and the Hellinger distance,

</D (Fr@) - o) dx) v

For p = 2, the Hellinger distance is also called the Matusita distance.

10.3 Global Properties of Estimators of Functions 411
Integrated Bias and Variance

We now want to develop global concepts of bias and variance for estimators of
functions. Bias and variance are statistical properties that involve expectations
of random variables. The obvious global measures of bias and variance are just
the pointwise measures integrated over the domain. In the case of the bias,
of course, we must integrate the absolute value, otherwise points of negative
bias could cancel out points of positive bias.

The estimator f is pointwise unbiased if

E (f(x)) = f(z) forallz e R%

Because we are interested in the bias over the domain of the function, we
define the integrated absolute bias as

IAB (f) - /D ‘E (f(x)) - f(x)‘ de (10.18)

and the integrated squared bias as
ISB (f) = /D (E (f(x)) - f(x))2 da. (10.19)

If the estimator is unbiased, both the integrated absolute bias and inte-
grated squared bias are 0. This, of course, would mean that the estimator is
pointwise unbiased almost everywhere. Although it is not uncommon to have
unbiased estimators of scalar parameters or even of vector parameters with a
countable number of elements, it is not likely that an estimator of a function
could be unbiased at almost all points in a dense domain. (“Almost” means
all except possibly a set with a probability measure of 0.)

The integrated variance is defined in a similar manner:

v (f) - /D v(f(x)) dz
:/DE((A(:C)—E(A(JC))f) dz. (10.20)

Integrated Mean Squared Error and Mean Absolute Error

As we suggested above, global unbiasedness is generally not to be expected.
An important measure for comparing estimators of functions is, therefore,
based on the mean squared error.

The integrated mean squared error is

412 10 Estimation of Functions

IMSE (f) - /D E <(f(x) - f(x))Q) da
=1V (f) +ISB (f) (10.21)

(compare equations (10.9) and (10.10)).
If the expectation integration can be interchanged with the outer integra-
tion in the expression above, we have

IMSE (f) -E (/D (f(x) - f(x))2 dx)
— MISE (f) ,

the mean integrated squared error. We will assume that this interchange leaves
the integrals unchanged, so we will use MISE and IMSE interchangeably.
Similarly, for the integrated mean absolute error, we have

IMAE (f) - /DE (‘fA(x) —f(x)D da

_E (/D (@) ~ (@) da:)

— MIAE (f) ,
the mean integrated absolute error.

Mean SAE

The mean sup absolute error, or MSAE, is

MSAE (f) = /DE (sup ‘f(x) — f(m)D dex. (10.22)

This measure is not very useful unless the variation in the function f is rela-
tively small. For example, if f is a density function, f can be a “good” estima-
tor, yet the MSAE may be quite large. On the other hand, if f is a cumulative
distribution function (monotonically ranging from 0 to 1), the MSAE may be
a good measure of how well the estimator performs. As mentioned earlier, the
SAE is the Kolmogorov distance. The Kolmogorov distance (and, hence, the
SAE and the MSAE) does poorly in measuring differences in the tails of the
distribution.

Large-Sample Statistical Properties

The pointwise consistency properties are extended to the full function in the
obvious way. In the notation of expression (10.12), consistency of the function
estimator is defined in terms of

10.3 Global Properties of Estimators of Functions 413

/D B (m (Fule) ~ f(@))) dz -0,

where m is some function, usually a norm or a power of a norm.
The estimator of the function is said to be mean square consistent or Lo
consistent if the MISE converges to 0; that is,

/DE ((fn(x) —f(x))2) dr — 0. (10.23)

If the convergence is weak, that is, if it is convergence in probability, we say
that the function estimator is weakly consistent; if the convergence is strong,
that is, if it is convergence almost surely or with probability 1, we say the
function estimator is strongly consistent.

The estimator of the function is said to be Li consistent if the mean
integrated absolute error (MIAE) converges to 0; that is,

e

As with the other kinds of consistency, the nature of the convergence in the
definition may be expressed in the qualifiers “weak” or “strong”.

As we have mentioned above, the integrated absolute error is invariant
under monotone transformations of the coordinate axes, but the Ly measures
are not. As with most work in Ly, however, derivation of various properties
of IAE or MIAE is more difficult than for analogous properties with respect
to Lo criteria.

