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Preface

This book began as a revision of Elements of Computational Statistics, pub-
lished by Springer in 2002. That book covered computationally-intensive sta-
tistical methods from the perspective of statistical applications, rather than
from the standpoint of statistical computing.

Most of the students in my courses in computational statistics were in a
program that required multiple graduate courses in numerical analysis, and so
in my course in computational statistics, I rarely covered topics in numerical
linear algebra or numerical optimization, for example. Over the years, how-
ever, I included more discussion of numerical analysis in my computational
statistics courses. Also over the years I have taught numerical methods courses
with no or very little statistical content. I have also accumulated a number
of corrections and small additions to the elements of computational statistics.
The present book includes most of the topics from Elements and also incor-
porates this additional material. The emphasis is still on computationally-
intensive statistical methods, but there is a substantial portion on the numer-
ical methods supporting the statistical applications.

I have attempted to provide a broad coverage of the field of computational
statistics. This obviously comes at the price of depth.

Part I, consisting of one rather long chapter, presents some of the most
important concepts and facts over a wide range of topics in intermediate-level
mathematics, probability and statistics, so that when I refer to these concepts
in later parts of the book, the reader has a frame of reference.

Part I attempts to convey the attitude that computational inference, to-
gether with exact inference and asymptotic inference, is an important com-
ponent of statistical methods.

Many statements in Part I are made without any supporting argument,
but references and notes are given at the end of the chapter. Most readers
and students in courses in statistical computing or computational statistics
will be familiar with a substantial proportion of the material in Part I, but I
do not recommend skipping the chapter. If readers are already familiar with
the material, they should just read faster. The perspective in this chapter is



viii Preface

that of the “big picture”. As is often apparent in oral exams, many otherwise
good students lack a basic understanding of what it is all about.

A danger is that the student or the instructor using the book as a text
will too quickly gloss over Chapter 1 and miss some subtle points.

Part II addresses statistical computing, a topic dear to my heart. There are
many details of the computations that can be ignored by most statisticians,
but no matter at what level of detail a statistician needs to be familiar with
the computational topics of Part II, there are two simple, higher-level facts
that all statisticians should be aware of and which I state often in this book:

Computer numbers are not the same as real numbers, and the arith-
metic operations on computer numbers are not exactly the same as
those of ordinary arithmetic.

and

The form of a mathematical expression and the way the expression
should be evaluated in actual practice may be quite different.

Regarding the first statement, some of the differences in real numbers and
computer numbers are summarized in Table 2.1 on page 98.

A prime example of the second statement is the use of the normal equations
in linear regression, XTXb = XTy. It is quite appropriate to write and discuss
these equations. We might consider the elements of XTX , and we might even
write the least squares estimate of β as b = (XTX)−1XTy. That does not
mean that we ever actually compute XTX or (XTX)−1, although we may
compute functions of those matrices or even certain elements of them.

The most important areas of statistical computing (to me) are

• computer number systems
• algorithms and programming
• function approximation and numerical quadrature
• numerical linear algebra
• solution of nonlinear equations and optimization
• generation of random numbers.

These topics are the subjects of the individual chapters of Part II.
Part III in six relatively short chapters addresses methods and techniques

of computational statistics. I think that any exploration of data should begin
with graphics, and the first chapter in Part III, Chapter 8, presents a brief
overview of some graphical methods, especially those concerned with multi-
dimensional data. The more complicated the structure of the data and the
higher the dimension, the more ingenuity is required for visualization of the
data; it is, however, in just those situations that graphics is most important.
The orientation of the discussion on graphics is that of computational statis-
tics; the emphasis is on discovery, and the important issues that should be
considered in making presentation graphics are not addressed.
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Chapter 9 discusses methods of projecting higher-dimensional data into
lower dimensions. The tools discussed in Chapter 9 will also be used in Part IV
for clustering and classification, and, in general, for exploring structure in
data. Chapter 10 covers some of the general issues in function estimation,
building on the material in Chapter 4 on function approximation.

Chapter 11 is about Monte Carlo simulation and some of its uses in com-
putational inference, including Monte Carlo tests, in which artificial data are
generated according to a hypothesis. Chapters 12 and 13 discuss computa-
tional inference using resampling and partitioning of a given dataset. In these
methods, a given dataset is used, but Monte Carlo sampling is employed re-
peatedly on the data. These methods include randomization tests, jackknife
techniques, and bootstrap methods, in which data are generated from the
empirical distribution of a given sample, that is, the sample is resampled.

Identification of interesting features, or “structure”, in data is an impor-
tant activity in computational statistics. In Part IV, I consider the problem of
identification of structure and the general problem of estimation of probability
densities. In simple cases, or as approximations in more realistic situations,
structure may be described in terms of functional relationships among the
variables in a dataset.

The most useful and complete description of a random data-generating
process is the associated probability density, if it exists. Estimation of this
special type of function is the topic of Chapters 14 and 15, building on gen-
eral methods discussed in earlier chapters, especially Chapter 10. If the data
follow a parametric distribution, or rather, if we are willing to assume that
the data follow a parametric distribution, identification of the probability den-
sity is accomplished by estimation of the parameters. Nonparametric density
estimation is considered in Chapter 15.

Features of interest in data include clusters of observations and relation-
ships among variables that allow a reduction in the dimension of the data.
I discuss methods for statistical learning in Chapter 16, building on some of
the basic measures introduced in Chapter 9.

Higher-dimensional data have some surprising and counterintuitive proper-
ties, and I discuss some of the interesting characteristics of higher dimensions.

In Chapter 17, I discuss asymmetric relationships among variables. For
such problems, the objective often is to estimate or predict a response for
a given set of explanatory or predictive variables, or to identify the class
to which an observation belongs. The approach is to use a given dataset to
develop a model or a set of rules that can be applied to new data. Statistical
modeling may be computationally intensive because of the number of possible
forms considered or because of the recursive partitioning of the data used in
selecting a model. In computational statistics, the emphasis is on building a
model rather than just estimating the parameters in the model. Parametric
estimation, of course, plays an important role in building models.

Many of the topics addressed in this book could easily be (and are) sub-
jects for full-length books. My intent is to describe these methods in a general
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manner and to emphasize commonalities among them. Decompositions of ma-
trices and of functions are examples of basic tools that are used in a variety
of settings in computational statistics. Decompositions of matrices, which are
introduced on page 28 of Chapter 1, play a major role in many computations
in linear algebra and in statistical analysis of linear models. The decomposi-
tional approach to matrix computations has been chosen as one of the Top
10 developments in algorithms in the twentieth century. (See page 138.) The
PDF decomposition of a function so that the function has a probability den-
sity as a factor, introduced on page 37 of Chapter 1, plays an important role in
many statistical methods. We encounter this technique in Monte Carlo meth-
ods (pages 192 and 418), in function estimation (Chapters 10 and 15), and in
projection pursuit (Chapter 16).

My goal has been to introduce a number of topics and devote some suitable
proportion of pages to each. I have given a number of references for more in-
depth study of most of the topics. The references are not necessarily chosen
because they are the “best”; they’re just the ones I’m most familiar with. A
general reference for a slightly more detailed coverage of most of the topics in
this book is the handbook edited by Wolfgang Härdle, Yuichi Mori, and me
(Gentle, Härdle, and Mori, 2004).

The material in Chapters 2, 5, and 9 relies heavily on my book on Matrix
Algebra (Gentle, 2007), and some of the material in Chapters 7 and 11 is
based on parts of my book on Random Number Generation (Gentle, 2003).

Each chapter has a section called “notes and further reading”. The content
of these is somewhat eclectic. In some cases, I had fun writing the section, so
I went on at some length; in other cases, my interest level was not adequate
for generation of any substantial content.

A Little History

While I have generally tried to keep up with developments in computing, and I
do not suffer gladly old folks who like to say “well, the way we used to do it was
...”, occasionally while writing this book, I looked in Statistical Computing to
see what Bill Kennedy and I said thirty years ago about the things I discuss
in Part II. The biggest change in computing of course has resulted from the
personal computer. “Computing” now means a lot more than it did thirty
years ago, and there are a lot more people doing it. Advances in display
devices has been a natural concurrence with the development of the PC, and
this has changed statistical graphics in a quantum way.

While I think that the PC sui generis is the Big Thing, the overall ad-
vance in computational power is also important. There have been many evo-
lutionary advances, basically on track with Moore’s law (so long as we ad-
just the number of months appropriately). The net result of the evolutionary
advance in speed has been enormous. Some people have suggested that sta-
tistical methods/approaches should undergo fundamental changes every time
there is an increase of one order of magnitude in computational speed and/or
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storage. Since 1980, and roughly in accordance with Moore’s law, there have
been 4 such increases. I leave to others an explicit interpretation of the rel-
evance of this fact to the field of statistics, but it is clear that the general
increase in the speed of computations has allowed the development of useful
computationally-intensive methods. These methods together constitute the
field of computational statistics. Computational inference as an approxima-
tion is now generally as accepted as asymptotic inference (more readily by
many people).

At a more technical level, standardization of hardware and software has
yielded meaningful advances. In the 1970’s over 75% of the computer mar-
ket was dominated by the IBM 360/370 systems. Bill and I described the
arithmetic implemented in this computer. It was in base 16 and did not do
rounding. The double precision exponent had the same range as that of sin-
gle precision. The IBM Fortran compilers (G and H) more-or-less conformed
to the Fortran 66 standard (and they chose the one-trip for null DO-loops).
Pointers and dynamic storage allocation were certainly not part of the stan-
dard. PL/I was a better language/compiler and IBM put almost as many
1970s dollars in pushing it as US DoD in 1990s dollars pushing Ada. And of
course, there was JCL!

The first eight of the Top 10 algorithms were in place thirty years ago, and
we described statistical applications of at least five of them. The two that were
not in place in 1980 do not have much relevance to statistical applications.
(OK, I know somebody will tell me soon how important these two algorithms
are, and how they have just been used to solve some outstanding statistical
problem.)

One of the Top 10 algorithms, dating to the 1940s, is the basis for MCMC
methods, which began receiving attention by statisticians around 1990, and
in the past twenty years has been one of the hottest areas in statistics.

I could go on, but I tire of telling “the way we used to do it”. Let’s learn
what we need to do it the best way now.

Data

I do not make significant use of any “real world” datasets in the book. I
often use “toy” datasets because I think that is the quickest way to get the
essential characteristics of a method. I sometimes refer to the datasets that
are available in R or S-Plus, and in some exercises, I point to websites for
various real world datasets.

Many exercises require the student to generate artificial data. While such
datasets may lack any apparent intrinsic interest, I believe that they are often
the best for learning how a statistical method works. One of my firm beliefs
is

If I understand something, I can simulate it.
Learning to simulate data with given characteristics means that one under-
stands those characteristics. Applying statistical methods to simulated data
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may lack some of the perceived satisfaction of dealing with “real data”, but
it helps us better to understand those methods and the principles underlying
them.

A Word About Notation

I try to be very consistent in notation. Most of the notation is “standard”.
Appendix C contains a list of notation, but a general summary here may be
useful. Terms that represent mathematical objects, such as variables, func-
tions, and parameters, are generally printed in an italic font. The exceptions
are the standard names of functions, operators, and mathematical constants,
such as sin, log, Γ (the gamma function), Φ (the normal CDF), E (the ex-
pectation operator), d (the differential operator), e (the base of the natural
logarithm), and so on.

I tend to use Greek letters for parameters and English letters for almost
everything else, but in some cases, I am not consistent in this distinction.

I do not distinguish vectors and scalars in the notation; thus, “x” may
represent either a scalar or a vector, and xi may represent either the ith

element of an array or the ith vector in a set of vectors. I use uppercase
letters for matrices and the corresponding lowercase letters with subscripts
for elements of the matrices. I do not use boldface except for emphasis or for
headings.

I generally use uppercase letters for random variables and the correspond-
ing lowercase letters for realizations of the random variables. Sometimes I
am not completely consistent in this usage, especially in the case of random
samples and statistics.

I describe a number of methods or algorithms in this book. The descrip-
tions are in a variety of formats. Occasionally they are just in the form of text;
the algorithm is described in (clear?!) English text. Often they are presented
in the form of pseudocode in the form of equations with simple for-loops,
such as for the accumulation of a sum of corrected squares on page 116, or in
pseudocode that looks more like Fortran or C. (Even if C-like statements are
used, I almost always begin the indexing at the 1st element; that is, at the
first element, not the zeroth element. The exceptions are for cases in which
the index also represents a power, such as in a polynomial; in such cases, the
0th element is the first element. I call this “0 equals first” indexing.) Other
times the algorithms are called “Algorithm x.x” and listed as a series of steps,
as on page 218. There is a variation of the “Algorithm x.x” form. In one form
the algorithm is given a name and its input is listed as input arguments, for
example MergeSort, on page 122. This form is useful for recursive algorithms
because it allows for an easy specification of the recursion. Pedagogic consid-
erations (if not laziness!) led me to use a variety of formats for presentation of
algorithms; the reader will likely encounter a variety of formats in literature
in statistics and computing, and some previous exposure should help to make
the format irrelevant.
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Use in the Classroom

Most statistics students will only take one or two courses in the broad field of
computational statistics. I have tried at least to introduce the major areas of
the field, but this means, of course, that depth of coverage of most areas has
been sacrificed.

The chapters and sections in the book vary considerably in their lengths,
and this sometimes presents a problem for an instructor to allocate the cover-
age over the term. The number of pages is a better, but still not very accurate,
measure of the time required to cover the material.

There are several different types of courses for which this book could be
used, either as the primary text or as a supplement.

Statistical Computing Courses
Most programs in statistics in universities in the United States include a course
called “statistical computing”. There are two kinds of courses called “statisti-
cal computing”. One kind is “packages and languages for data analysis”. This
book would not be of much use in such a course.

The other kind of course in statistical computing is “numerical methods in
statistics”. Part II of this book is designed for such a course in statistical com-
puting. Selected chapters in Parts III and IV could also be used to illustrate
and motivate the topics of those six chapters. Chapter 1 could be covered as
necessary in a course in statistical computing, but that chapter should not be
skipped over too lightly.

One of the best ways to learn and understand a computational method
is to implement the method in a computer program. Executing the program
provides immediate feedback on the correctness. Many of the exercises in
Part II require the student to “write a program in Fortran or C”. In some cases,
the purpose is to identify design issues and how to handle special datasets,
but in most cases the purpose is to ensure that the method is understood;
hence, in most cases, instead of Fortran or C, a different language could be
used, even a higher-level one such as R. Those exercises also help the student
to develop a facility in programming. Programming is the best way to learn
programming. (Read that again; yes, that’s what I mean. It’s like learning to
type.)

Computational Statistics Courses
Another course often included in statistics programs is one on “computa-
tionally intensive statistical methods”, that is, what I call “computational
statistics”. This type of course, which is often taught as a “special topics”
course, varies widely. The intent generally is to give special attention to such
statistical methods as the bootstrap or to such statistical applications as den-
sity estimation. These topics often come up in other courses in statistical
theory and methods, but because of the emphasis in these courses, there is no
systematic development of the computationally-intensive methods. Parts III
and IV of this book are designed for courses in computational statistics. I have
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taught such a course for a number of years, and I find that the basic material
of Chapter 1 bears repeating (although it is prerequisite for the course that I
teach). Some smattering of Part II, especially random number generation in
Chapter 7, may also be useful in such a course, depending on whether or not
the students have a background in statistical computing (meaning “numerical
methods in statistics”).

Modern Applied Statistics Courses
The book, especially Parts III and IV, could also be used as a text in a
course on “modern applied statistics”. The emphasis would be on modeling
and statistical learning; the approach would be exploration of data.

Exercises

The book contains a number of exercises that reinforce the concepts discussed
in the text or, in some cases, extend those concepts. Appendix D provides
solutions or comments for several of the exercises.

Some of the exercises are rather open-ended, asking the student to “ex-
plore”. Some of the “explorations” are research questions.

One weakness of students (and lots of other people!) is the ability to write
clearly. Writing is improved by practice and by criticism. Several of the exer-
cises, especially the “exploration” ones, end with the statement: “Summarize
your findings in a clearly-written report.” Grading such exercises, including
criticism of the writing, usually requires more time — so a good trick is to let
students “grade” each others’ work. Writing and editing are major activities
in the work of statisticians (not just the academic ones!), and so what better
time to learn and improve these activities than during the student years.

In most classes I teach in computational statistics, I give Exercise A.3
in Appendix A (page 656) as a term project. It is to replicate and extend a
Monte Carlo study reported in some recent journal article. Each student picks
an article to use. The statistical methods studied in the article must be ones
that the student understands, but that is the only requirement as to the area
of statistics addressed in the article. I have varied the way in which the project
is carried out, but it usually involves more than one student working together.
A simple way is for each student to referee another student’s first version (due
midway through the term) and to provide a report for the student author to
use in a revision. Each student is both an author and a referee. In another
variation, I have students be coauthors.

Prerequisites

It is not (reasonably) possible to itemize the background knowledge required
for study of this book. I could claim that the book is self-contained, in the sense
that it has brief introductions to almost all of the concepts, but that would
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not be fair. An intermediate-level background in mathematics and statistics
is assumed.

The book also assumes some level of computer literacy, and the ability
to “program” in some language such as R or Matlab. “Real” programming
ability is highly desirable, and many of the exercises in Part II require real
programming.
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I thank my wife Maŕıa, to whom this book is dedicated, for everything.

I used LATEX2ε to write the book, and I used R to generate the graphics. I did
all of the typing, programming, etc., myself, so all mistakes are mine. I would
appreciate receiving notice of errors as well as suggestions for improvement.

Notes on this book, including errata, are available at
http://mason.gmu.edu/~jgentle/cmstatbk/

Fairfax County, Virginia James E. Gentle
April 24, 2009



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Part I Preliminaries

Introduction to Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Mathematical and Statistical Preliminaries . . . . . . . . . . . . . . . . . . . . 5
1.1 Discovering Structure in Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Mathematical Tools for Identifying Structure in Data . . . . . . . . 10
1.3 Data-Generating Processes; Probability Distributions . . . . . . . . 29
1.4 Statistical Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.5 Probability Statements in Statistical Inference . . . . . . . . . . . . . . 52
1.6 Modeling and Computational Inference . . . . . . . . . . . . . . . . . . . . . 56
1.7 The Role of the Empirical Cumulative Distribution Function . . 59
1.8 The Role of Optimization in Inference . . . . . . . . . . . . . . . . . . . . . . 65
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Part II Statistical Computing

Introduction to Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Computer Storage and Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.1 The Fixed-Point Number System . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.2 The Floating-Point Number System. . . . . . . . . . . . . . . . . . . . . . . . 88
2.3 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



xviii Contents

Algorithms and Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.1 Error in Numerical Computations . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.2 Algorithms and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.4 Iterations and Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.5 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.6 Computational Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Approximation of Functions and Numerical Quadrature . . . . . . . 147
4.1 Function Approximation and Smoothing . . . . . . . . . . . . . . . . . . . . 153
4.2 Basis Sets in Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.3 Orthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.4 Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
4.5 Kernel Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.6 Numerical Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
4.7 Monte Carlo Methods for Quadrature . . . . . . . . . . . . . . . . . . . . . . 192
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Numerical Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.1 General Computational Considerations for Vectors and

Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.2 Gaussian Elimination and Elementary Operator Matrices . . . . . 209
5.3 Matrix Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.4 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.5 Updating a Solution to a Consistent System . . . . . . . . . . . . . . . . 227
5.6 Overdetermined Systems; Least Squares . . . . . . . . . . . . . . . . . . . . 228
5.7 Other Computations with Matrices . . . . . . . . . . . . . . . . . . . . . . . . 235
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Solution of Nonlinear Equations and Optimization . . . . . . . . . . . . . 241
6.1 Finding Roots of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
6.2 Unconstrained Descent Methods in Dense Domains . . . . . . . . . . 261
6.3 Unconstrained Combinatorial and Stochastic Optimization . . . . 275
6.4 Optimization under Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
6.5 Computations for Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
6.6 Computations for Maximum Likelihood . . . . . . . . . . . . . . . . . . . . 294
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301



Contents xix

Generation of Random Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
7.1 Randomness of Pseudorandom Numbers . . . . . . . . . . . . . . . . . . . . 305
7.2 Generation of Nonuniform Random Numbers . . . . . . . . . . . . . . . 307
7.3 Acceptance/Rejection Method Using a Markov Chain . . . . . . . . 313
7.4 Generation of Multivariate Random Variates . . . . . . . . . . . . . . . . 315
7.5 Data-Based Random Number Generation . . . . . . . . . . . . . . . . . . . 318
7.6 Software for Random Number Generation . . . . . . . . . . . . . . . . . . 320
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Part III Methods of Computational Statistics

Introduction to Part III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Graphical Methods in Computational Statistics . . . . . . . . . . . . . . . . 337
8.1 Smoothing and Drawing Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
8.2 Viewing One, Two, or Three Variables . . . . . . . . . . . . . . . . . . . . . 344
8.3 Viewing Multivariate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Tools for Identification of Structure in Data . . . . . . . . . . . . . . . . . . . 371
9.1 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
9.2 Measures of Similarity and Dissimilarity . . . . . . . . . . . . . . . . . . . . 383
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Estimation of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
10.1 General Approaches to Function Estimation . . . . . . . . . . . . . . . . 403
10.2 Pointwise Properties of Function Estimators . . . . . . . . . . . . . . . . 407
10.3 Global Properties of Estimators of Functions . . . . . . . . . . . . . . . . 410
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

Monte Carlo Methods for Statistical Inference . . . . . . . . . . . . . . . . . 417
11.1 Monte Carlo Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
11.2 Simulation of Data from a Hypothesized Model: Monte Carlo

Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
11.3 Simulation of Data from a Fitted Model: “Parametric

Bootstraps” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
11.4 Random Sampling from Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
11.5 Reducing Variance in Monte Carlo Methods . . . . . . . . . . . . . . . . 425
11.6 Software for Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431



xx Contents

Data Randomization, Partitioning, and Augmentation . . . . . . . . . 435
12.1 Randomization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
12.2 Cross Validation for Smoothing and Fitting . . . . . . . . . . . . . . . . . 440
12.3 Jackknife Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Bootstrap Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
13.1 Bootstrap Bias Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
13.2 Bootstrap Estimation of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 456
13.3 Bootstrap Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
13.4 Bootstrapping Data with Dependencies . . . . . . . . . . . . . . . . . . . . 461
13.5 Variance Reduction in Monte Carlo Bootstrap . . . . . . . . . . . . . . 462
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

Part IV Exploring Data Density and Relationships

Introduction to Part IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

Estimation of Probability Density Functions Using Parametric
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
14.1 Fitting a Parametric Probability Distribution . . . . . . . . . . . . . . . 476
14.2 General Families of Probability Distributions . . . . . . . . . . . . . . . . 477
14.3 Mixtures of Parametric Families . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
14.4 Statistical Properties of Density Estimators Based on

Parametric Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

Nonparametric Estimation of Probability Density Functions . . . 487
15.1 The Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
15.2 Histogram Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
15.3 Kernel Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
15.4 Choice of Window Widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
15.5 Orthogonal Series Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
15.6 Other Methods of Density Estimation . . . . . . . . . . . . . . . . . . . . . . 506
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

Statistical Learning and Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . 515
16.1 Clustering and Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
16.2 Ordering and Ranking Multivariate Data . . . . . . . . . . . . . . . . . . . 538
16.3 Linear Principal Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
16.4 Variants of Principal Components . . . . . . . . . . . . . . . . . . . . . . . . . 560



16.5 Projection Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
16.6 Other Methods for Identifying Structure . . . . . . . . . . . . . . . . . . . . 572
16.7 Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

Statistical Models of Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
17.1 Regression and Classification Models . . . . . . . . . . . . . . . . . . . . . . . 588
17.2 Probability Distributions in Models . . . . . . . . . . . . . . . . . . . . . . . . 597
17.3 Fitting Models to Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
17.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
17.5 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
Notes and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636

Appendices

Monte Carlo Studies in Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
A.1 Simulation as an Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
A.2 Reporting Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 645
A.3 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
A.4 Computer Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

Some Important Probability Distributions . . . . . . . . . . . . . . . . . . . . . 657

Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663
C.1 General Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663
C.2 Computer Number Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
C.3 Notation Relating to Random Variables . . . . . . . . . . . . . . . . . . . . 666
C.4 General Mathematical Functions and Operators . . . . . . . . . . . . . 668
C.5 Models and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

Solutions and Hints for Selected Exercises . . . . . . . . . . . . . . . . . . . . . 677

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
E.1 Literature in Computational Statistics . . . . . . . . . . . . . . . . . . . . . 690
E.2 References for Software Packages . . . . . . . . . . . . . . . . . . . . . . . . . . 693
E.3 References to the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

Contents xxi



Part I

Preliminaries



Introduction to Part I

The material in Part I is basic to the field of computational statistics. It
includes some intermediate-level mathematics, and probability and statistics.
Many readers will be familiar with at least some of this material.

Although the presentation is rather terse, the single chapter in this part is
somewhat longer than most of the chapters in this book. That is due both to
the diversity of the topics and to their importance in the subsequent chapters.

We discuss the general objectives in statistical analyses and, in particular,
those objectives for which computationally intensive methods are appropriate.

After the introductory discussion of exploratory data analysis, we begin
with some definitions and general discussions of useful measures in vector
spaces and some of the operations on vectors, functions, and matrices.

When data are organized into a matrix, the mathematical properties of the
matrix can reveal a lot about the structure of the data. We therefore briefly
describe some of the important properties of matrices. We will encounter
various aspects of properties of matrices later. In Chapter 5 of Part II we
discuss computational methods, in Chapter 9 of Part III we describe various
transformations of data using matrix algebra, and in Chapters 16 and 17 of
Part IV we discuss methods of matrix algebra for understanding statistical
relationships among variables or observations.

We then describe briefly some of the methods of statistical inference that
are applicable generally whether in computational statistics or not. Although
much of this discussion may appear rather elementary, it does presuppose
some general familiarity with statistical theory and methods; otherwise the
material would be insufficient for the subsequent developments in the book.

We emphasize that computational inference is often a useful alternative to
the asymptotic inference used in many of the standard statistical methods.

The empirical cumulative distribution function (ECDF) plays a very ba-
sic role in statistical inference, especially in computational inference in such
methods as the bootstrap. Despite the fundamental nature of the ECDF, it
is not often given its due in textbooks on statistical inference.



4 Introduction to Part I

Many methods in statistical analysis can be couched as solutions to opti-
mization problems. In Section 1.8 we emphasize this perspective, and briefly
discuss some of the implications for the statistical properties of the methods.

Many statements made in Part I lack supporting arguments. The purpose
of this part is to state the highlights that are assumed in later parts of the
book. References to more complete presentations and other notes are given at
the end of the chapter.
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Mathematical and Statistical Preliminaries

The purpose of an exploration of data may be rather limited, and it may be
ad hoc, or the purpose may be more general, perhaps to gain understanding
of some natural phenomenon.

The questions addressed in the data exploration may be somewhat open-
ended. The process of understanding often begins with general questions about
the structure of the data. At any stage of the analysis, our understanding is
facilitated by means of a model.

A model is a description that embodies our current understanding of a
phenomenon. In an operational sense, we can formulate a model either as a
description of a data-generating process, or as a prescription for processing
data.

The model is often expressed as a set of equations that relate data elements
to each other. It may include probability distributions for the data elements.

If any of the data elements are considered to be realizations of random
variables, the model is a stochastic model.

A model should not limit our analysis; rather, the model should be able
to evolve. The process of understanding involves successive refinements of the
model. The refinements proceed from vague models to more specific ones. An
exploratory data analysis may begin by mining the data to identify interesting
properties. These properties generally raise questions that are to be explored
further.

A class of models may have a common form within which the members
of the class are distinguished by values of parameters. For example, the class
of normal probability distributions has a single form of a probability density
function that has two parameters. Within this family of probability distribu-
tions, these two parameters completely characterize the distributional prop-
erties. If this form of model is chosen to represent the properties of a dataset,
we may seek confidence intervals for values of the two parameters or perform
statistical tests of hypothesized values of these two parameters.

In models that are not as mathematically tractable as the normal probabil-
ity model — and many realistic models are not — we may need to use compu-
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tationally intensive methods involving simulations, resamplings, and multiple
views to make inferences about the parameters of a model. These methods
are part of the field of computational statistics.

1.1 Discovering Structure in Data

The components of statistical datasets are “observations” and “variables” or
“features”. In general, “data structures” are ways of organizing data to take
advantage of the relationships among the variables constituting the dataset.
Data structures may express hierarchical relationships, crossed relationships
(as in “relational” databases), or more complicated aspects of the data (as
in “object-oriented” databases). Data structures, or more generally, database
management, is a relatively mature area of computer science.

In data analysis, “structure in the data” is of interest. Structure in the
data includes such nonparametric features as modes, gaps, or clusters in the
data, the symmetry of the data, and other general aspects of the shape of
the data. Because many classical techniques of statistical analysis rely on an
assumption of normality of the data, the most interesting structure in the
data may be those aspects of the data that deviate most from normality.

In identifying and studying structure, we use both numerical measures and
graphical views.

Multiple Analyses and Multiple Views

There are many properties that are more apparent from graphical displays of
the data.

Although it may be possible to express the structure in the data in terms
of mathematical models, prior to attempting to do so, graphical displays may
be used to discover qualitative structure in the data. Patterns observed in the
data may suggest explicit statements of the structure or of relationships among
the variables in the dataset. The process of building models of relationships
is an iterative one, and graphical displays are useful throughout the process.
Graphs comparing data and the fitted models are used to refine the models.

Effective use of graphics often requires multiple views. For multivariate
data, plots of individual variables or combinations of variables can be produced
quickly and used to get a general idea of the properties of the data. The data
should be inspected from various perspectives. Instead of a single histogram to
depict the general shape of univariate data, for example, multiple histograms
with different bin widths and different bin locations may provide more insight.
(See Figure 8.4 on page 347.)

Sometimes, a few data points in a display can completely obscure inter-
esting structure in the other data points. This is the case when the Euclidean
distances between various pairs of data points differ greatly. A zooming win-
dow to restrict the scope of the display and simultaneously restore the scale
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to an appropriate viewing size can reveal structure. A zooming window can
be used with any graphics software whether the software supports it or not;
zooming can be accomplished by deletion of the points in the dataset outside
of the window.

Scaling the axes can also be used effectively to reveal structure. The rel-
ative scale is called the “aspect ratio”. In Figure 1.1, which is a plot of a
bivariate dataset, we form a zooming window that deletes a single observa-
tion. The greater magnification and the changed aspect ratio clearly show a
relationship between X and Y in a region close to the origin that may not
hold for the full range of data. A simple statement of this relationship would
not extrapolate outside the window to the outlying point.

The use of a zooming window is not “deletion of outliers”; it is focusing
in on a subset of the data and is done independently of whatever is believed
about the data outside of the window.
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Fig. 1.1. Scales Matter

Although the zooming window in Figure 1.1 reveals structure by changing
the aspect ratio as it focused on a subset of the data, views with different
aspect ratios may reveal meaningless structure just by differentially changing
the scales of measurement of the variables. Such structural characteristics of
data are sometimes just artificial structure. Artificial structure is structure
that can be changed meaningfully by univariately rescaling the data. Many
multivariate statistical analyses reveal artificial structure. Clustering (see Sec-
tion 16.1) and principal component analysis (see Section 16.3), for example,
are sensitive to artificial structure. This, of course, presents a real challenge
to the data analyst. The meaning of “artificial” is somewhat subjective; what
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is artificial to one person or in one application may be meaningful in another
application. Data analysis cannot be conducted in the abstract.

One type of structure that may go undetected is that arising from the
order in which the data were collected. For data that are recognized as a time
series by the analyst, this is obviously not a problem, but often there is a
time dependency in the data that is not recognized immediately. “Time” or
“location” may not be an explicit variable on the dataset, even though it may
be an important variable. The index of the observation within the dataset may
be a surrogate variable for time, and characteristics of the data may vary as
the index varies. Often it is useful to make plots in which one axis is the index
number of the observations. For univariate data x1, x2, . . ., quick insights can
be obtained by a “4-plot” (Filliben, 1982) that consists of the following four
plots, as in Figure 1.2:

• plot of xi versus i to see if there is any trend in the way the data are
ordered, which is likely to be the order in which the data were collected;

• plot of xi+1 versus xi to see if there are systematic lags (again, this is done
because of possible effects of the order in which the data were collected);

• histogram;
• normal probability plot of the data.

The DATAPLOT program distributed freely by NIST implements 4-plots; see
http://www.itl.nist.gov/div898/software.htm
The patterns of the data seen in Figure 1.2 are interesting. The shape

in the upper left plot may lead us to expect the data-generating process is
periodic, however, the nature of the periodicity is not very clear. The two
lower plots seem to indicate that the process is more-or-less normal. The
upper right plot shows the strongest structure, and so we should pursue what
it may suggest, namely to look at first-order differences. Following up on this,
in this particular dataset, we would see that the first-order differences seem to
be uncorrelated and to follow a normal distribution. (The dataset is, in fact,
an artificially-generated stationary martingale with normal marginals. Such a
data-generating process can yield some unexpected patterns, and in the more
interesting cases of nonstationarity and nonnormality the data can be very
difficulty to analyze. Martingales often can be used effectively in modeling
the behavior of stock prices.)

More subtle time dependencies are those in which the values of the vari-
ables are not directly related to time, but relationships among variables are
changing over time. The identification of such time dependencies is much
more difficult, and often requires fitting a model and plotting residuals. An-
other strictly graphical way of observing changes in relationships over time is
by using a sequence of graphical displays. The DATAPLOT program includes
a “6-plot”, which helps in exploring relationships between two variables that
may be changing over time, and whether the stochastic component of the
relationship follows a normal distribution.
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Fig. 1.2. 4-Plot

Simple Plots May Reveal the Unexpected

Although in “computational statistics”, the emphasis is generally on interac-
tive graphical displays or on displays of high-dimensional data, as we have
seen, very simple plots are also useful. A simple plot of the data will often
reveal structure or other characteristics of the data that numerical summaries
do not.

An important property of data that is often easily seen in a graph is
the unit of measurement. Data on continuous variables are often rounded or
measured on a coarse grid. This may indicate other problems in the collection
of the data. The horizontal lines in Figure 1.3 indicate that the data do not
come from a continuous distribution, even if the data analyst thinks they
did, and is using a model based on the assumption that they did. Whether
we can use methods of data analysis that assume continuity depends on the
coarseness of the grid or measurement; that is, on the extent to which the
data are discrete or the extent to which they have been discretized.
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We discuss graphical methods further in Chapter 8. The emphasis is on
the use of graphics for discovery. The field of statistical graphics is much
broader, of course, and includes many issues of design of graphical displays
for conveying (rather than discovering) information.

1.2 Mathematical Tools for Identifying Structure in Data

While the features of interest in a dataset may be such things as colors or other
nominal properties, in order to carry out a meaningful statistical analysis, the
data must be numeric or else must have been mapped into the real number
system.

We think of a set of n observations on a single variable or feature as a
vector in the n-dimensional vector space of real numbers, which we denote by
IRn. Likewise, we think of a set of m variables or features that are associated
with a single observational unit as a vector in the m-dimensional vector space
of real numbers, IRm. The matrix whose elements are the n observations on the
m variables is in the space that we denote by IRn×m. I do not use different
notation to distinguish a vector from a scalar (that is, from a single real
number); hence, “x” may represent either a scalar or a vector, and “0” may
represent the scalar zero or a vector of zeros. I usually use an upper-case letter
to represent a matrix (but upper-case is also used for other things, such as
random variables).
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Useful Measures in Vector Spaces

Three basic mathematical objects that we will work with are vectors, matri-
ces, and functions. These are special classes of objects. They are members of
vector spaces, which are mathematical structures consisting of a set and two
operations,

• an operation of addition for any two elements in the class that yields an
element in the class

• an operation of multiplication of any element in the class by a real scalar
that yields an element in the class,

and a special member called the additive identity, which when added to any
element in the vector space yields that same element.

In the following, we will generally refer to the members of a vector space as
“elements”, although occasionally we will call them “vectors”, although they
may not be vectors in the usual sense.

For any class of objects with these two operations and an additive identity,
that is, for vector spaces, we can define three useful types of functions. These
are inner products, norms, and metrics.

Inner Products

The inner product of two elements x and y, denoted by ⟨x, y⟩, is any function
into IR that satisfies the following conditions:

• nonnegativity for (x, x):

for all x ̸= 0, ⟨x, x⟩ > 0; (1.1)

• mapping of (x, 0) and (0, x):

for all x, ⟨0, x⟩ = ⟨x, 0⟩ = ⟨0, 0⟩ = 0; (1.2)

• commutativity:
for all x, y, ⟨x, y⟩ = ⟨y, x⟩; (1.3)

• factoring of scalar multiplication in inner products:

for all x, y, and for all a ∈ IR, ⟨ax, y⟩ = a⟨x, y⟩; (1.4)

• relation of addition in the vector space to addition of inner products:

for all x, y, z, ⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩. (1.5)

(In the above statements, “for all” means for all elements in the set for which
the function is defined.)

An important property of inner products is the Cauchy-Schwarz inequality:
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⟨x, y⟩ ≤ ⟨x, x⟩1/2⟨y, y⟩1/2. (1.6)

This is easy to see by first observing that for every real number t,

0 ≤ (⟨(tx + y), (tx + y)⟩)
= ⟨x, x⟩t2 + 2⟨x, y⟩t + ⟨y, y⟩
= at2 + bt + c,

where the constants a, b, and c correspond to the inner products in the pre-
ceding equation. This nonnegative quadratic in t cannot have two distinct real
roots, hence the discriminant, b2 − 4ac, must be less than or equal to zero;
that is, (

1
2
b

)2

≤ ac.

By substituting and taking square roots, we get the Cauchy-Schwarz inequal-
ity. It is also clear from this proof that equality holds only if x = 0 or if y = rx
for some scalar r.

The inner product or dot product of two vectors x and y in IRn, also denoted
by xTy, is defined by

⟨x, y⟩ = xTy =
n∑

i=1

xiyi. (1.7)

Notice that ⟨x, y⟩ = ⟨y, x⟩ and xTy = (xTy)T = yTx.
The inner product or dot product of the real functions f and g over the

domain D, denoted by ⟨f, g⟩D or usually just by ⟨f, g⟩, is defined as

⟨f, g⟩D =
∫

D
f(x)g(x) dx (1.8)

if the (Lebesgue) integral exists. By checking the defining properties of an
inner product, it is easy to see that the functions defined in equations (1.7)
and (1.8) are norms (exercise).

Dot products of functions (as well as of vectors and matrices) over the
complex number field are defined in terms of integrals (or sums) of complex
conjugates,

⟨f, g⟩D =
∫

D
f(x)ḡ(x) dx,

if the integral exists. The notation ḡ(·) denotes the complex conjugate of the
function g(·). Often, even if the vectors and matrices in data analysis have
real elements, many functions of interest are complex. In this book, however,
we will generally assume the functions are real-valued, and so we do not write
inner product using the complex conjugate.

To avoid questions about integrability, we generally restrict attention to
functions whose dot products with themselves exist; that is, to functions that
are square Lebesgue integrable over the region of interest. The set of such
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square integrable functions is denoted L2(D). In many cases, the range of
integration is the real line, and we may use the notation L2(IR), or often just
L2, to denote that set of functions and the associated inner product.

We can also define an inner product for matrices, but the matrix inner
product is not so useful for our purposes, so we will not define it here.

Norms

The “size” of an object with multiple elements can be quantified by a real-
valued function called a norm, often denoted by ∥ · ∥.

A norm is any function into IR that satisfies the following conditions:

• nonnegativity:
for all x ̸= 0, ∥x∥ > 0; (1.9)

• mapping of the identity:

for x = 0, ∥x∥ = 0; (1.10)

• relation of scalar multiplication to real multiplication:

for all a ∈ IR and for all x, ∥ax∥ = |a|∥x∥; (1.11)

• triangle inequality:

for all x, y, ∥x + y∥ ≤ ∥x∥ + ∥y∥. (1.12)

(Again, “for all” means for all elements in the set for which the function is
defined.)

For matrix norms we usually also require an additional condition:

• consistency property:

for all conformable matrices A, B, ∥AB∥ ≤ ∥A∥∥B∥. (1.13)

There are various kinds of norms. One of the most useful norms is that
induced by an inner product:

∥x∥ =
√
⟨x, x⟩. (1.14)

(In Exercise 1.3a you are asked to show that the function defined from an
inner product in this way is indeed a norm.)

A useful class of norms, called Lp norms, for p ≥ 1, are defined as

∥x∥p =
(〈

|x|p/2, |x|p/2
〉)1/p

. (1.15)

(In the expression above, |x|p/2 means the object of the same type as x whose
elements are the absolute values of the corresponding elements of x raised to
the p/2 power. For the n-vector x, |x|p/2 = (|x1|p/2, . . . , |xn|p/2).)
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As above, we often use a subscript to designate a particular norm, for
example, ∥x∥p or ∥A∥F. For vectors, the norm arising from the inner prod-
uct (1.14) is denoted by ∥x∥2, although it is so commonly used that the
simple notation ∥x∥ usually refers to this vector norm. It is sometimes called
the Euclidean norm or the L2 norm.

For matrices, the norm arising from the inner product (1.14) is called the
Frobenius norm, denoted by ∥A∥F, and is equal to (

∑
i,j a2

ij)1/2. Usually a
matrix norm denoted without a subscript is the Frobenius matrix norm, but
this is not as universally used as the notation without subscript to denote the
Euclidean vector norm. (The Frobenius matrix norm is also sometimes called
the “Euclidean norm”, but in the case of matrices that term is more widely
used to refer to the L2 matrix norm defined below.)

Matrix norms can also be defined in terms of vector norms, and the L2

vector norm results in a matrix norm that is different from the Frobenius
norm. For clarity, we will denote a vector norm as ∥ · ∥v and a matrix norm
as ∥ · ∥M. (This notation is meant to be generic; that is, ∥ · ∥v represents any
vector norm.) The matrix norm ∥ · ∥M induced by ∥ · ∥v is defined by

∥A∥M = max
x̸=0

∥Ax∥v

∥x∥v
. (1.16)

It is easy to see that an induced norm is indeed a matrix norm. The first
three properties of a norm are immediate, and the consistency property can
be verified by applying the definition (1.16) to AB and replacing Bx with y;
that is, using Ay.

We usually drop the v or M subscript, and the notation ∥ · ∥ is overloaded
to mean either a vector or matrix norm. (Overloading of symbols occurs in
many contexts, and we usually do not even recognize that the meaning is
context-dependent. In computer language design, overloading must be recog-
nized explicitly because the language specifications must be explicit.)

From equation (1.16) we have the L2 matrix norm:

∥A∥2 = max
∥x∥2=1

∥Ax∥2.

The induced norm of A given in equation (1.16) is sometimes called the
maximum magnification by A. The expression looks very similar to the max-
imum eigenvalue, and indeed it is in some cases.

For any vector norm and its induced matrix norm, we see from equa-
tion (1.16) that

∥Ax∥ ≤ ∥A∥ ∥x∥ (1.17)
because ∥x∥ ≥ 0.

Metrics

The distance between two elements of a vector space can be quantified by a
metric, which is a function ∆ from pairs of elements in a vector space into IR
satisfying the properties
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• nonnegativity:

for all x, y with x ̸= y, ∆(x, y) > 0; (1.18)

• mapping of the identity:

for all x, ∆(x, x) = 0; (1.19)

• commutativity:
for all x, y, ∆(x, y) = ∆(y, x); (1.20)

• triangle inequality:

for all x, y, z, ∆(x, z) ≤ ∆(x, y) +∆(y, z). (1.21)

(Again, “for all” means for all elements in the set for which the function is
defined.)

There are various kinds of metrics, and we often use a subscript to des-
ignate a particular metric, for example, ∆1(x, y) or ∆p(x, y). Many useful
metrics are induced by norms. One of the most useful induced metrics for
vectors is the one induced by the Euclidean norm:

∆(x, y) = ∥x − y∥2. (1.22)

Any norm applied in this way defines a metric (Exercise 1.3b).
For vectors, the metric (1.22) is called the Euclidean metric (or “Euclidean

distance”) or the L2 metric. Notice that this metric is the square root of the
inner product (x − y)T(x − y). This suggests a generalization to

√
(x − y)TA(x − y) (1.23)

for a given positive definite matrix A. This is the elliptic metric. If A is the
inverse of a variance-covariance matrix, the quantity in (1.23) is sometimes
called the Mahalanobis distance between x and y. The expression without the
square root is often used; it may also be called the Mahalanobis distance, but
more properly is called the Mahalanobis squared distance (see also page 392).
Notice that if A = I , the Mahalanobis squared distance is the square of
the Euclidean distance. The Mahalanobis squared distance is not a metric.
(Because of the square, it does not satisfy the triangle inequality.)

Norms and metrics play an important role in identifying structure in data.

Linear Combinations and Linear Independence

A very common operation in working with vectors is the addition of a scalar
multiple of one vector to another vector,

z = ax + y, (1.24)
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where a is a scalar and x and y are vectors conformable for addition. Viewed
as a single operation with three operands, this is called an “axpy” for obvious
reasons. (Because the Fortran programs to perform this operation were called
saxpy and daxpy, the operation is also sometimes called “saxpy” or “daxpy”.)
The axpy operation is called a linear combination. Such linear combinations
of vectors are the basic operations in most areas of linear algebra. The com-
position of axpy operations is also an axpy; that is, one linear combination
followed by another linear combination is a linear combination. In general, for
the vectors v1, . . . , vk and scalars a1 = · · · = ak = 0, we form

z = a1v1 + · · · + akvk. (1.25)

Any linear combination such as (1.25) can be decomposed into a sequence of
axpy operations.

If a given vector can be formed by a linear combination of one or more
vectors, the set of vectors (including the given one) is said to be linearly
dependent; conversely, if in a set of vectors no one vector can be represented
as a linear combination of any of the others, the set of vectors is said to be
linearly independent.

Linear independence is one of the most important concepts both in linear
algebra and in statistics.

We can see that the definition of a linearly independent set of vectors
{v1, . . . , vk} is equivalent to stating that if

a1v1 + · · · akvk = 0, (1.26)

then a1 = · · · = ak = 0.
If the set of vectors {v1, . . . , vk} is not linearly independent, then it is

possible to select a maximal linearly independent subset; that is, a subset of
{v1, . . . , vk} that is linearly independent and has maximum cardinality. We
do this by selecting an arbitrary vector, vi1 , and then seeking a vector that
is independent of vi1 . If there are none in the set that is linearly independent
of vi1 , then a maximum linearly independent subset is just the singleton,
because all of the vectors must be a linear combination of just one vector
(that is, a scalar multiple of that one vector). If there is a vector that is
linearly independent of vi1 , say vi2 , we next seek a vector in the remaining set
that is independent of vi1 and vi2 . If one does not exist, then {vi1 , vi2} is a
maximal subset because any other vector can be represented in terms of these
two and hence, within any subset of three vectors, one can be represented
in terms of the two others. Thus, we see how to form a maximal linearly
independent subset, and we see there is a unique maximum cardinality of any
subset of linearly independent vectors.

Basis Sets

If each vector in the vector space V can be expressed as a linear combination
of the vectors in some set G, then G is said to be a generating set or spanning
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set of V . If, in addition, all linear combinations of the elements of G are in V ,
the vector space is the space generated by G.

A set of linearly independent vectors that generate or span a space is said
to be a basis for the space. The cardinality of a basis set for a vector space
consisting of n-vectors is n. The cardinality of a basis set may be countably
infinite, such as in the case of a vector space (or “linear space”) of functions.

Normalized Vectors

The Euclidean norm of a vector corresponds to the length of the vector x in a
natural way; that is, it agrees with our intuition regarding “length”. Although,
as we have seen, this is just one of many vector norms, in most applications
it is the most useful one. (I must warn you, however, that occasionally I will
carelessly but naturally use “length” to refer to the order of a vector; that is,
the number of elements. This usage is common in computer software packages
such as R and SAS IML, and software necessarily shapes our vocabulary.)

Dividing a given vector by its length normalizes the vector, and the re-
sulting vector with length 1 is said to be normalized; thus

x̃ =
1

∥x∥x (1.27)

is a normalized vector. Normalized vectors are sometimes referred to as “unit
vectors”, although we will generally reserve this term for a special kind of
normalized vector that has 0s in all positions except one and has a 1 in that
position. A normalized vector is also sometimes referred to as a “normal vec-
tor”. I use “normalized vector” for a vector such as x̃ in equation (1.27) and
use the “normal vector” to denote a vector that is orthogonal to a subspace.

Orthogonal Vectors and Orthogonal Vector Spaces

Two vectors v1 and v2 such that

⟨v1, v2⟩ = 0 (1.28)

are said to be orthogonal, and this condition is denoted by v1 ⊥ v2. (Some-
times we exclude the zero vector from this definition, but it is not important
to do so.) Normalized vectors that are all orthogonal to each other are called
orthonormal vectors. (If the elements of the vectors are from the field of com-
plex numbers, orthogonality and normality are defined in terms of the dot
products of a vector with a complex conjugate of a vector.)

A set of nonzero vectors that are mutually orthogonal are necessarily lin-
early independent. To see this, we show it for any two orthogonal vectors and
then indicate the pattern that extends to three or more vectors. Suppose v1
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and v2 are nonzero and are orthogonal; that is, ⟨v1, v2⟩ = 0. We see immedi-
ately that if there is a scalar a such that v1 = av2, then a must be nonzero
and we have a contradiction because ⟨v1, v2⟩ = a⟨v1, v1⟩ ̸= 0. For three mutu-
ally orthogonal vectors, v1, v2, and v3, we consider v1 = av2 + bv3 for a or b
nonzero, and arrive at the same contradiction.

Orthogonalization Transformations

Given m nonnull, linearly independent vectors, x1, . . . , xm, it is easy to form
m orthonormal vectors, x̃1, . . . , x̃m, that span the same space. A simple way
to do this is sequentially. First normalize x1 and call this x̃1. Now, suppose
that x2 is represented in an orthogonal coordinate system in which one axis
is x̃1, and determine the coordinate of x2 for that axis. This means the point
of intersection of an orthogonal line from x2 to x̃1. This is an orthogonal pro-
jection, so next, orthogonally project x2 onto x̃1 and subtract this projection
from x2. The result is orthogonal to x̃1; hence, normalize this and call it x̃2.
These first two steps are

x̃1 =
1

∥x1∥
x1,

x̃2 =
1

∥x2 − ⟨x̃1, x2⟩x̃1∥
(x2 − ⟨x̃1, x2⟩x̃1).

(1.29)

These are called Gram-Schmidt transformations. We discuss them further be-
ginning on page 219.

Series Expansions in Basis Sets

Basis sets are useful because we can represent any element in the vector space
uniquely as a linear combination of the elements in the basis set. If {v1, v2, . . .}
is a given basis set for a vector space containing the element x, then there are
unique constants c1, c2, . . . such that

x =
∑

k

ckvk. (1.30)

(In this expression and many of those that follow, I do not give the limits of
the summation. The index k goes over the full basis set, which we assume to
be countable, but not necessarily finite.)

In the case of finite-dimensional vector spaces, the set {v1, v2, . . .} is finite;
its cardinality is the dimension of the vector space.

The reason that basis sets and expansions in a basis set are important is for
the use of expansions in approximating and estimating vectors, matrices, and
functions. Approximations and estimation are major topics in later chapters
of this book.
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A basis set whose elements are normalized and mutually orthogonal is
usually the best to work with because they have nice properties that facilitate
computations, and there is a large body of theory about their properties.

If the basis set is orthonormal, we can easily determine the coefficients ck

in the expansion (1.30):
ck = ⟨x, vk⟩. (1.31)

The coefficients {ck} are called the Fourier coefficients of x with respect to
the orthonormal basis {vk}.

If x has the expansion above, the square of the L2 norm of the function is
the sum of squares of the Fourier coefficients:

⟨x, x⟩ =

〈
∑

k

ckvk,
∑

k

ckvk

〉

=
∑

k

|ck|2. (1.32)

In applications, we approximate an element of a vector space using a trun-
cated orthogonal series. In this case, we are interested in the residual,

x −
j∑

k=1

ckvk, (1.33)

where j is less than the upper bound on the index in equation (1.30).

Series Expansions of Functions

The basic objects such as inner products, norms, and metrics can be defined
for functions in terms of integrals, just as these objects are defined for vectors
in terms of sums. With functions, of course, we need to consider the existence
of the integrals, and possibly make some slight changes in definitions.

We will change the notation slightly for functions, and then use it consis-
tently in later chapters such as Chapters 4 and 10 where we approximate or
estimate functions. We will start the index at 0 instead of 1, and we will use
qk to denote the kth function in a generic basis set. We call this “0 equals
first” indexing.

After these basic objects are in place, we can define concepts such as linear
independence and orthogonality just as we have done above. For a given class
of functions, we may also be able to identify a basis set. If the class is very
restricted, such as say, the class of all real polynomials of degree k or less over
a finite interval [a, b], then the basis set may be finite and rather simple. For
more interesting classes of functions, however, the basis set must be infinite.
(See Section 4.2 for some basis sets for functions.) For approximating functions
using an infinite basis set, it is obviously necessary to use a truncated series.
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Because, in practice we deal with truncated series, the error due to that
truncation is of interest. For the function f , the error due to finite truncation
at j terms of the infinite series is the residual function f −

∑j
k=0 ckqk.

The mean squared error over the domain D is the scaled, squared L2 norm
of the residual,

1
d

∥∥∥∥∥f −
j∑

k=0

ckqk

∥∥∥∥∥

2

, (1.34)

where d is some measure of the domain D. (If the domain is the interval [a, b],
for example, one choice is d = b − a.)

A very important property of Fourier coefficients is that they yield the
minimum mean squared error for an expansion in any given subset of a basis
set of functions {qi}; that is, for any other constants, {ai}, and any j,

∥∥∥∥∥f −
j∑

k=0

ckqk

∥∥∥∥∥

2

≤

∥∥∥∥∥f −
j∑

k=0

akqk

∥∥∥∥∥

2

(1.35)

(see Exercise 1.4).
Another important property of the residuals, analogous to that of the

linear least squares estimator is that the residual or error, f −
∑j

k=0 ckqk, is
orthogonal to the approximation, that is,

〈
j∑

k=0

ckqk, f −
j∑

k=0

ckqk

〉
= 0. (1.36)

Partial sums of squares of Fourier coefficients,
∑j

k=0 c2
k, for any j are

bounded by ∥f∥2, that is,

j∑

k=0

|ck|2 ≤ ∥f∥2. (1.37)

This is called Bessel’s inequality, and, it follows from equation (1.32) or from

0 ≤

∥∥∥∥∥f −
j∑

k=0

ckqk

∥∥∥∥∥

2

= ∥f∥2 −
j∑

k=0

|ck|2.

The optimality of Fourier coefficients, the orthogonality of the residual, and
Bessel’s inequality, that is, equations (1.35), (1.36), and (1.37), apply for or-
thogonal series expansions in any vector space.

There are some additional special considerations for expansions of func-
tions, which we will address in Chapter 4.
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Properties of Functions and Operations on Functions

There are many important properties of functions, such as continuity and
differentiability, that we will assume from time to time.

Another important property of some functions is convexity. A function f
is a convex function if for any two points x and y in the domain of f and
w ∈ (0, 1), then

f(wx + (1 − w)y) ≤ wf(x) + (1 − w)f(y); (1.38)

that is, by the definition of convexity, f is convex if its value at the weighted
average of two points does not exceed the weighted average of the function at
those two points. If the inequality (1.38) is strict, then the function is said to
be strictly convex.

If f is a convex function, then −f is said to be a concave function. Many
interesting functions in statistical applications are concave.

If f is convex over D then there is a b such that for any x and t in D,

b(x − t) + f(t) ≤ f(x). (1.39)

Notice that for a given b, L(x) = b(x− t) + f(t) is a straight line through the
point (t, f(t)), with slope b.

For functions over the same domain, the axpy operation, such as in the
expansions in basis sets, is one of the most common operations on functions.

If the domain of the function f is a subset of the range of the function g,
then the composition of f and g, denoted f ◦ g, is defined as

f ◦ g(x) = f(g(x)). (1.40)

The convolution of two functions f and g is the function, which we denote
as f ∗ g, defined as

f ∗ g(x) =
∫

f(x − t)g(t) dt, (1.41)

if the integral exists. Note that the range of integration (in the appropriate
dimension) must be such that the integrand is defined over it. (Either of the
functions may be defined to be zero over subdomains, of course.)

We often refer to a function with an argument that is a function as a
functional. Function transforms, such as Fourier transforms and probability
characteristic functions, are functionals. In probability theory, many parame-
ters are defined as functionals; see examples on page 31.

Kernel Functions

A function specifying operations involving two variables is often called a kernel
function. The function f in the integrand in the definition of the convolution
above is a simple type of kernel. In that case, the two variables are combined
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into a single variable, but to emphasize the role of the two arguments, we
could write K(x, t) = f(x − t).

Properties of a particular process involving some kernel function K(x, y)
can often be studied by identifying particular properties of the kernel.

If a kernel K is defined over the same region for each of its arguments and
if it has the property K(x, y) = K(y, x) for all x and y for which it is defined,
then K is said to be symmetric.

We will encounter kernel functions in various applications in later chap-
ters. Kernels are often called “filters”, especially in applications in function
approximation or estimation. The conditional PDF pY |Z in equation (1.69)
below can be thought of as a kernel. A kernel of that form is often called
a “transition kernel”. The properties of transition kernels are important in
Markov chain Monte Carlo methods, which we will discuss in later chapters.

Properties of Matrices and Operations on Matrices

A common data structure for statistical analysis is a rectangular array; rows
represent individual observational units, or just “observations”, and columns
represent the variables or features that are observed for each unit. If the values
of the variables are elements of a field, for example if they are real numbers, the
rectangular array is a matrix, and the mathematics of matrices can be useful
in the statistical analysis. (If the values of the variables are other things, such
as “red” or “green”, or “high” or “low”, those values can be mapped to real
numbers, and again, we have a matrix, but the algebra of matrices may or
may not be useful in the analysis.) We will concentrate on situations in which
numeric values appropriately represent the observational data.

If the elements of a matrix X represent numeric observations on variables
in the structure of a rectangular array as indicated above, the mathematical
properties of X carry useful information about the observations and about the
variables themselves. In addition, mathematical operations on the matrix may
be useful in discovering structure in the data. These operations include various
transformations and factorizations that we discuss in Chapters 5 and 9. We
also address some of the computational details of operations on matrices in
Chapter 5.

Symmetric Matrices

A matrix A with elements aij is said to be symmetric if each element aji has
the same value as aij . Symmetric matrices have useful properties that we will
mention from time to time.

Symmetric matrices provide a generalization of the inner product. If A
is symmetric and x and y are conformable vectors, then the bilinear form
xTAy has the property that xTAy = yTAx, and hence this operation on x
and y is commutative, which is one of the properties of an inner product.
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More generally, a bilinear form is a kernel function of the two vectors, and a
symmetric matrix corresponds to a symmetric kernel.

An important type of bilinear form is xTAx, which is called a quadratic
form.

Nonnegative Definite and Positive Definite Matrices

A real symmetric matrix A such that for any real conformable vector x the
quadratic form xTAx is nonnegative, that is, such that

xTAx ≥ 0, (1.42)

is called a nonnegative definite matrix. We denote the fact that A is nonneg-
ative definite by

A ≽ 0.

(Note that we consider the zero matrix, 0n×n, to be nonnegative definite.)
A symmetric matrix A such that for any (conformable) vector x ̸= 0 the

quadratic form
xTAx > 0 (1.43)

is called a positive definite matrix. We denote the fact that A is positive
definite by

A ≻ 0.

(Recall that A ≥ 0 and A > 0 mean, respectively, that all elements of A are
nonnegative and positive.) When A and B are symmetric matrices of the same
order, we write A ≽ B to mean A − B ≽ 0 and A ≻ B to mean A − B ≻ 0.
Nonnegative and positive definite matrices are very important in applications.
We will encounter them often in this book.

A kernel function K defined as

K(x, y) = xTAy, (1.44)

is said to be nonnegative or positive definite if A has the corresponding prop-
erty. (More general types of kernel may also be described as nonnegative or
positive definite, but the meaning is similar to the meaning in the bilinear
form of equation (1.44).)

In this book we use the terms “nonnegative definite” and “positive defi-
nite” only for symmetric matrices or kernels. In other literature, these terms
may be used more generally; that is, for any (square) matrix that satis-
fies (1.42) or (1.43).

Systems of Linear Equations

One of the most common uses of matrices is to represent a system of linear
equations
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Ax = b. (1.45)

Whether or not the system (1.45) has a solution (that is, whether or not for
a given A and b there is an x such that Ax = b) depends on the number of
linearly independent rows in A (that is, considering each row of A as being a
vector). The number of linearly independent rows of a matrix, which is also
the number of linearly independent columns of the matrix, is called the rank
of the matrix. A matrix is said to be of full rank if its rank is equal to either
its number of rows or its number of columns. A square full rank matrix is
called a nonsingular matrix. We call a matrix that is square but not full rank
singular.

The system (1.45) has a solution if and only if

rank(A|b) ≤ rank(A), (1.46)

where A|b is the matrix formed from A by adjoining b as an additional column.
(This and other facts cited here are proved in standard texts on linear algebra.)
If a solution exists, the system is said to be consistent. (The common regression
equations, which we will encounter in many places throughout this book, do
not satisfy the condition (1.46).)

We now briefly discuss the solutions to a consistent system of the form
of (1.45).

Matrix Inverses

If the system Ax = b is consistent then

x = A−b (1.47)

is a solution, where A− is any matrix such that

AA−A = A, (1.48)

as we can see by substituting A−b into AA−Ax = Ax.
Given a matrix A, a matrix A− such that AA−A = A is called a generalized

inverse of A, and we denote it as indicated. If A is square and of full rank,
the generalized inverse, which is unique, is called the inverse and is denoted
by A−1. It has a stronger property than (1.48): AA−1 = A−1A = I , where I
is the identity matrix.

To the general requirement AA−A = A, we successively add three require-
ments that define special generalized inverses, sometimes called respectively
g2, g3, and g4 inverses. The “general” generalized inverse is sometimes called
a g1 inverse. The g4 inverse is called the Moore-Penrose inverse.

For a matrix A, a Moore-Penrose inverse, denoted by A+, is a matrix that
has the following four properties.
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1. AA+A = A. Any matrix that satisfies this condition is called a gener-
alized inverse, and as we have seen above is denoted by A−. For many
applications, this is the only condition necessary. Such a matrix is also
called a g1 inverse, an inner pseudoinverse, or a conditional inverse.

2. A+AA+ = A+. A matrix A+ that satisfies this condition is called an outer
pseudoinverse. A g1 inverse that also satisfies this condition is called a g2

inverse or reflexive generalized inverse, and is denoted by A∗.
3. A+A is symmetric.
4. AA+ is symmetric.

The Moore-Penrose inverse is also called the pseudoinverse, the p-inverse, and
the normalized generalized inverse.

We can see by construction that the Moore-Penrose inverse for any matrix
A exists and is unique. (See, for example, Gentle, 2007, page 102.)

The Matrix XTX

When numerical data are stored in the usual way in a matrix X , the matrix
XTX often plays an important role in statistical analysis. A matrix of this
form is called a Gramian matrix, and it has some interesting properties.

First of all, we note that XTX is symmetric; that is, the (ij)th element,∑
k xk,ixk,j is the same as the (ji)th element. Secondly, because for any y,

(Xy)TXy ≥ 0, XTX is nonnegative definite.
Next we note that

XTX = 0 ⇐⇒ X = 0. (1.49)

The implication from right to left is obvious. We see the left to right impli-
cation by noting that if XTX = 0, then the ith diagonal element of XTX is
zero. The ith diagonal element is

∑
j x2

ji, so we have that xji for all j and i;
hence X = 0.

Another interesting property of a Gramian matrix is that, for any matrices
B and C (that are conformable for the operations indicated),

BXTX = CXTX ⇐⇒ BXT = CXT. (1.50)

The implication from right to left is obvious, and we can see the left to right
implication by writing

(BXTX − CXTX)(BT − CT) = (BXT − CXT)(BXT − CXT)T,

and then observing that if the left-hand side is null, then so is the right-
hand side, and if the right-hand side is null, then BXT − CXT = 0 because
XTX = 0 =⇒ X = 0, as above. Similarly, we have

XTXB = XTXC ⇐⇒ XTB = XTC. (1.51)
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The generalized inverses of XTX have useful properties. First, we see
from the definition, for any generalized inverse (XTX)−, that ((XTX)−)T
is also a generalized inverse of XTX . (Note that (XTX)− is not necessarily
symmetric.) Also, we have, from equation (1.50),

X(XTX)−XTX = X. (1.52)

This means that (XTX)−XT is a generalized inverse of X .
The Moore-Penrose inverse of X has an interesting relationship with a

generalized inverse of XTX :

XX+ = X(XTX)−XT. (1.53)

This can be established directly from the definition of the Moore-Penrose
inverse.

An important property of X(XTX)−XT is its invariance to the choice of
the generalized inverse of XTX . Suppose G is any generalized inverse of XTX .
Then, from equation (1.52), we have X(XTX)−XTX = XGXTX , and from
the implication (1.50), we have

XGXT = X(XTX)−XT; (1.54)

that is, X(XTX)−XT is invariant to the choice of generalized inverse (which
of course, it must be for the Moore-Penrose inverse to be unique, as we stated
above).

The matrix X(XTX)−XT has a number of interesting properties in addi-
tion to those mentioned above. We note

(
X(XTX)−XT

) (
X(XTX)−XT

)
= X(XTX)−(XTX)(XTX)−XT

= X(XTX)−XT, (1.55)

that is, X(XTX)−XT is idempotent. (A matrix A is idempotent if AA = A.
It is clear that the only idempotent matrix that is of full rank is the identity
I .) Any real symmetric idempotent matrix is a projection matrix.

The most familiar application of the matrix X(XTX)−XT is in the analy-
sis of the linear regression model y = Xβ+ϵ. This matrix projects the observed
vector y onto a lower-dimensional subspace that represents the fitted model:

ŷ = X(XTX)−XTy. (1.56)

Projection matrices, as the name implies, generally transform or project
a vector onto a lower-dimensional subspace. We will encounter projection
matrices again in Chapter 9.

Eigenvalues and Eigenvectors

Multiplication of a given vector by a square matrix may result in a scalar
multiple of the vector. If A is an n × n matrix, v is a vector not equal to 0,
and c is a scalar such that
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Av = cv, (1.57)

we say v is an eigenvector of A and c is an eigenvalue of A.
We should note how remarkable the relationship Av = cv is: The effect of

a matrix multiplication of an eigenvector is the same as a scalar multiplication
of the eigenvector. The eigenvector is an invariant of the transformation in
the sense that its direction does not change under the matrix multiplication
transformation. This would seem to indicate that the eigenvector and eigen-
value depend on some kind of deep properties of the matrix, and indeed, this
is the case.

We immediately see that if an eigenvalue of a matrix A is 0, then A must
be singular.

We also note that if v is an eigenvector of A, and t is any nonzero scalar,
tv is also an eigenvector of A. Hence, we can normalize eigenvectors, and we
often do.

If A is symmetric there are several useful facts about its eigenvalues and
eigenvectors. The eigenvalues and eigenvector of a (real) symmetric matrix
are all real. The eigenvectors of a symmetric matrix are (or can be chosen to
be) mutually orthogonal. We can therefore represent a symmetric matrix A
as

A = V CV T, (1.58)

where V is an orthogonal matrix whose columns are the eigenvectors of A and
C is a diagonal matrix whose (ii)th element is the eigenvalue corresponding to
the eigenvector in the ith column of V . This is called the diagonal factorization
of A.

If A is a nonnegative (positive) definite matrix, and c is an eigenvalue
with corresponding eigenvector v, if we multiply both sides of the equation
Av = cv, we have vTAv = cvTv ≥ 0(> 0), and since vTv > 0, we have
c ≥ 0(> 0). That is to say, the eigenvalues of a nonnegative definite matrix
are nonnegative, and the eigenvalues of a positive definite matrix are positive.

The maximum modulus of any eigenvalue in a given matrix is of interest.
This value is called the spectral radius, and for the matrix A, is denoted by
ρ(A):

ρ(A) = max |ci|, (1.59)

where the ci’s are the eigenvalues of A.
The spectral radius is very important in many applications, from both

computational and statistical standpoints. The convergence of some itera-
tive algorithms, for example, depend on bounds on the spectral radius. The
spectral radius of certain matrices determines important characteristics of
stochastic processes.

Two interesting properties of the spectral radius of the matrix A = (aij)
are

ρ(A) ≤ max
j

∑

i

|aij |, (1.60)



28 1 Mathematical and Statistical Preliminaries

and
ρ(A) ≤ max

i

∑

j

|aij |. (1.61)

The spectral radius of the square matrix A is related to the L2 norm of A
by

∥A∥2 =
√
ρ(ATA). (1.62)

We refer the reader to general texts on matrix algebra for proofs of the facts
we have stated without proof, and for many other interesting and important
properties of eigenvalues, which we will not present here.

Singular Values and the Singular Value Decomposition

Computations with matrices are often facilitated by first decomposing the ma-
trix into multiplicative factors that are easier to work with computationally, or
else reveal some important characteristics of the matrix. Some decompositions
exist only for special types of matrices, such as symmetric matrices or positive
definite matrices. One of most useful decompositions, and one that applies to
all types of matrices, is the singular value decomposition. We discuss it here,
and in Section 5.3 we will discuss other decompositions.

An n × m matrix A can be factored as

A = UDV T, (1.63)

where U is an n×n orthogonal matrix, V is an m×m orthogonal matrix, and
D is an n×m diagonal matrix with nonnegative entries. (An n×m diagonal
matrix has min(n, m) elements on the diagonal, and all other entries are zero.)

The number of positive entries in D is the same as the rank of A. The
factorization (1.63) is called the singular value decomposition (SVD) or the
canonical singular value factorization of A. The elements on the diagonal of
D, di, are called the singular values of A. We can rearrange the entries in D
so that d1 ≥ d2 ≥ · · · , and by rearranging the columns of U correspondingly,
nothing is changed.

If the rank of the matrix is r, we have d1 ≥ · · · ≥ dr > 0, and if r <
min(n, m), then dr+1 = · · · = dmin(n,m) = 0. In this case

D =
[

Dr 0
0 0

]
,

where Dr = diag(d1, . . . , dr).
From the factorization (1.63) defining the singular values, we see that the

singular values of AT are the same as those of A.
For a matrix with more rows than columns, in an alternate definition of the

singular value decomposition, the matrix U is n×m with orthogonal columns,
and D is an m×m diagonal matrix with nonnegative entries. Likewise, for a
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matrix with more columns than rows, the singular value decomposition can be
defined as above but with the matrix V being m×n with orthogonal columns
and D being m × m and diagonal with nonnegative entries.

If A is symmetric its singular values are the absolute values of its eigen-
values.

The Moore-Penrose inverse of a matrix has a simple relationship to its
SVD. If the SVD of A is given by UDV T, then its Moore-Penrose inverse is

A+ = V D+UT, (1.64)

as is easy to verify. The Moore-Penrose inverse of D is just the matrix D+

formed by inverting all of the positive entries of D and leaving the other
entries unchanged.

Square Root Factorization of a Nonnegative Definite Matrix

If A is a nonnegative definite matrix (which, in this book, means that it is
symmetric), its eigenvalues are nonnegative, so we can write S = C

1
2 , where

S is a diagonal matrix whose elements are the square roots of the elements in
the C matrix in the diagonal factorization of A in equation (1.58). Now we
observe that (V SV T)2 = V CV T = A; hence, we write

A
1
2 = V SV T, (1.65)

and we have (A 1
2 )2 = A.

1.3 Data-Generating Processes; Probability
Distributions

The model for a data-generating process often includes a specification of a
random component that follows some probability distribution. Important de-
scriptors or properties of a data-generating process or probability distribution
include the cumulative distribution function (CDF), the probability density
function (PDF), and the expected value of the random variable or of certain
functions of the random variable. It is assumed that the reader is familiar
with the basics of probability distributions at an advanced calculus level, but
in the following we will give some definitions and state some important facts
concerning CDFs and PDFs.

For a random variable Y , the CDF, which we often denote with the same
symbols as we use to denote the distribution itself, is a function whose ar-
gument y is a real quantity of the same order as Y and whose value is the
probability that Y is less than or equal to y; that is,

Pθ(y) = Pr(Y ≤ y | θ). (1.66)
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We also sometimes use the symbol that represents the random variable as a
subscript on the symbol for the CDF, for example, PY (y).

A CDF is defined over the entire real line IR, or over the entire space IRd;
it is nondecreasing in y; and it is bounded between 0 and 1.

The notation for a CDF is usually an upper-case letter, and the notation for
the corresponding PDF is usually the same letter in lower case. We also may
use a subscript on the letter representing the PDF, for example, pY (y). The
PDF is the derivative of the CDF (with respect to the appropriate measure),
and so

PY (y) =
∫

t≤y
pY (t) dt. (1.67)

The CDF or PDF of a joint distribution is denoted in an obvious fashion,
for example, pY Z(y, z).

If Y = (Y1, Y2) with CDF PY (y), where Y1 is a d1-vector and Y2 is a d2-
vector, then PY1(y1) = Pr(Y1 ≤ y1) is called the marginal CDF of Y1, and is
given by

PY1(y1) =
∫

IRd2

PY (y1, y2) dy2. (1.68)

The CDF or PDF of a conditional distribution is denoted in an obvious
fashion, for example, pY |Z(y|z). Conditional functions are kernels, and a con-
ditional PDF may be interpreted as a transition density from the conditioning
random variable to the other random variable. We have the familiar relation-
ship

pY Z(y, z) = pY |Z(y|z)pZ(z). (1.69)

The region in which the PDF is positive is called the support of the distri-
bution.

The expected value of any (reasonable) function T of the random variable
Y is denoted by E(T (Y )), and if p(y) is the PDF of the random variable, is
defined as

E(T (Y )) =
∫

IRd

T (y)p(y)dy, (1.70)

for a d-dimensional random variable. In the simplest form of this expression,
T is the identity, and E(Y ) is the mean of the random variable Y .

Transforms of the CDF

There are three transforms of the CDF that are useful in a wide range of
statistical applications: the moment generating function, the cumulant gener-
ating function, and the characteristic function. They are all expected values
of a function of the variable of the transform.

The characteristic function, which is similar to a Fourier transform exists
for all CDFs. It is

ϕ(t) =
∫

IRd

exp(itTy) dP (y). (1.71)



1.3 Data-Generating Processes; Probability Distributions 31

A related function is the moment generating function,

M(t) =
∫

IRd

exp(tTy) dP (y), (1.72)

if the integral exists for t in an open set that includes 0. In this case, note
that M(t) = ϕ(t). The moment generating function is also called the Laplace
transform, although the usual definition of the Laplace transform is for an
integral over the positive reals, and the argument of the Laplace transform is
the negative of the argument t in the moment generating function.

One of the useful properties of the characteristic function and the moment
generating function is the simplicity of those functions for linear combinations
of a random variable. For example, if we know the moment generating function
of a random variable Y to be MY (t) and we have the mean Ŷ of a random
sample of Y of size n, then the moment generating function of Ŷ is just
MY (t) = (MY (t/n))n.

Finally, the cumulant generating function is

K(t) = log(M(t)), (1.73)

if M(t) exists.
These functions are useful as generators of raw moments or cumulants.

For example, (assuming M(t) and E(Y ) exist)

ϕ′(0) = M ′(0) = E(Y ).

These functions are also useful in series expansions and approximations of the
PDF or of other functions.

Statistical Functions of the CDF

In many models of interest, a parameter can be expressed as a functional of
the probability density function or of the cumulative distribution function of
a random variable in the model. The mean of a distribution, for example, can
be expressed as a functional M of the CDF P :

M(P ) =
∫

IRd

y dP (y). (1.74)

(Notice, following convention, we are using the same symbol M for the mean
functional that we use for the moment generating function. Using the same
symbol for in two ways, we have M(P ) = M ′(0).)

A functional that defines a parameter is called a statistical function.
For random variables in IR, the raw moment functionals

Mr(P ) =
∫

IR
yr dP (y), (1.75)
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and the quantile functionals

Ξπ(P ) = P−1(π), (1.76)

are useful. (For a discrete distribution, the inverse of the CDF must be defined
because the function does not have an inverse. There are various ways of doing
this; see equation (1.142) for one way.)

An expected value, as in equation (1.70) is a functional of the CDF. Other
expectations are useful descriptors of a probability distribution; for example,

Σ(P ) =
∫

IRd

(
y −

∫

IRd

t dP (t)
)(

y −
∫

IRd

t dP (t)
)T

dP (y)

= (E(Y − E(Y ))) (E(Y − E(Y )))T

= E(Y Y T) − (E(Y )) (E(Y ))T , (1.77)

which is the variance-covariance of Y , or just the variance of Y . The off-
diagonal elements in the matrix Σ(P ) are the pairwise covariances of the
elements of Y .

The variance-covariance is the second-order central moment. For univari-
ate random variables, higher-order central moments similar to equation (1.75)
are useful. For vector-valued random variables, moments higher than the sec-
ond are not very useful, except by considering the elements one at a time.
(What would be the third central moment analogous to the second central
moment defined in equation (1.77)?)

The covariances themselves may not be so useful for random variables that
do not have a normal distribution. Another approach to measuring the rela-
tionship between pairs of random variables is by use of copulas. A copula is a
function that relates a multivariate CDF to lower dimensional marginal CDFs.
The most common applications involve bivariate CDFs and their univariate
marginals, and that is the only one that we will use here. A two-dimensional
copula is a function C that maps [0, 1]2 onto [0, 1] with the following proper-
ties for every u ∈ [0, 1] and every (u1, u2), (v1, v2) ∈ [0, 1]2 with u1 ≤ v1 and
u2 ≤ v2:

C(0, u) = C(u, 0) = 0, (1.78)

C(1, u) = C(u, 1) = u, (1.79)

and
C(u1, u2) − C(u1, v2) − C(v1, u2) + C(v1, v2) ≥ 0. (1.80)

The arguments to a copula C are often taken to be CDFs, which of course
take values in [0, 1]. The usefulness of copulas derive from Sklar’s theorem:

Let PY Z be a bivariate CDF with marginal CDFs PY and PZ . Then
there exists a copula C such that for every y, z ∈ IR,

PY Z(y, z) = C(PY (y), PZ(z)). (1.81)
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If PY and PZ are continuous everywhere, then C is unique; otherwise
C is unique over the support of the distributions defined by PY and
PZ .
Conversely, if C is a copula and PY and PZ are CDFs, then the func-
tion PY Z(y, z) defined by equation (1.81) is a CDF with marginal
CDFs PY (y) and PZ(z).

Thus, a copula is a joint CDF of random variables with U(0, 1) marginals.
The proof of this theorem is given in Nelsen (2007), among other places.

For many bivariate distributions the copula is the most useful way to
relate the joint distribution to the marginals, because it provides a separate
description of the individual distributions and their association with each
other.

One of the most important uses of copulas is to combine two marginal
distributions to form a joint distribution with known bivariate characteristics.
We can build the joint distribution from a marginal and a conditional.

We begin with two U(0, 1) random variables U and V . For a given associ-
ation between U and V specified by the copula C(u, v), from Sklar’s theorem,
we can see that

PU |V (u|v) =
∂

∂v
C(u, v)|v . (1.82)

We denote ∂
∂v C(u, v)|v by Cv(u).

Certain standard copulas have been used in specific applications. The cop-
ula that corresponds to a bivariate normal distribution with correlation coef-
ficient ρ is

CNρ(u, v) =
∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
φρ(t1, t2) dt2dt1, (1.83)

where Φ(·) is the standard normal CDF, and φρ(·, ·) is the bivariate normal
PDF with means 0, variances 1, and correlation coefficient ρ. This copula
is usually called the Gaussian copula and has been wisely used in financial
applications.

A general class of copulas is called extreme value copulas. They have the
scaling property for all t > 0,

C(ut, vt) = (C(u, v))t. (1.84)

An extreme value copula can also be written as

C(u, v) = exp
(

log(uv)A
(

log(u)
log(uv)

))
, (1.85)

for some convex function A(t), called the dependence function, from [0, 1] to
[1/2, 1] with the property that max(t, 1 − t) < A(t) < 1 for all t ∈ [0, 1].

A specific extreme value copula that is widely used (also in financial ap-
plications, for example) is the Gumbel copula:
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CG(u, v) = exp
(
−
(
(− log(u))θ + (− log(v))θ

)1/θ
)

, (1.86)

where θ ≥ 1.
Another general class of copulas is called Archimedean copulas. These are

the copulas that can be written in the form

C(u, v) = f−1(f(u) + f(v)), (1.87)

where f , called the Archimedean generator, is a continuous, strictly decreas-
ing, convex function from the unit interval [0, 1] to the positive reals, IR+,
such that f(1) = 0.

One of the widely-used Archimedean copulas is the Joe copula:

CJ(u, v) = 1 −
(
(1 − u)θ + (1 − v)θ − (1 − u)θ(1 − v)θ

)1/θ
, (1.88)

where θ ≥ 1.
The association determined by a copula is not the same as that determined

by a correlation; that is, two pairs of random variables may have the same
copula but different correlations. Kendall’s τ (a correlation based on ranks;
see Lehmann, 1975, for example) is fixed for a given copula. (There are minor
differences in Kendall’s τ based on how ties are handled; but for continuous
distributions, the population value of Kendall’s τ is related to a copula by
τ = 4E(C(U, V )) − 1.

We will see examples of the use of copulas in random number generation
in Chapter 7 (see Exercise 7.5). Copulas are often used in the Monte Carlo
methods of computational finance, especially in the estimation of value at
risk; see, for example, Rank and Siegl (2002).

Families of Probability Distributions

It is useful to group similar probability distributions into families.
A family of distributions with probability measures Pθ for θ ∈ Θ is called

a parametric family if Θ ⊂ IRd for some fixed positive integer d and θ fully
determines the measure. In that case, we call θ the parameter and we call Θ
the parameter space. A parameter can often easily be defined as a functional
of the CDF.

A family that cannot be indexed in this way is called a nonparametric fam-
ily. In nonparametric methods, our analysis usually results in some general
description of the distribution, rather than in a specification of the distribu-
tion.

The type of a family of distributions depends on the parameters that
characterize the distribution. A “parameter” is a real number that can take on
more than one value within a parameter space. If the parameter space contains
only one point, the corresponding quantity characterizing the distribution is
not a parameter.
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Many common families are multi-parameter, and specialized subfamilies
are defined by special values of one or more parameters. For example, in a very
widely-used notation, the family of gamma distributions is characterized by
three parameters, γ, called the “location”; β, called the “scale”; and α, called
the “shape”. Its PDF is (Γ(α))−1β−α(x − γ)α−1e−(x−γ)/βI[γ,∞)(x). This is
sometimes called the “three-parameter gamma”, because often γ is taken to
be a fixed value, usually 0.

Specific values of the parameters determine special subfamilies of distri-
butions. For example, in the three-parameter gamma, if α is fixed at 1, the
resulting distribution is the two-parameter exponential, and if, additionally,
γ is fixed at 0, the resulting distribution is an exponential distribution.

Several of the standard parametric families are shown in Tables B.1
and B.2 beginning on page 660. The most important of these families is the
normal or Gaussian family. We often denote its CDF by Φ and its PDF by
φ. The form of the arguments indicates various members of the family; for
example, φ(x|µ,σ2) is the PDF of a univariate normal random variable with
mean µ and variance σ2, and φ(x) is the PDF of a standard univariate normal
random variable with mean 0 and variance 1.

An important family of distributions is the exponential class, which in-
cludes a number of parametric families. The salient characteristic of a family
of distributions in the exponential class is the way in which the parameter
and the value of the random variable can be separated in the density func-
tion. Another important characteristic of the exponential family is that the
support of a distribution in this family does not depend on any “unknown”
parameter.

A member of a family of distributions in the exponential class is one with
density that can be written in the form

pθ(y) = exp
(
(η(θ))TT (y) − ξ(θ)

)
h(y), (1.89)

where θ ∈ Θ.
The exponential class is also called the “exponential family”, but do not

confuse an “exponential class” in the sense above with the “exponential fam-
ily”, which are distributions with density λe−λx I(0,∞)(y).

Notice that all members of a family of distributions in the exponential
class have the same support. Any restrictions on the range may depend on y
through h(y), but they cannot depend on the parameter.

The form of the expression depends on the parametrization; that is, the
particular choice of the form of the parameters.

As noted above, if a parameter is assigned a fixed value, then it ceases to be
a parameter. This is important, because what are considered to be parameters
determine the class of a particular family. For example, the three-parameter
gamma is not a member of the exponential class; however, the standard two-
parameter gamma, with γ fixed at 0, is a member of the exponential class.

In addition to the standard parametric families shown in Tables B.1
and B.2, there are some general families of probability distributions that are
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very useful in computational statistics. These families, which include the Pear-
son, the Johnson, Tukey’s generalized lambda, and the Burr, cover wide ranges
of shapes and have a variety of interesting properties that are controlled by a
few parameters. Some are designed to be particularly simple to simulate. We
discuss these families of distributions in Section 14.2.

Mixture Distributions

In applications it is often the case that a single distribution does not model
the observed data adequately. In many such cases, however, a mixture of two
or more standard distributions from the same or different parametric families
does provide a good model.

If we have m distributions with PDFs pj , we can form a new PDF as

pM (y) =
m∑

j=1

ωjpj(y | θj), (1.90)

where ωj ≥ 0 and
∑m

j=1 ωj = 1. If all of the PDFs are from the same para-
metric family the individual densities would be p(y | θj).

If all of the densities have the same form, we can easily extend the idea
of a mixture distribution to allow the parameter to change continuously, so
instead of ωjp(y | θj), we begin with ω(θ)p(y | θ). If we have, analogously to
the properties above, ω(θ) ≥ 0 over some relevant range of θ, say Θ, and∫
Θ ω(θ) dθ = 1, then ω(θ)p(y | θ) is the joint PDF of two random variables,

and the expression analogous to (1.90),

pM (y) =
∫

Θ
ω(θ)p(y | θ) dθ, (1.91)

is a marginal PDF. This type of mixture distribution is central to Bayesian
analysis, as we see in equations (1.104) and (1.105).

A linear combination such as equation (1.90) provides great flexibility, even
if the individual densities pj(y | θj) are from a restricted class. For example,
even if the individual densities are all normals, which are all symmetric, a
skewed distribution can be formed by a proper choice of the ωj and θj =
(µj ,σ2

j ).
We must be clear that this is a mixture of distributions of random vari-

ables, Y1, . . . , Ym, not a linear combination of the random variables them-
selves. Some linear properties carry over the same for mixtures as for linear
combinations. For example, if Yj ∼ pj and Y ∼ p in equation (1.90), and

Z =
m∑

j=1

ωjYj ,

then E(Z) = E(Y ) =
∑m

j=1 ωjE(Yj), assuming the expectations exist, but the
distribution of Z is not the same as that of Y .



1.4 Statistical Inference 37

The important linear transforms defined above, the moment generating
function and the characteristic function, carry over as simple linear combi-
nations. The cumulant generating function can then be evaluated from the
moment generating function using its definition (1.73). This is one of the
reasons that these transforms are so useful.

The PDF Decomposition

Probability distributions have useful applications even in situations where
there is no obvious data-generating process.

If f is a function such that
∫

D f(x) dx < ∞, then for some function g(x),
we can write

f(x) = g(x)pX (x) (1.92)

where pX is the probability density function of a random variable X with
support over the relevant domain of f . The decomposition of the function f
in this way is called probability density function decomposition or PDF decom-
position.

The PDF decomposition allows us to use methods of statistical estimation
for approximations involving f . We will see examples of the PDF decom-
position in various applications, such as Monte Carlo methods (pages 192
and 418), function estimation (Chapters 10 and 15), and projection pursuit
(Chapter 16).

1.4 Statistical Inference

For statistical inference, we generally assume that we have a sample of obser-
vations Y1, . . . , Yn on a random variable Y . A random sample, which we will
usually just call a “sample”, is a set of independent and identically distrib-
uted (i.i.d.) random variables. We will often use Y to denote a random sample
on the random variable Y . (This may sound confusing, but it is always clear
from the context.) A statistic is any function of Y that does not involve any
unobservable values. We may denote the actual observed values as y1, . . . , yn

since they are not random variables.
We assume that the sample arose from some data-generating process or,

equivalently, as a random sample from a probability distribution. Our objec-
tive is to use the sample to make inferences about the process. We may assume
that the specific process, call it Pθ, is a member of some family of probabil-
ity distributions P . For statistical inference, we fully specify the family P (it
can be a very large family), but we assume some aspects of Pθ are unknown.
(If the distribution Pθ that yielded the sample is fully known, while there
may be some interesting questions about probability, there are no interesting
statistical questions.) Our objective in statistical inference is to determine a
specific Pθ ∈ P , or some subfamily Pθ ⊂ P , that could likely have generated
the sample.
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The distribution may also depend on other observable variables. In general,
we assume we have observations Y1, . . . , Yn on Y , together with associated
observations on any related variable X or x. We denote the observed values
as (y1, x1), . . . , (yn, xn), or just as y1, . . . , yn. In this context, a statistic is any
function that does not involve any unobserved values.

In statistical inference, we distinguish observable random variables and
“parameters”, but we are not always careful in referring to parameters. We
think of two kinds of parameters: “known” and “unknown”. A statistic is a
function of observable random variables that does not involve any unknown
parameters. The “θ” in the expression Pθ above may be a parameter, perhaps
a vector, or it may just be some index that identifies the distribution within
a set of possible distributions.

Types of Statistical Inference

There are three different types of inference related to the problem of deter-
mining the specific Pθ ∈ P: point estimation, hypothesis tests, and confidence
sets. In point estimation, the estimand is often some function of the basic pa-
rameter θ. We often denote the estimand in general as g(θ). Hypothesis tests
and confidence sets are associated with probability statements that depend
on Pθ. We will briefly discuss them in Section 1.5.

In parametric settings, each type of inference concerns a parameter, θ, that
is assumed to be in some parameter space, Θ ⊂ IRk. If Θ is not a closed set,
it is more convenient to consider the closure of Θ, denoted by Θ, because
sometimes a good estimator may actually be on the boundary of the open set
Θ. (If Θ is closed, Θ is the same set, so we can always just consider Θ.)

A related problem in estimation is prediction, in which the objective is
to estimate the expected value of a random variable, given some informa-
tion about past realizations of the random variable and possibly, covariates
associated with those realizations.

Performance of Statistical Methods for Inference

There are many properties of a method of statistical inference that may be
relevant. In the case of point estimation a function of of the parameter θ, for
example, we may use an estimator T (Y ) based on the sample Y . Relevant
properties of T (Y ) include its bias, its variance, and its mean squared error.
The bias of T (Y ) for g(θ) is

Bias(T, g(θ)) = E(T (Y )) − g(θ). (1.93)

When it is clear what is being estimated, we often use the simpler notation
Bias(T ).