If the MISE converges to 0, we are interested in the rate of convergence.
To determine this, we seek an expression of MISE as a function of n. We do
this by a Taylor series expansion. R

In general, if 6 is an estimator of 0, the Taylor series for ISE(#), equa-
tion (10.16), about the true value is

~

fn(2) —f(x)D dz — 0. (10.24)

ISE ((3) - i % (5 - o)k ISE¥ (9), (10.25)
k=0

where ISE" () represents the k*™® derivative of ISE evaluated at 6.

Taking the expectation in equation (10.25) yields the MISE. The limit of
the MISE as n — oo is the asymptotic mean integrated squared error, AMISE.
One of the most important properties of an estimator is the order of the
AMISE.

In the case of an unbiased estimator, the first two terms in the Taylor
series expansion are zero, and the AMISE is

V() ISE" ()

to terms of second order.

414 10 Estimation of Functions
Other Global Properties of Estimators of Functions

There are often other properties that we would like an estimator of a function
to possess. We may want the estimator to weight given functions in some
particular way. For example, if we know how the function to be estimated,
f, weights a given function r, we may require that the estimate f weight the
function r in the same way; that is,

/Dr(x) A(x)dx:/Dr(x)f(x)dx.

We may want to restrict the minimum and maximum values of the esti-
mator. For example, because many functions of interest are nonnegative, we
may want to require that the estimator be nonnegative.

We may want to restrict the variation in the function estimate. This can
be thought of as the “roughness” of the function (see page 151). Often, in
function estimation, we may seek an estimator fsuch that its roughness (by
some definition) is small.

Notes and Further Reading

Function estimation of course is closely related to the problem in numerical
analysis of function approximation, which is the topic of Chapter 4. “Esti-
mation” in this case means statistical estimation; that is, the use of observed
data to make inferences about the objects that define a function. In simpler
cases, these objects are just parameters in a given parametric representa-
tion of the function. In more interesting cases, the function is not specified
parametrically. The result of the estimation procedure is not a mathematical
expression of a functional form; rather, it is an algorithm that takes as input
an argument of the function and produces the corresponding estimated value
of the function. Extensive discussions of methods of function estimation are
available in Ramsay and Silverman (2002, 2005) and Efromovich (1999).

This chapter has surveyed general methods of function estimation and
properties of function estimators. The most common kind of function that we
estimate in statistical applications is the probability density function. That is
the topic of Chapters 14 and 15.

Exercises

10.1. Consider the problem of estimating p and o (the mean and standard
deviation) in a normal distribution. For estimators in a sample of size n,
we will use the sample mean, ¥, and the sample standard deviation, s,,.
Assume that

10.2.
10.3.

10.4.

Exercises 415

MSE(gn) = O(n?)

and
MSE(s,,) = O(n”).

Perform a Monte Carlo experiment to estimate a and (. Plot your data
on log-log axes, and use least squares to estimate o and (3. Now, derive
the exact values for o and § and compare them with your estimates.
Formally derive equation (10.21) using equations (10.20), and (10.19).
Some problems in function estimation are relatively easy. Consider the
problem of estimation of

f(t) = o+ b,

for ¢ € [0,1]. Suppose, for t1,...,t, we observe f(t1) +€1,..., f(tn) + €n,
where the ¢; are independent realizations from a N(0, o%) distribution. As

we know, a good estimator of f(t) is f(t) = @ + Jt, where @ and 3 are
the least squares estimators from the data. Determine MISE(f).
Consider the U(0,0) distribution, with § unknown. The true probability
density is p(x) = 1/6 over (0, 8) and 0 elsewhere. Suppose we have a sample
of size n and we estimate the density as p(x) = 1/x(,) over (0, z(,)) and 0
elsewhere, where z(,,) is the maximum order statistic. The density of the
distribution of X, is nx?n_)le_” over (0,0) and 0 elsewhere.

a) Determine (that is, write an explicit expression for) the integrated
squared bias, ISB, of p(z).

b) Determine the integrated squared error, ISE, of p(z).

¢) Determine the mean integrated squared error, MISE, of p(x).

d) Determine the asymptotic (as n — 0o) mean integrated squared error,
AMISE, of p(z).

11

Monte Carlo Methods for Statistical Inference

Monte Carlo methods are experiments. Monte Carlo experimentation is the
use of simulated random numbers to estimate some functional of a probabil-
ity distribution. A problem that does not have a stochastic component can
sometimes be posed as a problem with a component that can be identified
with an expectation of some function of a random variable. This is often done
by means of a PDF decomposition. The problem is then solved by estimating
the expected value by use of a simulated sample from the distribution of the
random variable.

Monte Carlo methods use random numbers, so to implement a Monte Carlo
method it is necessary to have a source of random numbers. On the computer,
we generally settle for pseudorandom numbers, that is, numbers that appear
to be random but are actually deterministic. Generation of pseudorandom
numbers is the topic of Chapter 7.

Often, our objective is not to simulate random sampling directly, but
rather to estimate a specific quantity related to the distribution of a given
sample. In this case, we may want to ensure that a chosen sample closely re-
flects the distribution of the population we are simulating. Because of random
variation, a truly random sample or a pseudorandom sample that simulates
a random sample would not necessarily have this property. Sometimes, there-
fore, we generate a quasirandom sample, which is a sample constrained to re-
flect closely the distribution of the population we are simulating, rather than
to exhibit the variability that would result from random sampling. Because
in either case we proceed to treat the samples as if they were random, we will
refer to both pseudorandom numbers and quasirandom numbers as “random
numbers”, except when we wish to emphasize the “pseudo” or “quasi” nature.

In this chapter, we discuss various ways random numbers are used in statis-
tical inference. Monte Carlo methods are also used in many of the techniques
described in other chapters.

J.E. Gentle, Computational Statistics, Statistics and Computing, 417
DOI: 10.1007/978-0-387-98144-4 11,
© Springer Science + Business Media, LLC 2009

418 11 Monte Carlo Methods for Statistical Inference

11.1 Monte Carlo Estimation

The general objective in Monte Carlo simulation is to estimate some char-
acteristic of a random variable X. Often, the objective is to calculate the
expectation of some function g of X.

We begin by reviewing some of the material covered in Section 4.7.

Estimation of a Definite Integral

Monte Carlo inference, as for statistical inference generally, can be formulated
as estimation of either a definite integral

Hz/Df(x)d:v (11.1)

or, given the integral 6, of a domain D, or of a function f that satisfies certain
optimality conditions. If the integral can be evaluated in closed form, there is
no need for Monte Carlo methods. If D is of only one or two dimensions, there
are several good, straightforward numerical quadrature methods available to
solve the problem. For domains of higher dimension, Monte Carlo estimation
is sometimes the best method for the quadrature.

Function Decomposition

If the function f is decomposed to have a factor that is a probability density
function, say

f(x) = g(z)p(x), (11.2)

/Dp(x)dx =1

and p(z) > 0, then the integral 0 is the expectation of the function g of the
random variable with probability density p; that is,

where

6= E(g(X)) = /D o()p(z)da. (11.3)

Notice that this PDF decomposition is a standard method in statistical es-
timation; we identify a random variable, a probability distribution, and fi-
nally an expectation. Compare this with the development leading up to equa-
tion (10.2) on page 404 for estimating a function.

With a random sample z1, ..., x,, from the distribution with probability
density p, an estimate of 6 is

g 29 (11.4)

m

We use this technique in many settings in statistics. There are three steps:

11.1 Monte Carlo Estimation 419

1. Decompose the function of interest to include a probability density func-
tion as a factor;

2. identify an expected value;

3. use a sample (simulated or otherwise) to estimate the expected value.

The PDF decomposition is not unique, of course, and sometimes a particular
decomposition is more useful than another. In the Monte Carlo application,
it is necessary to be able to generate random numbers easily from the distri-
bution with the given density. As we will see in the discussion of importance
sampling on page 426, there are other considerations for efficient Monte Carlo
estimation.

We should note here that the use of Monte Carlo procedures for numerical
quadrature is rarely the best method for lower-dimensional integrals. Use of
Newton-Cotes or Gaussian quadrature, as discussed in Chapter 4, is usually
better. For higher-dimensional integrals, however, Monte Carlo quadrature is
often a viable alternative.

Estimation of the Variance

A Monte Carlo estimate usually has the form of the estimator of # in equa-
tion (11.4). An estimate of the variance of this estimator is

2
R (), .,
This is because the elements of the set of random variables {g(X;)}, on which
we have observations {g(z;)}, are (assumed to be) independent and thus to
have zero correlations.