If this quantity is 0, then T (Y ) is said to be unbiased for g(θ). The mean
squared error (MSE) of T (Y ) is
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MSE(T, g(θ)) = E((T (Y ) − g(θ))2). (1.94)

Again, if it is clear what is being estimated, we often use the simpler notation
MSE(T ). Note that

E((T (Y ) − g(θ))2) = E((T (Y ) − E(T (Y )) + E(T (Y )) − g(θ))2)
= (E(T (Y ) − g(θ)))2 + E((T (Y ) − E(T (Y ))2)
= (Bias(T ))2 + V(T ); (1.95)

that is, the MSE is the square of the bias plus the variance.
We may also be interested in other distributional properties of an estima-

tor, for example, its median. When T (Y ) is used as an estimator for g(θ),
if

Med(T (Y )) = g(θ), (1.96)

where Med(X) is the median of the random variable X , we say that T (Y )
is median-unbiased for g(θ). A useful fact about median-unbiasedness is that
if T is median-unbiased for θ, and h is a monotone increasing function, then
h(T ) is median-unbiased for h(θ). This, of course, does not hold in general for
bias defined in terms of expected values. (If the CDF of the random variable
is not strictly increasing, or if in the last statement h is not strictly increas-
ing, we may have to be more precise about the definition of the median; see
equation (1.142) on page 62.)

Important research questions in statistics often involve identifying which
statistical methods perform the “best”, in the sense of being unbiased and
having the smallest variance, of having the smallest MSE, or of having other
heuristically appealing properties. Often the underlying probability distribu-
tions are complicated, and statistical methods are difficult to compare math-
ematically. In such cases, Monte Carlo methods such as discussed in Appen-
dix A may be used. In various exercises in this book, such as Exercise 1.18, you
are asked to use Monte Carlo simulation to compare statistical procedures.

There are several important properties of statistics that determine the
usefulness of those statistics in statistical inference. One of the most useful
properties of a statistic is sufficiency. (The previous sentences use the term
“statistic” to denote an observation or a function of observations that does
not involve an unknown quantity. Unfortunately, the plural “statistics” can
mean different things.)

Large Sample Properties

We are often interested in the performance of statistical procedures as the
sample size becomes unboundedly large. When we consider the large sample
properties, we often denote the statistics with a subscript representing the
sample size, for example, Tn.

If Tn is a statistic from a sample of size n, and if limn→∞ E(Tn) = θ,
then Tn is said to be unbiased in the limit for θ. If limn→∞ E((Tn − θ)2) = 0,
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then Tn is said to be consistent in mean-squared error. There are other kinds
of statistical consistency, but consistency in mean-squared error is the most
commonly used.

If Tn is a statistic from a sample of size n, and if E(Tn) = θ + O(n−1/2),
then Tn is said to be first-order accurate for θ; if E(Tn) = θ + O(n−1), it is
second-order accurate. (See page 670 for the definition of O(·). Convergence
of Tn or of E(Tn) can also be expressed as a stochastic convergence of Tn, in
which case we use the notation OP(·).)

The order of the mean squared error is an important characteristic of an
estimator. For good estimators of location, the order of the mean squared
error is typically O(n−1). Good estimators of probability densities, however,
typically have mean squared errors of at least order O(n−4/5) (see Chapter 15).

Sufficiency

Let Y be a sample from a population P ∈ P . A statistic T (Y ) is sufficient
for P ∈ P if and only if the conditional distribution of Y given T does not
depend on P . In similar fashion, we define sufficiency for a parameter or for
an element in a vector of parameters. Sufficiency depends on P , the family
of distributions. If a statistic is sufficient for P , it may not be sufficient for a
larger family, P1, where P ⊂ P1.

In general terms, sufficiency implies the conditional independence from the
parameter of the distribution of any other function of the random variable,
given the sufficient statistic.

The reason that sufficiency is such an important property is that it may
allow reduction of data without sacrifice of information.

Another, more specific property of sufficiency is that the statistical prop-
erties of a given method of inference that is based on a statistic that is not
sufficient can often be improved by conditioning the statistic on a sufficient
statistic, if one is available. A well-known instance of this fact is stated in the
Rao-Blackwell theorem, one version of which states:

Let Y be a random sample from a distribution Pθ ∈ P , and let S(Y )
be sufficient for P and have finite variance. Let T (Y ) be an unbiased
estimator for g(θ) with finite variance. Let

T̃ = E(T (Y )|S(Y )). (1.97)

Then T̃ is unbiased for g(θ) and

V(T̃ ) ≤ V(T ). (1.98)

There are several other ways of stating essentially equivalent results about a
statistic that is conditioned on a sufficient statistic. A more general statement
in a decision-theoretic framework for estimation is that if the loss function is
convex, a statistic conditioned on a sufficient statistic has no greater risk than
the statistic unconditioned. See Lehmann and Casella (1998) for a statement
in terms of convex loss functions and a proof.
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Five Approaches to Statistical Inference

If we assume that we have a random sample of observations Y1, . . . , Yn on a
random variable Y from some distribution Pθ, which is a member of some
family of probability distributions P , our objective in statistical inference is
to determine a specific Pθ ∈ P , or some subfamily Pθ ⊂ P , that could likely
have generated the sample.

Five approaches to statistical inference are

• use of the empirical cumulative distribution function (ECDF)
• definition and use of a loss function.
• use of a likelihood function
• fitting expected values
• fitting a probability distribution

These approaches are not mutually exclusive.
The computational issues in statistical inference are varied. In most ap-

proaches an optimization problem is central, and many of the optimization
problems cannot be solved analytically. Some approaches, such as those us-
ing the ECDF, lead to computationally intensive methods that use simulated
datasets. The use of a loss function may yield very complicated integrals repre-
senting average loss. These cannot be evaluated analytically, and so are often
evaluated using Monte Carlo methods.

We will discuss use of the ECDF more fully in Section 1.7, and in the rest of
this section, we will briefly discuss the other approaches listed above. In Exer-
cise 1.21 you are asked to obtain various estimates based on these approaches.
You should pay particular attention to the specific model or assumptions that
underlie each approach.

A Decision-Theoretic Approach; Loss and Risk

In the decision-theoretic approach to statistical inference, we call the inference
a decision or an action, and we identify a cost or loss that depends on the
decision and the true (but unknown) state of nature modeled by P ∈ P.

Obviously, we try to take an action that minimizes the expected loss.
We call the set of allowable actions or decisions the action space or decision

space, and we denote it as A. We base the inference on the random variable
X ; hence, the decision is a mapping from X , the range of X , to A.

If we observe data X , we take the action T (X) = a ∈ A. The statistical
procedure that leads to T (·) is the decision rule.

Loss Function

A loss function, L, is a mapping from P × A to [0,∞). The value of the
function at a given distribution P ∈ P for the action a is L(P, a).
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If P is indexed by θ, we can write the value of the function at a given value
θ for the action a as L(θ, a).

Depending on the parameter space Θ, the action space A, and our objec-
tives, the loss function often is a function only of g(θ) − a; that is, we may
have L(θ, a) = L(g(θ) − a).

The loss function generally should be nondecreasing in |g(θ) − a|. A loss
function that is convex has nice mathematical properties. A particularly nice
loss function, which is strictly convex, is the “squared-error loss”:

L2(θ, a) = (g(θ) − a)2. (1.99)

Any strictly convex loss function over an unbounded interval is unbounded. It
is not always realistic to use an unbounded loss function. A common bounded
loss function is the 0-1 loss function, which may be

L0−1(θ, a) = 0 if |g(θ) − a| ≤ α(n)
L0−1(θ, a) = 1 otherwise.

Risk Function

To choose an action rule T so as to minimize the loss function is not a well-
defined problem. We can make the problem somewhat more precise by con-
sidering the expected loss based on the action T (X), which we define to be
the risk:

R(P, T ) = E
(
L(P, T (X))

)
. (1.100)

The problem may still not be well defined. For example, to estimate g(θ)
so as to minimize the risk function is still not a well-defined problem. We can
make the problem precise either by imposing additional restrictions on the
estimator or by specifying in what manner we want to minimize the risk.

Optimal Decision Rules

We compare decision rules based on their risk with respect to a given loss
function and a given family of distributions. If a decision rule T∗ has the
property

R(P, T∗) ≤ R(P, T ) ∀P ∈ P, (1.101)

for all T , then T∗ is called an optimal decision rule.

Approaches to Minimizing the Risk

We use the principle of minimum risk in the following restricted ways. In all
cases, the approaches depend, among other things, on a given loss function.

• We may first place a restriction on the estimator and then minimize risk
subject to that restriction. For example, we may
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– require unbiasedness
– require equivariance.

• We may minimize some global property of the risk (“global” over the values
of θ). For example, we may
– minimize maximum risk
– minimize average risk.

These various ways of minimizing the risk lead to some familiar classical proce-
dures of statistical inference, such as UMVUE (uniformly minimum variance
unbiased estimation), UMPT (uniformly most powerful test), and minimax
rules.

To minimize an average risk over the parameter space requires some defi-
nition of an averaging function. If we choose the averaging function as Λ(θ),
with

∫
Θ dΛ(θ) = 1, then the average risk is

∫
ΘR(θ, T )dΛ(θ).

The decision that minimizes the average risk with respect to Λ(θ) is called
the Bayes rule, and the minimum risk,

∫
ΘR(θ, TΛ) dΛ(θ), is called the Bayes

risk.

Bayesian Inference

The averaging function Λ(θ) allows various interpretations, and it allows the
flexibility of incorporating prior knowledge or beliefs. The regions over which
Λ(θ) is large will be given more weight; therefore the estimator will be pulled
toward those regions.

In formal Bayes procedures, we call the averaging function the prior prob-
ability density for the parameter, which we consider to be a random variable
in its own right. Thus, we think of the probability distribution of the observ-
able random variable Y as a conditional distribution, given the unobservable
random parameter variable, Θ = θ. We then form the joint distribution of
θ and Y , and then the conditional distribution of θ given Y , called the pos-
terior distribution. We can summarize the approach in a Bayesian statistical
analysis as beginning with these steps:

1. identify the conditional distribution of the observable random variable;
assuming the density exists, call it

pY |Θ(y|θ) (1.102)

2. identify the prior (marginal) distribution of the parameter; assuming the
density exists, call it

pΘ(θ) (1.103)

3. identify the joint distribution; if densities exist, it is

pY,Θ(y, θ) = pY |Θ(y|θ)pΘ(θ) (1.104)
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4. determine the marginal distribution of the observable; if densities exist, it
is

pY (y) =
∫

Θ
pY,Θ(y, θ)dθ (1.105)

5. determine the posterior conditional distribution of the parameter given
the observable random variable; this is the posterior; if densities exist, it
is

pΘ|y(θ|x) = pY,Θ(y, θ)/pY (y). (1.106)

The posterior conditional distribution is then the basis for whatever deci-
sions are to be made.

The Bayes rule is determined by minimizing the risk, where the expectation
is taken with respect to the posterior distribution. This expectation is often
a rather complicated integral, and Monte Carlo methods, specifically, Markov
chain Monte Carlo (MCMC) techniques, are generally used to evaluate the
rule or to study the posterior distribution. We will discuss these techniques
in Chapter 11 and their applications in Chapter 17.

Likelihood

Given a sample Y1, . . . , Yn from distributions with probability densities pi(y),
where all PDFs are defined with respect to a common σ-finite measure, the
likelihood function is

Ln(pi ; Y ) =
n∏

i=1

pi(Yi). (1.107)

(Any nonnegative function proportional to Ln(pi ; Y ) is a likelihood function,
but it is common to speak of Ln(pi ; Y ) as “the” likelihood function.) We can
view the sample either as a set of random variables or as a set of constants,
the realized values of the random variables. Thinking of the likelihood as a
function of realized values, we usually use lower-case letters.

The log-likelihood function is the log of the likelihood:

lLn(pi ; y) = log Ln(pi | yi), (1.108)

It is a sum rather than a product.
The n subscript serves to remind us of the sample size, and this is often

very important in use of the likelihood or log-likelihood function particularly
because of their asymptotic properties. We often drop the n subscript, how-
ever. Also, we often drop the L subscript on the log-likelihood. (I should also
mention that some authors use the upper and lower cases in the opposite way
from that given above.)

In many cases of interest, the sample is from a single parametric family. If
the PDF is p(y ; θ) then the likelihood and log-likelihood functions are written
as
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L(θ ; y) =
n∏

i=1

p(yi ; θ), (1.109)

and
l(θ ; y) = log L(θ ; y). (1.110)

We sometimes write the expression for the likelihood without the observations:
L(θ) or l(θ).

The Parameter Is the Variable

Note that the likelihood is a function of θ for a given y, while the PDF is a
function of y for a given θ.

While if we think of θ as a fixed, but unknown, value, it does not make sense
to think of a function of that particular value, and if we have an expression
in terms of that value, it does not make sense to perform operations such as
differentiation with respect to that quantity. We should think of the likelihood
as a function of some dummy variable t, and write L(t ; y) or l(t ; y).

The likelihood function arises from a probability density, but it is not a
probability density function. It does not in any way relate to a “probability”
associated with the parameters or the model.

Although non-statisticians will often refer to the “likelihood of an obser-
vation”, in statistics, we use the term “likelihood” to refer to a model or a
distribution given observations.

In a multiparameter case, we may be interested in only some of the para-
meters. There are two ways of approaching this, use of a profile likelihood or
of a conditional likelihood.

Let θ = (θ1, θ2). If θ2 is fixed, the likelihood L(θ1 ; θ2, y) is called a profile
likelihood or concentrated likelihood of θ1 for given θ2 and y.

If the PDFs can be factored so that one factor includes θ2 and some func-
tion of the sample, S(y), and the other factor, given S(y), is free of θ2, then
this factorization can be carried into the likelihood. Such a likelihood is called
a conditional likelihood of θ1 given S(y).

Maximum Likelihood Estimation

The maximum likelihood estimate (MLE) of θ, θ̂, is defined as

θ̂ = arg max
t∈Θ

L(t ; y), (1.111)

where Θ is the closure of the parameter space.
The MLE in general is not unbiased for its estimand. A simple example

is the MLE of the variance in a normal distribution with unknown mean. If
Y1, . . . , Yn ∼ i.i.d.N(µ,σ2), it is easy to see from the definition (1.111) that
the MLE of σ2, that is, of the variance of Y is
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V̂(Y ) =
1
n

n∑

i=1

(Yi − Y )2. (1.112)

Thus the MLE is (n − 1)S2/n, where S2 is the usual sample variance:

S2 =
1

n − 1

n∑

i=1

(Yi − Y )2. (1.113)

Notice that the MLE of the variance depends on the distribution. (See
Exercise 1.16d.)

The MLE may have smaller MSE than an unbiased estimator, and, in fact,
that is the case for the MLE of σ2 in the case of a normal distribution with
unknown mean compared with the estimator S2 of σ2.

We will discuss statistical properties of maximum likelihood estimation
beginning on page 70, and some of the computational issues of MLE in Chap-
ter 6.

Score Function

In statistical inference, we often use the information about how the likelihood
or log-likelihood would vary if θ were to change. (As we have indicated, “θ”
sometimes plays multiple roles. I like to think of it as a fixed but unknown
value and use “t” or some other symbol for variables that can take on dif-
ferent values. Statisticians, however, often use the same symbol to represent
something that might change.) For a likelihood function (and hence, a log-
likelihood function) that is differentiable with respect to the parameter, a
function that represents this change and plays an important role in statistical
inference is the score function:

sn(θ ; y) =
∂l(θ ; y)
∂θ

. (1.114)

Likelihood Equation

In statistical estimation, if there is a point at which the likelihood attains
its maximum (which is, of course, the same point at which the log-likelihood
attains its maximum) that point obviously is of interest; it is the MLE in
equation (1.111).

If the likelihood is differentiable with respect to the parameter, the roots
of the score function are of interest whether or not they correspond to MLEs.
The score function equated to zero,

∂l(θ ; y)
∂θ

= 0, (1.115)

is called the likelihood equation. The derivative of the likelihood equated to
zero, ∂L(θ ; y)/∂θ = 0, is also called the likelihood equation.
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Equation (1.115) is an estimating equation; that is, its solution, if it exists,
is an estimator. Note that it is not necessarily an MLE; it is a root of the
likelihood equation, or RLE.

It is often useful to define an estimator as the solution of some estimating
equation. We will see other examples of estimating equations in subsequent
sections.

Likelihood Ratio

When we consider two different possible distributions for a sample y, we have
two different likelihoods, say L0 and L1. (Note the potential problems in
interpreting the subscripts; here the subscripts refer to the two different dis-
tributions. For example L0 may refer to L(θ0 | y) in a notation consistent with
that used above.) In this case, it may be of interest to compare the two like-
lihoods in order to make an inference about the two possible distributions. A
simple comparison, of course, is the ratio, and indeed

L(θ0 ; y)
L(θ1 ; y)

, (1.116)

or L0/L1 in the simpler notation, is called the likelihood ratio with respect
to the two possible distributions. Although in most contexts we consider the
likelihood to be a function of the parameter for given, fixed values of the
observations, it may also be useful to consider the likelihood ratio to be a
function of y.

The most important use of the likelihood ratio is as the basis for statistical
tests that are constructed following the Neyman-Pearson lemma for a simple
null hypothesis versus a simple alternative hypothesis (see page 53). If the
likelihood is monotone in θ1, we can extend the simple hypotheses of the
Neyman-Pearson lemma to certain composite hypotheses. Thus, a monotone
likelihood ratio is an important property of a distribution.

The likelihood ratio, or the log of the likelihood ratio, plays an important
role in statistical inference. Given the data y, the log of the likelihood ratio is
called the support of the hypothesis that the data came from the population
that would yield the likelihood L0 versus the hypothesis that the data came
from the population that would yield the likelihood L1. The support of the
hypothesis clearly depends on both L0 and L1, and it ranges over IR. The
support is also called the experimental support.

Likelihood Principle

The likelihood principle in statistical inference asserts that all of the informa-
tion which the data provide concerning the relative merits of two hypotheses
(two possible distributions that give rise to the data) is contained in the likeli-
hood ratio of those hypotheses and the data. An alternative statement of the
likelihood principle is that, if for x and y,
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L(θ ; x)
L(θ ; y)

= c(x, y) ∀ θ,

where c(x, y) is constant for given x and y, then any inference about θ based
on x should be in agreement with any inference about θ based on y.

Fitting Expected Values

Given a random sample Y1, . . . , Yn from distributions with probability densi-
ties pYi(yi; θ), where all PDFs are defined with respect to a common σ-finite
measure, if we have that E(Yi) = gi(θ), then a reasonable approach to estima-
tion of θ may be to choose a value θ̂ that makes the differences E(Yi) − gi(θ)
close to zero.

We must define the sense in which the differences are close to zero. A
simple way to do this is to define a nonnegative scalar-valued function of
scalars, ρ(u, v), that is increasing in the absolute difference of its arguments.
We then define

S(θ, y) =
n∑

i=1

ρ(yi, θ), (1.117)

and a reasonable estimator is

θ̂ = arg min
t∈Θ

S(t, y). (1.118)

One simple choice for the function is ρ(u, v) = (u − v)2. In this case, the
estimator is called the least squares estimator. Another choice, which is more
difficult mathematically is ρ(u, v) = |u−v|. In this case, the estimator is called
the least absolute values estimator.

Compare the minimum residual estimator in equation (1.118) with the
maximum likelihood estimate of θ, defined in equation (1.111).

If the Yi are i.i.d., then all gi(θ) are the same, say g(θ).
In common applications, we have covariates, Z1, . . . , Zn, and the E(Yi)

have a constant form that depends on the covariate: E(Yi) = g(Zi, θ).
As with solving the maximization of the likelihood, the solution to the

minimization problem (1.118) may be obtained by solving

∂S(θ ; y)
∂θ

= 0. (1.119)

Like equation (1.115), equation (1.119) is an estimating equation; that is, its
solution, if it exists, is an estimator. There may be various complications, of
course; for example, there may be multiple roots of (1.119).
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Fitting Probability Distributions

In an approach to statistical inference based on information theory, the true
but unknown distribution is compared with information in the sample using a
divergence measure between the population distribution and the sample dis-
tribution. The divergence measure may also be used to compare two hypothe-
sized distributions. A general type of divergence measure is called φ-divergence
and for the PDFs p and q of random variables with a common support D is
defined as ∫

D
φ

(
p(y)
q(y)

)
dy, (1.120)

if the integral exists. The φ-divergence is also called the f -divergence.
The φ-divergence is in general not a metric because it is not symmetric.

One function is taken as the base from which the other function is measured.
A specific instance of φ-divergence that is widely used is the Kullback-

Leibler measure, ∫

IR
p(y) log

(
p(y)
q(y)

)
dy. (1.121)

Functions of Parameters and Functions of Estimators

Suppose that instead of estimating the parameter θ, we wish to estimate
g(θ), where g(·) is some function. If the function g(·) is monotonic or has
certain other regularity properties, it may be the case that the estimator that
results from the minimum residuals principle or from the maximum likelihood
principle is invariant; that is, the estimator of g(θ) is merely the function g(·)
evaluated at the solution to the optimization problem for estimating θ. The
statistical properties of a T for estimating θ, however, do not necessarily carry
over to g(T ) for estimating g(θ).

As an example of why a function of an unbiased estimator may not be
unbiased, consider a simple case in which T and g(T ) are scalars, and the
function g is convex (see page 21).

Now consider E(g(T )) and g(E(T )). If g is a convex function, then Jensen’s
inequality states that

E(g(T )) ≤ g(E(T )), (1.122)

This is easy to see by using the definition of convexity and, in particular,
equation (1.39). We have for some b and any x and t,

b(x − t) + g(t) ≤ g(x).

Now, given this, let x = E(T ) and take expectations of both sides of the
inequality.

The implication of this is that even though T is unbiased for θ, g(T ) may
not be unbiased for g(θ). Jensen’s inequality is illustrated in Figure 1.4.
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T

g(T)

E(T)

E(g(T))

g(E(T))

Fig. 1.4. Jensen’s Inequality

If the function is strictly convex, then Jensen’s inequality (1.122) is also
strict, and so if T is unbiased for θ then g(T ) is biased for g(θ).

An opposite inequality obviously also applies to a concave function, in
which case the bias is positive.

It is often possible to adjust g(T ) to be unbiased for g(θ); and properties
of T , such as sufficiency for θ, may carry over to the adjusted g(T ). Some of
the applications of the jackknife and the bootstrap that we discuss later are
in making adjustments to estimators of g(θ) that are based on estimators of
θ.

The variance of g(T ) can often be approximated in terms of the variance
of T . We will consider this for the more general case in which T and θ are
m-vectors, and T is mean-square consistent for θ. Assume g(T ) is a k-vector.
In a simple but common case, we may know that T in a sample of size n has an
approximate normal distribution with mean θ and some variance-covariance
matrix, say V(T ), of order n−1, and g is a smooth function (that is, it can be
approximated by a truncated Taylor series about θ):

g(T ) ≈ g(θ) + Jg(θ)(T − θ) +
1
2
(T − θ)THg(θ)(T − θ),

where Jg and Hg are respectively the Jacobian and the Hessian of g. Because
the variance of T is O(n−1), the remaining terms in the expansion go to zero
in probability at the rate of at least n−1.

This yields the approximations

E(g(T )) ≈ g(θ) (1.123)

and
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V(g(T )) ≈ Jg(θ) V(T )
(
Jg(θ)

)T
. (1.124)

This method of approximation of the variance is called the delta method.
A common form of a simple estimator that may be difficult to analyze and

may have unexpected properties is a ratio of two statistics,

R =
T

S
,

where S is a scalar. An example is a studentized statistic, in which T is a
sample mean and S is a function of squared deviations. If the underlying
distribution is normal, a statistic of this form may have a well-known and
tractable distribution. In particular, if T is a mean and S is a function of
an independent chi-squared random variable, the distribution is that of a
Student’s t. If the underlying distribution has heavy tails, however, the dis-
tribution of R may have unexpectedly light tails. An asymmetric underlying
distribution may also cause the distribution of R to be very different from a
Student’s t distribution. If the underlying distribution is positively skewed,
the distribution of R may be negatively skewed (see Exercise 1.14).

Types of Statistical Inference

We began this section with an outline of the types of statistical inference that
include point estimation, confidence sets, and tests of hypotheses. (Notice
this section has the same title as the section beginning on page 38.) There is
another interesting categorization of statistical inference.

When the exact distribution of a statistic is known (based, of course, on
an assumption of a given underlying distribution of a random sample), use
of the statistic for inferences about the underlying distribution is called exact
inference.

Often the exact distribution of a statistic is not known, or is too compli-
cated for practical use. In that case, we may resort to approximate inference.
It is important to note how the terms “exact” and “approximate” are used
here. The terms are used in the context of assumptions. We do not address
reality.

There are basically three types of approximate inference.
One type occurs when a simple distribution is very similar to another

distribution. For example, the simpler Kumaraswamy distribution, with PDF
αβxα−1(1 − x)β−1 over [0, 1], may be used as an approximation to the beta
distribution because it does not involve the more complicated beta functions.

Asymptotic inference is a commonly used type of approximate inference.
In asymptotic approximate inference we are interested in the properties of
a sequence of statistics Tn(Y ) as the sample size n increases. We focus our
attention on the sequence {Tn} for n = 1, 2, . . ., and, in particular, consider
the properties of {Tn} as n → ∞. Because asymptotic properties are often
easy to work out, those properties are often used to identify a promising
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statistical method. How well the method performs in the real world of finite,
and possibly small samples is a common topic in statistical research.

Another type of approximate inference, called computational inference, is
used when an unknown distribution can be simulated by resampling of the
given observations. Computational inference is a major topic of the present
book.

1.5 Probability Statements in Statistical Inference

There are two important instances in statistical inference in which statements
about probability are associated with the decisions of the inferential methods.
In hypothesis testing, under assumptions about the distributions, we base our
inferential methods on probabilities of two types of errors. In confidence inter-
vals the decisions are associated with probability statements about coverage
of the parameters. For both cases the probability statements are based on the
distribution of a random sample, Y1, . . . , Yn.

In computational inference, probabilities associated with hypothesis tests
or confidence intervals are estimated by simulation of a hypothesized data-
generating process or by resampling of an observed sample.

Tests of Hypotheses

Often statistical inference involves testing a “null” hypothesis, H0, about the
parameter. In a simple case, for example, we may test the hypothesis

H0 : θ = θ0

versus an alternative hypothesis

H1 : θ = θ1.

We do not know which hypothesis is true, but we want a statistical test
that has a very small probability of rejecting the null hypothesis when it is
true and a high probability of rejecting it when it is false. There is a tradeoff
between these two decisions, so we will put an upper bound on the probability
of rejecting the null hypothesis when it is true (called a “Type I error”),
and under that constraint, seek a procedure that minimizes the probability
of the other type of error (“Type II”). To be able to bound either of these
probabilities, we must know (or make assumptions about) the true underlying
data-generating process.

Thinking of the hypotheses in terms of a parameter θ that indexes these
two densities by θ0 and θ1, for a sample X = x, we have the likelihoods
associated with the two hypotheses as L(θ0; x) and L(θ1; x). We may be able
to define an α-level critical region for nonrandomized tests in terms of the
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ratio of these likelihoods: Let us assume that a positive number k exists such
that there is a subset of the sample space C with complement with respect to
the sample space C, such that

L(θ1; x)
L(θ0; x)

≥ k ∀x ∈ C

L(θ1; x)
L(θ0; x)

≤ k ∀x ∈ C

(1.125)

and
α = Pr(X ∈ C | H0).

(Notice that such a k and C may not exist.)
The Neyman-Pearson Fundamental Lemma tells us that this test based

on the likelihood ratio is the most powerful nonrandomized test of the sim-
ple null H0 that specifies the density p0 for X versus the simple alternative
H1 that specifies the density p1. Let’s consider the form of the Lemma that
does not involve a randomized test; that is, in the case that an exact α-level
nonrandomized test exists, as assumed above. Let k and C be as above. Then
the Neyman-Pearson Fundamental Lemma states that C is the best critical
region of size α for testing H0 versus H1.

Although it applies to a simple alternative (and hence “uniform” properties
do not make much sense), the Neyman-Pearson Lemma gives us a way of
determining whether a uniformly most powerful (UMP) test exists, and if so
how to find one. We are often interested in testing hypotheses in which either
or both of Θ0 and Θ1 are continuous regions of IR (or IRk).

We must look at the likelihood ratio as a function both of θ and x. The
question is whether, for given θ0 and any θ1 > θ0 (or equivalently any θ1 < θ0),
the likelihood is monotone in some function of x; that is, whether the family
of distributions of interest is parameterized by a scalar in such a way that
it has a monotone likelihood ratio (see page 47). In that case, it is clear that
we can extend the test in (1.125) to test to be uniformly most powerful for
testing H0 : θ = θ0 against an alternative H1 : θ > θ0 (or θ1 < θ0).

The straightforward way of performing the test involves use of a test statis-
tic, T , computed from a random sample of data, Y1, . . . , Yn. Associated with
T is a rejection region C such that if the null hypothesis is true, Pr (T ∈ C)
is some preassigned (small) value, α, and Pr (T ∈ C) is greater than α if the
null hypothesis is not true. Thus, C is a region of more “extreme” values of
the test statistic if the null hypothesis is true. If T ∈ C, the null hypothesis is
rejected. It is desirable that the test have a high probability of rejecting the
null hypothesis if indeed the null hypothesis is not true. The probability of
rejection of the null hypothesis is called the power of the test.

A procedure for testing that is mechanically equivalent to this is to com-
pute the test statistic t and then to determine the probability that T is more
extreme than t. In this approach, the realized value of the test statistic de-
termines a region Ct of more extreme values. The probability that the test
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statistic is in Ct if the null hypothesis is true, Pr (T ∈ Ct|H0), is called the
“p-value” or “significance level” of the realized test statistic.

If the distribution of T under the null hypothesis is known, the critical re-
gion or the p-value can be determined. If the distribution of T is not known,
some other approach must be used. A common method is to use some ap-
proximation to the distribution. The objective is to approximate a quantile
of T under the null hypothesis. The approximation is often based on an as-
ymptotic distribution of the test statistic. In Monte Carlo tests, discussed in
Section 11.2, the quantile of T is estimated by simulation of the distribution
of the underlying data.

Confidence Intervals

Our usual notion of a confidence interval relies on a frequency approach to
probability, and it leads to the definition of a 1−α confidence interval for the
(scalar) parameter θ as the random interval (TL, TU ) that has the property

Pr (TL ≤ θ ≤ TU ) = 1 − α. (1.126)

This is also called a (1−α)100% confidence interval. The endpoints of the in-
terval, TL and TU , are functions of a sample, Y1, . . . , Yn. The interval (TL, TU )
is not uniquely determined.

The concept extends easily to vector-valued parameters. Rather than tak-
ing vectors TL and TU , however, we generally define an ellipsoidal region,
whose shape is determined by the covariances of the estimators.

A realization of the random interval, say (tL, tU ), is also called a confidence
interval. Although it may seem natural to state that the “probability that θ
is in (tL, tU ) is 1 − α”, this statement can be misleading unless a certain
underlying probability structure is assumed.

In practice, the interval is usually specified with respect to an estimator
of θ, say T . If we know the sampling distribution of T − θ, we may determine
c1 and c2 such that

Pr (c1 ≤ T − θ ≤ c2) = 1− α; (1.127)

and hence
Pr (T − c2 ≤ θ ≤ T − c1) = 1 − α.

If exactly one of TL or TU in equation (1.126) is chosen to be infinite or to
be a boundary point on the parameter space, the confidence interval is one-
sided. (In either of those cases, the TL or TU would be a degenerate random
variable. Furthermore, the values must respect the relation TL < TU .) For
two-sided confidence intervals, we may seek to make the probability on either
side of T to be equal, to make c1 = −c2, and/or to minimize |c1| or |c2|. This
is similar in spirit to seeking an estimator with small variance.
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For forming confidence intervals, we generally use a function of the sample
that also involves the parameter of interest, f(T, θ). The confidence interval
is then formed by separating the parameter from the sample values.

Whenever the distribution depends on parameters other than the one of
interest, we may be able to form only conditional confidence intervals that
depend on the value of the other parameters. A class of functions that are
particularly useful for forming confidence intervals in the presence of such
nuisance parameters are called pivotal values, or pivotal functions. A function
f(T, θ) is said to be a pivotal function if its distribution does not depend on
any unknown parameters. This allows exact confidence intervals to be formed
for the parameter θ. We first form

Pr
(
fα/2 ≤ f(T, θ) ≤ f1−α/2

)
= 1 − α, (1.128)

where fα/2 and f1−α/2 are quantiles of the distribution of f(T, θ); that is,

Pr(f(T, θ) ≤ fπ) = π.

If, as in the case considered above, f(T, θ) = T − θ, the resulting confidence
interval has the form

Pr
(
T − f1−α/2 ≤ θ ≤ T − fα/2

)
= 1 − α.

For example, suppose that Y1, . . . , Yn is a random sample from a N(µ,σ2)
distribution, and Y is the sample mean. The quantity

f(Y , µ) =
√

n(n − 1) (Y − µ)√∑ (
Yi − Y

)2 (1.129)

has a Student’s t distribution with n− 1 degrees of freedom, no matter what
is the value of σ2. This is one of the most commonly used pivotal values.

The pivotal value in equation (1.129) can be used to form a confidence
value for θ by first writing

Pr
(
tα/2 ≤ f(Y , µ) ≤ t1−α/2

)
= 1 − α,

where tπ is a percentile from the Student’s t distribution. Then, after making
substitutions for f(Y , µ), we form the familiar confidence interval for µ:

(
Y − t1−α/2 s/

√
n, Y − tα/2 s/

√
n
)
, (1.130)

where s2 is the usual sample variance,
∑

(Yi − Y )2/(n − 1).
Other similar pivotal values have F distributions. For example, consider

the usual linear regression model in which the n-vector random variable Y
has a Nn(Xβ,σ2I) distribution, where X is an n×m known matrix, and the
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m-vector β and the scalar σ2 are unknown. A pivotal value useful in making
inferences about β is

g(β̂,β) =
(
X(β̂ − β)

)T
X(β̂ − β)/m

(Y − Xβ̂)T(Y − Xβ̂)/(n − m)
, (1.131)

where
β̂ = (XTX)+XTY.

The random variable g(β̂,β) for any finite value of σ2 has an F distribution
with m and n − m degrees of freedom.

For a given parameter and family of distributions, there may be multiple
pivotal values. For purposes of statistical inference, such considerations as
unbiasedness and minimum variance may guide the choice of a pivotal value
to use. Alternatively, it may not be possible to identify a pivotal quantity for
a particular parameter. In that case, we may seek an approximate pivot. A
function is asymptotically pivotal if a sequence of linear transformations of
the function is pivotal in the limit as n → ∞.

If the distribution of T is known, c1 and c2 in equation (1.127) can be
determined. If the distribution of T is not known, some other approach must
be used. A method for computational inference, discussed in Section 13.3, is
to use “bootstrap” samples from the ECDF.

1.6 Modeling and Computational Inference

The process of building models involves successive refinements. The evolution
of the models proceeds from vague, tentative models to more complete ones,
and our understanding of the process being modeled grows in this process.

A given model usually contains parameters that are chosen to fit a given
set of data. Other models of different forms or with different parameters may
also be fit. The models are compared on the basis of some criterion that
indicates their goodness-of-fit to the available data. The process of fitting and
evaluating is often done on separate partitions of the data. It is a general rule
that the more parameters a model of a given form has, the better the model
will appear to fit any given set of data. The model building process must use
criteria that avoid the natural tendency to overfit. We discuss this type of
problem further in Section 12.2.

The usual statements about statistical methods regarding bias, variance,
and so on are made in the context of a model. It is not possible to measure bias
or variance of a procedure to select a model, except in the relatively simple case
of selection from some well-defined and simple set of possible models. Only
within the context of rigid assumptions (a “metamodel”) can we do a precise
statistical analysis of model selection. Even the simple cases of selection of
variables in linear regression analysis under the usual assumptions about the
distribution of residuals (and this is a highly idealized situation) present more
problems to the analyst than are generally recognized.
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Descriptive Statistics, Inferential Statistics, and Model Building

We can distinguish statistical activities that involve:

• data collection;
• descriptions of a given dataset;
• inference within the context of a model or family of models; and
• model selection.

In any given application, it is likely that all of these activities will come into
play. Sometimes (and often, ideally!), a statistician can specify how data are
to be collected, either in surveys or in experiments. We will not be concerned
with this aspect of the process in this text.

Once data are available, either from a survey or designed experiment, or
just observational data, a statistical analysis begins by considering general
descriptions of the dataset. These descriptions include ensemble characteris-
tics, such as averages and spreads, and identification of extreme points. The
descriptions are in the form of various summary statistics and graphical dis-
plays. The descriptive analyses may be computationally intensive for large
datasets, especially if there are a large number of variables. The computa-
tionally intensive approach also involves multiple views of the data, including
consideration of a large number of transformations of the data. We discuss
these methods in various chapters of Part III.

A stochastic model is often expressed as a PDF or as a CDF of a random
variable. In a simple linear regression model with normal errors,

Y = β0 + β1x + E, (1.132)

for example, the model may be expressed by use of the probability density
function for the random variable E. (Notice that Y and E are written in
uppercase because they represent random variables.)

If E in equation (1.132) has a normal distribution with variance σ2, which
we would denote by

E ∼ N(0,σ2),

then the probability density function for Y is

p(y) =
1√
2πσ

e−(y−β0−β1x)2/(2σ2). (1.133)

In this model, x is an observable covariate; σ, β0, and β1 are unobservable
(and, generally, unknown) parameters; and 2 and π are constants. Statistical
inference about parameters includes estimation or tests of their values or
statements about their probability distributions based on observations of the
elements of the model.

The elements of a stochastic model include observable random variables,
observable covariates, unobservable parameters, and constants. Some random
variables in the model may be considered to be “responses”. The covariates
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may be considered to affect the response; they may or may not be random
variables. The parameters are variable within a class of models, but for a
specific data model the parameters are constants. The parameters may be
considered to be unobservable random variables, and in that sense, a specific
data model is defined by a realization of the parameter random variable. In
the model, written as

Y = f(x;β) + E, (1.134)

we identify a “systematic component”, f(x;β), and a “random component”,
E.

The selection of an appropriate model may be very difficult, and almost
always involves not only questions of how well the model corresponds to the
observed data, but also the tractability of the model. The methods of com-
putational statistics allow a much wider range of tractability than can be
contemplated in mathematical statistics.

Statistical analyses generally are undertaken with the purpose of making
a decision about a dataset, about a population from which a sample dataset is
available, or in making a prediction about a future event. Much of the theory
of statistics developed during the middle third of the twentieth century was
concerned with formal inference; that is, use of a sample to make decisions
about stochastic models based on probabilities that would result if a given
model was indeed the data-generating process. The heuristic paradigm calls
for rejection of a model if the probability is small that data arising from the
model would be similar to the observed sample. This process can be quite
tedious because of the wide range of models that should be explored and
because some of the models may not yield mathematically tractable estimators
or test statistics. Computationally intensive methods include exploration of a
range of models, many of which may be mathematically intractable.

In a different approach employing the same paradigm, the statistical meth-
ods may involve direct simulation of the hypothesized data-generating process
rather than formal computations of probabilities that would result under a
given model of the data-generating process. We refer to this approach as
computational inference. We discuss methods of computational inference in
Chapters 11, 12, and 13. In a variation of computational inference, we may
not even attempt to develop a model of the data-generating process; rather,
we build decision rules directly from the data. This is often the approach in
clustering and classification, which we discuss in Chapter 16. Computational
inference is rooted in classical statistical inference, which was briefly sum-
marized in Section1.4, but which must be considered as a prerequisite for the
present book. In subsequent sections of the current chapter, we discuss general
techniques used in statistical inference.
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1.7 The Role of the Empirical Cumulative Distribution
Function

Methods of statistical inference are based on an assumption (often implicit)
that a discrete uniform distribution with mass points at the observed values of
a random sample is asymptotically the same as the distribution governing the
data-generating process. Thus, the distribution function of this discrete uni-
form distribution is a model of the distribution function of the data-generating
process.

For a given set of univariate data, y1, . . . , yn, the empirical cumulative
distribution function, or ECDF, is

Pn(y) =
#{yi, s.t. yi ≤ y}

n
.

The ECDF is a CDF in its own right. It is the CDF of the discrete distribution
with n or fewer mass points, one at each sample value, and with a probability
mass at each point corresponding to the number of sample values at that point
times n−1. If all of the sample points are unique, it is the CDF of the discrete
uniform distribution. The ECDF is the basic function used in many methods
of computational inference. It contains all of the information in the sample.

Although the ECDF has similar definitions for univariate and multivariate
random variables, it is most useful in the univariate case.

An equivalent expression for univariate random variables, in terms of in-
tervals on the real line, is

Pn(y) =
1
n

n∑

i=1

I(−∞,y](yi), (1.135)

where I is the indicator function. (See page 669 for the definition and some of
the properties of the indicator function. The measure dI(−∞,a](x), which we
use in equation (1.139) below, is particularly interesting.)

It is easy to see that the ECDF is pointwise unbiased for the CDF; that is,
if the yi are independent realizations of random variables Yi, each with CDF
P (·), for a given y,

E
(
Pn(y)

)
= E

(
1
n

n∑

i=1

I(−∞,y](Yi)

)

=
1
n

n∑

i=1

E
(
I(−∞,y](Yi)

)

= Pr (Y ≤ y)
= P (y). (1.136)

Similarly, we find
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V
(
Pn(y)

)
= P (y)

(
1 − P (y)

)
/n; (1.137)

indeed, at a fixed point y, nPn(y) is a binomial random variable with parame-
ters n and π = P (y). Because Pn is a function of the order statistics, which
form a complete sufficient statistic for P , there is no unbiased estimator of
P (y) with smaller variance.

We also define the empirical probability density function (EPDF) as the
derivative of the ECDF:

pn(y) =
1
n

n∑

i=1

δ(y − yi), (1.138)

where δ is the Dirac delta function. The EPDF is just a series of spikes at
points corresponding to the observed values. It is not as useful as the ECDF.
It is, however, unbiased at any point for the probability density function at
that point.

The ECDF and the EPDF can be used as estimators of the corresponding
population functions, but there are better estimators (see Chapter 15).

Estimation Using the ECDF

As we have seen, there are many ways to construct an estimator and to make
inferences about the population. If we are interested in a measure of the
population that is expressed as a statistical function (see page 31), we may
use data to make inferences about that measure by applying the statistical
function to the ECDF. An estimator of a parameter that is defined in this
way is called a plug-in estimator. A plug-in estimator for a given parameter
is the same functional of the ECDF as the parameter is of the CDF.

For the mean of the model, for example, we use the estimate that is the
same functional of the ECDF as the population mean in equation (1.74),

M(Pn) =
∫ ∞

−∞
y dPn(y)

=
∫ ∞

−∞
y d

1
n

n∑

i=1

I(−∞,y](yi)

=
1
n

n∑

i=1

∫ ∞

−∞
y dI(−∞,y](yi)

=
1
n

n∑

i=1

yi

= ȳ. (1.139)

The sample mean is thus a plug-in estimator of the population mean. Such an
estimator is called a method of moments estimator. This is an important type
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of plug-in estimator. For a univariate random variable Y , the method of mo-
ments results in estimates of the parameters E(Y r) that are the corresponding
sample moments.

Statistical properties of plug-in estimators are generally relatively easy to
determine, and often the statistical properties are optimal in some sense.

In addition to point estimation based on the ECDF, other methods of
computational statistics make use of the ECDF. In some cases, such as in
bootstrap methods, the ECDF is a surrogate for the CDF. In other cases, such
as Monte Carlo methods, an ECDF for an estimator is constructed by repeated
sampling, and that ECDF is used to make inferences using the observed value
of the estimator from the given sample.

A functional, Θ, denotes a specific functional form of a CDF or ECDF.
Any functional of the ECDF is a function of the data, so we may also use
the notation Θ(Y1, . . . , Yn). Often, however, the notation is cleaner if we use
another letter to denote the function of the data; for example, T (Y1, . . . , Yn),
even if it might be the case that

T (Y1, . . . , Yn) = Θ(Pn).

We will also often simplify the notation further by using the same letter that
denotes the functional of the sample to represent the random variable com-
puted from a random sample; that is, we may write

T = T (Y1, . . . , Yn).

As usual, we will use t to denote a realization of the random variable T .
Use of the ECDF in statistical inference does not require many assump-

tions about the distribution. Other methods, such as MLE and others dis-
cussed in Section 1.4, are based on specific information or assumptions about
the data-generating process.

Linear Functionals and Estimators

A functional Θ is linear if, for any two functions f and g in the domain of Θ
and any real number a,

Θ(af + g) = aΘ(f) +Θ(g). (1.140)

A statistic is linear if it is a linear functional of the ECDF. A linear statistic
can be computed from a sample using an online algorithm, and linear statis-
tics from two samples can be combined by addition. Strictly speaking, this
definition excludes statistics such as means, but such statistics are essentially
linear in the sense that they can be combined by a linear combination if the
sample sizes are known.
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Quantiles

A useful distributional measure for describing a univariate distribution with
CDF P is is a quantity yπ, such that

Pr(Y ≤ yπ) ≥ π, and Pr(Y ≥ yπ) ≥ 1 − π, (1.141)

for π ∈ (0, 1). This quantity is called a π quantile.
For an absolutely continuous distribution with CDF P ,

yπ = P−1(π).

If P is not absolutely continuous, or in the case of a multivariate random
variable, yπ may not be unique.

For a univariate distribution with CDF P , we define the π quantile as a
unique value by letting

yπ+ = min
y

{y, s.t. P (y) ≥ π}

and
yπ− = min

y
{y, s.t. P (y) ≤ π and P (y) > P (x) for y > x},

and then
yπ = yπ− +

π − P (yπ−)
P (yπ+) − P (yπ−)

(yπ+ − yπ−). (1.142)

For discrete distributions, the π quantile may be a quantity that is not in the
support of the distribution.

It is clear that yπ is a functional of the CDF, say Ξπ(P ). For an absolutely
continuous distribution, the functional is very simple:

Ξπ(P ) = P−1(π). (1.143)

For a univariate random variable, the π quantile is a single point. For a
d-variate random variable, a similar definition leads to a (d − 1)-dimensional
object that is generally nonunique. Quantiles are not so useful in the case of
multivariate distributions.

Empirical Quantiles

For a given sample, the order statistics constitute an obvious set of empirical
quantiles. The probabilities from the ECDF that are associated with the order
statistic y(i) is i/n, which leads to a probability of 1 for the largest sample
value, y(n), and a probability of 1/n for the smallest sample value, y(1). (The
notation y(i) denotes the ith order statistic. We also sometimes incorporate
the sample size in the notation: y(i:n) to indicates the ith order statistic in a
sample of size n.
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If Y(1), . . . , Y(n) are the order statistics in a random sample of size n from
a distribution with PDF pY (·) and CDF PY (·), then the PDF of the ith order
statistic is

pY(i)(y(i)) =
(

n

i

)(
PY (y(i))

)i−1
pY (y(i))

(
1 − PY (y(i))

)n−i
. (1.144)

This expression is easy to derive by considering the ways the ith element can
be chosen from a set of n, the probability that i − 1 elements are less than
or equal to this element, the density of the element itself, and finally the
probability that n − i elements are greater than this element.

Order statistics are not independent. The joint density of all order statistics
is

n!
∏

p(y(i))Iy(1)≤···≤y(n)(y(1), . . . , y(n)). (1.145)

Interestingly, the order statistics from a U(0, 1) distribution have beta dis-
tributions. As we see from equation (1.144), the ith order statistic in a sample
of size n from a U(0, 1) distribution has a beta distribution with parameters
i and n − i + 1. Because of this simple distribution, it is easy to determine
properties of the order statistics from a uniform distribution. For example the
expected value of the ith order statistic in a sample of size n from U(0, 1) is

E(U(i:n)) =
i

n + 1
, (1.146)

and the variance is
V(U(i:n)) =

i(n − i + 1)
(n + 1)2(n + 2)

. (1.147)

Order statistics have interesting, and perhaps unexpected properties. Con-
sider a sample of size 25 from a standard normal distribution. Some simple
facts about the maximum order statistic Y(25) are worth noting. First of all,
the distribution of Y(25) is not symmetric. Secondly, the expected value of the
standard normal CDF, Φ, evaluated at Y(25) is not 0.960 (24/25) or 0.962
(25/26), and of course, it is certainly not 1, as is the value of the ECDF at
Y(25). Notice that if E(Φ(Y(25))) = E(U(25)), where U(25) is the maximum or-
der statistic in a sample of size 25, the value would be 25/26, but the expected
value does not carry over through nonlinear functions. Because Φ is a strictly
increasing function, however, we do have

Med(Φ(Y(25))) = Med(U(25)), (1.148)

where Med(X) is the median of the random variable X . (This comes from the
fact that median-unbiasedness carries over to monotone increasing functions.)
Filliben (1975) suggested fitting quantiles by equation (1.148). For the median
of the ith order statistic in a sample of size n from a U(0, 1) distribution, he
suggested an expression of the form
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i − γ
n − 2γ + 1

. (1.149)

Filliben then fit various approximations to the order statistics and came up
with the fit

Med(U(i:n))) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − 2−1/n i = 1

i−0.3175
n+0.365 i = 2, . . . , n − 1

2−1/n i = n.

(1.150)

By Filliben’s rule for using the median of the uniform order statistics and
fitting them as above, we have Φ(Y(25)) ≈ 0.973; other reasonable empirical
adjustments may yield values as large as 0.982.

The foregoing raises the question as to what probability should correspond
to the ith order statistic, y(i), in a sample of size n. The probability is often
approximated as some adjustment of i/n as in equation (1.149), but clearly
it depends on the underlying distribution.

We use empirical quantiles in Monte Carlo inference, in nonparametric
inference, and in graphical displays for comparing a sample with a standard
distribution or with another sample. The most common of the graphs is the
q-q plot discussed beginning on page 348.

Estimation of Quantiles

Empirical quantiles can be used as estimators of the population quantiles, but
there are generally other estimators that are better, as we can deduce from
basic properties of statistical inference. The first thing that we note is that
the extreme order statistics have very large variances if the support of the
underlying distribution is infinite. We would therefore not expect them alone
to be the best estimator of an extreme quantile unless the support is finite.

A fundamental principle of statistical inference is that a sufficient statistic
should be used, if one is available. No order statistic alone is sufficient, except
for the minimum or maximum order statistic in the case of a distribution with
finite support. The set of all order statistics, however, is always sufficient.
Because of the Rao-Blackwell theorem (see page 40), this would lead us to
expect that some combination of order statistics would be a better estimator
of any population quantile than a single estimator.

The Kaigh-Lachenbruch estimator (see Kaigh and Lachenbruch, 1982) and
the Harrell-Davis estimator (see Harrell and Davis, 1982), use weighted com-
binations of order statistics. The Kaigh-Lachenbruch estimator uses weights
from a hypergeometric distribution, and the Harrell-Davis estimator uses
weights from a beta distribution. The Kaigh-Lachenbruch weights arise in-
tuitively from combinatorics, and the Harrell-Davis come from the fact that
for any continuous CDF P if Y is a random variable from the distribution with
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CDF P , then U = P (Y ) has a U(0, 1) distribution, and the order statistics
from a uniform have beta distributions.

The Harrell-Davis estimator for the π quantile uses the beta distribution
with parameters π(n + 1) and (1 − π)(n + 1). Let Pβπ (·) be the CDF of the
beta distribution with those parameters. The Harrell-Davis estimator for the
π quantile is

ŷπ =
n∑

i=1

wiy(i), (1.151)

where
wi = Pβπ(i/n) − Pβπ((i − 1)/n). (1.152)

Estimators of the form of linear combinations of order statistics, such as the
Harrell-Davis or Kaigh-Lachenbruch quantile estimators, are called “L statis-
tics”. In Exercise 1.18 you are asked to study the relative performance of the
sample median and the Harrell-Davis estimator as estimators of the popula-
tion median.

1.8 The Role of Optimization in Inference

Important classes of estimators are defined as points at which some function
that involves the parameter and the random variable achieves an optimum
with respect to a variable in the role of the parameter in the function. There
are, of course, many functions that involve the parameter and the random
variable. One example of such a function is the probability density function
itself, and as we have seen optimization of this function is the idea behind
maximum likelihood estimation.

In the use of function optimization in inference, once the objective func-
tion is chosen, observations on the random variable are taken and are then
considered to be fixed; the parameter in the function is considered to be a vari-
able (the “decision variable”, in the parlance often used in the literature on
optimization). The function is then optimized with respect to the parameter
variable. The nature of the function determines the meaning of “optimized”;
if the function is the probability density, for example, “optimized” would log-
ically mean “maximized”, which leads to maximum likelihood estimation.

In discussing the use of optimization in statistical estimation, we must be
careful to distinguish between a symbol that represents a fixed parameter and
a symbol that represents a “variable” parameter. When we denote a probabil-
ity density function as p(y | θ), we generally expect “θ” to represent a fixed,
but possibly unknown, parameter. In an estimation method that involves op-
timizing this function, however, θ is a variable placeholder. In the following
discussion, we will generally consider a variable t in place of θ. We also use t0,
t1, and so on to represent specific fixed values of the variable. In an iterative
algorithm, we use t(k) to represent a fixed value in the kth iteration. We do
not always do this, however, and sometimes, as other authors do, we will use
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θ to represent the true value of the parameter on which the random variable
observed is conditioned —but we consider it changeable. We may also use
θ0, θ1, and so on, to represent specific fixed values of the variable, or in an
iterative algorithm, θ(k) to represent a fixed value in the kth iteration.

Some Comments on Optimization

The solution to an optimization problem is in some sense “best” for that
problem and its objective functions; this may mean it is considerably less
good for some other optimization problem. It is often the case, therefore, that
an optimal solution is not robust to assumptions about the phenomenon being
studied. Use of optimization methods is likely to magnify the effects of the
assumptions.

In the following pages we discuss two of the general approaches to statis-
tical inference that we mentioned on page 41 in which optimization is used.
One is to minimize deviations of observed values from what a model would
predict. This is an intuitive procedure which may be chosen without regard
to the nature of the data-generating process. The justification for a particular
form of the objective function, however, may arise from assumptions about a
probability distribution underlying the data-generating process.

Another common way in which optimization is used in statistical inference
is in maximizing the likelihood. The correct likelihood function depends on
the probability distribution underlying the data-generating process, which, of
course, is not known and can only be assumed. How good or how poor the
maximum likelihood estimator is depends on both the true distribution and
the assumed distribution.

In the discussion below, we briefly describe particular optimization tech-
niques that assume that the objective function is a continuous function of the
decision variables, or the parameters. We also assume that there are no a priori
constraints on the values of the parameters. Techniques appropriate for other
situations, such as for discrete optimization and constrained optimization, are
available in the general literature on optimization.

We must also realize that mathematical expressions below do not neces-
sarily imply computational methods. This is a repeating theme of this book.
There are many additional considerations for the numerical computations. A
standard example of this point is in the solution of the linear full-rank system
of n equations in n unknowns: Ax = b. While we may write the solution as
x = A−1b, we would almost never compute the solution by forming the inverse
and then multiplying b by it.

Estimation by Minimizing Residuals

In many applications, we can express the expected value of a random variable
as a function of a parameter (which might be a vector, of course):
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E(Y ) = g(θ). (1.153)

The expectation may also involve covariates, so in general we may write
g(x, θ). The standard linear regression model is an example: E(Y ) = xTβ.
If the covariates are observable, they can be subsumed into g(θ).

The more difficult and interesting problems, of course, involve the deter-
mination of the form of the function g(θ). Here, however, we concentrate on
the simpler problem of determining an appropriate value of θ, assuming that
the form of the function g is known.

If we can obtain observations y1, . . . , yn on Y (and observations on the
covariates if there are any), a reasonable estimator of θ is a value θ̂ that
minimizes the residuals,

ri(t) = yi − g(t), (1.154)

over all possible choices of t, where t is a variable placeholder. This approach
makes sense because we expect the observed y’s to be close to g(θ).

There are, of course, several ways we could reasonably “minimize the resid-
uals”. In general, we seek a value of t to minimize some norm of r(t), the
n-vector of residuals. The optimization problem is

min
t

∥r(t)∥. (1.155)

We often choose the norm as the Lp norm, so we minimize a function of an
Lp norm of the residuals,

sp(t) =
n∑

i=1

|yi − g(t)|p, (1.156)

for some p ≥ 1, to obtain an Lp estimator. Simple choices are the sum of the
absolute values and the sum of the squares. The latter choice yields the least
squares estimator. More generally, we could minimize

sρ(t) =
n∑

i=1

ρ(yi − g(t))

for some nonnegative function ρ(·) to obtain an “M estimator”. (The name
comes from the similarity of this objective function to the objective function
for some maximum likelihood estimators.)

Standard techniques for optimization can be used to determine estimates
that minimize various functions of the residuals, that is, for some appropriate
function of the residuals s(·), to solve

min
t

s(t). (1.157)

Except for special forms of the objective function, the algorithms to solve
expression (1.157) are iterative, such as Newton’s method, which we discuss
on page 266.

The function s(·) is usually chosen to be differentiable, at least piecewise.
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Statistical Properties of Minimum-Residual Estimators

There are, of course, two considerations. One involves the actual computa-
tions. We discuss those in Chapter 6. The other involves the statistical prop-
erties of the estimators.

It is generally difficult to determine the variance or other high-order sta-
tistical properties of an estimator defined as above (that is, defined as the
minimizer of some function of the residuals). In many cases, all that is possi-
ble is to approximate the variance of the estimator in terms of some relation-
ship that holds for a normal distribution. (In robust statistical methods, for
example, it is common to use a “scale estimate” expressed in terms of some
mysterious constant times a function of some transformation of the residuals.)

There are two issues that affect both the computational method and the
statistical properties of the estimator defined as the solution to the optimiza-
tion problem. One issue has to do with the acceptable values of the parameter
θ. In order for the model to make sense, it may be necessary that the parame-
ter be in some restricted range. In some models, a parameter must be positive,
for example. In these cases, the optimization problem has constraints. Such a
problem is more difficult to solve than an unconstrained problem. Statistical
properties of the solution are also more difficult to determine. More extreme
cases of restrictions on the parameter may require the parameter to take val-
ues in a countable set. Obviously, in such cases, Newton’s method cannot be
used because the derivatives cannot be defined. In those cases, a combinato-
rial optimization algorithm must be used instead. Other situations in which
the function is not differentiable also present problems for the optimization
algorithm. In such cases, if the domain is continuous, a descending sequence
of simplexes can be used.

The second issue involves the question of a unique global solution to the
optimization problem (1.157). It may turn out that the optimization prob-
lem has local minima. This depends on the nature of the function f(·) in
equation (1.153). Local minima present problems for the computation of the
solution because the algorithm may get stuck in a local optimum. Local min-
ima also present conceptual problems concerning the appropriateness of the
estimation criterion itself. As long as there is a unique global optimum, it
seems reasonable to seek it and to ignore local optima. It is not so clear what
to do if there are multiple points at which the global optimum is attained.
That is not a question specifically for methods of computational statistics; it
is fundamental to the heuristic of minimizing residuals.

Least Squares Estimation

Least squares estimators are generally more tractable than estimators based
on other functions of the residuals. They are more tractable both in terms of
solving the optimization problem to obtain the estimate, and in approximating
statistical properties of the estimators, such as their variances.
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Assume in equation (1.153) that t (and hence, θ) is an m-vector and that
f(·) is a smooth function. Letting y be the n-vector of observations, we can
write the least squares objective function corresponding to equation (1.156) as

s(t) =
(
r(t)

)T
r(t). (1.158)

Often in applications, the residuals in equation (1.154) are not given equal
weight for estimating θ. This may be because the reliability or precision of
the observations may be different. For weighted least squares, instead of equa-
tion (1.158) we have the objective function

sw(t) =
n∑

i=1

wi

(
ri(t)

)2
. (1.159)

Variance of Least Squares Estimators

If the distribution of Y has finite moments, the sample mean Y is a consis-
tent estimator of g(θ). Furthermore, the minimum residual norm

(
r(θ̂)

)T
r(θ̂)

divided by (n−m) is a consistent estimator of the variance of Y , say σ2; that
is, of

σ2 = E(Y − g(θ))2.

A consistent estimator of σ2 is

σ̂2 =
(
r(θ̂)

)T
r(θ̂)/(n − m).

This estimator, strictly speaking, is not a least squares estimator of σ2. It is
based on least squares estimators of another parameter. (In the linear case, the
consistency of σ̂2, in fact, its unbiasedness, is straightforward. In other cases,
it is not so obvious. The proof can be found in texts on nonlinear regression
or on generalized estimating equations.)

The variance-covariance of the least squares estimator θ̂, however, is not
easy to work out, except in special cases. It obviously involves σ2. In the
simplest case, g is linear and Y has a normal distribution, and we have the
familiar linear regression estimates of θ and σ2 and of the variance of the
estimator of θ.

Without the linearity property, however, even with the assumption of nor-
mality, it may not be possible to write a simple expression for the variance-
covariance matrix of an estimator that is defined as the solution to the least
squares optimization problem. Using a linear approximation, however, we may
estimate an approximate variance-covariance matrix for θ̂ as

((
Jr(θ̂)

)TJr(θ̂)
)−1

σ̂2. (1.160)

Compare this linear approximation to the expression for the estimated variance-
covariance matrix of the least squares estimator β̂ in the linear regression
model E(Y ) = Xβ, in which Jr(β̂) is just X .
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Taking derivatives of ∇s(t), we express the Hessian of s in terms of the
Jacobian of r as

Hs(t) =
(
Jr(t)

)TJr(t) +
n∑

i=1

ri(t)Hri (t).

If the residuals are small, the Hessian is approximately equal to the cross-
product of the Jacobian, so an alternate expression for the estimated variance-
covariance matrix is (

Hs(θ̂)
)−1
σ̂2. (1.161)

See Exercises 1.19 and 1.20 for comparisons of these two expressions.
Although there may be some differences in the performance of these two

variance estimators, they usually depend on aspects of the model that are
probably not well understood. Which expression for the variance estimator is
used often depends on the computational method used. The expression (1.161)
is more straightforward than (1.160) if Newton’s method (equation (6.29) on
page 266) or a quasi-Newton method is used instead of the Gauss-Newton
method (equation (6.61) on page 292) for the solution of the least squares
problem because in these methods the Hessian or an approximate Hessian is
used in the computations.

Estimation by Maximum Likelihood

One of the most commonly used approaches to statistical estimation is maxi-
mum likelihood. The concept has an intuitive appeal, and the estimators based
on this approach have a number of desirable mathematical properties, at least
for broad classes of distributions.

Given a sample y1, . . . , yn from a distribution with probability density or
probability mass function p(y | θ), a reasonable estimate of θ is the value that
maximizes the joint density or joint probability with variable t at the observed
sample value:

∏
i p(yi | t). We define the likelihood function as a function of a

variable in place of the parameter:

Ln(t ; y) =
n∏

i=1

p(yi | t). (1.162)

Note the reversal in roles of variables and parameters. The likelihood function
appears to represent a “posterior probability”, but, as emphasized by R. A.
Fisher who made major contributions to the use of the likelihood function in
inference, that is not an appropriate interpretation.

Just as in the case of estimation by minimizing residuals, the more difficult
and interesting problems involve the determination of the form of the function
p(yi | θ). In these sections, as above, however, we concentrate on the simpler
problem of determining an appropriate value of θ, assuming that the form of
p is known.
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The value of t for which L attains its maximum value is the maximum
likelihood estimate (MLE) of θ for the given data, y. The data —that is, the
realizations of the variables in the density function — are considered as fixed,
and the parameters are considered as variables of the optimization problem,

max
t

Ln(t ; y). (1.163)

This optimization problem can be much more difficult than the optimiza-
tion problem (1.155) that results from an estimation approach based on min-
imization of some norm of a residual vector. As we discussed in that case,
there can be both computational and statistical problems associated either
with restrictions on the set of possible parameter values or with the exis-
tence of local optima of the objective function. These problems also occur in
maximum likelihood estimation.

Applying constraints in the optimization problem to force the solution
to be within the set of possible parameter values is called restricted max-
imum likelihood estimation, or REML estimation. In addition to problems
due to constraints or due to local optima, other problems may arise if the
likelihood function is bounded. The conceptual difficulties resulting from an
unbounded likelihood are much deeper. In practice, for computing estimates
in the unbounded case, the general likelihood principle may be retained, and
the optimization problem redefined to include a penalty that keeps the func-
tion bounded. Adding a penalty to form a bounded objective function in the
optimization problem, or to dampen the solution is called penalized maximum
likelihood estimation.

For a broad class of distributions, the maximum likelihood criterion yields
estimators with good statistical properties. The conditions that guarantee
certain optimality properties are called the “regular case”.

Although in practice, the functions of residuals that are minimized are al-
most always differentiable, and the optimum occurs at a stationary point, this
is often not the case in maximum likelihood estimation. A standard example
in which the MLE does not occur at a stationary point is a distribution in
which the range depends on the parameter, and the simplest such distribution
is the uniform U(0, θ). In this case, the MLE is the max order statistic.

Maximum likelihood estimation is particularly straightforward for distri-
butions in the exponential class, that is, those with PDFs of the form in
equation (1.89) on page 35. Whenever Y does not depend on θ, and η(·) and
ξ(·) are sufficiently smooth, the MLE has certain optimal statistical proper-
ties. This family of probability distributions includes many of the familiar
distributions, such as the normal, the binomial, the Poisson, the gamma, the
Pareto, and the negative binomial.

The log-likelihood function,

lLn(θ ; y) = log Ln(θ ; y), (1.164)

is a sum rather than a product. The form of the log-likelihood in the expo-
nential family is particularly simple:
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lLn(θ ; y) =
n∑

i=1

θTg(yi) − n a(θ) + c,

where c depends on the yi but is constant with respect to the variable of
interest.

The logarithm is monotone, so the optimization problem (1.163) can be
solved by solving the maximization problem with the log-likelihood function:

max
t

lLn(t ; y). (1.165)

We usually drop the subscript n in the notation for the likelihood and the
log-likelihood, and we often work with the likelihood and log-likelihood as if
there is only one observation. (A general definition of a likelihood function is
any nonnegative function that is proportional to the density or the probability
mass function; that is, it is the same as the density or the probability mass
function except that the arguments are switched, and its integral or sum over
the domain of the random variable need not be 1.)

The log-likelihood function relates directly to useful concepts in statistical
inference. If it exists, the derivative of the log-likelihood is the relative rate of
change, with respect to the parameter placeholder t, of the probability density
function at a fixed observation. If θ is a scalar, some positive function of the
derivative such as its square or its absolute value is obviously a measure of the
effect of change in the parameter or in the estimate of the parameter. More
generally, an outer product of the derivative with itself is a useful measure
of the changes in the components of the parameter at any given point in the
parameter space:

∇lL
(
θ ; y

) (
∇lL

(
θ ; y

))T
.

The average of this quantity with respect to the probability density of the
random variable Y ,

I(θ |Y ) = Eθ

(
∇lL

(
θ
∣∣ Y
) (

∇lL
(
θ
∣∣ Y
))T)

, (1.166)

is called the information matrix, or the Fisher information matrix, that an
observation on Y contains about the parameter θ. (As we mentioned when
discussing the score function, “θ” sometimes plays multiple roles. I like to
think of it as a fixed but unknown value and use “t” or some other symbol for
variables that can take on different values. Statisticians, however, often use
the same symbol to represent something that might change.)

The expected value of the square of the first derivative is the expected
value of the negative of the second derivative:

E
(
∇lL

(
θ ; y

) (
∇lL

(
θ ; y

))T) = −E
(
HlL

(
θ ; y

))
. (1.167)

This is interesting because the expected value of the second derivative, or
an approximation of it, can be used in a Newton-like method to solve the
maximization problem. We will discuss this in Chapter 6.
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In some cases a covariate xi may be associated with the observed yi, and
the distribution of Y with given covariate xi has a parameter µ that is a
function of xi and θ. (The linear regression model is an example, with µi =
xT

i θ.) We may in general write µ = xi(θ).
Sometimes we may be interested in the MLE of θi given a fixed value of θj .

Separating the arguments of the likelihood or log-likelihood function in this
manner leads to what is called profile likelihood, or concentrated likelihood.

Statistical Properties of MLE

As with estimation by minimizing residuals, there are two considerations in
maximum likelihood estimation. One involves the actual computations, which
we discuss in Chapter 6. The other involves the statistical properties of the
estimators.

Under suitable regularity conditions we referred to earlier, maximum likeli-
hood estimators have a number of desirable properties. For most distributions
used as models in practical applications, the MLEs are consistent. Further-
more, in those cases, the MLE θ̂ is asymptotically normal (with mean θ) with
variance-covariance matrix

(
Eθ

(
−HlL

(
θ
∣∣ Y
)))−1

, (1.168)

which is the inverse of the Fisher information matrix. A consistent estimator
of the variance-covariance matrix is the inverse of the Hessian at θ̂. (Note
that there are two kinds of asymptotic properties and convergence issues.
Some involve the iterative algorithm, and the others are the usual statistical
asymptotics in terms of the sample size.)

An issue that goes to the statistical theory, but is also related to the
computations, is that of multiple maxima. Here, we recall the last paragraph
of the discussion of the statistical properties of minimum residual estimators,
and the following is from that paragraph with the appropriate word changes.
It may turn out that the optimization problem (1.165) has local maxima. This
depends on the nature of the function f(·) in equation (1.164). Local maxima
present problems for the computation of the solution because the algorithm
may get stuck in a local optimum. Local maxima also present conceptual
problems concerning the appropriateness of the estimation criterion itself. As
long as there is a unique global optimum, it seems reasonable to seek it and to
ignore local optima. It is not so clear what to do if there are multiple points
at which the global optimum is attained. That is not a question specifically
for methods of computational statistics; it is fundamental to the heuristic of
maximizing a likelihood.
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The introductory material on vectors and matrices in Section 1.2 will evolve
in later chapters. In Chapter 5 we will discuss computational issues regarding
vectors and matrices, and in Chapter 9 we will describe some linear transfor-
mations that are useful in statistical analysis. A full-fledged course in “matri-

statistics.
The material on data-generating processes and statistical inference in Sec-

tions 1.3, 1.4 and 1.5 is generally considered to be prerequisite for the present
book. A few terms are defined in those sections, but many terms are men-
tioned without definition, and theorems are referenced without proof. The
reader should become familiar with all of those terms and facts because they
may be used later in the book. This material is covered in detail in Bickel
and Doksum (2001), Casella and Berger (2002), and Hogg et al. (2004), or
at a slightly higher level by Lehmann and Casella (1998) and Lehmann and
Romano (2005). Statistical theory is based on probability theory. There are
many good books on probability theory. The one I use most often is Billings-
ley (1995).

In addition to the general references on mathematical statistics and sta-
tistical inference, the reader should have texts on applied statistics and non-
parametric statistics available. A useful text on applied statistics is Kutner,
Nachtsheim, and Neter (2004), and one on nonparametric methods based on
ranks is Lehmann (1975, reprinted 2006).

There are many subtle properties of likelihood that I do not even allude
to in Section 1.4 or Section 1.8. Maximum likelihood estimation is particu-
larly simple in certain “regular” cases (see Lehmann and Casella, 1998, page
485, for example). Various nonregular cases are discussed by Cheng and Tray-
lor (1995).

The information-theoretic approach based on divergence measures men-
tioned on page 49 is described in some detail in the book by Pardo (2005).

For issues relating to building regression models, as discussed in Sec-
tion 1.6, see Kennedy and Bancroft (1971), Speed and Yu (1993), and Har-
rell (2001). A Bayesian perspective is presented in Chapter 6 of Gelman et
al. (2004).

For a more thorough coverage of the properties of order statistics alluded
to in Section 1.7, see David and Nagaraja (2004).

Dielman, Lowry, and Pfaffenberger (1994) provide extensive comparisons
of various quantile estimators, including the simple order statistics. Their
results were rather inconclusive, because of the dependence of the performance
of the quantile estimators on the shape of the underlying distribution. This
is to be expected, of course. If a covariate is available, it may be possible to
use it to improve the quantile estimate. This is often the case in simulation
studies. See Hesterberg and Nelson (1998) for a discussion of this technique.

Notes and Further Reading

ces for statisticians” would be useful for someone working in computational
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Section 1.8 shows that most statistical procedures can be set up as an op-
timization problem. This is explored more fully in Chapter 1 of Gentle (2009).
We discuss some issues in numerical optimization in Chapter 6.

Exercises

1.1. a) How would you describe, in nontechnical terms, the structure of the
dataset displayed in Figure 1.1, page 7?

b) How would you describe the structure of the dataset in more precise
mathematical terms? (Obviously, without having the actual data, your
equations must contain unknown quantities. The question is meant to
make you think about how you would do this — that is, what would
be the components of your model.)

1.2. Show that the functions defined in equations (1.7) and (1.8) are norms,
by showing that they satisfy the defining properties of an inner product
given on page 11.

1.3. Inner products, norms, and metrics.
a) Prove that if ⟨x, y⟩ is an inner product, then

√
⟨x, x⟩ is a norm; that

is, it satisfies the properties of a norm listed on page 13 for x ∈ IRn.
b) Prove the if ∥x∥ satisfies the properties of a norm listed on page 13

for x ∈ IRn, then d(x, y) = ∥x− y∥ satisfies the properties of a metric
listed on page 14 for x, y ∈ IRn.

1.4. Prove that the Fourier coefficients form the finite expansion in basis el-
ements with the minimum mean squared error (that is, prove inequal-
ity (1.35) on page 20). Hint: Write ∥x − a1v1∥2 as a function of a1,
⟨x, x⟩ − 2a0⟨x, v1⟩+ a2

0⟨v1, v1⟩, differentiate, set to zero for the minimum,
and determine a1 = c1 (equation (1.31)). Continue this approach for
a2, a3, . . . , ak, or else induction can be used from a2 on.

1.5. Matrix norms.
Consider the system of linear equations, Ax = b:

1.000x1 + 0.500x2 = 1.500,
0.667x1 + 0.333x2 = 1.000.

(1.169)

What are the norms ∥A∥1, ∥A∥2, and ∥A∥∞?
We will consider this example further in Exercise 5.1.

1.6. Work out the moment generating function for the mean of a random
sample of size n from a N(µ,σ2) distribution.

1.7. Let Y and Z have marginal distributions as exponential random variables
with parameters α and β respectively. Consider a joint distribution of Y
and Z difined by a Gaussian copula (equation (1.83), page 33). What is
the correlation between Y and Z? (See also Exercise 7.5c on page 330.)

1.8. Assume a random sample Y1, . . . , Yn from a normal distribution with mean
µ and variance σ2. Determine an unbiased estimator of σ based on the
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sample variance, S2, given in equation (1.113). (Note that S2 is sufficient
and unbiased for σ2.)

1.9. Both the binomial and normal families of distributions are in the exponen-
tial class. Show this by writing their PDFs in the form of equation (1.89)
on page 35. (The PDFs of these and other distributions are given in Ap-
pendix B.)

1.10. For the random variable Y with a distribution in the exponential class
and whose density is expressed in the form of equation (1.89), and as-
suming that the first two moments of T (Y ) exist and that ξ(·) is twice
differentiable, show that

E(T (Y )) = ∇ξ(θ)

and
V(T (Y )) = Hξ(θ).

Hint: First, assume that we can interchange differentiation with respect
to θ and integration with respect to y, and show that

E(∇ log(p(Y | θ))) = 0,

where the differentiation is with respect to θ. (To show this, write out the
derivative of the logarithm, cancel the PDF in the integrand, interchange
the integral and the derivative, and differentiate the resulting constant to
get 0.)

1.11. Derive equation (1.112) on page 46.
1.12. Discuss (compare and contrast) pivotal and sufficient functions. (Start

with the basics: Are they statistics? In what way do they both depend on
some universe of discourse, that is, on some family of distributions?)

1.13. Use the pivotal value g(β̂,β) in equation (1.131) on page 56 to form a
(1 − α)100% confidence region for β in the usual linear regression model.

1.14. Assume that {X1, X2} is a random sample of size 2 from an exponential
distribution with parameter θ. Consider the random variable formed as a
Student’s t,

T =
X − θ√

S2/2
,

where X is the sample mean and S2 is the sample variance,

1
n − 1

∑
(Xi −X)2.

(Note that n = 2.)
a) Show that the distribution of T is negatively skewed (although the

distribution of X is positively skewed).
b) Give a heuristic explanation of the negative skewness of T .
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The properties illustrated in the exercise relate to the robustness of sta-
tistical procedures that use Student’s t. While those procedures may be
robust to some departures from normality, they are often not robust to
skewness. These properties also have relevance to the use of statistics like
a Student’s t in the bootstrap.

1.15. Show that the variance of the ECDF at a point y is the expression in
equation (1.137) on page 60. Hint: Use the definition of the variance in
terms of expected values, and represent E

((
Pn(y)

)2) in a manner similar
to how E

(
Pn(y)

)
was represented in equations (1.136).

1.16. The variance functional.
a) Express the variance of a random variable as a functional of its CDF

as was done in equation (1.74) for the mean.
b) What is the same functional of the ECDF?
c) What is the plug-in estimate of the variance?
d) Is the plug-in estimate of the variance an MLE? (The answer is no,

in general. Why not? For example, what is the MLE of the variance
in a gamma(α,β), given a random sample from that distribution? See
Appendix B for the PDF and the mean and variance of a gamma
distribution.)

e) What are the statistical properties of the plug-in estimator of the
variance? (Is it unbiased? Is it consistent? etc.)

1.17. Give examples of
a) a parameter that is defined by a linear functional of the distribution

function (see equation (1.140)), and
b) a parameter that is not a linear functional of the distribution function.
c) Is the variance a linear functional of the distribution function?

1.18. Comparison of estimators of the population median.
Conduct a small Monte Carlo study to compare the MSE of the sample
median with the MSE of the Harrell-Davis estimator (equation (1.151))
of the sample median. First, write a function to compute this estimator
for any given sample size and given probability. For example, in R:

hd <- function(y,p){
n <- length(y)
a <- p*(n+1)
b <- (1-p)*(n+1)
q <-sum(sort(y)*(pbeta((1:n)/n,a,b)-

pbeta((0:(n-1))/n,a,b)))
q

}

Use samples of size 25, and use 1000 Monte Carlo replicates. In each case,
for each replicate, generate a pseudorandom sample of size 25, compute
the two estimators of the median and obtain the squared error, using the
known population value of the median. The average of the squared errors
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over the 1000 replicates is your Monte Carlo estimate of the MSE. (See
Section 7.6 for information on software for generating random deviates.)
a) Use a normal distribution with mean 0 and variance 1. The median is

0.
b) Use a Cauchy distribution with center 0 and scale 1. The median is 0.
c) Use a gamma distribution with shape parameter 2 and scale parameter

3. There is no closed-form expression for the median, but
qgamma(.5, 3, 7)
yields 0.382.

Summarize your findings in a clearly-written report. What are the dif-
ferences in relative performance of the sample median and the Harrell-
Davis quantile estimator as estimators of the population median? What
characteristics of the population seem to have an effect on the relative
performance?

1.19. Consider the least squares estimator of β in the usual linear regression
model, E(Y ) = Xβ.
a) Use expression (1.160) on page 69 to derive the variance-covariance

matrix for the estimator.
b) Use expression (1.161) to derive the variance-covariance matrix for

the estimator.
1.20. Assume a random sample y1, . . . , yn from a gamma distribution with pa-

rameters α and β.
a) What are the least squares estimates of α and β? (Recall E(Y ) = αβ

and V(Y ) = αβ2.)
b) What is an approximation value of the variance-covariance matrix?

Use both expression (1.160) and expression (1.161).
c) Formulate the optimization problem for determining the MLE of α

and β. Does this problem have a closed-form solution?
d) What is an approximation of the variance-covariance matrix? (Use

expression (1.168), page 73.)
1.21. Summary of types of estimators.

a) Assume a random sample Y1, . . . , Yn from a normal distribution with
mean µ and variance σ2.
i. What is the MLE of µ?
ii. What is the plug-in estimate of µ, when µ is defined by the func-

tional M in equation (1.74)?
iii. What is the plug-in estimate of µ, when µ is defined by the func-

tional Ξ.5 in equation (1.76)?
iv. What is the least squares estimate of µ?
v. What is the least absolute values estimate of µ?
vi. What is the Bayes estimate of µ under the assumed prior PDF

pM (µ) =
1√

2πσp

e−(µ−µp)2/2σ2
p

and with a squared-error loss?
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vii. Only if you know UMVUE theory: What is the UMVUE of µ?
b) Assume a random sample Y1, . . . , Yn from a double exponential dis-

tribution with mean µ and variance 2/λ2.
i. What is the MLE of µ?
ii. What is the plug-in estimate of µ, when µ is defined by the func-

tional M in equation (1.74)?
iii. What is the plug-in estimate of µ, when µ is defined by the func-

tional Ξ.5 in equation (1.76)?
iv. What is the least squares estimate of µ?
v. What is the least absolute values estimate of µ?

Note the similarities and the differences in your answers.
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Introduction to Part II

The terms “computational statistics” and “statistical computing” are some-
times used interchangeably. The latter term, however, is often used more
specifically to refer to the actual computations, both numerical and nonnu-
merical. The emphasis of Part II is on the computations themselves.

Statistical computing includes relevant areas of numerical analysis, the
most important of which are computer number systems, algorithms and pro-
gramming, function approximation and numerical quadrature, numerical lin-
ear algebra, solution of nonlinear equations and optimization, and generation
of random numbers. These topics are the subjects of the individual chapters
of Part II.

No matter at what level of detail a statistician needs to be familiar with
the computational topics of this part, there are two simple, higher-level facts
all statisticians should be aware of:

Computer numbers are not the same as real numbers, and the arith-
metic operations on computer numbers are not exactly the same as
those of ordinary arithmetic.

and

The form of a mathematical expression and the way the expression
should be evaluated in actual practice may be quite different.

These statements appear word for word in several places in this book. The
material in Chapter 2 illustrates the first statement in some detail. As for
the second statement, the difference between an expression and a computing
method can easily be illustrated by the problem of obtaining the solution
to the linear system of equations Ax = b. Assuming A is square and of full
rank, the solution can be written as A−1b. This is a simple expression, and it
is certainly appropriate to use it to denote the solution. This expression may
imply that to solve the linear system, we first determine A−1 and then multiply
it by b on the right to obtain A−1b. This is not the way to obtain the solution.
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In Chapter 5 we will describe how the solution should be obtained. It does not
involve inverting the matrix. This is just one example that a convenient form
of a mathematical expression and the way the expression should be evaluated
may be different.

Statistical computations, while motivated by computations in the field of
real numbers, IR, do not in actual practice conform to the rules of arithmetic
in a field. (A field is a mathematical structure consisting of a set of two closed,
associative, and commutative operations, usually called “addition” that has
an additive identity for which each element has an additive inverse, and “mul-
tiplication” that has a multiplicative identity for which each element except
the additive inverse has a multiplicative inverse, and such that multiplica-
tion distributes over addition.) In both the field IR and the computer number
arithmetic system, which we will denote as IF, there are two basic operations,
and the arithmetic operations in the computer simulate those in IR. A com-
puter engineer may identify a different set of “basic” operations, but those
differences are not relevant for our purposes here; the essential facts are that
addition on the computer simulates addition in the numbers of interest, IR,
and multiplication on the computer simulates multiplication in IR. The result
of an arithmetic operation in the computer may not yield the same value as
the operation that it simulates. Furthermore, the two important properties of
arithmetic in IR, which are common to all fields, that is, associativity of both
operations and distributivity of multiplication over addition, do not hold in
computer operations. These facts are very significant for statistical computing.

The mathematical properties of the two structures IR and IF are important,
and they are essential to the elements within each structure. In Chapter 2 we
describe standards that computer arithmetic must follow. In these standards
there are six basic operations, and the standard requires that each of these
operations be correct to within rounding. (Note that the exceptions mentioned
above involve more than one operation.)

How much a computer user needs to know about the way the computer
works depends on the complexity of the use and the extent to which the nec-
essary operations of the computer have been encapsulated in software that
is oriented toward the specific application. Although some of the details we
discuss will not be important for the computational scientist or for someone
doing routine statistical computing, the consequences of those details are im-
portant, and the serious computer user must be at least vaguely aware of the
consequences. The fact that multiplying two positive integers on the computer
can yield a negative number should cause anyone who programs a computer
to take care.

We next address, in Chapter 3, some basic issues related to computations,
such as algorithm/data interaction, programming principles and so on.

After these two general chapters, the next four chapters address the nu-
merical analysis for the four main classes of problems alluded to above.



Data represent information at various levels. The form of data, whether num-
bers, characters, or picture elements, provide different perspectives. Data of
whatever form are represented by groups of 0s and 1s, called bits from the
words “binary” and “digits”. (The word was coined by John Tukey.) For
representing simple text (that is, strings of characters with no special rep-
resentation), the bits are usually taken in groups of eight, called bytes, or in

coding rule. Because of the common association of a byte with a character,
those two words are often used synonymously.

For representing characters in bytes, “ASCII” (pronounced “askey”, from

code widely used. At first only English letters, Arabic numerals, and a few
marks of punctuation had codes. Gradually over time more and more symbols
were given codified representations. Also, because the common character sets
differ from one language to another (both natural languages and computer
languages), there are several modifications of the basic ASCII code set. When
there is a need for more different characters than can be represented in a byte
(28), codes to associate characters with larger groups of bits are necessary.
For compatibility with the commonly used ASCII codes using groups of 8
bits, these codes usually are for groups of 16 bits. These codes for “16-bit
characters” are useful for representing characters in some Oriental languages,
for example. The Unicode Consortium has developed a 16-bit standard, called
Unicode, that is widely used for representing characters from a variety of
languages. For any ASCII character, the Unicode representation uses eight
leading 0s and then the same eight bits as the ASCII representation.

An important consideration in the choice of a method to represent data
is the way data are communicated within a computer and between the com-
puter and peripheral components such as data storage units. Data are usually
treated as a fixed-length sequence of bits. The basic grouping of bits in a
computer is sometimes called a “word” or a “storage unit”. The lengths of
words or storage units commonly used in computers are 32 or 64 bits.
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groups of sixteen, and associated with a specific character according to a fixed
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American Standard Code for Information Interchange), was the first standard
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Like the ASCII standard for representation of characters, there are also
some standards for representation of, and operations on, numeric data. The
Institute of Electrical and Electronics Engineers (IEEE) and, subsequently,
the International Electrotechnical Commission (IEC) have been active in pro-
mulgating these standards, and the standards themselves are designated by
an IEEE number and/or an IEC number.

The two mathematical models that are often used for numeric data are the
ring of integers, ZZ, and the field of reals, IR. We use two computer models, II
and IF, to simulate these mathematical entities. Neither II nor IF is a simple
mathematical construct, such as a ring or field.

2.1 The Fixed-Point Number System

Because an important set of numbers is a finite set of reasonably sized inte-
gers, efficient schemes for representing these special numbers are available in
most computing systems. The scheme is usually some form of a base 2 rep-
resentation and may use one computer storage unit (this is most common),
two storage units, or one half of a storage unit. For example, if a storage unit
consists of 32 bits and one storage unit is used to represent an integer, the
integer 5 may be represented in binary notation using the low-order bits, as
shown in Figure 2.1.

0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Fig. 2.1. The Value 5 in a Binary Representation

The sequence of bits in Figure 2.1 represents the value 5, using one storage
unit. The character “5” is represented in the ASCII code shown previously,
00110101.

If the set of integers includes the negative numbers also, some way of
indicating the sign must be available. The first bit in the bit sequence (usually
one storage unit) representing an integer is usually used to indicate the sign;
if it is 0, a nonnegative number is represented; if it is 1, a negative number is
represented.

Special representations for numeric data are usually chosen so as to facil-
itate manipulation of data. A common method for representing negative in-
tegers, called “twos-complement representation”. The twos-complement repre-
sentation makes arithmetic operations particularly simple. In twos-complement
representation, the sign bit is set to 1 and the remaining bits are set to their
opposite values (0 for 1; 1 for 0), and then 1 is added to the result. If the bits
for 5 are ...00101, the bits for −5 would be ...11010 + 1, or ...11011. If there
are k bits in a storage unit (and one storage unit is used to represent a single
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integer), the integers from 0 through 2k−1 − 1 would be represented in ordi-
nary binary notation using k−1 bits. An integer i in the interval [−2k−1, −1]
would be represented by the same bit pattern by which the nonnegative inte-
ger 2k−1 − i is represented, except the sign bit would be 1.

The sequence of bits in Figure 2.2 represents the value −5 using twos-
complement notation in 32 bits, with the leftmost bit being the sign bit and
the rightmost bit being the least significant bit; that is, the 1 position. The
ASCII code for “−5” consists of the codes for “−” and “5”; that is,
00101101 00110101.

1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 0 1 1

Fig. 2.2. The Value −5 in a Twos-Complement Representation

It is easy to see that the largest integer that can be represented in the
twos-complement form is 2k−1 − 1 and that the smallest integer is −2k−1.

A representation scheme such as that described above is called fixed-point
representation or integer representation, and the set of such numbers is de-
noted by II. The notation II is also used to denote the system built on this
set. This system is similar in some ways to a mathematical system called a
ring, which is what the integers ZZ are. (A ring is similar to a field, except
there is no requirement for multiplicative inverses, and the requirement that
multiplication be commutative is usually dropped.)

There are several variations of the fixed-point representation. The number
of bits used and the method of representing negative numbers are two aspects
that often vary from one computer to another. Even within a single computer
system, the number of bits used in fixed-point representation may vary; it is
typically one storage unit or half of a storage unit.

Fixed-Point Operations

The operations of addition, subtraction, and multiplication for fixed-point
numbers are performed in an obvious way that corresponds to the similar
operations on the ring of integers. Subtraction is addition of the additive
inverse. (In the usual twos-complement representation we described earlier, all
fixed-point numbers have additive inverses except −2k−1.) Because there is no
multiplicative inverse, however, division is not multiplication by the inverse.
The result of division with fixed-point numbers is the result of division with
the corresponding real numbers rounded toward zero. This is not considered
an arithmetic exception.

As we indicated above, the set of fixed-point numbers together with addi-
tion and multiplication is not the same as the ring of integers, if for no other
reason than that the set is finite. Under the ordinary definitions of addition
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and multiplication, the set is not closed under either operation. The computer
operations of addition and multiplication, however, are defined so that the set
is closed. These operations occur as if there were additional higher-order bits
and the sign bit were interpreted as a regular numeric bit. The result is then
whatever would be in the standard number of lower-order bits. If the lost
higher-order bits are necessary, the operation is said to overflow. The result
depends on the specific computer architecture. Aside from the interpretation
of the sign bit, the result is essentially the same as would result from a modular
reduction. In many systems the sign bit is interpreted as an ordinary sign even
if it is mathematically inconsistent with the correct result of the operation.
(For example, addition of two large positive integers could result in a negative
integer because of overflow into the sign bit.) There are some special-purpose
algorithms that actually use this modified modular reduction, although such
algorithms would not be portable across different computer systems.

2.2 The Floating-Point Number System

In a fixed-point representation, all bits represent values greater than or equal
to 1; the base point or radix point is at the far right, before the first bit. In
a fixed-point representation scheme using k bits, the range of representable
numbers is of the order of 2k, usually from approximately −2k−1 to 2k−1.
Numbers outside of this range cannot be represented directly in the fixed-point
scheme. Likewise, nonintegral numbers cannot be represented directly. Large
numbers and fractional numbers are generally represented in a scheme similar
to what is sometimes called “scientific notation” or in a type of logarithmic
notation. Because within a fixed number of digits the radix point is not fixed,
this scheme is called floating-point representation, and the set of such numbers
is denoted by IF. The notation IF is also used to denote the system built on
this set. (The “system” includes operations in addition to the set itself.)