Estimating the Variance Using Batch Means

If the ¢g(X;) do not have zero correlations, as may be the case when the
X, are from a Markov process, the estimator (11.5) has an expected value
that includes the correlations; that is, it is biased for estimating V(a) This
situation arises often in simulation. In many processes of interest, however,
observations are “more independent” of observations farther removed within
the sequence than they are of observations closer to them in the sequence. A
common method for estimating the variance in a sequence of nonindependent
observations, therefore, is to use the means of successive subsequences that are
long enough that the observations in one subsequence are almost independent
of the observations in another subsequence. The means of the subsequences
are called “batch means”.

IfGy,...,Gp, Gog1,- .-, Gop, Gopy1,-..,Grp is a sequence of random vari-
ables such that the correlation of G; and G;44 is approximately zero, an

420 11 Monte Carlo Methods for Statistical Inference

estimate of the variance of the mean, G, of the m = kb random variables can
be developed by observing that

V(G) =V G
k

1
z(a g

_ l
N k
i=(j—1)b+1
1 k 1 b
eVl 2 G
j=1 i=(j—1)b+1
~ EV(Gb)a

where G}, is the mean of a batch of length b. If the batches are long enough,
it may be reasonable to assume that the means have a common variance.
An estimator of the variance of G} is the standard sample variance from k

observations, g1, g2, - - -, gk:
29, —9)?

k-1

Hence, the batch-means estimator of the variance of G is

s 2(g,—9)?

V(@) = S (11.6)

This batch-means variance estimator should be used if the Monte Carlo
study yields a stream of nonindependent observations, such as in a time series
or when the simulation uses a Markov chain. The size of the subsamples should
be as small as possible and still have means that are independent. A test of
the independence of the G, may be appropriate to help in choosing the size
of the batches.

Batch means are useful in variance estimation whenever a Markov chain
is used in the generation of the random deviates.

Convergence of Iterative Monte Carlo and Mixing of
the Markov Chain

In ordinary Monte Carlo simulation, estimation relies on the fact that for
independent, identically distributed variables X7, X5, ... from the distribution

Pof X,
-3 g(X) — E(g(X)
i=1

almost surely as n goes to infinity. This convergence is a simple consequence of
the law of large numbers in the case of i.i.d. random variables. In Monte Carlo

11.1 Monte Carlo Estimation 421

simulation, a random number generator simulates an independent stream.
When X is multivariate or a complicated stochastic process, however, it may
be difficult to simulate independent realizations.

The mean of a sample from an irreducible Markov chain X7, Xo,... that
has P as its equilibrium distribution also converges to the desired expectation.
For this fact to have relevance in applications, the finite sampling from a
Markov chain in the application must be concentrated in the equilibrium
distribution; that is, the burn-in sample must not dominate the results. We
mention below some methods for assessing convergence of MCMC samples to
the stationary distribution, but it is not easy to determine when the Markov
chain has begun to resemble its stationary distribution.

Once convergence to the stationary distribution is achieved, however, sub-
sequent iterations are from that distribution; that is, they do not depend on
the starting point. In Gibbs sampling, if

X1, X1, Xig1, .., Xy

have the marginal stationary distribution and X; is given a new realization
from the correct conditional distribution given the rest, then all of them still
have the correct joint distribution.

In MCMC we must be concerned with more than just the length of a
burn-in period and convergence to the stationary distribution, however. We
must also be concerned with the mizing of the Markov chain, that is, how
independently states X; and X, behave. Rapid mixing of the chain (meaning
X; and X,y are “relatively independent” for small k) ensures that the regions
in the state-space will be visited in relatively small sequences with a frequency
similar to long-term frequencies in the stationary distribution.

Some of the most important issues in MCMC concern the rate of con-
vergence, that is, the length of the burn-in, and how fast the sampler mixes.
These issues are more difficult to assess for multivariate distributions, but it
is for multivariate distributions that MCMC is most important. The burn-in
can often be much longer than a quick analysis might lead us to expect.

Various diagnostics have been proposed to assess convergence. A general
approach to assess convergence is to use multiple simultaneous simulations of
the chain and compare the output of the simulations. Large differences in the
output would indicate that one or more of the simulations is in the burn-in
phase. A related approach using only a single simulation is to inspect and
compare separate subsequences or blocks of the output. Large differences in
relatively long blocks would indicate that convergence has not occurred.

The results of a method for assessing convergence may strongly indicate
that convergence has mot occurred, but they cannot strongly indicate that
convergence has occurred. Different methods may be more or less reliable in
different settings, but no single method is completely dependable. In practice,
the analyst generally should use several different methods and conclude that
convergence has occurred only if no method indicates a lack of convergence.