A floating-point number is also sometimes called “real”. Both computer
“integers”, II, and “reals”, IF, represent useful subsets of the corresponding
mathematical entities, ZZ and IR, but while the computer numbers called “in-
tegers” do constitute a fairly simple subset of the integers, the computer num-
bers called “real” do not correspond to the real numbers in a natural way. In
particular, the floating-point numbers do not occur uniformly over the real
number line.

Within the allowable range, a mathematical integer is exactly represented
by a computer fixed-point number, but a given real number, even a rational
number, of any size may or may not have an exact representation by a floating-
point number. This is the familiar situation where fractions such as 1

3 have
no finite representation in base 10. The simple rule, of course, is that the
number must be a rational number whose denominator in reduced form factors
into only primes that appear in the factorization of the base. In base 10, for
example, only rational numbers whose factored denominators contain only
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2s and 5s have an exact, finite representation; and in base 2, only rational
numbers whose factored denominators contain only 2s have an exact, finite
representation.

For a given real number x, we will occasionally use the notation

[x]c (2.1)

to indicate the floating-point number that is “closest” to x, and we will refer
to the exact value of a floating-point number as a computer number. That
is, [x]c is a computer number, but x is a computer number if and only if
x = [x]c. We will also use the phrase “computer number” to refer to the value
of a computer fixed-point number. While the definition of [x]c requires that
|[x]c − x| ≤ |y − x| for any y ∈ IF, standard-conforming computers have four
different rounding modes, as we describe on page 94. What we have defined
here for [x]c is “round to nearest”.

It is important to understand that computer numbers II and IF are finite.
The set of fixed-point numbers II is a proper subset of ZZ. The set of floating-
point numbers is almost a proper subset of IR, but it is not a subset because
it contains some numbers not in IR; see the special floating-point numbers
discussed on page 94. There are many concepts in IR, such as irrationality,
that do not exist in IF. (There are no irrational numbers in IF.)

Our main purpose in using computers, of course, is not to evaluate func-
tions of the set of computer floating-point numbers or the set of computer
integers; the main immediate purpose usually is to perform operations in the
field of real (or complex) numbers or occasionally in the ring of integers. (And,
in the famous dictum of Richard Hamming, “the purpose of computing is in-
sight, not numbers”.) Doing computations on the computer, then, involves
using the sets of computer numbers to simulate the sets of reals or integers.

The Parameters of the Floating-Point Representation

The parameters necessary to define a floating-point representation are the
base or radix, the range of the mantissa or significand, and the range of the
exponent. Because the number is to be represented in a fixed number of bits,
such as one storage unit or word, the ranges of the significand and exponent
must be chosen judiciously so as to fit within the number of bits available. If
the radix is b and the integer digits di are such that 0 ≤ di < b, and there are
enough bits in the significand to represent no more than p digits, then a real
number is approximated by

±0.d1d2 · · ·dp × be, (2.2)

where e is an integer. This is the standard model for the floating-point repre-
sentation. (The di are called “digits” from the common use of base 10.)

The number of bits allocated to the exponent e must be sufficient to rep-
resent numbers within a reasonable range of magnitudes; that is, so that the
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smallest number in magnitude that may be of interest is approximately bemin

and the largest number of interest is approximately bemax , where emin and emax

are, respectively, the smallest and the largest allowable values of the exponent.
Because emin is likely negative and emax is positive, the exponent requires a
sign. In practice, most computer systems handle the sign of the exponent by
defining a bias and then subtracting the bias from the value of the exponent
evaluated without regard to a sign.

In order to ensure a unique representation for all numbers (except 0),
most floating-point systems require that the leading digit in the significand
be nonzero unless the magnitude is less than bemin . A number with a nonzero
leading digit in the significand is said to be normalized.

The most common value of the base b is 2, although 16 and even 10 are
sometimes used. If the base is 2, in a normalized representation, the first
digit in the significand is always 1; therefore, it is not necessary to fill that
bit position, and so we effectively have an extra bit in the significand. The
leading bit, which is not represented, is called a “hidden bit”. This requires a
special representation for the number 0, however.

In a typical computer using a base of 2 and 64 bits to represent one floating-
point number, 1 bit may be designated as the sign bit, 52 bits may be allocated
to the significand, and 11 bits allocated to the exponent. The arrangement of
these bits is somewhat arbitrary, and of course the physical arrangement on
some kind of storage medium would be different from the “logical” arrange-
ment. A common logical arrangement assigns the first bit as the sign bit, the
next 11 bits as the exponent, and the last 52 bits as the significand. (Com-
puter engineers sometimes label these bits as 0, 1, . . . , and then get confused
as to which is the ith bit. When we say “first”, we mean “first”, whether
an engineer calls it the “0th” or the “1st”.) The range of exponents for the
base of 2 in this typical computer would be 2,048. If this range is split evenly
between positive and negative values, the range of orders of magnitude of
representable numbers would be from −308 to 308. The bits allocated to the
significand would provide roughly 16 decimal places of precision.

Figure 2.3 shows the bit pattern to represent the number 5, using b = 2,
p = 24, emin = −126, and a bias of 127, in a word of 32 bits. The first bit on the
left is the sign bit, the next 8 bits represent the exponent, 129, in ordinary base
2 with a bias, and the remaining 23 bits represent the significand beyond the
leading bit, known to be 1. (The binary point is to the right of the leading bit
that is not represented.) The value is therefore +1.01× 22 in binary notation.

✝✆0✝ ✆1 0 0 0 0 0 0 1✝ ✆0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 2.3. The Value 5 in a Floating-Point Representation
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As mentioned above, the set of floating-point numbers is not uniformly
distributed over the ordered set of the reals. (Exercise 2.9a and its partial
solution on page 677 may help you to see how the spacing varies.) There
are the same number of floating-point numbers in the interval [bi, bi+1] as in
the interval [bi+1, bi+2] for any integer emin ≤ i ≤ emax − 2, even though the
second interval is b times as long as the first. Figures 2.4 through 2.6 illustrate
this. The fixed-point numbers, on the other hand, are uniformly distributed
over their range, as illustrated in Figure 2.7.

. . .

0 2−2 2−1 20 21

Fig. 2.4. The Floating-Point Number Line, Nonnegative Half

. . .

0−2−2−2−1−20−21

Fig. 2.5. The Floating-Point Number Line, Nonpositive Half

. . .
0 4 8 16 32

Fig. 2.6. The Floating-Point Number Line, Nonnegative Half; Another View

. . .
0 4 8 16 32

Fig. 2.7. The Fixed-Point Number Line, Nonnegative Half

The density of the floating-point numbers is generally greater closer to
zero. Notice that if floating-point numbers are all normalized, the spacing be-
tween 0 and bemin is bemin (that is, there is no floating-point number in that
open interval), whereas the spacing between bemin and bemin+1 is bemin−p+1.
Most systems do not require floating-point numbers less than bemin in mag-
nitude to be normalized. This means that the spacing between 0 and bemin

can be bemin−p, which is more consistent with the spacing just above bemin .
When these nonnormalized numbers are the result of arithmetic operations,
the result is called “graceful” or “gradual” underflow.
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The spacing between floating-point numbers has some interesting (and,
for the novice computer user, surprising!) consequences. For example, if 1 is
repeatedly added to x, by the recursion

x(k+1) = x(k) + 1,

the resulting quantity does not continue to get larger. Obviously, it could
not increase without bound because of the finite representation. It does not
eventually become Inf (see page 94). It does not even approach the largest
number representable! (This is assuming that the parameters of the floating-
point representation are reasonable ones.) In fact, if x is initially smaller in
absolute value than bemax−p (approximately), the recursion

x(k+1) = x(k) + c

will converge to a stationary point for any value of c smaller in absolute value
than bemax−p.

The way the arithmetic is performed would determine these values pre-
cisely; as we shall see below, arithmetic operations may utilize more bits than
are used in the representation of the individual operands.

The spacings of numbers just smaller than 1 and just larger than 1 are
particularly interesting. This is because we can determine the relative spac-
ing at any point by knowing the spacing around 1. These spacings at 1 are
sometimes called the “machine epsilons”, denoted ϵmin and ϵmax (not to be
confused with emin and emax defined earlier). It is easy to see from the model
for floating-point numbers on page 89 that

ϵmin = b−p (2.3)

and
ϵmax = b1−p; (2.4)

see Figure 2.8. The more conservative value, ϵmax, sometimes called “the ma-
chine epsilon”, ϵ or ϵmach, provides an upper bound on the rounding that
occurs when a floating-point number is chosen to represent a real number. A
floating-point number near 1 can be chosen within ϵmax/2 of a real number
that is near 1. This bound, 1

2b1−p, is called the unit roundoff.

. . .
0 1

4
1
2

ϵmin

❄
1

ϵmax

❄
2

Fig. 2.8. Relative Spacings at 1: “Machine Epsilons”

These machine epsilons are also called the “smallest relative spacing” and
the “largest relative spacing” because they can be used to determine the
relative spacing at the point x (see Figure 2.8).
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. . . . . .
x

[[x]c − (1− ϵmin)[x]c]c
❄

[(1 + ϵmax)[x]c − [x]c]c
❄

Fig. 2.9. Relative Spacings

If x is not zero, the relative spacing at x is approximately

x − (1 − ϵmin)x
x

(2.5)

or
(1 + ϵmax)x − x

x
. (2.6)

Notice that we say “approximately”. First of all, we do not even know that x
is representable. Although (1− ϵmin) and (1+ ϵmax) are members of the set of
floating-point numbers by definition, that does not guarantee that the product
of either of these numbers and [x]c is also a member of the set of floating-point
numbers. However, the quantities [(1−ϵmin)[x]c]c and [(1+ϵmax)[x]c]c are rep-
resentable (by the definition of [·]c as a floating point number approximating
the quantity within the brackets); and, in fact, they are respectively the next
smallest number than [x]c (if [x]c is positive, or the next largest number other-
wise) and the next largest number than [x]c (if [x]c is positive). The spacings
at [x]c therefore are

[x]c − [(1 − ϵmin)[x]c]c (2.7)

and
[(1 + ϵmax)[x]c − [x]c]c. (2.8)

As an aside, note that this implies it is probable that

[(1 − ϵmin)[x]c]c = [(1 + ϵmin)[x]c]c.

In practice, to compare two numbers x and y, we do not ask if

x == y. (2.9)

We must compare [x]c and [y]c. We consider x and y different if

[|y|]c < [|x|]c − [ϵmin[|x|]c]c (2.10)

or if
[|y|]c > [|x|]c + [ϵmax[|x|]c]c. (2.11)

The relative spacing at any point obviously depends on the value repre-
sented by the least significant digit in the significand. This digit (or bit) is
called the “unit in the last place”, or “ulp”. The magnitude of an ulp depends
of course on the magnitude of the number being represented. Any real number
within the range allowed by the exponent can be approximated within 1

2 ulp
by a floating-point number.
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Standardization of Floating-Point Representation

Although different computers represent numeric data in different ways, there
has been some attempt to provide standards for the range and precision of
floating-point quantities. The IEEE Standard 754-1985 (IEEE, 1985) is a bi-
nary standard that specifies the exact layout of the bits for two different
precisions, “single” and “double”. In both cases, the standard requires that
the radix be 2. For single precision, p must be 24, emax must be 127, and emin

must be −126. For double precision, p must be 53, emax must be 1023, and
emin must be −1022.

The IEEE Standard 754 also defines two additional precisions, “single
extended” and “double extended”. For each of the extended precisions, the
standard sets bounds on the precision and exponent ranges rather than speci-
fying them exactly. The extended precisions have larger exponent ranges and
greater precision than the corresponding precision that is not “extended”.

The standard also defines four rounding modes: round down, round up,
round toward zero, and round to nearest, each with the obvious meaning. The
standard requires that round to nearest be the default rounding mode. (In the
case of a tie, round to nearest chooses a 0 in the least significant position.) The
standard requires that the result of add, subtract, multiply, divide, remainder,
and square root be correct to the specified rounding mode.

The IEEE Standard 754-1985 has been revised and is now IEEE Standard
754-2008. This standard now also allows a radix of 10; that is, it provides a
standard for decimal storage and arithmetic operations.

Special Floating-Point Numbers

It is convenient to be able to represent certain special numeric entities, such as
infinity or “indeterminate” (0/0), which do not have ordinary representations
in any base-digit system. Although 8 bits are available for the exponent in the
single-precision IEEE binary standard, emax = 127 and emin = −126. This
means there are two unused possible values for the exponent; likewise, for
the double-precision standard, there are two unused possible values for the
exponent. These extra possible values for the exponent allow us to represent
certain special floating-point numbers.

An exponent of emax + 1 allows us to represent ±∞ or the indeterminate
value. A floating-point number with this exponent and a significand of 0 rep-
resents ±∞ (the sign bit determines the sign, as usual). This value is called
Inf or -Inf.

Numerical operations with Inf or −Inf yield values consistent with those
in the extended real number system; that is, if x∈ IF and 0<x<Inf, then
x∗Inf=Inf and −x∗Inf=−Inf. We also have Inf+Inf=Inf and Inf∗Inf=Inf, but
0∗Inf, Inf−Inf, and Inf/Inf are indeterminate.

A floating-point number with the exponent emax +1 and a nonzero signifi-
cand represents an indeterminate numerical value, such as 0

0 , or else a missing
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value. A missing value is an element of whatever type that has not been as-
signed a value. An indeterminate numerical value is called “not-a-number”,
or “NaN”, and a missing value is called “not-available”, or “NA”.

Any numerical operation involving a NaN and valid numerical values re-
sults in a NaN. Any operation involving a NA results in a NA.

Working with NaNs or NAs requires software to identify these values.
Ordinary computer language components, such as for determining whether
two variables have equal values, cannot directly determine whether or not a
variable has a value of NaN or NA. If a variable x has a value of NaN, it is not
true that x = NaN. (The value is indeterminate, so it is not true that it equals
itself.) Special functions should be used to determine if a value is NaN or
NA. Although it is not part of the standard definitions of the languages, most
Fortran and C compilers include a function isnan to test for a NaN. Many
C compilers include an additional function isinf to test for ±∞. Neither of
these languages normally includes a function to test for unassigned values.
R includes a function is.nan to test for a NaN (it is false for a NA) and a
function is.na to test for a NA or a NaN (it is true for either a NA or a
NaN).

Determining the Numerical Characteristics of a Particular
Computer

Computer designers have a great deal of latitude in how they choose to rep-
resent data. The ASCII standards of ANSI and ISO have provided a common
representation for individual characters. The IEEE Standards 754-1985 and
754-2008 referred to previously (IEEE, 1985) brought some standardization to
the representation of floating-point data, but do not specify how the available
bits are to be allocated among the sign, exponent, and significand.

The environmental inquiry program MACHAR can be used to determine
the characteristics of a specific computer’s floating-point representation and
its arithmetic. The program, which is available in CALGO from netlib (see
page 692 in the Bibliography), was written in Fortran 77 and has been trans-
lated into C and R. In R, the results on a given system are stored in the
variable .Machine. Other R objects that provide information on a computer’s
characteristics are the variable .Platform and the function capabilities.

Computer Operations on Numeric Data

As we have emphasized above, the numerical quantities represented in the
computer are used to simulate or approximate more interesting quantities,
namely the real numbers or perhaps the integers. Obviously, because the sets
(that is, of computer numbers and real numbers) are not the same, we could
not define operations on the computer numbers that would yield the same
field as the familiar field of the reals. In fact, because of the nonuniform spac-
ing of floating-point numbers, we would suspect that some of the fundamental
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properties of a field may not hold. Depending on the magnitudes of the quan-
tities involved, it is possible, for example, that if we compute ab and ac and
then ab+ac, we may not get the same thing as if we compute (b+c) and then
a(b + c). Just as we use the computer quantities to simulate real quantities,
we define operations on the computer quantities to simulate the familiar oper-
ations on real quantities. Designers of computers attempt to define computer
operations so as to correspond closely to operations on real numbers, but we
must not lose sight of the fact that the computer uses a different arithmetic
system.

The basic operational objective in numerical computing, of course, is that
a computer operation, when applied to computer numbers, yields computer
numbers that approximate the number that would be yielded by a certain
mathematical operation applied to the numbers approximated by the original
computer numbers. Just as we introduced the notation

[x]c

on page 89 to denote the computer floating-point number approximation to
the real number x, we occasionally use the notation

[◦]c (2.12)

to refer to a computer operation that simulates the mathematical operation ◦.
Thus,

[+]c
represents an operation similar to addition but that yields a result in a set of
computer numbers. (We use this notation only where necessary for emphasis,
however, because it is somewhat awkward to use it consistently.) The failure
of the familiar laws of the field of the reals, such as the distributive law cited
above, can be anticipated by noting that

[[a]c [+]c [b]c]c ̸= [a + b]c, (2.13)

or by considering the simple example in which all numbers are rounded to one
decimal and so 1

3 + 1
3 ̸= 2

3 (that is, .3 + .3 ̸= .7).
The three familiar laws of the field of the reals (commutativity of addition

and multiplication, associativity of addition and multiplication, and distrib-
ution of multiplication over addition) result in the independence of the order
in which operations are performed; the failure of these laws implies that the
order of the operations may make a difference. When computer operations
are performed sequentially, we can usually define and control the sequence
fairly easily. If the computer performs operations in parallel, the resulting
differences in the orders in which some operations may be performed can
occasionally yield unexpected results.

Because the operations are not closed, special notice may need to be taken
when the operation would yield a number not in the set. Adding two num-
bers, for example, may yield a number too large to be represented well by
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a computer number, either fixed-point or floating-point. When an operation
yields such an anomalous result, an exception is said to exist.

Floating-Point Operations

As we have seen, real numbers within the allowable range may or may not
have an exact floating-point operation, and the computer operations on the
computer numbers may or may not yield numbers that represent exactly the
real number that would result from mathematical operations on the numbers.
If the true result is r, the best we could hope for would be [r]c. As we have
mentioned, however, the computer operation may not be exactly the same as
the mathematical operation being simulated, and furthermore, there may be
several operations involved in arriving at the result. Hence, we expect some
error in the result.

Summary: Comparison of Reals and Floating-Point Numbers

For most applications, the system of floating-point numbers simulates the
field of the reals very well. It is important, however, to be aware of some of
the differences in the two systems. There is a very obvious useful measure
for the reals, namely the Lebesgue measure, µ, based on lengths of open
intervals. An approximation of this measure is appropriate for floating-point
numbers, even though the set is finite. The finiteness of the set of floating-point
numbers means that there is a difference in the cardinality of an open interval
and a closed interval with the same endpoints. The uneven distribution of
floating-point values relative to the reals (Figures 2.4 and 2.5) means that the
cardinalities of two interval-bounded sets with the same interval length may
be different. On the other hand, a counting measure does not work well at all.

Some general differences in the two systems are exhibited in Table 2.1.
The last four properties in Table 2.1 are properties of a field. The important
facts are that IR is an uncountable field and that IF is a more complicated
finite mathematical structure.

If the computed value is r̃ (for the true scalar value r), we speak of the absolute
error,

|r̃ − r|, (2.14)

and the relative error,
|r̃ − r|
|r| (2.15)

(so long as r ̸= 0). An important objective in numerical computation obviously
is to ensure that the error in the result is small.

2.3 Errors
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Table 2.1. Differences in Real Numbers and Floating-Point Numbers

IR IF

cardinality: uncountable finite

measure: µ((x, y)) = |x− y| ν((x, y)) = ν([x, y]) = |x− y|
µ((x, y)) = µ([x, y]) ∃ x, y, z, w ∋ |x− y| = |z− w|,

but #(x, y) ̸= #(z, w)

continuity: if x < y, ∃z ∋ x < z < y x < y, but no z ∋ x < z < y

and and

µ([x, y]) = µ((x, y)) #[x, y] > #(x, y)

convergence ∞
x=1 x diverges ∞

x=1 x converges,
if interpreted as
(· · · ((1 + 2) + 3) · · · )

closure: x, y ∈ IR⇒ x + y ∈ IR not closed wrt addition

x, y ∈ IR⇒ xy ∈ IR not closed wrt multiplication
(exclusive of infinities)

operations a = 0, unique a + x = b + x, but b ̸= a

with an a + x = x, for any x a + x = x, but a + y ̸= y

identity, a or a: x− x = a, for any x a + x = x, but x− x ̸= a

associativity: x, y, z ∈ IR⇒
(x + y) + z = x + (y + z) not associative

(xy)z = x(yz) not associative

distributivity: x, y, z ∈ IR⇒
x(y + z) = xy + xz not distributive
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As mentioned above, if r is the result of one of the six basic operations
(addition, subtraction, multiplication, division, remaindering, and extraction
of a square root), then in conformance to IEEE Standard 754, r̃ must be [r]c
(under default rounding). In this case, the absolute error is

|[r]c − r|,

which is as good as can be desired. Obviously, if more that one operation is
involved in obtaining the result, it may be the case that r̃ ̸= [r]c, and there is
no general way to ensure that r̃ = [r]c.

In Section 3.1, we expand on the discussion of computational errors, and
in that and the subsequent section, we mention some ways of reducing errors.

Addition of Several Numbers

When several numbers xi are to be summed, it is likely that as the operations
proceed serially, the magnitudes of the partial sum and the next summand
will be quite different. In such a case, the full precision of the next summand
is lost. This is especially true if the numbers are of the same sign. As we
mentioned earlier, a computer program to implement serially the algorithm
implied by

∑∞
i=1 i will converge to some number much smaller than the largest

floating-point number.
If the numbers to be summed are not all the same constant (and if they

are constant, just use multiplication!), the accuracy of the summation can
be increased by first sorting the numbers and summing them in order of
increasing magnitude. If the numbers are all of the same sign and have roughly
the same magnitude, a pairwise “fan-in” method may yield good accuracy. In
the fan-in method, the n numbers to be summed are added two at a time
to yield ⌈n/2⌉ partial sums. The partial sums are then added two at a time,
and so on, until all sums are completed. It is likely that the numbers to be
added will be of roughly the same magnitude at each stage. Remember we
are assuming they have the same sign initially; this would be the case, for
example, if the summands are squares.

Another way that is even better is due to W. Kahan:

s = x1

a = 0
for i = 2, . . . , n
{

y = xi − a
t = s + y
a = (t − s) − y
s = t

}.

(2.16)

Often the nature of the addends is such that the sum just cannot be
computed. (See Exercise 2.2a, for which this statement is a tautology!) In
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other cases, it may be helpful to change the problem. For example, consider
the evaluation of ex using the Taylor series

ex = 1 + x + x2/2! + x3/3! + · · · (2.17)

This example is used only for illustration; this is not the way to evaluate ex.
Suppose x = 20. The R code shown in Figure 2.10 yields 485165100,

which is correct to 7 digits. (Actually, it yields 485165195., which is correct
to 9 digits.)

stop <- 100
ex <- 1
xi <- 1
ifac <- 1
for (i in 1:stop) {
xi <- x*xi
ifac <- i*ifac
ex <- ex+xi/ifac
}

ex

Fig. 2.10. Code to Compute ex Using a Taylor Series Approximation

Now, let x = −20. Using the code above, we get 4.992639e-09. The answer
to 7 digits is 2.061154e-09. The solution is correct to only 1 digit; the relative
error is over 100%. Notice, however, if we compute 1/e20, we get 1/485165195,
or 2.061154e-09, which is again correct to 7 digits.

The problem in the evaluation of the series (2.17) arises not just from the
varying magnitude of the terms, but also in the signs of the terms, resulting
in cancellation. Cancellation can have even more dramatic effects. We call it
catastrophic cancellation.

Catastrophic Cancellation

Another type of error that results from the finite precision of floating-point
numbers is catastrophic cancellation. This can occur when two rounded values
of approximately equal magnitude and opposite signs are added. If the values
are exact, cancellation can also occur, but it is benign. After catastrophic
cancellation occurs, the digits left are just the digits that represented the
rounding.

Suppose x ≈ y and that [x]c = [y]c. The computed result will be zero,
whereas the correct (rounded) result is [x − y]c. The relative error is 100%.
This error is caused by rounding, but it is different from the “rounding error”
discussed above. Although the loss of information arising from the rounding
error is the culprit, the rounding would be of little consequence were it not
for the cancellation.
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Additions of quantities of approximately equal magnitude and opposite
signs may arise often in numerical computations. To avoid catastrophic can-
cellation, we must carefully consider all additions, and when catastrophic can-
cellation may occur, rearrange the computations if possible. For a simple ex-
ample, consider the problem of computing the roots of a quadratic polynomial,

ax2 + bx + c.

In the quadratic formula

x =
−b ±

√
b2 − 4ac

2a
, (2.18)

the square root of the discriminant, (b2−4ac), may be approximately equal to
b in magnitude, meaning that one of the roots is close to zero and, in fact, may
be computed as zero. The solution is to compute only one of the roots, x1, by
the formula (the “−” root if b is positive and the “+” root if b is negative)
and then compute the other root, x2 by the relationship x1x2 = c/a.

Catastrophic cancellation results from only a few operations, however, the
effects of smaller cancellations may accumulate. In the example above for
evaluating e−20 using the Taylor series, we have

1 − 20 + 200− 1333. . . . + 6666. . . .− 26666. . . . + · · · .

The partial sums are

1,−19, 181,−1152. . . . , +5514. . . . ,−21152. . . . ,+67736. . . . ,−186231. . . . .

The practical question of interest is how can we tell that there are prob-
lems. In the simple example above, if we monitor the computations, we
find that on step 99 the computed approximation is 6.138260e-09. Getting
4.992639e-09 tells us clearly that the process is not working.

Notes and Further Reading

Some of the material in this chapter is based on Chapter 10 in Gentle (2007). In
particular, Table 2.1 and some of the illustrations of bit-level representations
are from that book.

The details of representation and computation with computer numbers
discussed in this chapter may be important only to a subset of people working
in computational statistics. Every statistician, however, should understand the
conclusion of the section:

Computer numbers are not the same as real numbers, and the arith-
metic operations on computer numbers are not exactly the same as
those of ordinary arithmetic.



102 2 Computer Storage and Arithmetic

Standardization of numerical representation and operations has made the
work of applied numerical analysts much easier. There are not many com-
puters produced nowadays that do not implement the IEEE floating point
standard.

The work of Jim Cody and Velvel Kahan was instrumental in getting
computer manufacturers to improve the numerical operations. Kahan played
the key role in formulating the IEEE Standard 754. Once this standard was
adopted, computer manufacturers quickly began ensuring that their repre-
sentation of numeric quantities and the numeric operations in their CPUs
conformed to the standards.

More detail on computer arithmetic is covered by Kulisch (2008) and more
specifically for the IEEE Standard 754 by Overton (2001).

Topics not addressed in this chapter include higher precision computations,
including “exact” computations for rational numbers, and interval arithmetic,
in which each of the computer numbers used throughout the data input and
computations are interval bounds for the exact real number. Walster (2005)
and Moore et al. (2009) give general descriptions of interval data types and
discussions of ways they can be used in computations. The book edited by
Hu at al. (2008) contains chapters on the use of interval arithmetic in various
problems in numerical analysis, and the journal Reliable Computing is devoted
to research in this area. The book edited by Einarsson (2005) contains chapters
on several different issues in the accuracy of computations resulting from the
use of higher precision, of interval arithmetic, and of software features meant
to ensure a higher degree of reliability.

Exercises

2.1. In the IEEE Standard 754 single precision format, what is the value of
0.1 in the default rounding mode? What is the value in the round down
mode? What is the value in the round up mode? Answering these questions
requires representing the solution in base 2. Note an interesting fact: 1/10
is a rational number; therefore its representation in any integer base is a
“repeating fraction”, just as 1/3 is a repeating decimal fraction. (1/10 is
a repeating fraction in base 10, of course. The repeating decimal sequence
happens to be “0”.)

2.2. An important attitude in the computational sciences is that the computer
is to be used as a tool of exploration and discovery. The computer should
be used to check out “hunches” or conjectures, which then later should
be subjected to analysis in the traditional manner. There are limits to
this approach, however. An example is in limiting processes. Because the
computer deals with finite quantities, the results of a computation may be
misleading. Explore each of the situations below, using C or Fortran. A
few minutes or even seconds of computing should be enough to give you
a feel for the nature of the computations.
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In these exercises, you may write computer programs in which you perform
tests for equality. A word of warning is in order about such tests, however.
If a test involving a quantity x is executed soon after the computation of
x, the test may be invalid within the set of floating-point numbers with
which the computer nominally works. This is because the test may be
performed using the extended precision of the computational registers.
a) Consider the question of the convergence of the series

∞∑

i=1

i.

Obviously, this series does not converge in IR. Suppose, however, that
we begin summing this series using floating-point numbers. Will the
computations overflow? If so, at what value of i (approximately)? Or
will the series converge in IF? If so, to what value, and at what value
of i (approximately)? In either case, state your answer in terms of the
standard parameters of the floating-point model, b, p, emin, and emax

(page 89).
b) Consider the question of the convergence of the series

∞∑

i=1

2−2i.

Same questions as above.
c) Consider the question of the convergence of the series

∞∑

i=1

1
i
.

Same questions.
d) Consider the question of the convergence of the series

∞∑

i=1

1
ip

,

for p ≥ 1. Same questions, except address the effect of the value of
the variable p.

2.3. We know, of course, that the harmonic series in Exercise 2.2c does not
converge (although the naive program to compute it does). It is, in fact,
true that

Hn =
n∑

i=1

1
i

= f(n) + γ + o(1),

where f is an increasing function and γ is Euler’s constant. For various n,
compute Hn. Determine a function f that provides a good fit and obtain
an approximation of Euler’s constant.
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2.4. Machine characteristics.
a) Write a program to determine the smallest and largest relative spac-

ings. Use it to determine them on the machine you are using.
b) Write a program to determine whether your computer system imple-

ments gradual underflow.
c) Write a program to determine the bit patterns of +∞, −∞, and NaN

on a computer that implements the IEEE binary standard. (This may
be more difficult than it seems.)

2.5. What is the numerical value of the rounding unit ( 1
2 ulp) in the IEEE

Standard 754 double precision?
2.6. Consider the standard model (2.2) for the floating-point representation:

±0.d1d2 · · · dp × be,

with emin ≤ e ≤ emax. Your answers may depend on an additional as-
sumption or two. Either choice of (standard) assumptions is acceptable.
a) How many floating-point numbers are there?
b) What is the smallest positive number?
c) What is the smallest number larger than 1?
d) What is the smallest number X , such that X + 1 = X?
e) Suppose p = 4 and b = 2 (and emin is very small and emax is very

large). What is the next number after 20 in this number system?
2.7. a) Define parameters of a floating-point model so that the number of

numbers in the system is less than the largest number in the system.
b) Define parameters of a floating-point model so that the number of

numbers in the system is greater than the largest number in the sys-
tem.

2.8. Suppose that a certain computer represents floating point numbers in base
10, using five decimal places for the mantissa, one decimal places for the
exponent, one decimal place for the sign of exponent, and one decimal
place for the sign of the number.
a) What is the “smallest relative spacing” and the “largest relative spac-

ing”? (Your answer may depend on certain additional assumptions
about the representation; state any assumptions.)

b) What is the largest number g, such that 417 + g = 417?
c) Discuss the associativity of addition using numbers represented in this

system. Give an example of three numbers, a, b, and c, such that using
this representation, (a + b) + c ̸= a + (b + c), unless the operations are
chained. Then show how chaining could make associativity hold for
some more numbers, but still not hold for others.

d) Compare the maximum rounding error in the computation x+x+x+x
with that in 4 ∗ x. (Again, you may wish to mention the possibilities
of chaining operations.)

2.9. Consider the same floating-point system of Exercise 2.8.
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a) Let X be a U(0, 1) random variable. Develop a probability model
for the representation [X ]c. (This is a discrete random variable. How
many mass points does it have?)

b) Let X and Y be random variables uniformly distributed over the same
interval as above. Develop a probability model for the representation
[X + Y ]c. (How many mass points does it have?)

c) Develop a probability model for [X ]c [+]c [Y ]c. (How many mass
points does it have?)

2.10. Give an example to show that the sum of three floating-point numbers
can have a very large relative error.

2.11. a) Write a single program in Fortran or C to compute
i.

5∑

i=0

(
10
i

)
0.25i0.7510−i

ii.
10∑

i=0

(
20
i

)
0.25i0.7520−i

iii.
50∑

i=0

(
100
i

)
0.25i0.75100−i.

iv.
100∑

i=75

(
100
i

)
0.25i0.75100−i.

b) Generalize this problem to write a single program in Fortran or C
that will compute Pr(X ≤ x|n,π) or 1−Pr(X ≤ x|n,π) where X is a
binomial random variable with parameters n and π.

2.12. We can think of the algorithm given in the R code in Figure 2.10 as an
iterative algorithm in i. At each value of i, there is a difference in the
value of ex and the true value ex. (The exact value of this difference is the
truncation error.) Modify the code (or use different code) to determine
the relative error in ex for each value of i. For x = 20, make a plot of
the relative error and the number of iterations (that is, of i) for 1 to 100
iterations. Now, repeat this for x = −20. Notice that the rounding error
completely overwhelms the truncation error in this case.



3

Algorithms and Programming

We will use the term “algorithm” rather loosely but always in the general
sense of a method or a set of instructions for doing something. Formally,
an “algorithm” must terminate. Sometimes we may describe an algorithm
that may not terminate simply following steps in our description. Whether
we expressly say so or not, there should always be a check on the number of
steps, and the algorithm should terminate after some large number of steps no
matter what. Algorithms are sometimes distinguished as “numerical”, “semi-
numerical”, and “nonnumerical”, depending on the extent to which operations
on real numbers are simulated.

Algorithms and Programs

Algorithms are expressed by means of a flowchart, a series of steps, or in a
computer language or pseudolanguage. The expression in a computer language
is a source program or module; hence, we sometimes use the words “algorithm”
and “program” synonymously.

The program is the set of computer instructions that implement the algo-
rithm. A poor implementation can render a good algorithm useless. A good
implementation will preserve the algorithm’s accuracy and efficiency, and will
detect data that are inappropriate for the algorithm. A robust algorithm is
applicable over a wide rand of data to which it is applied. A robust program,
which is more important, is one that will detect input data that are inappro-
priate either for the algorithm or for the implementation in the given program.

The exact way an algorithm is implemented in a program depends of course
on the programming language, but it also may depend on the computer and
associated system software. A program that will run on most systems without
modification is said to be portable, and this is an important property because
most useful programs will be run on a variety of platforms.

The two most important aspects of a computer algorithm are its accuracy
and its efficiency. Although each of these concepts appears rather simple on
the surface, each is actually fairly complicated, as we shall see.

, Statistics and Computing,

© Springer Science + Business Media, LLC 2009
DOI: 10.1007/978-0-387-98144-4_3,
J.E. Gentle, Computational Statistics 107



108 3 Algorithms and Programming

Data Structures

The efficiency of a program can be greatly affected by the type of structures
used to store and operate on the data. As the size and complexity of the prob-
lem increase, the importance of appropriate database structures increases. In
some data-intensive problems, the data structure can be the single most im-
portant determinant of the overall efficiency of a program. The data structure
is not just a method of organization of data; it also can identify appropriate
algorithms for addressing the problem.

In many applications the data are organized naturally as a list, which is
a simple linearly ordered structure. The two main types of lists are stacks,
in which data elements are added and removed from the same end (last in
first out, LIFO), and queues, in which new data elements are added to one
end and elements already in the list are removed from the other end (first in
first out, FIFO). In many cases the space allocated to a given list is limited
a priori, so as the list grows, another region of storage must be used. This
results in a linked list, in which each list except one must contain, in addition
to its data elements, a link or pointer to the next list. In the extreme case of
this structure, each sublist contains only one piece of data and the link to the
next sublist.

The next most basic data structure is a tree, which is a finite set whose
elements (called “nodes”) consist of a special element called a “root” and, if
there is more than one element, a partition of the remaining elements such
that each member of the partition is a tree. If there are no remaining elements,
that is, if the tree contains only one element, which by definition is a root,
that element is also called a “leaf”. Many problems in modeling, classification,
and clustering require a tree data structure (see Chapter 16).

A generalization of the tree is a graph, in which the nodes are usually
called “vertices”, and there is no fixed method of partitioning. The other type
of component of this structure consists of connections between pairs of ver-
tices, called “edges”. Two vertices may be connected symmetrically, connected
asymmetrically, or not connected. Graphs are useful in statistical applications
primarily for identification of an appropriate method for addressing a given
problem.

There are many variations of these basic structures, including special types
of trees and graphs (binary trees, heaps, directed graphs, and so on).

An important problem in statistical computing may be another aspect
of the data organization, one that relates to the hardware resources. There
are various types of storage in the computer, and how fast the data can be
accessed in the various types may affect the efficiency of a program. We will
not consider these issues in any detail in this book.
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3.1 Error in Numerical Computations

An “accurate” algorithm is one that gets the “right” answer. Knowing that
the right answer may not be representable and that rounding within a set of
operations may result in variations in the answer, we often must settle for an
answer that is “close”. As we discuss in Section 2.3 for scalar quantities, we
measure error, or closeness, as either the absolute error or the relative error
of a computation.

Another way of considering the concept of “closeness” is by looking back-
ward from the computed answer and asking what perturbation of the original
problem would yield the computed answer exactly. This approach is called
backward error analysis. The backward analysis is followed by an assessment
of the effect of the perturbation on the solution. Although backward error
analysis may not seem as natural as “forward” analysis (in which we assess
the difference between the computed and true solutions), it is easier to perform
because all operations in the backward analysis are performed in IF instead of
in IR. Each step in the backward analysis involves numbers in the set IF, that
is, numbers that could actually have participated in the computations that
were performed. Because the properties of the arithmetic operations in IR do
not hold and, at any step in the sequence of computations, the result in IR
may not exist in IF, it is very difficult to carry out a forward error analysis.

There are other complications in assessing errors. Suppose the answer is a
vector, such as a solution to a linear system. How do we modify the definitions
of absolute and relative errors on page 97? The obvious answer is to use a
vector norm, but what norm do we use to compare the closeness of vectors?
Another, more complicated situation for which assessing correctness may be
difficult is random number generation. It would be difficult to assign a meaning
to “accuracy” for such a problem.

The basic source of error in numerical computations is the inability to work
with the reals. The field of reals is simulated with a finite set. This has several
consequences. A real number is rounded to a floating-point number; the result
of an operation on two floating-point numbers is rounded to another floating-
point number; and passage to the limit, which is a fundamental concept in
the field of reals, is not possible in the computer.

Rounding errors that occur just because the result of an operation is not
representable in the computer’s set of floating-point numbers are usually not
too bad. Of course, if they accumulate through the course of many operations,
the final result may have an unacceptably large accumulated rounding error.

Another, more pernicious, effect of rounding can occur in a single opera-
tion, resulting in catastrophic cancellation (see page 100).

Measures of Error and Bounds for Errors

If the result of computer operations that should yield the real number r instead
yield r̃, we define absolute error, |r̃− r|, and relative error, |r̃− r|/|r| (so long
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as r ̸= 0). The result, however, may not be a simple real number; it may
consist of several real numbers. For example, in statistical data analysis, the
numerical result, r̃, may consist of estimates of several regression coefficients,
various sums of squares and their ratio, and several other quantities. We may
then be interested in some more general measure of the difference of r̃ and r,

∆(r̃, r),

where ∆(·, ·) is a nonnegative, real-valued function. This is the absolute error,
and the relative error is the ratio of the absolute error to ∆(r, r0), where r0

is a baseline value, such as 0.
If r is a vector, the measure may be based on some norm, and in that case,

∆(r̃, r) may be ∥(r̃ − r)∥. A norm tends to become larger as the number of
elements increases, so instead of using a raw norm, it may be appropriate to
scale the norm to reflect the number of elements being computed.

However the error is measured, for a given algorithm, we would like to have
some knowledge of the amount of error to expect or at least some bound on the
error. Unfortunately, almost any measure contains terms that depend on the
quantity being evaluated. Given this limitation, however, often we can develop
an upper bound on the error. In other cases, we can develop an estimate of an
“average error” based on some assumed probability distribution of the data
comprising the problem.

In Monte Carlo methods that we will discuss in later chapters, we estimate
the solution based on a “random” sample, so just as in ordinary statistical es-
timation, we are concerned about the variance of the estimate. We can usually
derive expressions for the variance of the estimator in terms of the quantity
being evaluated, and of course we can estimate the variance of the estimator
using the realized random sample. The standard deviation of the estimator
provides an indication of the distance around the computed quantity within
which we may have some confidence that the true value lies. The standard
deviation is sometimes called a “probabilistic error bound”.

Order of Error

It is often useful to identify the “order of the error” whether we are concerned
about error bounds, average expected error, or the standard deviation of an
estimator. In general, we speak of the order of one function in terms of another
function as a common argument of the functions approaches a given value.
A function f(t) is said to be of order g(t) at t0, written O(g(t)) (“big O of
g(t)”), if there exists a positive constant M such that

|f(t)| ≤ M |g(t)| as t → t0.

This is the order of convergence of one function to another function at a given
point. Notice that this is pointwise convergence; we compare the functions
near the point t0.
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If our objective is to compute f(t) and we use an approximation f̃(t), the
order of the error due to the approximation is the order of the convergence.
In this case, the argument of the order of the error may be some variable
that defines the approximation. For example, if f̃(t) is a finite series approx-
imation to f(t) using, say, k terms, we may express the error as O(h(k)) for
some function h(k). Typical orders of errors due to the approximation may be
O(1/k), O(1/k2), or O(1/k!). An approximation with order of error O(1/k!)
is to be preferred over one order of error O(1/k), for example, because the
error is decreasing more rapidly. The order of error due to the approximation
is only one aspect to consider; roundoff error in the representation of any
intermediate quantities must also be considered.

The special case of convergence to the constant zero is often of interest. A
function f(t) is said to be “little o of g(t)” at t0, written o(g(t)), if

f(t)/g(t) → 0 as t → t0.

If the function f(t) approaches 0 at t0, g(t) can be taken as a constant and
f(t) is said to be o(1).

Big O and little o convergences are defined in terms of dominating func-
tions. In the analysis of algorithms, it is often useful to consider analogous
types of convergence in which the function of interest dominates another func-
tion. This type of relationship is similar to a lower bound. A function f(t) is
said to be Ω(g(t)) (“big omega of g(t)”) if there exists a positive constant m
such that

|f(t)| ≥ m|g(t)| as t → t0.

Likewise, a function f(t) is said to be “little omega of g(t)” at t0, written
ω(g(t)), if

g(t)/f(t) → 0 as t → t0.

Usually the limit on t, that is, t0, in order expressions is either 0 or ∞, and
because it is obvious from the context, mention of it is omitted. The order of
the error in numerical computations usually provides a measure in terms of
something that can be controlled in the algorithm, such as the point at which
an infinite series is truncated in the computations. The measure of the error
usually also contains expressions that depend on the quantity being evaluated,
however.

Error of Approximation

Some algorithms are exact, such as an algorithm to multiply two matrices that
just uses the definition of matrix multiplication. Other algorithms are approx-
imate because the result to be computed does not have a finite closed-form
expression. An example is the evaluation of the normal cumulative distribution
function. One way of evaluating this is by using a rational polynomial approxi-
mation to the distribution function. Such an expression may be evaluated with
very little rounding error, but the expression has an error of approximation.
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When solving a differential equation on the computer, the differential equa-
tion is often approximated by a difference equation. Even though the differ-
ences used may not be constant, they are finite and the passage to the limit
can never be effected. This kind of approximation leads to a discretization
error. The amount of the discretization error has nothing to do with rounding
error. If the last differences used in the algorithm are δt, then the error is
usually of order O(δt), even if the computations are performed exactly.

Another type of error of approximation occurs when the algorithm uses a
series expansion. The series may be exact, and in principle the evaluation of all
terms would yield an exact result. The algorithm uses only a smaller number
of terms, and the resulting error is truncation error. (See Exercise 2.12.)

Often the exact expansion is an infinite series, and we approximate it with
a finite series. When a truncated Taylor series is used to evaluate a function
at a given point x0, the order of the truncation error is the derivative of the
function that would appear in the first unused term of the series, evaluated
at x0.

We need to have some knowledge of the magnitude of the error. For al-
gorithms that use approximations, it is often useful to express the order of
the error in terms of some quantity used in the algorithm or in terms of some
aspect of the problem itself. We must be aware, however, of the limitations
of such measures of the errors or error bounds. For an oscillating function,
for example, the truncation error may never approach zero over any nonzero
interval.

Consistency Checks for Identifying Numerical Errors

Even though the correct solution to a problem is not known, we would like to
have some way of assessing the accuracy of our computations. Sometimes a
convenient way to do this in a given problem is to perform internal consistency
checks.

When the computations result in more than one value, say a vector, an
internal consistency test may be an assessment of the agreement of various
parts of the output. Relationships among the output are exploited to ensure
that the individually computed quantities satisfy these relationships. Other
internal consistency tests may be performed by comparing the results of the
solutions of two problems with a known relationship.

Another simple internal consistency test that is applicable to many prob-
lems is the use of two different levels of precision in the computations. In using
this approach, one must be careful to make sure that the input data are the
same. Rounding of the input data in the lower precision may cause incorrect
output to result, but that is not the fault of the computational algorithm.

Internal consistency tests cannot confirm that the results are correct; they
can only give an indication that the results are incorrect.
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3.2 Algorithms and Data

The performance of an algorithm may depend on the data. We have seen
that even the simple problem of computing the roots of a quadratic polyno-
mial, ax2 + bx + c, using the quadratic formula, equation (2.18), can lead to
catastrophic cancellation. For many values of a, b, and c, the quadratic for-
mula works perfectly well. Data that are likely to cause computational prob-
lems are referred to as ill-conditioned data, and, more generally, we speak of
the “condition” of data. The concept of condition is understood in the context
of a particular set of operations. Heuristically, data for a given problem are
ill-conditioned if small changes in the data may yield large changes in the
solution.

Consider the problem of finding the roots of a high-degree polynomial,
for example. Wilkinson (1959) gave an example of a polynomial that is very
simple on the surface yet whose solution is sensitive to small changes of the
values of the coefficients:

f(x) = (x − 1)(x − 2) · · · (x − 20)
= x20 − 210x19 + · · · + 20!. (3.1)

While the solution is easy to see from the factored form, the solution is very
sensitive to perturbations of the coefficients. For example, changing the coef-
ficient 210 to 210+2−23 changes the roots drastically; in fact, ten of them are
now complex. Of course, the extreme variation in the magnitudes of the coeffi-
cients should give us some indication that the problem may be ill-conditioned.

Condition of Data

We attempt to quantify the condition of a set of data for a particular set of
operations by means of a condition number. Condition numbers are defined
to be positive and in such a way that large values of the numbers mean that
the data or problems are ill-conditioned. A useful condition number for the
problem of finding roots of a function can be defined to be increasing as the
reciprocal of the absolute value of the derivative of the function in the vicinity
of a root. We will discuss this kind of condition number on pages 257 and 260.

In the solution of a linear system of equations, the coefficient matrix de-
termines the condition of this problem. The most commonly used condition
number is the number associated with a matrix with respect to the problem
of solving a linear system of equations. We will discuss this kind of condition
number beginning on page 207.

Condition numbers are only indicators of possible numerical difficulties for
a given problem. They must be used with some care. For example, according to
the condition number for finding roots based on the derivative (see page 257),
Wilkinson’s polynomial, equation (3.1), is well-conditioned.
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Robustness of Algorithms

A very poor algorithm may be able to give accurate solutions in the presence
of well-conditioned data. Our interest is in identifying algorithms that give
accurate solutions when the data are ill-conditioned.

The ability of an algorithm to handle a wide range of data and either to
solve the problem as requested or else to determine that the condition of the
data does not allow the algorithm to be used is called the robustness of the
algorithm.

A robust algorithm does not give a “wrong” answer; if it cannot give a
“right” answer, it says so and stops.

Stability of Algorithms

Another desirable property of algorithms is stability. Stability is quite different
from robustness. An algorithm is said to be stable if it always yields a solution
that is an exact solution to a perturbed problem; that is, for the problem of
computing f(x) using the input data x, an algorithm is stable if the result it
yields, f̃(x), is such that

f̃(x) = f(x + δx)

for some small perturbation δx of x. Stated another way, an algorithm is
stable if small perturbations in the input or in intermediate computations do
not result in large differences in the results.

The concept of stability for an algorithm should be contrasted with the
concept of condition for a problem or a dataset. If a problem is ill-conditioned,
even a stable algorithm (a “good algorithm”) will produce results with large
differences for small differences in the specification of the problem. This is
because the exact results have large differences. An algorithm that is not
stable, however, may produce large differences for small differences in the
computer description of the problem, which may involve rounding, in the
input even in well-conditioned problems. Perturbations to the input data may
occur because of truncation or discretization.

The concept of stability arises from backward error analysis. The stability
of an algorithm may depend on how continuous quantities are discretized,
such as when a range is gridded for solving a differential equation.

Reducing the Error in Numerical Computations

An objective in designing an algorithm to evaluate some quantity is to avoid
accumulated rounding error and to avoid catastrophic cancellation. In the dis-
cussion of floating-point operations above, we have seen two examples of how
an algorithm can be constructed to mitigate the effect of accumulated round-
ing error (using equations (2.16) on page 99 for computing a sum) and to avoid
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possible catastrophic cancellation in the evaluation of the expression (2.18)
for the roots of a quadratic equation.

Another example familiar to statisticians is the computation of the sample
sum of squares:

n∑

i=1

(xi − x̄)2 =
n∑

i=1

x2
i − nx̄2. (3.2)

This quantity is (n − 1)s2, where s2 is the sample variance.
Either expression in equation (3.2) can be thought of as describing an algo-

rithm. The expression on the left-hand side implies the “two-pass” algorithm:

a = x1

for i = 2, . . . , n
{

a = xi + a
}
a = a/n
b = (x1 − a)2
for i = 2, . . . , n
{

b = (xi − a)2 + b
}.

(3.3)

This algorithm yields x̄ = a and then (n−1)s2 = b. Each of the sums computed
in this algorithm may be improved by using equations (2.16). A major problem
with this algorithm, however, is the fact that it requires two passes through the
data. Because the quantities in the second summation are squares of residuals,
they are likely to be of relatively equal magnitude. They are of the same sign,
so there will be no catastrophic cancellation in the early stages when the terms
being accumulated are close in size to the current value of b. There will be
some accuracy loss as the sum b grows, but the addends (xi − a)2 remain
roughly the same size. The accumulated rounding error, however, may not be
too bad.

The expression on the right-hand side of equation (3.2) implies the “one-
pass” algorithm:

a = x1

b = x2
1

for i = 2, . . . , n
{

a = xi + a
b = x2

i + b
}
a = a/n
b = b − na2.

(3.4)

This algorithm requires only one pass through the data, but if the xi’s have
magnitudes larger than 1, the algorithm has built up two relatively large
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quantities, b and na2. These quantities may be of roughly equal magnitudes;
subtracting one from the other may lead to catastrophic cancellation.

Another algorithm is shown in equations (3.5) below. It requires just one
pass through the data, and the individual terms are generally accumulated
fairly accurately.

a = x1

b = 0
for i = 2, . . . , n
{

d = (xi − a)/i
a = d + a
b = i(i − 1)d2 + b

}.

(3.5)

A condition number that quantifies the sensitivity in s, the sample stan-
dard deviation, to the data, the xi’s, is

κ =
∑n

i=1 x2
i√

n − 1s
, (3.6)

where s2 is the sample variance, as above. This is a measure of the “stiffness”
of the data. It is clear that if the mean is large relative to the variance, this
condition number will be large, and a dataset with a large mean relative to the
variance is said to be stiff. (Recall that we define condition numbers so that
large values imply ill-conditioning. Also recall that condition numbers must
be interpreted with some care.) Notice that the condition number κ achieves
its minimum value of approximately s for data with zero mean. Hence, for
data y1, . . . , yn, if we form xi = yi − ȳ and the computations for ȳ and yi − ȳ
are exact, then the data in the last part of the algorithm in equations (3.3)
would be well-conditioned.

Often when a finite series is to be evaluated, it is necessary to accumulate
a subset of terms of the series that have similar magnitudes, and then combine
it with similar partial sums. It may also be necessary to scale the individual
terms by some very large or very small multiplicative constant while the terms
are being accumulated and then remove the scale after some computations
have been performed.

3.3 Efficiency

The efficiency of an algorithm refers to its usage of computer resources. The
two most important resources are the processing units and the memory (“stor-
age”). The amount of time the processing units are in use and the amount of
memory required are the key measures of efficiency. In the following, we will
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generally emphasize the time the processing units are in use, rather than the
amount of storage used.

A processing unit does more than just arithmetic; it also must perform
“fetch” and “store” from and to memory. A common operation that takes
time but does not involve arithmetic is “exchange a and b” (as in sorting
methods, described on page 122; of course, in the sorting application there was
also a comparison that had to executed prior to the exchange). The exchange
saves storage space, but the simple operation of exchange involves fetching a,
storing it somewhere, fetching b and putting it where a was, and then putting
a where b was. By contrast, the operation “add a and b and store the result
as c” involves fetching a, fetching b, adding them, and storing the result as
c. Some computers are designed to perform these operations with a minimum
of fetches and stores; nevertheless, the operations must be considered part of
the overall operation.

A limiting factor for the time the processing units are in use is the number
and type of operations required. Some operations take longer than others; for
example, the operation of adding floating-point numbers may take more time
than the operation of adding fixed-point numbers. This, of course, depends
on the computer system and on what kinds of floating-point or fixed-point
numbers we are dealing with. If we have a measure of the size of the problem,
we can characterize the performance of a given algorithm by specifying the
number of operations of each type or just the number of operations of the
slowest type.

In numerical computations, the most important types of computation are
usually the floating-point operations. The actual number of floating-point op-
erations divided by the number of seconds required to perform the operations
is called the flops (floating-point operations per second) rate.

Measuring Efficiency

Often, instead of the exact number of operations, we use the order of the
number of operations in terms of the measure of problem size. If n is some
measure of the size of the problem, an algorithm has order O(f(n)) if, as
n → ∞, the number of computations → cf(n), where c is some constant
that does not depend on n. For example, to multiply two n × n matrices
in the obvious way requires O(n3) multiplications and additions; to multiply
an n × m matrix and an m × p matrix requires O(nmp) multiplications and
additions. In the latter case, n, m, and p are all measures of the size of the
problem.

Notice that in the definition of order there is a constant c. The order of an
algorithm is a measure of how well the algorithm “scales”; that is, the extent
to which the algorithm can deal with truly large problems. Two algorithms
that have the same order may have different constants and in that case are
said to “differ only in the constant”.
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In addition to the constant c there may be some overhead work to set up
the problem. If we let h(n) represent overhead work and g(n) represent the
remainder of work for a problem of size n, then the total amount of work
is g(n) + h(n). If the overhead work does not grow very fast as the problem
grows, that is, if h(n) = og(n), then we may have

g(n) + h(n) → g(n) → cf(n),

and in this case the algorithm is O(f(n)). The constant c is relevant for
evaluating the large-scale properties of the algorithm, but h(n) may also be
relevant for evaluating the speed of the algorithm in any real application.

Let n be a measure of the problem size, and let b and q be constants.
An algorithm of order O(bn) has exponential order, one of order O(nq) has
polynomial order, and one of order O(log n) has log order. Notice that for
log order it does not matter what the base is. Also, notice that O(log nq) =
O(log n). For a given task with an obvious algorithm that has polynomial
order, it is often possible to modify the algorithm to address parts of the
problem so that in the order of the resulting algorithm one n factor is replaced
by a factor of log n. This often happens in a divide and conquer strategy, as
we discuss below.

Although it is often relatively easy to determine the order of an algo-
rithm, an interesting question in algorithm design involves the order of the
problem; that is, the order of the most efficient algorithm possible. A problem
of polynomial order is usually considered tractable, whereas one of exponen-
tial order may require a prohibitively excessive amount of time for its solution.
An interesting class of problems are those for which a solution can be veri-
fied in polynomial time yet for which no polynomial algorithm is known to
exist. Such a problem is called a nondeterministic polynomial, or NP, prob-
lem. “Nondeterministic” does not imply any randomness; it refers to the fact
that no polynomial algorithm for determining the solution is known. Most
interesting NP problems can be shown to be equivalent to each other in order
by reductions that require polynomial time. Any problem in this subclass of
NP problems is equivalent in some sense to all other problems in the subclass
and so such a problem is said to be NP-complete. Some common types of
problems that are NP-complete are combinatorial optimization (Section 6.3),
data partitioning (Chapter 12), and tessellations, spanning trees, and other
methods discussed in Chapter 16.

For many problems it is useful to measure the size of a problem in some
standard way and then to identify the order of an algorithm for the problem
with separate components. A common measure of the size of a problem is L,
the length of the stream of data elements. An n×n matrix would have length
proportional to L = n2, for example. To multiply two n × n matrices in the
obvious way requires O(L3/2) multiplications and additions, as we mentioned
above.

The order of an algorithm (or, more precisely, the “order of operations of
an algorithm”) is an asymptotic measure of the operation count as the size
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of the problem goes to infinity. The order of an algorithm is important, but
in practice the actual count of the operations is also important. In practice,
an algorithm whose operation count is approximately n2 may be more useful
than one whose count is 1000(n logn + n), although the latter would have
order O(n log n), which is much better than that of the former, O(n2). When
an algorithm is given a fixed-size task many times, the finite efficiency of the
algorithm becomes very important.

The number of computations required to perform some tasks depends not
only on the size of the problem but also on the data. For example, for most
sorting algorithms, it takes fewer computations (comparisons) to sort data
that are already almost sorted than it does to sort data that are completely
unsorted. We sometimes speak of the average time and the worst-case time of
an algorithm. (It is not always easy to define “average”.) For some algorithms,
these may be very different, whereas for other algorithms or for some problems
these two may be essentially the same.

Our main interest is usually not in how many computations occur but
rather in how long it takes to perform the computations. Because some com-
putations can take place simultaneously, even if all kinds of computations
required the same amount of time, the order of time could be different from
the order of the number of computations.

In addition to the actual processing, the data may need to be copied from
one storage position to another. Data movement slows the algorithm and may
cause it not to use the processing units to their fullest capacity. When groups
of data are being used together, blocks of data may be moved from ordinary
storage locations to an area from which they can be accessed more rapidly
(called “caching”). The efficiency of a program is enhanced if all operations
that are to be performed on a given block of data are performed one right after
the other. Sometimes a higher-level language prevents this from happening.

Although there have been orders of magnitude improvements in the speed
of computers because the hardware is better, the order of time required to
solve a problem is almost entirely dependent on the algorithm. The improve-
ments in efficiency resulting from hardware improvements are generally dif-
ferences only in the constant. The practical meaning of the order of the time
must be considered, however, and so the constant may be important.

In addition to the efficiency of an algorithm, an important issue is how fast
the program implementing the algorithm runs. Because of data movement and
other reasons, a program that implements a fast algorithm may be slow. We
address this issue further on page 136.

Recursion

In addition to techniques to improve the efficiency and the accuracy of com-
putations, there are also special methods that relate to the way we build
programs or store data. Before proceeding to consider ways of improving effi-
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ciency, we consider recursion of algorithms, which is often useful in organizing
algorithms and programs.

The algorithm for computing the mean and the sum of squares (3.5) on
page 116 can be derived as a recursion. Suppose we have the mean ak and
the sum of squares sk for k elements x1, x2, . . . , xk, and we have a new value
xk+1 and wish to compute ak+1 and sk+1. The obvious solution is

ak+1 = ak +
xk+1 − ak

k + 1
and

sk+1 = sk +
k(xk+1 − ak)2

k + 1
.

These are the same computations as in equations (3.5).
Another example of how viewing the problem as an update problem can

result in an efficient algorithm is in the evaluation of a polynomial of degree
d,

pd(x) = cdx
d + cd−1x

d−1 + · · · + c1x + c0.

Doing this in a naive way would require d−1 multiplications to get the powers
of x, d additional multiplications for the coefficients, and d additions. If we
write the polynomial as

pd(x) = x(cdx
d−1 + cd−1x

d−2 + · · · + c1) + c0,

we see a polynomial of degree d−1 from which our polynomial of degree d can
be obtained with but one multiplication and one addition; that is, the number
of multiplications is equal to the increase in the degree— not two times the
increase in the degree. Generalizing, we have

pd(x) = x(· · · x(x(cdx + cd−1) + · · · ) + c1) + c0, (3.7)

which has a total of d multiplications and d additions. The method for evalu-
ating polynomials in equation (3.7) is called Horner’s method. (See page 169
for more on evaluation of polynomials, and equation (4.41) on that page for
a slightly different form of equation (3.7).)

A computer subprogram that implements recursion invokes itself. Not only
must the programmer be careful in writing the recursive subprogram, but the
programming system must maintain call tables and other data properly to
allow for recursion. Once a programmer begins to understand recursion, there
may be a tendency to overuse it. To compute a factorial, for example, the
inexperienced C programmer may write the code in Figure 3.1.

The problem is that this C program is implemented by storing a stack of
statements. Because n may be relatively large, the stack may become quite
large and inefficient. It is just as easy to write the function as a simple loop,
and it would be a much better piece of code.

Both C and Fortran allow for recursion. Many versions of Fortran have
supported recursion for years, but it was not part of the Fortran standards
before Fortran 90.
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float Factorial(int n)
{
if(n==0)

return 1;
else

return n*Factorial(n-1);
}

Fig. 3.1. Recursive Code

Improving Efficiency

There are many ways to attempt to improve the efficiency of an algorithm.
Often the best way is just to look at the task from a higher level of detail and
attempt to construct a new algorithm. Many obvious algorithms are serial
methods that would be used for hand computations, and so are not the best
for use on the computer.

Divide and Conquer

An effective general method of developing an efficient algorithm is called di-
vide and conquer. In this method, the problem is broken into subproblems,
each of which is solved, and then the subproblem solutions are combined into
a solution for the original problem. In some cases, this can result in a net
savings either in the number of computations, resulting in an improved order
of computations, or in the number of computations that must be performed
serially, resulting in an improved order of time.

Let the time required to solve a problem of size n be t(n), and consider
the recurrence relation

t(n) = pt(n/p) + cn (3.8)

for p positive and c nonnegative. Then t(n) = O(n log n).
The basic fact is that recursively dividing a problem in half is an O(logn)

operation. Divide and conquer strategies can sometimes be used together with
a simple method that would be O(n2) if applied directly to the full problem
to reduce the order to O(n log n).

One of the simplest examples of a divide and conquer approach is in sort-
ing. The simple sorting problem is given an n-vector x, determine a vector s
such each element of x is an element of s, but s1 ≤ s2 ≤ · · · ≤ sn. One obvious
method works on pairs, starting with x1 and x2 and puts x2 in the first posi-
tion if x2 < x1, then proceeds to consider the value in the ith position, call it
x(ij)

i , starting with j = 1 and comparing it with x(ij)
j , exchanging the values if

x(ij)
i < x(ij)

j , incrementing j and continuing this process until j = i − 1, then
incrementing i, resetting j to 1, and continuing the process (until i = n). This
is called a “bubble sort”. It is an O(n2) algorithm. You are asked to analyze
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this method in Exercise 3.9. A divide and conquer algorithm for sorting, how-
ever, successively divides the data to be sorted into two smaller datasets and
thereby becomes O(n log n).

There are several divide and conquer sorting algorithms that follow the
same general approach but differ in their details. One such algorithm is gener-
ically called mergesort. It follows two distinct steps, one of which is divide and
conquer and one of which is a simple merge of sorted lists. Mergesort provides
a good example of how a problem that at first glance appears to be of O(n2)
can be solved in O(n log n) steps. In sorting methods, the question of auxil-
iary storage is an issue. In the bubble sort method described above there is
no extra storage required, but in our description of MergeSort below we will
use about n/2 units of extra storage.

The divide and conquer idea of MergeSort depends on the fact that two
sorted lists each of length n/2 can be merged into a sorted list in n operations.
One way of doing this is given in Algorithm 3.1, where auxiliary storage of
size n/2 is used. In Algorithms 3.1 and 3.2, we pass three indexes, lo, hi, and
mid, to a single vector list that is to be sorted.

Algorithm 3.1 Merge(list,lo,mid,hi).

work[1:(mid-lo+1)] = list[lo:mid]
i=1; j=lo; k=mid
while (j<k && k<=hi) {

if (work[i]<=list[k]) {
list[j] = work[i]
i=i+1; j=j+1
}

else {
list[j]=list[k]
j=j+1; k=k+1

}
}
while (j<k) {

list[j] = work[i]
j=j+1; i=i+1

}

Once we can merge two lists of roughly the same length, as in Algo-
rithm 3.1, we merely need a way of recursively dividing the problem into
problems of sorting shorter lists, and Algorithm 3.2 does this.

Algorithm 3.2 MergeSort(list,lo,hi).

if (lo<hi) {
mid = (lo+hi)/2
MergeSort(list,lo,mid)
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MergeSort(list,(mid+1),hi)
Merge(list, lo, mid, hi)

}

Note what is done by these algorithms. The basic idea of divide and con-
quer should emerge clearly from a study of the MergeSort algorithm. At the
beginning the vector is split into two; the subvector on the left is spit into
two; this continues until the subvectors contain only one element each (and
of course they are each sorted); these are merged into a sorted vector with
two elements; then the operations move to the right to work on the subvec-
tors containing only one element each (the fourth and fifth elements from the
left in the original vector); these are merged into a sorted vector with two
elements; then the two two-element sorted vectors are merged into a sorted
vector with four elements; and so on.

If the number of elements is not a power of 2, at some point in the Merge-
Sort process, the subvectors will not be of equal length. (That is what the last
loop in Merge takes care of.) The overall efficiency is not affected very much,
and of course, in any event it is still O(n logn).

There are several other sorting methods that are O(n logn). They vary
in the constant, in the overhead, in relative worst-case to average-case per-
formance, and also in the amount of auxiliary storage required. Probably the
most widely used sorting method is Quicksort. To sort a list Quicksort does
the following:

1. select an element in the list as a “pivot”
2. rearrange the elements in the list into a left sublist and a right sublist

such that no element in the left sublist is larger than the pivot, and no
element in the right sublist is smaller than the pivot

3. recursively sort (by going back to step 1) the left and the right sublists.

Quicksort has poor worst-case performance, but its average-case performance
(under most reasonable “average-case” models) is the best of any known sort-
ing method.

Another example of a divide and conquer algorithm is Strassen’s algorithm
for matrix multiplication (see Gentle, 2007, page 437). It is an O(nlog2 7)
algorithm for a problem in which the standard algorithm is O(n3). While the
savings may not seem like a lot, for large n the difference between n3 and
n2.81 can be significant.

The “fan-in algorithm” (see page 99) is an example of a divide and conquer
strategy that allows O(n) operations to be performed in O(log n) time if the
operations can be performed simultaneously. The number of operations does
not change materially; the improvement is in the time.

Divide and conquer algorithms are particularly appropriate for implemen-
tation in parallel computing environments. The number of processors may be
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an important consideration. In the fan-in algorithm, for example, the improve-
ment in order is dependent on the unrealistic assumption that as the problem
size increases without bound, the number of processors also increases without
bound. Divide and conquer strategies do not require multiple processors for
their implementation, of course.

Convolutions

We discussed the convolution f ∗ g of two functions on page 21. If f and g are
PDFs of stochastically independent random variables U and V , then f ∗ g is
the PDF of U +V . (This is true whether the random variables are continuous
or discrete. See a text on mathematical statistics if this fact is not familiar.) In
many cases, transforms, either moment generating functions or characteristic
functions, can be used to work out the distribution of U +V more easily. This
follows from the fact that if ϕ1(t) is the characteristic function of U and ϕ2(t)
is that of V , the characteristic function of U +V is just ϕ1(t)ϕ2(t). The PDF
can be obtained by inverting the characteristic function. In some cases, this
is easy, possibly because its form is recognized as some standard function.

Similar to the convolution of two functions, the discrete convolution of two
vectors x and y is the vector, which we denote as x ∗ y, whose mth element is

x ∗ ym =
∑

j

xm−jyj . (3.9)

Note that the limits of the summation must be such that the vectors are
defined over the range of their indices. The convolution is an inner product.

Discrete Transforms

Some computational methods can be performed more efficiently by first mak-
ing a transform on the operands, performing a related operation on the trans-
formed data, and then inverting the transform. These problems arise in vari-
ous areas, such as time series, density estimation, and signal processing. The
canonical problem for which a transform is useful is the evaluation of a con-
volution of two objects that are indexed over the similar domains.

A discrete transform produces the elements of an n-vector x̃ from a given
n-vector x by an inner product with another vector. (In the context of dis-
crete transforms, the argument of the “functions” is the index of the vectors.)
Because they have a wide range of applications, it is important to be able to
compute transforms with high efficiency.

The index of summation of a discrete transform often occurs in the expo-
nent of one of the factors in the summands. For that reason, it is convenient
to use “0 equals first” indexing, as we did with series expansion of functions
on page 20.

One of the most important and most commonly used discrete transforms
is the discrete Fourier transform (DFT), which, for the n-vector x is
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x̃m =
n−1∑

j=0

xje
2πi
n jm, for m = 0, . . . , n − 1. (3.10)

The inverse, that is, xj for j = 0, . . . , n − 1 in terms of the x̃’s, is

xj =
1
n

n−1∑

m=0

x̃me−
2πi
n jm.

Equation (3.10) is readily seen to be equivalent to the linear transformation
of x by the matrix A, that is, x̃m = Ax, where

Amj = e
2πi
n jm.

Multiplying an n-vector by an n×n matrix is essentially an O(n2) task. If the
matrix has special form, however, it may be possible to reduce the number of
computations. This is the idea of the fast Fourier Transform (FFT).

Another way of looking at the transform is to think of x0, . . . , xn−1 as the
coefficients of a polynomial in z:

x(z) = xn−1z
n−1 + · · · + x1z + x0. (3.11)

The Fourier element x̃m is the value of x(z) at z =
(
e 2πi

n

)m
. For simplicity,

let w = e 2πi
n .

Now, by Horner’s method (equation (3.7)) we know we need no more than
n operations to evaluate an nth degree polynomial. We can do better than
this, however, when we consider the very special form of the points at which
we need to evaluate the polynomial. These points are called primitive roots
of unity. A number w is a primitive nth root of unity if w ̸= 1, wn = 1, and∑n−1

p=0 wjp = 0 for j = 1, . . . , n− 1. As examples, −1 is a primitive nth root of
unity for n = 2, i is a primitive nth root of unity for n = 4. In general, e 2πi

n is
a primitive nth root of unity, as we can see by checking the conditions.

The relevance of this for the FFT are two facts about primitive nth roots
of unity when n is an even integer. If n = 2m and w is a primitive nth root of
unity, then −wj = wj+m, and, secondly, w2 is a primitive mth root of unity.
Both of these are easily seen from the definition.

Let us assume n is even and let m = n/2. Break the polynomial (3.11)
into two parts:

x(z) = xn−1z
n−1 + xn−3z

n−3 + · · · + x1z

xn−2z
n−2 + · · · + x2z

2 + x0.

Letting y = z2, we can write x(z) as the sum of two polynomials,

c(y) = z(xn−1y
n−1 + xn−3y

n−2 + · · · + x1)
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and
b(y) = (xn−2y

n−1 + xn−4y
n−2 + · · · + x0).

Our interest is in computing the Fourier coefficients, x(wj) for j =
0, . . . , n − 1, We can write the first half, for j = 0, . . . , k − 1, as

x(wj ) = c(w2j)wj + b(w2j),

and the second half as

x(wj+k) = −c(w2j)wj + b(w2j),

again for j = 0, . . . , k − 1.
We have now divided the problem in half. The FFT continues this process

of dividing what was an O(n2) operation into an O(n log n) operation, just as
we did with the sorting operation above.

As with many divide and conquer methods, the FFT can be conveniently
expressed recursively. We do this Algorithm 3.3. Following a notational con-
vention for Fourier transforms, we denote the x̃ as X . In the algorithm, we
assume n = 2p, w is a primitive nth root of unity, X is a complex array of
length n with values wj for j = 0, . . . , n − 1, and B, C, and ws are complex
arrays.

Algorithm 3.3 FFT(n,x,w,X)

if n=1 X=x[0]
else {

k = n/2
b = (x[n-2],...,x[2],x[0])
c = (x[n-1],...,x[3],x[1])
FFT(k,b,w^2,B)
FFT(k,c,w^2,C)
ws[0] = 1/w
for j=0 to n-1 {

ws[j+1] = w*ws[j]
X[j] = B[j]+wp[j+1]*C[j]
X[j+k] = B[j]-wp[j+1]*C[j]

}
}

Greedy Methods

Some algorithms are designed so that each step is as efficient as possible, with-
out regard to what future steps may be part of the algorithm. An algorithm
that follows this principle is called a greedy algorithm. A greedy algorithm is
often useful in the early stages of computation for a problem or when a prob-
lem lacks an understandable structure. An example of a greedy algorithm is
a steepest descent method (see page 265).
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Bottlenecks and Limits

There is a maximum flops rate possible for a given computer system. This rate
depends on how fast the individual processing units are, how many process-
ing units there are, and how fast data can be moved around in the system.
The more efficient an algorithm is, the closer its achieved flops rate is to the
maximum flops rate.

For a given computer system, there is also a maximum flops rate possible
for a given problem. This has to do with the nature of the tasks within the
given problem. Some kinds of tasks can utilize various system resources more
easily than other tasks. If a problem can be broken into two tasks, T1 and
T2, such that T1 must be brought to completion before T2 can be performed,
the total time required for the problem depends more on the task that takes
longer. This tautology has important implications for the limits of efficiency
of algorithms.

The efficiency of an algorithm may depend on the organization of the
computer, the implementation of the algorithm in a programming language,
and the way the program is compiled.

High-Performance Computing

In “high-performance” computing, major emphasis is placed on computational
efficiency. The architecture of the computer becomes very important, and the
programs are often designed to take advantage of the particular characteristics
of the computer on which they are to run.

The three main architectural elements are memory, processing units, and
communication paths. A controlling unit oversees how these elements work
together.

There are various ways memory can be organized. There is usually a hier-
archy of types of memory with different speeds of access. The controlling unit
will attempt to retain data in a high-speed memory area, often called a cache,
if it is anticipated that the data will be used in subsequent computations.
The various levels of memory can also be organized into banks with separate
communication links to the processing units.

There are various types of processing units. Three general types are called
central processing units (CPU), vector processors (VP), and graphics process-
ing units (GPU). A CPU is the standard type, but the term covers a wide range
of designs. A CPU usually has separate areas for floating-point and fixed-point
operations. The number of operations it directly implements varies. A RISC
(“reduced instruction set computer”) can perform only a relatively small num-
ber of operations, so a complex operation may require multiple operations. The
tradeoff is in the speed of execution of any single operation. Vector processors
are particularly suited for computations on all of the elements in a linear ar-
ray or on the elements in two linear arrays. Finally, GPUs generally provide
only a limited number of different operations, but they are designed for a
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large number of simultaneous operations. They are said to be ideally suited
for “super computing” on the “desktop”; that is, they are inexpensive and
environmentally robust. When they are used for general-purpose numerical
computations, the name “graphics processing unit” is merely a legacy refer-
ring to the applications for which this type of unit was originally developed.
Any processing unit may consist of multiple processors within the same unit,
often called a core.

If more than one processing unit is available, it may be possible to perform
operations simultaneously. In this case, the amount of time required may be
drastically smaller for an efficient parallel algorithm than it would for the
most efficient serial algorithm that utilizes only one processor at a time. An
analysis of the efficiency must take into consideration how many processors
are available, how many computations can be performed in parallel, and how
often they can be performed in parallel.

The most effective way of decreasing the time required for solving a compu-
tational problem is to perform the computations in parallel if possible. There
are some computations that are essentially serial, but in almost any problem
there are subtasks that are independent of each other and can be performed
in any order. Parallel computing remains an important research area.

3.4 Iterations and Convergence

We use the word “iteration” in a nontechnical sense to mean a step in a se-
quence of computations. The iteration may be one single arithmetic operation,
but usually it refers to a group of operations.

We may speak of iterations in any algorithm, but there are certain types
of algorithms that are “iterative”; that is, methods in which groups of compu-
tations form successive approximations to the desired solution. This usually
means a loop through a common set of instructions in which each pass through
the loop changes the initial values of operands in the instructions. When we
refer to an iterative algorithm or iterative method, we mean this type of al-
gorithm.

In an algorithm that is not iterative, there are a fixed, finite number of op-
erations or iterations. The algorithm terminates when that number is reached.
In an iterative algorithm, the number of iterations may not be known in ad-
vance; the algorithm terminates when it appears that the problem has been
solved, or when it is decided that the method used is not going to solve the
problem.

We use the word “converge”, and the various derivatives of this root word,
to refer to a condition in the progress of an algorithm in which the values no
longer change.

The steps in simple summations, in which we have a sequence of partial
sums, are iterations. A finite sequence converges to the exact sum (it is hoped).
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An infinite sequence may or may not converge. Our interest, clearly, is in eval-
uating sequences that do converge. The computations themselves may not be
a reliable indicator of whether or not the sequence converges; see Exercise 2.2.

In working with iterative methods, we will generally use the notation x(k)

to refer to the computed value of x at the kth iteration.

Testing for Convergence

The term “algorithm” refers to a method that terminates in a finite number of
steps. We should never implement a method on the computer unless we know
that this will occur, no matter what kind of data is input to the method.

In iterative numerical algorithms, the most important issues are conver-
gence of the algorithm and convergence of the algorithm to the “correct” so-
lution to the problem. If the algorithm converges, presumably it terminates,
but if it does not converge, we can always make it terminate by placing a limit
on the number of iterations.

In the actual computations, an iterative algorithm terminates when some
convergence criterion or stopping criterion is satisfied.

An example is to declare that an algorithm has converged when

∆
(
x(k), x(k−1)

)
≤ ϵ, (3.12)

where ∆(x(k), x(k−1)) is some measure of the difference of x(k) and x(k−1)

and ϵ is a small positive number. Because x may not be a single number, we
must consider general measures, usually metrics, of the difference of x(k) and
x(k−1). It may be the case, however, that even if x(k) and x(k−1) happen to
be close, if the computations were allowed to continue, x(k+1) would be very
different from x(k).

Even though the computed values may stop changing, that is, algorithmic
convergence has occurred, the question of convergence to the correct value
remains. (Recall the “convergent” series of Exercise 2.2.) The assessment of
convergence to the “correct” value is often an ad hoc process that depends on
some analysis of the problem. Perhaps a perturbation of the problem can be
used to assess correctness, as suggested on page 112. Also, if something about
the behavior of the function at the point of convergence is known, in addition
to first order comparisons as in equation (3.12), higher order differences may
be useful.

There are basically three reasons to terminate an algorithm.

• It is known that the problem is solved.
• The iterations converge, that is, the computed values quit changing.
• The number of iterations is too large, or the problem appears to diverge.

The first two of these indicate algorithmic convergence. The first one has
limited applicability. For most problems we do not know when it is solved.
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An example of when we do know is solving an equation; specifically, finding
the roots of an equation. If the problem is to solve for x in f(x) = 0, and if

∣∣∣f(x(k))
∣∣∣ ≤ ϵ, (3.13)

for some reasonable ϵ, then we can take x(k) as the best solution we are likely
to get. Is x(k) the correct solution however? Possibly. Consider f(x) = e−x,
however. Clearly, f(x) = 0 has no solution, but x(k) = − log(ϵ) will satisfy
the convergence criterion.

The second reason can be used in a wide range of cases, but we must be
careful because the iterates may not change monotonically, as we indicated
above.

If termination occurs because of the third reason, we say that the algorithm
did not converge.

On closer consideration of the criteria in (3.12) and (3.13) an important
point becomes obvious. We should choose ϵ with some care. Consideration of
this leads us to the realization that it is problem dependent. Without even
knowing the objectives of the problem, which, of course, would determine how
we really should make the decisions, we realize that often the data themselves
determine the important magnitudes. In either case, therefore, instead of the
absolute comparison with ϵ, perhaps we should use a relative comparison using
some other value, say ϵr:

∆
(
x(k), x(k−1)

)
≤ ϵr

∣∣∣x(k−1)
∣∣∣ , (3.14)

for example.
The point of this discussion is although assessment of convergence is very

important, it is difficult and, unfortunately, may be somewhat ad hoc.
A computer program implementing an iterative algorithm should allow the

user to set convergence and termination criteria.
An iterative algorithm usually should have more than one stopping crite-

rion. Often a maximum number of iterations is set so that the algorithm will
be sure to terminate whether it converges or not. In any event, it is always a
good idea, in addition to stopping criteria based on convergence of the solu-
tion, to have a stopping criterion that is independent of convergence and that
limits the number of operations.

Rate of Convergence

In addition to the question of how to decide when an algorithm has actually
converged and we should stop the iterations, we may be interested in how fast
the iterations are converging.

The convergence ratio of the sequence x(k) to a constant x0 is

lim
k→∞

∆(x(k+1), x0)
∆(x(k), x0)

(3.15)
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if this limit exists. If the convergence ratio is greater than 0 and less than
1, the sequence is said to converge linearly. If the convergence ratio is 0, the
sequence is said to converge superlinearly.

The convergence rate is often a function of k, say g(k). The convergence
is then expressed as an order in k, O(g(k)).

We can often determine the order of convergence experimentally, merely
by fitting a curve to the fraction in expression (3.15) for k = 1, 2, . . ..

Other measures of the rate of convergence are based on

lim
k→∞

∆(x(k+1), x0)
(∆(x(k), x0))r

= c (3.16)

(again, assuming the limit exists; i.e., c < ∞). In equation (3.16), the exponent
r is called the rate of convergence, and the limit c is called the rate constant.
If r = 2 (and c is finite), the sequence is said to converge quadratically. It is
clear that for any r > 1 (and finite c), the convergence is superlinear.

Convergence defined in terms of equation (3.16) is sometimes referred to
as “Q-convergence” because the criterion is a quotient. Types of convergence
may then be referred to as “Q-linear”, “Q-quadratic”, and so on.

Speeding Up Convergence by Extrapolation

An iterative algorithm involves a certain amount of work at each step. For a
given application, the amount of this work is relatively constant for a given
approach.

We can speed up an iterative algorithm either by changing the computa-
tions in a given step so as to reduce the amount of work at each step, or else
by reducing the number of steps until convergence.

Sometimes the amount of work in each step can be reduced by using some
approximations. This is the idea, for example, in some of the quasi-Newton
methods discussed beginning on page 269. When approximations are used,
the number of steps may increase but the overall work may decrease.

We now look at some ways of reducing the number of steps by perhaps
doing a small amount of extra work in each step.

We must be aware, however, that generally there are no modifications of
an algorithm that are guaranteed to speed up the convergence. Even worse,
an algorithm with relatively reliable convergence properties may lose these
properties after modifications; that is, we may begin with an iterative algo-
rithm that is relatively robust, and after modifications, will fail to converge
for a wider range of problems.

We will now consider two general methods. The first is a simple approach
called Aitken’s ∆2-extrapolation, or Aitken acceleration.

We begin with a convergent sequence {xk}, and consider the forward dif-
ference

∆xk = xk+1 − xk.
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Now we apply the difference operator a second time to get

∆2xn = ∆(∆xn)
= (xn+2 − xn−1) − (xn+1 − xn)
= xn+2 − 2xn−1 + xn.

Now, assume {xk} converges linearly to x, and that xk ̸= x for all k ≥ 0. If
there exists r with |r| < 1 such that

lim
k→∞

x − xk+1

x − xk
= r,

we can improve the speed of convergence by using the sequence {x̃k} defined
by

x̃k = xk − (∆xk)2

∆2xk

= xk − (xk+1 − xk)2

xk+2 − 2xk−1 + xk
. (3.17)

We will consider an example of this on page 246.
Use of the sequence {x̃k} in place of {xk} is called Aitken acceleration or

Aitken’s ∆2 process.
The only guarantee is that the Aitken sequence will converge faster. If the

original sequence {xk} is linearly convergent, in most cases {x̃k} will only be
linearly convergent also, but its asymptotic error constant will be smaller than
that of the original sequence.

When Aitken’s acceleration is combined with a fixed-point method, the
resulting process is called Steffensen acceleration (see page 246).

Another acceleration method arises in the context of a discrete grid over
a continuous domain. It is based on the idea of decreasing the grid size. Nu-
merical computations are performed on a discrete set that approximates the
reals or IRd. This may result in discretization errors. By “discretization er-
ror”, we do not mean a rounding error resulting from the computer’s finite
representation of numbers. The discrete set used in computing some quantity
such as an integral is often a grid. If h is the interval width of the grid, the
computations may have errors that can be expressed as a function of h. For
example, if the true value is x and, because of the discretization, the exact
value that would be computed is xh, then we can write

x = xh + e(h).

For a given algorithm, suppose the error e(h) is proportional to some power
of h, say hn, and so we can write

x = xh + chn (3.18)
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for some constant c.
Now, suppose we use a different discretization, with interval length rh

where 0 < r < 1. We have

x = xrh + c(rh)n (3.19)

and, after subtracting from equation (3.18), we have

0 = xh − xrh + c(hn − (rh)n)

or
chn =

(xh − xrh)
rn − 1

. (3.20)

This analysis relies on the assumption that the error in the discrete algo-
rithm is proportional to hn. Under this assumption, chn in equation (3.20)
is the discretization error in computing x, using exact computations, and is
an estimate of the error due to discretization in actual computations. A more
realistic regularity assumption is that the error is O(hn) as h → 0; that is,
instead of (3.18), we have

x = xh + chn + O(hn+α) (3.21)

for α > 0.
Whenever this regularity assumption is satisfied, equation (3.20) provides

us with an inexpensive improved estimate of x:

xR =
xrh − rnxh

1 − rn
. (3.22)

It is easy to see that |x − xR| is less than the absolute error using an interval
size of either h or rh.

The process described above is called Richardson extrapolation, and the
value in equation (3.22) is called the Richardson extrapolation estimate.
Richardson extrapolation is also called “Richardson’s deferred approach to the
limit”. It has general applications in numerical analysis, but is most widely
used in numerical quadrature. We will encounter it on page 188, where we use
it to develop Romberg integration by accelerating simpler quadrature rules.

Extrapolation can be extended beyond just one step as in the presentation
above.

Reducing the computational burden by using extrapolation is very impor-
tant in higher dimensions. In many cases, for example in direct extensions
of quadrature rules, the computational burden grows exponentially with the
number of dimensions. This is sometimes called “the curse of dimensionality”
and can render a fairly straightforward problem in one or two dimensions
unsolvable in higher dimensions.

A direct extension of Richardson extrapolation in higher dimensions would
involve extrapolation in each direction, with an exponential increase in the
amount of computation. An approach that is particularly appealing in higher
dimensions is called splitting extrapolation, which avoids independent extrap-
olations in all directions.
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3.5 Programming

Although I like to think of programming as a science, there are many ele-
ments of programming that resemble art. Programming is only learned by
programming. (Read that again.)

The advancement of science depends on high-quality software. Most sci-
entific software is not developed ab initio by professional programmers. Most
evolves from rudimentary, ad hoc programs. This type of development presents
a serious risk; the range of applicability (robustness) may be quite limited. The
writer of the program may or may not be aware of this. If the writer continues
to use the program this limitation may become apparent very quickly. The
real danger, however, usually comes from the usage by the writer’s colleagues.
After a few years of usage on easy problems or on problems very similar to
the one for which the program was originally written, the program has stood
the “test of time” and may be generally accepted as a solid piece of software.
There is a significant amount of anecdotal evidence that much of the code
incorporated in R packages evolved in this way, and it is not robust.

Of lesser concern is the extent to which the computer program utilizes
coding methods to speed up its execution. Although an algorithm may state,
for example, “for (i in 1 to n) do ...” the competent programmer may write
a do-loop that includes a number, say k, of successive steps within the do-
loop, and then has a small bit of code at the end of the loop to handle the n
mod k remaining cases. This is called unrolling the loop, and, depending on
the computer hardware, can result in significant speedup.

No matter how a code is written, the compiler may cause the order of
execution to be different from what the programmer expected. A compiler
attempts to maximize the speed of execution. Some compilers work harder
than others at optimizing the code. These are called optimizing compilers.
Some optimizing compilers will unroll do-loops, for example. As one might
guess, it is not easy for a program (the compiler) to decide how the statements
in another program should best be executed. The first practical optimizing
compiler was selected by Computing in Science & Engineering as one of the
Top 10 algorithms of the twentieth century; see page 138.

Translating Mathematics into Computer Programs

Although one of the important mantras of statistical computing is that a
mathematical expression does not necessarily imply a reasonable computa-
tional method, it is often the case that the mathematical expression is at the
appropriate level of abstraction. An expression such as ATB, for example,
may prompt a Fortran or C programmer to envision writing code to imple-
ment loops to compute ∑

i

∑

j

∑

k

akibkj . (3.23)
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If the computer language supports a construct directly similar to ATB, as
Fortran (but not C) and R do, it is likely that use of that construct will result
in a much more efficient program than use of the nested loops.

The point is that while the mathematical expression does not specify the
computations, we should begin with code (or pseudocode) that is similar to
the mathematical expression, and then refine the code for accuracy, stability,
and efficiency.

Computations without Storing Data

For computations involving large sets of data, it is desirable to have algorithms
that sequentially use a single data record, update some cumulative data, and
then discard the data record. Such an algorithm is called a real-time algorithm,
and operation of such an algorithm is called online processing. An algorithm
that has all of the data available throughout the computations is called a batch
algorithm.

An algorithm that generally processes data sequentially in a similar man-
ner as a real-time algorithm but may have subsequent access to the same data
is called an online algorithm or an “out-of-core” algorithm. (This latter name
derives from the erstwhile use of “core” to refer to computer memory.) Any
real-time algorithm is an online or out-of-core algorithm, but an online or
out-of-core algorithm may make more than one pass through the data. (Some
people restrict “online” to mean “real-time” as we have defined it above.)

If the quantity t is to be computed from the data x1, x2, . . . , xn, a real-
time algorithm begins with a quantity t(0) and from t(0) and x1 computes
t(1). The algorithm proceeds to compute t(k+1) using xk+1 and so on, never
retaining more than just the current value, t(k). The quantities t(k) may of
course consist of multiple elements. The point is that the number of elements
in t(k) is independent of n.

Many summary statistics can be computed in online processes. For exam-
ple, the algorithms discussed beginning on page 115 for computing the sample
sum of squares are real-time algorithms. The algorithm in equations (3.3) re-
quires two passes through the data, so it is not a real-time algorithm, although
it is out-of-core. There are stable online algorithms for other similar statis-
tics, such as the sample variance-covariance matrix. The least squares linear
regression estimates can also be computed by a stable one-pass algorithm that,
incidentally, does not involve computation of the variance-covariance matrix
(or the sums of squares and cross products matrix). There is no real-time
algorithm for finding the median. The number of data records that must be
retained and reexamined depends on n.

In addition to the reduced storage burden, a real-time algorithm allows
a statistic computed from one sample to be updated using data from a new
sample. A real-time algorithm is necessarily O(n).
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Measuring the Speed of a Program

Beginning on page 117 we discussed the efficiency of algorithms. For them to
be useful, algorithms must be translated into computer programs, and it is
ultimately the speed of these programs that matter. The arrangement of loops,
the movement of data, and other factors can degrade the performance of an
algorithm. One of the useful tools in programming is a function to measure
the time the computer spends on a given task— this is not the elapsed time,
because the computer may be working on other tasks.

It is important that the programmer know which parts of the program are
more computationally intensive. Of course, this may vary for different datasets
or problems. Any program intended for frequent use should be profiled over
different problems; that is, for a range of problems, the proportional average
execution time for each module should be empirically measured. Even the
proportional times may be different on different types of computers, so for
important, widely-used programs, profiling should be performed on a range
of computers.

There is an intrinsic function in Fortran 95, cpu time(time) that returns
the current processor time in seconds. (If the processor is unable to provide a
timing, a negative value is returned instead.) The exact nature of the timing is
implementation dependent; a parallel processor might return an array of times
corresponding to the various processors. In C, clock() in the time.h library
returns the number of clock steps, and an associated constant CLOCKS PER SEC
can be used to convert clock steps to seconds. In R, proc.time() returns the
“user” time, the “system time”, and the elapsed time in seconds. The distinc-
tion between “user” time and the “system time” depends on the operating
system and the hardware platform. There is another useful timing function
in R, system.time, which gives the same three times for the evaluation of an
expression. (The “expression” is a program module to be timed. It must be
specified as an argument to system.time.)

Computer functions to provide timing information are notoriously unreli-
able. They should always be used over multiple runs and average times taken.
The resolution of all of these functions is system dependent. In most cases, the
time for a certain computation is obtained by subtracting two different calls
to the timing routine, although doing this can only yield an elapsed system
time.

Code Development

An important aspect of statistical computing is the formulation of both the
data and the computational methods in a way that can be used by the com-
puter. This can be done by using some application such as a spreadsheet
program, or it can be done by writing a program in a programming language.
We will not address use of higher level application programs for computational
statistics in this book.



3.6 Computational Feasibility 137

In general we distinguish two types of programming languages: the lan-
guages in which programs are compiled before execution, such as C and For-
tran, and the languages that issue immediate commands to the computer, such
as Octave and R. We sometimes refer to interactive systems such as Octave
and R as “higher-level” languages. Systems such as Octave and R also allow
a sequence of commands to be issued together, so we can think of “programs”
or “scripts” in these higher-level systems. For large-scale computations we
should use a compiled language, because the execution is much faster. There
are, of course, many general issues and many more details to consider. We
will not address them here, but computational and programming aspects will
be a theme throughout this book.

3.6 Computational Feasibility

Data must be stored, transported, sorted, searched, and otherwise rearranged,
and computations must be performed on it. The size of the dataset largely
determines whether these actions are feasible. Huber (1994, 1996) proposed a
classification of datasets by the number of bytes required to store them (see
also Wegman, 1995). Huber described as “tiny” those requiring on the order of
102 bytes; as “small” those requiring on the order of 104 bytes; as “medium”
those requiring on the order of 106 bytes (one megabyte); as “large”, 108

bytes; “huge”, 1010 bytes (10 gigabytes); and as “massive”, 1012 bytes (one
terabyte). (“Tera” in Greek means “monster”.) This log scale of two orders
of magnitude is useful to give a perspective on what can be done with data.
Online or out-of-core algorithms are generally necessary for processing massive
datasets.

For processing massive datasets, the order of computations is a key mea-
sure of feasibility. We can quickly determine that a process whose computa-
tions are O(n2) cannot be reasonably contemplated for massive (1012 bytes)
datasets. If computations can be performed at a rate of 1012 per second (ter-
aflop), it would take over three years to complete the computations. (A rough
order of magnitude for quick “year” computations is π × 107 seconds equals
approximately one year.) A process whose computations are O(n logn) could
be completed in 230 milliseconds for a massive dataset. This remarkable dif-
ference in time required for O(n2) and O(n logn) processes is the reason that
the fast Fourier transform (FFT) algorithm was such an important advance.

Exponential orders can make operations even on tiny (102 bytes) datasets
infeasible. A process whose computations require time of O(2n) may not be
completed in four centuries.

Sometimes, it is appropriate to reduce the size of the dataset by forming
groups of data. “Bins” can be defined, usually as nonoverlapping intervals
covering IRd, and the number of observations falling into each bin can be
determined. This process is linear in the number of observations. The amount
of information loss, of course, depends on the sizes of the bins. Binning of data
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has long been used for reducing the size of a dataset, and earlier books on
statistical analysis usually had major sections dealing with “grouped data”.

Another way of reducing the size of a dataset is by sampling. This must be
done with some care, and often, in fact, sampling is not a good idea. Sampling
is likely to miss the unusual observations just because they are relatively rare,
but it is precisely these outlying observations that are most likely to yield new
information.

Advances in computer hardware continue to expand what is computation-
ally feasible. It is interesting to note, however, that the order of computations
is determined by the problem to be solved and by the algorithm to be used,
not by the hardware. Advances in algorithm design have reduced the order of
computations for many standard problems, while advances in hardware have
not changed the order of the computations. Hardware advances change the
constant in the order of time.

Notes and Further Reading

Algorithms

A good general and comprehensive coverage of computer algorithms is in the
very large book by Cormen et al. (2001). Garey and Johnson (1979) did an
early study of the class of NP-complete problems, and their book contains an
extensive list of problems that are known to be NP-hard.

The January/February, 2000, issue of Computing in Science & Engineering
was devoted to the Top 10 Algorithms of the twentieth century. Guest editors
Jack Dongarra and Francis Sullivan discuss the role that efficient compu-
tational algorithms have played in the advancement of science. As we have
pointed out, the replacement of an O(n2) algorithm with an O(n logn) al-
gorithm, as is often the case in divide and conquer strategies, has allowed
problems to be solved that could not be solved before. The special issue con-
tains brief articles on all of the Top 10 algorithms. Some of the Top 10 are
rather simple methods that can be described in just a few steps and oth-
ers require many steps. Some are collections of several methods, and instead
of being algorithms, they are general approaches. Some can be implemented
in a computer program reliably by an amateur, while others involve many
numerical subtleties.

The Top 10, in the chronological order of their development are

• Metropolis algorithm for Monte Carlo
• simplex method for linear programming
• Krylov subspace iteration methods
• the decompositional approach to matrix computations
• the Fortran optimizing compiler
• QR algorithm for computing eigenvalues
• quicksort algorithm
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• fast Fourier transform
• integer relation detection
• fast multipole method

We have discussed two of these algorithms and mentioned another in this
chapter and we will encounter others in later chapters of Part II.

Developing algorithms can be an enjoyable exercise in problem solving.
The book by Bentley (2000) provides very readable descriptions of a number
of problems, and then gives elegant algorithms for them. (A teaser is given in
Exercise 3.9; a solution for which is provided on page 679.)

Extrapolation

Richardson’s ideas for extrapolation appeared in 1910, but it took fifty years
before the technique was widely used. Today most numerical computations
that use discrete approximations to evaluate a quantity that is defined in terms
of a continuous function, such as an integral, use some form of extrapolation.

The use of extrapolation in higher dimensions is even more important, but
it should not be done as independent extrapolations in each of the dimensions.
The splitting extrapolation method is described in some detail by Liem, Lü,
and Shih (1995).

Programming and Software

Statisticians depend on high-quality software, and many statisticians are ama-
teur software developers for their own computing needs. Much of the software
used by any statistician, even one working in statistical computing, however, is
written by someone else, possibly a team at a commercial or semi-commercial
software company.

Reviews of software, whether published formally or distributed through
blogs, are useful, but the target is moving and evaluations frequently go awry.
McCullough (1999) discusses some of the methods of reviewing statistical
software, and the complexities of this activity.

Often a statistician needs to write new code to address a specific problem
or to implement a new statistical method. In this case a programming language
and possibly a programming system must be used. The common programming
languages for statistical applications are R, S-Plus, and Matlab, or Fortran, C,
and C++. Obviously, there are many other languages to choose from, but the
user should consider the length of time the program may be used. (I personally
have written thousands of lines of PL/I that several years later I had to have
high-paid programmers translate into Fortran.)

Any serious programming effort needs a programming system for the cho-
sen language. A programming system includes a language-aware editor, a good
debugger, and a version control system. A programming system is built around
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some specific application program interface (API), and understanding the de-
tails of the API is necessary for effective programming.

Thinking of the various components of code as representing objects, and
thinking of the objects systematically as members of classes with common
characteristics is a good way to approach code design and development. Vir-
ius (2004) provides a general description of the object-oriented approach, “ob-
ject oriented programming”, (OOP). There is a dogma associated with OOP
(that reminds me of the dogmas of BCLSs and structured programming de-
scribed in Kennedy and Gentle, 1980), but like earlier movements, the atti-
tudes engendered are more important than strict adherence to the religion.

The issue of ensuring reliable and correct software during the development
of the software is important. It should not be necessary to correct unreliable
software after the fact. Chapter 8 of the book edited by Einarsson (2005)
specifically addresses facilities in various languages such as Fortran or C for
implementing reliable and correct software. Chapter 1 of that book also con-
tains a number of interesting examples where unreliable or incorrect software
has endangered lives and cost a lot of money to correct.

A good book on programming is Lemmon and Schafer (2005), who provide
many guidelines for developing software in Fortran 95. They also describe
system integration, primarily in the context of Microsoft Visual Basic NET
system.

Chambers (2008) discusses principles of programming, with particular em-
phasis on the R system. Much of the material in both Lemmon and Schafer
(2005) and Chambers (2008) applies to programming in any language. Cham-
bers also covers system integration with less dependence on a particular plat-
form.

Software development is not just about writing programs. There are many
issues including interface design, algorithm selection and implementation, doc-
umentation, and maintainability that the amateur software developer is not
likely to consider. Klinke (2004) discusses many issues of the design of the
interface, and the book by McConnell (2004) provides a good coverage of this
as well as other issues, such as code design and documentation.

R and S-Plus

The software system called S was developed at Bell Laboratories in the mid-
1970s by John Chambers and colleagues. S was both a data-analysis system
and an object-oriented programming language.

S-Plus is an enhancement of S, including graphical interfaces, more statis-
tical analysis functionality, and support.

The freely available package called R provides generally the same func-
tionality in the same language as S (see Gentleman and Ihaka, 1997). The R
system includes a useful feature for incorporation of new “packages” into the
program. See
http://www.r-project.org/
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for a current description of R and a listing of packages available over the
web. A large number of research workers have contributed packages to the R
system. Many of these packages have overlapping capabilities, and, unfortu-
nately, some are not of high-quality. The most serious flaw is usually lack of
robustness.

There are a number of useful books on R or on various statistical methods
using R, such a Gentleman (2009), Murrell (2006), and Rizzo (2007). The
Springer series Use R! includes a number of books such as Albert (2007),
Sarkar (2008), and Spector (2008) that address specific topics relating to R.

Computations in Parallel

I have said very little about parallel computations in this book. It is, however,
clearly the most important approach for increasing computational power, and
it is absolutely necessary for addressing very computationally intensive prob-
lems. Parallel computers are becoming more widely available. Even personal
computers generally have multiple processing units.

Someone doing research and development in statistical computing must
be fluent in parallel computations. Nakano (2004) provides a good summary
of the techniques.

The first issue for parallel computations is how to divide up the work (the
program) and the data. The most common model is SPMD, “single-program-
multiple-data”. In SPMD the most important issue is passing of data, and for
that a standard API, called the Message Passing Interface (MPI) has been
developed. There are various Fortran and C libraries implementing the MPI.

There are evolving standards for compiler support of parallel computa-
tions. In Fortran, the most important concept is co-arrays. Various Fortran 95
compilers have supported this for years, and they are now codified in the For-
tran 2008 standard. This allows for direct memory copies, achieving the same
result as message passing, but at a significantly faster rate. (As of this writing,
this standard has not been published.)

There is current work on a C standard called Uniform Parallel C (UPC)
to promote portability of parallel codes in C.

The main challenge is to be able to develop long-lasting software that
takes advantage of multiple processors, and the development of standards
should help to preserve the value of parallel code.

Data Structure

Another important topic that I have not discussed in much detail is database
structure. The brevity of my discussion of data structures is not indicative of
its importance. Detailed consideration of data structures is outside of the scope
of this book. For further information on this topic, the reader is referred to
general books on algorithms, such as Cormen et al. (2001), which address data
structures that are central to the construction of many algorithms. Some of the
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issues of database structure that are most relevant in statistical applications
are discussed by Boyens, Günther, and Lenz (2004).

Exercises

3.1. In standard mathematical libraries there are functions for log(x) and
exp(x), called log and exp respectively. There is a function in the IMSL
Libraries to evaluate log(1 + x) and one to evaluate (exp(x)− 1)/x. (The
names in Fortran, for single precision, are alnrel and exprl.)
a) Explain why the designers of the libraries included those functions,

even though log and exp are available.
b) Give an example in which the standard log loses precision. Evaluate it

using log in the standard math library of Fortran or C. Now evaluate
it using a Taylor series expansion of log(1 + x).

3.2. Suppose you have a program to compute the cumulative distribution func-
tion for the chi-squared distribution. The input for the program is x and
ν, the degrees of freedom, and the output is Pr(X ≤ x). Suppose you are
interested in probabilities in the extreme upper range and high accuracy
is very important. What is wrong with the design of the program for this
problem?

3.3. Errors in computations.
a) Explain the difference in truncation and cancellation.
b) Why is cancellation not a problem in multiplication?

3.4. Assume we have a computer system that can maintain 7 digits of precision
(base 10). Evaluate the sum of squares for the data set {9000, 9001, 9002}.
a) Use the algorithm in (3.4), page 115.
b) Use the algorithm in (3.5).
c) Now assume there is one guard digit. Would the answers change?

3.5. Develop algorithms similar to (3.5) to evaluate the following.
a) The weighted sum of squares:

n∑

i=1

wi(xi − x̄)2

b) The third central moment:

n∑

i=1

(xi − x̄)3

c) The sum of cross products:

n∑

i=1

(xi − x̄)(yi − ȳ)
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Hint: Look at the difference in partial sums,

j∑

i=1

(·) −
j−1∑

i=1

(·)

3.6. Given the recurrence relation

t(n) = pt(n/p) + cn,

for p positive and c nonnegative. Show that t(n) is O(n logn). Hint: First
assume n is a power of p.

3.7. Suppose all of the n addends in a summation are positive. Why is the
computation of the sum by a fan-in algorithm likely to have less roundoff
error than computing the sum by a standard serial algorithm? (This does
not have anything to do with the parallelism, and the reason does not
involve catastrophic cancellation.)

3.8. Consider the problem of computing w = x - y + z, where each of x, y,
and z is nonnegative. Write a robust expression for this computation.

3.9. Searching.
Given an array of length n containing real numbers, find a subarray with
maximum sum. (If all of the contents are nonnegative, obviously the full
array is a subarray that satisfies the requirement.) The subarray may not
be unique. The best algorithm is O(n).

3.10. Sorting.
Write pseudo code similar to for the bubble sort method described on
page 122 for a single vector. Show that its operation count is O(n2).

3.11. Sorting.
Write either a C function or a Fortran subroutine that accepts a vector
and sorts it using Quicksort (page 123). Test your program to ensure that
it is working correctly.

3.12. Sorting and merging.
a) Consider a very simple sorting method for an array a, consisting of n

elements, which is to be sorted in place. (This algorithm is not a good
one; it is just used for illustration. It is similar to the bubble sort.)
0. Set i = 1.
1. Set r = i.
2. For j = i + 1 to n, if a(i) > a(j), then r = j.
3. If r > i, then

interchange a(i) and a(r) and go to step 1;
otherwise

if i < n, then
set i = i + 1 and go to step 1,

otherwise
end.
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Describe carefully how you might implement this algorithm on k
processors with a shared memory. What is the order of this algorithm?
Discuss the algorithm critically. Consider the case in which k ≈ n.

b) Now consider the problem of merging two sorted lists. The arrays b
and c are each sorted and we wish to merge them into a new list d that
is sorted. Describe carefully how you might do this using k processors
with a shared memory.

3.13. Consider again the series
∞∑

i=1

1
ip

,

for p ≥ 1 from Exercise 2.2d. For p = 1.5, 2.0, 2.5, . . .4.0, experimentally
determine the order of convergence. Now express the order of convergence
in terms of n and p.

3.14. While a series of computations may converge, the question of the conver-
gence of the error remains. In Exercise 2.12, using the algorithm in Fig-
ure 2.10, we saw that for x = 20, the Taylor series approximation yielded
a fairly good value for ex. We know the order of errors of a truncated
Taylor series, in terms of derivatives. Now, experimentally determine the
order of the error for approximating ex with the Taylor series for x = 20
in terms of the number of iterations (that is, the number of terms in the
Taylor series).

3.15. Design and write either a C function or a Fortran subroutine that accepts
two addends in vectors and a required precision level, and that returns the
sum in a vector to the precision required. (Think of the elements of the
vectors as being digits in some base.) Write a user-oriented description of
your module.

3.16. Develop a set of test programs that will probe the accuracy of a given
module to compute a sample sum of squares. You should consider various
ways that the given module could go wrong and the various types of data
that could cause it to have problems, and provide tests for all of them.

3.17. Assume the problem P has solution s (unknown, of course). An algo-
rithm/program F is available to solve P . Ideally, of course, F (P ) = s.
Discuss the issues and the methods you would employ to determine that
F (P ) is an adequate approximation to s.

3.18. Write either a C function or a Fortran subroutine that accepts the three
coefficients of a quadratic polynomial and evaluates one of the roots by
means of the quadratic formula, equation (2.18), and computes the other
root in an appropriate manner. (See the discussion on page 101.) Write
your function or subroutine as a standard software part. Write the part
specification very carefully, but succinctly, as comments in the program-
ming language. (What do you do if b2 < 4ac? You do not have to provide
a solution in this case, i.e., complex roots, but your software part must
handle that case.)
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3.19. Design and write either a C function or a Fortran subroutine that uses
a real-time algorithm for the method you developed in Exercise 3.5c to
compute the mean vector and variance-covariance matrix for multivariate
data in the standard n×m rectangular layout (that is, as a matrix). Your
program module should accept as input
• the number of variables
• the number of observations input in the current invocation (this is a

number between 0 and n) – call this number ni (a 0 value only makes
sense if the current invocation is the final one for the given problem,
and only wrap-up operations are to be performed)

• a subset of the rows of the overall data matrix (this is an ni × m
matrix)

• an indicator of whether this invocation is the first one for the given
problem, an intermediate one, or the final one

• the total number of observations that have been processed before the
current invocation – and output as the updated total, to include the
observations in the current invocation

• the vector of means of the observations that have been processed before
the current invocation – and output as the updated means, to include
the observations in the current invocation

• the matrix of sums of squares and cross-products of the observations
that have been processed before the current invocation – and output as
the updated sums of squares and cross-products to include the obser-
vations in the current invocation. On the final invocation, the sums of
squares and cross-products should be scaled by the appropriate divisor
to form variances and covariances.

3.20. Discuss design issues for your program module of Exercise 3.19 if the data
may contain missing values.

3.21. In statistical data analysis, it is common to have some missing data. This
may be because of nonresponse in a survey questionnaire or because an
experimental or observational unit dies or discontinues participation in the
study. When the data are recorded, some form of missing-data indicator
must be used. Discuss the use of NaN as a missing-value indicator. What
are some advantages and disadvantages?

3.22. Timing.
Write a program to time the C function or Fortran subroutine (or you
can use R) that you wrote in Exercise 3.11 to sort a vector using Quick-
sort. Experiment with the performance of your code using input vectors
with various orderings. (You must use large vectors to be able to tell any
difference, but you must also use different sizes of vectors to assess the
performance.) Examine the timing as a function of the size of the problem,
on average.
What is the worst case problem for Quicksort? Examine the timing as a
function of the size of the problem for the worst cases.
Summarize your findings in a clearly-written report.
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Approximation of Functions and Numerical
Quadrature

Often in applied mathematics, we encounter a functional model that we ex-
press as

y = f(x),

but yet we do not know f fully, or else we cannot evaluate it in closed form.
We may only have some general knowledge about the shape of f and know

its value at certain points, f(x1), f(x2), . . .. In that case, our objective may be
just to determine some “nice” function, say a polynomial, that goes through
those known values. We say it “interpolates” those points.

Even if we know the values at certain points, we may take a slightly dif-
ferent approach in which we determine a nice function that goes “close” to
the points, but does not necessarily interpolate them. We say it “smoothes”
the points. In this case there is an adjustment term at each of the points that
is not interpolated.

Alternatively the function may be parameterized, and we have full knowl-
edge of the function except for the values of the parameters; that is, we form
the model as

y = f(x; θ),

and we know f(x; θ) all except for θ. If there is a value of θ so that the
function interpolates all known values, that value provides us full knowledge
of f (conditional on the known values). It may be the case that there is no
value of θ such that f(x; θ) fits all of the known values (xi, yi). In this case
we must recognize that y = f(x; θ) is not really correct; it needs some kind of
adjustment term.

If our objective is to interpolate the known points, there are several ways
we can do that, so we set some reasonable criteria about the form of the
interpolating function, and then proceed. We will discuss ways of interpolation
in this chapter.

If our objective is to smooth the data or if the functional model cannot
interpolate all of the known points, then we must deal with an adjustment
term. There are two possible approaches. One is set some reasonable criteria
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about the form of the smoothing function and about what kinds of adjustment
terms to allow, and then proceed. That approach is a topic of this chapter;
the objective is to approximate the function. In another approach, we assume
that the adjustment terms are random variables, and so we can use statistical
techniques to estimate the function; that is the topic of Chapter 10.

There are many reasons for approximating a function. One reason for doing
this, which we will address in later sections of this chapter, is to evaluate an in-
tegral involving the function. Another reason, which we address in Chapter 8,
is to draw lines in a graphical display. An additional reason for approximating
a function is to put the function in a form that is amenable for estimation; that
is, we approximate a function and then estimate the approximating function.

Before proceeding to the main topic of this chapter, that is, methods of ap-
proximation of functions, we review some general topics of linear spaces devel-
oped in Section 1.2 for the special case of function spaces. This discussion leads
to the notions of basis functions in Section 4.2. In Sections 4.3, 4.4, and 4.5,
we discuss methods of approximation, first using a basis set of orthogonal
polynomials and truncated series in those basis functions, then using finite
sets of spline basis functions, and then using a kernel filter. In Sections 4.6
and 4.7 we discuss numerical quadrature. Some methods of quadrature are
based on the function approximations.

Inner Products, Norms, and Metrics

The inner products, norms, and metrics that we defined beginning on page 11
are useful in working with functions, but there are a few differences that result
from the fact that the “dimension” is essentially uncountable.

The inner product of functions is naturally defined in terms of integrals of
the products of the functions, analogously to the definition of the dot product
of vectors in equation (1.7). Just as the inner product of vectors is limited
to vectors with the same length, the inner product of functions is defined for
functions over some fixed range of integration (possibly infinite).

Also, just as we sometimes define vector inner products and vector norms
in terms of a weight vector or matrix, we likewise define inner products for
scalar-valued functions with respect to a weight function, w(x), or with respect
to the measure µ, where dµ = w(x)dx,

⟨f, g⟩(µ;D) =
∫

D
f(x)ḡ(x)w(x) dx, (4.1)

if the integral exists. Often, both the weight and the range are assumed to
be fixed, and the simpler notation ⟨f, g⟩ is used. We remind the reader that
in this book, we will generally assume the functions are real-valued, and so
we usually do not write inner products using the complex conjugate. The
inner product in equation (4.1) is also called the dot product, just as in the
analogous case with vectors.
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We can define norms of functions in the same general way we have defined
any norm. There are two differences we must be aware of, however. First of all
is the question of integrability of the integrand that defines the norm. While for
finite-dimensional vectors, this was not a problem, we must identify the class
of functions for which we are defining the norm so as to ensure integrability.
We will use the notation L2(D) to represent the space of functions that take
values in the same vector space and that are square-integrable over D; that
is, f ∈ L2(D) if and only if

∫

D
(f(x))2w(x)dx < ∞. (4.2)

In the following, we will often assume that the function is scalar-valued. If
the function is not scalar-varlued, then the integrands in equations (4.1) and
(4.2) would be replaced by norms of vectors.

Secondly, the nonnegativity property of a norm is somewhat awkward
in working with functions. This is because the inner product defined as an
integral would not induce a norm that satisfies the nonnegativity property. It
is clearly possible that f(x0) > 0 for some value x0, yet

∫
D(f(x))2w(x) dx = 0.

We note, however, that if D1 is a set of x for which f(x) > 0 and∫
D1

(f(x))2w(x) dx = 0, then
∫

D1
w(x) dx = 0; that is, D1 is a set with mea-

sure 0 with respect to the weighting in the definition of the inner product.
With this in mind, we often define a more useful function, a pseudonorm,

in which the nonnegativity requirement is relaxed to allow a zero value of the
pseudonorm to imply only that the function is 0 almost everywhere, where
almost everywhere means “everywhere except on a set of measure 0” (with
respect to some measure). Any norm is obviously a pseudonorm, but not
vice versa. Unless the distinction is important, however, we often refer to a
pseudonorm just as a “norm”. We may use the term “pseudonorm” for techni-
cal correctness, but in computations, the distinction is generally meaningless.
The whole space IF has Lebesgue measure 0. (See Section 2.2.)

A common Lp function pseudonorm is the L2 pseudonorm, which is de-
noted by ∥f∥2. Because this pseudonorm is so commonly used, we often denote
it simply by ∥f∥. This pseudonorm is related to the inner product:

∥f∥2 = ⟨f, f⟩1/2. (4.3)

The space consisting of the set of functions whose L2 pseudonorms over IR
exist together with this pseudonorm itself is denoted L2. (To be more precise,
the measure µ from equation (4.1) is the Lebesgue measure. Notice that the
space L2 consists of both a set of functions S and the special function, the
pseudonorm, whose domain is S.)

Another common Lp function pseudonorm is the L∞ pseudonorm, espe-
cially as a measure of the difference between two functions. This pseudonorm,
which is called the Chebyshev norm or the uniform norm, is the limit of equa-
tion (1.15) on page 13 as p → ∞ (with the inner product in equation (4.1)).
In most cases, this pseudonorm has the simpler relationship
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∥f∥∞ = sup
D

|f(x)w(x)|. (4.4)

(Notice that the expression on the right side of equation (4.4) is actually a
norm instead of just a pseudonorm. We may not want to define ∥f∥∞ in this
manner, however, because f could be very large on some discrete points, and
so the sup would not capture the relevant size of f . On the other hand, we
could define the class of relevant functions in such a way that this is not an
issue.)

To emphasize the measure of the weighting function, the notation ∥f∥µ is
sometimes used. (The ambiguity of the possible subscripts on ∥ · ∥, whether
they refer to a type of norm or to the measure, is usually resolved by the
context.) For functions over finite domains, the weighting function is most
often the identity.

A normalized function is one whose norm is 1. Although this term can be
used with respect to any norm, it is generally reserved for the L2 norm (that
is, the norm arising from the inner product). A normalized function is also
sometimes called a “normal function”, but we usually use that latter term
to refer to a function whose integral (over a relevant range, usually IR) is 1.
Density functions and weight functions are often normalized (that is, scaled
to be normal).

Sequences; Complete Spaces

For approximation methods, it may be important to know that a sequence of
functions (or vectors) within a given space converges to a function (or vector)
in that space.

A sequence {fi} in an inner product space is said to converge to f in a
given norm ∥·∥ if, given ϵ > 0, there exists an integer M such that ∥fi−f∥ ≤ ϵ
for all i ≥ M . This convergence of the norm is uniform convergence; that is,
at all points. We also often consider pointwise convergence of a sequence of
functions, which depends on the argument of each function in the sequence.

A sequence is said to be a Cauchy sequence if, given ϵ > 0, there exists an
integer M such that ∥fi − fj∥ ≤ ϵ for all i, j ≥ M .

A space in which every Cauchy sequence converges to a member of the
space is said to be complete.

A complete space together with a norm defined on the space is called a
Banach space. A closed Banach space in which the norm arises from an inner
product, as in equation (4.3), is called a Hilbert space.

The finite-dimensional vector space IRd and the space of square-integrable
functions L2 are both Hilbert spaces. (See a text on real analysis, such as He-
witt and Stromberg, 1965.) They are, by far, the two most important Hilbert
spaces for our purposes. The convergence properties of the iterative methods
we often employ in smoothing and in optimization methods generally derive
from the fact that we limit our domain of discourse to Hilbert spaces.
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Roughness

We use the terms “roughness” and “variation” in referring to functions in
a nontechnical sense, and the terms are more-or-less synonymous. We often,
however, refer to a specific measure of roughness or variation. (Notice that we
try to avoid use of the term “variance” in a nontechnical sense.)

A reasonable measure of the variation of a scalar function is

V(f) =
∫

D

(
f(x) −

∫

D
f(t)dt

)2

dx. (4.5)

This quantity is the variance of f(Y ), where Y is a random variable with a
uniform distribution over D (see expression (4.86) on page 194).

If the integral
∫

D f(x)dx is constrained to be some constant (such as 1 in
the case that f(x) is a probability density), then the variation can be measured
by the square of the L2 norm,

S(f) =
∫

D
∥f(x)∥2

2 dx. (4.6)

Another intuitive measure of the roughness of a twice-differentiable and
integrable univariate function f is the integral of the square of the second
derivative:

R(f) =
∫

D
∥f ′′(x)∥2

2 dx. (4.7)

A function constructed so as to approximate a given function often is
very rough. We sometimes constrain the approximating function in some way
so that its roughness is small or else that it is similar in magnitude to the
roughness of the given function if we know it or if we have an approximation
for it.

Linear Operators

Approximations of functions are often formed by use of a functional or an
operator.

A functional is a mapping of a function space into a vector space; for our
purposes we will consider a functional to be a mapping of a function into the
finite-dimensional vector space IRd. An operator is a mapping of a function
space into a function space.

We are interested in properties of functionals and operators because those
properties relate to the magnitude of the error in function approximation.

We will denote functions using an upper case letter, and operators using
a calligraphic font, for example, we may write v = L(f) and g = L(f), where
f is a function, v is a real vector, and g is a function. Depending on the
emphasis or the need for clarity, we also may write the functions with formal
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arguments, g(t) = L(f(x)); or with actual arguments, g(t0) = L(f(x0)); and
we may write the operator without parentheses, g = Lf or g(t) = Lf(x).

For a given function f , the measure of the goodness of the function g to
approximate f is the functional L(g) = ∥f − g∥.

The most commonly used functionals and operators are linear. The func-
tional L is a linear functional if for any two functions f1 and f2 within the
domain of L and for any constant c,

L(cf1 + f2) = cL(f1) + L(f2). (4.8)

Likewise, the operator L is a linear operator if for any two functions f1 and
f2 within the domain of L and for any constant c,

L(cf1 + f2) = cL(f1) + L(f2). (4.9)

An example of a linear operator on functions with domain [a, b] is the one
that results in a straight line through the function values at a and b. A similar,
more general linear operator is

L(f) =
n∑

i=1

cif(xi). (4.10)

The Lagrange interpolating polynomial, which we consider below in equa-
tion (4.16), is an example of this linear operator.

Another example is a finite Taylor series approximation of a differentiable
function:

L(f) = f(x0) + (t − x0)f ′(x0). (4.11)

Convolutions and covariances are also important linear operators.

Norms of Operators

Norms of functionals and operators measure their variation. Because of the
way we use functionals and operators in approximation, the most useful norms
are often those that capture maximal deviations. Hence, we define the norms
as Chebyshev norms. We define the norm of functionals and operators in
terms of their use on normalized functions; that is, on functions whose norm
is 1. The norm ∥ · ∥f used to define the normalized function is not necessarily
a Chebyshev norm. The norm of functional, ∥L∥, in terms of a normalized
function, is the vector norm:

∥L∥ = max
∥f∥f=1

|L(f)|. (4.12)

The norm of an operator, ∥L∥, in terms of a normalized function, is the func-
tion norm:

∥L∥ = sup
∥f∥f =1

∥L(f)∥. (4.13)
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It is clear that these norms satisfy the properties that define a norm (see
page 13).

For example, the norm of the linear interpolant operator mentioned above
that is the straight line between the points (a, f(a)) and (b, f(b)) is easily seen
to be

max(|f(a)|, |f(b)|). (4.14)

The norm of the interpolant operator serves to measure the sup error of
the approximation.

4.1 Function Approximation and Smoothing

We often need to approximate a given function f by another function f̃ . This
may be because we know f only at some specific points; it may be because the
approximation f̃ may be easier to work with than f ; or it may be because we
have good ways of estimating f̃ , but do not have a direct way of estimating
f .

By “to approximate f” we may mean to approximate an integral of f , to
approximate a derivative of f , or just to approximate some values of f that
may be unknown or may be difficult to evaluate directly.

There are a number of ways we can approximate the function f :

• globally, as a truncated series of other, basic functions
• globally, as a ratio of other, basic functions
• piecewise, using different forms of another, basic function in different re-

gions of the domain
• globally, with a weighting function that is centered at different places

within the domain.

In Sections 4.2 and 4.3 we will consider the first approach. This is reminis-
cent of the discussion beginning on page 18 for representing vectors as linear
combinations of the elements in a basis set.

An approximation that sometimes provides a better fit is a ratio of two
truncated power series or of two polynomials:

f(x) ≈ p(x)
q(x)

.

This type of approximation, which is an instance of a rational approximation,
is called a Padé approximation. Although Padé approximation may be useful,
particularly when the function to be approximated contains poles, we will not
cover this approach.

The most common piecewise approach to approximating a function is to
use splines, which are functions with different forms in different regions of the
domain but which join smoothly at the juncture of two adjacent regions. We
will discuss this method in Section 4.4.
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A global approach that allows different treatment at all points within the
domain is to use a moving weight function. This is the idea behind kernel
methods, which we will discuss in Section 4.5.

In Section 4.6 we consider the use of function approximation for evaluation
of definite integrals. We also consider in that section other approaches to
numerical quadrature.

The approximating function f̃ should be easy to evaluate, easy to differ-
entiate, and easy to integrate. It should also of course be easy to determine,
given a function f that we wish to approximate.

How well one function approximates another function is usually measured
by a norm of the difference in the functions over the relevant range. If f̃ is used
to approximate f , the Chebyshev norm, ∥f̃ − f∥∞, is likely to be the norm
of interest. This is the norm most often used in numerical analysis when the
objective is interpolation or quadrature and when we make assumptions about
continuity of the functions or their derivatives. Chebyshev approximation is
approximation in which this norm is minimized over a set of approximating
functions f̃ .

In problems with noisy data, or when f̃ may be very different from f ,
∥f̃−f∥2 may be the more appropriate norm. This is the norm most often used
in estimating probability density functions (see Chapter 15) or in projection
pursuit (see Section 16.5), for example.

To use f̃ as an approximation for a function f , given a known set of values
{(yi, xi)} such that yi = f(xi), we may require that f̃(xi) = f(xi) at each
of the known points. This is interpolation. Alternatively, we may require that
f̃(xi) ≈ f(xi) and that f̃ not be very rough, by some measure of roughness.
This is smoothing.

Models for Interpolation

The model y = f(x) can be viewed as expressing an exact relationship for
a fixed set of values. Given a set {(xi, yi)} of values for which yi = f(xi),
it is reasonable to require that the approximating function f̃ be such that
f̃(xi) = f(xi). That exact fit would provide an approximation at other values
that x may assume. This approach of fitting a function to the given y and x
is called interpolation.

There are several possibilities for choosing a continuous function to inter-
polate the data. An interpolant is likely not to be very smooth or else it may
exhibit wide variation. The requirement to fit all data values exactly may also
mean that the relationship is not a (single-valued) function. It is unlikely that
a single easily-defined function, other than a polynomial, could interpolate
the data. A polynomial of degree n − 1 can, of course, interpolate n data
points (assuming no two points have the same ordinate values), but such a
polynomial may have wild swings; that is, it may be very rough.

If a functional form for f̃ is chosen, say f̃(x; θ), where θ is a parameter, it
may be difficult or impossible to determine a value of θ that would interpolate
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a given dataset; that is, a value of θ that would yield an equality at each data
point. For interpolation, there must be considerable freedom to choose the
function f̃ . Rather than a single function, however, we may choose a piecewise
set of functions, each of which interpolates a subsequence of the given points
that have adjacent abscissas. Two piecewise interpolating polynomials are
shown in Figure 4.1.

x

y

f~(x)

Linear

x

y

f~(x)

Cubic Polynomial

Fig. 4.1. Interpolation

A general form of an interpolating function for two-dimensional data can
be built from Lagrange polynomials. Given x1, x2, . . . , xn, we define n − 1
Lagrange polynomials each of degree n−1, so that the jth Lagrange polynomial
is

lj(x) =
∏

i̸=j

x − xi

xj − xi
. (4.15)

It is clear that
lj(xi) =

{
1 if i = j
0 otherwise;

therefore, if the function values at the given points are y1, y2, . . . , yn, the
function

h(x) =
n∑

i=1

li(x)yi (4.16)
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is an interpolating polynomial of degree n − 1.
A single Lagrange polynomial of degree n − 1 could be used over the full

range, but it would be very rough. Another way is to use different piecewise
Lagrange polynomials over subsets of the points. For a set of k adjacent points,
a polynomial of degree k − 1 could interpolate them. The piecewise linear
function in Figure 4.1 is a piecewise Lagrange polynomial of degree 1 each
piece of which is defined on two points, and the interpolating curve shown
on the right in Figure 4.1 is a piecewise cubic polynomial interpolating three
adjacent points.

The sharp increase at the first two points in Figure 4.1 causes large values
for the derivatives. Instead of joining the polynomials at data points, we could
force them to be joined between points. A polynomial of degree k − 1 can
interpolate k points whether or not two of the points are endpoints of the
polynomial.

The breakpoints are called knots, and this kind of interpolation, in which
polynomials of degree k − 1 can interpolate k points and such that the poly-
nomials join smoothly at the knots, is called spline interpolation, and we will
consider it in more detail in Section 4.4.

Error in Function Approximation

From equation (4.10) on page 152, the norm of the Lagrange interpolating
polynomial (4.16) is the sum of the norms of the individual Lagrange polyno-
mials; that is, if

L(f)(x) =
n∑

i=1

f(xi)li(x),

then

∥L∥ =
n∑

i=1

∥li(x)∥. (4.17)

This is easily seen by observing

∥L∥ =

∥∥∥∥∥

n∑

i=1

f(xi)li(x)

∥∥∥∥∥

≤
n∑

i=1

|f(xi)| ∥li(x)∥

≤ max |f(xi)|
n∑

i=1

∥li(x)∥

≤ ∥f∥
n∑

i=1

∥li(x)∥.

Take f as a function such that ∥f∥ = 1, and the result follows.
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With this, we have the sup norm on the error of approximation by a
Lagrange interpolating polynomial for any function with finite Chebyshev
norm.

Models for Smoothing Data

A function that interpolates the data can be very wiggly. A continuous func-
tion with continuous low-order derivatives may be more useful, even if it does
not interpolate the points exactly. The process of selecting a relatively simple
model that provides a good approximation to the data is called “smoothing”.

One way to smooth data is to choose some simple functional form f̃ with
a parameter θ that can chosen so that the observed values yi are close to
the smoothed values f̃(xi; θ̂ ), for some θ̂. In Figure 4.2, we see two differ-
ent smoothing models for the same data. In the plot on the left, we have a
simple straight line that approximates the data. This functional form has a
parameter θ that is a 2-vector (the slope and the intercept). No matter how
the parameter is chosen, the straight line does not fit the observations very
well. A different functional form is used in the plot on the right in Figure 4.2.
This approximation seems to fit the data better, and it captures an important
apparent structure in the data. (Although it is not important for our purposes
here, the function on the right is y = (Γ(α)βα)−1xα−1e−x/β, and the values
of α and β are chosen by least squares.)

For approximation, just as for interpolation, we could also use different
functional forms over different regions of the data.

Multivariate Approximation

Conceptually, most of the discussion applies immediately to multivariate func-
tions defined over subspaces of IRd. Practical difficulties, however, prevent
direct methods of multivariate approximation from being very useful.

In multivariate function approximation, the function values are usually
known at points on a grid in IRd. The most common way of approximating a
multivariate function is by successive univariate approximations. Sometimes
successive univariate approximations are easy to construct. For example, if
the function to be approximated is the bivariate function f(x, y), and the
values of the function are known at a rectangular grid of points (x1, . . . , xn)×
(y1, . . . , ym), suppose we wish to approximate f(x, y) at the point (x∗, y∗).
In successive univariate approximation, we first approximate f(xi, y) at each
given point xi by a function gxi(y). (This is univariate approximation in the
variable y.) Now, with the values gxi(y∗) for each i, we approximate f(x∗, y∗)
using univariate approximation in the variable x. Often, of course, the grid of
known values is unstructured, and we could not use this grid-line approach
of successive univariate approximations because for a given xi there may be
only one known value of y.
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Fig. 4.2. Smoothing

The method of successive univariate approximation extends to higher di-
mensions, but the number of computations obviously grows exponentially.

Evaluation of Special Functions

Some of the most important and most common numerical computations
in scientific applications are the evaluation of the so-called “special func-
tions”. These functions, such as the exponential and logarithmic functions, the
trigonometric functions, and functions that arise in the solutions of differen-
tial equations, are rarely evaluated for their own sake; rather, their evaluations
are generally performed as part of some larger computational problem. The
functions are often evaluated repeatedly in the solution of the larger problem.
It is therefore important not only that they be evaluated accurately, but that
the computations be very efficient.

Abramowitz and Stegun (1964) describe computational methods for evalu-
ating many special functions. The basic algorithms they discussed are in many
cases still the best ways of evaluating the special functions. Abramowitz and
Stegun classified special function into various groups that remain the general
organization of numerical libraries for the functions. The Guide to Available
Mathematical Software (GAMS) (see the bibliography), follows the general
structure of Abramowitz and Stegun (1964). There is also another grouping
of special functions in GAMS for probability distributions.
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We will not consider the particular algorithms for the special functions;
rather, we discuss general techniques that are applicable to various types of
functions. For a given function, of course, some methods are better than oth-
ers, and it is important that very good methods be used on special functions
that arise frequently in numerical computations.

Evaluation of Distribution Functions and Their Inverses

Application of most methods of statistical inference involve computation of
probabilities or of rejection regions corresponding to an estimator or a test
statistic. Two simple examples are the computation of the probability that
a standard normal random variable Z is larger in absolute value than some
given value z0, and the computation of the value tα such that a Student’s t
random variable with given degrees of freedom would have a given probability
of being greater than tα. For the more common distributions, tables with
three or four decimals of precision for these probabilities and critical values
have been available for many years. For setting confidence intervals and doing
significance tests, this level of precision for the distribution function of the
random variable being used is quite adequate.

It is not always the case, however, that three or four decimals of precision
is adequate for a distribution function. Perhaps the simplest example of the
need for high precision is in the evaluation of the distribution function of an
order statistic. The distribution function of the kth order statistic in a sample
of size n from a population with distribution function P (·) is

Pr(X(k) ≤ x0) =
n∑

j=k

(
n
j

)
(P (x0))j(1 − P (x0))n−j .

Obviously, if this relationship is used, even if only three or four decimals of
precision is required for the distribution function of the order statistic, it is
necessary to have much greater precision in the evaluation of P (·).

In addition to the computational problems resulting from the need for
higher precision in computing a standard, relatively simple distribution func-
tion, distribution functions such as for the doubly noncentral F random vari-
able are exceedingly complicated and require different algorithms for evalua-
tion at different points in the argument/parameter space.

We will not consider the particular algorithms for the particular distri-
butions; rather, we discuss general techniques that are applicable to various
types of distribution functions. For a given distribution, of course, some meth-
ods are better than others, and it is important that very good methods be
available for distributions that arise frequently in statistics.
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4.2 Basis Sets in Function Spaces

If each function in a linear space can be expressed as a linear combination of
the functions in a set G, then G is said to be a generating set or a spanning
set for the linear space.

Linear independence for functions is defined similarly to linear indepen-
dence of vectors, as on page 16. A difference is the phrase “almost everywhere”.
A set of functions f1, f2, . . . is linearly independent if

a1f1 + a2f2 + · · · = 0 almost everywhere

implies that a1 = a2 = · · · = 0. A simple set of linearly independent functions
over any real interval is the set of monomials, 1, x, x2, . . ..

If the functions in the generating set are linearly independent then the
set is a basis set. The basis sets for finite-dimensional vector spaces are finite;
for most function spaces of interest, the basis sets are infinite. The set of
monomials is a basis set for a large class of functions.

Expansions in Monomials

As in our discussion of vectors on page 18, our objective is to represent a
function of interest as a linear combination of the functions in some basis set.
A common example is the Taylor series expansion of a univariate function
(whose Taylor expansion exists) about some given point in its domain. This
is an expansion in the basis set of monomials:

f(x) = f(x0) +
∞∑

k=1

f (k)(x0)
k!

(x − x0)k, (4.18)

where f (k)(x0) is the kth derivative of f evaluated at x0.
The Taylor series approximation of f(x) is

f̃(x) = f(x0) +
j∑

k=1

f (k)(x0)
k!

(x − x0)k. (4.19)

For j = 2, this approximation has an immediate extension to a multivariate
function.

If f is nonnegative, letting g(x) = log(f(x)), we can express f as

f(x) = eg(x). (4.20)

Many interesting functions in statistical applications are concave. If f is
concave and differentiable, and x0 is a point at which f is maximum, then
f ′(x0) = g′(x0) = 0; hence, in this case, we have another approximation of f
in terms of g at x0:
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f̃(x) = exp
(

g′(x0) +
(x − x0)2

2
g′′(x0)

)
, (4.21)

which we recognize as exp(g′(x0)) times the normal PDF with mean x0 and
variance −1/g′′(x0):

f̃(x) = exp (g′(x0)) φ(x |x0,−1/g′′(x0)). (4.22)

If in addition to its being nonnegative, we also assume that it has a finite
integral over (−∞,∞), that is, f is essentially a PDF, then this type of ex-
pansion can be extended so as to lead to more general expansions of PDFs as
in equation (4.31) on page 165.

Because of the factor of the form exp(t), the approximation f̃(x) is an ex-
ponentially tilted measure. Exponential tilting is often a useful transformation
of PDFs, so as to form more tractable functions.

The approximation (4.22) also leads us immediately to the Laplace ap-
proximation for the integral of a nonnegative concave function f , which is

∫
f(x)dx ≈ eg(x0)

(
−2π

g′′
(x0)

)1/2

. (4.23)

This approximation is often useful in numerical quadrature, a topic which we
consider in more detail in Section 4.6.

Series Expansions in Orthogonal Basis Functions

A set of functions {qk} is orthogonal over the domain D with respect to the
nonnegative weight function w(x) if the inner product with respect to w(x) of
qk and ql, ⟨qk , ql⟩, is 0 if k ̸= l; that is,

∫

D
qk(x)q̄l(x)w(x)dx = 0 k ̸= l. (4.24)

If, in addition, ∫

D
qk(x)q̄k(x)w(x)dx = 1,

the functions are called orthonormal.
In the following, we will be concerned with real functions of real arguments,

so we can take q̄k(x) = qk(x).
The weight function can also be incorporated into the individual functions

to form a different set,
q̃k(x) = qk(x)w1/2(x).

This set of functions also spans the same function space and is orthogonal
over D with respect to a constant weight function.
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Basis sets consisting of orthonormal functions are generally easier to work
with and can be formed from any basis set using the Gram-Schmidt function
transformations (see pages 18 and 219).

As in the case of basis sets for vectors, it is often desirable to use a basis set
of orthonormal functions. We represent a function of interest, f(x), over some
domain D, as a linear combination of orthonormal functions, q0(x), q1(x), . . .:

f(x) =
∞∑

k=0

ckqk(x). (4.25)

There are various ways of constructing the qk functions. We choose a set
{qk} that spans some class of functions over the given domain D. A set of
orthogonal basis functions is often the best choice because they have nice
properties that facilitate computations and also there is a large body of theory
about their properties.

If the function f(x) is continuous and integrable over a domain D, the
orthonormality property allows us to determine the coefficients ck in the ex-
pansion (4.25), just as in equation (1.31):

ck = ⟨f, qk⟩, (4.26)

and the coefficients {ck} are called the Fourier coefficients of f with respect
to the orthonormal functions {qk}.

We then approximate a function using a truncated orthogonal series:

f(x) ≈
j∑

k=0

ckqk(x). (4.27)

The important quantity that provides a measure of the goodness of the
approximation is proportional to the mean squared error,

∥∥∥∥∥f −
j∑

k=0

ckqk

∥∥∥∥∥

2

, (4.28)

and an important property of Fourier coefficients is that they yield the min-
imum mean squared error for a given subset of basis functions {qi}. (See
equation (1.35) and Exercise 1.4.)

Estimation

In applications of statistical data analysis, after forming the approximation,
we may then estimate the coefficients from equation (4.26) after doing a PDF
decompisition (see page 404.) Note the difference in “approximation” and
“estimation”. Function estimation is the topic of Chapter 10 and, for special
types of functions, in Chapter 15. Expected values can be estimated using
observed or simulated values of the random variable and the approximation
of the probability density function.
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Complete Series

By Bessel’s inequality (1.37) on page 20, we see that the monotone sequence
{
∑n

k=0 |ck|2} is bounded by ∥f∥2. This implies that {
∑n

k=0 ckqk} is a Cauchy
sequence in L2(IR) (or even in L2(IRd)), and since L2(IR) is a complete space
the sequence must converge in the L2 sense to a member of L2(IR). We of
course want it to converge to f , the function we are trying to approximate.

In order to insure that, we need to require that the orthogonal system {qk}
have another property. We say that an orthogonal system {qk} is complete in
L2(D) if no nontrivial q ∈ L2(D) is orthogonal to all the qk’s; that is, if
⟨q, qk⟩ = 0, for k = 0, 1, 2, . . . for q ∈ L2(D), then q = 0 almost everywhere. A
system that is complete in a given function space is a generating set for that
function space.

For any function f ∈ L2(D) with D ⊂ IRd, a linear combination formed
by Fourier coefficients with functions from a complete orthonormal system
converges to f ; that is, if {qk} is a complete orthonormal system in L2(D),
and ck = ⟨f, qk⟩, then

∥∥∥∥∥f −
n∑

k=1

ckqk

∥∥∥∥∥→ 0 as n → ∞. (4.29)

To see this, we first note that {
∑∞

k=0 ckqk} converges to some member, say g,
of L2(D), and hence,

f −
∞∑

k=0

ckqk → f − g.

(This is because {
∑n

k=0 ckqk} is a Cauchy sequence and L2(D) is a complete
space.) Now the Fourier coefficients of g, as in equation (4.26), are given by

⟨g, qk⟩ = lim
n→∞

〈
n∑

k=0

ckqk, qk

〉

= ck.

These are the same as the Fourier coefficients of f , and hence the coefficients
of f − g are all zero. By the completeness of the system {qk}, f = g almost
everywhere. Because {

∑∞
k=0 ckqk} converges to g, it must also converge to f .

The theorem expressed by (4.29) has a converse: If all of the coefficients
are zero, then f must be zero almost everywhere, and hence the system is
complete.

In addition to the requirement of completeness, the basis functions are
generally chosen to be easy to use in computations. As mentioned before, the
monomials form a set of basis functions for a large class of functions, and a
common type of expansion of many functions in that basis set is a Taylor series
expansion. The monomials of course are not orthogonal. Common examples of
orthogonal basis sets include the Fourier trigonometric functions sin(kt) and
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cos(kt) for k = 1, 2, . . ., orthogonal polynomials such as Legendre or Hermite,
and wavelets. We discuss Fourier series below and orthogonal polynomials in
Section 4.3.

Another approach to function approximation is to partition the domain of
the function into regions within which good approximations can be achieved
by functions that are easy to work with, such as low-degree polynomials. This
approach leads to the use of splines. We discuss splines in Section 4.4.

Fourier Series

While any expansion in an orthonormal basis set such as equation (4.25) may
be called a Fourier series, this term is often used explicitly to refer to an
expansion in sines and cosines. Because, for j, k = 0, 1, 2, . . . ,

∫ π

−π
sin(jx) sin(kx)dx = πδjk ,

∫ π

−π
cos(jx) cos(kx)dx = πδjk ,

∫ π

−π
sin(jx) cos(kx)dx = 0,

∫ π

−π
sin(jx)dx = 0,

and ∫ π

−π
cos(jx)dx = 0,

where δjk is the Kronecker delta, and for any (x0, y0) ∈ [−π,π]× [−1, 1], there
is a j and k such that y0 = sin(jx0) and y0 = cos(kx0), the set

{sin(jx), cos(kx) ; j, k = 0, 1, 2, . . .} (4.30)

is a complete orthogonal system in [−π,π], and consequently in any finite
interval [a, b]. This is called the Fourier basis set or the trigonometric basis
set.

Because of the periodic nature of the trigonometric functions, a Fourier
series is often used to approximate periodic functions, although the series can
also be used to approximate other functions. The Fourier series may be used in
the estimation of probability density functions, as we mention in Section 15.5.
It is also of course related to the Fourier transform, referred to in Chapter 3,
and also to the characteristic function of a probability distribution.



4.2 Basis Sets in Function Spaces 165

Expansion of Probability Density Functions

While we may expand a probability density function in terms of an orthogonal
system (as we will do in Section 15.5), it is often useful to represent a compli-
cated or unknown probability density function as a series of functions related
to a known and well-understood distribution. Alternatively, the characteristic
function of the complicated or unknown distribution may be represented as a
series of moments or cumulants of a known distribution. The most common
distribution, of course, is the standard normal. There are three related series
expansions based on a normal distribution. These are the Gram-Charlier se-
ries, the Edgeworth series, and the Cornish-Fisher expansion. The general
form of these expansions is

p(x) = φ(x) +
1
6
γ1φ

′′′(x) +
1
24
γ2φ

′′′′(x) + · · · , (4.31)

where φ(x) is the PDF of the standard normal distribution. (Compare this
with equation (4.22) on page 161.)

The normal distribution pervades statistical theory and methods for two
reasons. The first is that this distribution serves so well to model natural
phenomena. Even if finite samples follow some other distribution, it is likely
that following a suitable transformation, the normal distribution is a good
asymptotic approximation. The second reason follows from the first. A wealth
of methods have been developed that are directly applicable to the normal
distribution. If another distribution can be related to the normal, the vast
array of statistical methods for the normal distribution may become available
for that other distribution.

Saddlepoint Approximations

A series such as Edgeworth or Gram-Charlier may be expressed in terms of
derivatives of the characteristic function or of the cumulant generating func-
tion. (Recall that the derivatives of the characteristic function, or of the mo-
ment generating function if it exists, evaluated at zero yield the raw moments
of a distribution. The derivatives of the cumulant generating function, if it
exists, evaluated at zero yield the cumulants of a distribution, and cumulants
are uniquely determined by the moments.) Given an expansion in the mo-
ments, or given the characteristic function, it may be of interest to determine
(or approximate) the PDF.

An important theorem that relates a univariate PDF to the associated
characteristic function provides the inverse of equation (1.71) on page 30. We
have

p(x) =
1
2π

∫ ∞

−∞
e−itxϕ(t)dt. (4.32)

This is called the inversion formula, and is similar to the inversion formula
for the Fourier transform. See Billingsley (1995) for a proof.
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If the cumulant function K(t) (see equation (1.73)) exists, we have

p(x) =
1
2π

∫ ∞

−∞
eK(it)−itxdt. (4.33)

We can express the integral in equation (4.33) in terms of a real integrand in
a neighborhood of 0 by a change of variable, r = it. The imaginary unit goes
into the limits of integration and into the Jacobian:

p(x) =
1

2πi

∫ ϵ+i∞

ϵ−i∞
eK(r)−rxdr. (4.34)

Next, we seek a point r0(x) such that

K ′(r0(x)) = x, (4.35)

and expanding K(r) − rx about this r0 in a truncated Taylor series, we have
the approximation

K(r) − rx ≈ K(r0) − r0x +
K ′′(r0)

2
(r − r0)2.

Equation (4.35) is called the saddlepoint equation. This yields

p(x) ≈ 1√
2πK ′′(r0)

eK(r0)−r0x. (4.36)

There are some technical details that have been ignored here; see Daniels (1954)
for a more precise development.

Notice that r0 is a function in x, as we originally wrote it. The point r0(x)
in the complex plane is a saddlepoint; hence the approximation (4.36) is called
a saddlepoint approximation to the PDF.

The saddlepoint approximation can often be improved by renormalizing it
so that its integral is 1, as that of a PDF should be. In practice, the integra-
tion to determine this normalizing constant must be performed by numerical
quadrature, using methods similar to those discussed in Section 4.6 or 4.7.

The saddlepoint approximation is useful in the approximation of densities
of various useful statistics such as the mean, a maximum likelihood estima-
tor, a likelihood ratio statistic, and a score statistic. It can also be used in
approximating tail probabilities for various distributions.

An example of the use of a saddlepoint approximation is to approximate
the PDF of the mean from a mixture distribution. As we mentioned in the
general description of mixtures on page 36, the moment generating function
for a mixture can be formed easily from the moment generating functions of
the individual distributions, and then the cumulant generating function can
be determined from the moment generating functions (assuming all exist). In
Exercise 4.5 you are led through a step by step derivation of the saddlepoint
approximation of the PDF of the expected value of a mixture of two normal
distributions.
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4.3 Orthogonal Polynomials

The most useful type of basis function depends on the nature of the function
being approximated or estimated. Orthogonal polynomials are useful for a
very wide range of functions.

Various systems of orthonormal functions can be constructed as polyno-
mials. Because a system of nontrivial polynomials of degrees 0, 1, 2, . . . is inde-
pendent and complete in any finite nonnull interval of L2 (and hence, can be
orthonormalized), by the theorem in expression (4.29), we know that orthogo-
nal polynomials can be used to approximate any function in L2 to any degree
of accuracy. The familiar Weierstrass approximation theorem is explicit for
polynomials:

Let f be a continuous real function defined on [a, b] and let ϵ > 0
be given. Then there exists a polynomial p with real coefficients such
that |f(x) − p(x)| < ϵ for all x in [a, b].

This theorem is proved in many texts on real analysis, such as Hewitt and
Stromberg (1965).

In the following, we use the notation pi(x) or qi(x) to denote a general
polynomial of nonnegative integral degree i; hence, the first item in the se-
quence has an index of 0. (In the previous sections, we have used qi(x) to
denote any member of an orthogonal basis set, and we began the index at 1
instead of 0. Later in this section, we will discuss specific types of polynomials,
and we will use different letters to represent them.)

We often work with unnormalized orthogonal polynomials; hence, the
reader must be careful to note whether we are using an orthonormal sequence
or one that is possibly not normalized. The reason we often use unnormal-
ized orthogonal polynomials is partly historical, but also because of the sim-
plicity of the coefficients in some standard systems. Any scalar multiple of
any member of an orthogonal system leaves the system orthogonal (but not
orthonormal). The normalizing factor is the scalar that normalizes a given
polynomial.

Systems of orthogonal polynomials can be developed from series solutions
to differential equations, or by orthogonalizing a set of independent polyno-
mials. We will use the latter approach.

Construction of Orthogonal Polynomials

The simplest set of linearly independent polynomials, that is, the monomials,

1, x, x2, . . . (4.37)

can be orthogonalized and normalized by Gram-Schmidt transformations,
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q0(x) = 1

q1(x) =
x − ⟨1, x⟩
∥x − ⟨1, x⟩∥ (4.38)

q2(x) =
x2 − ⟨1, x2⟩ − ⟨q1(x), x2⟩q1(x)
∥x2 − ⟨1, x2⟩ − ⟨q1(x), x2⟩q1(x)∥ ,

and so on (see page 18). Sometimes the polynomials are not normalized, but
it is usually better to work with orthonormal polynomials.

The specific inner products in the Gram-Schmidt transformations deter-
mine the specific form of the system of polynomials. The inner product de-
pends on the domain and on the weight function. Orthogonal polynomials of
real variables are their own complex conjugates, so the inner products involve
just the polynomials themselves.

In some applications it is important that the orthogonal polynomials have
full sets of distinct real roots. Also, applications are often simpler if the coef-
ficient of the term of largest degree is 1. As mentioned above, we sometimes
work with unnormalized polynomials. Within a given system, it is generally
not possible both to normalize the polynomials and to scale them so that the
coefficient of the term of largest degree is 1.

Orthogonal vectors can be formed by evaluating orthogonal polynomials
over a grid. These orthogonal vectors are discrete versions of the correspond-
ing polynomials. Orthogonal vectors are useful in forming independent linear
hypotheses in analysis of variance.

Relations among the Members of an Orthogonal System

It is clear that for the kth polynomial in the orthogonal sequence, we can
choose a constant rk that does not involve x, such that

qk(x) − rkxqk−1(x)

is a polynomial of degree k − 1. Now, because any polynomial of degree k − 1
can be represented by a linear combination of the first k members of any
sequence of orthogonal polynomials (which necessarily includes a polynomial
of degree at least k − 1), we can write

qk(x) − rkxqk−1(x) =
k−1∑

i=0

ciqi(x).

Because of orthogonality, however, all ci for i ≤ k − 3 must be 0. Therefore,
collecting terms, we have, for some constants rk, sk, and tk, the three-term
recursion that applies to any sequence of orthogonal polynomials:

qk(x) = (rkx + sk)qk−1(x) − tkqk−2(x), for k = 2, 3, . . . . (4.39)
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The coefficients rk, sk, and tk in this recursion formula depend on the specific
sequence of orthogonal polynomials, of course.

The three-term recursion formula applies for an unnormalized orthogonal
sequence, and so it also applies to a orthonormal sequence. The coefficients
would be different, of course.

This three-term recursion formula can also be used to develop a formula
for the sum of products of orthogonal polynomials. For qi(x) and qi(y) in an
orthonormal sequence, with aj the coefficient of the jth power in the polyno-
mial, we derive

k∑

i=0

qi(x)qi(y) =
ak

ak+1

qk+1(x)qk(y) − qk(x)qk+1(y)
x − y

. (4.40)

This expression, which is called the Christoffel-Darboux formula, is useful in
evaluating the product of arbitrary functions that have been approximated
by finite series of orthogonal polynomials. Notice that the equation (4.40)
applies to normalized orthogonal polynomials. For unnormalized orthogonal
polynomials, it can easily be modified to include the normalizing factors.

Computations Involving Polynomials

Horner’s method, which we mentioned on page 120 as an example of a re-
cursive algorithm, is the most efficient way to evaluate a general polynomial.
There may be other issues such as accuracy, however. In a polynomial of mod-
erate degree, it is quite possible that the magnitude of the individual terms
will vary considerably, and that could result in accumulated rounding error
or even catastrophic cancellation.

The polynomial pd(x) = cdxd + · · · + c1x + c0 together with constants
a1, . . . , ad can be written as

pd(x) = (x−a1)(· · · (x−ad−2)((x−ad−1)(cd(x−ad)+ cd−1)+ · · · )+ c1)+ c0.
(4.41)

This is called the nested Newton form. It has the computational efficiency of
Horner’s method, and also, for careful choice of the “centers” ai, it has good
numerical stability. The centers are chosen so as to keep the magnitude of the
product similar to that of c0.

If a function f is approximated by a truncated expansion,

f(x) ≈ pj(x) =
j∑

k=0

ckqk(x), (4.42)

it is necessary to evaluate all j + 1 polynomials and their sum. If we have
the coefficients rk, sk, and tk in the three-term recurrence formula (4.39),
we can use the nested Newton form (without centering) to evaluate pj(x) in
equation (4.42). We show the steps in Algorithm 4.1 for j ≥ 2.
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Algorithm 4.1 Evaluation of a Truncated Expansion in Orthogonal
Polynomials at x

1. Let fj = cj .
2. Let fj−1 = cj−1 + qj(rj−1x − sj−1).
3. For k = j − 2, j − 3, . . . , 0,

let fk = ck + qk+1(rkx − sk) − qk+2tk+1.
4. Set pk(x) = f0.

Standard Systems of Univariate Orthogonal Polynomials

A system of orthogonal polynomials is defined by the weight function and the
domain. The main thing that determines which system to use is the domain,
although the shape of the weight function may be important in achieving
better finite series approximations.

There are several widely-used complete systems of univariate orthogonal
polynomials. The different systems are characterized by the one-dimensional
intervals over which they are defined and by their weight functions. The Legen-
dre, Chebyshev, and Jacobi polynomials are defined over [−1, 1], and hence
can be scaled into any finite interval. The weight function of the Jacobi poly-
nomials is more general, so a finite sequence of them may fit a given function
better, but the Legendre and Chebyshev polynomials are simpler and so are
often used. The Laguerre polynomials are defined over the half line [0,∞)
and the Hermite polynomials are defined over the reals, (−∞,∞). Table 4.1
summarizes the ranges and weight functions. The weight functions correspond
to common PDFs. Note that any finite range [a, b] can be shifted and scaled
into [−1, 1], and any half finite range [a, ∞) or [−∞, b) can be shifted and,
possibly, scaled (by −1) into [0, ∞).

Table 4.1. Orthogonal Polynomials

Polynomial Weight
Series Range Function

Legendre [−1, 1] 1 (uniform)

Chebyshev [−1, 1] (1− x2)1/2 (finite Chebyshev)

Jacobi [−1, 1] (1− x)α(1 + x)β (beta)

Laguerre [0, ∞) xα−1e−x (gamma)

Hermite (−∞, ∞) e−x2
(normal)

Most of these systems have particularly simple expressions for the co-
efficients in the recurrence relation (4.39), so they are relatively simple to
compute. The kth-degree polynomial in each system has k distinct real roots.
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The usefulness of the standard orthogonal polynomials derives from their
use in approximations and also from their use as solutions to standard classes
of differential equations.

These systems of orthogonal polynomials are described below. For some
systems, different forms of the weight functions are used in the literature.
The properties of the orthogonal polynomials are essentially the same for the
differing forms of the weight functions, but the coefficients of the polynomials
are different. In some cases, also, the polynomials may be normalized.

The first system we consider is the Jacobi system. There are two special
and simpler cases of the Jacobi system, with which we will begin.

Legendre Polynomials

The Legendre polynomials have a constant weight function and are defined
over the interval [−1, 1]. Building the Legendre polynomials from the mono-
mials (4.37), it is easy to see that the first few unnormalized Legendre poly-
nomials are

P0(x) = 1 P1(x) = x
P2(x) = (3x2 − 1)/2 P3(x) = (5x3 − 3x)/2
P4(x) = (35x4 − 30x2 + 3)/8 P5(x) = (63x5 − 70x3 + 15x)/8.

(4.43)

Graphs of these polynomials are shown in Figure 4.3.
The normalizing constant for the kth Legendre polynomial is determined

by noting that ∫ 1

−1
(Pk(t))2dt =

2
2k + 1

, (4.44)

and hence it is (Pk(1))1/2.
The recurrence formula (4.39) for the Legendre polynomials, for k ≥ 2, is

Pk(x) − 2k − 1
k

xPk−1(x) +
k − 1

k
Pk−2(x) = 0. (4.45)

Notice that for the recursion formula (4.39),

rk = (2k − 1)k, sk = 0, tk = (k − 1)/k. (4.46)

These are the quantities to use in Algorithm 4.1.
Notice that if the Legendre polynomials (or, in general, the Jacobi poly-

nomials) are to be used over the finite interval [a, b], it is necessary to make a
change of variable:

y = (b − a)x/2 + (b + a)/2. (4.47)

This transformation would change the normalizing constant (by the Jaco-
bian of the transformation) and also the coefficient rk in the recursion for-
mula (4.39).
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Fig. 4.3. Legendre Polynomials

As mentioned above, orthogonal polynomials can also be developed as solu-
tions to differential equations. The standard series of orthogonal polynomials
arise from differential equations that are important in applied mathematics.
The Legendre polynomials are the solutions to Legendre’s equation,

(1 − x2)u′′ − 2xu′ + k(k + 1)u = 0. (4.48)

This equation describes an inverse r2 potential.
Also as mentioned above, vectors whose elements are orthogonal polyno-

mials evaluated over a grid are discrete versions of the orthogonal polynomials.
The discrete Legendre polynomials can be formed easily by setting xi to the
values of a grid over [−1, 1], forming a Vandermonde matrix evaluated at those
grid points, and then forming the QR decomposition of the matrix. (The first
column of the Vandermonde matrix is 1, the second column is x, the third is
x2, and so on.) The discrete Legendre polynomials are often used in statistical
analysis of linear models. (They form contrasts.)

Chebyshev Polynomials

The Chebyshev polynomials have a weight function proportional to the Cheby-
shev density, w(x) = (1 − x2)−1/2. They are defined over the interval [−1, 1].
The first few Chebyshev polynomials are
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T0(x) = 1 T1(x) = x
T2(x) = 2x2 − 1 T3(x) = 4x3 − 3x
T4(x) = 8x4 − 8x2 + 1 T5(x) = 16x5 − 20x3 + 5x.

(4.49)

The normalizing constant for the kth Chebyshev polynomial is Tk(1), sim-
ilar to that for the Legendre polynomial.

The recurrence formula for the Chebyshev polynomials is

Tk(x) − 2xTk−1(x) + Tk−2(x) = 0. (4.50)

Notice that for the recursion formula (4.39), rk = 2, sk = 0, and tk = 1. This
means that Algorithm 4.1 is especially efficient for the Chebyshev polynomials.
The sequence of Chebyshev polynomials is the only sequence for which the
coefficients in formula (4.39) are the same for all k.

These polynomials are sometimes called Chebyshev polynomials of the
first kind; similar polynomials with weight function w(x) = (1 − x2)1/2 are
called Chebyshev polynomials of the second kind.

Jacobi Polynomials

The Jacobi polynomials are defined over the interval [−1, 1], with a beta weight
function, w(x) = (1 − x)α(1 + x)β , for α,β > −1. The Legendre polynomials
are Jacobi polynomials with α = β = 0, and the Chebyshev polynomials are
Jacobi with α = β = −1/2.

For various values of α and β the weight function can assume a wide
variety of shapes. If α is large and β is small, for example, the weight function
is large near −1 and small near 1. This may be an appropriate weight to use
to construct orthogonal polynomials for approximating a function that varies
more near −1 than it does near 1.

Laguerre Polynomials

The Laguerre polynomials are defined over [0,∞), with a gamma weight func-
tion, w(x) = xα−1e−x. The jth Laguerre polynomial is often denoted by
L(α−1)

j (x). The parameter α provides some flexibility for fitting functions of
different shapes. The most commonly used series of Laguerre polynomials have
α = 1, however, and in this case, the notation Lj(x) is used. The first few
Laguerre polynomials with α = 1 are

L0(x) = 1
L1(x) = −x + 1
L2(x) = (x2 − 4x + 2)/2
L3(x) = (−x3 + 9x2 − 18x + 6)/6
L4(x) = (x4 − 16x3 + 72x2 − 96x + 24)/24
L5(x) = (−x5 + 25x4 − 200x3 + 600x2 − 600x + 120)/120.

(4.51)
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The recurrence formula (4.39) for these Laguerre polynomials is

Lk(x) −
(2k − 1

k
+

x

k

)
Lk−1(x) +

k − 1
k

Lk−2(x) = 0.

Hermite Polynomials

The Hermite polynomials are defined over (−∞,∞) with a weight function
proportional to the error function density, w(x) = e−x2

. Building the Hermite
polynomials from the monomials, it is easy to see that the first few Hermite
polynomials are

H0(x) = 1 H1(x) = 2x
H2(x) = 4x2 − 2 H3(x) = 8x3 − 12x
H4(x) = 16x4 − 48x2 + 12 H5(x) = 32x5 − 160x3 + 120x.

(4.52)

In an alternative definition of Hermite polynomials, the normal weight
function, w(x) = e−x2/2, is used. This form is more widely used in statisti-
cal applications than the form defined above. These polynomials also called
Chebyshev-Hermite polynomials. (This distinction does not seem to be com-
mon, and most statisticians refer to the alternate polynomials just as “Her-
mite”. I will follow this usage, although usually I will remind the reader when
I use the alternate form.) The alternate Hermite polynomials are sometimes
denoted in the same way as the ones defined above, H0, H1, . . ., although they
are often denoted by He0, He1, . . .. We will use the notation He

0 , H
e
1 , . . .. The

polynomials are related by

He
k(x) = 2−k/2Hk(x/

√
2).

The alternate Hermite polynomials are often used in statistical applica-
tions because the weight function is proportional to the normal density. Also,
because the coefficient of the term of largest degree is 1, some applications
involve simpler expressions. The first few alternate Hermite polynomials are

He
0(x) = 1 He

1(x) = x
He

2(x) = x2 − 1 He
3(x) = x3 − 3x

He
4(x) = x4 − 6x2 + 3 He

5(x) = x5 − 10x3 + 15x.
(4.53)

The recurrence formula (4.39) for these alternate Hermite polynomials is
particularly simple:

He
k(x) − xHe

k−1(x) + (k − 1)He
k−2(x) = 0. (4.54)

One use of the Hermite polynomials in in Gram-Charlier or Edgeworth
expansions of PDFs of the form of equation (4.31). The Edgeworth expansion
of a PDF p(x) of a distribution with finite moments µ2, µ3, . . ., and µ1 = 0, is
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p(x) =
1√
2π

(
1 +

1
2
(µ2 − 1)He

2(x) +
1
6
µ3H

e
3(x) +

1
24

(µ4 − 6µ4 + 3)He
4(x) + · · ·

)
.

(4.55)
This is derived by expanding the characteristic function of the distribution.
Another use of Hermite polynomials we encounter in Chapter 16 is in provid-
ing an index of the difference in the distribution of a given random variable
from a standard normal distribution for use in projection pursuit.

Orthogonal Functions Related to the Orthogonal Polynomials

Sometimes applications are simpler when the weight function is incorporated
into the orthogonal functions. The resulting functions are orthogonal with
respect to a constant weight.

In the case of the Hermite polynomials, for example, this results in the
exponentially tilted polynomials,

H f
k(x) = Hk(x)e−x2/2. (4.56)

The set H f
0, H

f
1, H

f
2, . . . is an orthogonal set with respect to a constant weight:
∫ ∞

−∞
H f

i (x)H f
j (x)dx = 0 for i ̸= j.

These orthogonal functions are called Hermite functions.
It is more convenient to have a constant weight function, of course, but the

exponential tilting may also make the computations simpler for some functions
that are being approximated (see also equation (4.22)).

Even and Odd functions

An even function is a function f such that f(−x) = f(x), and an odd function
is one such that f(−x) = −f(x). The Legendre, Chebyshev, and Hermite
polynomials are either even or odd functions, depending on their degree. In
each case, a polynomial of even degree is an even function and one of odd
degree is an odd function; for example, the Chebyshev polynomials satisfy
the relation

Ti(−x) = (−1)iTi(x).

Expansion of Functions in Orthogonal Polynomials

Complicated functions or functions that are intractable for certain operations
can often be approximated with a finite sum of orthogonal polynomials. An im-
portant application of this type of approximation is in evaluation of integrals
by expansion of the integrand using orthogonal polynomials. This method
of numerical integration is called Gaussian quadrature, and is discussed in
Section 4.6, page 190.
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Another reason that we study the expansion of functions in orthogonal
systems is for use in function estimation, which we discuss in Chapter 10 for
general functions and in Chapter 15 for probability density functions.

To represent a given function in a standard series of orthogonal polynomi-
als, the first consideration is the domain of the function. The three types of
domain and the possible polynomials to use are

• a finite interval, [a, b], Jacobi polynomials (or the special cases, Legendre
and Chebyshev);

• a half-infinite interval, [a,∞] or [−∞, b], Laguerre polynomials;
• an infinite interval, [−∞,∞], Hermite polynomials.

An Example

As an example of the use of orthogonal polynomials to approximate a given
function, consider the expansion of f(x) = e−x over the interval [−1, 1]. Be-
cause the range is finite, we use the Jacobi system of polynomials, and in this
case, we do not need to make a transformation to the basic interval of the
definition of the Jacobi polynomials.

In this example we use the Legendre polynomials.
The Fourier coefficients are determined by equation (4.26). In using this

formula, we can either normalize the polynomials (using equation (4.44)) or we
can include the normalizing factor in the Fourier coefficients. Using the nor-
malized polynomials, we have c0 = (e1 − e−1)/2 and we obtain the remaining
ci’s by integration by parts; c1 = −2e−1

√
3/2, and so on. After we have the

Fourier coefficients, we identify the recurrence coefficients (equation (4.46)),
and finally we use Algorithm 4.1 to compute the approximation at the point
x.

Forming a grid in x over [−1, 1], and evaluating the approximation at each
grid point, we can construct graphs of the function and the approximation.
Figure 4.4 shows the exact function f , and the different truncated series ap-
proximations using up to six terms (j = 0, 1, . . . , 5),

f̃(x) =
j∑

k=0

ckPk(x). (4.57)

Each truncated series is the best linear combination of the Legendre poly-
nomials (in terms of the L2 norm) of the function using no more than j + 1
terms. Notice that the convergence is very slow after j = 1.

Smoothing Data with Orthogonal Polynomials

In the previous section we considered the approximation of a function with
known form by a series of orthogonal polynomials. In many applications, we
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Fig. 4.4. Approximations with Legendre Polynomials

do not have a function with a closed form; we may have a discrete function
composed of observations with two components corresponding to an argument,
xi, and a function value, yi. If we assume the data represent exact values,
we may interpolate the data to form a continuous function. If, however, the
data are assumed to arise from a process with noise, we may build a smooth
approximation of the function as a finite series of orthogonal polynomials,

f̃(x) =
j∑

k=1

ckqk(x).

Because we do not know the form of f(x), we choose the ck so as to minimize
the differences

yi −
j∑

k=1

ckqk(xi). (4.58)

Instead of a function norm, as in equation (4.28), we consider a norm of
the vector: ∥∥∥∥∥yi −

j∑

k=1

ckqk(xi)

∥∥∥∥∥ . (4.59)

The norm is most often chosen as the L2 norm, and the resulting approxima-
tion is the least squares fit. Other appropriate norms include the L1 norm,
resulting in an approximation with the least absolute deviations, and the L∞
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norm, resulting in an approximation with the minimum maximum deviation.
The latter type of fit is called a minimax or Chebyshev approximation.

Multivariate Orthogonal Polynomials

Multivariate orthogonal polynomials can be formed easily as tensor products
of univariate orthogonal polynomials. The tensor product of the functions
f(x) over Dx and g(y) over Dy is a function of the arguments x and y over
Dx × Dy:

h(x, y) = f(x)g(y).

If {q1,k(x1)} and {q2,l(x2)} are sequences of univariate orthogonal polynomi-
als, a sequence of bivariate orthogonal polynomials can be formed as

qkl(x1, x2) = q1,k(x1)q2,l(x2). (4.60)

These polynomials are orthogonal in the same sense as in equation (4.24),
where the integration is over the two-dimensional domain. Similarly as in
equation (4.25), a bivariate function can be expressed as

f(x1, x2) =
∞∑

k=0

∞∑

l=0

cklqkl(x1, x2), (4.61)

with the coefficients being determined by integrating over both dimensions.
Although obviously such product polynomials, or radial polynomials,

would emphasize features along coordinate axes, they can nevertheless be use-
ful for representing general multivariate functions. Often, it is useful to apply
a rotation of the coordinate axes, as we discuss in Section 9.1, beginning on
page 373.

The weight functions, such as those for the Jacobi polynomials, that have
various shapes controlled by parameters can also often be used in a mixture
model of the function of interest. This is the way the Bernstein polynomi-
als (8.4) are used in Bézier curves, as discussed on page 342, except in that
case the coefficients are determined to approximate a fixed set of points, sub-
ject to some smoothness conditions. The weight function for the Hermite
polynomials can be generalized by a linear transformation (resulting in a nor-
mal weight with mean µ and variance σ2), and the function of interest may
be represented as a mixture of general normals.

4.4 Splines

The approach to function approximation that we pursued in the previous
section makes use of a finite subset of an infinite basis set consisting of poly-
nomials of degrees p = 0, 1, . . .. This approach yields a smooth approximation
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f̃(x). (“Smooth” means an approximation that is continuous and has con-
tinuous derivatives. These are useful properties of the approximation.) The
polynomials in f̃(x), however, cause oscillations that may be undesirable. The
approximation oscillates a number of times one less than the highest degree
of the polynomial used. Also, if the function being approximated has quite
different shapes in different regions of its domain, the global approach of using
the same polynomials over the full domain may not be very effective.

Another approach is to subdivide the interval over which the function is
to be approximated and then on each subinterval use polynomials with low
degree. The approximation at any point is a sum of one or more piecewise poly-
nomials. Even with polynomials of very low degree, if we use a large number
of subintervals, we can obtain a good approximation to the function. Zero-
degree polynomials, for example, would yield a piecewise constant function
that could be very close to a given function if enough subintervals are used.
Using more and more subintervals, of course, is not a very practical approach.
Not only is the approximation a rather complicated function, but it may be
discontinuous at the interval boundaries. We can achieve smoothness of the
approximation by imposing continuity restrictions on the piecewise polyno-
mials and their derivatives. This is the approach in spline approximation and
smoothing.

The polynomials are of degree no greater than some specified number,
often just 3. This means, of course, that the class of functions for which these
piecewise polynomials form a basis is the set of polynomials of degree no
greater than the degree of polynomial in the basis; hence, we do not begin
with an exact representation as in equation (4.25).

In spline approximation, the basis functions are polynomials over given
intervals and zero outside of those intervals. The polynomials have specified
contact at the endpoints of the intervals; that is, their derivatives of a specified
order are continuous at the endpoints. The endpoints are called “knots”. The
finite approximation therefore can be smooth and, with the proper choice of
knots, is close to the function being approximated at any point. The approx-
imation, f̃(x), formed as a sum of such piecewise polynomials bk(x) is called
a “spline”:

f̃(x) =
j∑

k=1

ckbk(x). (4.62)

The “order” of a spline is the number of free parameters in each interval. (For
polynomial splines, the order is the degree plus 1.)

There are three types of spline basis functions commonly used:

• truncated power functions (or just power functions). For k knots and degree
p, there are k + p + 1 of these:

1, x, ..., xp, ((x − z1)+)p, ..., ((x − zk)+)p,

where (t)+ means t if t is positive and 0 otherwise. Sometimes, the constant
is not used, so there are only k + p functions. These are nice when we are
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adding or deleting knots. Deletion of the ith knot, zi, is equivalent to
removal of the basis function ((x − zi)+)p.

• B-splines. B-splines are probably the most widely used set of splines, and
they are available in many software packages. The IMSL Library, for exam-
ple, contains three routines for univariate approximations using B-splines,
with options for variable knots or constraints, and routines for two- and
three-dimensional approximations using tensor product B-splines. The in-
fluence of any particular B-spline coefficient extends over only a few inter-
vals, so B-splines can provide good fits to functions that are not smooth.
The B-spline functions also tend to be better conditioned than the power
functions. The mathematical development of B-splines is more complicated
than the power functions.

• “natural” polynomial splines. These basis functions are such that the sec-
ond derivative of the spline expansion is 0 for all x beyond the boundary
knots. This condition can be imposed in various ways. An easy way is just
to start with any set of basis functions and replace the degrees of freedom
from two of them with the condition that every basis function have zero
second derivative for all x beyond the boundary knots. For natural cubic
splines with k knots, there are k basis functions. There is nothing “nat-
ural” about the natural polynomial splines. A way of handling the end
conditions that is usually better is to remove the second and the penul-
timate knots and to replace them with the requirement that the basis
functions have contact one order higher. (For cubics, this means that the
third derivatives match.)

Some basis functions for various types of splines over the interval [−1, 1]
are shown in Figure 4.5.

Interpolating Splines

Splines can be used for interpolation, approximation, and estimation. An in-
terpolating spline fit matches each of a given set of points. Each point is
usually taken as a knot, and the continuity conditions are imposed at each
point. It makes sense to interpolate points that are known to be exact.

The reason to use an interpolating spline is usually to approximate a func-
tion at points other than those given (maybe for quadrature), so applied
mathematicians may refer to the results of the interpolating spline as an “ap-
proximation”. An interpolating spline is used when a set of points are assumed
to be known exactly (more or less).

Consider again the example of approximating the function f(x) = e−x over
the interval [−1, 1] using natural cubic spline interpolation with 2, 3, and 4
knots. Graphs of the function and the approximations are shown in Figure 4.6.
Notice that the approximation is very good with 4 knots. The approximations
were computed using the R function spline.

Compare the use of splines with the use of orthogonal polynomials on
page 177 to approximate this same function. We do not need to compute
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Fig. 4.5. Spline Basis Functions

any coefficients that depend on integrals. Furthermore, we get a much better
approximation, even though we use only a small number of known function
values.

Smoothing Splines

The other way of using splines is for approximation or smoothing. The indi-
vidual points may be subject to error, so the spline may not go through any
of the given points. In this usage, the splines are evaluated at each abscissa
point, and the ordinates are fitted by some criterion (such as least squares)
to the spline.

Choice of Knots in Smoothing Splines

The choice of knots is a difficult problem when the points are measured subject
to error. One approach is to include the knots as decision variables in the
fitting optimization problem. This approach may be ill-posed. A common
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approach is to add (pre-chosen) knots in a stepwise manner. Another approach
is to use a regularization method (addition of a component to the fitting
optimization objective function that increases for roughness or for some other
undesirable characteristic of the fit).

Multivariate Splines

Multivariate splines are easily formed as tensor products of univariate splines
in the same way as the bivariate orthogonal polynomials were formed from uni-
variate polynomials in equation (4.60). Although conceptually, this is straight-
forward, there are a number of practical difficulties in applications.

4.5 Kernel Methods

Another approach to function approximation and estimation is to use a filter
or kernel function to provide local weighting of given points. The basic method
of this approach is to convolve the given function, f(x), with a filter or the
kernel, K(t), (see page 21):

K ∗ f(x) =
∫

D
f(y)K(x − y) dy, (4.63)
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if the integral exists. If K(t) a unimodal function that decreases rapidly away
from a central point, then K ∗ f(x) is “close” to f(x).

In practice, we use a given set of points, x1, . . . , xj , in a discrete version
of equation (4.63):

f̃(x) =
j∑

k=1

f(xk)K(x − xk). (4.64)

The kernel approximation does not interpolate this set of points, but each
of those points exerts the strongest influence on the approximation at nearby
points x.

Kernel Functions

Some examples of univariate kernel functions are shown in equations (4.65)
through (4.67).

uniform : Ku(t) =
1
2λ

I[−λ,λ](t) (4.65)

quadratic : Kq(t) =
3

λ2(6 − 2λ)
(λ− t2) I[−λ,λ](t) (4.66)

normal : Kn(t) =
1√
2π

e−(t/λ)2/2 (4.67)

Notice that all of these kernels are nonnegative and integrate to 1, hence, they
are PDFs. Often, multivariate kernels are formed as products of these or other
univariate kernels.

As in the discussion on page 21, a kernel is actually a function of two
arugments, K(x, y), but often the two arguments are combined into a single
argument as in the kernels above. A bilinear form (see page 23) is one of the
most common types of kernel.

Kernel Windows

In kernel methods, the locality of influence is controlled by a smoothing para-
meter. In equations (4.65) through (4.67), the λ is the smoothing parameter.
We sometimes also refer to the window or the window width around the point
of interest. In equations (4.65) and (4.66), the window is a finite interval. In
equation (4.67) the window is the real line, but we nevertheless sometimes
speak of the “window” in a vague way as a synonym for the smoothing pa-
rameter. The choice of the size of the window is the most important issue in
the use of kernel methods. The window width must be great enough to allow
multiple known points or observations to enter in the sum of equation (4.64).
In practice, this generally means that use of kernels for approximation is
limited to situations in which there are a large number of known values or
observations. Probability density function estimation usually is only done in
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such situations, and kernel methods are very useful in that case, as we see in
Section 15.3.

For a given choice of the size of the window, the argument of the kernel
function is transformed to reflect the size. The transformation is accomplished
using a positive definite matrix, V , whose determinant measures the volume
(size) of the window.

In Exercise 4.13 you are asked to use kernels to approximate the func-
tion f(x) = e−x over the interval [−1, 1], as we have done with orthogonal
polynomials and with splines.

Multivariate Kernels

Kernel methods extend immediately to higher dimensions. The kernel is often
chosen as a product kernel of a univariate kernel:

Kd(t1, . . . , td) =
d∏

j=1

K(tj). (4.68)

4.6 Numerical Quadrature

One of the most common mathematical operations in scientific computing
is quadrature, the evaluation of a definite integral. It is used to determine
volume, mass, or total charge, for example. In the evaluation of probabilities,
of expectations, and of marginal or conditional densities, integration is the
basic operation.

Most of the integrals and differential equations of interest in real-world
applications do not have closed-form solutions; hence, their solutions must be
approximated numerically.

There are two ways of approximating an integral. One type of approxima-
tion is based on direct approximation of the Riemann sum, which we take as
the basis for the definition of the integral. The other type of approximation is
based on an approximation of the function using one of the methods discussed
above.

We begin with approximations that are based on Riemann sums. We also
generally limit the discussion to univariate integrals.

Evaluation of a Single Integral

Although some of the more interesting problems are multivariate and the
region of integration is not rectangular, we begin with the simple integral,

I =
∫ b

a
f(x) dx. (4.69)
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There are various definitions of the integral (4.69), each of which makes
certain assumptions about the integrand f(x) that are required for the ex-
istence of the integral. The Riemann integral is defined as the limit of the
Riemann sums:

1
n

n∑

i=1

(xi − xi−1)f(x̃i), (4.70)

where a = x0 < x1 < · · · < xn = b and x̃i ∈ [xi−1, xi]. Where x̃i is within the
interval would make no difference in the limit if the function is well-behaved.
When the location of x̃i makes a difference, the Riemann integral may not
be undefined, but in most applications of numerical quadrature, the Riemann
integral does exist.

This definition extends to multiple integrals in a natural way.
One way of approaching the problem of evaluating (4.69) is to approxi-

mate it directly by a sum of areas under the curve. The Riemannian definition
of the integral leads to a set of rectangles, the sum of whose areas approx-
imates the integral. More generally an approximation of the integral results
from a piecewise approximation of f(x) using simpler functions that can be
integrated in closed form. If the piecewise approximants are step functions,
the approximation is similar to a Riemann sum.

The Trapezoid Rule

Instead of a simple step function, the function f(x) may be approximated as
shown in Figure 4.7 by a piecewise linear function p1(x) that agrees with f
at each of the points a = x0 < x1 < x2 < . . . < xn = b. In that case, the
integral (4.69) can be approximated by a sum of integrals,

∫ b

a
f(x) dx ≈

n∑

i=0

∫ xi+1

xi

p1(x) dx,

each of which is particularly easy to evaluate. Because p1 is linear over each
interval, the integral in the ith interval is just the area of the trapezoid, that
is,

h
(
f(xi) + f(xi+1)

)
/2.

The integral (4.69) is therefore approximated by

T (f) = h
(
f(a) + 2f(x1) + 2f(x2) + · · · + 2f(xn−1) + f(b)

)
/2. (4.71)

The expression (4.71) is called the trapezoid rule.
Figure 4.7 shows how the areas in the trapezoids may be used to approx-

imate areas under the curve.
A simple choice for the points is to make them equally spaced, that is,

(xi+1 − xi) = (b − a)/n.
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x0 x1 x2 x3 x4

Fig. 4.7. The Trapezoid Rule

The number of points n, or the width of the interval, say h,

h = (b − a)/n,

is a tuning parameter of the quadrature algorithm. Subject to the rounding
induced by working with floating point numbers instead of real numbers, the
larger is n, or the smaller is h, the better the approximation of the finite
sum to the integral. Because of the rounding, however, after a certain level of
refinement, no further gains can be achieved by simply making the intervals
smaller.