422 11 Monte Carlo Methods for Statistical Inference

There are many possibilities for assessing convergence of MCMC meth-
ods, but unfortunately, the current methodology is not sufficiently reliable
to allow decisions to be made on the basis of any standard set of tests (see
Chib, 2004, page 96). The careful analyst chooses and performs various ad
hoc assessments, often based on exploratory graphics.

Monte Carlo, Iterative Monte Carlo, and Simulation

Convergence of the Monte Carlo estimator 2 3" | g(X;) to its expectation

E(g(X)) is not the only issue. If the constant ¢ is such that

a random number generator that yields x; = ¢ in each iteration would yield
a very good estimate of E(g(X)). Usually, however, our objectives in using
Monte Carlo include obtaining other estimates or assessing the behavior of
a random process that depends on the distribution P of X. The degenerate
generator yielding x; = ¢ would not provide these other results. Although it
may not be efficient, sometimes it is very important to simulate the underlying
random process with all of its variability.

Whenever a correlated sequence such as a Markov chain is used, variance
estimation must be performed with some care. In the more common cases
of positive autocorrelation, the ordinary variance estimators are negatively
biased. The method of batch means or some other method that attempts to
account for the autocorrelation should be used.

If the noniterative approach is possible, it is to be preferred. There are
many situations in which an MCMC method is easy to devise but performs
very poorly. See Robert (1998) for an example of such a problem.

11.2 Simulation of Data from a Hypothesized Model:
Monte Carlo Tests

One of the most straightforward methods of computational inference is the
Monte Carlo test. Barnard (1963) suggested use of Monte Carlo methods to
estimate quantiles of a test statistic, T', under the null hypothesis. In Barnard’s
Mounte Carlo test, m random (or pseudorandom) samples of the same size as
the given sample are generated under the null hypothesis, and the test sta-
tistic is computed from each sample. This yields a sample of test statistics,
I,...,ty,. The ECDF, P}, of the sample of test statistics is used as an esti-
mate of the CDF of the test statistic, Pp; and the critical region for the test
or the p-value of the observed test statistic can be estimated from P,.

An estimate of the p-value of the observed test statistic can be taken as the
proportion of the number of simulated values that exceed the observed value.

11.2 Monte Carlo Tests 423

If the distribution of the test statistic is continuous, and r is the number that
exceed the observed value,
r/m

is an unbiased estimate of the p-value. Because this quantity can be 0, we
usually use

r+1

m+1

as an estimate of the p-value associated with the upper tail of the test statistic.
This is also the simple empirical quantile if, as under the null hypothesis, the
observed value is from the same distribution. For test statistics with discrete
distributions, we must estimate the probability of the observed value, and
allocate that proportionally to the rejection and acceptance regions.

The expected power of a Monte Carlo test can be quite good even for
relatively small values of m. In simple situations (testing means, for example),
m = 99 may be a good choice. This allows the p-value to be expressed simply
in two decimal places. In more complicated situations (inference concerning
higher moments or relationships between variables), a value of m = 999 may
be more appropriate. The p-value resulting from a Monte Carlo test is an
estimate based on a sample of size m, so in general the larger m is, the
better the estimate. In practical applications, it is not likely that a decision,
other than to gather additional data, would be made based on more than two
significant digits in a p-value.

To use a Monte Carlo test, the distribution of the random component
in the assumed model must be known, and it must be possible to generate
pseudorandom samples from that distribution under the null hypothesis. No-
tice that a Monte Carlo test is based on an estimate of a critical value of the
test statistic rather than on an approzimation of it.

In many applications of statistics, there is no simple model of the phenom-
enon being studied. If a simple approximation is chosen as the model, sub-
sequent decisions rely on the adequacy of the approximation. On the other
hand, if a more realistic model is chosen, the distributions of the statistics
used in making inferences are intractable. The common approach is to ap-
proximate the distributions using asymptotic approximations. Monte Carlo
tests provide an alternative; the distributional properties can be estimated
by simulation. Computational inference can replace asymptotic inference. (Of
course, in many complicated models, both approaches may be used.) If the
sample size is not compatible with the order of the asymptotic approximation,
an inferential procedure using Monte Carlo methods is clearly better than one
using the approximation.

The ECDF of the simulated test statistic provides us with more infor-
mation about the test statistic than just the critical values. It allows us to
make other inferences about the distribution of the test statistic under the
null hypothesis, such as an estimate of the variance of the test statistic, its
symmetry, and so on.