Many other quadrature rules can be built using this same idea of an
approximating function that agrees with f at each of some set of points
a = x0 < x1 < x2 < . . . < xn = b. Quadrature formulas that result from
this kind of approach are called Newton-Cotes formulas. (Roger Cotes was an
eighteenth century English mathematician who worked closely with Newton.)

Simpson’s Rules

Rather than the linear functions of the trapezoid rule, a more accurate ap-
proximation would probably result from use of quadratic functions that agree
with f at each of three successive points. If p2(x) is a quadratic that agrees
with f(x) at the equally-spaced points xi, xi + h, xi + 2h, then the piece of
the integral (4.69) from xi to xi+2 can be approximated by
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∫ xi+2

xi

p2(x) dx =
1
3
h
(
f(xi) + 4f(xi + h) + f(xi + 2h)

)
. (4.72)

If an even number of intervals is chosen, and the integrals like (4.72) are
summed, the integral (4.69) is approximated by

1
3
h
(
f(a) + 4f(x1) + 2f(x2) + 4f(x3) + · · · + 4f(xn−1) + f(b)

)
. (4.73)

The formula (4.73) is called Simpson’s 1
3 rule.

x0 x1 x2 x3 x4

Fig. 4.8. Simpson’s 1/3 Rule

Figure 4.8 shows how the areas under the quadratics may be used to
approximate areas under the curve. Comparison with Figure 4.7 indicates that
approximation by a higher degree polynomial (quadratic instead of linear)
does not always guarantee an improvement.

A better approximation can be constructed using the same idea, except
instead of using three points at a time and fitting a quadratic, we use four
points at a time, and fit a cubic function. For equal-spaced points, the analog
to (4.72) is
∫ xi+3

xi

p3(x) dx =
3
8
h
(
f(xi) + 3f(xi + h) + 3f(xi + 2h) + f(xi + 3h)

)
,

and over the entire range of integration that has been divided into a multiple
of three equal-length intervals, we have, analogously to (4.73),
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3
8
h
(
f(a)+3f(x1)+3f(x2)+2f(x3)+3f(x4)+ · · ·+3f(xn−1)+f(b)

)
. (4.74)

The formula (4.74) is called Simpson’s 3
8 rule.

Error in Newton-Cotes Quadrature

It is important to analyze the error in numerical computations. As we dis-
cussed in Section 3.1, there are generally multiple sources of error. The error
in approximations must be considered separately from the error in rounding,
although at some level of discretization, the rounding error may prevent any
decrease in approximation error, even though the approximation is really the
source of the error.

Quadrature operators are linear, and the results of linear operators and
functions on page 151 can be useful in analyzing errors in numerical quadra-
ture.

For algorithms that use a discrete number system to approximate quan-
tities that depend on a continuous number system, such as integrals, our ob-
jective is generally to express the error in terms of the order of some function
of a discretizing unit. In Newton-Cotes quadrature, this means an expression
of the form O(g(h)).

In the examples shown in Figures 4.7 and 4.8, the actual error is the
total area of the regions between the polygonal line and the curve defined
by f . Of course, if we could evaluate this, we would not have an error. To
approximate the error as an integral in that region, we consider a polynomial
of degree n over that region, because we could have a single such polynomial
that corresponds to f at each of the break points. We omit the details here,
which involve an expansion of the polynomial in finite differences similar to
a Taylor series, evaluation of the error in one interval, and addition of the
errors. (See Kennedy and Gentle, 1980, pages 86 through 89.) The error in
use of the trapezoid rule can then be expressed as

− 1
12

(b − a)h2f ′′(x∗)

for some x∗ ∈ [a, b]. This is not very useful in practice. It is important, however
to note that the error is O(h2).

Using similar approaches we can determine that the error for both Simp-
son’s 1

3 rule and 3
8 rule is O(h4).

Extrapolation in Quadrature Rules

We can use Richardson extrapolation (see page 133) to improve the approx-
imation in Newton-Cotes formulas. In the trapezoid rule, for example, we
consider various numbers of intervals. Let T0k represent the value of the ex-
pression in equation (4.71) when n = 2k; that is, when there are n intervals,
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and we examine the formula for 1, 2, 4, . . . intervals, that is, T00, T01, T02, . . ..
Now, we use Richardson extrapolation to form

T1,k = (4T0,k+1 − T0,k)/3. (4.75)

Generalizing this, we define

Tm,k = (4mTm−1,k − Tm−1,k−1)/(4m − 1). (4.76)

Notice in Tm,k, m represents the extent of extrapolation, and k determines the
number of intervals. (This kind of scheme is used often in numerical analysis.
It can be represented as a triangular table in which the ith row consists of the
i terms T0,i−1, . . . , Ti−1,0.)

This application of Richardson extrapolation in quadrature with the trape-
zoid rule is called Romberg quadrature.

Each Tm,k is an approximation of the integral. The approximation is ex-
act for a function that is a piecewise polynomial of degree 2m + 2 on the
subintervals of length (b− a)/2k. Not only are the Tm,k good approximations
of the integral, their relative values give some idea of the convergence of the
approximation (assuming in a general way, that the integrand is ever bet-
ter approximated by polynomials of higher degree). As to be expected with
higher degree polynomials, however, at some point the wild fluctuations of the
polynomials result in significant rounding error. The extent of the rounding is
assessed by the relative values of Tm,k for successive values of m. If the values
change significantly, it may be due to rounding error. On the other hand, it
could be due to a large fluctuation in the integrand, so three successive values
should be inspected before deciding to terminate the extrapolation process.

Adaptive Quadrature Rules

It is never obvious how to choose the interval width in Newton-Cotes formulas.
Obviously if the interval width is too large, finer structure in the integrand will
be missed. On the other hand, if the interval width is too small, in addition
to increased cost of evaluation of the integrand, rounding error can become
significant. There are various ways of trying to achieve a balance between
accuracy and number of function evaluations. In most cases these involve
approximation of the integral over different subintervals with different widths
used in each of the subintervals. Initially, this may identify subintervals of
the domain of integration that require smaller widths in the Newton-Cotes
formulas (that is, regions in which the integrand is rougher). Evaluations at
different widths over the different subintervals may lead to a good choice of
both subintervals and widths within the different subintervals. This kind of
approach is called adaptive quadrature.

From the description, it should be obvious that it is not easy to do adap-
tive quadrature well. Software that does a good job is very complicated, and
amateurs need not attempt to develop it. A very good routine for adaptive
quadrature is dcadre in the IMSL Library.
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Quadrature Following Expansions of the Integrand

The approximation of a given function is formed by some linear combination
of other functions.

With a basis set {qk}, the function f(x) in the space spanned by the basis
set can be represented exactly as

f(x) =
∞∑

k=1

ckqk(x), (4.77)

and so a finite series expansion such as

f(x) ≈
j∑

k=1

ckqk(x) (4.78)

may be used. When the ck in equation (4.78) are the Fourier coefficients, that
is, the coefficients from equation (4.77), the approximation in equation (4.78)
is the least squares approximation of the given form; that is, using the same
basis functions (see page 162).

One of the simplest examples of quadrature following an expansion of the
function is Laplace approximation that uses the Taylor series of a function
exponential. We considered a special case of this approximation for a nonneg-
ative concave function on page 161. Jensen (1995) covers Laplace approxima-
tions in more general settings.

Gaussian Quadrature

We now briefly discuss another approach to the evaluation of the inte-
gral (4.69) called Gaussian quadrature. Gaussian quadrature uses the idea
of expansion of the integrand. Like the Newton-Cotes approaches, Gaussian
quadrature arises from the Riemann sum (4.70), except here we interpret the
interval widths as weights:

n∑

i=0

w(xi)f(xi). (4.79)

In Newton-Cotes rules, we generally choose the intervals and the points
within the intervals where we evaluate the function to be equally spaced. In
Gaussian quadrature, we put more emphasis on choosing the points, and by
so doing, we need a smaller number of points. Whether or not this is a good
idea of course depends on how we choose the points and how we define w(xi).

If f is a polynomial of degree 2n−1, it is possible to represent the integral∫ b
a f(x)dx exactly in the form (4.79). We can illustrate this easily for n = 2.

Before proceeding, however, let us first map f over [a, b] onto [−1, 1]. (This
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clearly can be done by a simple change of variables. We do it just for simplifi-
cation of the problem.) Now consider the integration of f(x) = x3 +x2 +x+1.
We want to determine w1, w2, x1, x2. We have

∫ 1
−1 dx = 2 = w1 + w2∫ 1
−1 xdx = 0 = w1x1 + w2x2∫ 1
−1 x2dx = 2/3 = w1x2

1 + w2x2
2∫ 1

−1 x3dx = 0 = w1x3
1 + w2x3

2.

(4.80)

Solving this system of equations yields

w1 = 1
w2 = 1

x1 = −1/
√

3
x2 = 1/

√
3.

(4.81)

This simple example illustrates that the idea is feasible, but indicates that
there may be some difficulty if we need a large number of points. Gaussian
quadrature is based on the formula (4.79) in which the xi’s and wi’s are
chosen so that the approximation is correct when f is a polynomial, and it
can provide a approximation in many cases with a relatively small n. Often
only 5 or 6 points provide a good approximation.

To make this a useful method for any given (reasonable) integrand over
a finite range, the obvious approach is to represent the function as a series
in a standard sequence of orthogonal polynomials as described in Section 4.3.
(That is, the qk in equation (4.77) are polynomials.) This results in the ap-
proximation

f(x) ≈ g(x), (4.82)

where g is a polynomial.
If q0, q1, . . . is a sequence of polynomials orthogonal to the weight w(w)

over (a, b), with full sets of distinct real roots in (a, b), and if we choose the
xi in (4.79) as the distinct roots of qn(x), then the weights are given by

wi = −cn+1

cn

1
qn+1(xi)q′n(xi)

,

where cj is the coefficient of the term of degree j in qj . These weights are all
positive. The derivation of this requires the kind of integration and algebra
used in deriving the system of equations (4.80) and getting the solution in
equations (4.81).

Error in Gaussian Quadrature

The error in Gaussian quadrature is



192 4 Approximation of Functions and Numerical Quadrature

∫ b

a
f(x) dx −

n∑

i=0

wig(xi),

which we can write as
∫ b

a
g(x)w(x) dx −

n∑

i=0

wig(xi) =
g(2n)(x∗)
(2n)!c2

n
, (4.83)

for some point x∗ in (a, b).
As with many expressions for errors in numerical computations, we can

feel good when we have the expression, but its usefulness in applications may
be very limited.

A problem with Gaussian quadrature is that it is not easy to use the
results for n to compute results for ñ, and hence the kinds of extrapolation
and adaptation we discussed above for Newton-Cotes quadrature are not very
useful for Gaussian quadrature.

4.7 Monte Carlo Methods for Quadrature

In the Monte Carlo method of quadrature we first formulate the integral to
be evaluated as an expectation of a function of a random variable, then simu-
late realizations of the random variable, and take the average of the function
evaluated at those realizations. This is analogous to a standard method of sta-
tistical estimation, in which we use a sample mean to estimate a parameter of
the distribution of a random variable. In applications, the realizations of the
random variable are pseudorandom numbers; nevertheless, our analysis relies
on statistical estimation theory.

The deterministic methods of quadrature, such as Newton-Cotes and
Gaussian, yield approximations; Monte Carlo quadrature yields estimates.
Use of Monte Carlo methods for quadrature is sometimes called stochastic
integration.

An advantage of Monte Carlo quadrature is that the nature of the domain
of integration is not as critical as in the other quadrature methods we have
discussed above. We consider an integral similar to (4.69), except with a more
general domain of integration, D. To estimate the integral using Monte Carlo,
we first formulate the integral as

I =
∫

D
f(x) dx

=
∫

D
h(x)pX (x) dx, (4.84)

where pX is the probability density function of a random variable X with sup-
port on D. We encountered this decomposition of the function f in Chapter 1.
It is called probability density function decomposition or PDF decomposition.
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This step may benefit from some familiarity with probability density func-
tions. For one-dimensional interval domains, appropriate probability density
functions are similar to the weight functions for orthogonal polynomials shown
in Table 4.1, page 170, depending on whether neither, one, or both limits of
integration are infinite.

If D is the interval (a, b), as in (4.69), a and b are finite, the trivial uniform
density may always be used. The uniform density over [a, b] is the constant
1/(b− a), so one possible formulation (4.84) is

I = (b − a)
∫ b

a
f(x)

1
b − a

dx.

As we will see below, however, this may not be a good choice because the per-
formance of the Monte Carlo method degrades for h(x) with large variation,
so the Monte Carlo estimates will be better (in a sense to be defined below) if
h(x) is nearly constant. Also, if a or b is infinite, the uniform density cannot
be used because of the (b − a) factor.

The decomposition in (4.84) results in

I =
∫

D
h(x)pX(x) dx

= E(h(X)),

where E(h(X)) is the expectation (or “average” over the full distribution of
X) of the function h(X).

If x1, x2, . . . , xm is a random sample (or pseudorandom sample) of the
random variable X , the sample average,

h(xi) =
1
m

m∑

i=1

h(xi),

is an estimate of the integral, E(h(X)), or I . We often denote an estimate of
I as Î , so in this case

Î =
1
m

m∑

i=1

h(xi). (4.85)

If we formulate the estimator Î as a sum of functions of independent
random variables, each with density pX , instead of a sum of realizations of
random variables, the estimator itself is a random variable. (Note the dis-
tinction in “estimate” and “estimator”.) An obviously desirable property of
this random variable is that its expectation be equal to the quantity being
estimated. Assuming the expectations exist, this is easily seen to be the case:
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E
(
Î
)

= E
( 1

m

m∑

i=1

h(Xi)
)

=
1
m

m∑

i=1

E(h(Xi))

=
1
m

m∑

i=1

I

= I.

We therefore say the estimator is unbiased.

Variance of Monte Carlo Estimators

Monte Carlo methods are sampling methods; therefore the estimates that
result from Monte Carlo procedures have associated sampling errors. The fact
that the estimate is not equal to its expected value (assuming the estimator
is unbiased) is not an “error” or a “mistake”; it is just a result of the variance
of the random (or pseudorandom) data. The sampling errors mean that we
get different estimates of the integral if we evaluate it on different occasions.

In the case of scalar functions, the variance of the estimator Î is a rather
complicated function involving the original integral (assuming the integrals
exist):

V
(
Î
)

=
1
m

E
(
(h(X) − E(h(X)))2

)

=
1
m

∫

D

(
h(x) −

∫

D
h(y)pX(y) dy

)2

pX(x) dx. (4.86)

If pX(x) is constant, that is, if the sampling is uniform over D, then the
expression (4.86) is merely the variance of the mean of the roughness defined
in equation (4.5) on page 151. Loosely speaking, this variance is a measure of
how variable the Monte Carlo estimates would be if we were to evaluate the
integral on different occasions.

We see that the magnitude of the variance depends on the variation in

h(x) −
∫

D
h(y)pX(y) dy,

which depends in turn on the variation in h(x). If h(x) is constant, the variance
of Î is 0. Of course, in this case, we do not need to do the Monte Carlo
estimation; we have the solution I = h(·).

While the variance in (4.86) is complicated, we have a very simple esti-
mate of the variance; it is the sample variance of the elements composing the
estimate of the integral, divided by the sample size m:
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V̂
(
Î
)

=
1
m

(
1

m − 1

m∑

i=1

(
h(xi) − h(xi)

)2
)

. (4.87)

The second factor in this expression is the sample variance of the observations
h(xi).

An important fact to be observed in equation (4.86) is that a similar ex-
pression would hold if the integrand was multivariate. Therefore, the variance
of the Monte Carlo estimate is independent of the dimensionality. This is one
of the most important properties of Monte Carlo quadrature.

Reducing the Variance

As we see from equation (4.86) the variance of the Monte Carlo estimator is
linear in m−1; hence, the variance is reduced by increasing the Monte Carlo
sample size. More effective methods of variance reduction include use of anti-
thetic variates, importance sampling, and stratified sampling, as discussed in
Section 11.5, beginning on page 425.

Combining Monte Carlo Estimators

The Monte Carlo estimator (4.85) is linear in h(xi). This implies that the
estimator can be evaluated as separate partial sums, either computed in par-
allel or computed at different times. Separate computations yield separate
estimators, Î1, Î2, . . . , Îk , which can be combined to yield

Î =
k∑

i=1

aiÎi, (4.88)

where the ai are constants. If each of the Îi is unbiased, this estimator is
unbiased so long as

∑k
i=1 ai = 1:

E
(
Î
)

= E
( k∑

i=1

aiÎi

)

=
k∑

i=1

aiE
(
Îi

)

=
k∑

i=1

aiI

= I.

If all of the individual estimators are uncorrelated, the variance of the com-
bined estimator is
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k∑

i=1

a2
i V
(
Îi

)
.

To minimize the variance of the linear combination (4.88), the ai’s are
chosen inversely proportional to the variances of the component random vari-
ables, that is,

ai =
c

V(Îi)
,

for some c > 0.

Error in Monte Carlo Quadrature

As we have emphasized, Monte Carlo quadrature differs from quadrature
methods such as Newton-Cotes methods and Gaussian quadrature in a funda-
mental way; Monte Carlo methods involve random (or pseudorandom) sam-
pling. The expressions in the Mont Carlo quadrature formulas do not involve
any approximations, so questions of bounds of the error of approximation do
not arise. Instead of error bounds or order of the error as some function of the
integrand as we discuss for the deterministic methods on pages 188 and 191,
we use the variance of the random estimator to indicate the extent of the
uncertainty in the solution.

The square root of the variance, that is, the standard deviation of the
estimator, is a good measure of the range within which different estimators of
the integral may fall. Under certain assumptions, using the standard deviation
of the estimator, we can define statistical “confidence intervals” for the true
value of the integral I . Loosely speaking, a confidence interval is an interval
about an estimator Îi that in repeated sampling would include the true value
I a specified portion of the time. (The specified portion is the “level” of the
confidence interval, and is often chosen to be 90% or 95%. Obviously, all other
things being equal, the higher the level of confidence the wider must be the
interval.)

Because of the dependence of the confidence interval on the standard devi-
ation the standard deviation is sometimes called a “probabilistic error bound”.
The word “bound” is misused here, of course, but in any event, the standard
deviation does provide some measure of a sampling “error”.

The important thing to note from equation (4.86) is the order of error in
the Monte Carlo sample size; it is O(m− 1

2 ). This results in the usual dimin-
ished returns of ordinary statistical estimators; to halve the error, the sample
size must be quadrupled.

We should be aware of a very important aspect of this discussion of error
bounds for the Monte Carlo estimator. It applies to random numbers. The
pseudorandom numbers we actually use only simulate the random numbers,
so “unbiasedness” and “variance” must be interpreted carefully.
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Variations of Monte Carlo Quadrature

The method of estimating an integral described above is sometimes called
“crude Monte Carlo”. Another method, which may be more familiar, called
“hit-or-miss” Monte Carlo is not to be recommended (see Gentle, 2003, Ex-
ercise 7.2, page 271).

Another Monte Carlo method can be developed as suggested in Exer-
cise 4.15, page 202. To estimate the integral

I =
∫ b

a
f(x) dx

first generate a random sample of uniform order statistics x(1), x(2), . . . , x(n)

on the interval (a, b), and define x(0) = a and x(n+1) = b. Then estimate I as

Î =
1
2

(
n∑

i=1

(x(i+1) − x(i−1))f(x(i)) + (x(2) − a)f(x(1)) + (b − x(n−1))f(x(n))

)
.

(4.89)
This method is similar to approximation of the integral by Riemann sums,
except in this case the intervals are random.

Higher Dimensions

The Monte Carlo quadrature methods extend directly to multivariate inte-
grals, although, obviously, it takes larger samples to fill the space. It is, in
fact, only for multivariate integrals that Monte Carlo quadrature should or-
dinarily be used. The preference for Monte Carlo in multivariate quadrature
results from the independence of the pseudoprobabilistic error bounds and the
dimensionality mentioned above.

An important property of the standard deviation of a Monte Carlo esti-
mate of a definite integral is that the order in terms of the number of function
evaluations is independent of the dimensionality of the integral so the order
of the error remains O(m− 1

2 ). On the other hand, the usual error bounds for
numerical quadrature are O((g(n))− 1

d ), where d is the dimensionality, and
g(n) is the order for one-dimensional quadrature.

Notes and Further Reading

I have made frequent reference to Hewitt and Stromberg (1965). This is just
because that is where I first learned real analysis. Many newer and more
readily accessible texts would serve just as well.
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Function Approximation and Computations Involving Polynomials

Extensive discussions of function approximation are available in texts on nu-
merical methods, such as Rice (1993).

Horner’s method is so called because William George Horner described
it in 1819. The method, however, was known to Isaac Newton many years
earlier. Newton also was aware of the need to shift the values in a polynomial
prior to raising them to a power, and the form described by Newton utilizes
the nesting of Horner’s method.

Function Expansions

A hundred years ago, expansion of functions, especially of probability density
functions, or of general functions following a PDF decomposition, were widely
studied and used. The Gram-Charlier series, the Edgeworth series, and the
Cornish-Fisher expansion were very important topics in mathematical sta-
tistics. These expansions, of course, remain useful, but their use seems to
wax and wane, and, at best, remain among the techniques in the background
memory of most statisticians and applied mathematicians.

The paper by Barndorff-Nielsen and Cox (1979) revived interest and ap-
plication of expansions, and brought the saddlepoint approximation method
of Daniels (1954) to the wider attention of statisticians. Although approxima-
tions similar to the saddlepoint approximation had been used in various appli-
cations previously, Daniels derived it in its currently-used form and illustrated
its usefulness for the density of a sample mean. The book by Jensen (1995)
and the article by Goutisand and Casella (1999) provide good introductions
to the saddlepoint method.

Special Functions

GAMS is a good source of information about software for evaluating the spe-
cial functions. Programs for evaluation of special functions are available in the
IMSL Libraries (a function is available for each entry in the list above), in the
Maple and Mathematica packages, and in CALGO (see page 692), as well as in
more specialized collections, such as Cody (1993) or Cody and Coonen (1993).

Spanier and Oldham (1987) and Thompson (1997) provide general de-
scriptions of many special functions. Both books discuss relationships among
the special functions and describe methods for evaluating the special func-
tions. They also contain many graphs of the functions. Abramowitz and Ste-
gun (1964) provide tables of the values of special functions for many argu-
ments. Note that an update of this book is currently under production. The
new version is called the Digital Library of Mathematical Functions (DLMF).
See

http://dlmf.nist.gov/
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The extent and the form in which DLMF will exist in hardcopy is not clear. A
portion of DLMF, supplement with discussions of the computational methods,
is available in Gil, Segura, and Temme (2007).

Orthogonal Systems

The standard treatment of orthogonal polynomials is Szegö (1958), in which
several other systems are described and more properties of orthogonal poly-
nomials are discussed. A general reference on multivariate orthogonal polyno-
mials is Dunkl and Yu (2001).

A type of orthogonal system that I mentioned, but did not discuss, are
wavelets. For this I refer the reader to Walter and Ghorai (1992) or to Vi-
dakovic (2004).

Splines

De Boor (2002) provides a comprehensive development of splines and an ex-
tensive discussions of their properties. The emphasis is on B-splines and he
gives several Fortran routines for using B-splines and other splines.

A good introduction to multivariate splines is given by Chui (1988).

Numerical Quadrature

Evans and Schwartz (2000) provide a good summary of methods for numerical
quadrature, including both the standard deterministic methods of numerical
analysis and Monte Carlo methods.

The most significant difficulties in numerical quadrature occur in multiple
integration. The papers in the book edited by Flournoy and Tsutakawa (1991)
provide good surveys of specific methods, especially ones with important ap-
plications in statistics.

Monte Carlo Quadrature

Monte Carlo quadrature, of course, requires a source of random numbers. Sec-
tion 7.6 describes software for generation of pseudorandom numbers. In higher
dimensional quadrature, rather than the usual pseudorandom numbers, it may
be better to use quasirandom numbers. Software for quasirandom number gen-
eration is not as widely available, but a reference is given on page 322.

Exercises

4.1. For any function f with finite, nonzero norm, show that the L1 norm of
fa(ax), for any given a ̸= 0, is the same as the L1 norm of f(x), and show
that the L2 norm of fa(ax) is not the same as the L2 norm of f(x).
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4.2. Let
p(x) =

1√
2πσ

e−x2/(2σ2)

(the normal density with mean equal to 0).
a) Compute R(p) (from equation (4.6) on page 151).
b) Compute S(p′).
c) Compute S(p′′) = R(p).

4.3. Develop an extension of the roughness definition given in equation (4.7)
for functions of more than one variable. (You obviously use the Hessian.
How do you map it to IR?)

4.4. Derive equation (4.26) from equation (4.25).
4.5. Consider a mixture of two normal distributions N(µ1,σ2

1) and N(µ2,σ2
2)

with mixing parameter ω (that is, ω are from the first distribution and
1 − ω are from the second distribution).
a) Determine the moment generating function for each component in the

mixture. (This is a standard result; it is M(t) = exp(µit + σ2
i t/2).)

b) Determine the moment generating function for the mean of each com-
ponent in the mixture.

c) Determine the moment generating function for the mean of the mix-
ture distribution.

d) Determine the cumulant generating function for the mean of the mix-
ture distribution.

e) For a fixed value of the mean, say x̄, determine r0 that solves the
saddlepoint equation (4.35).

f) Determine the saddlepoint approximation for the PDF of the mean of
the mixture distribution.

g) Use Monte Carlo with a normal PDF to estimate the normalizing
constant of your approximation. (See Section 4.7.)

4.6. Let {qk : k = 1, . . . , m} be a set of orthogonal functions. Show that
∥∥∥∥∥

m∑

k=1

qk

∥∥∥∥∥

2

=
m∑

k=1

∥qk∥2,

where ∥ · ∥ represents an L2 norm. What is the common value of the
expressions above if the qk are orthonormal?
Would a similar equation hold for a general Lp norm?

4.7. Suppose that the Legendre polynomials are to be used to approximate a
function over the interval [0, 10].
a) What are the normalizing factor?
b) What is the recurrence formula?

4.8. Using the recurrence equation (4.50) and beginning with T0(t) = 1 and
T1(t) = t, derive the first four Chebyshev polynomials, T0(t), T1(t), T2(t),
and T3(t), which are given in (4.49).

4.9. Show that the normalizing constant for the kth Chebyshev polynomial is
Tk(1).
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4.10. Approximate f(t) = et over [−1, 1] as

5∑

k=0

ckTk(t),

where the Tk(t) are the Chebyshev polynomials. (Compare this with the
example on page 176 that uses Legendre polynomials to approximate e−t.)
a) Write a program to use Algorithm 4.1 to compute the approximation

at a given point t.
b) Graph the function and your approximation.
c) Determine the error at t = 0.
d) Determine the integrated squared error.
e) Would some more general sequence of Jacobi polynomials form a bet-

ter approximation? Why do you think so? What values of α and β
might be more appropriate?

f) For reasonable values of α and β from the previous question, derive
J (α,β)

0 (t), J (α,β)
1 (t), J (α,β)

2 (t), and J (α,β)
3 (t). Now, approximate f(t) =

et over [−1, 1] with your polynomials and determine the error at t = 0
and the integrated squared error.

4.11. Compute roughness measures of your Chebyshev-polynomial approxima-
tion in Exercise 4.10. Compute S(f̂) in equation (4.6), V(f̂) in equa-
tion (4.5), and R(f̂) in equation (4.7).

4.12. Now, assume that we have 19 data points, (xi, yi), with x1 = −.9, x2 =
−.8 · · · x19 = .9, and yi = e−xi . We want to fit a function y = f(x),
but we do not know the form of f ; all we know are the 19 data points.
Use expression (4.58) in (4.59) to obtain the Fourier coefficients for an
expansion in the first 6 Chebyshev polynomials that yields a least squares
fit to the given data.

4.13. Use kernel method to approximate the function f(x) = e−x over the
interval [−1, 1], as we did in the text with orthogonal polynomials and
with splines. Use both Ku(t) and Kn(t) with λ chosen as 1/2, 1/4, and
1/8. Evaluate f(x) at enough points to have at least two known points
within one window at any point in the interval.
Notice that this (and our other examples with this function) are artificial,
in the sense that we would rarely in applications encounter a problem just
like this — if we can evaluate f(x), we likely would not be interested in ap-
proximating it (although, if our approximations were simpler to compute,
we might want to do this). The point of the examples and of the exer-
cise, however, is to assess the performance of the approximation method
in more realistic situations, in which we do not know the function every-
where, we only know it at a few select points. This, of course, is the type
of situation we face in statistical estimation.

4.14. Show that equation (4.75) results from Richardson extrapolation (equa-
tion (3.22)) of the T0k representing the values of the expression in equa-
tion (4.71) with successively smaller intervals.
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4.15. Consider the following Monte Carlo method to evaluate the integral:

I =
∫ b

a
f(x) dx.

Generate a random sample of uniform order statistics x(1), x(2), . . . , x(n)

on the interval (a, b), and define x(0) = a and x(n+1) = b. Estimate I by
equation (4.89) on page 197. This method is similar to approximation of
the integral by Riemann sums except that in this case the intervals are
random. Determine the variance of Î . What is the order of the variance
in terms of the sample size? How would this method compare in efficiency
with the crude Monte Carlo method?
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Numerical Linear Algebra

Many scientific computational problems involve vectors and matrices. It is
necessary to work with either the elements of vectors and matrices individually
or with the arrays themselves. Programming languages such as C provide the
capabilities for working with the individual elements but not directly with the
arrays. Fortran and higher-level languages such as Octave or Matlab and R
allow direct manipulation with vectors and matrices.

The distinction between the set of real numbers, IR, and the set of floating-
point numbers, IF, that we use in the computer has important implications
for numerical computations. An element x of a vector or matrix is approxi-
mated by [x]c, and a mathematical operation ◦ is simulated by a computer
operation [◦]c. As we emphasized in Section 2.2, the familiar laws of algebra
for the field of the reals do not hold in IF.

These distinctions, of course, carry over to arrays of floating-point numbers
that represent real numbers, and the mathematical properties of vectors and
matrices may not hold for their computer counterparts. For example, the dot
product of a nonzero vector with itself is positive, but ⟨xc, xc⟩c = 0 does not
imply xc = 0. (This is reminiscent of the considerations that led us to discuss
pseudonorms on page 149, but the issues here are entirely different.)

The elements of vectors and matrices are represented as ordinary numeric
data in either fixed-point or floating-point representation. In the following, we
will consider the floating-point representation and the computations in IF.

Storage Modes

The elements of an array are generally stored in a logically contiguous area of
the computer’s memory. What is logically contiguous may not be physically
contiguous, however.

Because accessing data from memory in a single pipeline may take more
computer time than the computations themselves, computer memory may be
organized into separate modules, or banks, with separate paths to the central
processing unit. Logical memory is interleaved through the banks; that is,
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two consecutive logical memory locations are in separate banks. In order to
take maximum advantage of the computing power, it may be necessary to be
aware of how many interleaved banks the computer system has, but we will
not consider such details here.

There are no convenient mappings of computer memory that would allow
matrices to be stored in a logical rectangular grid, so matrices are usually
stored either as columns strung end-to-end (a “column-major” storage) or as
rows strung end-to-end (a “row-major” storage). Sometimes it is necessary to
know which way the matrix is stored in the computer’s logical address space;
that is, whether ai,j is stored logically next to ai+1,j or to ai,j+1. (Physically,
in the hardware, it may be next to neither of these.)

For some software to deal with matrices of varying sizes, the user must
specify the length of one dimension of the array containing the matrix. (In
general, the user must specify the lengths of all dimensions of the array except
one.) In Fortran subroutines, it is common to have an argument specifying
the leading dimension (number of rows), and in C functions it is common
to have an argument specifying the column dimension. In an object-oriented
system, this information is bundled in the object, and it is the object itself
(the matrix, rather than a computer memory address) that is passed from one
program module to another.

Notation

It is assumed that the reader is generally familiar with the basics of linear
algebra, at least to the level covered in the relevant parts of Section 1.2.

An n-vector is an ordered structure with n real elements. We denote the
sapce of n-vectors along with the axpy and inner product operators as IRn.
We identify the elements of a vector x by a display of the form

x = (x1, . . . , xn).

There is no need to call this display a “transpose”. How x is displayed has no
relevance for how matrix-vector operations are interpreted. For matrix-vector
operations, we interpret a vector as an n × 1 matrix and then use the usual
matrix-matrix rules for operations. Stating this another way, we interpret
vectors as “column vectors”, although we display them horizontally.

An n×m matrix A is an element of IRn×m. It is often denoted as A = (aij).
Its transpose, denoted by AT, is (aji). The Moore-Penrose generalized inverse
is denoted by A+. If the inverse exists, that is, if A is square and of full rank,
it is denoted by A−1.

The ith row of the matrix A = (aij) is denoted by ai∗, and the jth column
is denoted by a∗j . Both ai∗ and a∗j are treated as ordinary vectors. They are
both “column” vectors, as are all vectors in this book.
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Sparsity

If a matrix has many elements that are zeros, and if the positions of those
zeros are easily identified, many operations on the matrix can be speeded up.

Matrices with many zero elements are called sparse matrices. They occur
often in certain types of problems; for example, in the solution of differential
equations, and in statistical designs of experiments.

The first consideration is how to represent the matrix and to store the
matrix and the location information. Different software systems may use dif-
ferent schemes to store sparse matrices. An important consideration is how to
preserve the sparsity during intermediate computations. We mention one way
this may be done in an iterative algorithm on page 226, however, most of the
computational issues for dealing with sparse matrices are beyond the scope of
this book,

5.1 General Computational Considerations for Vectors
and Matrices

Because many of the computations in linear algebra are sums of elements in a
list, the discussion of such computations beginning on page 99 must be borne
in mind. Catastrophic cancellation is of special concern.

One common situation that gives rise to numerical errors in computer
operations is when a quantity x is transformed to t(x) but the value computed
is unchanged:

[t(x)]c = [x]c; (5.1)

that is, the operation actually accomplishes nothing. A simple type of trans-
formation that has this problem is just the addition

t(x) = x + ϵ, (5.2)

where |ϵ| is much smaller than |x|. If all we wish to compute is x + ϵ, the fact
that we get x is probably not important. Usually, however, this simple com-
putation is part of some larger set of computations in which ϵ was computed.
This, therefore, is the situation we want to anticipate and avoid.

Another instance of this problem is the addition to x of a computed quan-
tity y that overwhelms x in magnitude. In this case, we may have

[x + y]c = [y]c. (5.3)

Again, this is a situation we want to anticipate and avoid.
In later sections in this chapter we will consider various types of compu-

tations in numerical linear algebra. We distinguish these methods as being
either direct, meaning that the number of computations is set a priori, or it-
erative, meaning that the results of the computations in each step determine
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whether to perform additional computations. We discuss iterative methods in
Section 5.4. (Recall from our discussion in Chapter 3 that the steps in a direct
method may also be called “iterations”.)

In the remainder of this section, we discuss the very important issue of
identifying the level of accuracy we can expect in computations involving
matrices. This depends on the condition of the data.

Condition

A measure of the worst-case numerical error in numerical computation in-
volving a given mathematical entity is the “condition” of that entity for the
particular computations. The condition, quantified in some way, provides a
bound on the relative norms of a “correct” solution to a linear system and a
solution to a nearby problem. Hence, the condition of data depends on the
particular computations to be performed. For example, the “stiffness” mea-
sure in equation (3.6) is an appropriate condition measure of the extent of the
numerical error to be expected in computing variances.

Many computations in linear algebra are related to the basic problem of
solving a system of equations:

Ax = b. (5.4)

This is the canonical problem to which much of this chapter is devoted.
If A is square and nonsingular, the solution is x = A−1b̃. Actual computa-

tions, however, yield the solution x̃, which we might identify as the solution
to a nearby problem: Solve

Ax̃ = b̃, (5.5)

where x̃ = x + δx and b̃ = b + δb. Here we are using the symbol δ, not as
a multiplier, but as a perturbation operation; that is, δx is a perturbation
about x. If the original problem is well behaved, we would expect that if δb
is small, then δx is small and the solution x̃ is “close to” x.

We quantify the condition of the matrix by a condition number. To develop
this quantification for the problem of solving linear equations, consider a linear
system Ax = b, with A nonsingular and b ̸= 0, as above. Now perturb the
system slightly by adding a small amount, δb, to b, and let b̃ = b + δb. The
system has a solution x̃ = δx + x = A−1b̃. (Notice that δb and δx do not
necessarily represent scalar multiples of the respective vectors.) If the system is
well-conditioned, for any reasonable norm, if ∥δb∥/∥b∥ is small, then ∥δx∥/∥x∥
is likewise small.

From δx = A−1δb and the inequality (1.17) (on page 14), for an induced
norm on A, we have

∥δx∥ ≤ ∥A−1∥ ∥δb∥. (5.6)

Likewise, because b = Ax, we have

1
∥x∥ ≤ ∥A∥ 1

∥b∥ , (5.7)
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and equations (5.6) and (5.7) together imply

∥δx∥
∥x∥ ≤ ∥A∥ ∥A−1∥∥δb∥∥b∥ . (5.8)

This provides a bound on the change in the solution ∥δx∥/∥x∥ in terms of the
perturbation ∥δb∥/∥b∥.

The bound in equation (5.8) motivates us to define the condition number
with respect to inversion denoted by κ(·) as

κ(A) = ∥A∥ ∥A−1∥ (5.9)

for nonsingular A. The specific condition number therefore depends on the
specific norm.

In the context of linear algebra, the condition number with respect to
inversion is so dominant in importance that we generally just refer to it as the
“condition number”. A condition number is a useful measure of the condition
of A for the problem of solving a linear system of equations. There are other
condition numbers useful in numerical analysis, however, such as the condition
number for computing the sample variance or a condition number for a root
of a function.

We can write equation (5.8) as

∥δx∥
∥x∥ ≤ κ(A)

∥δb∥
∥b∥ , (5.10)

or analogously as
∥δb∥
∥b∥ ≤ κ(A)

∥δx∥
∥x∥ . (5.11)

These inequalities are sharp, as we can see by letting A = I .
Because the condition number is an upper bound on a quantity that we

would not want to be large, a large condition number is “bad”.
Notice that our definition of the condition number does not specify the

norm; it only requires that the norm be an induced norm. (An equivalent
definition does not rely on the norm being an induced norm.) We sometimes
specify a condition number with regard to a particular norm, and just as we
sometimes denote a specific norm by a special symbol, we may use a special
symbol to denote a specific condition number. For example, κp(A) may denote
the condition number of A in terms of an Lp norm. Most of the properties of
condition numbers (but not their actual values) are independent of the norm
used.

An interesting relationship for the L2 condition number is

κ2(A) =
maxx̸=0

∥Ax∥
∥x∥

minx̸=0
∥Ax∥
∥x∥

, (5.12)
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which can be shown directly from the definition (5.9) of condition number and
of the L2 norm and from properties of eigenvalues. The numerator and de-
nominator in equation (5.12) look somewhat like the maximum and minimum
eigenvalues. Indeed, the L2 condition number of a nonsingular square matrix
is just the ratio of the largest eigenvalue in absolute value to the smallest (see
Gentle, 2007, page 131).

Some useful facts about condition numbers are:

κ(A) = κ(A−1), (5.13)

κ(cA) = κ(A), for c ̸= 0, (5.14)

κ(A) ≥ 1, (5.15)

κ1(A) = κ∞(AT), (5.16)

κ2(AT) = κ2(A), (5.17)

κ2(ATA) = κ2
2(A)

≥ κ2(A). (5.18)

All of these facts follow immediately from the definitions or from properties
of the matrix norms.

Equation (5.18) is of some interest, and there are similar results for other
condition numbers. The point is that the condition number of ATA is larger,
possibly much larger, than the condition number of A. (Recall that a matrix
that appears often in regression analysis is XTX .)

Even though the condition number provides a very useful indication of the
condition of the problem of solving a linear system of equations, it can be
misleading at times. Consider, for example, the coefficient matrix

A =
[

1 0
0 ϵ

]
, (5.19)

where ϵ < 1. The condition numbers are

κ1(A) = κ2(A) = κ∞(A) =
1
ϵ
,

and so if ϵ is small, the condition number is large. It is easy to see, however,
that small changes to the elements of A or b in the system Ax = b do not
cause undue changes in the solution (which is our heuristic definition of ill-
conditioning). In fact, the simple expedient of multiplying the second row of
A by 1/ϵ (that is, multiplying the second equation, a21x1 + a22x2 = b2, by
1/ϵ) yields a linear system that is very well-conditioned.

This kind of apparent ill-conditioning is called artificial ill-conditioning.
It is due to the different rows (or columns) of the matrix having a very dif-
ferent scale; the condition number can be changed just by scaling the rows or
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columns. This usually does not make a linear system any better or any worse
conditioned, but this fact emphasizes the importance of scaling in data analy-
sis. (Scaling has implications not only for numerical computations; it also
affects the results of many multivariate analyses, even if the computations
are exact. As we mentioned in Section 1.1 scaling induces artificial structure
and it affects such analytic methods as clustering and principal component
analysis.)

Condition of Singular or Nonsquare Matrices

We have discussed condition in the context of the solution of a full-rank, con-
sistent linear system. The same kinds of issues of numerical accuracy arise
in non-full-rank systems and in overdetermined systems. A general condition
number for such matrices can be defined as an extension of the L2 condi-
tion number in equation (5.12) based on singular values. The singular value
condition number of a general matrix A is

κsv(A) =
σ1

σk
, (5.20)

where σ1 is the largest singular value of A and σk is the smallest positive
singular value of A.

5.2 Gaussian Elimination and Elementary Operator
Matrices

The most common direct method for the solution of linear systems is Gaussian
elimination. The basic idea in this method is to form equivalent sets of equa-
tions, beginning with the system to be solved, Ax = b, and ending with a
system Ux = Tb, where U is an upper triangular matrix, and T is some
matrix that makes the system equivalent to the original one.

Consider the individual equations

aT
1∗x = b1

aT
2∗x = b2

. . . = . . .
aT

n∗x = bn,

(5.21)

where aj∗ is the jth row of A. (Recall that aj∗ is a vector and all vectors
are “column” vectors.) An equivalent set of equations can be formed by a
sequence of elementary operations on the equations in the given set.

These elementary operations on equations are essentially the same as the
elementary operations on the rows of matrices. The two most important kinds
of elementary operations are an interchange of two equations,
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aT
j∗x = bj ← aT

k∗x = bk,

aT
k∗x = bk ← aT

j∗x = bj ,
(5.22)

and a replacement of a single equation with a sum of it and a scalar multiple
of another equation,

aT
j∗x = bj ← aT

j∗x + caT
k∗x = bj + cbk. (5.23)

(The operation (5.23) is an axpy with a = c, x = bk, and y = bj .)
These operations can be effected by premultiplication by elementary opera-

tor matrices, which are matrices formed by performing the indicated operation
on the identity matrix. The elementary operator matrix that exchanges rows j
and k, which we denote as Ejk , is the identity matrix with rows j and k inter-
changed. The elementary operator matrix that performs the operation (5.23),
which we denote as Ejk(c), is the identity matrix with the 0 in position (j, k)
replaced by c.

The elementary operation on the equation

aT
2∗x = b2

in which the first equation is combined with it using c = −a21/a11 will yield an
equation with a zero coefficient for x1. The sequence of equivalent equations,
beginning with Ax = b, is

E21(c
(1)
2 )Ax = E21(c

(1)
2 )b

E31(c
(1)
3 )E21(c

(1)
2 )Ax = E31(c

(1)
3 )E21(c

(1)
2 )b

...
En1(c

(1)
n ) · · ·E31(c

(1)
3 )E21(c

(1)
2 )Ax = En1(c

(1)
n ) · · ·E31(c

(1)
3 )E21(c

(1)
2 )b,

(5.24)
where

c(1)
i = −ai1/a11.

At this stage, the equations (5.21) are

aT
1∗x = b1

(
ã(1)
2∗

)T
x = b2

. . . = . . .(
ã(1)

n∗

)T
x = bn,

(5.25)

where the vector ã(1)
j∗ has a zero in its first position.

In Gaussian elimination we continue this process by using elementary op-
erator matrices of the form Ei2(c

(2)
i ), where i ≥ 3 and c(2)

i = −ã(1)
i2 /ã(1)

22 .
After n − 2 such operations, we have a system of equations similar to equa-
tions (5.25), in which now for j ≥ 3, the vector ã(2)

j∗ has zeros in its first two
positions.
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Continuing this process, we form systems of equations with more and more
zeros as coefficients of x’s. Finally, we have a completely triangular system,
Ux, on the left side. This system is easy to solve because the coefficient matrix
is upper triangular. The last equation in the system yields

xn =
b̃(n−1)
n

ã(n−1)
nn

.

By back substitution, we get

xn−1 =
b̃(n−2)
n−1 − ã(n−2)

n−1,nxn

ã(n−2)
n−1,n−1

,

and we obtain the rest of the x’s in a similar manner.
Gaussian elimination consists of two steps: the forward reduction, which

is of order O(n3), and the back substitution, which is of order O(n2).
While Gaussian elimination is mathematically equivalent to a sequence

of matrix multiplications, the actual computations would not appear to be
matrix multiplications. This reminds us that:

The form of a mathematical expression and the way the expression
should be evaluated in actual practice may be quite different.

Furthermore, there are many details of the computations that must be
performed carefully. It is clear that if, at some step in the process above,
ã(k−1)

kk = 0, we would have to do something differently. If this happens, then
we would have to interchange two rows before proceeding. (This is called
pivoting; see below.) But before proceeding with this simple fix, we recall:

Computer numbers are not the same as real numbers, and the arith-
metic operations on computer numbers are not exactly the same as
those of ordinary arithmetic.

If ã(k−1)
kk = 0, it may be the case that the computations in the first k − 1

steps did not yield an exact 0 in the (k, k) position.

In arithmetic with floating-point numbers, checking for an exact 0
rarely makes sense.

Other problems may arise. Suppose, for example, that ã(k−1)
kk is very small

in absolute value, and some ã(k−1)
ik is very large. In that case, it is quite possible

that [
c(k)
i

]

c
=
[
ã(k−1)

ik

]

c
/
[
ã(k−1)

kk

]

c

= Inf . (5.26)

Another type of problem may arise if at some stage c(k)
i ã(k−1)

kj ≈ −ã(k−1)
ij .

This is the standard setup for catastrophic cancellation (see page 100). The
resulting value

[
ã(k)

ij

]

c
may have only one or two units of precision.
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Pivoting

The divisors a(k−1)
kk s are called “pivot elements”. The obvious problem with

the method of Gaussian elimination mentioned above arises if some of the
pivot elements are zero (or very small in magnitude).

Suppose, for example, we have the equations Ax = b, where

0.0001x1 + x2 = 1,
x1 + x2 = 2.

(5.27)

The solution is x1 = 1.0001 and x2 = 0.9999. Suppose we are working with
three digits of precision (so our solution is x1 = 1.00 and x2 = 1.00). After
the first step in Gaussian elimination, we have

0.0001x1 + x2 = 1,
−10, 000x2 = −10, 000,

and so the solution by back substitution is x2 = 1.00 and x1 = 0.000. The
L2 condition number of the coefficient matrix is 2.618, so even though the
coefficients vary greatly in magnitude, we certainly would not expect any
difficulty in solving these equations.

A simple solution to this potential problem is to interchange the equation
having the small leading coefficient with an equation below it. Thus, in our
example, we first form

x1 + x2 = 2,
0.0001x1 + x2 = 1,

so that after the first step we have

x1 + x2 = 2,
x2 = 1,

and the solution is x2 = 1.00 and x1 = 1.00, which is correct to three digits.
Another strategy would be to interchange the column having the zero or

small leading coefficient with a column to its right. Both the row interchange
and the column interchange strategies could be used simultaneously, of course.
These processes, which obviously do not change the solution, are called pivot-
ing. The equation or column to move into the active position may be chosen
in such a way that the magnitude of the new diagonal element is the largest
possible.

Performing only row interchanges, so that at the kth stage the equation
with

nmax
i=k

|a(k−1)
ik |

is moved into the kth row, is called partial pivoting. Performing both row
interchanges and column interchanges, so that

n;n
max

i=k;j=k
|a(k−1)

ij |
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is moved into the kth diagonal position, is called complete pivoting.
An elementary permutation matrix can be used to interchange rows or

columns in a matrix. An elementary permutation matrix that interchanges
rows p and q in another matrix is the identity with the pth and qth rows
interchanged. It is denoted by Epq . So Epq is the identity, except the pth row
is the qth unit vector eq and the qth row is the pth unit vector ep. Note that
Epq = Eqp. Thus, for example, if the given matrix is 4 × m, to interchange
the second and third rows, we use

E23 = E32 =

⎡

⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥⎥⎦ .

It is easy to see from the definition that an elementary permutation matrix
is symmetric. Note that the notation Epq does not indicate the size of the
elementary permutation matrix; that must be specified in the context.

Premultiplying a matrix A by a (conformable) Epq results in an inter-
change of the pth and qth rows of A as we see above. Any permutation of rows
of A can be accomplished by successive premultiplications by elementary per-
mutation matrices. Note that the order of multiplication matters. Although
a given permutation can be accomplished by different elementary permuta-
tions, the number of elementary permutations that effect a given permutation
is always either even or odd; that is, if an odd number of elementary per-
mutations results in a given permutation, any other sequence of elementary
permutations to yield the given permutation is also odd in number. Any given
permutation can be effected by successive interchanges of adjacent rows.

Postmultiplying a matrix A by a (conformable) Epq results in an inter-
change of the pth and qth columns of A:

⎡

⎢⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

⎤

⎥⎥⎦

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦ =

⎡

⎢⎢⎣

a11 a13 a12

a21 a23 a22

a31 a33 a32

a41 a43 a42

⎤

⎥⎥⎦ .

Note that
A = EpqEpqA = AEpqEpq ;

that is, as an operator, an elementary permutation matrix is its own inverse
operator: EpqEpq = I .

Because all of the elements of a permutation matrix are 0 or 1, the trace
of an n × n elementary permutation matrix is n − 2.

The product of elementary permutation matrices is also a permutation
matrix in the sense that it permutes several rows or columns. For example,
premultiplying A by the matrix Q = EpqEqr will yield a matrix whose pth row
is the rth row of the original A, whose qth row is the pth row of A, and whose
rth row is the qth row of A. We often use the notation Eπ to denote a more
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general permutation matrix. This expression will usually be used generically,
but sometimes we will specify the permutation, π.

A general permutation matrix (that is, a product of elementary permuta-
tion matrices) is not necessarily symmetric, but its transpose is also a per-
mutation matrix. It is not necessarily its own inverse, but its permutations
can be reversed by a permutation matrix formed by products of elementary
permutation matrices in the opposite order; that is,

ET
π Eπ = I.

In complete pivoting, we may permute both rows and columns, so we often
have a representation such as

B = Eπ1AEπ2 ,

where Eπ1 is a permutation matrix to permute the rows and Eπ2 is a permu-
tation matrix to permute the columns.

The pivoting in the simple example of equation (5.27) would be accom-
plished by multiplying both sides of the equation by the matrix

[
0 1
1 0

]
.

It is always important to distinguish descriptions of effects of actions from
the actions that are actually carried out in the computer. Pivoting is inter-
changing rows or columns. In the computer, a row or a column is determined
by the index identifying the row or column. All we do for pivoting is to keep
track of the indices that we have permuted; we do not move data around in
the computer’s memory. This is another, trivial instance of the dictum:

The form of a mathematical expression and the way the expression
should be evaluated in actual practice may be quite different.

There are many more computations required in order to perform complete
pivoting than are required to perform partial pivoting. Gaussian elimination
with complete pivoting can be shown to be stable; that is, the algorithm
yields an exact solution to a slightly perturbed system, (A + δA)x = b. (We
discuss stability on page 114.) For Gaussian elimination with partial pivot-
ing, there are examples that show that it is not stable. These examples are
somewhat contrived, however, and experience over many years has indicated
that Gaussian elimination with partial pivoting is stable for most problems
occurring in practice. For this reason, together with the computational sav-
ings, Gaussian elimination with partial pivoting is one of the most commonly
used methods for solving linear systems.

Partial pivoting does not require as many computations as complete piv-
oting does, and there are modifications of partial pivoting that result in stable
algorithms (see Gentle, 2007, page 210).
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Nonfull Rank and Nonsquare Systems

The existence of an x that solves the linear system Ax = b depends on that
system being consistent; it does not depend on A being square or of full rank.
The methods discussed above apply even if A is nonsquare or non-full rank.

In applications, it is often annoying that many software developers do not
provide capabilities for handling nonfull-rank or nonsquare systems. Many of
the standard programs for solving systems provide solutions only if A is square
and of full rank. This is a poor software design decision.

5.3 Matrix Decompositions

In Chapter 1 we described two types of matrix factorization or decomposition,
the singular value decomposition (SVD) in equation (1.63), and the square
root factorization of positive definite matrices in equation (1.65). The use of
decompositions in matrix computations has been listed as one of the top 10
algorithms of the twentieth century (see page 138).

The term “decomposition” could refer to an additive decomposition or a
multiplicative decomposition, which we also call a factorization. The most im-
portant decompositions are factorizations, and when we use the term “decom-
position” in regard to matrices, we will almost always mean “factorization”.

We will now discuss some other types of factorization or decomposition of
matrices, and then in Table 5.1 summarize important matrix factorizations.

Gaussian Elimination and the LU Decomposition

Generalizing the computations in equations (5.24), we perform elementary
operations on the second through the nth equations to yield a set of equivalent
equations in which all but the first have zero coefficients for x1.

Next, we perform elementary operations using the second equation with
the third through the nth equations, so that the new third through the nth

equations have zero coefficients for x2.
Let U denote the upper triangular matrix En,n−1(cn) · · ·E32(c2)E21(c1)A,

and L denote the inverse of the matrix En,n−1(cn) · · ·E32(c2)E21(c1), then we
can write the last system as Ux = L−1b.

This back substitution is equivalent to forming

x = U−1L−1b, (5.28)

or x = A−1b with A = LU . The expression of A as LU is called the LU
decomposition or the LU factorization of A. An LU factorization exists and
is unique for nonnegative definite matrices. For more general matrices, the
factorization may not exist, and the conditions for the existence are not so easy
to state. (Golub and Van Loan (1996), for example, describe the conditions.)
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QR Factorization

A very useful factorization is
A = QR, (5.29)

where Q is orthogonal and R is upper triangular or trapezoidal. This is called
the QR factorization.

If A is square and of full rank, R has the form
⎡

⎣
X X X
0 X X
0 0 X

⎤

⎦ .

If A is nonsquare, R is nonsquare, with an upper triangular submatrix.
If A has more columns than rows, R is trapezoidal and can be written as
[R1 |R2], where R1 is upper triangular.

If A is n×m with more rows than columns, which is the case in common
applications of QR factorization, then

R =
[

R1

0

]
, (5.30)

where R1 is m × m upper triangular.
When A has more rows than columns, we can likewise partition Q as

[Q1 |Q2], and we can use a version of Q that contains only relevant rows or
columns,

A = Q1R1, (5.31)

where Q1 is an n × m matrix whose columns are orthonormal. This form is
called a “skinny” QR. It is more commonly used than a full QR decomposition
with a square Q.

It is interesting to note that the Moore-Penrose inverse of A with full
column rank is immediately available from the QR factorization:

A+ =
[
R−1

1 0
]
QT. (5.32)

Nonfull Rank Matrices

If A is square but not of full rank, R has the form
⎡

⎣
X X X
0 X X
0 0 0

⎤

⎦ . (5.33)

In the common case in statistical applications in which A has more rows
than columns, if A is not of full (column) rank, R1 in equation (5.30) will
have the form shown in matrix (5.33).
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If A is not of full rank, we apply permutations to the columns of A by
multiplying on the right by a permutation matrix. The permutations can be
taken out by a second multiplication on the right. If A is of rank r (≤ m),
the resulting decomposition consists of three matrices: an orthogonal Q, a T
with an r × r upper triangular submatrix, and a permutation matrix ET

π ,

A = QTET
π . (5.34)

The matrix T has the form

T =
[

T1 T2

0 0

]
, (5.35)

where T1 is upper triangular and is r×r. The decomposition in equation (5.34)
is not unique because of the permutation matrix. The choice of the permuta-
tion matrix is the same as the pivoting that we discussed in connection with
Gaussian elimination. A generalized inverse of A is immediately available from
equation (5.34):

A− = P

[
T−1

1 0
0 0

]
QT, (5.36)

where P is the permutation matrix Eπ .
Additional orthogonal transformations can be applied from the right-hand

side of the n × m matrix A in the form of equation (5.34) to yield

A = QRUT, (5.37)

where R has the form
R =

[
R1 0
0 0

]
, (5.38)

where R1 is r×r upper triangular, Q is n×n and as in equation (5.34), and UT

is n × m and orthogonal. (The permutation matrix in equation (5.34) is also
orthogonal, of course.) The decomposition (5.37) is unique, and it provides
the unique Moore-Penrose generalized inverse of A:

A+ = U

[
R−1

1 0
0 0

]
QT. (5.39)

(Compare equation (1.64) on page 29 relating the SVD to the Moore-Penrose
inverse.)

It is often of interest to know the rank of a matrix. Given a decomposition
of the form of equation (5.34), the rank is obvious, and in practice, this QR
decomposition with pivoting is a good way to determine the rank of a matrix.
The QR decomposition is said to be “rank-revealing”. The computations are
quite sensitive to rounding, however, and the pivoting must be done with some
care.

The QR factorization is particularly useful in computations for overdeter-
mined systems, and in other computations involving nonsquare matrices.
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There are three good methods for obtaining the QR factorization: House-
holder transformations or reflections; Givens transformations or rotations; and
the (modified) Gram-Schmidt procedure, all of which we discuss in Chapter 9.
Different situations may make one of these procedures better than the two
others. The Householder transformations described in the next section are
probably the most commonly used. If the data are available only one row at
a time, the Givens transformations are very convenient. Whichever method is
used to compute the QR decomposition, at least 2n3/3 multiplications and
additions are required. The operation count is therefore about twice as great
as that for an LU decomposition.

Cholesky Factorization

If the matrix A is symmetric and positive definite (that is, if xTAx > 0 for
all x ̸= 0), another important factorization is the Cholesky decomposition. In
this factorization,

A = TTT, (5.40)

where T is an upper triangular matrix with positive diagonal elements. We
occasionally denote the Cholesky factor of A (that is, T in the expression
above) as AC.

The factor T in the Cholesky decomposition is sometimes called the square
root, but we have defined a different matrix as the square root, A

1
2 , on page 29.

The Cholesky factor is more useful in practice, but the square root has more
applications in the development of the theory.

A factor of the form of T in equation (5.32) is unique up to the sign, just
as a square root is. To make the Cholesky factor unique, we require that the
diagonal elements be positive. The elements along the diagonal of T will be
square roots. Notice, for example, that t11 is

√
a11.

Algorithm 5.1 is a method for constructing the Cholesky factorization.

Algorithm 5.1 Cholesky Factorization

1. Let t11 = √
a11.

2. For j = 2, . . . , n, let t1j = a1j/t11.
3. For i = 2, . . . , n,

{
let tii =

√
aii −

∑i−1
k=1 t2ki, and

for j = i + 1, . . . , n,
{

let tij = (aij −
∑i−1

k=1 tkitkj)/tii
}

}.

It can be shown that the elements aii −
∑i−1

k=1 t2ki in this algorithm are non-
negative if A is nonnegative definite. (See Gentle, 2007, page 194.)
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There are other algorithms for computing the Cholesky decomposition.
The method given in Algorithm 5.1 is sometimes called the inner product
formulation because the sums in step 3 are inner products. The algorithms for
computing the Cholesky decomposition are numerically stable. Although the
order of the number of computations is the same, there are only about half as
many computations in the Cholesky factorization as in the LU factorization.
Another advantage of the Cholesky factorization is that there are only n(n +
1)/2 unique elements as opposed to n2 + n in the LU decomposition.

The Cholesky decomposition can also be formed as T̃TDT̃ , where D is
a diagonal matrix that allows the diagonal elements of T̃ to be computed
without taking square roots.

The Cholesky decomposition also exists for a nonnegative definite matrix
that is not of full rank. This is accomplished by a simple modification in
Algorithm 5.1. For any tii that is zero, we merely fill the corresponding row
of the matrix T with zeros and proceed.

Table 5.1. Matrix Factorizations

Factorization Restrictions Properties of Factors

SVD, page 28 none U orthogonal
Anm = UnnDnmV T

mm V orthogonal
D nonnegative diagonal

variations: for symmetric A, A = V CV T

LU , page 215 A square, (others) L full-rank lower triangular
Ann = LnnUnn U upper triangular

variations: with partial pivoting, A = LUP
with full pivoting, P1AP2 = LU
A = LDU , with D diagonal and uii = 1

QR, page 216 none Q orthogonal
Anm = QnnRnm R upper triangular

variations: skinny QR for n > m, A = Q1R1

Cholesky, page 216 A nonnegative definite L full-rank lower triangular
Ann = LnnUnn U upper triangular

diagonal, page 27 A symmetric V orthogonal
Ann = VnnCnnV T

nn C diagonal

square root, page 29 A nonnegative definite A
1
2
nn nonnegative definite

Ann = (A
1
2
nn)2

“Modified” and “Classical” Gram-Schmidt Transformations

Pivoting, discussed on page 212, is a method for avoiding a situation like that
in equation (5.3). In Gaussian elimination, for example, we do an addition,
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x+y, where the y is the result of having divided some element of the matrix by
some other element and x is some other element in the matrix. If the divisor is
very small in magnitude, y is large and may overwhelm x as in equation (5.3).

Another example of how to avoid a situation similar to that in equa-
tion (5.1) is the use of the correct form of the Gram-Schmidt transformations,
which we give in Algorithm 5.2 on page 220.

Given two nonnull, linearly independent vectors, x1 and x2, it is easy to
form two orthonormal vectors, x̃1 and x̃2, that span the same space:

x̃1 =
x1

∥x1∥2
,

x̃2 =
(x2 − x̃T

1 x2x̃1)
∥x2 − x̃T

1 x2x̃1∥2
.

(5.41)

These are called Gram-Schmidt transformations. It is easy to confirm by mul-
tiplication that x̃1 and x̃2 are orthonormal. Further, because they are orthog-
onal and neither is 0, they must be independent; hence, they span the same
space as x1 and x2. We can see that they are independent also by observing
that

[x̃1x̃2] = A [x1x2] ,

where A is an upper triangular (that is, full rank) matrix.
The Gram-Schmidt transformations can be continued with all of the vec-

tors in the linearly independent set. There are two straightforward ways equa-
tions (5.41) can be extended. One method generalizes the second equation in
an obvious way:

for k = 2, 3 . . . ,

x̃k =

(
xk −

k−1∑

i=1

⟨x̃i, xk⟩x̃i

) / ∥∥∥∥∥xk −
k−1∑

i=1

⟨x̃i, xk⟩x̃i

∥∥∥∥∥ .

(5.42)

In this method, at the kth step, we orthogonalize the kth vector by comput-
ing its residual with respect to the plane formed by all the previous k − 1
orthonormal vectors.

Another way of extending the transformations of equations (5.41) is, at
the kth step, to compute the residuals of all remaining vectors with respect
just to the kth normalized vector. We describe this method explicitly in Al-
gorithm 5.2.

Algorithm 5.2 Gram-Schmidt Orthonormalization of a Set of
Linearly Independent Vectors, x1, . . . , xm

0. For k = 1, . . . , m,
{
set x̃i = xi.
}
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1. Ensure that x̃1 ̸= 0;
set x̃1 = x̃1/∥x̃1∥.

2. If m > 1, for k = 2, . . . , m,
{

for j = k, . . . , m,
{

set x̃j = x̃j − ⟨x̃k−1, x̃j⟩x̃k−1.
}
ensure that x̃k ̸= 0;
set x̃k = x̃k/∥x̃k∥.

}
Although the method indicated in equation (5.42) is mathematically equiv-

alent to this method, the use of Algorithm 5.2 is to be preferred for compu-
tations because it is less subject to rounding errors. (This may not be im-
mediately obvious, although a simple numerical example can illustrate the
fact — see Exercise 5.3c. We will not digress here to consider this further, but
the difference in the two methods has to do with the relative magnitudes of
the quantities in the subtraction. The method of Algorithm 5.2 is sometimes
called the “modified” Gram-Schmidt method. We will discuss this method
again on page 219.) This is an instance of an important principle:

The form of a mathematical expression and the way the expression
should be evaluated in actual practice may be quite different.

5.4 Iterative Methods

As we mentioned earlier, we distinguish computational methods for matrices
as being either direct, meaning that the number of computations is fixed a
priori, or iterative, meaning that the results of the computations in each step
determine whether to perform additional computations. The methods we have
discussed so far in this chapter are direct. Iterative methods are especially
useful in very large linear systems. They are also usually the favored methods
for sparse systems.

Iterative methods are based on a sequence of approximations that (it is
hoped) converge to the correct solution. The most important considerations
in an iterative method involve its convergence, in terms of both speed and
accuracy.

A fundamental trade-off in iterative methods is between the amount of
work expended in getting a good approximation at each step and the number
of steps required for convergence.

The Gauss-Seidel Method with Successive Overrelaxation

One of the simplest iterative procedures for solving a system of linear equa-
tions is the Gauss-Seidel method. In this method, we begin with an initial
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approximation to the solution, x(0). We then compute an update for the first
element of x:

x(1)
1 =

1
a11

⎛

⎝b1 −
n∑

j=2

a1jx
(0)
j

⎞

⎠ .

Continuing in this way for the other elements of x for i = 2, . . . , n, we get
the next approximation to the solution, x(1). After getting the approximation
x(1), we then continue this same kind of iteration for x(2), x(3), . . ., in which
we compute the ith element as

x(k)
i =

1
aii

⎛

⎝bi −
i−1∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k−1)
j

⎞

⎠ , (5.43)

where no sums are performed if the upper limit is smaller than the lower limit.
We continue the iterations until a convergence criterion is satisfied. This

criterion may be of the form

∆
(
x(k), x(k−1)

)
≤ ϵ,

where∆
(
x(k), x(k−1)

)
is a measure of the difference of x(k) and x(k−1), such as

∥x(k)−x(k−1)∥. We may also base the convergence criterion on ∥r(k)−r(k−1)∥,
where r(k) = b − Ax(k).

The Gauss-Seidel iterations can be thought of as beginning with a re-
arrangement of the original system of equations as

a11x1 = b1 − a12x2 · · ·− a1nxn

a21x1 + a22x2 = b2 · · ·− a2nxn
... +

...
...

...
a(n−1)1x1 + a(n−1)2x2 + · · · = bn−1 − annxn

an1x1 + an2x2 + · · ·+ annxn = bn.

In this form, we identify three matrices: a diagonal matrix D, a lower trian-
gular L with 0s on the diagonal, and an upper triangular U with 0s on the
diagonal:

(D + L)x = b − Ux.

We can write this entire sequence of Gauss-Seidel iterations in terms of these
three fixed matrices:

x(k+1) = (D + L)−1
(
−Ux(k) + b

)
. (5.44)

This method will converge for any arbitrary starting value x(0) if and only
if the spectral radius of (D +L)−1U is less than 1. (See Golub and Van Loan,
1996, for a proof of this.) Moreover, the rate of convergence increases with
decreasing spectral radius.
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Successive Overrelaxation

The Gauss-Seidel method may be unacceptably slow, so it may be modified
so that the update is a weighted average of the regular Gauss-Seidel update
and the previous value. This kind of modification is called successive overre-
laxation, or SOR. Instead of equation (5.44), the update is given by

1
ω

(D + L) x(k+1) =
1
ω

(
(1 − ω)D − ωU

)
x(k) + b, (5.45)

where the relaxation parameter ω is usually chosen to be between 0 and 1. For
ω = 1 the method is the ordinary Gauss-Seidel method; see Exercises 5.2c,
5.2e, and 5.2f.

Conjugate Gradient Methods for Symmetric Positive Definite
Systems

In the Gauss-Seidel methods the convergence criterion is based on successive
differences in the solutions x(k) and x(k−1) or in the residuals r(k) and r(k−1).
Other iterative methods focus directly on the magnitude of the residual

r(k) = b − Ax(k). (5.46)

We seek a value x(k) such that the residual is small (in some sense). Meth-
ods that minimize ∥r(k)∥2 are called minimal residual (MINRES) methods or
generalized minimal residual (GMRES) methods.

For a system with a symmetric positive definite coefficient matrix A, it
turns out that the best iterative method is based on minimizing the “conju-
gate” L2 norm

∥r(k)TA−1r(k)∥2.

A method based on this minimization problem is called a conjugate gradient
method.

The problem of solving the linear system Ax = b is equivalent to finding
the minimum of the function

f(x) =
1
2
xTAx − xTb. (5.47)

By setting the derivative of f to 0, we see that a stationary point of f occurs
at the point x where Ax = b.

If A is positive definite, the (unique) minimum of f is at x = A−1b,
and the value of f at the minimum is − 1

2bTAb. The minimum point can be
approached iteratively by starting at a point x(0), moving to a point x(1)

that yields a smaller value of the function, and continuing to move to points
yielding smaller values of the function. The kth point is x(k−1) +α(k−1)p(k−1),
where α(k−1) is a scalar and p(k−1) is a vector giving the direction of the
movement. Hence, for the kth point, we have the linear combination
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x(k) = x(0) + α(1)p(1) + · · · + α(k−1)p(k−1).

At the point x(k), the function f decreases most rapidly in the direction
of the negative gradient, −∇f(x(k)), which is just the residual,

−∇f(x(k)) = r(k).

If this residual is 0, no movement is indicated because we are at the solution.
Moving in the direction of steepest descent may cause a very slow con-

vergence to the minimum. (The curve that leads to the minimum on the
quadratic surface is obviously not a straight line. The direction of steepest
descent changes as we move to a new point x(k+1).) A good choice for the
sequence of directions p(1), p(2), . . . is such that

(p(k))TAp(i) = 0, for i = 1, . . . , k − 1. (5.48)

Such a vector p(k) is said to be A-conjugate to p(1), p(2), . . . p(k−1). Given a
current point x(k) and a direction to move p(k) to the next point, we must
also choose a distance α(k)∥p(k)∥ to move in that direction. We then have the
next point,

x(k+1) = x(k) + α(k)p(k). (5.49)

(Notice that here, as often in describing algorithms in linear algebra, we use
Greek letters, such as α, to denote scalar quantities.)

A conjugate gradient method for solving the linear system is shown in
Algorithm 5.3. The paths defined by the directions p(1), p(2), . . . in equa-
tion (5.48) are called the conjugate gradients.

Algorithm 5.3 The Conjugate Gradient Method for Solving the
Symmetric Positive Definite System Ax = b, Starting with x(0)

0. Input stopping criteria, ϵ and kmax.
Set k = 0; r(k) = b − Ax(k); s(k) = Ar(k); p(k) = s(k); and γ(k) = ∥s(k)∥2.

1. If γ(k) ≤ ϵ, set x = x(k) and terminate.
2. Set q(k) = Ap(k).
3. Set α(k) = γ(k)

∥q(k)∥2 .
4. Set x(k+1) = x(k) + α(k)p(k).
5. Set r(k+1) = r(k) − α(k)q(k).
6. Set s(k+1) = Ar(k+1).
7. Set γ(k+1) = ∥s(k+1)∥2.
8. Set p(k+1) = s(k+1) + γ(k+1)

γ(k) p(k).
9. If k < kmax,

set k = k + 1 and go to step 1;
otherwise

issue message that
“algorithm did not converge in kmax iterations”.
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This algorithm is a simple example of Newton’s method (see page 249), which
specifies the directions of the steps as Ar(k), where r(k) is the residual, b −
Ax(k), at the kth step.

There are various ways in which the computations in Algorithm 5.3 could
be arranged. Although any vector norm could be used in Algorithm 5.3, the
L2 norm is the most common one.

This method, like other iterative methods, is more appropriate for large
systems. (“Large” in this context means bigger than 1000× 1000.)

In exact arithmetic, the conjugate gradient method should converge in n
steps for an n × n system. In practice, however, its convergence rate varies
widely, even for systems of the same size. Its convergence rate generally de-
creases with increasing L2 condition number (which is a function of the max-
imum and minimum nonzero eigenvalues), but that is not at all the complete
story. The rate depends in a complicated way on all of the eigenvalues. The
more spread out the eigenvalues are, the slower the rate. For different sys-
tems with roughly the same condition number, the convergence is faster if all
eigenvalues are in two clusters around the maximum and minimum values.

Preconditioning

In order to achieve acceptable rates of convergence for iterative algorithms, it
is often necessary to precondition the system; that is, to replace the system
Ax = b by the system

M−1Ax = M−1b

for some suitable matrix M . The choice of M involves some art, and we will
not consider the issues further here.

Restarting and Rescaling

In many iterative methods, not all components of the computations are up-
dated in each iteration. As we mentioned in Chapter 3, there is sometimes a
tradeoff between the number of iterations required for convergence and the
amount of work done in each iteration.

An approximation to a given matrix or vector may be adequate during
some sequence of computations without change, but then at some point the
approximation is no longer close enough, and a new approximation must be
computed. An example of this is in the use of quasi-Newton methods in op-
timization in which an approximate Hessian is updated (see Chapter 6). We
may, for example, just compute an approximation to the Hessian every few
iterations, perhaps using second differences, and then use that approximate
matrix for a few subsequent iterations.



226 5 Numerical Linear Algebra

Preservation of Sparsity

In computations involving large sparse systems, we may want to preserve
the sparsity, even if that requires using approximations. Fill-in (when a zero
position in a sparse matrix becomes nonzero) would cause loss of the compu-
tational and storage efficiencies of software for sparse matrices.

In forming a preconditioner for a sparse matrix A, for example, we may
choose a matrix M = L̃Ũ , where L̃ and Ũ are approximations to the matrices
in an LU decomposition of A. These matrices are constructed so as to have
zeros everywhere A has, and A ≈ L̃Ũ . This is called incomplete factorization,
and often, instead of an exact factorization, an approximate factorization may
be more useful because of computational efficiency.

Iterative Refinement

Once an approximate solution x(0) to the linear system Ax = b is available,
iterative refinement can yield a solution that is closer to the true solution.
The residual

r = b − Ax(0)

is used for iterative refinement. Clearly, if h = A+r, then x(0) +h is a solution
to the original system.

The problem considered here is not just an iterative solution to the linear
system discussed above. Here, we assume x(0) was computed accurately given
the finite precision of the computer. In this case, it is likely that r cannot be
computed accurately enough to be of any help. If, however, r can be computed
using a higher precision, then a useful value of h can be computed. This process
can then be iterated as shown in Algorithm 5.4.

Algorithm 5.4 Iterative Refinement of the Solution to Ax = b,
Starting with x(0)

0. Input stopping criteria, ϵ and kmax.
Set k = 0.

1. Compute r(k) = b − Ax(k) in higher precision.
2. Compute h(k) = A+r(k).
3. Set x(k+1) = x(k) + h(k).
4. If ∥h(k)∥ ≤ ϵ∥x(k+1)∥, then

set x = x(k+1) and terminate; otherwise,
if k < kmax,

set k = k + 1 and go to step 1;
otherwise,

issue message that
“algorithm did not converge in kmax iterations”.

In step 2, if A is of full rank then A+ is A−1. Also, as we have emphasized
already, the fact that we write an expression such as A+r does not mean that
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we compute A+. The norm in step 4 is usually chosen to be the ∞ norm.
The algorithm may not converge, so it is necessary to have an alternative exit
criterion, such as a maximum number of iterations.

The use of iterative refinement as a general-purpose method is severely
limited by the need for higher precision in step 1. On the other hand, if
computations in higher precision can be performed, they can be applied to
step 2— or just in the original computations for x(0). In terms of both accu-
racy and computational efficiency, using higher precision throughout is usually
better.

5.5 Updating a Solution to a Consistent System

In applications of linear systems, it is often the case that after the system
Ax = b has been solved, the right-hand side is changed and the system Ax = c
must be solved. If the linear system Ax = b has been solved by a direct method
using one of the factorizations discussed above, the factors of A can be used
to solve the new system Ax = c. If the right-hand side is a small perturbation
of b, say c = b + δb, an iterative method can be used to solve the new system
quickly, starting from the solution to the original problem.

If the coefficient matrix in a linear system Ax = b is perturbed to result
in the system (A + δA)x = b, it may be possible to use the solution x0 to the
original system efficiently to arrive at the solution to the perturbed system.
One way, of course, is to use x0 as the starting point in an iterative procedure.
Often, in applications, the perturbations are of a special type, such as

Ã = A − uvT,

where u and v are vectors. (This is a “rank-one” perturbation of A, and
when the perturbed matrix is used as a transformation, it is called a “rank-
one” update. As we have seen, a Householder reflection is a special rank-one
update.) Assuming A is an n × n matrix of full rank, it is easy to write Ã−1

in terms of A−1:
Ã−1 = A−1 + α(A−1u)(vTA−1) (5.50)

with
α =

1
1 − vTA−1u

.

These are called the Sherman-Morrison formulas. Ã−1 exists so long as
vTA−1u ̸= 1. Because x0 = A−1b, the solution to the perturbed system is

x̃0 = x0 +
(A−1u)(vTx0)
(1 − vTA−1u)

.

If the perturbation is more than rank one (that is, if the perturbation is

Ã = A − UV T, (5.51)
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where U and V are n × m matrices with n ≥ m), a generalization of the
Sherman-Morrison formula, sometimes called the Woodbury formula, is

Ã−1 = A−1 + A−1U(Im − V TA−1U)−1V TA−1. (5.52)

The solution to the perturbed system is easily seen to be

x̃0 = x0 + A−1U(Im − V TA−1U)−1V Tx0.

As we have emphasized many times, we rarely compute the inverse of a ma-
trix, and so the Sherman-Morrison-Woodbury formulas are not used directly.
Having already solved Ax = b, it should be easy to solve another system,
say Ay = ui, where ui is a column of U . If m is relatively small, as it is in
most applications of this kind of update, there are not many systems Ay = ui

to solve. Solving these systems, of course, yields A−1U , the most formidable
component of the Sherman-Morrison-Woodbury formula. The system to solve
is of order m also.

Occasionally the updating matrices in equation (5.51) may be used with a
weighting matrix, so we have Ã = A−UWV T. An extension of the Sherman-
Morrison-Woodbury formula is

(A − UWV T)−1 = A−1 + A−1U(W−1 − V TA−1U)−1V TA−1. (5.53)

This is sometimes called the Hemes formula.
Another situation that requires an update of a solution occurs when the

system is augmented with additional equations and more variables:
[

A A12

A21 A22

] [
x

x+

]
=
[

b
b+

]
.

A simple way of obtaining the solution to the augmented system is to use the
solution x0 to the original system in an iterative method. The starting point
for a method based on Gauss-Seidel or a conjugate gradient method can be
taken as (x0, 0), or as (x0, x

(0)
+ ) if a better value of x(0)

+ is known.
In many statistical applications, the systems are overdetermined, with A

being n×m and n > m. In the next section, we consider the general problem
of solving overdetermined systems by using least squares, and then we discuss
updating a least squares solution to an overdetermined system.

5.6 Overdetermined Systems; Least Squares

Linear models are often used to express a relationship between one observable
variable, a “response”, and another group of observable variables, “predictor
variables”. Consider a simple linear model in an equation of the form y = b0 +
bTx. The model is unlikely to fit exactly any set of observed values of responses
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and predictor variables. This may be due to effects of other predictor variables
that are not included in the model, measurement error, the relationship among
the variables being nonlinear, or some inherent randomness in the system.

In such applications, we generally take a larger number of observations
than there are variables in the system; thus, with each set of observations on
the response and associated predictors making up one equation, we have a
system with more equations than variables. This results in an overdetermined
system of linear equations, so instead of having the canonical problem of
equation (5.4), we have a situation that cannot fit a simple linear equations
relating the y and x.

An overdetermined system may be written as

Xb ≈ y, (5.54)

where X is n×m and rank(X |y) > m; that is, the system is not consistent. We
have changed the notation slightly from the consistent system (5.4) Ax = b
that we have been using because now we have in mind statistical applications,
and in those the notation y ≈ Xβ is more common. The problem is to de-
termine a value of b that makes the approximation close in some sense. In
applications of linear systems, we refer to this as “fitting” the system, which
is referred to as a “model”.

Overdetermined systems arise frequently in fitting equations to data. The
usual linear regression model is an overdetermined system and we discuss
statistical regression problems further in Chapter 17.

We should not confuse statistical inference with fitting equations to data,
although the latter task is a component of the former activity, but in this
section, we consider some of the more mechanical and computational aspects
of the problem.

Least Squares Solution of an Overdetermined System

Although there may be no b that will make the system in (5.54) an equation,
the system can be written as the equation

Xb = y − r, (5.55)

where r is an n-vector of possibly arbitrary residuals or “errors”.
A least squares solution b̂ to the system in (5.54) is one such that the

Euclidean norm of the vector of residuals is minimized; that is, the solution
to the problem

min
b

∥y − Xb∥2. (5.56)

The least squares solution is also called the “ordinary least squares” (OLS)
fit.

By rewriting the square of this norm as
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(y − Xb)T(y − Xb), (5.57)

differentiating, and setting it equal to 0, we see that the minimum (of both
the norm and its square) occurs at the b̂ that satisfies the square system

XTXb̂ = XTy. (5.58)

The system (5.58) is called the normal equations. As we mentioned on
page 208, the condition number of XTX is the square of the condition number
of X . Because of this, it may be better to work directly on X in (5.54) rather
than to use the normal equations. The normal equations are useful expressions,
however, whether or not they are used in the computations. This is another
case where a formula does not define an algorithm. We should note, of course,
that any information about the stability of the problem that the Gramian
may provide can be obtained from X directly.

Special Properties of Least Squares Solutions

The least squares fit to the overdetermined system has a very useful property
with two important consequences. The least squares fit partitions the space
into two interpretable orthogonal spaces. As we see from equation (5.58), the
residual vector y − Xb̂ is orthogonal to each column in X :

XT(y − Xb̂) = 0. (5.59)

A consequence of this fact for models that include an intercept is that the
sum of the residuals is 0. (The residual vector is orthogonal to the 1 vector.)
Another consequence for models that include an intercept is that the least
squares solution provides an exact fit to the mean.

These properties are so familiar to statisticians that some think that these
facts are essential characteristics of any regression modeling; they are not.
We will see in later sections that they do not hold for other approaches to
fitting the basic model y ≈ Xb. The least squares solution, however, has some
desirable statistical properties under fairly common distributional assump-
tions. We discuss statistical aspects of least squares solutions in Chapter 17,
beginning on page 604.

Weighted Least Squares

One of the simplest variations on fitting the linear model Xb ≈ y is to allow
different weights on the observations; that is, instead of each row of X and
corresponding element of y contributing equally to the fit, the elements of X
and y are possibly weighted differently.

The relative weights can be put into an n-vector w and the squared norm
in equation (5.57) replaced by a quadratic form in diag(w). More generally,
we form the quadratic form as
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(y − Xb)TW (y − Xb), (5.60)

where W is a positive definite matrix. Because the weights apply to both y
and Xb, there is no essential difference in the weighted or unweighted versions
of the problem.

The use of the QR factorization for the overdetermined system in which
the weighted norm (5.60) is to be minimized is similar to the development
above. It is exactly what we get if we replace y − Xb in equation (5.61) by
WC(y − Xb), where WC is the Cholesky factor of W .

There are other variations on ordinary least squares for fitting the linear
model, and we will discuss some of them in Section 17.3.

We now continue to address some of the computational issues of least
squares.

Least Squares with a Full Rank Coefficient Matrix

If the n×m matrix X is of full column rank, the least squares solution, from
equation (5.58), is b̂ = (XTX)−1XTy and is obviously unique. A good way to
compute this is to form the QR factorization of X .

First we write X = QR, as in equation (5.29) on page 216, where R is as
in equation (5.30),

R =
[

R1

0

]
,

with R1 an m×m upper triangular matrix. The residual norm (5.57) can be
written as

(y − Xb)T(y − Xb) = (y − QRb)T(y − QRb)
= (QTy − Rb)T(QTy − Rb)
= (c1 − R1b)T(c1 − R1b) + cT

2 c2, (5.61)

where c1 is a vector with m elements and c2 is a vector with n−m elements,
such that

QTy =
(

c1

c2

)
. (5.62)

Because quadratic forms are nonnegative, the minimum of the residual norm
in equation (5.61) occurs when (c1 − R1b)T(c1 − R1b) = 0; that is, when
(c1 − R1b) = 0, or

R1b = c1. (5.63)

We could also use the same technique of differentiation to find the minimum
of equation (5.61) that we did to find the minimum of equation (5.57).

Because R1 is triangular, the system is easy to solve: b̂ = R−1
1 c1. From

equation (5.32), we have
X+ =

[
R−1

1 0
]
,
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and so we have
b̂ = X+y. (5.64)

We also see from equation (5.61) that the minimum of the residual norm
is cT

2 c2. This is called the residual sum of squares in the least squares fit.

Least Squares with a Coefficient Matrix Not of Full Rank

If X is not of full rank (that is, if X has rank r < m), the least squares
solution is not unique, and in fact a solution is any vector b̂ = (XTX)−XTy,
where (XTX)− is any generalized inverse. This is a solution to the normal
equations (5.58). The residual corresponding to this solution is

y − X(XTX)−XTy = (I − X(XTX)−XT)y.

The residual vector is invariant to the choice of generalized inverse, as we see
from equation (1.54) on page 26.

An Optimal Property of the Solution Using the Moore-Penrose
Inverse

The solution corresponding to the Moore-Penrose inverse is unique because, as
we have seen, that generalized inverse is unique. That solution is interesting
for another reason, however: the b from the Moore-Penrose inverse has the
minimum L2-norm of all solutions.

To see that this solution has minimum norm, first factor X , as in equa-
tion (5.37) on page 217,

X = QRUT,

and form the Moore-Penrose inverse as in equation (5.39):

X+ = U

[
R−1

1 0
0 0

]
QT.

Then
b̂ = X+y (5.65)

is a least squares solution, just as in the full rank case. Now, let

QTy =
(

c1

c2

)
,

as in equation (5.62), except ensure that c1 has exactly r elements and c2 has
n − r elements, and let

UTb =
(

z1

z2

)
,
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where z1 has r elements. We proceed as in the equations (5.61). We seek
to minimize ∥y − Xb∥2 (which is the square root of the expression in equa-
tions (5.61)); and because multiplication by an orthogonal matrix does not
change the norm, we have

∥y − Xb∥2 = ∥QT(y − XUUTb)∥2

=
∣∣∣∣

∣∣∣∣

(
c1

c2

)
−
[

R1 0
0 0

](
z1

z2

)∣∣∣∣

∣∣∣∣
2

=
∣∣∣∣

∣∣∣∣

(
c1 − R1z1

c2

)∣∣∣∣

∣∣∣∣
2

. (5.66)

The residual norm is minimized for z1 = R−1
1 c1 and z2 arbitrary. However, if

z2 = 0, then ∥z∥2 is also minimized. Because UTb = z and U is orthogonal,
∥b̂∥2 = ∥z∥2, and so ∥b̂∥2 is the minimum among all least squares solutions.

Updating a Least Squares Solution of an Overdetermined System

In regression applications, after fitting the linear model, we may obtain ad-
ditional observations. Alternatively, we may decide to include more predictor
variables in the model. The original overdetermined system is modified by
adding either some rows or some columns to the coefficient matrix X . This
corresponds to including additional equations in the system,

[
X
X+

]
b ≈

[
y
y+

]
,

or to adding variables,
[
X X+

] [ b
b+

]
≈ y.

In either case, if the QR decomposition of X is available, the decomposition
of the augmented system can be computed readily. Consider, for example,
the addition of k equations to the original system Xb ≈ y, which has n
approximate equations. With the QR decomposition, for the original full rank
system, putting QTX and QTy as partitions in a matrix, we have

[
R1 c1

0 c2

]
= QT

[
X y

]
.

Augmenting this with the additional rows yields
⎡

⎣
R c1

0 c2

X+ y+

⎤

⎦ =
[

QT 0
0 I

] [
X y
X+ y+

]
. (5.67)
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All that is required now is to apply orthogonal transformations, such as Givens
rotations, to the system (5.67) to produce

[
R∗ c1∗
0 c2∗

]
,

where R∗ is an m × m upper triangular matrix and c1∗ is an m-vector as
before but c2∗ is an (n − m + k)-vector.

The updating is accomplished by applying m rotations to system (5.67)
so as to zero out the (n + q)th row for q = 1, 2, . . . , k. These operations
go through an outer loop with p = 1, 2, . . . , n and an inner loop with q =
1, 2, . . . , k. The operations rotate R through a sequence R(p,q) into R∗, and
they rotate X+ through a sequence X(p,q)

+ into 0. We consider these rotations
further on page 377. As we see there, at the p, q step, the rotation matrix Qpq

corresponding to equation (9.4) has

cos θ =
R(p,q)

pp

r

and

sin θ =

(
X(p,q)

+

)

qp

r
,

where

r =

√(
R(p,q)

pp

)2
+
((

X(p,q)
+

)
qp

)2
.

Other Solutions of Overdetermined Systems

A solution to an inconsistent, overdetermined system

Xb ≈ y,

where X is n × m and rank(X |y) > m, is some value b that makes y − Xb
close to zero. We define “close to zero” in terms of a norm on y − Xb. The
most common norm, of course, is the L2 norm as in expression (5.56), and
the minimization of this norm is straightforward, as we have seen. In addition
to the simple analytic properties of the L2 norm, the least squares solution
has some desirable statistical properties under fairly common distributional
assumptions, as we have seen.

There are various norms that may provide a reasonable fit. In addition to
the use of the L2 norm, that is, an ordinary least squares (OLS) fit, there are
various other ways of approaching the problem. We will return to this topic,
and consider variations on least squares as well as use of other norms in fitting
a linear model in Section 17.3.
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As we have stated before, we should not confuse statistical inference with
fitting equations to data, although the latter task is a component of the for-
mer activity. In statistical applications, we need to make statements (that is,
assumptions) about relevant probability distributions. These probability dis-
tributions, together with the methods used to collect the data, may indicate
specific methods for fitting the equations to the given data.

5.7 Other Computations with Matrices

There are several other kinds of computational problems that we will not ad-
dress in this book. One important example is the extraction of eigenvalues.
The most common method for this problem is the QR method, which was se-
lected as one of the Top 10 algorithms of the twentieth century (see page 138).
The QR method for computing eigenvalues is described in Gentle (2007), Sec-
tion 7.4.

In the next section we briefly discuss the problem of determining a reduced-
rank matrix that approximates a given matrix. We close with a section on the
use of consistency checks, as discussed on page 112, for the specific problem
of solving a linear system.

Matrix Approximation

We may wish to approximate the matrix A with a matrix Ar of rank r ≤
rank(A). The singular value decomposition provides an easy way to do this,

Ar = UDrV
T,

where Dr is the same as D, except with zeros replacing all but the r largest
singular values. It can be shown that Ar is the rank r matrix closest to A as
measured by the Frobenius norm,

∥A − Ar∥F,

(see Gentle, 2007). This kind of matrix approximation is the basis for dimen-
sion reduction by principal components. We discuss principal components in
Chapter 16.