424 11 Monte Carlo Methods for Statistical Inference

An obvious problem with a Monte Carlo test is that the null hypothesis,
together with underlying assumptions, must fully specify the distribution at
least up to any pivotal quantity used in the test. In Chapter 13, we discuss
Monte Carlo methods that involve resampling from the given sample; hence,
a complete specification of an underlying distribution is not necessary.

11.3 Simulation of Data from a Fitted Model:
“Parametric Bootstraps”

Instead of using the hypothesized value of the parameter, another approach
in computational inference is to use an estimate of the parameter from the
sample. In a similar manner as in the previous section, we can simulate samples
from the fitted model to obtain a sample of test statistics ¢7,...,%),. Again,
the ECDF, P, of the sample of test statistics can be used as an estimate of
the CDF of the test statistic, Pp; and critical regions for a test, p-values of
the observed test statistic, or other properties of the distribution of the test
statistic can be estimated from P} . In this case, of course, the distributional
properties are not those that hold under a particular hypothesis; rather they
are the properties under a model whose parameters correspond to values fitted
from the data. This kind of approach to statistical inference is sometimes
called a parametric bootstrap.

In the parametric bootstrap, the CDF of the population of interest, P, is
assumed known up to a finite set of parameters, . An estimate of the CDF is
P with 6 replaced by an estimate 6 obtained from the given sample. Hence,
the first step is to obtain estimates of the parameters that characterize the
distribution within the assumed family. After this, the procedure is to generate
m random samples each of size n from the estimated distribution, and for each
sample, compute an estimator 77 of the same functional form as the original
estimator T'. The distribution of the T7'’s is used to make inferences about
the CDF of T'. The estimate of the CDF of T' can be used to test hypotheses
about 6, using the observed value of T' from the original sample. If f(T,6) is
a pivotal quantity when the distribution of 7' is known, the estimate of the
CDF of T can be used to form confidence intervals for 6.

11.4 Random Sampling from Data

Some statistical methods involve formation of subsets of the data or random-
ization of the data. The number of subsets or permutations can be very large.
For this reason, in the application of such methods, rather than using all
possible subsets or all possible permutations, we generally resort to generat-
ing random samples of subsets or permutations. Some methods we discuss in
Chapters 12 and 13 necessitate use of Monte Carlo sampling.

11.5 Reducing Variance in Monte Carlo Methods 425

The discrete uniform population defined by the data is a useful surrogate
for the population from which the data were drawn. Properties of the discrete
population are used in making an inference about the “real” population. The
analysis of the discrete population is often facilitated by drawing samples from
it. This is, in effect, a resampling of the given data, which is a sample from the
“real” population. Some of the bootstrap methods discussed in Chapter 13
use Monte Carlo procedures in this way.

Many other statistical methods involve sampling from the data. For ex-
ample, in survey sampling, the dataset often includes incomplete records or
missing data. In the missing-data problem, we think of the full dataset as
being represented by an n x d matrix Y (that is, n observations, each of which
contains d elements), of which a certain portion, Y™, is actually not observed.
The missing portion together with the observed portion, Y°P%, constitute the
full dataset. For analyzing the data and providing descriptive statistics of the
population, it is often desirable to fill in the missing data using complete
records as “donors” to impute the missing data. There are various approaches
to this problem. In one approach, called multiple imputation, m simulated val-
ues, YIS Ymis* of the missing data are generated from an appropriate
population, and the complete datasets, Yi",..., Y., are analyzed. This proce-
dure provides a measure of the uncertainty due to the missing data. (In order
for this approach to be valid, the simulated missing data must come from an
appropriate distribution. See Rubin, 1987, or Schafer, 1997, for discussions
of the properties the distribution must have.) Because multiple imputation
only simulates from the missing data portion of the dataset and because the
simulation variance is likely to be relatively small compared to the overall
sampling variance, the value of m does not need to be large. A value of m = 3
is often adequate in multiple imputation.

11.5 Reducing Variance in Monte Carlo Methods

Monte Carlo methods involve a inferences from random (or pseudorandom)
samples. The usual principles of inference apply. We seek procedures with
small (generally zero) bias and small variance. As with other methods for
statistical inference, various procedures with differing bias and variance are
available. In sampling from artificially generated random numbers on the com-
puter, just as in taking observations of other events, an objective is to devise
a sampling plan that will yield estimators with small variance. It is often pos-
sible to modify a procedure to reduce the bias or the variance. There are a
number of ways of reducing the variance in Monte Carlo sampling.