Consistency Checks for Identifying Numerical Errors

In real-life applications, the correct solution is not known, but we would still
like to have some way of assessing the accuracy using the data themselves.
Sometimes a convenient way to do this in a given problem is to perform inter-
nal consistency tests. An internal consistency test may be an assessment of the
agreement of various parts of the output. Relationships among the output are
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exploited to ensure that the individually computed quantities satisfy these re-
lationships. Other internal consistency tests may be performed by comparing
the results of the solutions of two problems with a known relationship.

The solution to the linear system Ax = b has a simple relationship to the
solution to the linear system Ax = b + caj , where aj is the jth column of A
and c is a constant. A useful check on the accuracy of a computed solution
to Ax = b is to compare it with a computed solution to the modified system.
Of course, if the expected relationship does not hold, we do not know which
solution is incorrect, but it is probably not a good idea to trust either. If the
expected relationships do not obtain, the analyst has strong reason to doubt
the accuracy of the computations.

Another simple modification of the problem of solving a linear system with
a known exact effect is the permutation of the rows or columns. Although this
perturbation of the problem does not change the solution, it does sometimes
result in a change in the computations, and hence it may result in a different
computed solution. This obviously would alert the user to problems in the
computations.

Another simple internal consistency test that is applicable to many prob-
lems is to use two levels of precision in the computations. In using this test,
one must be careful to make sure that the input data are the same. Rounding
of the input data may cause incorrect output to result, but that is not the
fault of the computational algorithm.

Internal consistency tests cannot confirm that the results are correct; they
can only give an indication that the results are incorrect.

Notes and Further Reading

More complete coverage of the computational issues in linear algebra are cov-
ered in Č́ıžková and Č́ıžek (2004), in Part III of Gentle (2007), and in Golub
and Van Loan (1996).

Computational methods for sparse matrices are discussed in some detail
in Saad (2003).

Software for Numerical Linear Algebra

Mathematical software for linear algebra has traditionally been some of the
best software, from the earlier days when libraries in various programming
languages were widely distributed to the interpretive systems that allowed
direct manipulation of vectors and matrices. Currently, there are several rel-
atively mature interactive systems, including Matlab and Octave from an
applied mathematics heritage, and S-Plus and R that emphasize statistical
applications. There continues to be a need for specialized software for very
large linear systems or for rather specialized applications. There are many
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libraries for these needs in Fortran or C/C++ that are freely available. A list
of such software is maintained at

http://www.netlib.org/utk/people/JackDongarra/la-sw.html
The R system is widely used by statisticians. This system provides a wide

range of operations for vectors and matrices. It treats vectors as special kind
of list and matrices as special kinds of rectangular arrays. An impact of this
is in writing functions that accept matrices; a vector will not be accepted just
as a matrix with one dimension being 1. A vector has a length attribute but
not a dim attribute.

Certain aspects of the result of operations that involve both vectors and
matrices do not correspond with what the user might expect. For example,
if A is a matrix and x is a vector, A%*%x is an array instead of a vector;
A%*%t(x) is not an allowable operation but x%*%A is allowable and is the
same as t(x)%*%A and they are both arrays instead of vectors; and x%*%x
is the same as t(x)%*%x and they are both arrays instead of scalars. The
functions as.vector and as.matrix can be used to convert the results to the
expected class.

Exercises

5.1. Matrix norms and condition numbers.
In the system of linear equations (1.169) in Exercise 1.5 on page 75 (see
also solution on page 677), the solution is easily seen to be x1 = 1.000 and
x2 = 1.000. Figure 5.1 illustrates the original system and this modified
one.
Now consider a small change in the right-hand side:

1.000x1 + 0.500x2 = 1.500,
0.667x1 + 0.333x2 = 0.999.

(5.68)

This system has solution x1 = 0.000 and x2 = 3.000.
Alternatively, consider a small change in one of the elements of the coef-
ficient matrix:

1.000x1 + 0.500x2 = 1.500,
0.667x1 + 0.334x2 = 1.000.

(5.69)

The solution now is x1 = 2.000 and x2 = −1.000.
In both cases, small changes of the order of 10−3 in the input (the elements
of the coefficient matrix or the right-hand side) result in relatively large
changes (of the order of 1) in the output (the solution). Solving the system
(either one of them) is an ill-conditioned problem.
The nature of the data that cause ill-conditioning depends on the type
of problem. In this case, the problem is that the lines represented by the
equations are almost parallel, as seen in Figure 5.1, and so their point of



238 5 Numerical Linear Algebra

0 1 2

−2
−1

0
1

2
3

4

x1

x 2

0 1 2
−2

−1
0

1
2

3
4

x1

x 2

Fig. 5.1. Almost Parallel Lines: Ill-Conditioned Coefficient Matrices, Equa-
tions (1.169) and (5.68)

intersection is very sensitive to slight changes in the coefficients defining
the lines.
The problem can also be described in terms of the angle between the lines.
When the angle is small, but not necessarily 0, we refer to the condition
as “collinearity”.
We would expect that these properties of the system of equations would
be reflected in the condition number of the coefficient matrix A.
Evaluate κ1(A), κ2(A), and κ∞(A). (Notice that the condition numbers
are not exactly the same, but they are close. Notice also that the condition
numbers are of the order of magnitude of the ratio of the output pertur-
bation to the input perturbation in those equations. These numbers are
“large” only in a relative sense to 10−3. They are not nearly large enough
to cause any problems on the computer.)

5.2. Consider the system of linear equations

x1 + 4x2 + x3 = 12,
2x1 + 5x2 + 3x3 = 19,
x1 + 2x2 + 2x3 = 9.

a) Solve the system using Gaussian elimination with partial pivoting.
b) Solve the system using Gaussian elimination with complete pivoting.
c) Determine the D, L, and U matrices of the Gauss-Seidel method

(equation (5.44), page 222) and determine the spectral radius of

(D + L)−1U.
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d) We stated that the convergence rate of the Gauss-Seidel method in-
creases as the spectral radius ρ of (D+L)−1U decreases. We also know
that ρ(cA) = cρ(A). Why don’t we just scale the problem to increase
the convergence rate?

e) Do two steps of the Gauss-Seidel method starting with x(0) = (1, 1, 1),
and evaluate the L2 norm of the difference of two successive approxi-
mate solutions.

f) Do two steps of the Gauss-Seidel method with successive overrelax-
ation using ω = 0.1, starting with x(0) = (1, 1, 1), and evaluate the L2

norm of the difference of two successive approximate solutions.
g) Do two steps of the conjugate gradient method starting with x(0) =

(1, 1, 1), and evaluate the L2 norm of the difference of two successive
approximate solutions.

5.3. Gram-Schmidt orthonormalization.
a) Write a program module (in Fortran, C, R or S-Plus, Octave or Mat-

lab, or whatever language you choose) to implement Gram-Schmidt
orthonormalization using Algorithm 5.2. Your program should be for
an arbitrary order and for an arbitrary set of linearly independent
vectors.

b) Write a program module to implement Gram-Schmidt orthonormal-
ization using equations (5.41) and (5.42).

c) Experiment with your programs. Do they usually give the same re-
sults? Try them on a linearly independent set of vectors all of which
point “almost” in the same direction. Do you see any difference in the
accuracy? Think of some systematic way of forming a set of vectors
that point in almost the same direction. One way of doing this would
be, for a given x, to form x + ϵei for i = 1, . . . , n − 1, where ei is
the ith unit vector, that is, the vector with 0s in all positions except
the ith position, which is 1, and ϵ is a small positive number. The
difference can even be seen in hand computations for n = 3. Take
x1 = (1, 10−6, 10−6), x2 = (1, 10−6, 0), and x3 = (1, 0, 10−6).

5.4. Generalized inverses.
a) Confirm that A+ =

[
R−1

1 0
]
QT (equation (5.32)).

b) With A decomposed as in equation (5.34), confirm that

A− = Eπ

[
T−1

1 0
0 0

]
QT

is a generalized inverse of A
5.5. Solving an overdetermined system Xb = y, where X is n × m.

a) Count how many multiplications and additions are required to form
XTX . (A multiplication or addition such as this is performed in float-
ing point on a computer, so the operation is called a “flop”. Sometimes
a flop is considered a combined operation of multiplication and addi-
tion; at other times, each is considered a separate flop. The distinction
is not important here; just count the total number.)
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b) Count how many flops are required to form XTy.
c) Count how many flops are required to solve XTXb = XTy using a

Cholesky decomposition.
d) Count how many flops are required to form a QR decomposition of X

using reflectors.
e) Count how many flops are required to form a QTy.
f) Count how many flops are required to solve R1b = c1 (equation (5.63),

page 231).
g) If n is large relative to m, what is the ratio of the total number of flops

required to form and solve the normal equations using the Cholesky
method to the total number required to solve the system using a QR
decomposition? Why is the QR method generally preferred?



6

Solution of Nonlinear Equations and
Optimization

As we discussed in Section 1.8, most problems in statistical inference can be
posed as optimization problems.

An optimization problem is to solve

argmin
x∈D

f(x) (6.1)

for x. The scalar-valued function f is called the objective function. The variable
x, which is usually a vector, is called the decision variable, and its elements
are called decision variables. The domain D of the decision variables is called
the feasible set.

In this chapter, after some preliminary general issues, we will consider dif-
ferent methods, which depend on the nature of D. First we consider problems
in which D is continuous. The methods for continuous D often involve solving
nonlinear equations, so we discuss techniques for solving equations in Sec-
tion 6.1, before going on to the topic of optimization over continuous domains
in Section 6.2. In Section 6.3 we consider the problem of optimization over a
discrete domain. We mention a variety of methods, but consider only one of
these, simulated annealing, in any detail.

In Section 6.2 we assume that D = IRm, that is, we assume that there
are no constraints on the decision variables, and in Section 6.3 we likewise
generally ignore any constraints imposed by D. In Section 6.4, we consider
the necessary changes to accommodate constraints in D.

In the final sections we consider some specific types of optimization prob-
lems that arise in statistical applications.

Categorizations of Optimization Problems

This basic problem (6.1) has many variations. A simple variation is the max-
imization problem, which is addressed by using −f(x). The general methods
do not depend on whether we are minimizing or maximizing. We use the term

, Statistics and Computing,
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“optimum” generally to mean either a minimum or maximum, depending on
how the problem is stated.

If D is essentially irrelevant (that is, if D includes all x for which f(x) is
defined), the problem is called an unconstrained optimization problem. Oth-
erwise, it is a constrained optimization problem.

Two distinct classes of problems can be associated with the cardinality of
D. In one class, D is continuous, dense, and uncountable. In the other class,
D is discrete and countable. The techniques for solving problems in these two
classes are quite different, although techniques for one type can be used as
approximations in the other type.

In this chapter, we will address all of these types of problems, but not with
equal time. We will give most attention to the case of continuous D. The na-
ture of f determines how the problem must be addressed, and this is especially
true in the case of continuous D. If f is linear, the unconstrained problem is
either trivial or ill-posed. If f is linear and the problem is constrained, the
nature of D determines what kinds of algorithms are appropriate. If D is a
convex polytope, for example, the problem is a linear program. The simplex
method, which is a discrete stepping algorithm, is the most common way to
solve linear programming problems. (This method was chosen as one of the
Top 10 algorithms of the twentieth century; see page 138.) Linear programs
arise in a limited number of statistical applications, for example, in linear re-
gression fitting by minimizing either the L1 or the L∞ norm of the residuals.
We will only briefly discuss linear programming in this chapter.

In the more general case of f over a continuous domain, the continuity of
f is probably the most important issue. If f is arbitrarily discontinuous, there
is very little that can be done in a systematic fashion. For general methods in
continuous domains, we will limit our consideration to continuous objective
functions. After continuity, the next obvious issue is the differentiability of
f , and for some methods, we make assumptions about its differentiability.
These assumptions are of two types: about existence, which affects theoretical
properties of optimization methods, and, assuming they exist, about the cost
of computation of derivatives, which affects the choice of method for solving
the problem.

The other broad class of optimization problems are those in which D is
discrete and countable. These are essentially problems in combinatorics. They
must generally be attacked in very different ways from the approaches used
in continuous domains.

Optimization problems over either dense or countable domains may have
more than one solution; that is, there may be more than one point at which
the minimum is attained. In the case of dense domains, the set of optimal
points may even be uncountable. A more common case is one in which within
certain regions of the domain, there is a local optimum, and within another
region, there is another local optimum. We use the terms “global optimum”
to refer to an optimum over the domain D. We use the term “local optimum”
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to refer to an optimum within some region of D. (“Region” is not precisely
defined, and of course, in any event, it must depend on the nature of D.

It is generally difficult for an optimization method to detect the existence
of local optima. In fact, in the case of optimization problems over dense do-
mains, after a given problem is solved, we could always look back over the
iterations and change the given objective function so that it retains its original
continuity and differentiability characteristics and the iterations would pro-
ceed exactly as they did for the given problem, yet the new objective function
is arbitrarily smaller at some point other than the computed solution. We will
not go through the details to prove this, but it should be obvious because we
can stretch any function over the “holes” in a grid and still retain continuity
and differentiability. This fact means that we could never have a computer
algorithm that is guaranteed to determine a global optimum.

Two other issues involve the evaluation of the objective function. The ob-
jective function may be “noisy”; that is, for given x, we may compute or
observe f(x) + ϵ. The noise may be due either to computational approxima-
tions or to the underlying model of the problem we are attempting to solve.
From the standpoint of the mechanical techniques of optimization, the source
of the noise is not relevant. The existence of the noise, however, may have
implications for the organization of the computations in the algorithm. An-
other issue is whether the evaluation of the objective function is easy and
cheap, or difficult and expensive. The cost of evaluating the objective func-
tion may affect the way we arrange the computations within an iteration of
an optimization algorithm.

Another categorization relevant to optimization concerns the nature of the
algorithm, rather than of the problem. An algorithm may involve deterministic
steps, or it may follow random paths. We refer to algorithms of the latter type
as “stochastic algorithms”. They are particularly useful in problems that have
multiple optima, and in combinatorial problems, in which they are used to
sample points in the domain.

Testing for Convergence

On page 129 in Chapter 3, we discussed some of the issues in testing for
convergence in iterative algorithms. As we indicated there, the problem is
difficult and the methods are often necessarily ad hoc.

Convergence tests usually involve comparisons such as (3.12) or (3.14):

∆
(
x(k), x(k−1)

)
≤ ϵ,

or
∆
(
x(k), x(k−1)

)
≤ ϵr

∣∣∣x(k−1)
∣∣∣ .

Other tests may involve change in the function; that is,

∆
(
f
(
x(k)

)
, f
(
x(k−1)

))
≤ ϵ,
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or
∆
(
f
(
x(k), x(k−1)

))
≤ ϵr

∣∣∣f
(
x(k−1)

)∣∣∣ .

These tests are only for algorithmic convergence, of course.
As we discuss algorithms in the following sections, for simplicity, we will

not include the convergence tests in the algorithms themselves. Instead, we
will refer to a logical value of a function “converged(·)” that has an argument
or multiple arguments on which convergence tests are based:

converged(d1, d2, . . .). (6.2)

This logical function may have several built-in tolerance factors and may
employ various tests. For example, if d1 = x(k) and d2 = x(k−1), one test in
converged(d1, d2, . . .) might be based on the comparison

∣∣∣x(k) − x(k−1)
∣∣∣ ≤ ϵ.

In the descriptions of algorithms, we will use the term “converged” to
indicate that some convergence criterion has been satisfied. For example, a
step in an algorithm may contain the phrase

“if converged(d1, d2, . . .)...”

which would mean that the convergence test is based on the current values of
d1, d2, . . .. It does not specify the convergence test, however.

An algorithm should always be defined in such a way that it will termi-
nate. (The formal definition of algorithm requires that it terminate in a finite
number of steps.) This means that an iterative algorithm should always have
a limit on the number of iterations. In the iterative algorithms we describe in
this chapter, we often have a step “Set k = k + 1”, where k is an iteration
counter. At the point at which k is incremented, any program implementing
the algorithm should include a test for the limit on the number of iterations.
Because this test is not included explicitly in the algorithms described in this
chapter, technically whether or not they are “algorithms” depends on the
problems to which they are applied.

When an algorithm terminates because of reaching the limit on the number
of iterations, we say that it did not converge.

6.1 Finding Roots of Equations

We will describe several general methods for solving a system of nonlinear
equations.

For convergence tests in the case of finding roots of an equation, in addition
to measures of changes within the domain of the function, we also often can
use a comparison such as (3.13):
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∣∣∣f(x(k))

∣∣∣ ≤ ϵ,

so in statements of algorithms, we may use the phrase
“if converged

(
d, f(x(k))

)
...”

A program implementing any of these algorithms should be set to termi-
nate if the number of iterations exceeds some fixed number before algorithmic
convergence has occurred. In this case, the program should inform the user
that the algorithm has not converged.

Basic Methods for a Single Equation

We first consider methods for a single equation in a scalar variable. For the
problem of a single equation, there are several methods:

• simple fixed-point method,
• bisection method,
• Newton’s method,
• secant method,
• regula falsi method.

We also introduce and briefly discuss stochastic approximation in the context
of a single equation.

Also for a single equation, we consider the condition of the problem, and
define a condition number for finding a root of an equation.

Each of the methods discussed may be the best for some given problem,
and it is important to understand how these methods work. There are some
specialized methods, such as for finding the roots of a polynomial, but we will
not discuss them.

Consider a scalar-valued function f of a scalar variable x. Our objective
is to find a value of x for which

f(x) = 0. (6.3)

If there is no closed form for the inverse f−1(·), and if f is continuous,
then the solution is effected by an iterative process. As mentioned above,
the iterative process must have a convergence criterion to decide when the
solution is “close enough”, and the number of iterations allowed must also be
bounded.

In the following discussion, we assume f is a continuous function, and that
a solution x0 exists. We will sometimes use x without the subscript. There may
be multiple solutions, of course, and in some cases we may wish to know if there
are multiple solutions, and if so, to find all of them. If f can be factored, we
may reduce the function and continue to find additional roots. That is rarely
the case, so the more common approach is to use different starting points and
hope that the iterative algorithm will converge to a different solution.

We will illustrate various methods using the function



246 6 Solution of Nonlinear Equations and Optimization

f(x) = x3 − 4x2 + 18x − 115, (6.4)

which has a single root at x = 5. (There are special algorithms for roots of
polynomials, but we will not discuss them here.)

Fixed-Point Method

A general type of iteration for problems such as (6.3) is called a fixed-point
method, or fixed-point iteration. In this problem the fixed-point method uses
the fact that at the solution

x0 = f(x0) + x0.

The fixed-point iteration is then

x(k+1)
0 = f

(
x(k)

0

)
+ x(k)

0 , (6.5)

after starting with any value x(0)
0 .

This iterative process can be speeded up by use of Aitken’s∆2-extrapolation
(see page 132), as shown in Algorithm 6.1. Aitken’s extrapolation in this set-
ting is also called Steffensen’s method.

Algorithm 6.1 Steffensen’s Fixed-Point Method to Find a Root of
an Equation

0. Set k = 0, and determine an approximation x(0).
1. Set f1 = f(x(k)) + x(k).
2. Set f2 = f(f1) + f1.
3. Set d = f2 − f1.
4. If converged

(
f2, f1, f(x(k))

)
,

terminate and return the solution as x(k).
5. Set s = (s1 − x(k))/d.
6. Set x(k+1) = f2 + d/(s − 1).
7. Set k = k + 1 and go to step 1.

Notice that the basic iteration formula in Algorithm 6.1 is

x(k+1) = x(k) − f(x(k))
f(x(k)) + f(x(k)) − f(x(k))

. (6.6)

Bisection Method

One of the simplest iterative methods for solving f(x) = 0 is the bisection
method. The method begins with two values that bracket the solution, and
then tightens the interval by halves. We assume that there are values xl, xu,
and x0, with xl < xu and xl ≤ x0 ≤ xu, such that
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f(xl) ≤ 0,

f(xu) ≥ 0,

and
f(x0) = 0.

If f(xl) ≥ 0 and f(xu) ≤ 0, we merely relabel the points. The method is
shown in Algorithm 6.2.

Algorithm 6.2 Bisection to Find a Root of an Equation

0. Set k = 0, and
find an interval [xl, xu] in which a solution lies.

1. Set k = k + 1 and set x(k) = (xu + xl) /2.
2. If sign

(
f
(
x(k)

))
= sign(f(xl)), then

2.a. set xl = x(k);
otherwise

2.b. set xu = x(k).
3. If converged

(
xu, xl, f(x(k))

)
,

terminate and return the solution as x(k).
otherwise,

set k = k + 1 and go to step 1.

As an example, we will now use the bisection method to find a root of
equation (6.4). The steps are shown in Figure 6.1. The interval is successively
halved, first by moving the upper bound down, then moving the lower bound
up, then moving the lower bound up again, and so on. In each step the approx-
imation to the solution x(k)

0 is the midpoint of an interval, and then becomes
an endpoint of the interval in the next step.

The bisection method is very easy to understand and to implement. The
solution always remains within a known interval. After k steps, the length of
that interval is 2−k times its initial length, so the error of the approximation
is of order 2−k. Each iteration gains one more bit of accuracy. Because the
ratios of the lengths of successive intervals is constant, the bisection method
converges linearly. The iterations beginning with those shown in Figure 6.1,
and continuing until 11 digits of accuracy are shown in Table 6.1. The length
of the interval is 7 initially. After 35 steps, it is approximately 7 · 2−35.

The stopping rule in Algorithm 6.2 is based on the length of the interval,
among other things. If one of the stopping rules is xu −xl ≤ ϵ, it is clear that,
beginning with xl and xu, the algorithm terminates after exactly

⌈ log2(xu − xl)/ϵ) ⌉

steps.
The bisection method requires that the function be continuous within the

initial interval. The function need not be differentiable, however.
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Fig. 6.1. Bisection to Find x0, so that f(x0) = 0

Table 6.1. Bisection Iterations

k xl xu k xl xu

0 2.00000000000000 9.00000000000000 18 4.99998855590820 5.00001525878906
1 2.00000000000000 5.50000000000000 19 4.99998855590820 5.00000190734863
2 3.75000000000000 5.50000000000000 20 4.99999523162842 5.00000190734863
3 4.62500000000000 5.50000000000000 21 4.99999856948853 5.00000190734863
4 4.62500000000000 5.06250000000000 22 4.99999856948853 5.00000023841858
5 4.84375000000000 5.06250000000000 23 4.99999940395355 5.00000023841858
6 4.95312500000000 5.06250000000000 24 4.99999982118607 5.00000023841858
7 4.95312500000000 5.00781250000000 25 4.99999982118607 5.00000002980232
8 4.98046875000000 5.00781250000000 26 4.99999992549419 5.00000002980232
9 4.99414062500000 5.00781250000000 27 4.99999997764826 5.00000002980232

10 4.99414062500000 5.00097656250000 28 4.99999997764826 5.00000000372529
11 4.99755859375000 5.00097656250000 29 4.99999999068677 5.00000000372529
12 4.99926757812500 5.00097656250000 30 4.99999999720603 5.00000000372529
13 4.99926757812500 5.00012207031250 31 4.99999999720603 5.00000000046566
14 4.99969482421875 5.00012207031250 32 4.99999999883585 5.00000000046566
15 4.99990844726563 5.00012207031250 33 4.99999999965075 5.00000000046566
16 4.99990844726563 5.00001525878906 34 4.99999999965075 5.00000000005821
17 4.99996185302734 5.00001525878906 35 4.99999999985448 5.00000000005821
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Newton’s Method

Newton’s method for a differential function is based on the first-order Taylor
series of the function about a point near the solution:

f(x) ≈ f
(
x(k)

0

)
+
(
x − x(k)

0

)
f ′
(
x(k)

0

)
. (6.7)

As before, the solution is approached through the iterates, x(k)
0 , x(k+1)

0 , . . ..
The update is obtained by solving the Taylor series approximation

f
(
x(k+1)

0

)
≈ f

(
x(k)

0

)
+
(
x(k+1)

0 − x(k)
0

)
f ′
(
x(k)

0

)
,

in which we assume that
f
(
x(k+1)

0

)
= 0.

If f ′
(
x(k)

0

)
̸= 0, this approximation yields

x(k+1)
0 = x(k)

0 −
f
(
x(k)

0

)

f ′
(
x(k)

0

) . (6.8)

Newton’s method uses the slope of the function at one point to choose the
next point, which is the direction of a smaller value of the function, indicated
by the slope. The method is given in Algorithm 6.3.

Algorithm 6.3 Newton’s Method to Find a Root of an Equation

0. Set k = 0, and determine an approximation x(0).
1. Solve for x(k+1) in

f ′
(
x(k)

)(
x(k+1) − x(k)

)
= −f

(
x(k)

)

that is, set

x(k+1) = x(k) −
f
(
x(k)

)

f ′
(
x(k)

) ,

if f ′
(
x(k)

)−1 exists.
2. If converged

(
x(k+1), x(k), f(x(k+1))

)
,

terminate and return the solution as x(k+1).
otherwise,

set k = k + 1 and go to step 1.

The stopping rule in Algorithm 6.3 is based on the interval between two
successive approximations, just as the stopping rule of the bisection method
is based on the length of the interval. As in the other cases of root finding,∣∣∣f
(
x(k)

0

)∣∣∣ could also be used as a stopping criterion.
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Fig. 6.2. Newton’s Method to Find x0, so that f(x0) = 0

Newton’s method is easy to understand and to implement if the derivative
is available. In Figure 6.2, we show Newton’s method applied to the same func-
tion we used bisection on in Figure 6.1. In the example in Figure 6.2, Newton’s
method proceeds in an orderly fashion toward the zero of the function.

Notice in Figure 6.2 that the derivatives (the slopes) are decreasing, as the
solution is approached from the right side. This could cause some problems
with the method, because the denominator in step 1 of Algorithm 6.3 becomes
small. In our example problem (6.4), the derivative,

f ′(x) = 3x2 − 8x + 18,

is not zero at the solution. (See Exercise 6.6, page 301. The derivative of the
function in Exercise 6.6b is zero at the solution.)

A modification of Newton’s method is to use a numerical approximation
to the derivative:

f ′
(
x(k)

0

)
≈

f
(
x(k)

0 + h
)
− f

(
x(k)

0

)

h
. (6.9)

This is sometimes called the “discrete Newton’s method”. It is also essentially
the same as the secant method discussed below.

Newton’s method can also be speeded up by use of Aitken’s∆2-extrapolation.
In this case, starting with x0, two steps of Newton’s method are use to com-
pute
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x1 = x0 −
f(x0)
f ′(x0)

and
x2 = x1 −

f(x1)
f ′(x1)

,

and then Aitken’s ∆2 process is used to compute

x̃0 = x0 −
(∆x0)2

∆2x0
,

which is continued by setting x0 = x̃0 and repeating the previous steps.
Aitken’s extrapolation in this setting is also called Steffensen’s method.

Convergence or Failure of Newton’s Method

To investigate the convergence of Newton’s method, consider the first-order
Taylor series with remainder, expanded about a point near the solution, x(k)

0 ,
and evaluated at the solution x0:

f(x0) = f
(
x(k)

0

)
+
(
x0 − x(k)

0

)
f ′
(
x(k)

0

)
+

1
2

(
x0 − x(k)

0

)2
f ′′(ξ)

= 0.

Using equation (6.8), we have
(
x0 − x(k+1)

0

)

(
x0 − x(k)

0

)2 =
1
2

f ′′(ξ)

f ′
(
x(k)

0

) .

So, if the limit, as k → ∞, of the ratio on the right exists, the convergence
is quadratic (see page 131). It is clear that if f ′

(
x(k)

0

)
= 0 at any point, the

method may fail.
Even if the derivatives are not zero, however, Newton’s method may di-

verge unless the starting point is sufficiently close to the solution. Two ways
in which Newton’s method can go wrong are illustrated in Figures 6.3 and 6.4.

In both of these examples, the failure of Newton’s method occurs because
the starting point is too far away from the zero. The possibility of this oc-
curring makes the choice of starting value very important. In the bisection
method, we do not have to be concerned about this, so long as we can find
values that bracket the solution.

Secant Method

The secant method is similar to Newton’s method in using the slope to deter-
mine successive points in the iteration. Newton’s method uses the derivative
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Fig. 6.3. Failure of Newton’s Method

or the tangent at a given point, and the secant method uses the slope of the
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Fig. 6.4. Failure of Newton’s Method; Another Example
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function between two given points to choose the next point. The method is
given in Algorithm 6.4.

Algorithm 6.4 Secant Method to Find a Root of an Equation

0. Set k = 1, and determine approximations x(0) and x(1).

1. Set x(k+1) = x(k) −
f
(
x(k)

) (
x(k) − x(k−1)

)

f
(
x(k)

)
− f

(
x(k−1)

) .

2. If converged
(
x(k+1), x(k), f

(
x(k+1)

))
,

terminate and return the solution as x(k+1).
otherwise,

set k = k + 1 and go to step 1.

The intersection of the line between the two points on the function and
the x-axis is taken as the next point at which to evaluate the function, as we
see in Figure 6.5. The choice of x(0)

0 and x(1)
0 is arbitrary, although just as in

Newton’s method, if they are too far away from the solution, the method may
not converge.
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Fig. 6.5. Secant Method to Find x0, so that f(x0) = 0

The two points in the secant method may or may not bracket a root.

Regula Falsi Method

The regula falsi or false position method is similar to the secant method,
except that the two starting points are chosen so as to bracket a solution,
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and as in the bisection method, each successive point is chosen so that it,
together with one of the two previous points, brackets a solution. The method
given in Algorithm 6.5 is a slight modification of the ordinary regula falsi
method, and is sometimes called the “modified” regula falsi method. Because
the “unmodified” regula falsi method (which omits steps 2.a.ii and 2.b.ii in
Algorithm 6.5) should not even be used, we just refer to the method given here
as regula falsi. Algorithm 6.5 is also sometimes called the “Illinois method”.

Algorithm 6.5 Regula Falsi to Find a Root of an Equation

0. Set k = 0;
find an interval [xl, xu] in which a solution lies;
set fl = f(xl);
set fu = f(xu); and
set x(0) = xl.

1. Set x(k+1) = xlfu−xufl

fu−fl
.

2. If flf
(
x(k+1)

)
< 0, then

2.a.i. set xu = x(k+1) and fu = f
(
x(k+1)

)
.

2.a.ii. if f
(
x(k)

)
f
(
x(k+1)

)
> 0, then set fl = fl/2.

Otherwise,
2.b.i. set xl = x(k+1) and fl = f

(
x(k+1)

)
.

2.b.ii. if f
(
x(k)

)
f
(
x(k+1)

)
> 0, then set fu = fu/2.

3. If converged
(
xu, xl, f

(
x(k+1)

))
,

terminate and return the solution as x(k+1).
otherwise,

set k = k + 1 and go to step 1.

The regula falsi method generally converges more slowly than the secant
method, but it is more reliable, because the solution remains bracketed. Fig-
ure 6.6 illustrates two iterations of the method.

Stochastic Approximation

In practical applications we often cannot evaluate f(x) precisely. Instead, we
make observations that are contaminated with random errors or noise. At
x(k)

0 , instead of f
(
x(k)

0

)
, we observe

y(k)
0 = f

(
x(k)

0

)
+ ϵk.

A fixed-point iteration of the form

x(k+1)
0 = x(k)

0 + f̂
(
x(k)

0

)
(6.10)

could be used, where f̂
(
x(k)

0

)
is an estimate of the value of f at x(k)

0 , based

on some observations of y(k)
0 .
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Fig. 6.6. Regula Falsi to Find x0, so that f(x0) = 0

Alternatively, the model of interest may be a random process, and we may
be interested in some function of the random process, f(x). For example, we
may model an observable process by a random variable Y with probability
density function pY (y, x), where x is a parameter of the distribution. We may
be interested in the mean of Y as a function of the parameter x,

f(x) =
∫

y pY (y, x) dy.

If we know pY (y, x) and can perform the integration, the problem of finding a
zero of f(x) (or, more generally, finding x such that the mean, f(x), is some
specified level curve) is similar to the other problems we have discussed. Often
in practice we do not know pY (y, x), but we are able to take observations on Y .
These observations could be used to obtain f̂

(
x(k)

0

)
, and the recursion (6.10)

used to find x.
Each observation on Y is an estimate of f(x), so the recursion (6.10) can

be rather simple. For a sequence of observations on Y ,

y1, y2, . . . ,

we use the recursion
x(k+1)

0 = x(k)
0 + α(k)yk, (6.11)

where α(k) is a decreasing sequence of positive numbers similar to 1/f ′
(
x(k)

0

)

in Newton’s method (6.8), page 249, when the approach is from the left. Use
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of this recursion is called the Robbins-Monro procedure. Convergence in the
Robbins-Monro procedure is stochastic, rather than deterministic, because of
the random variables.

Multiple Roots

It is possible that the function has more than one root, and we may want to
find them all. A common way of addressing this problem is to use different
starting points in the iterative solution process. Plots of the points evaluated
in the iterations may also be useful. In general, if the number of different roots
is unknown, there is no way of finding all of them with any assurance.

Accuracy of the Solution

As with most problems in numerical computations, the accuracy we can ex-
pect in finding the roots of a function varies from problem to problem; some
problems are better conditioned than others. A measure of the condition of
the problem of finding the root x0 can be developed by considering the error
in evaluating f(x) in the vicinity of x0. Suppose a bound on this error is ϵ, so

∣∣∣f̂(x0) − f(x0)
∣∣∣ ≤ ϵ,

or ∣∣∣f̂(x0)
∣∣∣ ≤ ϵ,

where f̂(x0) is the computed value approximating f(x0). Let [xl, xu] be the
largest interval about x0 such that

|f(x)| ≤ ϵ, if x ∈ [xl, xu]. (6.12)

Within this interval, the computed value f̂(x) can be either positive or nega-
tive just due to error in computing the value. A stable algorithm for finding
the root of the function yields a value in the interval, but no higher accuracy
can be expected. If f(x) can be expanded in a Taylor series about x0, we have

f(x) ≈ f(x0) + f ′(x0)(x − x0),

or
f(x) ≈ f ′(x0)(x − x0).

Now applying the bound in (6.12) to the approximation, we have that the
interval is approximately

x0 ± 1
f ′(x0)

ϵ,

if the derivative exists and is nonzero. Therefore, if the derivative exists and
is nonzero, a quantitative measure of the condition of the problem is
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1
f ′(x0)

. (6.13)

This quantity is a condition number of the function f with respect to finding
the root x0. Of course, to know the condition number usually means to know
the solution. Its usefulness in practice is limited to situations where it can
be approximated. In Figure 6.7, we can see the sensitivity of a root-finding
algorithm to the condition number.
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Fig. 6.7. Condition of the Root of f(x) = 0: Two Possibilities

Wilkinson (1959) considered the polynomial

f(x) = (x − 1)(x − 2) · · · (x − 20)

for studying rounding error in determining roots (see page 113). Very small
perturbations in the coefficients of the polynomial lead to very large changes in
the roots; hence, we referred to the problem as ill-conditioned. The derivative
of that function in the vicinity of the roots is very large, so the condition num-
ber defined above in equation (6.13) would not indicate any conditioning prob-
lem. As we pointed out, however, the Wilkinson polynomial is ill-conditioned
for the problem of finding its roots because of the extreme variation in the
magnitude of the coefficients. This kind of situation is common in numerical
analysis. Condition numbers do not always tell an accurate story; they should
be viewed only as indicators, not as true measures of the condition.
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Systems of Equations

If the argument of the function is an m-vector and the function value is an
n-vector, equation (6.3),

f(x) = 0,

represents a system of equations:

f1(x1, x2, . . . , xm) = 0
f2(x1, x2, . . . , xm) = 0

...
...

...
fn(x1, x2, . . . , xm) = 0.

(6.14)

Each of the functions fi is a scalar-valued function of the vector x. Solution
of systems of nonlinear equations can be a significantly more computationally
intensive problem than solution of a single equation.

Whether or not the system of equations (6.14) has a solution is not easy
to determine. A nonlinear system that has a solution is said to be consistent,
just as a consistent linear system. Unfortunately, we cannot write a simple
necessary and sufficient condition as we did for the linear system in equa-
tion (1.46). If n > m, the system may be overdetermined, and it is very likely
that no solution exists. In this case, a criterion, such as least squares, for a
good approximate solution must be chosen. Even if n = m, we do not have
easy ways of determining whether a solution exists, as we have for the linear
system.

There are not as many different methods for solving a system of equations
as those that we discussed for solving a single equation. We will only consider
one approach, Newton’s method, which is similar to the Newton’s method we
have described for a single equation. There are several variations of Newton’s
method. Rather than considering them here, we will defer that discussion to
the applications of Newton’s method to the main problem of interest, that is,
optimization.

Newton’s method requires the derivatives, so we will assume in the follow-
ing that the functions are differentiable.

Newton’s Method to Solve a System of Equations

As we have seen in the previous sections, the solution of nonlinear equations
proceeds iteratively to points ever closer to zero. The derivative or an approx-
imation to the derivative is used to decide which way to move from a given
point. For a scalar-valued function of several variables, say f1(x), we must
consider the slopes in various directions, that is, the gradient ∇f1(x).

In a system of equations such as (6.14), we must consider all of the gradi-
ents; that is, the slopes in various directions of all of the scalar-valued func-
tions. The matrix whose rows are the transposes of the gradients is called the
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Jacobian. We denote the Jacobian of the function f by Jf . The transpose of
the Jacobian, that is, the matrix whose columns are the gradients, is denoted
by ∇f for the vector-valued function f . (Note that the symbol ∇ can denote
either a vector or a matrix, depending on whether the function to which it is
applied is scalar- or vector-valued.) Thus, the Jacobian for the system above
is

Jf =

⎡

⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xm

...
∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xm

⎤

⎥⎥⎥⎥⎥⎥⎦

= (∇f)T. (6.15)

Notice that the Jacobian is a function, so we often specify the point at which
it is evaluated, using the ordinary function notation, Jf (x). Newton’s method
described above for a single equation in one variable can be used to determine
a vector x0 that solves this system, if a solution exists, or to determine that
the system does not have a solution.

For the vector-valued function in the system of equations (6.14), the first-
order Taylor series about a point x(k)

0 is

f(x) ≈ f
(
x(k)

0

)
+ Jf

(
x(k)

0

)(
x − x(k)

0

)
.

This first-order Taylor series is the basis for Newton’s method, shown in Al-
gorithm 6.6.

Algorithm 6.6 Newton’s Method to Solve a System of Equations
(Compare with Algorithm 6.3, page 249.)

0. Set k = 0, and determine an approximation x(k).
1. Solve for x(k+1) in

Jf

(
x(k)

)(
x(k+1) − x(k)

)
= f

(
x(k)

)
.

2. If converged
(
x(k+1) − x(k), f(x(k+1))

)
,

terminate and return the solution as x(k+1).
otherwise,

set k = k + 1 and go to step 1.

Note the similarity of this method to Algorithm 6.3, Newton’s method to find
the root for a single equation. In Algorithm 6.6, however, the convergence
criterion would be based on ∥x(k+1) − x(k)∥, for some appropriate norm.

Notice in general that m and n are not equal, and the system in step 1
is n equations in m unknowns. If, however, m = n, and the Jacobian is
nonsingular, the solution in step 1 is
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x(k+1)
0 = x(k)

0 −
(
Jf

(
x(k)

0

))−1
f
(
x(k)

0

)
. (6.16)

It is important to remember that this expression does not imply that the Ja-
cobian matrix should be inverted. Linear systems are not solved that way (see
Sections 5.2 through 5.4.) Expressions involving the inverse of a matrix pro-
vide a compact representation, and so we often write equations such as (6.16).

Sometimes, just as the approximate derivative in equation (6.9) may be
used for the single equation, the Jacobian is replaced by a finite-difference
approximation,

(
∂fi

∂xj

)
≈
(

fi(x1, x2, . . . , xj + h, . . . xm) − fi(x1, x2, . . . , xj , . . . xm)
h

)
,

(6.17)
for h > 0. Use of this approximation in place of the Jacobian is called the
“discrete Newton’s method”. This, of course, doubles the number of function
evaluations per iteration, but it does avoid the computation of the derivatives.

The number of computations in Newton’s method may be reduced by
assuming that the Jacobian (or the discrete approximation) does not change
much from one iteration to the next. A value of the Jacobian may be used in
a few subsequent iterations.

The number of computations can also be reduced if the Jacobian has a
special structure, as is often the case in important applications, such as in
solving systems of differential equations. It may be sparse or banded. In these
cases, use of algorithms that take advantage of the special structure will reduce
the computations significantly.

Other ways of reducing the computations in Newton’s method use an es-
timate of the derivative that is updated within each iteration. This kind of
method is called quasi-Newton. We will discuss quasi-Newton methods for
optimization problems beginning on page 269. The ideas are the same.

The generalization of the condition number in equation (6.13) for a single
equation is

κ (Jf (x0)) , (6.18)

for a matrix condition number κ for solving a linear system, as discussed
beginning on page 207. The quantity in equation (6.18) is a condition number
of the function f with respect to finding the root x0.

If the ranges of the variables in a nonlinear system are quite different,
the solution may not be very accurate. This is similar to the artificial ill-
conditioning discussed on page 208. The accuracy can often be improved con-
siderably by scaling the variables and the function values so that they all have
approximately the same range. Scaling of a variable xi is just a multiplicative
transformation: yi = σxi. Of course, the ranges of the values of the variables
may not be known in advance, so it may be necessary to do some preliminary
computations in order to do any kind of useful scaling.
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6.2 Unconstrained Descent Methods in Dense Domains

We now return to the optimization problem (6.1). We denote a solution as
x∗; that is,

x∗ = arg min
x∈D

f(x), (6.19)

where x is an m-vector and f is a continuous real scalar-valued function.
In this section, we assume f(x) is defined over IRm and D = IRm; that is,

it is a continuous, unconstrained optimization problem.
In this section we also generally assume the function is differentiable in all

variables, and we often assume it is twice differentiable in all variables.
For a convex function f of a scalar variable, if its first derivative exists,

the derivative is nondecreasing. If its second derivative f ′′ exists, then

f ′′(x) ≥ 0 for all x. (6.20)

Strict convexity implies that the second derivative is positive. Likewise, the
second derivative of a concave function is nonpositive, and it is negative if the
function is strictly concave.

If f is convex, −f is concave. A concave function is sometimes said to be
“concave down”, and a convex function is said to be “concave up”.

For a differentiable function of a vector argument, the vector of partial
derivatives provides information about the local shape of the function. This
vector of derivatives is called the gradient, and is denoted by ∇f(x):

∇f(x) =
(
∂f(x)
∂x1

,
∂f(x)
∂x2

, · · · ,
∂f(x)
∂xm

)
. (6.21)

(We often write a vector in the horizontal notation as in the equation above,
but whenever we perform multiplication operations on vectors or subsetting
operations on matrices, we consider a vector to be a column vector; that is,
it behaves in many ways as a matrix with one column.)

For a convex function f of a vector variable, if its gradient exists, it is
nondecreasing in each of its elements.

As in the scalar case, if a function f of a vector argument is twice-
differentiable, more information about a stationary point can be obtained
from the second derivatives, which are organized into a matrix, called the
Hessian, denoted by Hf , and defined as

Hf = ∇
(
∇f(x)

)

= ∇2f(x)

=
(
∂2f(x)
∂xi∂xj

)
(6.22)

=
∂2f(x)
∂x∂xT

.



262 6 Solution of Nonlinear Equations and Optimization

Notice that the Hessian is a function, so we often specify the point at which it
is evaluated in the ordinary function notation, Hf (x). The symbol ∇2f(x) is
also sometimes used to denote the Hessian, but because ∇2f(x) is often used
to denote the Laplacian (which yields the diagonal of the Hessian), we will
use Hf (x) to denote the Hessian.

For a convex function of a vector variable, if the Hessian exists, it is positive
semidefinite, and the converse holds. Strict convexity implies that the Hessian
is positive definite. This is analogous to the condition in inequality (6.20).
These conditions are also sufficient.

Sometimes, rather than using the exact derivatives it is more efficient to use
approximations such as finite differences. If the function is not differentiable,
but is “well-behaved”, the methods based on finite differences often also allow
us to determine the optimum.

For the time being we will consider the problem of unconstrained opti-
mization. The methods we describe are the basic ones whether constraints
are present or not.

Solution of an optimization problem is usually an iterative process, moving
from one point on the function to another. The basic things to determine are

• direction or path, p, in which to step and
• how far to step. (The step length is α∥p∥, for the scalar α.)

Direction of Search

For a differentiable function, from any given point, an obvious direction to
move is the negative gradient, or a direction that has an acute angle with the
negative gradient. We call a vector p such that

pT∇f(x) < 0

a descent direction at the point x. For a function of a single variable, this
direction of course is just the sign of the derivative of f at x.

If ∇f(x) ̸= 0, we can express p as

Rp = −∇f(x), (6.23)

for some positive definite matrix R. A particular choice of R determines the
direction. A method that determines the direction in this manner is called a
“gradient method”.

Numerical computations for quantities such as pT∇f(x) that may be close
to zero must be performed with some care. We sometimes impose the require-
ment

pT∇f(x) < −ϵ,

for some positive number ϵ, so as to avoid possible numerical problems for
quantities too close to zero.



6.2 Unconstrained Descent Methods in Dense Domains 263

Once a direction is chosen, the best step is the longest one for which the
function continues to decrease.

These heuristic principles of choosing a “good” direction and a “long” step
guide our algorithms, but we must be careful in applying the principles.

Line Searches

Although the first thing we must do is to choose a descent direction, in this
section we consider the problem of choosing the length of a step in a direction
that has already been chosen. In subsequent sections we return to the problem
of choosing the direction.

We assume the direction chosen is a descent direction. The problem of
finding a minimum in a given direction is similar to, but more complicated
than, the problem of finding a zero of a function that we discussed in Sec-
tion 6.1. In finding a root of a continuous function of a single scalar variable,
two values can define an interval in which a root must lie. Three values are
necessary to identify an interval containing a local minimum. Nearby points
in a descent direction form a decreasing sequence, and any point with a larger
value defines an interval containing a local minimum.

After a direction of movement p(k) from a point x(k) is determined, a new
point, x(k+1), is chosen in that direction:

x(k+1) = x(k) + α(k)p(k), (6.24)

where α(k) is a positive scalar, called the step length factor. (The step length
itself is ∥α(k)p(k)∥.)

Obviously, in order for the recursion (6.24) to converge, α(k) must approach
0. A sequence of α(k) that converges to 0, even in descent directions, clearly
does not guarantee that the sequence x(k) will converge to x∗, however. This
is easily seen in the case of the function of the scalar x,

f(x) = x2,

starting with x(0) = 3 and α(0) = 1, proceeding in the descent direction
−x, and updating the step length factor as α(k+1) = 1

2α
(k). The step lengths

clearly converge to 0, and while the sequence x(k) goes in the correct direction,
it converges to 1, not to the point of the minimum of f , x∗ = 0.

Choice of the “best” α(k) is an optimization problem in one variable:

min
α(k)

f
(
x(k) + α(k)p(k)

)
, (6.25)

for fixed x(k) and p(k). An issue in solving the original minimization problem
for f(x) is how to allocate the effort between determining a good p(k) and
choosing a good α(k). Rather than solving the minimization problem to find
the best value of α(k) for the kth direction, it may be better to get a reasonable
approximation, and move on to choose another direction from the new point.
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One approach to choosing a good value of α(k) is to use a simple approxi-
mation to the one-dimensional function we are trying to minimize:

ρ(α) = f
(
x(k) + αp(k)

)
.

A useful approximation is a second- or third-degree polynomial that interpo-
lates ρ(α) at three or four nearby points. The minimum of the polynomial can
be found easily, and the point of the minimum may be a good choice for α(k).

A simpler approach, assuming ρ(α) is unimodal over some positive interval,
say [αl,αu], is just to perform a direct search along the path p(k). A bisection
method or some other simple method for finding a zero of a function as we
discussed in Section 6.1 could be modified and used.

Another approach for developing a direct search method is to choose two
points α1 and α2 in [αl,αu], with α1 < α2, and then, based on the function
values of ρ, to replace the interval I = [αl,αu] with either Il = [αl,α2] or
Iu = [α1,αu]. In the absence of any additional information about ρ, we choose
the points α1 and α2 symmetrically, in such a way that the lengths of both Il

and Iu are the same proportion, say τ , of the length of the original interval
I . This leads to τ2 = 1− τ , the golden ratio. The search using this method of
reduction is called the golden section search, and is given in Algorithm 6.7.

Algorithm 6.7 Golden Section Search

0. Set τ =
(√

5 − 1
)
/2 (the golden ratio).

Set α1 = αl + (1 − τ)(αu − αl) and set α2 = αl + τ(αu − αl).
Set ρ1 = ρ(α1) and ρ2 = ρ(α2).

1. If ρ1 > ρ2,
1.a. set αl = α1,

set α1 = α2,
set α2 = αl + τ(αu − αl),
set ρ1 = ρ2, and
set ρ2 = ρ(α2);

otherwise,
1.b. set αu = α2,

set α2 = α1,
set α1 = αl + (1 − τ)(αu − αl),
set ρ2 = ρ1, and
set ρ1 = ρ(α1).

2. If converged(αu,αl),
terminate and return the solution as α1;

otherwise,
go to step 1.

The golden section search is robust, but it is only linearly convergent, like
the bisection method of Algorithm 6.2. (This statement about convergence
applies just to this one-dimensional search, which is a subproblem in our
optimization problem of interest.)
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Another criterion for a direct search is to require

f
(
x(k) + α(k)p(k)

)
≤ f

(
x(k)

)
+ τα(k)

(
p(k)

)T∇f
(
x(k)

)
, (6.26)

for some τ in
(
0, 1

2

)
. This criterion is called the sufficient decrease condition,

and the approach is called the Goldstein-Armijo method after two early inves-
tigators of the technique. After choosing τ , the usual procedure is to choose
α as the largest value in 1, 1

2 , 1
4 , 1

8 , . . . that satisfies the inequality.
If the step length is not too long, the descent at x(k) in the given direction

will be greater than the descent in that direction at x(k) +α(k)p(k). This leads
to the so-called curvature condition:

∣∣∣
(
p(k)

)T∇f
(
x(k) + α(k)p(k)

)∣∣∣ ≤ η
∣∣∣
(
p(k)

)T∇f
(
x(k)

)∣∣∣, (6.27)

for some η in (0, 1).

Steepest Descent

We now turn to the problem of choosing a descent direction. Most methods
we will consider are gradient methods, that is, they satisfy (6.23):

Rp = −∇f(x),

From a given point x(k), the function f decreases most rapidly in the
direction of the negative gradient, −∇f

(
x(k)

)
. A greedy algorithm uses this

steepest descent direction; that is,

p(k) = −∇f
(
x(k)

)
, (6.28)

and so the update in equation (6.24) is

x(k+1) = x(k) − α(k)∇f
(
x(k)

)
.

The step length factor α(k) is chosen by a line search method described be-
ginning on page 263.

The steepest descent method is robust so long as the gradient is not zero.
The method, however, is likely to change directions often, and the zigzag
approach to the minimum may be quite slow (see Exercise 6.10a). For a func-
tion with circular contours, steepest descent proceeds quickly to the solution.
For a function whose contours are ellipses, as the function in Exercise 6.10
(page 302), for example, the steepest descent steps will zigzag toward the so-
lution. A matrix other than the identity may deform the elliptical contours
so they are more circular. In Newton’s method discussed next, we choose the
Hessian as that matrix.



266 6 Solution of Nonlinear Equations and Optimization

Newton’s Method for Unconstrained Optimization

To find the minimum of the scalar-valued function f(x), under the assump-
tions that f is convex and twice differentiable, we can seek the zero of ∇f(x)
in the same way that we find a zero of a vector-valued function using the
iteration in equation (6.16), page 260. We begin by forming a first-order Tay-
lor series expansion of ∇f(x), which is the second-order expansion of f(x).
In place of a vector-valued function we have the gradient of the scalar-valued
function, and in place of a Jacobian, we have the Hessian Hf , which is the
Jacobian of the gradient.

This first-order Taylor series expansion of ∇f is equivalent to a second-
order Taylor series expansion of f . Setting the gradient to zero, we obtain an
iteration similar to equation (6.16):

x(k+1) = x(k) −
(
Hf

(
x(k)

))−1
∇f
(
x(k)

)
. (6.29)

Use of this recursive iteration is Newton’s method. The method is also often
called the Newton-Raphson method. (Joseph Raphson, was a late seventeenth
century English mathematician, who developed this same iteration, unaware
that Newton had used the same method several years earlier.)

In one dimension, the Newton recursion is just

x(k+1) = x(k) −
∇f
(
x(k)

)

∇2f
(
x(k)

)

= x(k) −
f ′
(
x(k)

)

f ′′
(
x(k)

) .

The second-order Taylor series approximation to f about the point x∗,

f(x) ≈ f(x∗) + (x − x∗)T∇f(x∗) +
1
2
(x − x∗)THf (x∗)(x − x∗), (6.30)

is exact if f is a quadratic function. In that case, Hf is positive definite,
and the terms in equation (6.29) exist and yield the solution immediately.
When f is not quadratic, but is sufficiently regular, we can build a sequence
of approximations by quadratic expansions of f about approximate solutions.
This means, however, that the Hessian may not be positive definite and its
inverse in (6.29) may not exist.

Once more, it is important to state that we do not necessarily compute
each term in an expression.

The form of a mathematical expression and the way the expression
should be evaluated in actual practice may be quite different.

We choose mathematical expressions for their understandability; we choose
computational method for their robustness, accuracy, and efficiency. Just as
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we commented on page 260 concerning inversion of the Jacobian, we comment
here that we do not compute the Hessian and then compute its inverse, just
because that appears in equation (6.29). We solve the linear systems

Hf

(
x(k)

)
p(k) = −∇f

(
x(k)

)
(6.31)

by more efficient methods such as Cholesky factorizations. Once we have the
solution to equation (6.31), equation (6.29) becomes

x(k+1) = x(k) + p(k). (6.32)

Newton’s method, by scaling the path by the Hessian, is more likely to
point the path in the direction of a local minimum, whereas the steepest
descent method, in ignoring the second derivative, follows a path along the
gradient that does not take into account the rate of change of the gradient.
This is illustrated in Figure 6.8.

steepest
descentNewton

Fig. 6.8. Steepest Descent and Newton Steps

For functions that are close to a quadratic within a region close to the
minimum, Newton’s method can be very effective so long as the iterations
begin close enough to the solution. In other cases Newton’s method may be
unreliable. The problems may be similar to those illustrated in Figures 6.3
and 6.4 (page 252) for finding a root.

One way of increasing the reliability of Newton’s method is to use a
damped version of the update (6.32),
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x(k+1) = x(k) + α(k)p(k),

for which a line search is used to determine an appropriate step length factor
α(k).

When the function is not quadratic, the Hessian may not be positive defi-
nite, and so a modified Cholesky factorization may be used. In this approach,
positive quantities are added as necessary during the decomposition of the
Hessian. This changes the linear system (6.31) to the system

(
Hf

(
x(k)

)
+ D(k)

)
p(k) = −∇f

(
x(k)

)
, (6.33)

where D(k) is a diagonal matrix with nonnegative elements.
Another method of increasing the reliability of Newton’s method is to

restrict the movements to regions where the second-order Taylor expan-
sion (6.30) is a good approximation. This region is called a “trust region”.
At the kth iteration, the second-order Taylor series approximation provides a
scaled quadratic model q(k):

q(k)(s) = f
(
x(k)
∗
)

+ sT∇f
(
x(k)
∗
)

+
1
2
sTHf

(
x(k)
∗
)
s, (6.34)

where s = x − x(k)
∗ .

When the Hessian is indefinite, q(k) is unbounded below, so it is obviously
not a good model of f

(
x(k)
∗ + s

)
if s is large. We therefore restrict ∥s∥, or

better, we restrict ∥D(k)s∥ for some scaling matrix D(k). For some τ (k), we
require

∥D(k)s∥ < τ (k), (6.35)

and we choose s(k) as the point where the quadratic q(k) achieves its minimum
subject to this restriction. How much we should restrict s depends on how
good the quadratic approximation is. If

f
(
x(k)
∗
)
− f

(
x(k)
∗ + s(k)

)

f
(
x(k)
∗
)
− q(k)

(
s(k)

)

is close to 1, that is, if the approximation is good, we increase τ (k); if it is
small or negative, we decrease τ (k). Implementation of these methods requires
some rather arbitrary choices of algorithm parameters.

Accuracy of Optimization Using Gradient Methods

The problem of finding a minimum of a function is somewhat more difficult
than that of finding a zero of a function discussed in Section 6.1. Our intuition
should tell us this is the case. In one dimension, a zero of a function can be
determined by successively bracketing a zero with two points. An interval
containing a minimum of a function requires three points to determine it.
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Another way of comparing the accuracy of the solution of a nonlinear
equation and the determination of the minimum of such an equation is to
consider the Taylor expansion:

f(x) = f(x̃) + (x − x̃)f ′(x̃) +
1
2
(x − x̃)2f ′′(x̃) + · · · .

In the problem of finding a zero x0, f ′(x0) is generally nonzero, and for x̃
close to x0, (f(x)− f(x̃)) is approximately proportional to (x− x̃), where the
constant of proportionality is f ′(x̃). A small value of the difference (x − x̃)
results in a proportionate difference (f(x)− f(x̃)). On the other hand, in the
problem of finding the minimum x∗, f ′(x∗) is zero, and for x̃ close to x∗,
(f(x) − f(x̃)) is approximately proportional to (x − x̃)2, where the constant
of proportionality is f ′′(x̃). A small value of the difference (x − x̃) results in
a smaller difference (f(x) − f(x̃)). In finding roots of an equation we may
set a convergence criterion proportional to the machine epsilon, ϵmach. In
optimization problems, we often set a convergence criterion proportional to√
ϵmach.

Quasi-Newton Methods

All gradient descent methods determine the path of the step by the system of
equations,

R(k)p(k) = −∇f
(
x(k)

)
. (6.36)

The difference in the methods is the matrix R(k).
The steepest descent method chooses R(k) as the identity, I , in these equa-

tions. As we have seen, for functions with eccentric contours, the steepest
descent method traverses a zigzag path to the minimum. Newton’s method
chooses R(k) as the Hessian, Hf

(
x(k)
∗
)
, which results in a more direct path

to the minimum. Aside from the issues of consistency of the resulting equa-
tion (6.33) and the general problems of reliability, a major disadvantage of
Newton’s method is the computational burden of computing the Hessian,
which is O(m2) function evaluations, and solving the system, which is O(m3)
arithmetic operations, at each iteration.

Instead of using the Hessian at each iteration, we may use an approxima-
tion, B(k). We may choose approximations that are simpler to update and/or
that allow the equations for the step to be solved more easily. Methods us-
ing such approximations are called quasi-Newton methods or variable metric
methods.

Because

Hf

(
x(k+1)

)(
x(k+1) − x(k)

)
≈ ∇f

(
x(k+1)

)
−∇f

(
x(k)

)
,

we choose B(k+1) so that

B(k+1)
(
x(k+1) − x(k)

)
= ∇f

(
x(k+1)

)
−∇f

(
x(k)

)
. (6.37)
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This is called the secant condition. (Note the similarity to the secant method
for finding a zero discussed in Section 6.1.)

We express the secant condition as

B(k+1)s(k) = y(k), (6.38)

where
s(k) = x(k+1) − x(k)

and
y(k) = ∇f(x(k+1)) −∇f(x(k)).

The system of equations in (6.38) does not fully determine B(k) of course.
Because B(k) is approximating Hf (x(k)), we may want to require that it be
symmetric and positive definite.

The most common approach in quasi-Newton methods is first to choose
a reasonable starting matrix B(0) and then to choose subsequent matrices by
additive updates,

B(k+1) = B(k) + B(k)
a ,

subject to preservation of symmetry and positive definiteness.

The general steps in a quasi-Newton method are

0. Set k = 0 and choose x(k) and B(k).
1. Compute s(k) as α(k)p(k), where

B(k)p(k) = −∇f(x(k)).
2. Compute x(k+1) and ∇f(x(k+1)).
3. Check for convergence and stop if converged.
4. Compute B(k+1).
5. Set k = k + 1, and go to 1.

Within these general steps there are two kinds of choices to be made: the
way to update the approximation B(k), and, as usual, the choice of the step
length factor α(k).

There are several choices for the update B(k)
a that preserve symmetry and

positive definiteness (or at least nonnegative definiteness). One simple choice
is the rank-one symmetric matrix

B(k)
a =

1
(y(k) − B(k)s(k))Ts(k)

(y(k) − B(k)s(k)) (y(k) − B(k)s(k))T. (6.39)

This update results in a symmetric matrix that satisfies the secant condition
no matter what the previous matrix B(k) is. (You are asked to do the simple
algebra to show this in Exercise 6.11.) If B(k) is positive definite, this update
results in a positive definite matrix B(k+1) so long as c(k) ≤ 0, where c(k) is
the denominator:

c(k) = (y(k) − B(k)s(k))Ts(k).
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Even if c(k) > 0, positive definiteness can be preserved by shrinking c(k) to
c̃(k) so that

c̃(k) <
1

(y(k) − B(k)s(k))T (B(k))(−1) (y(k) − B(k)s(k))
.

Although this adjustment is not as difficult as it might appear, the computa-
tions to preserve positive definiteness and, in general, good condition of the
B(k) account for a major part of the effort in quasi-Newton methods.

Other, more common choices for B(k)
a are the rank-two Broyden updates

of the form

B(k)
a = − 1

(s(k))TB(k)s(k)
B(k)s(k)(B(k)s(k))T

+
1

(y(k))Ts(k)
y(k)(y(k))T (6.40)

+σ(k)
(
(s(k))TB(k)s(k)

)
v(k)

(
v(k)

)T
,

where σ(k) is a scalar in [0, 1], and

v(k) =
1

(y(k))Ts(k)
y(k) − 1

(s(k))T
B(k)s(k)B(k)s(k).

Letting σ(k) = 0 in (6.40) yields the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update, which is one of the most widely used methods. If σ(k) = 1,
the method is called the Davidon-Fletcher-Powell (DFP) method.

The Broyden updates will preserve the positive definiteness of B(k) so long
as

(y(k))Ts(k) > 0.

This is the curvature condition (see (6.27) on page 265). If the curvature
condition is not satisfied, s(k) could be scaled so as to satisfy this inequality.
(Scaling s(k) of course changes y(k) also.) Alternatively, the update of B(k)

can just be skipped, and the updated step is determined using the previous
value, B(k). This method is obviously quicker, but it is not as reliable.

Inspection of either the rank-one updates (6.39) or the rank-two up-
dates (6.40) reveals that the number of computations is O(m2). If the up-
dates are done to the inverses of the B(k)’s or to their Cholesky factors, the
computations required for the updated directions are just matrix-vector mul-
tiplications and hence can also be computed in O(m2) computations.

It is easily seen that the updates can be done to the inverses of the B(k)’s
using the Sherman-Morrison formula (equation (5.50) on page 227) for rank-
one updates, or the Woodbury formula (equation (5.52)) for more general
updates. Using the Woodbury formula, the BFGS update, for example, results
in the recursion,
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(
B(k+1)

)−1
=
(
I − 1

(y(k))Ts(k) s
(k)(y(k))T

)(
B(k)

)−1 (
I − 1

(y(k))Ts(k) s
(k)(y(k))T

)

+ 1
(y(k))Ts(k) s

(k)(y(k))T.

(6.41)
The best way of doing the inverse updates is to perform them on the Cholesky
factors instead of on the inverses. The expression above for updating the
inverse shows that this can be done.

Another important property of the quasi-Newton methods is that they
can be performed without explicitly storing the B(k)’s, which could be quite
large in large-scale optimization problems. The storage required in addition
to that for B(k) is for the vectors s(k) and y(k). If B(k) is a diagonal matrix,
the total storage is O(m). In computing the update at the (k + 1)th itera-
tion, limited-memory quasi-Newton methods assume that B(k−j) is diagonal
at some previous iteration. The update for the (k +1)th iteration can be com-
puted by vector-vector operations beginning back at the (k − j)th iteration.
In practice, diagonality is assumed at the fourth or fifth previous iteration;
that is, j is taken as 4 or 5.

Quasi-Newton methods are available in most of the widely-used math-
ematical software packages. Broyden updates are the most commonly used
in these packages, and of the Broyden updates, BFGS is probably the most
popular. Some empirical results indicate, however, that the simple rank-one
update (6.39) is often an adequate method.

Truncated Newton Methods

Another way of reducing the computational burden in Newton-type methods
is to approximate the solution of the path direction

R(k)p(k) = −∇f
(
x(k)

)
,

where R(k) is either the Hessian, as in Newton’s method, or an approximation,
as in a quasi-Newton method. In a truncated Newton method, instead of solving
for p(k), we get an approximate solution using only a few steps of an iterative
linear equation solver, such as the conjugate gradient method. The conjugate
gradient method is particularly suitable because it uses only matrix-vector
products, so the matrix R(k) need not be stored. This can be very important
in large-scale optimization problems that involve a large number of decision
variables. How far to continue the iterations in the solution of the linear system
is a major issue in tuning a truncated Newton method.

Nelder-Mead Simplex Method

The Nelder-Mead simplex method (Nelder and Mead, 1965) is a derivative-
free, direct search method. The steps are chosen so as to ensure a local descent,
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but neither the gradient nor an approximation to it is used. In this method,
to find the minimum of a function, f , of m variables, a set of m + 1 extreme
points (a simplex) is chosen to start with, and iterations proceed by replacing
the point that has the largest value of the function with a point that has a
smaller value. This yields a new simplex, and the procedure continues. The
method is given in Algorithm 6.8 and illustrated for a bivariate function in
Figure 6.9.

Algorithm 6.8 Nelder-Mead Simplex Method

0. Set tuning factors: reflection coefficient, α > 0; expansion factor, γ > 1;
contraction factor, 0 < β < 1; and shrinkage factor, 0 < δ < 1.
Choose an initial simplex, that is, m + 1 extreme points (points on the
vertices of a convex hull).

1. Evaluate f at each point in the current simplex, obtaining the values

f1 ≤ f2 ≤ · · · ≤ fm ≤ fm+1.

Label the points correspondingly, that is, let xm+1 correspond to fm+1,
and so on.

2. Reflect the worst point: let xr = (1 + α)xa − αxm+1, where xa =∑m
i=1 xi/m, and let fr = f(xr).

3. If f1 ≤ fr ≤ fm, accept reflection: replace xm+1 by xr, and go to step 6.
4. If fr < f1, compute expansion: xe = γxr + (1 − γ)xa.

If f(xe) < f1,
4.a. accept expansion: replace xm+1 by xa;

otherwise,
4.b. replace xm+1 by xr.

Go to step 6.
5. If fm < fr < fm+1, let fh = fr; otherwise, let fh = fm+1. Let xh be the

corresponding point. Compute contraction: xc = βxh + (1 − β)xa.
If f(xc) ≤ f(xh),

5.a. accept contraction: replace xm+1 by xc;
otherwise,

5.b. shrink simplex: for i = 2, 3, . . . , m + 1, replace xi by

δxi + (1 − δ)x1.

6. If convergence has not occurred (see below) or if a preset limit on the
number of iterations has not been exceeded, go to step 1;
otherwise, return the solution as x1.

There are three common ways of assessing convergence of the Nelder-Mead
algorithm. All three, or variations of them, may be used together.

• The amount of variation in the function values at the simplex points. This
is measured by the sample variance,
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s2
f =

1
m + 1

∑
(fi − f̄)2,

where f̄ is the sample mean of f1, f2, . . . , fm+1. Convergence is declared
if s2

f < ϵ. This stopping criterion can lead to premature convergence, just
because the simplex points happen to lie close to the same level curve of
the function.

• The total of the norms of the differences in the points in the new simplex
and those in the previous simplex. (In any iteration except shrinkage, there
is only one point that is replaced.) This is one of several possible stopping
criteria.

• The size of the simplex, as measured by

max ∥xi − x1∥
max(1, ∥x1∥)

.

The iterations are terminated when this measure is sufficiently small.

Figure 6.9 illustrates one iteration of the algorithm in a two-dimensional
problem. In two dimensions, the iterations are those of a triangle tumbling
downhill vertex over edge and deforming itself as it goes.

x3

x2

x1

xm

x r

Fig. 6.9. One Nelder-Mead Iteration (In this step, x2 becomes x3; x1 becomes x2;
and xr becomes x1.)

Although the Nelder-Mead algorithm may be slow to converge, it is a very
useful method for several reasons. The computations in any iteration of the
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algorithm are not extensive. No derivatives are needed; in fact, not even the
function values themselves are needed, only their relative values. The method
is therefore well-suited to noisy functions; that is functions that cannot be
evaluated exactly.

There have been many suggestions for improving the Nelder-Mead method.
Most have concentrated on the stopping criteria or the tuning parameters. The
various tuning parameters allow considerable flexibility, but there are no good
general guidelines for their selection.

It is a simple matter to introduce randomness in the decisions made at
various points in the Nelder-Mead algorithm, similar to what we do in sto-
chastic methods, such as simulated annealing, which we discuss beginning on
page 277. This may be useful for finding the global optimum of a function
with many local optima. If some decisions are made randomly, however, the
convergence criteria must be modified to reflect the fact that the iterations
may no longer be strictly descending.

6.3 Unconstrained Combinatorial and Stochastic
Optimization

If the objective function is differentiable and the derivatives are available,
methods described in the previous section that make use of the gradient and
Hessian or simple approximations to the gradient and Hessian are usually the
most effective ones. Even if the derivatives are not available or do not exist
everywhere for a continuous objective function, methods that use approxima-
tions to gradients are usually best.

If the objective function is not differentiable, or if it is very rough, some
kind of direct search for the optimum may be necessary. In some cases the
objective function is noisy, perhaps with an additive random error term that
prevents exact evaluation. In these cases also it may not be effective to use
gradient or approximate-gradient methods.

Another important type of optimization problem is one in which the de-
cision variables are discrete. The solution may be a configuration of a finite
set of points, that is, a graph. In the traveling salesperson problem, for exam-
ple, we seek a configuration of cities that provides a path with minimal total
length that visits each point in a set. In the vehicle routing problem, a fleet
of vehicles stationed at a depot must make deliveries to a set of cities, and
it is desired to route them so as to minimize the time required to make all
the deliveries. In a resource scheduling problem, a set of machines or workers
are to be assigned to a set of tasks, so as to minimize the time required to
complete all the tasks, or so as to minimize idle time of the resources. These
kinds of problems are examples of combinatorial optimization.

In combinatorial optimization problems it is often more natural to re-
fer to the points in the domain as “states”. The objective is to minimize a
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scalar-valued function of the states, f(s). We will use “point” and “state”
interchangeably in the following.

Although the state space is countable, it is often extremely large, and so
we must use stochastic methods that do not consider every point in the space.

Search Methods

Direct search methods move from point to point using only the values of
the function; they do not use derivative information, or approximations to
derivatives. In some methods new points are chosen randomly, and then the
decision to move to a new point is based on the relative values of the function
at the old and new points. A tree or other graph of points may help to organize
the points to visit in the search. There are several variations of direct searches.
Some search methods use heuristics that mimic certain natural systems.

Sometimes, based on points that have already been evaluated, sets of other
points can be ruled out. In tree-based search methods, such fathoming or
branch-and-bound techniques may greatly enhance the overall efficiency of the
search. “Tabu” methods keep lists of points that are not likely to lead to an
optimum.

If the state space is relatively small, or if good fathoming or branch-and-
bound techniques are available, it may be possible to do an exhaustive search;
that is, a search in which every point in the state space is considered, either
explicitly or implicitly. In other cases, a random selection scheme may be used
that initially gives every point in the state space a positive probability of being
considered. At the end of the iterations, however, not all points in the space
may have been considered.

In all direct search methods the new points are accepted or rejected based
on the objective function values. Some search methods allow iterations that
do not monotonically decrease the objective function values. These methods
are especially useful when there are local minima.

In these iterations, if the new point is better, then it is used for picking a
point in the next iteration.

If the new point is not better, there are three possible actions:

• discard the point and find another one to consider
• accept the new point anyway
• declare the search to have converged

Random decisions may be made in two places in this general scheme. First,
the new point may be chosen randomly. Of course, this does not necessarily
mean with uniform probability. Any knowledge of the state space, or any infor-
mation from previous iterations may be used to put a probability distribution
on the state space.

Secondly, if the new candidate point is not better than the current point
the decision to accept it may be made randomly. The probability distribution
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is Bernoulli and its parameter (probability of accepting) may depend on how
much worse the candidate point is, and on the current count of iterations.

Convergence

In the methods for optimization of continuous functions over dense domains,
the convergence criteria are based on interval lengths, which may be used in
a norm, as indicated by our discussion of the “converged(d1, d2, . . .)” function
on page 244. If termination of the algorithm occurs due to an excessive number
of iterations, we declare that the algorithm had not converged.

In many cases in which the domain is discrete, there are no reasonable
norms that can be used over the domain. We may, however, identify some ad
hoc measure that indicates the amount of movement within the domain, and
we can easily measure the distance that the objective function changes from
one point to another. Nevertheless, often the main basis for terminating an
algorithm for optimization over a discrete domain is the number of iterations.
In that case, unless the algorithm is exhaustive, we cannot say that it has
converged. This is a situation that is endemic to the problem. We must rely
on indications that it is very likely that the algorithm converged to a correct
solution.

Simulated Annealing

Simulated annealing is a method that simulates the thermodynamic process
in which a metal is heated to its melting temperature and then is allowed to
cool slowly so that its structure is frozen at the crystal configuration of low-
est energy. In this process the atoms go through continuous rearrangements,
moving toward a lower energy level as they gradually lose mobility due to the
cooling. The rearrangements do not result in a monotonic decrease in energy,
however. The density of energy levels at a given temperature ideally is expo-
nential, the so-called Boltzmann distribution, with a mean proportional to the
absolute temperature. (The constant of proportionality is called “Boltzmann’s
constant”). This is analogous to a sequence of optimization iterations that oc-
casionally go uphill. If the function has local minima, going uphill occasionally
is desirable.

Metropolis et al. (1953) developed a stochastic relaxation technique that
simulates the behavior of a system of particles approaching thermal equilib-
rium. (This is the same paper that they described the Metropolis sampling
algorithm, selected as one of the Top 10 algorithms of the twentieth century;
see page 138.) The energy associated with a given configuration of particles is
compared to the energy of a different configuration. If the energy of the new
configuration is lower than that of the previous one, the new configuration is
immediately accepted. If the new configuration has a larger energy, it is ac-
cepted with a nonzero probability. This probability is larger for small increases
than for large increases in the energy level. One of the main advantages of
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simulated annealing is that the process is allowed to move away from a local
optimum.

Although the technique is heuristically related to the cooling of a metal, it
can be successfully applied to a broader range of problems. It can be used in
many kinds of optimization problem, but it is particularly useful in problems
that involve configurations of a discrete set, such as a set of particles whose
configuration can continuously change, or a set of cities in which the interest
is an ordering for shortest distance of traversal.

The Basic Algorithm

In simulated annealing, a “temperature” parameter controls the probability of
moving uphill; when the temperature is high, the probability of acceptance of
any given point is high, and the process corresponds to a pure random walk.
When the temperature is low, however, the probability of accepting any given
point is low; and in fact, only downhill points are accepted. The behavior at
low temperatures corresponds to a gradient search.

As the iterations proceed and the points move lower on the surface (it
is hoped), the temperature is successively lowered. An “annealing schedule”
determines how the temperature is adjusted.

In the description of simulated annealing in Algorithm 6.9, recognizing the
common applications in combinatorial optimization, we refer to the argument
of the objective function as a “state”, rather than as a “point”. We also de-
scribe the convergence slightly differently from how we have done it in the
deterministic algorithms. The steps in Algorithm 6.9 are generic. A particu-
lar step, such as “generate a new state ...” may mean quite different things
in different problems. Following the general statement of the algorithm, we
consider some specific methods.

Algorithm 6.9 Simulated Annealing

0. Set k = 1 and initialize state s.
1. Compute the temperature T (k).
2. Set i = 0 and j = 0.
3. Generate a new state r and compute δf = f(r) − f(s).
4. Based on δf , decide whether to move from state s to state r.

If δf ≤ 0,
accept state r;

otherwise,
accept state r with a probability P (δf, T (k)).

If state r is accepted, set s = r and i = i + 1.
5. If i is equal to the limit for the number of successes at a given temperature,

go to step 1.
6. Set j = j + 1. If j is less than the limit for the number of iterations at

given temperature, go to step 3.
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7. If i = 0,
deliver s as the optimum; otherwise,
if k < kmax,

set k = k + 1 and go to step 1;
otherwise,

issue message that
‘algorithm did not converge in kmax iterations’.

For optimization of a continuous function over a region, the state is a point
in that region. A new state or point may be selected by choosing a radius r and
point on the d dimensional sphere of radius r centered at the previous point.
For a continuous objective function, the movement in step 3 of Algorithm 6.9
may be a random direction to step in the domain of the objective function.
In combinatorial optimization, the selection of a new state in step 3 may be a
random rearrangement of a given configuration, as we mention below for the
traveling salesperson problem.

Parameters of the Algorithm: The Probability Function

There are a number of tuning parameters that must be chosen in the simu-
lated annealing algorithm. These include such relatively simple things as the
number of repetitions or when to adjust the temperature. The probability of
acceptance and the type of temperature adjustments present more compli-
cated choices.

One approach is to assume that at a given temperature, T , the states
have a known probability density (or set of probabilities, if the set of states
is countable), pS(s, T ), and then to define an acceptance probability to move
from state sk to sk+1 in terms of the relative change in the probability den-
sity from pS(sk , T ) to pS(sk+1, T ). In the original applications, the objective
function was the energy of a given configuration, and the probability of an
energy change of δf at temperature T is proportional to exp(−δf/T ).

Even when there is no underlying probability model, the probability in
step 4 of Algorithm 6.9 is often taken as

P (δf, T (k)) = e−δf/T (k), (6.42)

although a completely different form could be used. The exponential distrib-
ution models energy changes in ensembles of molecules, but otherwise it has
no intrinsic relationship to a given optimization problem.

The probability can be tuned in the early stages of the computations so
that some reasonable proportion of uphill steps are taken. In some optimiza-
tion problems, the value of the function at the optimum, f∗, is known, and
the problem is only to determine the location of the optimum. In such cases
a factor (f − f∗)g could be used in the probability of acceptance. If the value
f∗ is not known but a reasonable estimate is available, it could be used. The
estimate could also be updated as the algorithm proceeds.
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Parameters of the Algorithm: The Cooling Schedule

There are various ways the temperature can be updated in step 1.
The probability of the method converging to the global optimum depends

on a slow decrease in the temperature. In practice, the temperature is generally
decreased by some proportion of its current value:

T (k + 1) = b(k)T (k), (6.43)

for 0 < b(k) ≤ 1. We would like to decrease T as rapidly as possible, yet have
a high probability of determining the global optimum. Geman and Geman
(1984) showed that under the assumptions that the energy distribution is
Gaussian and the acceptance probability is of the form (6.42), the probability
of convergence goes to 1 if the temperature decreases as the inverse of the
logarithm of the time, that is, if b(k) = (log(k))−1 in equation (6.43). Under
the assumption that the energy distribution is Cauchy, a similar argument
is based on b(k) = k−1, and a uniform distribution over bounded regions is
based on b(k) = exp(−ckk1/d), where ck is some constant, and d is the number
of dimensions.

A constant temperature is often used in simulated annealing for optimiza-
tion of continuous functions. A constant temperature may also be appropriate
for optimization of noisy functions. The adjustments are usually taken as con-
stants, rather than varying with k.

For functions of many continuous variables, it may be more efficient to use
the basic simulated annealing approach on a sequence of lower-dimensional
spaces. This approach can reduce the total number of computations, and
would be particularly useful when the cost of evaluation of the function is
very high.

In some cases it may desirable to exercise more control over the random
walk that forms the basis of simulated annealing. For example, we may keep
a list of “good” points, perhaps the m best points found so far. After some
iterations, we may return to one or more of the good states and begin the
walk anew.

We may use the number of times a point is visited to estimate the optimal
solution.

Simulated annealing is often used in conjunction with other optimization
methods, for example, to determine starting points for other optimization
methods. Multiple starting points may allow the subsequent optimization
method to identify more than one local optimum.

When gradient information is available, even in a limited form, simulated
annealing is generally not as efficient as other methods that use that informa-
tion. The main advantages of simulated annealing include its simplicity, its
ability to move away from local optima, and the wide range of problems to
which it can be applied.

It may be useful periodically to “re-anneal” by increasing the temperature.
This might be done to get out of what might appear to be a local minimum.
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In this case, the best value within that local area should be preserved in order
to return to it in case no better points are found quickly.

Simulated annealing proceeds as a random walk through the domain of
the objective function. There are many opportunities for parallelizing such a
process. The most obvious is starting multiple walks on separate processors.

Applications

Simulated annealing has been successfully used in a range of optimization
problems, including probability density smoothing classification, construction
of minimum volume ellipsoids, and optimal experimental design.

The Canonical Example: The Traveling Salesperson Problem

The traveling salesperson problem can serve as a prototype of the problems in
which the simulated annealing method has had good success. In this problem,
a state is an ordered list of points (“cities”), and the objective function is
the total distance between all the points in the order given (plus the return
distance from the last point to the first point. One simple rearrangement of
the list is the reversal of a sublist, that is, for example,

(1, 2, 3, 4, 5, 6, 7, 8, 9) → (1, 6, 5, 4, 3, 2, 7, 8, 9).

Another simple rearrangement is the movement of a sublist to some other
point in the list, for example,

(1, 2, 3, 4, 5, 6, 7, 8,↑ 9) → (1, 7, 8, 2, 3, 4, 5, 6, 9).

(Both of these rearrangements are called “2-changes”, because in the graph
defining the salesperson’s circuit, exactly two edges are replaced by two others.
The circuit is a Hamilton closed path.)

Evolutionary Algorithms

There are many variations of methods that use evolutionary strategies. These
methods are inspired by biological evolution, and the descriptions of the meth-
ods often use terminology from biology. Genetic algorithms mimic the behav-
ior of organisms in a competitive environment in which only the fittest and
their offspring survive. Decision variables correspond to “genotypes” or “chro-
mosomes”; a point or a state is represented by a string (usually a bit string);
and new values of the decision variables are produced from existing points
by “crossover” or “mutation”. The set of points at any stage constitutes a
“population”. The points that survive from one stage to another are those
yielding lower values of the objective function.

In most iterations it is likely that the new population includes a higher
proportion of fit organisms (points yielding better values of the objective
function) than the previous population, and that the best of the organisms is
better than the best in the previous population.
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Coding of Points

The first step in using a genetic algorithm is to define a coding of the points
in the domain into strings that can be manipulated easily. One simple coding
scheme is a binary representation of the index of each point. Of course, this
must be preceded by an assignment of an index to each point. In some cases,
if the points have an ordinal relationship, this indexing is natural. In other
cases, such as the traveling salesperson problem, each point (or path) in the
domain must be assigned a bit pattern following some heuristic scheme, or,
lacking that, following arbitrary choices.

Evolution Method

Algorithm 6.10 provides an outline of a genetic algorithm. There are several
decisions that must be made in order to apply the algorithm. The first, as
mentioned above, is to decide how to represent the values of decision variables,
that is, the states, in terms of chromosomes, and to decide how to evaluate
the objective function in terms of a chromosome. Then, an initial population
must be chosen.

Algorithm 6.10 Genetic Algorithm

0. Determine a representation of the problem, and define an initial popula-
tion, x(0)

1 , x(0)
2 , . . . , x(0)

n . Set k = 0.
1. Compute the objective function (the “fitness”) for each member of the

population, f(x(k)
i ) and assign probabilities pi to each item in the popu-

lation, perhaps proportional to its fitness.
2. Choose (with replacement) a probability sample of size m ≤ n. This is

the reproducing population.
3. Randomly form a new population x(k+1)

1 , x(k+1)
2 , . . . , x(k+1)

n from the re-
producing population, using various mutation and recombination rules
(see Table 6.2). This may be done using random selection of the rule for
each individual of pair of individuals.

4. If convergence criteria are met, stop, and deliver arg min
x(k+1)

i
f(x(k+1)

i )
as the optimum; otherwise, set k = k + 1 and go to step 1.

Mutation and Recombination Rules

There are several possibilities for producing a new generation of organisms
from a given population. Some methods mimic sexual reproduction, that is,
the combining of chromosomes from two organisms, and some methods are
like asexual reproduction or mutation. A genetic algorithm may involve all of
these methods, perhaps chosen randomly with fixed or varying probabilities.

Three simple methods are crossover, for combining two chromosomes, and
inversion and mutation, for yielding a new chromosome from a single one. In
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crossover of two chromosomes each containing m bits, for a randomly selected
j from 1 to l, the first j bits are taken from the chromosome of the first
organism and the last l − j bit are taken from the chromosome of the second
organism. In inversion, for j and k randomly selected from 1 to l, the bits
between positions j and k are reversed, while all others remain the same. In
mutation, a small number of bits are selected randomly and are changed, from
0 to 1 or from 1 to 0. The number of bits to change may be chosen randomly,
perhaps from a Poisson distribution, truncated at l. These operations are
illustrated in Table 6.2.

Table 6.2. Reproduction Rules for a Genetic Algorithm

Generation k Generation k + 1

Crossover

x(k)
i 11001001

→ x(k+1)
i 11011010

x(k)
j 00111010

Inversion

x(k)
i 11101011 → x(k+1)

i 11010111

Mutation

x(k)
i 11101011 → x(k+1)

i 10111011

Clone

x(k)
i 11101011 → x(k+1)

i 11101011

In the example operations shown in Table 6.2, crossover occurs between
the third and fourth bits; inversion occurs for the bits between (and including)
the third and the sixth; and mutation occurs at the second and fourth bits.

As with simulated annealing, indeed, as with almost any optimization
method, for a given problem, genetic algorithms may require a good deal
of ad hoc tuning. In the case of genetic algorithms, there are various ways
of encoding the problem, of adopting an overall strategy, and of combining
organisms in a current population to yield the organisms in a subsequent
population.

Genetic algorithms can be implemented in parallel rather directly.

Other Combinatorial Search Methods

There are a number of other methods of combinatorial optimization. One
general type of method are guided direct search methods, in which at each
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stage there is an attempt to use the history of the search to choose new
directions to explore.

Tabu search simulates the human memory process in maintaining a list of
recent steps. The list is called a tabu list. The purpose of the list is to prevent
the search from backtracking. Before a potential step is selected the search
procedures checks the tabu list to determine if it is in the recent path to this
point. The tabu list can be implemented by penalizing the objective function.

Artificial neural networks are another type of algorithm for decision mak-
ing that is analogous to a biological process.

A number of other stochastic combinatorial search methods have been
developed. Some of these methods derive from the stochastic approximations
in the Robbins-Monro procedure (equation (6.11)).

6.4 Optimization under Constraints

The general optimization problem for a scalar-valued function in m variables
with r constraints is

min
x

f(x) (6.44)

s.t. g(x) ≤ b,

where x is m-dimensional and g(x) ≤ b is a system of r inequalities. This
formulation can include equality constraints by expressing an equality as two
inequalities.

A point satisfying the constraints is called a feasible point, and the set of
all such points is called the feasible region. For a given point xj , a constraint
gi such that gi(xj) = bi is called an active constraint.

Any of the unconstrained optimization methods we have described can be
modified to handle constraints by first insuring that the starting points satisfy
the constraints and then explicitly incorporating checks at each iteration to
insure that any new point also satisfies the constraints. If the new point does
not satisfy the constraints, then some of the parameters of the algorithm
may be adjusted and a new point generated (this is a possible approach in
the Nelder-Mead simplex method, for example), or, in random methods such
as simulated annealing, the new point is simply discarded and a new point
chosen. Although this is a straightforward procedure, it is unlikely to be very
efficient computationally.

Unconstrained methods can be used efficiently if a sequence of uncon-
strained problems that converges to a problem of interest can be defined.
Although it may not be possible to evaluate the objective function in regions
that are not feasible, this method can often be very effective.

Another approach to solving constrained problems is to incorporate the
constraints into the objective function. One way in which this is done is by



6.4 Optimization under Constraints 285

use of supplementary variables, as discussed below. Another way is to de-
fine transformations of the variables so that the objective function increases
rapidly near constraint boundaries.

Constrained Optimization in Dense Domains

In a constrained optimization problem over a dense domain, the most impor-
tant concerns are the shape of the feasible region and the smoothness of the
objective function. The problem is much easier if the feasible region is convex,
and fortunately many constrained real-world problems have convex feasible
regions. The smoothness of the objective function is important, because if it
is twice-differentiable, we may be able to use the known properties of deriva-
tives at function optima to find those optima. For methods that incorporate
the constraints into the objective function, the shape of the feasible region is
important because the derivatives of the combined objective function depend
on the functions defining the constraints.

Equality Constraints

We will first consider some simple problems. Equality constraints are generally
much easier to handle than inequalities. This is a special case of problem (6.44)
with a pair of inequalities, one a negative multiple of the other. The equality
constraint problem is

min
x

f(x) (6.45)

s.t. g(x) = b.

For any feasible point, all equality constraints are active constraints.
An optimization problem with equality constraints can often be trans-

formed into an equivalent unconstrained optimization problem.
An important form of equality constraints are linear constraints, Ax = b,

where A is an r×m (with r ≤ m) matrix of rank s. With g(x) = Ax, we have

min
x

f(x) (6.46)

s.t. Ax = b.

If the linear system is consistent (that is, rank([A|b]) = s), the feasible set is
nonnull. The rank of A must be less than m, or else the constraints completely
determine the solution to the problem. If the rank of A is less than r, however,
some rows of A and some elements of b could be combined into a smaller
number of constraints. We will therefore assume A is of full row rank; that is,
rank(A) = r.

If xc is any feasible point, that is, Axc = b, then any other feasible point
can be represented as xc+p, where p is any vector in the null space of A, N (A).
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The dimension of N (A) is m−r, and its order is m. If B is an m×m−r matrix
whose columns form a basis for N (A), all feasible points can be generated by
xc + Bz, where z ∈ IRm−r.

Hence, we need only consider the restricted variables

x = xc + Bz, (6.47)

and the function
h(z) = f(xc + Bz). (6.48)

The argument of this function is a vector with only m − r elements, instead
of m elements, as in the original function f . The unconstrained minimum of
h, however, is the solution of the original constrained problem.

Now, if we assume differentiability, the gradient and Hessian of the reduced
function can be expressed in terms of the the original function:

∇h(z) = BT∇f(xc + Bz)
= BT∇f(x), (6.49)

and

Hh(z) = BTHf (xc + Bz)B
= BTHf (x)B. (6.50)

The relationship of the properties of stationary points to the derivatives are
the conditions that determine a minimum of this reduced objective function;
that is, x∗ is a minimum if and only if

• BT∇f(x∗) = 0,
• BTHf (x∗)B is positive definite, and
• Ax∗ = b.

These relationships then provide the basis for the solution of the optimization
problem. Hence, the simple constrained optimization problem (6.45) can be
solved using the same methods as discussed in Section 6.2.

Lagrange Multipliers

Consider again the equality-constrained problem (6.45) and the matrix B in
equation (6.47). Because the m×m matrix [B|AT] spans IRm, we can represent
the vector ∇f(x∗) as a linear combination of the columns of B and AT, that
is,

∇f(x∗) = (Bz∗|ATλ∗)T,

where z∗ is an (m− r)-vector and λ∗ is an r-vector. Because ∇h(z∗) = 0, Bz∗
must also vanish, and we have

∇f(x∗) = ATλ∗

= Jg(x∗)Tλ∗. (6.51)
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Thus, at the optimum, the gradient of the objective function is a linear com-
bination of the columns of the Jacobian of the constraints. The elements of
the linear combination vector λ∗ are called Lagrange multipliers.

The condition expressed in (6.51) implies that the objective function can-
not be reduced any further without violating the constraints.

We can see this in a simple example with equality constraints:

min
x

f(x) = 2x1 + x2

s.t. g(x) = x2
1 − x2 = 1.

In this example the objective function is linear, and the single equality con-
straint is quadratic. The optimum is x∗ = (−1, 0). The gradient of f(x) is
∇f(x) = (2, 1), that of g(x) is ∇g(x) = (2x1,−1), and ∇g(x∗) = (−2,−1).
As we see in Figure 6.10 at the optimum,

∇f(x∗) = −∇g(x∗)
= −Jg(x∗)T.

The Lagrangian Function

The relationship between the gradient of the objective function and the Ja-
cobian of the constraint function, motivates the definition of the Lagrangian
function:

L(x,λ) = f(x) + λT(g(x) − b), (6.52)

where λ is an m-vector, the elements of which are the Lagrange multipliers.
The derivatives of the Lagrangian function can be analyzed in a manner

similar to the analysis of the derivatives of the objective function to deter-
mine necessary and sufficiency conditions for a minimum subject to equality
constraints.

Linear Programming

The basic linear program, which is often written as

min
x

z = cTx (6.53)

s.t. x ≥ 0
Ax ≤ b,

is a problem over a dense domain. A solution to the problem, however, occurs
at a vertex of the polytope formed by the constraints. (The polytope may be
unbounded; that is, it may have “open” sides.) Because this is a finite set,
the solution can be determined by inspecting a finite number of possibilities.
It is in this sense that the linear programming problem is similar to other
combinatorial optimization problems.
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Fig. 6.10. Linear Objective and Quadratic Equality Constraint

The linear programming problem is generally most easily solved by a sim-
plex method, which steps through the vertices efficiently.

More efficient methods for very large-scale linear programs are based on
interior-point methods (see Griva, Nash, and Sofer, 2008, for a description).
An interior-point method may proceed along interior points until the algo-
rithm appears to slow, and then move to a vertex at some step and switch
over to a simplex algorithm for the final iterations toward the solution x∗. The
interior-point method uses a barrier function to proceed through the dense in-
terior of the feasible region. This approach treats the problem a combinatorial
optimization problem only in the latter stages.

Linear programming is a good example of how a specialized algorithm
can perform very differently for some variation of the underlying optimization
problem.

Special formulations of the simplex method make very significant differ-
ences in the speed of the solution. The problem of fitting a linear regression
under the criterion of least absolute values is a linear programming problem,
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Fig. 6.11. A Linear Programming Problem. The Parallel Lines Are in the Direction
of the Coefficient Vector c

but its solution is much more efficient when the simplex method is accelerated
by taking into account its special structure. (See Kennedy and Gentle, 1980,
Chapter 11, for a description of the modified linear programming methods
applied to the L1 and L∞ fitting problems.)

An important variation of linear programming is integer programming, in
which the decision variables are restricted to be integers. In mixed integer
programming some variables are restricted to be integers and others are not.

General Constrained Optimization over Dense Domains

Inequality constraints present significant challenges in optimization problems.
The extent of the difficulty depends on the type of the constraint. The simplest
constraints are “box constraints”, or simple bounds on the variables. Next
are linear constraints of the form l ≤ Ax ≤ u. Finally, general nonlinear
constraints are the most complicated.

As in other cases of optimization over dense domains, we will usually
assume that the objective function is twice differentiable in all variables. We
will only indicate some of the general approaches.

When there are both equality and inequality constraints, it is more conve-
nient for the discussion to write the equality constraints explicitly as equalities,
rather than as a pair of inequalities in the form of problem (6.44):
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min
x

f(x) (6.54)

s.t. g1(x) = b1,

g2(x) ≤ b2.

For any feasible point all equality constraints are active, while the any of the
inequality constraints g2(x) ≤ b2 may or may not be active.

The following well-known theorem is proved in many texts on optimization,
such as Griva, Nash, and Sofer (2008).

Let L(x,λ) be the Lagrangian, and let x∗ be a solution to prob-
lem (6.54). If the gradients of the active constraints at x∗, ∇g(a)

2 (x∗),
are linearly independent, then there exists λ∗ such that

∇xL(x∗,λ∗) = 0,

and for all active constraints, g(a)
2 with corresponding λ(a),

λ(a)
∗ ≤ 0

and
λ(a)
∗ g(a)

2 (x∗) = 0.

These necessary conditions are called the Karush-Kuhn-Tucker conditions,
or just Kuhn-Tucker conditions. The Karush-Kuhn-Tucker conditions allow
identification of potential solutions. These conditions, together with sufficient
conditions involving second derivatives of L(x,λ), form the basis for a variety
of algorithms for constrained optimization of differentiable functions.

Another approach to solving constrained problems is to formulate a se-
quence of simpler problems that converges to problem of interest. The method
is often called the sequential unconstrained minimization technique (SUMT).
A possible problem arises in this approach if the behavior of the objective
function is different outside the feasible region from its behavior when the
constraints are satisfied.

Quadratic Objective Function with Linear Inequality Constraints

A common form of the general constrained optimization problem (6.44) has
a quadratic objective function and linear inequality constraints:

min
x

cTx + xTCx (6.55)

s.t. Ax ≤ b.

This is called a quadratic programming problem. If C is positive semidef-
inite, the problem is particularly simple, and there are efficient methods for
solving a quadratic programming problem that make use of the fact that if
x∗ is a solution, then there exists λ∗ such that
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2Cx∗ + ATλ∗ = cT. (6.56)

A number of algorithms based on sequential quadratic programming prob-
lems are used for more general constrained optimization problems. As in the
unconstrained sequences, the violations of the constraints are built into the
objective functions of later stages.

The fact that the sequence of approximate problems does not maintain
feasibility of the solution to the original problem can be a major disadvantage.
In some cases the objective function may not even be defined outside of the
feasible region.

Constrained Combinatorial Optimization

Constraints in combinatorial optimization problems are usually handled by
restricting the mechanism that generates new points to generate only feasible
points. In a simulated annealing method, for example, the feasibility of each
potential state r is determined prior to the acceptance/rejection step.

6.5 Computations for Least Squares

One of the most common problems in applications in statistics and data analy-
sis is the least squares problem. The usual context is in fitting the model

E(Yi) = f(xi, θ∗), (6.57)

given observations (xi, yi).
For any given θ, we form the residuals

ri(θ) = yi − f(xi, θ).

We will assume that f(·) is a smooth function and θ is an m-vector. Letting
y be the n-vector of observations, we can write the least squares objective
function as

s(θ) = (r(θ))T r(θ). (6.58)

The gradient and the Hessian for a least squares problem have special
structures that involve the Jacobian of the residuals, Jr(θ). The gradient of s
is

∇s(θ) = 2 (Jr(θ))T r(θ). (6.59)

Taking derivatives of ∇s(θ), we see that the Hessian of s can be written in
terms of the Jacobian of r and the individual residuals:

Hs(θ) = 2 (Jr(θ))
T Jr(θ) + 2

n∑

i=1

ri(θ)Hri(θ). (6.60)
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In the vicinity of the solution θ̂, the residuals ri(θ) should be small, and
so Hs(θ) may be approximated by neglecting the second term:

Hs(θ) ≈ 2 (Jr(θ))
T Jr(θ).

Using equation (6.59) and this approximation for equation (6.60) in the gra-
dient descent equation (6.36), we have the system of equations

(
Jr(θ(k−1))

)T
Jr(θ(k−1)) d(k) = −

(
Jr(θ(k−1))

)T
r(θ(k−1)) (6.61)

that is to be solved for d(k), where

d(k) ∝ θ(k) − θ(k−1).

It is clear that the solution d(k) is a descent direction; that is, if ∇s(θ(k−1)) ̸= 0,
then

(d(k))T∇s(θ(k−1)) = −
((

Jr(θ(k−1))
)T

d(k)

)T (
Jr(θ(k−1))

)T
d(k)

< 0.

The update step is determined by a line search in the appropriate direction:

θ(k) − θ(k−1) = α(k)d(k).

The method just described that uses the Gramian matrix formed from
the Jacobian, rather than the Hessian, is called the Gauss-Newton algorithm.
(The method is also sometimes called the “modified Gauss-Newton algorithm”
because many years ago no damping was used in the Gauss-Newton algorithm,
and α(k) was taken as the constant 1. Without an adjustment to the step, the
Gauss-Newton method tends to overshoot the minimum in the direction d(k).)

In practice, rather than a full search to determine the best value of α(k),
we just consider the sequence of values 1, 1

2 , 1
4 , . . . and take the largest value so

that s(θ(k)) < s(θ(k−1)). The algorithm terminates when the change is small.
If the residuals are not small, that is, if the Gramian is not a good approx-

imation of the Hessian, or if Jr(θ(k)) is poorly conditioned, the Gauss-Newton
method can perform very poorly.

If the condition is poor, one possibility is to add a conditioning matrix to
the coefficient matrix in equation (6.61). A simple choice is λ(k)Im, and the
equation for the update becomes
((

Jr(θ(k−1))
)T

Jr(θ(k−1)) + λ(k)Im

)
d(k) = −

(
Jr(θ(k−1))

)T
r(θ(k−1)),

where Im is the m×m identity matrix and λ(k) is nonnegative. A better choice
may be an m×m scaling matrix, S(k), that takes into account the variability
in the columns of Jr(θ(k−1)); hence, we have for the update equation
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((
Jr(θ(k−1))

)T Jr(θ(k−1)) + λ(k)
(
S(k)

)T
S(k)

)
d(k)

= −
(
Jr(θ(k−1))

)T
r(θ(k−1)).

(6.62)

The basic requirement for the matrix
(
S(k)

)T
S(k) is that it improve the condi-

tion of the coefficient matrix. There are various ways of choosing this matrix.
One is to transform the matrix

(
Jr(θ(k−1))

)T Jr(θ(k−1)) so that it has 1’s
along the diagonal (this is equivalent to forming a correlation matrix from a
variance-covariance matrix), and to use the scaling vector to form S(k). The
nonnegative factor λ(k) can be chosen to control the extent of the adjustment.
The sequence λ(k) must go to 0 for the algorithm to converge.

Equation (6.62) can be thought of as a Lagrange multiplier formulation of
the constrained problem,

min
x

1
2

∥∥Jr(θ(k−1))x + r(θ(k−1))
∥∥

s.t.
∥∥S(k)x

∥∥ ≤ δk.

(6.63)

The Lagrange multiplier λ(k) is zero if d(k) from equation (6.61) satisfies
∥d(k)∥ ≤ δk; otherwise, it is chosen so that

∥∥S(k)d(k)
∥∥ = δk.

Use of an adjustment such as in equation (6.62) in a Gauss-Newton al-
gorithm is called the Levenberg-Marquardt algorithm. It is probably the most
widely used method for nonlinear least squares.

Iteratively Reweighted Least Squares

In the weighted least squares problem, we have the objective function equation
from page 69:

sw(θ) =
n∑

i=1

wi (ri(θ))
2 .

The weights add no complexity to the problem, and the Gauss-Newton
methods of the previous section apply immediately, with

r̃(θ) = Wr(θ),

where W is a diagonal matrix containing the weights.
The simplicity of the computations for weighted least squares suggests a

more general usage of the method. Suppose that we are to minimize some
other Lp norm of the residuals ri, as in equation (1.156) on page 67. The
objective function can be written as

sp(θ) =
n∑

i=1

1
|yi − f(θ)|2−p

(yi − f(θ))2, (6.64)

so long as yi − f(θ) ̸= 0.
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This leads to an iteration on the least squares solutions. Beginning with
yi − f(θ(0)) = 1, we form the recursion that results from the approximation

sp(θ(k)) ≈
n∑

i=1

1
∣∣yi − f(θ(k−1))

∣∣2−p

(
yi − f(θ(k))

)2
. (6.65)

Hence, we solve a weighted least squares problem, and then form a new
weighted least squares problem using the residuals from the previous problem.

The method using the recursion (6.65) is called iteratively reweighted least
squares, or IRLS. The iterations over the residuals are outside the loops of
iterations to solve the least squares problems, so in nonlinear least squares,
IRLS results in nested iterations.

There are some problems with the use of reciprocals of powers of residuals
as weights. The most obvious problem arises from very small residuals. This
is usually handled by use of a fixed large number as the weight.

Iteratively reweighted least squares can also be applied to other norms,

sρ(θ) =
n∑

i=1

ρ (yi − f(θ)) .

The weights at the kth step are just ρ(yi − f(θ(k−1)))/(yi − f(θ(k−1)))2.
The approximations for the updates may not be as good as for Lp norms.

No matter what norm is used, very small residuals can cause problems.

6.6 Computations for Maximum Likelihood

Although methods based on the maximum of the likelihood function require
strong assumptions about the underlying probability distributions, they are
widely used in statistics and data analysis. Instead of the model of only the
expectation (6.57), E(Yi) = f(xi, θ∗), as for approaches based on least squares,
for maximum likelihood, we must have a model of the PDF. We assume it to
be of a given form,

pYi(yi | f(xi, θ∗). (6.66)

Again, the objective is to determine an estimate of θ∗.
We should be aware of the strength of the assumptions we must make

about the probability distribution. The assumption underlying the maximum
likelihood approach is stronger than an assumption about expected values,
which underlies approaches based on minimizing residuals.

Given the PDF, we form the likelihood L(θ ; y) or the log-likelihood
lL(θ ; y) as describe beginning on page 44. The maximum likelihood estimate
of θ∗ is

argmax
θ

lL(θ ; y).
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If the likelihood is twice differentiable and if the range does not depend on
the parameter, Newton’s method (see equation (6.36)) could be used to solve
the optimization problem. Newton’s equation

HlL(θ(k−1) ; y) d(k) = ∇lL(θ(k−1) ; y) (6.67)

is used to determine the step direction in the kth iteration. A quasi-Newton
method, as we mentioned on page 269, uses a matrix H̃lL(θ(k−1)) in place of
the Hessian HlL(θ(k−1)). At this point, we should remind the reader:

The form of a mathematical expression and the way the expression
should be evaluated in actual practice may be quite different.

There are many additional considerations for the numerical computations,
and the expressions below, such as equations (6.68), (6.70), and (6.71), rarely
should be used directly in a computer program.

The optimization problem can be solved by Newton’s method, equa-
tion (6.29) on page 266, or by a quasi-Newton method. (We should first note
that this is a maximization problem, so the signs are reversed from our pre-
vious discussion of a minimization problem.)

A common quasi-Newton method for optimizing lL(θ ; y) is Fisher scoring,
in which the Hessian in Newton’s method is replaced by its expected value.
The expected value can be replaced by an estimate, such as the sample mean.
The iterates then are

θ(k) = θ(k−1) −
(
Ẽ
(
θ(k−1)

))−1
∇lL

(
θ(k−1) ; y

)
, (6.68)

where Ẽ(θ(k−1)) is an estimate or an approximation of

E
(
HlL

(
θ(k−1)

∣∣ Y
))

, (6.69)

which is itself an approximation of Eθ(HlL

(
θ
∣∣ Y )). By equation (1.167) on

page 72, this is the negative of the Fisher information matrix if the differ-
entiation and expectation operators can be interchanged. (This is one of the
“regularity conditions” we alluded to earlier.) The most common practice is
to take Ẽ(θ(k−1)) as the Hessian evaluated at the current value of the itera-
tions on θ; that is, as HlL(θ(k−1) ; y). This is called the observed information
matrix.

In the case of a covariate xi where we have µ = xi(θ), another quasi-
Newton method may be useful. The Hessian in equation (6.67) is replaced
by (

X(θ(k−1))
)T

K(θ(k−1)) X(θ(k−1)), (6.70)

where K(θ(k−1)) is a positive definite matrix that may depend on the current
value θ(k−1). (Again, think of this in the context of a regression model, but
not necessarily linear regression.) This method is called the Delta algorithm
because of its similarity to the delta method for approximating a variance-
covariance matrix (described on page 50).
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Maximization over Subvectors

In some cases, when θ is a vector, the optimization problem can be solved by
alternating iterations on the elements of θ. In this approach, with θ = (θi, θj),
iterations based on equations such as (6.67) are

H̃lL

(
θ(k−1)

i ; θ(k−1)
j , y

)
d(k)

i = ∇llL

(
θ(k−1)

i ; θ(k−1)
j , y

)
, (6.71)

where di is the update direction for θi, and θj is considered to be constant in
this step. In the next step, the indices i and j are exchanged. This is compo-
nentwise optimization. For some objective functions, the optimal value of θi
for fixed θj can be determined in closed form. In such cases, componentwise
optimization may be the best method.

Sometimes, we may be interested in the MLE of θi given a fixed value of
θj , so the iterations do not involve an interchange of i and j as in component-
wise optimization. Separating the arguments of the likelihood or log-likelihood
function in this manner leads to what is called profile likelihood, or concen-
trated likelihood.

As a purely computational device, the separation of θ into smaller vectors
makes for a smaller optimization problem for which the number of computa-
tions is reduced by more than a linear amount. The iterations tend to zigzag
toward the solution, so convergence may be quite slow. If, however, the Hessian
is block diagonal, or almost block diagonal (with sparse off-diagonal submatri-
ces), two successive steps of the alternating method are essentially equivalent
to one step with the full θ. The rate of convergence would be the same as that
with the full θ. Because the total number of computations in the two steps is
less than the number of computations in a single step with a full θ, however,
the method may be more efficient in this case. EM methods, which we discuss
next, are special cases of this general approach.

EM Methods for Maximum Likelihood

EM methods alternate between updating θ(k) by maximization of a likelihood
and use of conditional expected values. This method is called the EM method
because the alternating steps involve an expectation and a maximization.

The EM methods can be explained most easily in terms of a random sam-
ple that consists of two components, one observed and one unobserved or
missing. A simple example of missing data occurs in life-testing, when, for
example, a number of electrical units are switched on and the time when each
fails is recorded. In such an experiment, it is usually necessary to curtail the
recordings prior to the failure of all units. The failure times of the units still
working are unobserved. The data are said to be right censored. The num-
ber of censored observations and the time of the censoring obviously provide
information about the distribution of the failure times.



6.6 Computations for Maximum Likelihood 297

The missing data can be missing observations on the same random variable
that yields the observed sample, as in the case of the censoring example; or the
missing data can be from a different random variable that is related somehow
to the random variable observed.

Many common applications of EM methods do involve missing-data prob-
lems, but this is not necessary. Often, an EM method can be constructed based
on an artificial “missing” random variable to supplement the observable data.

Let Y = (U, V ), and assume that we have observations on U but not on
V . We wish to estimate the parameter θ, which figures in the distribution of
both components of Y . An EM method uses the observations on U to obtain a
value of θ(k) that increases the likelihood and then uses an expectation based
on V that increases the likelihood further.

Let Lc(θ ; u, v) and lLc(θ ; u, v) denote, respectively, the likelihood and
the log-likelihood for the complete sample. The likelihood for the observed U
is

L(θ ; u) =
∫

Lc(θ ; u, v) dv,

and lL(θ ; u) = log L(θ ; u). The EM approach to maximizing L(θ ; u) has
two alternating steps. The first one begins with a value θ(0). The steps are
iterated until convergence.

• E step : compute q(k)(θ) = EV |u,θ(k−1)

(
lLc(θ | u, V )

)
.

• M step : determine θ(k) to maximize q(k)(θ), subject to any constraints on
acceptable values of θ.

The sequence θ(1), θ(2), . . . converges to a local maximum of the observed-data
likelihood L(θ ; u) under fairly general conditions. The EM method can be
very slow to converge, however.

As is usual for estimators defined as solutions to optimization problems, we
may have some difficulty in determining the statistical properties of the esti-
mators. There are various ways that we might estimate the variance-covariance
matrix using computations that are part of the EM steps. The most obvious
method is to use the gradient and Hessian of the complete-data log-likelihood,
lLc(θ ; u, v).

It is interesting to note that under certain assumptions on the distribution,
the iteratively reweighted least squares method discussed on page 294 can be
formulated as an EM method (see Dempster, Laird, and Rubin, 1980).

For a simple example of the EM method, see Exercise 6.12, in which the
problem in Dempster, Laird, and Rubin (1977) is described. As a further ex-
ample of the EM method, consider an experiment described by Flury and
Zoppè (2000). It is assumed that the lifetime of light bulbs follows an expo-
nential distribution with mean θ. To estimate θ, n light bulbs were tested until
they all failed. Their failure times were recorded as u1, . . . , un. In a separate
experiment, m bulbs were tested, but the individual failure times were not
recorded. Only the number of bulbs, r, that had failed at time t was recorded.
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The missing data are the failure times of the bulbs in the second experiment,
v1, . . . , vm. We have

lLc(θ ; u, v) = −n(log θ + ū/θ) −
m∑

i=1

(log θ + vi/θ).

The expected value, EV |u,θ(k−1) , of this is

q(k)(θ) = −(n+m) log θ−1
θ

(
nū + (m − r)(t + θ(k−1)) + r(θ(k−1) − th(k−1))

)
,

where h(k−1) is given by

h(k−1) =
e−t/θ(k−1)

1 − e−t/θ(k−1) .

The kth M step determines the maximum, which, given θ(k−1), occurs at

θ(k) =
1

n + m

(
nū + (m − r)(t + θ(k−1)) + r(θ(k−1) − th(k−1))

)
. (6.72)

Starting with a positive number θ(0), equation (6.72) is iterated until conver-
gence.

This example is interesting because if we assume that the distribution of
the light bulbs is uniform, U(0, θ) (such bulbs are called “heavybulbs”!), the
EM algorithm cannot be applied. As we have pointed out above, maximum
likelihood methods must be used with some care whenever the range of the
distribution depends on the parameter. In this case, however, there is another
problem. It is in computing q(k)(θ), which does not exist for θ < θ(k−1).

Notes and Further Reading

Rootfinding

The problem I have called “solving equations” or “finding roots” is often
associated with the keyword “zero”. (In the IMSL Library, the routines for
“finding zeros” were in Chapter Z.)

General Methods for Optimization

Griva, Nash, and Sofer (2008) provide a comprehensive coverage of the basic
ideas and methods of optimization in dense domains. They present the meth-
ods in the form of what they call a General Optimization Algorithm, which
consists of two steps, an optimality convergence test, and a step that improves
the current solution. In this chapter, I have described the second step as itself
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consisting of two steps: finding a new possible point, and the deciding whether
or not to accept that point. Many stochastic methods may accept a new point
even when the current solution is better.

For differentiable objective functions, the first and second derivatives can
be used to move toward an optimum and to decide when a local optimum
has been achieved. Conn, Scheinberg, and Vicente (2009) describe various
algorithms for optimization in dense domains that do not require derivatives
of the objective function.

Methods for Specialized Optimization Problems

One of the most widely-encountered specialized optimization problems is the
linear programming problem and related problems in network optimization.
Griva, Nash, and Sofer (2008) describe methods for such problems.

Stochastic Optimization and Evolutionary Methods

Stochastic optimization is discussed in some detail by Spall (2004). De Jong
(2006) describes the basic ideas of evolutionary computation and how the
methods can be used in a variety of optimization problems.

Optimization for Statistical Applications

Many of the relevant details of numerical optimization for statistical applica-
tions are discussed by Rustagi (1994) and by Gentle (2009).

The EM method for optimization is covered in some detail by Ng, Krish-
nan, and McLachlan (2004). The EM method itself was first described and
analyzed systematically by Dempster, Laird, and Rubin (1977).

Numerical Software for Optimization

Most of the comprehensive scientific software packages such as the IMSL Li-
braries, Matlab, and R have functions or separate modules for solution of
systems of nonlinear equations and for optimization.

The R function uniroot (which is zbrent in the IMSL Libraries) is based
on an algorithm of Richard Brent that uses a combination of linear inter-
polation, inverse quadratic interpolation, and bisection to find a root of a
univariate function in an interval whose endpoints evaluate to values with
different signs. The R function polyroot (which is zpolrc or zpolcc in the
IMSL Libraries) is based on the Traub-Jenkins algorithm to find the roots of
a univariate polynomial.

It is difficult to design general-purpose software for optimization problems
because the problems tend to be somewhat specialized and different solution
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methods are necessary for different problems; hence, there are several spe-
cialized software packages for optimization. Some address general optimiza-
tion problems for continuous nonlinear functions, with or without constraints.
There are several packages for linear programming. These often also handle
quadratic programming problems, as well as other variations, such as mixed
integer problems and network problems.

Another reason it is difficult to design general-purpose software for op-
timization problems is because the formulation of the problems in simple
computer interfaces is difficult.

The need for an initial guess may also complicate the design of optimiza-
tion software, especially for the unsophisticated user. The software would be
hardpressed to decide on a reasonable starting value, however. Sometimes an
obvious default such as x(0) = 0 will work, and there are some software pack-
ages that will choose such a starting value if the user does not supply a value.
Most packages, however, require the user to input a starting value.

Many of the standard routines for optimization use derivative-free meth-
ods. For optimization of univariate functions, in R the function optimize,
based on an algorithm of Richard Brent, uses a combination of golden section
search and successive parabolic interpolation, for optimization of a univariate
function. The IMSL routine uvmif, based on a method of Mike Powell, uses
a safeguarded interpolation, and tends to be somewhat more robust.

For optimization of multivariate functions, in R the function nlm uses
a Newton-type method either with a user-supplied gradient and Hessian or
with numerically-approximated derivatives along with a simple bisection line
search. The R function optim uses a method that the user can choose, includ-
ing Nelder-Mead.

There is a wide range of software for least squares problems. Most of the
general-purpose software includes special routines for least squares. Packages
for statistical data analysis often include functions for nonlinear least squares.
For example, in the IMSL Libraries the routine rnlin performs least squares
fits of general models and in R the function nls performs the computations
for nonlinear least squares regression.

Because the development of a mathematical model that can be commu-
nicated easily to the computer is an important, but difficult aspect of opti-
mization problems, there are packages that implement modeling languages,
and many of the general packages accept optimization problems expressed in
these languages.

It is also possible for a user to access computational servers for optimiza-
tion over the internet, so that the user client does not need to run the software.
The site is

http://www-neos.mcs.anl.gov/
Hans Mittelmann maintains a useful guide to non-commercial optimization

software at
http://plato.la.asu.edu/guide.html
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This website also provides additional items such as benchmarks and test-
beds, annotated bibliography, and a glossary for optimization.

Exercises

6.1. Apply Aitken’s∆2-extrapolation to equation (6.5) to obtain equation (6.6).
6.2. Apply Algorithm 6.1 to equation (6.4) and collect data similar to the

bisection iterations shown in Table 6.1.
6.3. Use a plain Newton’s method to construct a linearly convergent sequence

{xn} that converges slowly to the multiple root x = 1 of the function
f(x) = x3 − 3x + 2. Then use Aitken acceleration to construct {x̃n},
which converges faster to the root x = 1. Use Newton’s method and
Steffensen’s acceleration method to find numerical approximations to the
multiple root, starting with x0 = 1. Compare the number of iterations for
the two methods.

6.4. Use a plain Newton’s method to construct a linearly convergent sequence
{xn} that converges slowly to the multiple root x =

√
2 of the function

f(x) = sin(x2 − 2)(x2 − 2). Then use Aitken acceleration to construct
{x̃n}, which converges faster to the root x =

√
2. Use Newton’s method

and Steffensen’s acceleration method to find numerical approximations to
the multiple root, starting with x0 = 1. Compare the number of iterations
for the two methods.

6.5. Bisection method.
Write a program module to implement the bisection method to find a
root of a given function, which is input together with values that bracket
a root, and an epsilon as the stopping criterion. Your program should
check that the two starting values are legitimate.
Use your bisection program to determine the first zero of the Bessel func-
tion of the first kind, of order 0:

J0(x) =
1
π

∫ π

0
cos(x sin θ) dθ.

(This function is available in Matlab, besselj; in PV-Wave, beselj; in
the IMSL Library, bsj0/dbsj0; and in the Unix math library, j0.)

6.6. Newton’s method.
Write a program module similar to that of Exercise 6.5 to implement
Newton’s method to find a root of a given function, which is input together
with its derivative, a starting value, and two stopping criteria: an epsilon
and a maximum number of iterations.
a) Observe the performance of the method on the function

f(x) = x3 − 14x2 + 68x − 115,

which is the function used in the examples in this chapter. Start with
x(0)

0 = 9. Print x(k)
0 to 10 digits, and observe the number of correct
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digits at each iteration until the solution is accurate to 10 digits.
Produce a table similar to Table 6.1 on page 248. What is the rate of
convergence?

b) Now observe the performance of the method on the function

f(x) = x3 − 15x2 + 75x − 125,

whose solution is also 5. Again start with x(0)
0 = 9. What is the rate

of convergence? What is the difference?
6.7. Secant method.

Write a program module similar to that of Exercise 6.5 to implement the
secant method to find a root of a given function, which is input together
with two starting values, and two stopping criteria: an epsilon and a max-
imum number of iterations. Observe the performance of the method on
the function

f(x) = x3 − 14x2 + 68x − 115.

Produce a table similar to Table 6.1 on page 248.
6.8. Regula falsi method.

Write a program module similar to that of Exercise 6.5 to implement
the regula falsi method to find a root of a given function, which is input
together with two starting values and two stopping criteria: an epsilon
and a maximum number of iterations. Your program should check that
the two starting values are legitimate. Observe the performance of the
method on the function

f(x) = x3 − 14x2 + 68x − 115.

Produce a table similar to Table 6.1 on page 248.
6.9. Compare the performance of the four methods in Exercises 6.5 through 6.8

and that of the bisection method for the given polynomial.
Summarize your findings in a clearly-written report. Consider such things
as rate of convergence and ease of use of the method.

6.10. Consider the function
f(x) = x2

1 + 5x2
2,

whose minimum obviously is at (0, 0).
a) Plot contours of f . (You can do this easily in R, S-Plus or Matlab, for

example.)
b) In the steepest descent method, determine the first 10 values of α(k),

f
(
x(k)

)
, ∇f

(
x(k)

)
, and x(k), starting with x(0) = (5, 1). For the step

length, use the optimal value (equation (6.25), page 263).
c) Plot contours of the scaled quadratic model (6.34) of f at the point

(5, 1).
d) Repeat Exercise 6.10b using Newton’s method. (How many steps does

it take?)
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6.11. Show that the rank-one update of equation (6.39), page 270, results in a
matrix B(k+1) that satisfies the secant condition (6.37).

6.12. Assume a random sample y1, . . . , yn from a gamma distribution with pa-
rameters α and β. (Refer to Exercise 1.20 on page 78.)
a) Write a function in a language such as R, Matlab, or Fortran that

accepts a sample of size n and computes the least squares estimator
of α and β and an approximation of the variance-covariance matrix
using both expression (1.160) and expression (1.161).

b) Try out your program in Exercise 6.12a by generating a sample of
size 500 from a gamma(2,3) distribution and then computing the es-
timates. (The sample can be generated by rgamma in R or S-Plus and
by rngam in IMSL.)

c) Write a function in a language such as R, Matlab, or Fortran that
accepts a sample of size n and computes the maximum likelihood
estimator of α and β and computes an approximation of the variance-
covariance matrix using expression (1.168), page 73.

d) Try out your program in Exercise 6.12c by computing the estimates
from an artificial sample of size 500 from a gamma(2,3) distribution.

6.13. Dempster, Laird, and Rubin (1977) consider the multinomial distribution
with four outcomes, that is, the multinomial with probability function,

p(x1, x2, x3, x4) =
n!

x1!x2!x3!x4!
πx1

1 π
x2
2 π

x3
3 π

x4
4 ,

with n = x1 +x2 +x3 +x4 and 1 = π1 +π2 +π3 +π4. They assumed that
the probabilities are related by a single parameter, θ:

π1 =
1
2

+
1
4
θ

π2 =
1
4
− 1

4
θ

π3 =
1
4
− 1

4
θ

π4 =
1
4
θ,

where 0 ≤ θ ≤ 1. (This model goes back to an example discussed by
Fisher, 1925, in Statistical Methods for Research Workers.) Given an ob-
servation (x1, x2, x3, x4), the log-likelihood function is

l(θ) = x1 log(2 + θ) + (x2 + x3) log(1 − θ) + x4 log(θ) + c

and
dl(θ)/dθ =

x1

2 + θ
− x2 + x3

1 − θ +
x4

θ
.

The objective is to estimate θ.
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a) Determine the MLE of θ. (Just solve a simple polynomial equation.)
Evaluate the estimate using the data that Dempster, Laird, and Rubin
used: n = 197 and x = (125, 18, 20, 34).

b) Although the optimum is easily found as in the previous part of this
exercise, it is instructive to use Newton’s method (as in equation (6.29)
on page 266). Write a program to determine the solution by Newton’s
method, starting with θ̂(0) = 0.5.

c) Write a program to determine the solution by scoring (which is the
quasi-Newton method given in equation (6.68) on page 295), again
starting with θ̂(0) = 0.5.

d) Write a program to determine the solution by the EM algorithm, again
starting with θ̂(0) = 0.5.

e) How do these methods compare? (Remember, of course, that this is a
particularly simple problem.)
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Generation of Random Numbers

Monte Carlo simulation is a core technology in computational statistics. Monte
Carlo methods require numbers that appear to be realizations of random
variables. Obtaining these numbers is the process called “generation of random
numbers”.

Our objective is usually not to generate a truly random sample. Deep un-
derstanding of the generation process and strict reproducibility of any applica-
tion involving the “random” numbers is more important. We often emphasize
this perspective by the word “pseudorandom”, although almost anytime we
use a phrase similar to “generation of random numbers”, we refer to “pseudo-
random” numbers.

The quality of a process for random number generation is measured by
the extent to which the sample generated appears, from every imaginable
perspective, to be a random sample (that is, i.i.d.) from a given probability
distribution. Some methods of random number generation are better than
others.

7.1 Randomness of Pseudorandom Numbers

The initial step in random number generation is to obtain a sequence that
appears to be independent realizations from a uniform distribution over the
open interval (0, 1). We denote this distribution by U(0, 1).

While mathematically there is no difference in a continuous distribution
over [0, 1] ⊂ IR and one over (0, 1) ⊂ IR, there is a difference in a distribution
over [0, 1] ⊂ IF and over (0, 1) ⊂ IF. Because of the computations we may
perform with samples that appear to be from U(0, 1), we must make sure that
we exclude the zero-probability events of 0 and 1. (See Exercise 2.9a and its
solution on page 677 for a different situation, which may superficially appear
to be the same as this.)
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Generation of Pseudorandom Numbers from a Uniform
Distribution

There are several methods for generating uniform numbers. Most of these are
sequential congruential methods; that is, methods in which if a subsequence
of length j of positive numbers uk−1, . . . uk−j is given, the next value in the
sequence is

uk = f(uk−1, . . . uk−j)mod m (7.1)

for some function f and some positive number m and with uk chosen so that
0 ≤ uk < m. In this recursion, j is often chosen as 1.

It is clear that if the subsequence uk−1, . . . uk−j ever occurs again, the
next value in the sequence will always be the same; hence, it is clear that on
a computer, for any f , the sequence will be periodic in IF or ZZ because those
sets are finite. In practice, however, the form of f is such that the sequence will
also be periodic within IR. The period is an important property of a random
number generator. Obviously the period must be great enough that we do not
expect to exhaust it in applications.

A simple instance of equation (7.1) in which m and the ui are integers is

uk = auk−1mod m with 0 < uk < m. (7.2)

This is called a linear congruential generator. Because the ui are integers, it
is clear that the period cannot exceed m − 1.

Another type of modular reduction scheme works at the bit level, doing
circular shifts and additions of selected bits to the popped bit. One class of
such methods is called a generalized feedback shift register (GFSR) method
in which numbers between 0 and 1 are formed by successively circularly shift-
ing the bits in a fixed-size register while adding a bit from a fixed location
within the register. (This is the “feedback”.) After a fixed number of circular
shifts with the feedback, the bits in a fixed subset of the register are selected
to represent a random number. The process continues, with a new random
number being delivered after each fixed number of feedback circular shifts.

One of the best of the current methods for generating U(0, 1) is the
Mersenne twister described in Matsumoto and Nishimura (1998). This genera-
tor “twists” the terms in a sequence from a GFSR by a matrix multiplication.
It is called “Mersenne” because the period is a Mersenne prime (which is
a prime of the form 2p − 1, where p is a prime). One widely-used form of
the Mersenne twister that was constructed by Matsumoto and Nishimura is
called MT19937. It has a period of 219937 − 1 and can be implemented so as
to execute very fast.

A problem in any random sampling, of course, is that a particular sample
might not very well reflect the distribution of interest. Use of a pseudorandom
number generator can yield “good” or “bad” samples. Another approach to
random number generation is not to try to simulate randomness, but rather
to ensure that any generated sequence is more like a “good” random sample.
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Sequences generated in this way are called “quasirandom” numbers. We will
not describe this approach here.

A sequence of pseudorandom numbers generated by a computer program is
determined by a seed; that is, an initial state of the program. In the generator
of equation (7.2), the seed is x0. The seed for the generator of equation (7.1)
is the initial sequence of j positive numbers. A given seed generates the same
sequence of pseudorandom numbers every time the program is run. The abil-
ity to control the sequence is important because this allows the experimenter
to reproduce results exactly and also to combine experiments that use pseudo-
random numbers.

There are various algorithms for generating pseudorandom numbers, and
various computer programs that implement these algorithms. Some algorithms
and programs are better than others. Statistical tests for randomness ap-
plied to samples of pseudorandom numbers generated by good random num-
ber generators yield results consistent with hypotheses of randomness. The
pseudorandom numbers simulate random samples. A large set of statistical
tests for random number generators is TESTU01, developed by L’Ecuyer and
Simard (2007). The tests can be run at three different levels.

Although the algorithms for random number generation seem fairly simple,
there are a number of issues that must be taken into account when implement-
ing these algorithms in computer programs. Rather than writing code from
scratch, it is generally better to use existing computer code. In Section 7.6 we
describe available software in Fortran or C and in R or S-Plus.

7.2 Generation of Nonuniform Random Numbers

Samples from other distributions are generated by using transformations of
sequences of a stream of U(0, 1) random numbers. We will briefly describe
some of these methods below. These techniques are sometimes called “sam-
pling methods”.

To generate a realization of a random variable, X , with any given distri-
bution, we seek a transformation of one or more independent U(0, 1) random
variables, U1, . . . , Uk,

X = f(U1, . . . , Uk),

such that X has the desired distribution. In some cases, the transformation f
may be a simple transformation of a single uniform variable. For example, to
obtain a standard exponential random variable, the transformation

X = − log(U)

yields one exponential for each uniform variable. In other cases, the trans-
formation may involve multiple stages in which we first transform a set of
uniform variables to a set of variables with some other joint distribution and
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then identify a marginal or conditional distribution that corresponds to the
desired distribution.

The transformations must be done with care and must respect the non-
randomness in the underlying uniform generator.

For example, for a double exponential distribution, with density

p(x) =
1
2
e−|x|,

consider the simple method:
Generate U1 and U2; set X = log(U1); then if U2 > 0.5, set X = −X .

Often such mathematically correct transformations must be performed
with special care on the computer. In this example, if the uniform stream is
from a linear congruential generator with a relatively small multiplier, the
method will yield a stream of double exponentials in which all extreme values
are positive. (Because if U1 is very small, U2 will be also.)

Inverse CDF Method

If X is a scalar random variable with a continuous cumulative distribution
function (CDF) PX , then the random variable

U = PX(X)

has a U(0, 1) distribution.
This fact provides a very simple relationship with a uniform random vari-

able U and a random variable X with CDF PX , namely,

X = P−1
X (U), (7.3)

where the inverse of the CDF exists. Use of this straightforward transforma-
tion is called the inverse CDF technique. The log transformation mentioned
above that yields an exponential random variable uses the inverse CDF.

For a discrete random variable, although the inverse of the CDF does not
exist, the inverse CDF method can still be used. The value of the discrete
random variable is chosen as the smallest value within its countable range
such that the CDF is no less than the value of the uniform variate.

For a multivariate random variable, the inverse CDF method yields a level
curve in the range of the random variable; hence, the method is not directly
useful for multivariate random variables. Multivariate random variates can be
generated using the inverse CDF method first on a univariate marginal and
then on a sequence of univariate conditionals.

Acceptance/Rejection Methods

Acceptance/rejection methods for generating realizations of a random variable
X make use of realizations of another random variable Y whose PDF gY is
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similar to the PDF of X , pX . The random variable Y is chosen so that we
can easily generate realizations of it and so that its density gY can be scaled
to majorize pX using some constant c; that is, so that cgY (x) ≥ pX(x) for all
x. The density gY is called the majorizing density, and cgY is called the ma-
jorizing function. The majorizing density is also called the “proposal density”.
The density of interest, pX , is called the “target density”. The support of the
target density must be contained in the support of the majorizing density; for
densities with infinite support, the majorizing density must likewise have in-
finite support. In the case of infinite support, it is critical that the majorizing
density not approach zero faster than the target density.

Acceptance/rejection methods can also be used for discrete random vari-
ables. We use the term “probability density” to include a probability mass
function, and all of the discussion in this section applies equally to probabil-
ity functions and probability densities.

Unlike the inverse CDF method, acceptance/rejection methods apply im-
mediately to multivariate random variables.

Algorithm 7.1 The Acceptance/Rejection Method to Convert
Uniform Random Numbers

1. Generate y from the distribution with density function gY .
2. Generate u from a uniform (0,1) distribution.
3. If u ≤ pX(y)/cgY (y), then

3.a. take y as the desired realization;
otherwise,

3.b. return to step 1.

It is easy to see that Algorithm 7.1 produces a random variable with the
density pX . Let Z be the random variable delivered. For any x, because Y
(from the density g) and U are independent, we have

Pr(Z ≤ x) = Pr
(

Y ≤ x | U ≤ pX(Y )
cgY (Y )

)

=

∫ x
−∞

∫ pX (t)/cgY (t)
0 gY (t) ds dt

∫∞
−∞

∫ pX (t)/cgY (t)
0 gY (t) ds dt

=
∫ x

−∞
pX(t) dt,

which is the CDF corresponding to pX . (Differentiating this quantity with
respect to x yields pX(x).) Therefore, Z has the desired distribution.

It is easy to see that the random variable corresponding to the number of
passes through the steps of Algorithm 7.1 until the desired variate is delivered
has a geometric distribution. This random variable is a measure of the ineffi-
ciency of the algorithm. Because both cgY and pX are densities, it is easy to
see that the expected value of this random variable is c. (See Exercise 7.3.)



310 7 Generation of Random Numbers

A straightforward application of the acceptance/rejection method is very
simple. For distributions with finite support, the density g can always be cho-
sen as a uniform. For example, to generate deviates from a beta distribution
with parameters α and β— that is, the distribution with density,

p(x) =
1

B(α,β)
xα−1(1 − x)β−1, for 0 ≤ x ≤ 1,

where B(α,β) is the complete beta function — we could use a uniform ma-
jorizing density, as shown in Figure 7.1.
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Fig. 7.1. Beta (2, 7) Density with a Uniform Majorizing Density

The value of c by which we scale the uniform density should be as small as
possible to minimize the frequency with which we reject the candidate points.
This requires determination of the maximum value of the beta density, which
we can compute very easily in S-Plus or R just by evaluating the density at
the mode:

xmode <- (alpha-1.)/(alpha+beta-2.)
dmax <- xmode^(alpha-1.)*(1-xmode)^(beta-1)*

gamma(alpha+beta) / (gamma(alpha)*gamma(beta))

To generate deviates from the beta using the uniform majorizing density,
we could write the following R statements:

y<-runif(1000)
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x<-na.omit(ifelse(
runif(1000)<=dbeta(y,alpha,beta)/dmax, y, NA))

Of course, in these statements, the number of beta variates delivered in x will
not be known a priori; in fact, the number will vary with different executions
of the statements. Instead of using a program that holds all the values in
vectors, we generally form an explicit loop in the program to obtain a given
number of deviates.

Considering the large area between a scaled uniform density and the beta
density shown in Figure 7.1, it is clear that the uniform is not a very efficient
density to use for the majorizing density, even though it is extremely easy to
use. When a random uniform point falls in the areas marked “R”, the point
is rejected; when it falls in the area marked “A”, the point is accepted. Only
1 out of dmax (≈ 3.18) will be accepted.

As another example just for illustration, consider the use of a normal with
mean 0 and variance 2 as a majorizing density for a normal with mean 0 and
variance 1, as shown in Figure 7.2. A majorizing density like this whose shape
more closely approximates that of the target density is more efficient. The
problem in this case, obviously, is that if we could generate deviates from the
N(0, 2) distribution, we could generate ones from the N(0, 1) distribution.

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

de
ns

ity

N(0,1)

N(0,2)

R

A

R

Fig. 7.2. Normal (0, 1) Density with a Normal (0, 2) Majorizing Density

The value of c required to make the density of N(0, 2) majorize that of
N(0, 1) is

√
2. Hence, one out of ≈ 1.41 candidate points will be accepted.
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Although the acceptance/rejection method can be used for multivariate
random variables, in that case the majorizing distribution must also be mul-
tivariate. For higher dimensions, another problem is the relationship of the
rejection region to the acceptance region. In the one-dimensional case, as
shown in Figure 7.2, the acceptance region is the area under the lower curve,
and the rejection region is the thin shell between the two curves. In higher
dimensions, even a thin shell contains most of the volume, so the rejection
proportion would be high. See Section 16.7, page 573, and Exercise 16.10,
page 583.

Use of Conditional Distributions

Sometimes, the density of interest, pX , can be represented as a marginal den-
sity of some joint density, pXY , that has tractable conditional densities, pX|Y
and pY |X . If we can generate realizations from the conditional distributions,
observations on X can often be generated as a discrete-time Markov process
whose elements have densities

pYi|Xi−1 , pXi|Yi
, pYi+1|Xi

, pXi+1|Yi+1 , . . . . (7.4)

This is possible if the distribution of the Xi in the sequence converges to that
of X . (A note on terminology: The term “Markov chain” is often restricted
to a Markov process with a countable state space. If the support of X or Y
is continuous, the state space of the bivariate sequence {(Xi, Yi)} is uncount-
able. Current terminology in random number generation for such a process,
however, is “Markov chain”. There are some differences, and Tierney, 1994,
1996, discusses some of the additional complexities arising from a continuous
state space that are relevant to the use of such processes in random number
generation.)

The transition kernel of Xi in the Markov chain is

pXi|Xi−1(xi|xi−1) =
∫

pXi|Yi
(xi|y) pYi|Xi−1(y|xi−1) dy.

Starting with X0 and stepping through the transitions, we have

pXi|X0(x|x0) =
∫

pXi|Xi−1(x|t) pXi−1|X0(t|x0) dt. (7.5)

As i → ∞, the density in equation (7.5) converges to pX under very mild
regularity conditions on the densities pXi and pYi|Xi

. (Existence and absolute
continuity are sufficient; see, for example, Nummelin, 1984.) The problem is
analogous to the more familiar one involving a discrete-state Markov chain,
where convergence is assured if all of the entries in the transition matrix
TX|X = TY |XTX|Y are positive.

The usefulness of this method for random number generation depends on
identifying a joint density with conditionals that are easy to simulate.
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For example, if the distribution of interest is a standard normal for the
random variable X , and Y is a random variable conditionally uniform over
(0, e−X2

), the joint density

pXY (x, y) =
1√
2π

1
e−x2/2

, for −∞ < x < ∞, 0 < y < e−x2
,

has a marginal density corresponding to the distribution of interest, and it
has simple conditionals. The conditional distribution of Y |X is U(0, e−X2

),
and the conditional of X |Y is U(−

√
− logY ,

√
− logY ). Starting with x0 in

the range of X , we generate y1 as a uniform conditional on x0, then x1 as a
uniform conditional on y1, and so on.

The auxiliary variable Y that we introduce just to simulate X is called
a “latent variable”. Use of conditional distributions to generate random vari-
ables in this way is called Gibbs sampling, which we consider again on page 317.

A chain of conditional distributions can also be used for discrete random
variables. In that case, the Markov process is a discrete-state Markov chain,
and the analysis is even simpler.

Conditional distributions can also be used for a multivariate random vari-
able, and in fact that is one of the most important applications of the method.
We discuss the Gibbs algorithm further, for generation of multivariate random
variables, on page 317.

7.3 Acceptance/Rejection Method Using a Markov
Chain

A discrete-time Markov chain is the basis for several schemes for generating
random numbers, either continuous or discrete, and multivariate as well as
univariate. The differences in the various methods using Markov processes
come from differences in the transition kernel. Sometimes, the transition kernel
incorporates an acceptance/rejection decision. The elements of the chain can
be accepted or rejected in such a way as to form a different chain whose
stationary distribution is the distribution of interest. Simulation methods that
make use of a Markov chain to generate samples are called Markov chain
Monte Carlo, or MCMC, methods. The interest is not in the sequence of the
Markov chain itself. Methods based on Markov chains are iterative because
several steps must be taken before the stationary distribution is achieved. In
practice, it is very difficult to determine the length of the “burn-in” period,
that is, to determine when a stationary distribution has been achieved.

For a distribution with density p, the Metropolis algorithm or Metropolis
random walk introduced by Metropolis et al. (1953), generates a random walk
and performs an acceptance/rejection based on p evaluated at successive steps
in the walk. In the simplest version, the walk moves from the point yi to the
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point yi+1 = yi + s, where s is a realization from U(−a, a), and accepts yi+1

if
p(yi+1) / p(yi) ≥ u, (7.6)

where u is an independent realization from U(0, 1).
If the range of the distribution is finite, the random walk is not allowed to

go outside of the range.
Hastings (1970) developed an algorithm that is based on a transition kernel

with a more general acceptance/rejection decision. The Metropolis-Hastings
sampler to generate deviates from a distribution with density pX uses deviates
from a Markov chain with a completely different density, gYt+1|Yt

. The con-
ditional density gYt+1|Yt

is chosen so that it is easy to generate deviates from
it, and realizations from this distribution are selectively chosen as realizations
from the distribution with density pX .

Algorithm 7.2 Metropolis-Hastings Algorithm

0. Set i = 0, and choose xi in the support of p.
1. Generate y from the density gYt+1|Yt

(y|xi).
2. Set r:

r = pX(y)
gYt+1|Yt

(xi|y)
pX(xi)gYt+1|Yt

(y|xi)
.

3. If r ≥ 1, then
3.a. set xi+1 = y;

otherwise
3.b. generate u from the uniform(0,1) distribution and

if u < r, then
3.b.i. set xi+1 = y,

otherwise
3.b.ii. set xi+1 = xi.

4. Set i = i + 1 and go to step 1.

The r in step 2 is called the Hastings ratio, and step 3 is called the
“Metropolis rejection”. The conditional density, gYt+1|Yt

(·|·), is called the “pro-
posal density” or the “candidate generating density”. Notice that because the
majorizing function contains pX as a factor, we only need to know pX to
within a constant of proportionality. This is an important characteristic of
the Metropolis algorithms, including the random walk that only uses the ra-
tio in (7.6).

We can illustrate the use of the Metropolis-Hastings algorithm in using a
Markov chain in which the density of Xt+1 is normal with a mean of Xt and
a variance of σ2. Let us use this density to generate a sample from a standard
normal distribution (that is, a normal with a mean of 0 and a variance of
1). We start with x0, chosen arbitrarily. We take logs and cancel terms in
the expression for r. The output from an R implementation of the method
is shown in Figure 7.3. Notice that the values descend very quickly from the
starting value, which would be a very unusual realization of a standard normal.
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Fig. 7.3. Sequential Output from a N(0, 1) Distribution Using a Markov Chain,
N(Xt,σ2)

In practice, we generally cannot expect such a short burn-in period. Notice
also the horizontal line segments where the underlying Markov chain did not
advance.

7.4 Generation of Multivariate Random Variates

For multivariate distributions with a very large number of variables, the stan-
dard acceptance/rejection method is difficult to apply because it is difficult to
determine a usable majorizing density. In addition, the acceptance/rejection
method is not very efficient because the rejection rate becomes higher in higher
dimensions, as we mentioned when discussing Figure 7.2.

The most common ways of generating multivariate random variates are by
use of either i.i.d. (independent, identically distributed) univariates followed
by a transformation or else by a sequence of conditional univariates.

Transformations Based on the Variance-Covariance Matrix

If Y1, . . . , Yd is a sequence of i.i.d. univariate random variables with variance
1, the variance-covariance matrix of the random d-vector Y composed of those
elements is the identity Id. Assume that the mean of Y is 0. This is without
loss of generality because the mean can always be adjusted by an addition.



316 7 Generation of Random Numbers

Consider the random d-vector X , where X = AY for the nonsingular matrix
A. The variance-covariance matrix of this transformed random variable is
AAT. Suppose that we want to determine a transformation of i.i.d. random
variables with unit variances that yields a random variable with variance-
covariance matrix Σ. If Y is the vector of the i.i.d. random variables, and A
is a matrix such that AAT = Σ, then X = AY is the transformation. The
matrix A could be either the Cholesky factor or the square root of Σ, for
example (see Gentle, 2007, Section 5.9).

This transformation is a very good way of generating multivariate normal
random variables. For other multivariate distributions, however, its usefulness
is more limited.

Sequences of Conditional Distributions

The other common way of generating a multivariate random number is by
use of a sequence of univariate random numbers from conditional univariate
distributions that combine to yield the desired multivariate distribution.

Again, for the multivariate normal distribution, this is a simple method.
For example, consider a multivariate normal with mean of 0 and variance-
covariance matrix Σ, with elements σij . If

X1 is generated as N(0, σ11),
X2 is generated as N(σ12X1/σ11, σ22 − σ2

12/σ11),
and so on,

then
X = (X1, X2, . . .)

has a multivariate normal distribution with variance-covariance matrix Σ.
Some other multivariate distributions can also be easily generated by a se-
quence of conditional distributions, but for many distributions, the method
may be considerably more complicated.

Covariances or correlations are the natural way to define multivariate nor-
mal distributions, but for other distributions, copulas may be more appro-
priate for expressing the associations (see page 32). If marginal distributions
are given, a multivariate distribution with bivariate associations expressed
through copulas can be formed by use of the inverse CDF method applied
both to a marginal CDF and a conditional CDF, using equation (1.82). Sup-
pose we have two marginal CDFs PX1 and PX2 , and a joint CDF defined by
the copula C(PX1 , PX2 ). In notation following that of equation (1.82), let Cu

be the partial derivative of C with respect to its first argument. We then gen-
erate independent uniforms U1 and U2, and set V = C−1

u (U2). Next we form
our desired deviates (X1, X2) as X1 = P−1

X1
(U1) and X2 = P−1

X2
(V ). The same

idea can be extended to more than two random variables, working first with
uniforms as above and then transforming all of the uniforms by the inverses of
the marginal CDFs. In Exercise 7.5 you are asked to use copulas to generate
bivariate distributions.
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Gibbs Sampling

In some cases, it is possible to reduce the problem to a sequence that begins
with a univariate marginal distribution and then builds up the random vector
by conditional distributions that include the generated elements one at a time.
This is possible by decomposing the multivariate density into a marginal and
then a sequence of conditionals:

pX1X2X3···Xd = pX1|X2X3···Xd
· pX2|X3···Xd

· · · pXd .

In other cases, we may have a full set of conditionals:

pXi|{Xj ;j ̸=i}.

In this case, we can sample from a Markov process by updating individual
random variables given the values of the other random variables at a previous
time, in the same way as the process (7.4) on page 312. This iterative technique
is called “Gibbs sampling”. It was introduced by Geman and Geman (1984)
and further developed by Gelfand and Smith (1990), among others.

The Gibbs sampler begins with an arbitrary starting point, x(0)
1 , x(0)

2 , . . . , x(0)
d ;

generates x(1)
1 from knowledge of p

X
(1)
1 |x(0)

2 ,...,x
(0)
d

; generates x(1)
2 from knowl-

edge of p
X(1)

2 |x(1)
1 ,x(0)

3 ,...,x(0)
d

; and so on.

The process is then iterated in this systematic fashion to get x(2)
1 , x(2)

2 , . . . , x(2)
d ,

and so on. A full iteration requires generation of d random variables. Because
of the arbitrary starting point, the iterations may not immediately yield de-
viates from the target distribution.

Geman and Geman showed that (X(i)
1 , X(i)

2 , . . . , X(i)
d ) converges in distri-

bution to (X1, X2, . . . , Xd) so that each component individually converges.
This result does not depend on the conditional generations at each iteration
being done in the same order.

Algorithm 7.3 Gibbs Sampling Method

0. Set k = 0 and choose x(0).
1. Generate x(k+1)

1 conditionally on x(k)
2 , x(k)

3 , . . . , x(k)
d ,

Generate x(k+1)
2 conditionally on x(k+1)

1 , x(k)
3 , . . . , x(k)

d ,
. . .
Generate x(k+1)

d−1 conditionally on x(k+1)
1 , x(k+1)

2 , . . . , x(k)
d ,

Generate x(k+1)
d conditionally on x(k+1)

1 , x(k+1)
2 , . . . , x(k+1)

d−1 .
2. If convergence has occurred, then

2.a. deliver x = x(k+1);
otherwise,

2.b. set k = k + 1, and go to step 1.

Gibbs sampling can be extremely slow to converge. Furthermore, it is often
difficult to determine when convergence has occurred (see the discussion be-
ginning on page 420). The convergence is slower when the correlations among
the variables are larger (see Exercise 7.6).
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Probability Densities Known Only Proportionally

It is often easy to specify a model up to a constant of proportionality. For
example, let t be a vector-valued statistic over some sample space and let

h(x) = e⟨t(x),θ⟩,

where ⟨t(x), θ⟩ denotes the dot product of t(x) and θ. This specifies a family
of densities

fθ(x) =
1

c(θ)
e⟨t(x),θ⟩,

where
c(θ) =

∫
e⟨t(x),θ⟩ dµ(x).

In general, if h is a nonnegative integrable function that is not zero almost
everywhere, a probability density p can be defined by normalizing h:

p(x) =
1
c
h(x),

where
c =

∫
h(x) dµ(x).

We may know h but not c, and c may not be easy to evaluate, especially if h is
multivariate. Some Markov chain Monte Carlo methods are particularly useful
in dealing with such multivariate distributions that have densities known up
to a constant of proportionality. In the ratio (7.6) in the Metropolis random
walk or in the Hastings ratio in Algorithm 7.2, the constant c would not be
required; h alone could be used to simulate realizations from p.

There are many problems in Bayesian inference in which densities are
known only up to a constant of proportionality. In such problems h is the
likelihood times the prior. Normalizing h — that is, determining the integral
c — may be difficult, but Markov chain Monte Carlo methods allow simula-
tions of realizations from the posterior without knowing c.

7.5 Data-Based Random Number Generation

Often we have a set of data and wish to generate pseudorandom variates from
the same data-generating process that yielded the given data. How we do
this depends on how much we know or what assumptions we make about the
data-generating process. At one extreme, we may assume full knowledge of
the data-generating process; for example, we may assume that the given set of
data came from a normal distribution with known mean and variance. In this
case, we use the well-known techniques for generating pseudorandom variates
from a N(µ,σ2) distribution.
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A slightly weaker assumption is that the data came from a normal dis-
tribution, but we do not know the mean or variance. In this case, a simple
approach may be to use the given data to estimate the mean and standard
deviation and then proceed as if the estimates were the true values. (Notice
that if we want the process to be unbiased, we cannot use the square root
of the sample variance as the estimate of the standard deviation.) Use of a
parametric model, such as the normal distribution, with given or estimated
values of the parameters, is a parametric approach. Because the parameters
are estimated from the data, we call it the empirical parametric method. In
Section 11.3 on page 424, we discuss the use of estimated parameters in boot-
strap simulations for statistical inference such as hypothesis testing or setting
confidence bounds. The empirical parametric method is also sometimes called
a “parametric bootstrap”.

For many of the parametric families shown in Tables B.1 and B.2 begin-
ning on page 660 there are standard methods of generating random variables.
The empirical parametric method is appropriate when the parameters can be
estimated from a given dataset.

In addition to the standard parametric families shown in Tables B.1
and B.2, there are some general families of probability distributions that are
very useful in data-based random number generation because they cover wide
ranges of shapes and have a variety of interesting properties that are controlled
by a few parameters. Some, such as Tukey’s generalized lambda distribution
are designed to be particularly simple to simulate. We discuss these families
of distributions in Section 14.2.

A strong assumption that does not involve parameters in the usual sense
is that the given data resulted from a discrete data-generating process (that
is, one that can yield only a countable set of distinct values). In this case,
we would generate pseudorandom variates by sampling (or “resampling”) the
given set of data.

Even for a given sample of univariate data from a continuous data-
generating process, the ECDF could be used in place of the CDF in a standard
inverse CDF method, as described on page 308. We discuss direct use of the
ECDF in Sections 11.2 and 11.4. The ECDF defines a distribution with a finite
range [y(1), y(n)] corresponding to the smallest and largest order statistics of
the data. Instead of using the ECDF to generate random data, we may choose
to use the probabilities associated with the empirical quantiles, as discussed
on page 62, if they can be determined.

For a given sample of multivariate data, our pseudorandom samples must
capture probabilities of general regions. The correlations in the given sample
must be replicated.

As we have mentioned above, it is not practical to use the inverse CDF
method directly for multivariate distributions.

Taylor and Thompson (1986) suggest a different way that avoids the step of
estimating a density. The method has some of the flavor of density estimation;
however, in fact it is essentially equivalent to fitting a density with a normal
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kernel. It uses the m nearest neighbors of a randomly selected point; m is
a smoothing parameter. The method is particularly useful for multivariate
data. Suppose that the given sample is {x1, x2, . . . , xn} (the xs are vectors).
A random vector deviate is generated by the steps given in Algorithm 7.4.

Algorithm 7.4 Thompson–Taylor Data-Based Simulation

1. Randomly choose a point, xj , from the given sample.
2. Identify the m nearest neighbors of xj (including xj), xj1 , xj2 , . . . , xjm ,

and determine their mean, x̄j .
3. Generate a random sample, u1, u2, . . . , um, from a uniform distribution

with lower bound 1
m −

√
3(m−1)

m2 and upper bound 1
m +

√
3(m−1)

m2 .
4. Deliver the random variate

z =
m∑

k=1

uk(xjk − x̄j) + x̄j .

The limits of the uniform weights and the linear combination for z are
chosen so that the expected value of the ith element of a random variable Z
that yields z is the ith element of the sample mean of the xs, x̄i; that is,

E(Zi) = x̄i.

(The subscripts in these expressions refer to the elements of the data vec-
tors rather than to the element of the sample.) Likewise, the variance and
covariance of elements of Z are close to the sample variance and covariance of
the elements of the given sample. If m = 1, they would be exactly the same.
For m > 1, the variance is slightly larger because of the variation due to the
random weights. The exact variance and covariance, however, depend on the
distribution of the given sample because the linear combination is of nearest
points. The routine rndat in the IMSL Libraries implements this method.

7.6 Software for Random Number Generation

Random number generators are widely available in a variety of software pack-
ages. Although the situation may not be as dire as when Park and Miller
(1988) stated, “good ones are hard to find”, the user must be careful in se-
lecting a random number generator.

Basic Uniform Generators

Some programming languages, such as C, Fortran, and Ada 95, provide built-
in random number generators. In C, the generator is the function rand() in
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stdlib.h. This function returns an integer in the range 0 through RAND MAX,
so the result must be normalized to the range (0, 1). (The scaling should be
done with care. It is desirable to have uniform numbers in (0, 1) rather than
[0, 1].) The seed for the C random number generator is set in srand().

In Fortran, the generator is the subroutine random number, which returns
U(0, 1) numbers. (The user must be careful, however; the generator may yield
either a 0 or a 1.) The seed can be set in the subroutine random seed. The
design of the Fortran module as a subroutine yields a major advantage over
the C function in terms of efficiency. (Of course, because Fortran has the basic
advantage of arrays, the module could have been designed as an array function
and would still have had an advantage over the C function.)

A basic problem with the built-in generator of C, Fortran, and Ada 95 is
lack of portability. The standards do not specify the algorithm. The bindings
are portable, but none of these generators will necessarily generate the same
sequence on different platforms.

Other Distributions

Given a uniform random number generator, it is usually not too difficult to
generate variates from other distributions. For example, in Fortran, the inverse
CDF technique for generating a random deviate from a Bernoulli distribution
with parameter π can be implemented by the code in Figure 7.4.

integer, parameter :: n = 100 ! INITIALIZE THIS
real, parameter (pi) :: pi = .5 ! INITIALIZE THIS
real, dimension (n) :: uniform
real, dimension (n) :: bernoulli
call random_number (uniform)
where (uniform .le. pi)

bernoulli = 1.0
elsewhere

bernoulli = 0.0
endwhere

Fig. 7.4. A Fortran Code Fragment to Generate n Bernoulli Random Deviates with
Parameter π

Implementing one of the simple methods to convert a uniform deviate to
that of another distribution may not be as efficient as a special method for the
target distribution, and those special methods may be somewhat complicated.
The IMSL Libraries and S-Plus and R have a number of modules that use
efficient methods to generate variates from several of the more common distri-
butions. Matlab has a basic uniform generator, rand, and a standard normal
generator, randn. The Matlab Statistics Toolbox also contains generators for
several other distributions.
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A number of Fortran or C programs are available in collections published
by Applied Statistics and by ACM Transactions on Mathematical Software.
These collections are available online at statlib and netlib, respectively.
See page 692 in the bibliography for more information.

The freely distributed GNU Scientific Library (GSL) contains several C
functions for random number generation. There are several different basic uni-
form generators in the library. Utility functions in the library allow selection
of a uniform generator for use by the functions that generate nonuniform num-
bers. In addition to a number of newer uniform generators, including quasiran-
dom number generators, there are basic uniform generators that yield output
sequences that correspond (or almost correspond) to legacy generators pro-
vided by various systems developers, such as the IBM RANDU and generators
associated with various Unix distributions. The random number generators in
GSL can be accessed from R by use of the gsl package.

Information about the GNU Scientific Library, including links to sites from
which source code can be obtained, is available at

http://www.gnu.org/software/gsl/

The Guide to Available Mathematical Software, or GAMS (see the Bibli-
ography) can be used to locate special software for various distributions.

The User Interface for Random Number Generators

Software for random number generation must provide a certain amount of
control by the user, including the ability to:

• set or retrieve the seed;
• select seeds that yield separate streams;
• possibly select the method from a limited number of choices.

Whenever the user invokes a random number generator for the first time
in a program or session, the software should not require the specification of
a seed but should allow the user to set it if desired. If the user does not
specify the seed, the software should use some mechanism, such as accessing
the system clock, to form a “random” seed. On a subsequent invocation of
the random number generator, unless the user specifies a seed, the software
should use the last value of the seed from the previous invocation. This means
that the routine for generating random numbers must produce a “side effect”;
that is, it changes something other than the main result. It is a basic tenet of
software engineering that side effects must be carefully noted. At one time, side
effects were generally to be avoided. In object-oriented programming, however,
objects may encapsulate many entities, and as the object is acted upon, any
of the components may change. Therefore, in object-oriented software, side
effects are to be expected. In object-oriented software for random number
generation, the state of the generator is an object.
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Another issue to consider in the design of a user interface for a random
number generator is whether the output is a single value (and an updated
seed) or an array of values. Although a function that produces a single value
as the C function rand() is convenient to use, it can carry quite a penalty
in execution time because of the multiple invocations required to generate
an array of random numbers. It is generally better to provide both single-
and multivalued procedures for random number generation, especially for the
basic uniform generator.

Random Number Generation in IMSL Libraries

For doing Monte Carlo studies, it is usually better to use a software system
with a compilable programming language, such as Fortran or C. Not only do
such systems provide more flexibility and control, but the programs built in
the compiler languages execute faster. To do much work in such a system,
however, a library or routines both to perform the numerical computations in
the inner loop of the Monte Carlo study and to generate the random numbers
driving the study are needed.

The IMSL Libraries contain a large number of routines for random number
generation. The libraries are available in both Fortran and C, each providing
the same capabilities and with essentially the same interface within the two
languages. In Fortran the basic uniform generator is provided in both function
and subroutine forms.

The uniform generator allows the user to choose among seven different
algorithms: a linear congruential generator with modulus of 231 − 1 and with
three choices of multiplier, each with or without shuffling, and the generalized
feedback shift generator described by Fushimi (1990), which has a period of
2521 − 1. The multipliers that the user can choose are the “minimal stan-
dard” one of Park and Miller (1988), which goes back to Lewis, Goodman,
and Miller (1969) and two of the “best” multipliers found by Fishman and
Moore (1982, 1986).

The user chooses which of the basic uniform generators to use by means
of the Fortran routine rnopt or the C function imsls random option. For
whatever choice is in effect, that form of the uniform generator will be used
for whatever type of pseudorandom events are to be generated. The states of
the generators are maintained in a common block (for the simple congruential
generators, the state is a single seed; for the shuffled generators and the GFSR
generator, the state is maintained in a table). There are utility routines for
setting and saving states of the generators and a utility routine for obtaining
a seed to skip ahead a fixed amount.

There are routines to generate deviates from most of the common distrib-
utions. Most of the routines are subroutines but some are functions. The algo-
rithms used often depend on the values of the parameters to achieve greater
efficiency. The routines are available in both single and double precision. (Dou-
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ble precision is more for the purpose of convenience for the user than it is for
increasing accuracy of the algorithm.)

A single-precision IMSL Fortran subroutine for generating from a specific
distribution has the form

rnname (number, parameter 1, parameter 2, ..., output array)

where “name” is an identifier for the distribution, “number” is the number of
random deviates to be generated, “parameter i” are parameters of the distri-
bution, and “output array” is the output argument with the generated devi-
ates. The Fortran subroutines generate variates from standard distributions,
so location and scale parameters are not included in the argument list. The
subroutine and formal arguments to generate gamma random deviates, for
example, are

rngam (nr, a, r)

where a is the shape parameter (α) of the gamma distribution. The other
parameter in the common two-parameter gamma distribution (usually called
β) is a scale parameter. The deviates produced by the routine rngam have a
scale parameter of 1; hence, for a scale parameter of b, the user would follow
the call above with a call to a BLAS routine:

sscal (nr, b, r, 1)

Identifiers of distributions include those shown in Tables B.1 and B.2 begin-
ning on page 660. In addition to the ones shown in those tables there are IMSL
random number generators for random two-way tables, exponential mixtures,
correlation matrices, points on a circle or sphere, order statistics from a normal
or uniform, an ARMA process, and a nonhomogeneous Poisson process.

For general distributions, the IMSL Libraries provide routines for an alias
method and for table lookup, for either discrete or continuous distributions.
The user specifies a discrete distribution by providing a vector of the proba-
bilities at the mass points and specifies a continuous distribution by giving the
values of the cumulative distribution function at a chosen set of points. In the
case of a discrete distribution, the generation can be done either by an alias
method or by an efficient table lookup method. For a continuous distribution,
a cubic spline is first fit to the given values of the cumulative distribution
function, and then an inverse CDF method is used to generate the random
numbers from the target distribution. Another routine uses the Thompson-
Taylor data-based scheme (Taylor and Thompson, 1986) to generate deviates
from an unknown population from which only a sample is available.

Other routines in the IMSL Libraries generate various kinds of time series,
random permutations, and random samples. The routine rnuno, which gen-
erates order statistics from a uniform distribution, can be used to generate
order statistics from other distributions.

All of the IMSL routines for random number generation are available in
both Fortran and C. The C functions have more descriptive names, such as
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random normal. Also, the C functions may allow specification of additional ar-
guments, such as location and scale parameters. For example, random normal
has optional arguments IMSLS MEAN and IMSLS VARIANCE.

Controlling the State of the Generators

Figure 7.5 illustrates the way to save the state of an IMSL generator and then
restart it. The functions to save and to set the seed are rnget and rnset.

call rnget (iseed) ! save it
call rnun (nr, y) ! get sample, analyze, etc.

...
call rnset (iseed) ! restore seed
call rnun (nr, yagain) ! will be the same as y

Fig. 7.5. Fortran Code Fragment to Save and Restart a Random Sequence Using
the IMSL Library

In a library of numerical routines such as the IMSL Libraries, it is likely
that some of the routines will use random numbers in regular deterministic
computations, such as an optimization routine generating random starting
points. In a well-designed system, before a routine in the system uses a random
number generator in the system, it will retrieve the current value of the seed
if one has been set, use the generator, and then reset the seed to the former
value. IMSL subprograms are designed this way. This allows the user to control
the seeds in the routines called directly.

Random Number Generation in R and S-Plus

Both R and S-Plus provides some choices for the basic type of random number
generator, but R and S-Plus do not use the same random number generators.
Monte Carlo studies conducted using one system cannot reliably be reproduced
exactly in the other system.

In R, the function RNGkind can be used to choose the type of the generator.
The default currently is the Mersenne twister MT19937.

Random number generation in either R or S-Plus is done with basic func-
tions of the form

rname ( number [, parameters] )

where “name” is an identifier for the distribution, “number” is the number of
random deviates to be generated, which can be specified by an array argu-
ment, in which case the number is the number of elements in the array, and
“parameters” are parameters of the distribution, which may or may not be
required.
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For distributions with standard forms, such as the normal, the parame-
ters may be optional, in which case they take on default values if they are
not specified. For other distributions, such as the gamma or the t, there are
required parameters. Optional parameters are both positional and keyword.

For example, the normal variate generation function is

rnorm (n, mean=0, sd=1)

so
rnorm (n) yields n normal (0,1) variates
rnorm (n, 100, 10) yields n normal (100,100) variates
rnorm (n, 100) yields n normal (100,1) variates
rnorm (n, sd=10) yields n normal (0,100) variates

(Note that R and S-Plus consider one of the parameters of the normal distri-
bution to be the standard deviation or the scale rather than the variance, as
is more common.)

For the gamma distribution, at least one parameter (the shape parameter)
is required. The function reference

rgamma (100,5)

generates 100 random numbers from a gamma distribution with a shape pa-
rameter of 5 and a scale parameter of 1 (a standard gamma distribution).

Identifiers of distributions include those shown in Tables B.1 and B.2 be-
ginning on page 660.

The function sample generates a random sample with or without replace-
ment. Sampling with replacement is equivalent to generating random numbers
from a (finite) discrete distribution. The mass points and probabilities can be
specified in optional arguments:

xx <- sample(massp, n, replace=T, probs)

Order statistics in R and S-Plus can be generated using the beta distrib-
ution and the inverse distribution function. For example, 10 maximum order
statistics from normal samples of size 30 can be generated by

x <- qnorm(rbeta(10,30,1))

Controlling the State of the Generators

Both R and S-Plus use an object called .Random.seed to maintain the state of
the random number generators. In R, .Random.seed also maintains an indi-
cator of which of the basic uniform random number generators is the current
choice. Anytime random number generation is performed, if .Random.seed
does not exist in the user’s working directory, it is created. If it exists, it is
used to initiate the pseudorandom sequence and then is updated after the
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sequence is generated. Setting a different working directory will change the
state of the random number generator.

The function set.seed(i) provides a convenient way of setting the value
of the .Random.seed object in the working directory to one of a fixed number
of values. The argument i is an integer between 0 and 1023, and each value
represents a state of the generator, which is “far away” from the other states
that can be set in set.seed.

To save the state of the generator, just copy .Random.seed into a named
object, and to restore, just copy the named object back into .Random.seed,
as in Figure 7.6.

oldseed <- .Random.seed # save it
y <- runif(1000) # get sample, analyze, etc.
...
.Random.seed <- oldseed # restore seed
yagain <- rnorm(1000) # will be the same as y

Fig. 7.6. Code Fragment to Save and Restart a Random Sequence Using R or
S-Plus

A common situation is one in which computations for a Monte Carlo study
are performed intermittently and are interspersed with other computations,
perhaps broken over multiple sessions. In such a case, we may begin by setting
the seed using the function set.seed(i), save the state after each set of com-
putations in the study, and then restore it prior to resuming the computations,
similar to the code shown in Figure 7.7.

set.seed(10) # set seed at beginning of study
... # perform some computations for the Monte Carlo study
MC1seed <- .Random.seed # save the generator state
... # do other computations
.Random.seed <- MC1seed # restore seed
... # perform some computations for the Monte Carlo study
MC1seed <- .Random.seed # save the generator state

Fig. 7.7. Starting and Restarting Monte Carlo Studies in S-Plus or R

The built-in functions in S-Plus that use the random number generators
have the side effect of changing the state of the generators, so the user must
be careful in Monte Carlo studies where the computational nuclei, such as
ltsreg for robust regression, for example, invoke an S-Plus random number
generator. In this case, the user must retrieve the state of the generator prior
to calling the function and then reset the state prior to the next invocation of
a random number generator.
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To avoid the side effect of changing the state of the generator, when writing
a function in R or S-Plus, the user can preserve the state upon entry to the
function and restore it prior to exit. The assignment

.Random.seed <- oldseed

in Figure 7.6, however, does not work if it occurs within a user-written function
in R or S-Plus. Within a function, the assignment must be performed by the
<<- operator. A well-designed R or S-Plus function that invokes a random
number generator would have code similar to that in Figure 7.8.

oldseed <- .Random.seed # save seed on entry
...
.Random.seed <<- oldseed # restore seed on exit
return(...)

Fig. 7.8. Saving and Restoring the State of the Generator within an S-Plus or R
Function

Monte Carlo in R and S-Plus

Explicit loops in R or S-Plus execute slowly. In either package, it is best to
use array arguments for functions rather than to loop over scalar values of the
arguments. Consider, for example, the problem of evaluating the integral

∫ 2

0
log(x + 1)x2(2 − x)3 dx.

This could be estimated in a loop as follows:

# First, initialize n.
uu <- runif(n, 0, 2)
eu <- 0
for (i in 1:n) eu <- eu + log(uu[i]+1)*uu[i]^2*(2-uu[i])^3
eu <- 2*eu/n

A much more efficient way, without the for loop, but still using the uniform,
is

uu <- runif(n, 0, 2)
eu <- 2*sum(log(uu+1)*uu^2*(2-uu)^3)/n

Alternatively, using the beta density as a weight function, we have

eb <- (16/15)*sum(log(2*rbeta(n,3,4)+1))/n
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(Of course, if we recognize the relationship of the integral to the beta distri-
bution, we would not use the Monte Carlo method for integration.)

For large-scale Monte Carlo studies, an interpretive language such as S-
Plus or R may require an inordinate amount of running time. These systems
are very useful for prototyping Monte Carlo studies, but it is often better to
do the actual computations in a compiled language such as Fortran or C.

Notes and Further Reading

There are a number of books and review papers on random number genera-
tion. I am most familiar with Gentle (2003). Chapter 1 in that book has an
extensive discussion of recursive methods for generating sequences of U(0, 1)
random numbers; Chapter 2 addresses quality of random number generators
and methods of testing their quality; Chapter 3 discusses quasirandom num-
bers; and Chapters 4 and 5 describe methods of transforming a uniform se-
quence into a sequence from a given distribution. Section 4.14 in that book
describes methods for generating random variates to simulate a general mul-
tivariate distribution.

L’Ecuyer (2004) gives an overview of random number generation, with an
emphasis on the basic uniform generators and testing their quality.

The use of Markov chains to form a “proposal” distribution has become
a very useful tool in Bayesian statistical analyses. Random number genera-
tion using a stationary Markov chain majorizing density for applications in
Bayesian analyses is discussed and illustrated extensively in Albert (2007) and
Marin and Robert (2007).

In Appendix B, for the standard distributions, we give the root name of
the R/S-Plus and IMSL functions for generating deviates from those distrib-
utions.

Exercises

7.1. Prove that if X is a random variable with an absolutely continuous distrib-
ution function PX , the random variable PX (X) has a U(0, 1) distribution.

7.2. Acceptance/rejection methods.
a) Give an algorithm to generate a normal random deviate using the ac-

ceptance/rejection method with the double exponential density as the
majorizing density. After you have obtained the acceptance/rejection
test, try to simplify it.

b) What would be the problem with using a normal density to make a
majorizing function for the double exponential distribution (or using
a half-normal for an exponential)?

c) Write a program to generate bivariate normal deviates with mean
(0, 0), variance (1, 1), and correlation ρ. Use a bivariate product double
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exponential density as the majorizing density. Now, set ρ = 0.5 and
generate a sample of 1,000 bivariate normals. Compare the sample
statistics with the parameters of the simulated distribution.

7.3. Acceptance/rejection methods.
Let T be the number of passes through the steps of the algorithm until a
variate is accepted.
a) Determine the mean and variance of T for the method described in

Algorithm 7.1.
b) Consider a modification of the acceptance/rejection method given in

Algorithm 7.1, in which steps 1 and 2 are reversed and the branch in
step 3 is back to the new step 2; that is:
1. Generate u from a uniform (0,1) distribution.
2. Generate y from the distribution with density function gY .
3. If u ≤ pX(y)/cgY (y), then take y as the desired realization;

otherwise, return to step 2.
Is this a better method? Determine the mean and variance of T for
this method. (This method was suggested by Sibuya, 1961.)

7.4. Use the Metropolis-Hastings algorithm (page 314) to generate a sample
of standard normal random variables. Use as the candidate generating
density, g(x|y), a double exponential density in x with mean y; that is,
g(x|y) = 1

2e−|x−y|. Experiment with different burn-in periods and differ-
ent starting values. Plot the sequences generated. Test your samples for
goodness-of-fit to a normal distribution. (Remember that they are corre-
lated.) Experiment with different sample sizes.

7.5. Let Y and Z have marginal distributions as exponential random variables
with parameters α and β respectively.
a) Consider a joint distribution of Y and Z defined by a Gumbel copula

(equation (1.86), page 34). Write an algorithm to generate a random
pair (Y, Z).

b) Consider a joint distribution of Y and Z difined by a Gaussian cop-
ula (equation (1.83)). Write an algorithm to generate a random pair
(Y, Z).

c) Write a program to implement your algorithm in Exercise 7.5b. (For
any serious random number generation, you should use a compiled
language such as Fortran or C, but for this, you can use any language.
The point of the question is more important than the programming.)
Now generate 10,000 bivariate exponentials defined by the Gaussian
copula with ρ = 0.5. Compute an estimate of the correlation coefficient
of Y and Z. Compare this with Exercise 1.7 on page 75. (Although
the correlation coefficient may not have much meaning for bivariate
exponentials, it is still defined in the usual way.)

7.6. Consider the use of Gibbs sampling to generate samples from a bivariate
normal distribution. Let the means be 0, the variances be 1, and the
correlation be ρ. Both conditional distributions have the same form, which
is given in the discussion of the use of marginal/conditional distributions
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on page 316. Let ρ = 0, 0.2, 0.5, 0.8. Generate samples with varying lengths
of burn-in and assess the fidelity of the samples by computing summary
statistics and by plots of your samples. Describe the efficiency of Gibbs
sampling for this problem.



Part III

Methods of Computational Statistics



Introduction to Part III

The field of computational statistics includes a set of statistical methods that
are computationally intensive. These methods may involve looking at data
from many different perspectives and looking at various subsets of the data.
Even for moderately sized datasets, the multiple analyses may result in a
large number of computations. Statistical methods may be computationally
intensive also because the dataset is extremely large. With the ability to collect
data automatically, ever-larger datasets are available for analysis.

Viewing data from various perspectives often involves transformations such
as projections onto multiple lower-dimensional spaces. Interesting datasets
may consist of subsets that are different in some important way from other
subsets of the given data. The identification of different subsets and the prop-
erties that distinguish them is computationally intensive because of the large
number of possible combinations.

Another type of computationally intensive method useful in a wide range
of applications involves simulation of the data-generating process. Study of
many sets of artificially generated data helps to understand the process that
generates real data. This is an exciting method of computational statistics
because of the inherent possibilities of unexpected discoveries through exper-
imentation.

Monte Carlo experimentation is the use of simulated random numbers to
estimate some functional of a probability distribution. In simple applications
of Monte Carlo, a problem that does not naturally have a stochastic com-
ponent may be posed as a problem with a component that can be identified
with an expectation of some function of a stochastic variable. The problem
is then solved by estimating the expected value by use of a simulated sample
from the distribution of a random variable. In such applications, Monte Carlo
methods are similar to other methods of numerical analysis.

Monte Carlo methods differ from other methods of numerical analysis,
however, in yielding an estimate rather than an approximation. The “numer-
ical error” in a Monte Carlo estimate is due to a pseudovariance associated
with a pseudorandom variable; but the numerical error in standard numerical
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analysis is associated with approximations, including discretization, trunca-
tion, and roundoff.

Monte Carlo methods can also be used to make inferences about para-
meters of models and to study random processes. In statistical inference, real
data are used to estimate parameters of models and to study random processes
assumed to have generated the data. Some of the statistical methods discussed
in Part III use simulated data in the analysis of real data. There are several
ways this can be done.

If the simulated data are used just to estimate one or more parameters,
rather than to study the probability model more generally, we generally use
the term Monte Carlo to refer to the method. Whenever simulated data are
used in the broader problem of studying the complete process and building
models, the method is often called simulation. This distinction between a
simulation method and a Monte Carlo method is by no means universally
employed; and we will sometimes use the terms “simulation” and “Monte
Carlo” synonymously.

In either simulation or Monte Carlo, an actual dataset may be available;
but it may be supplemented with artificially generated data. The term “resam-
pling” is related to both “simulation” and “Monte Carlo”, and some authors
use it synonymously with one or both of the other terms. In this text, we
generally use the term “resampling” to refer to a method in which random
subsamples are generated from a given dataset; that is, there is no additional
artificially generated data.

In the chapters in Part III, we discuss the general methods of computa-
tional statistics. These include:

• graphical methods;
• projection and other methods of transforming data and approximating

functions;
• Monte Carlo methods and simulation;
• randomization and use of subsets of the data;
• bootstrap methods.

Some of the chapters in Part III have close correspondence to chapters
in Part II. The methods of Chapter 9 rely heavily on Chapter 5; those of
Chapter 10, on Chapter 4; and those of Chapter 11, on Chapter 7. Of course,
the basic methods of random number generation (Chapter 7) underlie many
of the methods of computational statistics.
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Graphical Methods in Computational Statistics

One of the first steps in attempting to understand data is to visualize it.
Visualization of data and information provides a wealth of tools that can be
used in detecting features, in discovering relationships, and finally in retaining
the knowledge gained.

Graphical displays have always been an important part of statistical
data analysis, but with the continuing developments in high-speed computers
and high-resolution devices, the usefulness of graphics has greatly increased.
Higher resolution makes for a more visually pleasing display, and occasionally
it allows features to be seen that could not be distinguished otherwise. The
most important effects of the computer on graphical methods in statistics,
however, arise from the ease and speed with which graphical displays can
be produced, rather than from the resolution. Rapid production of graphical
displays has introduced motion and articulated projections and sections into
statistical graphics. Such graphical methods are important tools of computa-
tional statistics. The multiple views are tools of discovery, not just ways of
displaying a set of data that has already been analyzed. Although the power
of graphical displays has greatly increased, some of the most useful graphs are
the simple ones, as illustrated in Section 1.1, and they should not be ignored
just because we can do more impressive things.

Proper design of a graphical display depends on the context of the ap-
plication and the purpose of the graphics, whether it is for the analyst to
get a better understanding of the data or to present a picture that conveys
a message. Our emphasis in the following discussion is on methods useful in
exploratory graphics.

One thing that is lagging in the statistical literature is the use of color
in graphical displays. The simple mechanics used in producing popular maga-
zines are yet to be incorporated in the production of learned journals. Journals
available in electronic form do not have these production problems, and it is
likely that the paper versions of many journals will be discontinued before the
production of color is mastered.
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Data of three or fewer dimensions can be portrayed on a two-dimensional
surface fairly easily, but for data of higher dimensions, various transformations
must be employed. The simplest transformations are just projections onto two
dimensions, but transformations of points into other geometric objects may
often reveal salient features. It is useful to have multiple views of the data
in which graphical objects are linked by color or some other visual indicator.
This linking is called brushing. An interactive graphics program may allow
interesting sets points to be “roped” by the data analyst using a pointing
device to draw a curve around the representations of the observations. When
the analyst associates a particular color or other identifying attribute with
given observations in one view, those same observations are endowed with the
same attribute simultaneously in the other views. The analyst may also wish
to magnify the region of the graph containing these special observations or
perform other transformations selectively.

The number of variables and the number of observations may determine
the way that graphical displays are constructed. If the number of observations
is large we may first make a few plots of samples of the full dataset. Even
for multivariate data, some initial plots of single variables may be useful. A
preliminary 4-plot for each variable on a dataset can be a useful, automatic
part of almost any analysis of data (see page 9).

Most often we are interested in graphical representations of a dataset, but
we can distinguish three basic types of objects that a graphical display may
represent:

• discrete data;
• mathematical functions;
• geometrical objects.

The graphical elements that represent discrete data are simple plotting sym-
bols: dots, circles, and so on. The graphical elements that represent functions
or geometrical objects may be curves or surfaces. Because of the discrete na-
ture of the picture elements (pixels) of a graphical display, both continuous
functions and geometrical objects must be converted to discrete data to pro-
duce a graph. Hence, beginning with either functions or geometrical objects,
we arrive at the task of graphing discrete data. The data, at the lowest level,
correspond to adjacent pixels.

The Graphical Coordinate System

The basic activity in producing a graphical display is to translate data rep-
resented in a “world coordinate system” into a representation in a graphics
“device coordinate system”. Positions in the world coordinate system are rep-
resented in the computer in its floating-point scheme. Positions in the device
coordinate system correspond to picture elements, or “pixels”, which can ap-
pear as black or white dots or dots of various colors. The graphical display
is the pointillistic image produced by the pixels. The type of the coordinate
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system used, cartesian or homogeneous, may depend on the types of transfor-
mations on the data to be performed in the graphical analysis.

For display on a flat surface, such as a sheet of paper, the graphical coor-
dinate system is necessarily two-dimensional. This means that the data in a
world coordinate system, which may be multidimensional, must be projected
onto a two-dimensional system. An orthogonal projection of the points onto
the two-dimensional system are just the two-tuples of coordinates of the points
in the graphical coordinate system. If the world coordinate system of the data
is two-dimensional, this projection does not sacrifice information. If, however,
the data in the world coordinate system are three-dimensional, the relative
orientation of the two coordinate systems becomes important because the
amount of information conveyed in a given two-dimensional system is usually
less than the information available in the full coordinate system. This ori-
entation corresponds to the angle from which we view the three-dimensional
data. Not only is the angle important, the distance from which the three-
dimensional data are viewed is important. For objects that are not transpar-
ent, this distance may determine which object can be seen from the given
angle. In any event, the distance determines the perspective, which provides
a sense of depth. These ideas of the viewing angle and the “eye position” for
a two-dimensional perspective extends to data of any dimension.

Images

The images themselves are usually constructed in one of two ways: as a raster
or as a vector. A raster image is a fixed set of pixels. It is resolution-dependent,
so if it is displayed at a higher resolution or its size is increased, jagged edges
may appear. A vector image is made up of mathematically defined lines and
curves. The definitions do not depend on the resolution. Modifications to the
image, such as moving it or changing its size, are relatively simple and scalable
because they are made to the mathematical definition.