As with any statistical estimation procedure, an objective is to choose an
estimator and/or a sampling design that will have a small, possibly minimum,
variance. The first principle in achieving this objective is to remove or reduce
sampling variation wherever possible. This principle is analytic reduction. An
example that has been considered in the literature (see Ripley, 1987, for ex-

426 11 Monte Carlo Methods for Statistical Inference

ample) is the estimation of the probability that a Cauchy random variable is
larger than 2; that is, the evaluation of the integral

> 1
/2 77r(1+x2)d$'

This integral can be transformed analytically to

/1 /2 y_z 4

0o Ay

and the variance of a simple estimator of the latter integral using a sample
from U(0, 3) is only about one-thousandth the variance of a simple estimator
of the former integral using a sample from a Cauchy distribution. Inspection of
the original integral, however, reveals that the antiderivative of the integrand
is the arctangent. If reasonable software for evaluating trigonometric functions
is available, one should not estimate the integral in the original problem. The
rule is do not resort to Monte Carlo methods unnecessarily.

Importance Sampling

Given the integral [;, f(x)dz, there may be a number of ways that we can
decompose f into g and a probability density function p. This PDF decomposi-
tion determines the variance of our estimator #. The intuitive rule is to sample
more heavily where |f]| is large. This principle is called importance sampling.
As we do following equation (11.1) on page 418, we write the integral as

0= /Df(:v)dx
f

= ﬁp(ac) dz.

p p(x)
where p(x) is a probability density over D. The density p(z) is called the
importance function. The objective in importance sampling is to use an opti-
mal PDF decomposition. We will now proceed to determine the optimal PDF

decomposition.
From a sample of size m from the distribution with density p, we have the

estimator)
f=—
—>

It is clear that @ is unbiased for 0 (assuming, of course, that the integral
exists). The variance of this estimator is

V(0) = %V (%) ; (11.8)

f(xi)
oL (11.7)

11.5 Reducing Variance in Monte Carlo Methods 427

where the variance is taken with respect to the distribution of the random
variable X with density p(z). The variance of the ratio can be expressed as

V(1) e (500) - (+(42))

The objective in importance sampling is to choose p so this variance is mini-

mized. Because <E <%)>2 _ </D fa) dx>2, (11.10)

the choice involves only the first term in the expression above for the variance.
By Jensen’s inequality, we have a lower bound on that term:

o(5) = (o (56))
- (/D|f(:c)|d:c>2. (11.11)

That bound is obviously achieved when

 f@)
P) = T de

This is the optimal PDF decomposition.

Of course, if we knew [}, |f(x)|dz, we would probably know [, f(z)dx
and would not even be considering a Monte Carlo procedure to estimate the
integral. In practice, for importance sampling, we generally seek a probability
density p that is nearly proportional to |f| (that is, such that |f(z)|/p(z) is
nearly constant).

(11.12)

Control Variates

Another way of reducing the variance, just as in ordinary sampling, is to
use covariates, or control variates, as they are often called in Monte Carlo
sampling. Any variable that is correlated with the variable of interest has
potential value as a control variate. The control variate is useful if it is easy
to generate and if it has properties that are known or that can be computed
easily.

As an example, consider a method of using control variates to reduce the
variance in Monte Carlo tests in two-way contingency tables described by
Senchaudhuri, Mehta, and Patel (1995). An r X ¢ contingency table can be
thought of as an r x ¢ matrix, A, whose nonnegative integer elements a;;
represent the counts in the cells of the table. For such tables, we may be
interested in patterns of values in the cells. Specifically, we ask whether, given
the marginal totals

428 11 Monte Carlo Methods for Statistical Inference

T
dej = E :aij
i=1
and

C
a"L- = § a‘ij?
=1

the cells are independent. (Here, we use the “dot notation” for summation:
a.; is the sum of the counts in the 4" column, for example, and a,. is the
grand total. Also, below we use the notation a.; to represent the vector that is
the j*" column.) There are several statistical tests that address this question
or aspects of it under various assumptions. The test statistic is some function
of the observed table, T'(A). The objective is to compute the p-value of the
observed value of the test statistic. The distributions of most test statistics
for this problem are very complicated, so either an approximation is used or
a Monte Carlo test is performed.

A Monte Carlo test involves generation of a large number of random tables
th