Displays of Large Data Sets

As the number of observations increases, information should increase. A prob-
lem with many graphical displays, however, is that large amounts of data result
in too dense a graph, and there may actually be a loss of information. Data
points are overplotted. There is too much “ink” and too little information.
If there were no low-dimensional structure in the data shown in Figure 9.4
on page 379 in Chapter 9, for example, the plot, which represents only 1,000
points, would just be an almost solid blob.

When overplotting occurs for only a relatively small number of points, and
especially if the data are not continuous (that is, data points occur only on a
relatively coarse lattice), the overplotting problem can be solved by jittering,
which is the process of plotting the data at nearby points rather than at the
exact point (“exact” subject to the resolution of the plot).
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For large datasets we may associate each observation with a single pixel.
The number of observations in a dataset may be even larger than the number
of pixels, in which case we must locally smooth the data.

For very large datasets where the number of observations is greater than
the number of pixels, it is clear that some other approach must be used to rep-
resent the data. It is necessary either to sample the data, to smooth the data
and plot the smoothed function, and/or to plot a representation of the density
of the data. Gray scale or relative sizes of the plotting symbols can also be ef-
fective for representing the data density, especially for univariate or bivariate
data. It can also be used in two-dimensional projections of multivariate data.

Smoothing and graphing of data are activities that go well together.
Smoothing provides a better visual display, and conversely, the display of
the smoothed data provides a visual assessment of smoothing.

Datasets that are large because of the number of variables present a more
difficult problem. The nature of the variables may allow special representations
that are useful for that type of data.

Data Analysis and Human Perception

Visual perception by humans is a complex process. We may identify three
fairly distinct aspects. The first is the physical and physiological, the optics,
the retinal photoreceptors and their responses, and the matching of colors.
The second phase is the representation, that is, the analysis of images in the
neural retina and the visual cortex. This involves sensitivity to and recogni-
tion of patterns, requiring multiresolution of images. The third aspect is the
interpretation of information in the visual representation. Perception of color,
motion, and depth plays an important role in all of these phases.

Although color can be very useful in the visual representation of data,
poorly chosen colors are a major distraction in statistical graphics. Many
statisticians and other data analysts are aware of the importance of carefully
chosen colors for enhancing visual displays. There are two issues that need
emphasis, however. One is the differences in the effects of color in different
media. A color scheme that appears very useful on one computer monitor may
not be appropriate on other monitors or on printed media. Another problem
arises from the not insignificant proportion of persons who are color-blind
but in all other ways are normally-sighted. Color-blindness usually involves
only two colors, often complementary ones. The most common type of color-
blindness in America is red-green; that is, the inability to distinguish red and
green. For normally-sighted persons, however, these two colors show up well
and are easily distinguished; hence, they are obvious choices for use in color
graphics.

Other senses, such as hearing and touch, may be usefully employed in
coming to a better understanding of a set of data.

Immersive techniques in which data are used to simulate a “virtual reality”
may help in understanding complicated data. Such systems consist of various
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projectors, mirrors, and speakers; eyeglasses with alternating shutters; and
user controls for feedback.

8.1 Smoothing and Drawing Lines

In typical applications, the observed data represent points along some con-
tinuous range of possibilities. Hence, although we begin with discrete data,
we wish to graph a continuous function. We assume a continuous function as
an underlying model of the process that generated the data. The process of
determining a continuous function from the data is called smoothing.

Smoothing is often an integral process of graphing discrete data. A smooth
curve helps us to visualize relationships and trends.

Graphing Continuous Functions

There are two common situations in statistics that lead to approximation
and estimation of functions. Sometimes, one of the variables in a dataset is
modeled as a stochastic function of the other variables, and a model of the
form

y ≈ f(x) (8.1)

is used. The “dependent” or “response” variable y is related to the variable x
by an unknown function f .

In another type of situation, the variable x is assumed to be a realization of
a random variable X , and we are interested in the probability density function

pX(x). (8.2)

In both of these cases, x may be a vector.
In the former case, in which relationships of variables are being modeled as

in model (8.1), the dataset consists of pairs (yi, xi). A smooth curve or surface
that represents an estimate or an approximation of f helps us to understand
the relationship between y and x. Fitting this curve smoothes the scatter plot
of yi versus xi. There are, of course, several ways of smoothing the data, as
discussed from various perspectives in Chapters 4, 10, and 17.

Bézier Curves

In graphical applications and in geometric modeling, Bézier curves are used ex-
tensively because they are quickly computed. Bézier curves are smooth curves
in two dimensions that connect two given points with a shape that depends on
points in between. For a given set of points in two dimensions, p0, p1, . . . , pn,
called control points, Bézier curves are required to satisfy two conditions:

1. The two endpoints p0 and pn must be interpolated.
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2. The rth derivatives at p0 and pn are determined by r adjacent points to
produce a smooth curve. The first derivative at p0, for example, is the line
determined by p0 and p1.

These conditions obviously do not uniquely determine the curves.
The Bézier curve is determined by the set of points {p0, . . . , pn} (that is,

in two dimensions, pi = (x, y)), defined parametrically by

p(u) =
n∑

i=0

piBi,n(u), (8.3)

where u ∈ [0, 1] and Bi,n(u) is the Bernstein polynomial,

Bi,n(u) =
n!

i!(n − i)!
ui(1 − u)n−i for u ∈ [0, 1]. (8.4)

For example,

B0,3(u) = (1 − u)3,
B1,3(u) = 3u(1 − u)2,
B2,3(u) = 3u2(1 − u),
B3,3(u) = u3.

The Bernstein polynomial Bi,n is proportional to the PDF of a standard beta
distribution with parameters α = i+1 and β = n− i+1. (They are essentially
the same as the beta weight function used in defining the Jacobi polynomials
on page 170, except those beta weights were over the interval [−1, 1]. The
standard beta is over [0, 1].) The Bernstein polynomials are not orthogonal
polynomials.

For n+1 control points, (x0, y0), (x1, y1), . . . , (xn, yn), we use the series of
Bernstein polynomials Bi,n(u) for i = 0 . . . n.

Note that because of the form of the Bernstein polynomials, the sequence
of points could be reversed without changing the curve.

In Figure 8.1, we show four Bézier curves of various degrees. In the top
left panel, there are three control points, (0, 5), (10, 4), (9, 2) and the quadratic
Bernstein polynomials are used. In the top right panel, an additional control
point is inserted between the second and third: (0, 5), (10, 4), (12, 3), (9, 2) and
the cubic Bernstein polynomials are used. Notice, how the additional point
pulls the curve farther to the right, so that the curve doubles back onto itself.

In the bottom panels of Figure 8.1, we form closed Bézier curves by making
the first and last control points the same. In the lower left panel there are two
control points (points 1 and 2) that pull the cubic curve out into a narrow
loop. In the lower right panel, two more control points have been added and
the quintic curve forms a more open loop.
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Fig. 8.1. Bézier Curves and Control Points

Bézier curves are widely used in graphics because they can be computed
quickly. They can be implemented in interactive graphics software to allow
the user to adjust curves smoothly. They are also used by graphic designers
to define characters or logos that are immediately scalable.

Continuous Densities

If no particular variable in a multivariate dataset is considered a dependent
variable, we may be interested in the probability density function p that de-
scribes the distribution of a multivariate random variable. A histogram is
one representation of the probability density. The histogram is a method of
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smoothing data, but the histogram itself can be smoothed in various ways,
or, alternatively, other smooth estimates of the density can be computed.

Fitting models using observed data is an important aspect of statistical
data analysis. Distributional assumptions may be used to arrive at precise
statements about parameters in the model. Smoothing for graphical displays
is generally less formal. The purpose is to help us to visualize relationships
and distributions without making formal inferences about models.

8.2 Viewing One, Two, or Three Variables

Plots of one or two variables are easy to construct and often easy to interpret.
Plots of three variables can use some of the same techniques as for one or two
variables. For datasets with more variables, it is often useful to look at the
variables one, two, or three at a time, or to look at projections of all variables
into a two- or three-dimensional subspace.

One of the most important properties of data is the shape of its distribu-
tion, that is, a general characterization of the density of the data. The density
of the data is measured by a nonnegative real number. The density is thus an
additional variable on the dataset. The basic tool for looking at the shape of
the distribution of univariate data is the histogram. A histogram is a graph
of the counts or the relative frequency of the data within contiguous regions
called bins. Graphs such as histograms that represent the density have one
more dimension than the dimension of the original dataset.

A scatter plot, which is just a plot of the points on cartesian axes repre-
senting the variables, is useful for showing the distribution of two-dimensional
data. The dimension of the scatter plot is the same as the dimension of the
data. In a scatter plot, data density is portrayed by the density of the points
in the plot.

We use the phrases “two-dimensional” and “three-dimensional” in refer-
ence to graphical displays to refer to the dimension of the space that the
display depicts in a cartesian system. Thus, the dimension of a scatter plot
of either two or three variables is the same as the dimension of the data, al-
though in either case the actual display either on a monitor or on paper is
two-dimensional. In statistical displays, we often are interested in an addi-
tional dimension that represents the distribution or density of the data. As
noted above, plots representing densities have one more dimension than the
data.

Histograms and Variations

A histogram is a presentation, either graphical or tabular, of the counts of
binned or discrete data. The vertical axis in a histogram may be the counts
(frequencies) in the bins or may be proportions representing densities such
that the total area adds up to 1.
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The formation of bins for grouping data is one of the most fundamental
aspects of visualizing and understanding data. The bins in a histogram gen-
erally all have the same width, but this is not necessary; sometimes, if there
are only a small number of observations over a wide range, the bins over that
range can be made wider to smooth out the roughness of the variation in the
small counts.

The number of bins in a histogram can markedly affect its appearance, es-
pecially if the number of observations is small. In Figure 8.2, four histograms
are shown, each of the same dataset. The data are a pseudorandom sample of
size 30 from a gamma distribution with shape parameter 3 and scale parame-
ter 10. In this simple example, we get different pictures of the overall shape
of the data depending on the number of bins. It is worthwhile to consider
this example of a small dataset because the same issues may arise even in
very large datasets in high dimensions. In large datasets in high dimension,
we also sometimes have “small sample” problems, especially when we focus
on “slices” of the data.
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Fig. 8.2. Histograms of the Same Data with Different Fixed Bin Sizes (Data from
a Gamma Distribution)

More bins give a rougher appearance of the histogram. Either too few or
too many bins can obscure structure in the data. In Figure 8.2, when only
three or four bins are used, the curvature of the density is not apparent;
conversely, when twelve bins are used, it is difficult to ascertain any simple
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pattern in the data. In general, the number of bins should be greater for a
larger number of observations. A simple rule for the approximate number of
bins to use is

1 + log2 n,

where n is the number of observations.
Figure 8.3 shows the same data as used in Figure 8.2 and with the same

cutpoints for the bins as the histogram with seven bins, except that some bins
have been combined. The appearance of the histogram is smoother and, in
fact, is closer to the appearance expected of a histogram of a sample from a
gamma distribution with a shape parameter of 3. (Notice that this is a density
histogram, rather than a frequency histogram, as in Figure 8.2. The actual
counts are less relevant when the bin widths are variable.)
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Fig. 8.3. Density Histogram of the Gamma Data with Bins of Variable Widths

Exploring the data by using histograms with different bin widths is useful
in understanding univariate data. The objective is not to match some known
or desired distribution but rather to get a better view of the structure of
the data. Obviously, the histogram of a random sample from a particular
distribution may never look like the density of that distribution. Exploration
of the data for gaining a better understanding of it is not to be confused
with manipulation of the data for presentation purposes, which is a common
objective in statistical graphics.
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The appearance of a histogram can also be affected by the location of
the cutpoints of the bins. The cutpoints of the histogram in the lower left of
Figure 8.2, which has seven bins, are

0, 10, 20, 30, 40, 60, 70.

Shifting the cutpoints by 2, so that the cutpoints are

2, 12, 22, 32, 42, 62, 72,

results in the histogram in the upper right-hand corner of Figure 8.4, and
further shifts in the cutpoints result in the other histograms in that figure.
Notice the changes in the apparent structure in the data.
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Fig. 8.4. Histograms of the Same Set of Gamma Data with Different Locations of
Bins

The use of histograms with different widths and locations of bins is an
example of a method of computational statistics. In the analysis of a dataset,
we should consider a number of different views of the same data. The emphasis
is on exploration of the data rather than on confirmation of hypotheses or
graphical presentation.

In the toy example that we considered, we could attribute the problems to
the relatively small sample size and so perhaps decide that the problems are
not very relevant. These same kinds of problems, however, can occur in very
large datasets if the number of variables is large.
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The Empirical Cumulative Distribution Function and q-q Plots

The empirical cumulative distribution function, or ECDF, is one of the most
useful summaries of a univariate sample. The ECDF is a step function, with
a saltus of 1

n at each point in a sample of size n. A variation of the ECDF,
the broken-line ECDF, with lines connecting the points, is often more useful.
A plot of the broken-line ECDF is shown in the graph on the left-hand side
in Figure 8.5.

Another variation of an ECDF plot is one that is flipped or folded at some
point of interest, such as the median. Such a plot is called a mountain plot. It
is often easier to see certain properties, such as symmetry, in a mountain plot.
A folded ECDF plot, or mountain plot, is shown on the right in Figure 8.5.
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Fig. 8.5. Plots of a Broken-Line ECDF and a Folded ECDF or Mountain Plot of
Data from a Gamma Distribution

The plot of the ECDF provides a simple comparison of the sample with
the uniform distribution. If the sample were from a uniform distribution, the
broken-line ECDF would be close to a straight line, and the folded ECDF
would be close to an isosceles triangle. The ECDF of a unimodal sample is
concave. The ECDF of a multimodal sample is convex over some intervals. The
plots of the sample of gamma variates in Figure 8.5 show a skewed, unimodal
pattern.

A sample can be compared to some other distribution very easily by a
transformation of the vertical axis so that it corresponds to the cumulative
distribution function of the given distribution. If the vertical axis is trans-
formed in this way, a broken-line ECDF plot of a sample from that distribu-
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tion would be close to a straight line. A plot with a transformed vertical axis
is called a probability plot.

A related plot is the quantile-quantile plot or q-q plot. In this kind of plot,
the quantiles or “scores” of the reference distribution are plotted against the
sorted data. The 1/nth quantile is plotted against the first order statistic in
the sample of size n, and so on. As we mentioned on page 62, the probabilities
associated with the empirical quantiles depend on the underlying distribution,
and in any event, are difficult to work out.

However the probability is chosen, the pth
k quantile (or “population quan-

tile”) is the value, xpk , of the random variable, X , such that

Pr(X ≤ xpk ) = pk.

In the case of the normal distribution, this value is also called the pth
k normal

score.
A q-q plot with a vertical axis corresponding to the quantiles of a gamma

distribution with a shape parameter of 4 is shown on the left-hand side in
Figure 8.6. This plot was produced by the R statement

plot(qgamma(ppoints(length(x)),4),sort(x))
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Fig. 8.6. Quantile-Quantile Plot for Comparing the Sample to Gamma Distribu-
tions

If the relative values of the sample quantiles correspond closely to the
distribution quantiles, the points fall along a straight line, as in the plot on the
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left-hand side in Figure 8.6. The data shown were generated from a gamma
distribution with a shape parameter of 4. When the sample quantiles are
compared with the quantiles of a gamma distribution with a shape parameter
of 1, as in the plot on the right-hand side in Figure 8.6, the extremes of the
sample do not match the quantiles well. The pattern that we observe for the
smaller observations (that is, that they are below a straight line that fits most
of the data) is characteristic of data with a heavier left tail than the reference
distribution to which it is being compared. Conversely, the larger observations,
being below the straight line, indicate that the data have a lighter right tail
than the reference distribution.

The sup absolute difference between the ECDF and the reference CDF
is the Kolmogorov distance, which is the basis for the Kolmogorov test (and
the Kolmogorov-Smirnov test) for distributions. The Kolmogorov distance,
however, does poorly in measuring differences in the tails of the distribution.
A q-q plot, on the other hand, generally is very good in revealing differences
in the tails.

An important property of the q-q plot is that its shape is independent of
the location and the scale of the data. In Figure 8.6, the sample is from a
gamma distribution with a scale parameter of 10, but the distribution quan-
tiles are from a population with a scale parameter of 1.

For a random sample from the distribution against whose quantiles it is
plotted, the points generally deviate most from a straight line in the tails.
This is because of the larger variability of the extreme order statistics. Also,
because the distributions of the extreme statistics are skewed, the deviation
from a straight line is in a specific direction (toward lighter tails) more than
half of the time (see Exercise 8.2, page 368).

The ECDF is most useful for univariate data. Plots based on the ECDF
for a multivariate dataset are generally difficult to interpret.

Representation of the Third Dimension

A three-dimensional plot on a two-dimensional surface is sometimes called
a “perspective plot”. Important characteristics of a perspective plot are the
viewing angle and the assumed position of the eye that is viewing the plot. In
a perspective plot, the simulated location of the eye determines the viewing
angle or line of sight and also affects the perspective.

A perspective plot attempts to give the appearance of a three-dimensional
space. It may consist of the individual three-dimensional data points, or, if
one of the coordinate variables is considered to be a function of the other two,
that variable usually is made to correspond to the vertical coordinate in the
display and the display itself is of a surface. We show a perspective plot on
page 382, which was produced by the R function persp.

Another simple way of reducing a three-dimensional display to a two-
dimensional one is by use of contour lines, or contour bands (usually of dif-
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ferent colors). A contour line represents a path over which the values in the
dimension not represented are constant.

Contours represent one extra dimension, so three-dimensional data are
often represented on a two-dimensional surface in a contour plot. A contour
plot is especially useful if one variable is a “dependent” variable (that is, one
for which we are interested in its relationship or dependence on the two other
variables). In a contour plot, lines or color bands are used to represent regions
over which the values of the dependent variable are constant.

For representing three-dimensional data in which one variable is a depen-
dent variable, an image plot is particularly useful. An image plot is a plot of
three-dimensional data in which one dimension is represented by color or by
a gray scale.

Image plots are especially useful in identifying structural dependencies.
They are often used when the two “independent” variables are categorical.
In such cases, the ordering of the categories along the two axes has a major
effect on the appearance of the plot. Figure 8.7 shows four image plots of the
same set of data representing gene expression activity for 500 genes from cells
from 60 different locations in a human patient. In the plot in the upper left,
the cells and genes are arbitrarily positioned along the axes, whereas in the
other plots there has been an attempt to arrange the cells and/or genes along
their respective axes to discover patterns that may be present.

Exploration with image plots is a powerful tool for discovering structure
and relationships. Clustering methods discussed in Chapter 16 can be used to
suggest orderings of the categorical variables. A “clustered image map” can be
particularly useful in detecting structural differences. See the programs and
data at

http://discover.nci.nih.gov
Both contour plots and image plots can be effective for large datasets in

which overplotting would be a serious problem in other types of plots.
Contour plots are produced by the contour function in both S-Plus and

R, and image plots are produced by the image function in both packages.
Other methods of representing the third dimension use color or some other

noncartesian property, such as discussed for general multivariate data begin-
ning on page 359. Another approach for three-dimensional data is to simulate
a visual perception of depth.

Rendering

Some methods of representing three-dimensional data attempt to simulate a
geometric object. These methods include direct volume rendering and surface
rendering. In either case, an important consideration is the point, called the
viewpoint, from which the space is viewed. In some cases, the viewpoint may
be a pair of points corresponding to the viewer’s two eyes.

In direct volume rendering, we attempt to display the density of material
or data along imaginary rays from the viewer’s eyes through the dataset. This
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Fig. 8.7. Image Plots with Different Orderings of the Categorical Variables

procedure is called ray tracing. The volume is rendered by assigning values
to voxels (three-dimensional equivalents of pixels). In one form, called binary
voxel volume rendering, the first object along the ray from the viewer’s eye
results in an opaque voxel that hides objects farther along the ray. Binary
rendering is often done by “z-buffering”. In this technique, a value representing
the depth of each point (discretized as a pixel) is stored, and the minimum
such depth (discretized) from the viewpoint is stored in a “z-buffer”. (It is
called this because in graphics for three dimensions, a cartesian coordinate
system (x, y, z) is commonly used, and by custom the plane of the display is
the x-y plane, or that plane moved slightly.) A point is hidden if its depth is
greater than the value in the z-buffer for that direction. In another form, called
semitransparent volume rendering, a transparency is assigned to a voxel based
on the value of the parameter that is being rendered. This allows visualization
of the interior of an object. This technique is widely used in medical imaging.

The simplest method of representing a surface is by use of a “wire frame”,
which is a grid deformed to lie on the surface. Generally, in a wire frame, the
grid lines on regions of surfaces that would be obscured by other surfaces are
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not shown. This is usually done by z-buffering. An example of a wire frame
surface is shown in Figure 9.5 on page 382. Sometimes, however, it is useful
to show the hidden lines in a wire frame, and with different line types, it is
possible to show lines that would be hidden but make clear that those lines are
in the background. It is often useful to combine a wire frame with a contour
plot on the flat surface representing the plane of two variables.

Other ways of depicting the surface, which use a continuous representation,
require consideration of the surface texture and the source of light that the
surface reflects.

Stereograms

A perception of depth or a third dimension in a two-dimensional display can
be induced by use of two horizontally juxtaposed displays of the same set of
points and a mechanism to cause one of the viewer’s eyes to concentrate on
one display and the other eye to concentrate on the other display. The stereo
pair may be in different colors, and the viewer uses glasses with one lens of
one color and the other lens of the other color (the colors are chosen so that
a lens of one color cancels the other color). Such a pair is called an anaglyph.
Another type of stereo pair, called a stereogram, requires the viewer to defocus
each separate view and fuse the two views into a single view. This fusion can
be aided by special glasses that present one view to one eye and the other
view to the other eye. Many people can perform the fusion without the aid
of glasses by focusing their eyes on a point either beyond the actual plane
of the display or in front of the plane. Either way works. The perspective in
one way is the reverse of the perspective in the other way. For some displays
and for some people, one way is easier than the other. In either type of stereo
pair, the features on the two displays are offset in such a way as to appear in
perspective.

Figure 8.8 shows a stereogram of data with three variables, x, y, and z.
The stereoscopic display is formed by two side-by-side plots of x and y in
which x is on the horizontal axes and z determines the depth. The perception
of depth occurs because the values of x are offset by an amount proportional
to the depth. The depth at the ith point is

di = c ·
(
zmax − zi

)xmax − xmin

zmax − zmin
. (8.5)

The choice of c in equation (8.5) depends on the separation of the displays
and on the units of measurement of the variables. The left-hand plot is of the
vectors x − d and y, and the right-hand plot is of x + d and y. If the eyes are
focused behind the plane of the paper, the vertex that is lowest on the graphs
in Figure 8.8 is at the front of the image; if the eyes are focused in front of the
plane of the paper (that is, if the eyes are crossed) the vertex that is highest
on the graphs in Figure 8.8 is at the front of the image.
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Fig. 8.8. Trivariate Data in a Stereogram

Although statisticians have experimented with anaglyphs and stereograms
for many years, these visual devices have generally had more value as enter-
tainment than as effective as tools of discovery. They may be useful, however,
for displaying features of the data that are already known.

Changing the Viewing Angle

The perception of depth can also be induced by rotating a single three-
dimensional scatter plot on a monitor. The perception of a third dimension
ceases when the movement stops, however. One way of preserving the motion
and hence the depth perception while still maintaining the viewing angle is to
rock the scatter plot (that is, to rotate the scatter plot back and forth through
a small angle).

In addition to the induced perception of depth, rotations, because they
give different perspectives on the data, often prompt discoveries of structure
in the data. For example, observations that are outliers in a direction that does
not correspond to the axis of any single variable may become apparent when a
three-dimensional scatter plot is rotated. We discuss rotation transformations
in some detail in Chapter 9 beginning on page 375.

Different people have differing abilities to interpret graphical displays. The
stereoscopic devices discussed above are not very useful for people with vision
in only one eye and for the growing number of people who use artificial lenses
to provide near vision in one eye and distance vision in the other.

Contours in Three Dimensions

Contour plots in three dimensions are surfaces that represent constant values
of a fourth variable. Methods for drawing contours for three-dimensional data
are similar to those for two-dimensional data; a three-dimensional mesh is
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formed, and the values of the function or of a fourth variable at the lattice
points of the mesh are used to decide whether and how a contour surface
may cut through the mesh volume element. The most widely used method for
drawing contours in three dimensions is “the marching cubes” method. (See
Schroeder, Martin, and Lorensen, 1996, for a good description of the method.)

Contours of three-dimensional data can also be represented in stereograms
using the same offsets as in equation (8.5). See Scott (2004, Section 4.4) for
examples.

8.3 Viewing Multivariate Data

Graphical displays are essentially limited to the two dimensions of a com-
puter monitor or a piece of paper. Various devices that simulate depth allow
visualization of a third dimension using just the two-dimensional surface. The
simplest such devices are reference objects, such as color saturation or perspec-
tive lines, that provide a sense of depth. Because of our everyday experience
in a three-dimensional world with an atmosphere, visual clues such as dimin-
ished color or converging lines readily suggest distance from the eye. Other,
more complicated mechanisms making use of the stereo perspective of the two
human eyes may suggest depth more effectively, as we discuss on page 353.
There are not many situations in which these more complicated devices pro-
vide more understanding of data than would be available by looking at various
two-dimensional views. They are more fun, however.

There are basically two ways of displaying higher-dimensional data on a
two-dimensional surface. One is to use multiple two-dimensional views, each
of which relates points in a cartesian plane with a projection of the points
in higher dimensions. The number of separate two-dimensional views of d-
dimensional data that convey the full information of the original data is O(d2).
The projections do not have to be orthogonal, of course, so the number of
projections is uncountable.

The other way is to use graphical objects that have characteristics other
than just cartesian coordinates that are associated with values of variables in
the data. These graphical objects may be other geometric mappings, or they
may be icons or glyphs whose shapes are related to specific values of variables.
The number of graphical objects is n, the number of observations, so some
of these methods of displaying high-dimensional data are useful only if the
number of observations is relatively small.

Projections

Numeric data can easily be viewed two variables at a time using scatter plots
in two-dimensional cartesian coordinates. Each scatter plot represents a pro-
jection from a given viewing angle. The projection may also be scaled to
simulate an eye position.
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An effective way of arranging these two-dimensional scatter plots of mul-
tidimensional data is to lay them out in a square (or triangular) pattern. All
scatter plots in one row of the pattern have the same variable on the vertical
axis, and all scatter plots in one column of the pattern have the same variable
on the horizontal axis, as shown in Figure 8.9. In this case, the various two-
dimensional graphical coordinate systems correspond directly to orthogonal
projections of the world coordinate system in which the data are represented.

Each view is a two-dimensional projection of a multidimensional scatter
plot, so all observations are represented in each view. This arrangement is
sometimes called a scatter plot matrix, or “SPLOM”. One is shown in Fig-
ure 8.9. The plot shows pairwise relationships among the variables and also
that the observations fall into distinct groups. (The plot in Figure 8.9 was
produced by the R function pairs. The plot uses the “Fisher iris data”. This
is a relatively small dataset that has been widely studied. The data are four
measurements on each of 50 iris plants from each of three species. The data
are available in S-Plus and R as iris.)
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Fig. 8.9. Scatter Plot Matrix of Fisher Iris Data

The two-dimensional scatter plots represent the data in the n × 2 ma-
trix, Xjk = X [ej |ek], where [ej |ek] is a d × 2 matrix and ei is the ith unit
column vector of length d. More general two-dimensional projections of the
d-dimensional data may also be useful. The n× d matrix X that contains the
data is post-multiplied by a d × d projection matrix of rank 2, and then the



8.3 Viewing Multivariate Data 357

data are plotted on cartesian axes that form an orthogonal basis of the two-
dimensional space. (A projection matrix is any real symmetric idempotent
matrix. The projection matrix used in the formation of Xjk above, if j < k, is
the d × d matrix consisting of all zeros except for ones in the (j, j) and (k, k)
positions. We will encounter projection matrices again in Chapter 9.)

The scatter plots in a SPLOM as described above are plots of unadjusted
marginal values of the individual variables. Davison and Sardy (2000) suggest
use of a partial scatter plot matrix (that is, scatter plots of residuals from
linearly adjusting each variable for all others except the other one in the
current scatter plot). This has the advantage of showing more precisely the
relationship between the two variables, because they are conditioned on the
other variables that may be related. Davison and Sardy also suggest forming a
scatter plot matrix using the marginal values in one half (say, the plots above
the diagonal) and using the adjusted values or residuals in the other half of
the matrix.

A sequence of projections is useful in identifying interesting properties of
data. In a “grand tour”, a plane is moved through a d-dimensional scatter
plot. As the plane moves through the space, all points are projected onto
the plane in directions normal to the plane. We discuss the grand tour on
page 363. Projection pursuit, as discussed in Section 16.5, is another technique
for successively considering lower-dimensional projections of a dataset in order
to identify interesting features of the data.

Projections cannot reveal structure of a higher dimension than the di-
mension of the projection. Consider, for example, a sphere, which is a three-
dimensional structure. A two-dimensional projection of the sphere is the same
as that of a ball; that is, the projection does not reveal the hollow interior.

A matrix of image plots can be useful in simultaneously exploring the
relationship of a response variable to pairs of other variables. The plot in
Figure 8.10 is an image plot matrix, or IMPLOM, showing values of a response
variable in gray scale at various combinations of levels of three independent
variables. In Figure 8.10, the ordering of each of the independent variables is
the same above the diagonal as below it, but this is not necessary. Orderings
can be compared by using different ones in the two images that correspond
to the same two independent variables.

Conditioning Plots

Another type of lower-dimension view of a dataset is provided by a section.
A section of a space of d dimensions is the intersection of the space with a
lower-dimensional object. The lower-dimensional object is often chosen as a
hyperplane.

A two-dimensional section of a three-dimensional sphere can reveal the
hollow interior if the section passes through the sphere. The ability of a section
to determine a feature depends on where the section is relative to the feature.



358 8 Graphical Methods in Computational Statistics

Time

Gene

Cell

Fig. 8.10. Matrix of Image Plots

Projections and sections can be used together to help in identifying structure
in data.

Sectioning leads to another way of forming an interesting lower-dimensional
dataset, which is to restrict the full dataset to its intersection with a given
lower-dimensional subset. That intersection has the dimensions of the given
lower-dimensional subset. The idea is to look at specific slices of the data, one
at a time. For example, if a plane is passed through a trivariate space, the
result is a plane. In such a case, however, the resulting dataset may be quite
sparse. If the lower-dimensional subset is determined by specific values of nom-
inal variables, however, the intersection may contain a meaningful proportion
of the observations. In another approach, the subset used in the intersection
may represent a range of values, and if the range is relatively narrow, it may
be the case that a projection preserves most of the information. This approach
yields a conditional dataset, and the displays of the conditional datasets are
called called conditioning plots, or coplots.

When a multivariate dataset has different subsets of interest, perhaps de-
termined by the values of a nominal variable, it is convenient to view the data
in separate panels corresponding to the different subsets. Such a multipaneled
graphic is called a “casement display”.

In a conditioning plot, the overall graphical display is divided into two
parts, a panel for the conditioning slices and a set of dependence panels show-
ing the bivariate relationship between the dependent variable and the panel
variable, at each level of the conditioning slices.
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Conditioning is also called splitting or nesting. The “trellis” displays of
S-Plus are designed to do this. The trellis displays are implemented in the
Lattice system in R; see Sarkar (2008). The coplot function in both S-Plus
and R produces conditioning plots.

In conditioning plots, even if the dataset is very large, if the dimensionality
is high, the sizes of the dataset in each panel of the display may be relatively
small.

Noncartesian Displays

Noncartesian displays are often developed to aid in identification of specific
features. The box plot is very useful in seeing the overall shape of the data
density and in highlighting univariate outliers.

One way of dealing with multivariate data is to represent each observation
as a more complicated object than just a point. The values of the individual
variables that make up the observation are represented by some aspect of
the iconic object. For some kinds of displays, each observation takes up a
lot of space, so the use of those techniques is generally limited to datasets
with a small number of observations. Other displays use curves to represent
observations, and those kinds of displays can be used with larger datasets,
although at some point they may suffer from extreme overplotting.

A limitation to the usefulness of such noncartesian displays is that the
graphical elements may not have any natural correspondence to the variables.
This sometimes makes the plot difficult to interpret until the viewer has estab-
lished the proper association between the graphical features and the variables.
Even so, it often is not easy to visualize the data using the icons or curves.

Glyphs and Icons

Various kinds of glyphs and icons can be used to represent multivariate data.
In many cases, a separate glyph or icon is used for each observation. One
of the most typical is a star diagram, of which there are several variations.
In a star diagram, for each observation of d-dimensional data, rays pointing
from a central point in d equally spaced directions represent the values of the
variables.

An issue in noncartesian displays is how to represent magnitudes. In one
variation of the star diagram, the lengths of the rays correspond to the mag-
nitude of the value of the variable. In another variation, sometimes called
“snowflakes”, the lengths of the rays are linearly scaled individually so that
the minimum of any variable in the dataset becomes 0 and the maximum
becomes 1.

Once the rays are drawn, their endpoints are connected. Once a mental
association is made between a direction and the variable that corresponds to
it, one can get a quick idea of the relative values of the variables in a given
observation.
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Chernoff (1973) suggested the use of stylized human faces for representing
multivariate data. Each variable is associated with some particular feature of
the face, such as height, width, shape of the mouth, and so on. Because of our
visual and mental ability to process facial images rapidly, it is likely that by
viewing observations represented as faces, we can identify similarities among
observations very quickly.

As with star diagrams, the features of Chernoff faces can be associated
with the variables and their values in different ways, for example, the area of
face may correspond to the first variable, the shape of face to the second, the
length of nose to the third, and so on.

In star diagrams, each variable is represented in the same way: as a ray.
The stars have different appearances based only on the order in which the
variables are assigned to rays. In faces, however, the variables correspond to
very different features of the diagram, so there are many more differences in
appearance that can result from the same dataset. Perhaps for this reason,
faces are not used nearly as often as stars.

Anderson (1957) proposed use of a glyph consisting of a circle and from
one to seven rays emanating from its top. Variations of these glyphs yield
“feather plots”, “compass plots”, and “rose plots”. Of course there are several
other types of icons and glyphs that can be used for representing multivariate
data.

Stars, faces, and other kinds of icons that individually represent a single
observation are not very useful if the number of observations is more than 20
or 30. The usefulness of such graphics, however, results from their ability to
represent 20 or 30 variables.

Parallel Coordinates: Points Become Broken Line Segments

Another type of curve for representing a multivariate observation is a piece-
wise linear curve joining the values of the variables on a set of parallel axes,
each of which represents values of a given variable. This type of plot is called
a “parallel coordinates plot”. A parallel coordinates plot is similar to a nomo-
gram.

With parallel coordinates, a point in the multidimensional space becomes a
curve (a broken line) in a two-dimensional space. The scales on the horizontal
lines in a parallel coordinates plot are generally scaled linearly to cover the
range of the value in the sample.

Parallel coordinates help to identify relationships between variables. Pair-
wise positive correlations between variables represented by adjacent coordi-
nate lines result in the line segments of the observations having similar slopes,
whereas negative correlations yield line segments with different slopes. Corre-
lations between variables on adjacent coordinate lines are most easily recog-
nized. If the columns in the dataset are reordered, the adjacency pattern in
the parallel coordinates plot changes, so other relationships may be observed.
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Observations that are similar tend to have lines that have similar tracks.
Parallel coordinates plots are therefore useful in identifying groups in data. If
a variable on the dataset indicates group membership, all of the lines will go
through the points on that coordinate that represent the (presumably small
number of) groups. The visual impact is enhanced by placing this special
coordinate either at the top or the bottom of the parallel coordinates plot
(although if this special coordinate is placed in the middle, sometimes the
groups are more obvious, because there may be fewer line crossings).

In Figure 8.11 we show the parallel coordinates plot of four artificially-
generated points from a 7-variate normal distribution. The points were from
independent distributions except for two, which had a correlation of 0.9. The
two lines that track each other very closely represent those two points.

V1

V2

V3

V4

V5

V6

V7

Min Max

Fig. 8.11. Parallel Coordinates Plot

For large numbers of observations with little structure, parallel coordinates
plots will suffer from too much overplotting. If there is low-dimensional struc-
ture, however, a parallel coordinates plot may help to uncover it. Figure 9.4
on page 379 in Chapter 9, for example, shows a parallel coordinates plot of
data that have been rotated so a to show more interesting structure. The same
plot in the unrotated coordinates, would just be a mass of ink.
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Trigonometric Series: Points Become Curves

Another way of depicting a multivariate observation is with a curve in two
dimensions. One type of curve is built by a sum of trigonometric functions.
Plots of this type are called “Fourier series curves”, or “Andrews curves” after
David Andrews. An Andrews curve representing the point

x = (x1, x2, . . . , xd)

is

s(t) = x1/
√

2 + x2 sin t + x3 cos t + x4 sin(2t) + x5 cos(2t) + . . . . (8.6)

Each observation in a data set yields one Andrews curve. The curves can
be useful in identifying observations that are similar to each other. If the
number of observations is large, however, the amount of overplotting generally
becomes excessive.

In Figure 8.12 we show the Andrews curves for the same four artificially-
generated points used in Figure 8.11. The points were from independent dis-
tributions except for points 3 and 4, which were generated from a distribution
with correlation of 0.9. The lines representing those points are seen to track
each other very closely.

As t goes from 0 to 2π, the curve traces out a full period, so the plot is
shown just over that range. It is often useful, however, to make plots of two
full periods of these periodic curves.

In Andrews curves, the value of the first feature (variable) determines the
overall height of the curve; hence Andrews curves are very dependent on the
order of the variables. It is generally a good idea to reorder the variables, so
that the ones of most interest occur before others.

Andrews curves are also sometimes plotted in polar coordinates, resulting
in a star-shaped figure with four arms.

Rotations and Dynamical Graphics

When a cluster of points or a surface in three dimensions is rotated (or alter-
natively, when the viewing direction is changed), patterns and structures in
the data may be more easily recognized. Changing the eye position, that is,
the distance from which a projection of the data is viewed, can also help to
identify structure.

Rotations are orthogonal transformations that preserve norms of the data
vectors and angles between the vectors. The simplest rotation to describe is
that of a plane defined by two coordinates about the other principal axes.
Such a rotation changes two elements of a vector that represents cartesian
coordinates in the plane that is rotated and leaves all the other elements,
representing the other coordinates, unchanged. A rotation matrix, introduced
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Fig. 8.12. Fourier Curves Plot

on page 233 and shown in a general form in equation (9.4) on page 377, is the
same as an identity matrix with four elements changed.

A generalized rotation matrix, Q, can be built as a product of (d2 − d)/2
such Qij simple rotation matrices,

Q = Q12Q13 · · ·Q1dQ23Q24 · · ·Q2d · · ·Qd−1,d.

Rotating a plot in all directions, along with various projections, is called
a “grand tour”. In one method of performing a grand tour, the angles for the
rotations are taken as

tφij mod 2π, (8.7)

where the φij are fixed constants that are linearly independent over the inte-
gers; that is, if for any set of integers k12, k13, . . . , kd−1,d,

⎛

⎝
d−1∑

i=1

d∑

j=i+1

kijφij

⎞

⎠ mod 2π = 0,

then all kij = 0. As t is stepped over time, the angle in the rotation matrix Qij

is taken as tφij and the generalized rotation matrix is computed and applied
to the dataset.

The rotated datasets can be viewed in various ways. In the most common
grand tour, the point cloud is projected onto a representation of a three-
dimensional cartesian system. In the grand tour, the data points appear to
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be in continuous motion on the computer monitor. The motion of the sys-
tem, or equivalently, the apparent continuous rotations of the data, provide a
perception of the third dimension.

Rotated datasets can also be viewed using parallel coordinates or Andrews
curves. Structure appears in various ways in these plots. A hyperplane, for
example, appears as a point on a parallel coordinate axis that corresponds to
the coefficients of the hyperplane.

After we consider general rotations in Chapter 9 we show an example
on page 379 of how a dataset can be rotated before plotting. You are asked
to develop systematic rotation and plotting methods for producing Andrews
curves and parallel coordinates plots in Exercises 9.4 and 9.5.

There is another way of “touring the data” by using the Andrews curves,
s(t), of equation (8.6) on page 362. These representations have a natural
dynamic quality. The variable t in s(t) of equation (8.6) can be interpreted as
“time” and varied continuously.

Wegman and Shen (1993) modify and generalize the Andrews curves as

r(t) = x1 sin(ω1t) + x2 cos(ω1t) + x3 sin(ω2t) + x4 cos(ω2t) + . . .

= (a(t))Tx, (8.8)

where the vector a(t) is chosen as

a(t) =
(
sin(ω1t), cos(ω1t), sin(ω2t), cos(ω2t), . . .

)
.

Wegman and Shen (1993) then consider an orthogonal linear combination,
q(t) = (b(t))Tx, where

b(t) =
(
cos(ω1t), − sin(ω1t), cos(ω2t), − sin(ω2t), . . .

)
. (8.9)

They define a two-dimensional “pseudo grand tour” as the plots of r(t) and
q(t) as t varies continuously. For the pseudo grand tour, they suggest defining
a(t) and b(t) so that each has an even number of elements (if d is odd, the data
vector x can be augmented with a 0 as its last element) and then normalizing
both a(t) and b(t). They also recommend centering the data vectors about 0.

If the ω’s are chosen so that ωi/ωj is irrational for all i and j not equal (i
and j range from 1 to ⌈d/2⌉), a richer set of orientations of the data are en-
countered when t is varied. The generalized curves are not periodic in this case.
Specialized graphics software often provides interaction that allows “guided
tours” using controlled rotations. In a guided tour, the data analyst, using
knowledge of the dataset or information provided by previous views of the
data, actively decides which portions of the data space are explored. This,
of course, is an instance in which concepts of real numbers do not have an
analogue in IF. (There are no irrational numbers in IF; see Section 2.2.)

Projection pursuit, as discussed in Section 16.5 on page 564, can be used to
determine the rotations in any grand tour using either the standard cartesian
coordinates or the other types of displays.
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Notes and Further Reading

There is a wealth of statistical literature on graphics, and visualization is being
used ever more widely in data analysis. Developments in statistical graphics
are reported in several journals, most notably, perhaps, Journal of Computa-
tional and Graphical Statistics, as well as in unrefereed conference proceedings
and newsletters, such as Statistical Computing & Graphics Newsletter, pub-
lished quarterly by the Statistical Computing and the Statistical Graphics
sections of the American Statistical Association. Many of the advances in
computer graphics are reported at the annual ACM SIGGRAPH Conference.
The proceedings of these conferences, with nominal refereeing, are published
as Computer Graphics, ACM SIGGRAPH xx Conference Proceedings (where
“xx” is a two-digit representation of the year).

Hardware and Low-Level Software for Graphics

Hardware for graphics includes the computational engine, input devices, and
various display devices. Rapid advances are being made for almost all types
of graphics hardware, and the advances in the quality and capabilities of the
hardware are being accompanied by decreases in the costs of the equipment.
The image is the result of the collage of pixels displayed on these devices.

Software for graphics often interacts very closely with the hardware, taking
advantage of specific design features of the hardware.

Because a graph may require many computations to produce lines and
surfaces that appear smooth, the speed of the computational engine is very
important. The appropriate pixels must be identified and set to the proper
value to make the entire graph appear correctly to the human eye. The need
for computer speed is even greater if the object being displayed is to appear
to move smoothly.

A typical computer monitor has a rectangular array of approximately one
to two million pixels. (Common monitors currently are 1,280 by 1,024, 1,600
by 1,200, or 1,920 by 1,200.) This is approximately 100 pixels per inch. This
resolution allows arbitrary curves to appear fairly smooth. Whether graphical
displays can respond to real-time motion depends on how fast the computer
can perform the calculations necessary to update 106 pixels fast enough for
the latency period of the human eye.

Color is determined by the wavelength of light. Violet is the shortest and
red the longest. (Here, “color” is assumed to refer to something visible.) White
color is a mixture of waves of various lengths.

Most light sources generate light of various wavelengths. Our perception
of color depends on the mix of wavelengths. A single wavelength in light is a
highly saturated single color. Multiple wavelengths reduce the saturation and
affect the overall hue and lightness. Multiple wavelengths are perceived as a
different single color that is a combination of the individual colors.
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Fig. 8.13. RGB Color Cube

A given color can be formed by combining up to three basic colors. Red,
green, and blue are often used as the basic colors. Colors can be combined
additively using different light sources or in a subtractive way by filters or
absorptive surfaces.

To specify a given color or mix of colors and other characteristics of the
light, we use a color system. Color values are defined in the given color system
and then used by the software and hardware to control the colors on the out-
put device. Different systems use different combinations of values to describe
the same color and the same overall effect. The common color systems are
RGB (red, green, blue), CMY (cyan, magenta, yellow), HLS (hue, lightness,
saturation), and HSV (hue, saturation, value).

The RGB color system uses a vector of three elements ranging in value
from 0 to 255. The system can be illustrated as in Figure 8.13 by a cube whose
sides are 255 units long. Three corners correspond to the primary colors of
red, green, and blue; three corners correspond to the secondary colors of cyan,
magenta, and yellow; and two corners correspond to black and white. Each
color is represented by a point within or on the cube. The point (255, 255, 255)
represents an additive mixture of the full intensity of each of the three primary
colors. Points along the main diagonal are shades of gray because the intensity
of each of the three primaries is equal.

Digital display devices represent each component of an RGB color coor-
dinate in binary as an integer in the range of 0 to 2n − 1, for some n. Each
displayable color is an RGB coordinate triple of n-bit numbers, so the total
number of representable colors is 23n, including black and white. An m-bit
pixel can represent 2m different colors. If m is less than 3n, a color translation
table (or just color table) with 2m entries is used to map color triples to values
of the pixels.
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Low-Level Software

Software for producing graphics must interact very closely with the display
devices. Because the devices vary in their capabilities, the approach generally
taken is to design and produce the software at various levels so that graphics
software at one level will interface with different software at another level in
different environments.

The lowest-level software includes the device drivers, which are programs
in the machine language of the particular display device. The next level of
software provides the primitive graphics operations, such as illuminating a
pixel or drawing a line. There have been a number of efforts to standardize
the interface for this set of graphics primitives. The Open Graphics Library,
or OpenGL, is a library of primitive graphics functions developed by Sili-
con Graphics, Inc. It was standardized by the OpenGL Architecture Review
Board (1992), and it is now controlled by the Khronos Group, which is an in-
dustry consortium. For each of these sets of standard graphics functions there
are bindings for Fortran, C, and C++. Glaeser and Stachel (1999) describe
the use of OpenGL in a C++ graphics system called Open Geometry.

Software for Graphics Applications

There are a number of higher-level graphics systems ranging from Fortran,
C, or Java libraries to interactive packages that allow modification of the
display as it is being produced. Many graphics packages have a number of
preconstructed color tables from which the user can select to match the colors
a given device produces to the desired colors.

Gnuplot is an interactive plotting package that provides a command-
driven interface for making a variety of data- and function-based graphs. The
system is primarily for two-dimensional graphics, but there are some three-
dimensional plotting capabilities. The graphs produced can be exported into
a number of formats. The package is freeware and is commonly available on
both Unix/Linux systems and MS Windows.

Xfig is a graphics package for Unix/Linux windowing systems (X11) that
provides capabilities for the basic objects of vector graphics, including lines
and various curves such as Bézier curves.

Advanced Visual Systems, Inc., develops and distributes a widely used
set of graphics and visualization systems, AVS5 and AVS/Express together
with various associated products. These systems run on most of the common
platforms.

The Visualization Toolkit, or vtk, developed by Schroeder, Martin, and
Lorensen (2004), is an object-oriented system that emphasizes three-dimensional
graphics. The software manual also has good descriptions of the algorithms
implemented.

Because making graphical displays is generally not an end in itself, graph-
ics software is usually incorporated into the main application software. Soft-
ware systems for statistical data analysis, such as S-Plus, R, and SAS, have
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extensive graphics capabilities. Some of the graphical capabilities in S-Plus
and R are similar. Most features in one package are available in the other
package, but there are differences in how the two packages interact with the
operating system, and this means that there are some differences in the way
that graphics files are produced. The function expression in R is a useful
feature for producing text containing mathematical notation or Greek letters.
The function can be used in most places that expect text, such as xlab. For
example,

main = expression(paste("Plot of ",
Gamma(x)," versus",hat(beta) x^hat(gamma)))

produces the main title
Plot of Γ(x) versus β̂ x γ

The actual appearance is device dependent and in any event is unlikely to
have the beauty of a display produced by TEX.

There is also a very useful system in R, called Grid Graphics, that facili-
tates layout design; see Murrell (2006). A higher-level system for visualization
of multivariate data, called Lattice, has been built on Grid Graphics; see
Sarkar (2008).

Cook and Swayne (2008) describe a system for interactive graphics called
GGobi that is integrated with R.

Wilkinson (2004) provides a unified structure for the production of mean-
ingful graphical displays from data in tabular or matrix form.

Exercises

8.1. Generate a sample of size 200 of pseudorandom numbers from a mixture
of two univariate normal distributions. Let the population consist of 80%
from a N(0, 1) distribution and 20% from a N(3, 1) distribution. Plot the
density of this mixture. Notice that it is bimodal. Now plot a histogram of
the data using nine bins. Is it bimodal? Choose a few different numbers of
bins and plot histograms. (Compare this with Exercise 15.9 of Chapter 15
on page 512.)

8.2. Generate a sample of pseudorandom numbers from a normal (0,1) distri-
bution and produce a quantile plot of the sample against a normal (0,1)
distribution, similar to Figure 8.6 on page 349. Do the tails of the sample
seem light? (How can you tell?) If they do not, generate another sample
and plot it. Does the erratic tail behavior indicate problems with the ran-
dom number generator? Why might you expect often (more than 50% of
the time) to see samples with light tails?

8.3. Stereoscopic displays.
a) Show that equation (8.5) on page 353, is the offset, in the plane of the

display, for each eye in viewing points at a depth z. Hint: Draw rays
representing the lines of sight through the plane of the graph.
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b) Using any graphics software, reproduce the stereogram in Figure 8.14
that represents a cone resting on its base being viewed from above. (If
the eyes focus in front of the plane of the paper, the view of the cone
is from below.)

Fig. 8.14. A Cone Resting on Its Base

8.4. Write a program for the simple linear congruential random number gen-
erator

xi ≡ 259xi−1 mod 215.

Generate a sequence of length 1,008. Look for structure in triples of se-
quential values, (xi, xi+1, xi+2), by plotting two-dimensional sections of a
three-dimensional scatter plot.

8.5. Plot the ellipse x2 + 4y2 = 5 in cartesian coordinates. Now, plot it in
parallel coordinates. What is the shape of the parallel coordinates plot of
an ellipse?

8.6. Generate 1,000 pseudorandom 4-variate normal deviates with mean 0
and the identity as the variance-covariance matrix. Now, delete from the
dataset all deviates whose length is less than 2. This creates a dataset
with a “hole” in it. Try to find the hole using various graphic displays.

8.7. Generate 100 pseudorandom trivariate normal variates with mean 0 and
variance-covariance matrix

⎡

⎣
1.00 −.90 .90
−.90 1.81 −1.71

.90 −1.71 2.62

⎤

⎦ .

The Cholesky factor of the variance-covariance matrix is
⎡

⎣
1.00
−.90 1.00

.90 −.90 1.00

⎤

⎦ .
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a) Plot the data using parallel coordinates. What shapes result from the
correlations?

b) Plot the data using Andrews curves. What shapes result from the
correlations?

8.8. Program a modification of parallel coordinates in which there is a common
scale for all coordinates (that is, one in which a vertical line would pass
through the same value on all parallel coordinate lines). Plot the Fisher
iris data in a display in which all coordinates have the same scale and
compare it to a display in which the coordinates have their original scales.
Now, try some other datasets. How would you recommend that the scales
on the parallel coordinate lines be constructed? What are the advantages
and disadvantages of a fixed scale for all lines?
Summarize your findings in a clearly-written report.



9

Tools for Identification of Structure in Data

In recent years, with our increased ability to collect and store data, have come
enormous datasets. These datasets may consist of billions of observations and
millions of variables. Some of the classical methods of statistical inference,
in which a parametric model is studied, are neither feasible nor relevant for
analysis of these datasets. The objective is to identify interesting structures in
the data, such as clusters of observations, or relationships among the variables.
Sometimes, the structures allow a reduction in the dimensionality of the data.

Many of the classical methods of multivariate analysis, such as principal
components analysis, factor analysis, canonical correlations analysis, and mul-
tidimensional scaling, are useful in identifying interesting structures. These
methods generally attempt to combine variables in such a way as to preserve
information yet reduce the dimension of the dataset. Dimension reduction
generally carries a loss of some information. Whether the lost information is
important is the major concern in dimension reduction.

Another set of methods for reducing the complexity of a dataset attempts
to group observations together, combining observations, as it were.

In the following we will assume that an observation consists of a vector
x = (x1, . . . , xm). In most cases, we will assume that x ∈ IRm. In statistical
analysis, we generally assume that we have n observations, and we use X to
denote an n × m matrix in which the rows correspond to observations.

In practice, it is common for one or more of the components of x to be
measured on a nominal scale; that is, one or more of the variables represents
membership in some particular group within a countable class of groups. We
refer to such variables as “categorical variables”. Although sometimes it is im-
portant to make finer distinctions among types of variables (see Stevens, 1946,
who identified nominal, ordinal, interval, and ratio types), we often need to
make a simple distinction between variables whose values can be modeled
by IR and those whose values essentially indicate membership in a particular
group. We may represent the observation x as being composed of these two
types, “real” or “numerical”, and “categorical”:
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x = (xr, xc).

In the following, we often use the phrase “numerical data” to indicate that
each element of the vector variable takes on values in IR, that the relevant
operations of IR are available, and that the properties of the reals apply.

Major concerns for methods of identifying structure are the number of
computations and amount of storage required.

In this chapter, we introduce some of the tools that are used for identifying
structure in data. There are two distinct tools: transformations of data, and
internal measures of structure. Although these two topics are to some extent
independent, transformations may change the internal measures or may help
us to use them more effectively. Transformations also play important roles in
exploration of data, as in the graphical displays discussed in Chapter 8.

In Chapter 16, using the tools covered in this chapter, we discuss various
methods of exploring data.

Linear Structure and Other Geometric Properties

Numerical data can conveniently be represented as geometric vectors. We can
speak of the length of a vector, or of the angle between two vectors, and relate
these geometric characteristics to properties of the data. We will begin with
definitions of a few basic terms.

The Euclidean length or just the length of an n-vector x is the square root
of the sum of the squares of the elements of the vector. We generally denote
the Euclidean length of x as ∥x∥2 or just as ∥x∥:

∥x∥ =

(
n∑

i=1

x2
i

)1/2

.

The Euclidean length is a special case of a more general real-valued function
of a vector called a “norm”, which is defined on page 13.

The angle θ between the vectors x and y is defined in terms of the cosine
by

cos(θ) =
⟨x, y⟩√

⟨x, x⟩⟨y, y⟩
.

(See Figure 9.1.)
Linear structures in data are the simplest and often the most interesting.

Linear relationships can also be used to approximate other more complicated
structures.

Flats

The set of points x whose components satisfy a linear equation
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b1x1 + · · · bdxd = c

is called a flat. Such linear structures often occur (approximately) in observa-
tional data, leading to a study of the linear regression model,

xd = β0 + β1x1 + · · · + βmxm + ϵ.

A flat through the origin, that is, a set of points whose components satisfy

b1x1 + · · · bdxd = 0,

is a vector space. Such equations allow simpler transformations, so we often
transform regression models into the form

xd − x̄d = β1(x1 − x̄1) + · · · + βm(xm − x̄m) + ϵ.

The data are centered to correspond to this model.

9.1 Transformations

Transformations of data often give us a better perspective on its structure,
and may allow us to use simpler models of the structure. Nonlinear transfor-
mations, such as logarithmic transformations, may allow us to use a linear
model of the relationships among variables. In this section, however, we will
focus mainly on linear transformations.

Linear Transformations

Linear transformations play a major role in analyzing numerical data and
identifying structure.

A linear transformation of the vector x is the vector Ax, where A is a
matrix with as many columns as the elements of x. If the number of rows of
A is different, the resulting vector has a dimension different from x.

Orthogonal Transformations

An important type of linear transformation is an orthogonal transformation,
that is, a transformation in which the matrix of the transformation, Q, is
square and has the property that

QTQ = I,

where QT denotes the transpose of Q, and I denotes the identity matrix.
If Q is orthogonal, for the vector x, we have

∥Qx∥ = ∥x∥. (9.1)
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(This is easily seen by writing ∥Qx∥ as
√

(Qx)TQx, which is
√

xTQTQx.)
Thus, we see that orthogonal transformations preserve Euclidean lengths.

If Q is orthogonal, for vectors x and y, we have

⟨Qx, Qy⟩ = (Qx)T(Qy) = xTQTQy = xTy = ⟨x, y⟩,

hence,

arccos
(

⟨Qx, Qy⟩
∥Qx∥2 ∥Qy∥2

)
= arccos

(
⟨x, y⟩

∥x∥2 ∥y∥2

)
. (9.2)

Thus, we see that orthogonal transformations preserve angles.

Geometric Transformations

In many important applications of linear algebra, a vector represents a point
in space, with each element of the vector corresponding to an element of a
coordinate system, usually a cartesian system. A set of vectors describes a
geometric object. Algebraic operations are geometric transformations that ro-
tate, deform, or translate the object. Although these transformations are often
used in the two or three dimensions that correspond to the easily perceived
physical space, they have similar applications in higher dimensions.

Important characteristics of these transformations are what they leave un-
changed (that is, their invariance properties). We have seen, for example, that
an orthogonal transformation preserves lengths of vectors (equation (9.1))
and angles between vectors (equation (9.2)). A transformation that preserves
lengths and angles is called an isometric transformation. Such a transforma-
tion also preserves areas and volumes.

Another isometric transformation is a translation, which for a vector x is
just the addition of another vector:

x̃ = x + t.

A transformation that preserves angles is called an isotropic transforma-
tion. An example of an isotropic transformation that is not isometric is a
uniform scaling or dilation transformation, x̃ = ax, where a is a scalar.

The transformation x̃ = Ax, where A is a diagonal matrix with not all
elements the same, does not preserve angles; it is an anisotropic scaling.

Another anisotropic transformation is a shearing transformation, x̃ = Ax,
where A is the same as an identity matrix except for a single row or column
that has a one on the diagonal but possibly nonzero elements in the other
positions; for example, ⎡

⎣
1 0 a1

0 1 a2

0 0 1

⎤

⎦ .

Although they do not preserve angles, both anisotropic scaling and shear-
ing transformations preserve parallel lines. A transformation that preserves
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parallel lines is called an affine transformation. Preservation of parallel lines
is equivalent to preservation of collinearity, so an alternative characterization
of an affine transformation is one that preserves collinearity. More generally,
we can combine nontrivial scaling and shearing transformations to see that
the transformation Ax for any nonsingular matrix A is affine. It is easy to see
that addition of a constant vector to all vectors in a set preserves collinearity
within the set, so a more general affine transformation is x̃ = Ax + t for a
nonsingular matrix A and a vector t.

All of these transformations are linear transformations because they pre-
serve straight lines. A projective transformation, which uses the homogeneous
coordinate system of the projective plane, preserves straight lines but does
not preserve parallel lines. These transformations are very useful in computer
graphics.

The invariance properties are summarized in Table 9.1.

Table 9.1. Invariance Properties of Linear Transformations

Transformation Preserves
general lines
affine lines, collinearity
shearing lines, collinearity
scaling lines, angles (and, hence, collinearity)
translation lines, angles, lengths
rotation lines, angles, lengths
reflection lines, angles, lengths

Rotations

Two major tools in seeking linear structure are rotations and projections of the
data matrix X . Rotations and projections of the observations are performed
by postmultiplication of X by special matrices. In this section, we briefly
review these types of matrices for use in multivariate data analysis.

The simplest rotation of a vector can be thought of as the rotation of
a plane defined by two coordinates about the other principal axes. Such a
rotation changes two elements of all vectors in that plane and leaves all of the
other elements, representing the other coordinates, unchanged. This rotation
can be described in a two-dimensional space defined by the coordinates being
changed, without reference to the other coordinates.

Consider the rotation of the vector x through the angle θ into x̃. The
length is preserved, so we have ∥x̃∥ = ∥x∥. Referring to Figure 9.1, we can
write

x̃1 = ∥x∥ cos(φ+ θ),
x̃2 = ∥x∥ sin(φ+ θ).
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φ
θ

x

x~

x1

x2

Fig. 9.1. Rotation of x

Now, from elementary trigonometry, we know that

cos(φ+ θ) = cosφ cos θ − sinφ sin θ,
sin(φ+ θ) = sinφ cos θ + cosφ sin θ.

Because cosφ = x1/∥x∥ and sinφ = x2/∥x∥, we can combine these equations
to get

x̃1 = x1 cos θ − x2 sin θ,
x̃2 = x1 sin θ + x2 cos θ. (9.3)

Hence, multiplying x by the orthogonal matrix
[

cos θ − sin θ
sin θ cos θ

]

performs the rotation of x.
This idea easily extends to the rotation of a plane formed by two coordi-

nates about all of the other (orthogonal) principal axes. The m×m orthogonal
matrix
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Qpq(θ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0 0 0 · · · 0

. . .
0 0 · · · 1 0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 cos θ 0 · · · 0 sin θ 0 · · · 0
0 0 · · · 0 0 1 · · · 0 0 0 · · · 0

. . .
0 0 · · · 0 0 0 · · · 1 0 0 · · · 0
0 0 · · · 0 − sin θ 0 · · · 0 cos θ 0 · · · 0
0 0 · · · 0 0 0 · · · 0 0 1 · · · 0

. . .
0 0 · · · 0 0 0 · · · 0 0 0 · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9.4)

in which p and q denote the rows and columns that differ from the identity,
rotates the data vector xi through an angle of θ in the plane formed by the pth

and qth principal axes of the m-dimensional cartesian coordinate system. This
rotation can be viewed equivalently as a rotation of the coordinate system in
the opposite direction. The coordinate system remains orthogonal after such
a rotation. In the matrix XQ, all of the observations (rows) of X have been
rotated through the angle θ.

How a rotation can reveal structure can be seen in Figures 9.2 and 9.3. In
the original data, there do not appear to be any linear relationships among
the variables. After applying a rotation about the third axis, however, we see
in the scatter plot in Figure 9.3 a strong linear relationship between the first
and third variables of the rotated data.

Rotations of the data matrix provide alternative views of the data. There is
usually nothing obvious in the data to suggest a particular rotation; however,
dynamic rotations coupled with projections that are plotted and viewed as
they move are very useful in revealing structure.

Figure 9.4 shows 1,000 points in three-space that were generated by a ran-
dom number generator called RANDU. The data have been rotated by postmul-
tiplication by a 3× 3 orthogonal matrix whose second column is proportional
to (9,−6, 1). We see from the figure that there are exactly 15 planes in that
rotation. (See Gentle, 2003, page 18, for further discussion of data generated
by RANDU. Because of the sharp indentations between the axes in the plot
in Figure 9.4, we may conclude that there are strong negative correlations
between these orthogonal linear combinations of the original data. This is
a further indication that the random number generator is not a good one.
In Exercise 9.3, you are asked to consider similar problems.) You are asked
to develop systematic rotation and plotting methods for producing Andrews
curves and parallel coordinates plots in Exercises 9.4 and 9.5.

A rotation of any plane can be formed by successive rotations of planes
formed by two principal axes. Furthermore, any orthogonal matrix can be
written as the product of a finite number of rotation matrices; that is, any
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Fig. 9.3. Scatter-Plot Matrix of Rotated Data
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Fig. 9.4. 1,000 Triples from RANDU Rotated onto Interesting Coordinates

orthogonal transformation can be viewed as a sequence of rotations. These
rotations, which are sometimes called Givens rotations, play an important role
in numerical linear algebra (see Gentle, 2007, Chapter 7). It should be noted
that the computations for Givens rotations can be subject to severe numerical
inaccuracies. As with many numerical problems accurate computations are not
nearly as simple as they may appear (see Gentle, 2007, page 185).

Projections

Another way of getting useful alternative views of the data is to project the
data onto subspaces. A symmetric idempotent matrix P projects vectors onto
the subspace spanned by the rows (or columns) of P . Except for the identity
matrix, a projection matrix is of less than full rank; hence, it projects a full-
rank matrix into a space of lower dimension. Although we may only know that
the rows of the data matrix X are in IRm, the rows of XP are in the subspace
spanned by the rows of P . It may be possible to identify relationships and
structure in this space of lower dimension that are obscured in the higher-
dimensional space.

Projection transformations are often performed by rotating a given orthog-
onal coordinate system into a new orthogonal coordinate system in which one
or more of the axes are chosen to reveal some aspect of the data, such a dif-
ferent groups in the data, as in linear discrimination (which we will discuss
on page 623). The coordinates corresponding to any subset of the new set
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of coordinate axes immediately represent the projection of the data onto the
subspace defined by that set of axes.

Translations

Translations are relatively simple transformations involving the addition of
vectors. Rotations and other geometric transformations such as shearing in-
volve multiplication by an appropriate matrix, as we have seen. In applications
where several geometric transformations are to be made, it would be conve-
nient if translations could also be performed by matrix multiplication. This
can be done by using homogeneous coordinates.

Homogeneous coordinates, which form the natural coordinate system for
projective geometry, have a very simple relationship to cartesian coordinates.
The point with cartesian coordinates (x1, x2, . . . , xd) is represented in homo-
geneous coordinates as (xh

0 , xh
1 , xh

2 , . . . , xh
d), where, for arbitrary xh

0 not equal
to zero, xh

1 = xh
0x1, xh

2 = xh
0x2, and so on.

Each value of xh
0 corresponds to a hyperplane in the ordinary cartesian

coordinate system. The special plane xh
0 = 0 does not have a meaning in the

cartesian system. It corresponds to a hyperplane at infinity in the projective
geometry.

Because the point is the same, the two different symbols represent the
same thing, and we have

(x1, x2, . . . , xd) = (xh
0 , xh

1 , xh
2 , . . . , xh

d). (9.5)

Alternatively, of course, the hyperplane coordinate may be added at the end,
and we have

(x1, x2, . . . , xd) = (xh
1 , xh

2 , . . . , xh
d, xh

0). (9.6)

An advantage of the homogeneous coordinate system is that we can easily
perform translations by matrix multiplications. We can effect the translation
x̃ = x + t by first representing the point x as (1, x1, x2, . . . , xd) and then
multiplying by the (d + 1) × d matrix

T =

⎡

⎢⎢⎣

1 0 · · · 0
t1 1 · · · 0

· · ·
td 0 · · · 1

⎤

⎥⎥⎦ .

We will use the symbol xh to represent the vector of corresponding homoge-
neous coordinates:

xh = (1, x1, x2, . . . , xd).

The translated point can be represented as x̃ = Txh.
We must be careful to distinguish the point x from the vector of coor-

dinates that represents the point. In cartesian coordinates, there is a nat-
ural correspondence, and the symbol x representing a point may also rep-
resent the vector (x1, x2, . . . , xd). The vector of homogeneous coordinates
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of the result Txh corresponds to the vector of cartesian coordinates of x̃,
(x1 + t1, x2 + t2, . . . , xd + td).

Homogeneous coordinates are used extensively in computer graphics not
only for the ordinary geometric transformations but also for projective trans-
formations. A standard use of homogeneous coordinates is in mapping three-
dimensional graphics to two dimensions. The perspective plot function persp
in R, for example, produces a 4 × 4 matrix for projecting three-dimensional
points represented in homogeneous coordinates onto two-dimensional points
in the displayed graphic. R uses homogeneous coordinates in the form of equa-
tion (9.6) rather than equation (9.5). If the matrix produced is T and if ah

is the representation of a point (xa, ya, za) in homogeneous coordinates, in
the form of equation (9.6), then ahT yields transformed homogeneous coordi-
nates that correspond to the projection onto the two-dimensional coordinate
system of the graphical display. Consider the graph in Figure 9.5. The wire
frame plot, which is of the standard bivariate normal density, was produced
by the following simple R statements.

x <- seq(-3,3,.1)
y <- seq(-3,3,.1)
f <- function(x,y){dnorm(x)*dnorm(y)}
z <- outer(x,y,f)
persp(x,y,z,theta=-30,phi=30,zlab="p(x,y)",ylab="y",xlab="x"
) -> trot

The angles theta and phi are the azimuthal and latitudinal viewing angles,
respectively, in degrees. The matrix trot is the rotation matrix that will carry
a point in the three-dimensional space that was plotted, which is represented
in homogeneous coordinates, into the two-dimensional plane on which the plot
is displayed.

Now, suppose we want to plot a single point on the surface, say the point
corresponding to x = 0 and y = −1. We compute the corresponding z value,
represent the vector in homogeneous coordinates, with the coordinate of the
hyperplane being 1, rotate it onto the two-dimensional plane on which the
plot is displayed using trot, and finally plot the point. The following simple
R statements do this, and the point is seen in Figure 9.5.

x1 <- 0
y1 <- -1
z1 <- f(x1,y1)
tp <- cbind(x1,y1,z1,1)%*%trot
p1 <- tp[1,1]/tp[1,4]
p2 <- tp[1,2]/tp[1,4]
text(p1,p2,"*",cex=2)
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x

y

p(x,y)

*

Fig. 9.5. Illustration of the Use of Homogeneous Coordinates to Locate Three-
Dimensional Points on a Two-Dimensional Graph

General Transformations of the Coordinate System

Although the transformations that we have discussed above can be thought
of either as transforming the data within a fixed coordinate system or as
transforming the coordinate system, the coordinate system itself remains es-
sentially a cartesian coordinate system. Homogeneous coordinates correspond
in a simple way to cartesian coordinates, as we see in equation (9.5).

We can make more general transformations of the coordinate system that
can be useful in identifying structure in the data. Two kinds of coordinate
transformations especially useful in graphical displays are parallel coordi-
nates, which we discuss on page 360, and Fourier curves, which we discuss
on page 362.

Polar coordinates are useful in a variety of applications. They are par-
ticularly simple for bivariate data, but they can be used in any number of
dimensions. The point

x = (x1, x2, . . . , xd)

is represented in polar coordinates by a length,
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r = ∥x∥,

and d − 1 angles, θ1, . . . , θd−1. There are various ways that the relationships
among the cartesian coordinates and the polar coordinates could be defined.
One way is given by Kendall (1961). The relationships among the coordinates
are given by

x1 = r cos θ1 · · · cos θd−2 cos θd−1

x2 = r cos θ1 · · · cos θd−2 sin θd−1
...

xj = r cos θ1 · · · cos θd−j sin θd−j+1
...

xd−1 = r cos θ1 sin θ2
xd = r sin θ1,

(9.7)

where
−π/2 ≤ θj ≤ π/2, for j = 1, 2, . . . , d − 2,

and
0 ≤ θd−1 ≤ 2π.

In a variation of this definition, the sines and cosines are exchanged, with
an appropriate change in the limits on the angles. In this variation, for d = 2,
we have the usual polar coordinates representation; and for d = 3, we have
what is sometimes called the spherical coordinates representation.

9.2 Measures of Similarity and Dissimilarity

There are many ways of measuring the similarity or dissimilarity between two
observations or between two variables. For numerical data, the most familiar
measures of similarity are covariances and correlations.

Dissimilarities in numerical data are generally distances of some type. The
dissimilarity or distance function is often a metric (see page 14).

Other measures of dissimilarity can often be useful. Nonmetric functions,
such as ones allowing ties and that do not obey the triangle inequality, can
also be used for defining dissimilarity, especially in applications in which there
is some noise or in which there is some subjectivity in the data. Distance
measures defined on a finite set of points, x1, x2, . . . , xn, may be required to
satisfy the “ultrametric” inequality:

∆(xi, xk) ≤ max
j

(
∆(xi, xj),∆(xj , xk)

)
,

instead of just the triangle inequality. Ultrametric distances are sometimes
used as dissimilarity measures in clustering applications.
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Other measures of both similarity and dissimilarity must be used for cate-
gorical data or for mixed data (that is, for data consisting of some numerical
variables and categorical variables),

x = (xr, xc).

The measures may involve ratings of judges, for example. The measures may
not be metrics.

In some cases, it is useful to allow distance measures to be asymmetric.
If d(xi, xj) represents the cost of moving from point xi to point xj it may
be the case that d(xi, xj) ̸= d(xj , xi). If the distance represents a perceptual
difference, it may also be the case that d(xi, xj) ̸= d(xj , xi). Sullivan (2002)
has developed a theory for asymmetric measures of dissimilarity, and explored
their use in clustering and other applications.

Similarities: Covariances and Correlations

Measures of similarity include covariances, correlations, rank correlations, and
cosines of the angles between two vectors. Any measure of dissimilarity, such
as the distances discussed in the next section, can be transformed into a
measure of similarity by use of a decreasing function, such as the reciprocal.
For example, whereas the cosine of the angle formed by two vectors can be
considered a measure of similarity, the sine can be considered a measure of
dissimilarity.

Although we can consider similarities/dissimilarities between either columns
(variables) or rows (observations), in our common data structures, we often
evaluate covariances and correlations between columns and distances among
rows. We speak of the covariance or the correlation between columns or be-
tween variables. The covariance between a column (variable) and itself is its
variance.

For an n × m data matrix X , we have the m × m variance-covariance
matrix (or just the covariance matrix):

S =

⎡

⎢⎢⎢⎣

s11 s12 · · · s1m

s21 s22 · · · s2m
...

...
...

...
sm1 sm2 · · · smm

⎤

⎥⎥⎥⎦
, (9.8)

where

sjk = skj =
∑n

i=1(xij − x̄j)(xik − x̄k)
n − 1

. (9.9)

If X is the matrix in which each column consists of the mean of the corre-
sponding column of X , we see that

S =
1

n − 1
(X − X)T(X −X). (9.10)
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The matrix S is therefore nonnegative definite. The matrix X − X is called
the “centered data matrix”; each column sums to 0.

Assuming none of the variables is constant, the correlation is often a more
useful measure because it is scaled by the variances. For an n×m data matrix,
the m × m correlation matrix is

R =

⎡

⎢⎢⎢⎣

1 r12 · · · r1m

r12 1 · · · r2m
...

...
...

...
r1m r2m · · · 1

⎤

⎥⎥⎥⎦
, (9.11)

where
rjk = rkj =

sjk√
sjjskk

; (9.12)

that is,

R =
(
diag(

√
s11,

√
s22, . . . ,

√
smm)

)−1
S
(
diag(

√
s11,

√
s22, . . . ,

√
smm)

)−1
.

The data matrix X together with either S or R is a complete graph in
which the columns of X constitute the vertices.

Notice that covariances and correlations are based on the L2 norm. They
are sometimes called “product-moment” covariances and correlations.

Because the concepts of covariance and correlation are also used to re-
fer to properties of random variables, we sometimes refer to the quantities
that we have defined above as “sample covariance” or “sample correlation” to
distinguish them from the “population” quantities of abstract variables.

There are variations of these such as rank correlations and robust co-
variances. Rank correlations are computed by first replacing the elements of
each column of X by the ranks of the elements within the column and then
computing the correlation as above. Robust covariances and correlations are
computed either by using a different measure than the L2 norm or by scaling
of the covariance matrix based on an expectation taken with respect to a nor-
mal (or Gaussian) distribution. (“Robustness” usually assumes a normal or
Gaussian distribution as the reference standard.) See page 395 for a specific
robust alternative to S.

Similarities When Some Variables Are Categorical

If all of the variables are measured on a scale that can be modeled as a real
number, covariances and/or correlations or similar measures are the obvious
choice for measuring the similarity between two points, xj and xk. If, however,
some of the variables are categorical variables, that is, if the generic x can be
represented in the notation introduced earlier,

x = (xr, xc),
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a different measure of similarity must be chosen.
Sometimes, the values of the categorical variables represent such differ-

ent situations that it does not make sense to consider similarities between
observations from different groups. In such a case, the similarity between

xj = (xr
j , xc

j)

and
xk = (xr

k, xc
k)

may be measured by the function

s(xj , xk) =
∑n

i=1(x
r
ij − x̄r

j)(xr
ik − x̄r

k)
n − 1

, if xc
j = xc

k ,

= 0, otherwise.
(9.13)

Instead of requiring an exact match of the categorical variables, we can
allow some degrees of similarity between observations with different values of
their categorical variables. One way would be by using the count of how many
variables within xc

j and xc
k agree. Such a simple count can be refined to take

into account the number of possible values each of the categorical variables
can assume. The measure can also be refined by incorporating some measure
of the similarity of different classes.

Similarities among Functional Observations

Interest-bearing financial instruments such as bonds or U.S. Treasury bills
have prices that depend on the spot or current interest rate and so-called
forward rates at future points in time. (A forward rate at time t1 for a future
time t2 can be thought of as the value of cash or a riskless security at time
t2 > t1 discounted back to time t1.) The forward rates depend on, among
other things, the investors’ perception of future spot or actual rates. At any
point, a set of forward rates together with the spot rate determine the “yield
curve” or the “term structure” for a given financial instrument:

r(t).

Observational data for measuring and comparing term structures consist of
functions for a set of securities measured at different time points.

Another example of observations that are functions are the measurements
on various units of individual features of developing organisms taken over
time. For example, the observational unit may be a developing organism, the
features may be gene expressions, and the data elements may be measures of
these expressions taken at fixed times during the development of the organism.
The observations on feature j may consist of measurements (xj1, xj2, . . . , xjm)
taken at times t1, t2, . . . , tm. The overall patterns of the measurements may
be of interest. The underlying model is a continuous function,
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x(t).

The observation on each feature is a discrete function, evaluated at discrete
points in its time domain.

Consider, for example, the three observations

x1 = (1, 2, 1),

x2 = (1, 2, 3),

and
x3 = (4, 8, 4).

Because of the obvious patterns, we may wish to consider x1 and x3 more
similar than are x1 and x2.

There are several ways to define a similarity measure to capture this kind
of relationship. A very simple one in this case is the relative changes over
time. We may first of all augment the existing data with measures of changes.
In the example above, taking a simplistic approach of just measuring changes
and scaling them, and then augmenting the original vectors, we have

x̃1 =
(
1, 2, 1,

∣∣∣ 1, −1
2

)
,

x̃2 =
(
1, 2, 3,

∣∣∣ 1,
1
2

)
,

and
x̃3 =

(
4, 8, 4,

∣∣∣ 1, −1
2

)
.

After transforming the data in this way, we may employ some standard simi-
larity measure, possibly one that downweights the first three elements of each
observation.

Another approach is to fit a smoothing curve to each observational vector
and then form a new vector by evaluating the smoothing curve at fixed points.
A standard similarity measure would then be applied to the transformed vec-
tors.

There are many issues to consider when comparing curves. Whereas the
data-generating process may follow a model x(t), the data are of the form
xi(tij). In the model, the variable t (usually “time”) may not be measured in
an absolute sense, but rather may be measured relative to a different starting
point for each observational unit. Even when this shift is taken into considera-
tion two responses that are similar overall may not begin at the same relative
time; that is, one observational unit may follow a model x(t) and another
x(t + δ). To proceed with the analysis of such data, it is necessary to regis-
ter the data (that is, to shift the data to account for such differences in the
time). More generally, two observational units may follow the same functional
process under some unknown transformation of the independent variable:
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x1(t) = x2(h(t)).

Unraveling this transformation is a more difficult process of registration.
We may want to base similarity among observations on some more general

relationship satisfied by the observations. Suppose, for example, that a subset
of some bivariate data lies in a circle. This pattern may be of interest, and we
may want to consider all of the observations in the subset lying in the circle
to be similar to one another and different from observations not lying in the
circle.

Many such similarity measures depend on the context (that is, on a subset
of variables or observations, not just on the relationship between two variables
or two observations). Similarities defined by a context are of particular use in
pattern recognition.

Similarities between Groups of Variables

We may want to combine variables that have similar values across all observa-
tions into a single variable, perhaps a linear combination of some of the orig-
inal variables. This is an objective of the methods discussed in Sections 16.3
and 16.4.

The general problem of studying linear relationships between two sets of
variables is addressed by the method of canonical correlations. We will not
pursue that topic here.

Dissimilarities: Distances

There are several ways of measuring dissimilarity. One measure of dissimilarity
is distance, and there are several ways of measuring distance. Some measures
of distance between two points are based only on the elements of the vectors
defining those two points. These distances, which are usually defined by a
commutative function, are useful in a homogeneous space. Other measures of
distance may be based on a structure imposed by a set of observations.

In a homogeneous space, there are several commonly used measures of
distance between two observations. Most of these are based on some norm of
the difference between the two numeric vectors representing the observations.
A norm of the difference between two vectors is a metric, as we have observed
in Chapter 1.

Some of the commonly used measures of distance between observations of
numerical data represented in the vectors xi and xk are the following:

• Euclidean distance, the root sum of squares of differences:

∥xi − xk∥2 (9.14)

or
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⎛

⎝
m∑

j=1

(xij − xkj)2
⎞

⎠
1/2

.

The Euclidean distance is sometimes called the L2 norm.
• maximum absolute difference:

∥xi − xk∥∞ (9.15)

or
max

j
|xij − xkj |.

• Manhattan distance, the sum of absolute differences:

∥xi − xk∥1 (9.16)

or
m∑

j=1

|xij − xkj |.

• Minkowski or Lp distance:
∥xi − xk∥p (9.17)

or ⎛

⎝
m∑

j=1

|xij − xkj |p
⎞

⎠
1/p

.

The Lp distance is the Lp norm of the difference in the two vectors. Euclid-
ean distance, maximum difference, and Manhattan distance are special
cases, with p = 2, p → ∞, and p = 1, respectively.

• Canberra distance (from Lance and Williams, 1966):
m∑

j=1

|xij − xkj |
|xij | + |xkj |

, (9.18)

as long as |xij | + |xkj | ̸= 0; otherwise, 0 (sometimes normalized by m to
be between 0 and 1).

• correlation-based distances:
f(rik).

The correlation between two vectors rik (equation (9.12)) can also be used
as a measure of dissimilarity. Values close to 0 indicate small association.
The absolute value of the correlation coefficient is a decreasing function
in what is intuitively a dissimilarity, so a distance measure based on it,
f(rik), should be a decreasing function of the absolute value. Two common
choices are

1 − |rik|
and

1 − r2
ik .
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• distances based on angular separation:

xT
i xk

∥xi∥2 ∥xk∥2
(9.19)

or ∑m
j=1 xijxkj√∑m

j=1 x2
ij

∑m
j=1 x2

kj

.

This measure of angular separation is the cosine of the angle; hence, it is a
decreasing function in what is intuitively a dissimilarity. Other quantities,
such as the sine of the angle, can be used instead. For centered data, the
angular separation is the same as the correlation of equation (9.12).

For categorical data, other measures of distance must be used. For vec-
tors composed of zeros and ones, for example, there are two useful distance
measures:

• Hamming distance: the number of bits that are different in the two vectors;

• binary difference: the proportion of non-zeros that two vectors do not have
in common (the number of occurrences of a zero and a one, or a one and
a zero divided by the number of times at least one vector has a one).

Lance and Williams (1967a, 1967b, and 1968) provide a general framework
for definitions of distances and discuss the differences in the measures in cluster
analysis.

Notice that generally the distances are between the observations, whereas
the covariances discussed above are between the variables.

The distances are elements of the n × n dissimilarity matrix,

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 d12 d13 · · · · · · d1n

d21 0 d23 · · · · · · d2n
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
dn1 dn2 dn3 · · · · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9.20)

All of the distance measures discussed above are metrics; in particular, they
satisfy ∆(x1, x2) = ∆(x2, x1) for all x1, x2 ∈ IRm. This means, among other
things, that any dissimilarity matrix D, in which the elements correspond to
those measures, is symmetric.

The data matrix X together with D is a complete graph. In this graph,
the rows of X constitute the vertices.

The measures of distance listed above are appropriate in a homogeneous
space in which lengths have the same meaning in all directions. A scaling
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of the units in any of the cardinal directions (that is, a change of scale in
the measurement of a single variable) may change the distances. In many
applications, the variables have different meanings. Because many statistical
techniques give preferential attention to variables with larger variance, it is
often useful to scale all variables to have the same variance. Sometimes, it is
more useful to scale the variables so that all have the same range.

Notice that the angular separation, as we have defined it, is based on the
L2 norm. A transformation that preserves L2 distances and angles is called
an “isometric transformation”. If Q is an orthogonal matrix, the Euclidean
distance between Qxi and Qxk and the angular separation between those two
vectors are the same as the distance and angle between xi and xk . Hence, an
orthogonal matrix is called an isometric matrix because it preserves Euclidean
distances and angles.

Other Dissimilarities Based on Distances

The various distance measures that we have described can be used to define
dissimilarities in other ways. For example, we may define the distance from
xj to xk , dR(xj , xk), as the rank of an ordinary distance djk in the set of all
distances dji. If xk is the point closest to xj , then dR(xj , xk) = 1. This type
of dissimilarity depends on the “direction”; that is, in general,

dR(xj , xk) ̸= dR(xk , xj).

A distance measure such as dR(·, ·) is dependent on the neighboring points,
or the “context”.

If we think of the distance between two points as the cost or effort required
to get from one point to another, the distance measure often may not be
symmetric. (It is therefore not a metric.) Common examples in which distances
measured this way are not symmetric arise in anisotropic media under the
influence of a force field (say, electrical or gravitational) or in fluids with a
flow (see Exercise 9.11).

Dissimilarities in Anisometric Coordinate Systems: Scaling and
Sphering Data

If the elements of the observation vectors represent measurements made on
different scales, it is usually best to scale the variables so that all have the
same variance or else have the same range. A scaling of the data matrix X so
that all columns have a variance of 1 is achieved by postmultiplication by a
diagonal matrix whose elements are the square roots of the diagonal elements
of S in equations (9.8):

XN = Xdiag(
√

sii). (9.21)

We refer to XN or any data matrix whose columns have a variance of 1 as
“scaled data” or “normalized data”.
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If the scaling is applied to centered data, we have the “standardized” data
matrix:

XS = (X −X) diag(
√

sii). (9.22)

This scaling is what is done in computing correlations. The correlation matrix
in equation (9.11) can be computed as XT

S XS/(n − 1).
If there are relationships among the variables whose observations comprise

the columns of X , and if there are more rows than columns (that is, n > m),
it may be appropriate to perform an oblique scaling,

XW = (X − X)H, (9.23)

where H is the Cholesky factor of S−1 (equation (9.8)); that is,

HTH = (n − 1)
(
(X − X)T(X − X)

)−1

= S−1.

(If the matrix S is not of full rank, the generalized inverse is used in place of the
inverse. In any case, the matrix is nonnegative definite, so the decomposition
exists.) The matrix XW is a centered and sphered matrix. It is sometimes
called a white matrix. The matrix is orthonormal; that is, XT

WXW = I .
In general, a structure may be imposed on the space by (X − X)T(X −

X) or S. A very useful measure of the distance between two vectors is the
Mahalanobis squared distance. The Mahalanobis squared distance between the
ith and kth observations, xi and xk (the ith and kth rows of X) is

(xi − xk)TS−1(xi − xk). (9.24)

Notice that the Mahalanobis squared distance is the squared Euclidean dis-
tance after using S−1/2 to scale the data. It is the squared Euclidean distance
between rows in the XS matrix above. It is often more natural to use the
Mahalanobis distance, that is, the square root of expression (9.24), because it
is a metric (see page 15).

There are other types of distance. Certain paths from one point to another
can be specified. The distance can be thought of as the cost of getting from one
node on a graph to another node. Although distances are usually considered
to be symmetric (that is, the distance from point xi to point xk is the same as
the distance from point xk to point xi), a more general measure may take into
account fluid flow or elevation gradients, so the dissimilarity matrix would not
be symmetric.

Another type of data that presents interesting variations for measuring
dissimilarities or similarities is directional data, or circular data (that is, data
that contain a directional component). The angular separation (9.19) mea-
sures this, of course, but often in directional data, one of the data elements is
a plane angle. As the size of the angle increases, ultimately it comes close to a
measure of 0. A simple example is data measured in polar coordinates. When
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one of the data elements is an angle, the component of the overall distance
between two observations i and j attributable to their angles, θi and θj , could
be taken as

dd
ij = 1 − cos(θi − θj).

The directional component must be combined additively with a component
due to Euclidean-like distances, dr

ij . In polar coordinates, the radial compo-
nent is already a distance, so dr

ij may just be taken as the absolute value of
the difference in the radial components ri and rj . The overall distance dij may
be formed from dd

ij and dr
ij in various ways that weight the radial distance

and the angle differently.
There are many examples, such as wind direction in meteorology or cli-

matology, in which directional data arise.

Properties of Dissimilarities

A dissimilarity measure based on a metric conforms generally to our intuitive
ideas of distance. The norm of the difference between two vectors is a metric,
that is, if

∆(x1, x2) = ∥x1 − x2∥,

then ∆(x1, x2) is a metric. Distance measures such as the Lp distance and
the special cases of Euclidean distance, maximum difference, and Manhattan
distance, which are based on norms of the difference between two vectors,
have useful properties, such as satisfying the triangle inequality:

dik ≤ dij + djk.

There are many different measures that may be useful in different appli-
cations.

Dissimilarities between Groups of Observations

In clustering applications, we need to measure distances between groups of
observations. We are faced with two decisions. First, we must choose the
distance metric to use, and then the points in the two groups between which
we measure the distance. Any of the distance measures discussed above could
be used.

Once a distance measure is chosen, the distance between two groups can
be defined in several ways, such as the following;

• the distance between a central point, such as the mean or median, in one
cluster and the corresponding central point in the other cluster;

• the minimum distance between a point in one cluster and a point in the
other cluster;

• the largest distance between a point in one cluster and a point in the other
cluster;
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• the average of the distances between the points in one cluster and the
points in the other cluster.

The average of all of the pairwise point distances is the most common type
of measure used in some applications. This type of measure is widely used
in genetics, where the distance between two populations is based on the dif-
ferences in frequencies of chromosome arrangements (for example, Prevosti’s
distance) or on DNA matches or agreement of other categorical variables (for
example, Sanghvi’s distance).

Effects of Transformations of the Data

In the course of an analysis of data, it is very common to apply various trans-
formations to the data. These transformations may involve various operations
on real numbers, such as scaling a variable (multiplication), summing all val-
ues of a variable (addition), and so on. Do these kinds of operations have an
effect on the results of the data analysis? Do they change the relative values
of such things as measures of similarity and dissimilarity?

Consider a very simple case in which a variable represents length, for
example. The actual data are measurements such as 0.11 meters, 0.093 meters,
and so on. These values are recorded simply as the real numbers 0.11, 0.093,
and so on. In analyzing the data, we may perform certain operations (summing
the data, squaring the data, and so on) in which we merely assume that the
data behave as real numbers. (Notice that 0.11 is a real number but 0.11
meters is not a real number; 0.11 meters is a more complicated object.) After
noting the range of values of the observations, we may decide that millimeters
would be better units of measurement than meters. The values of the variable
are then scaled by 1,000. Does this affect any data analysis we may do?

Although, as a result of scaling, the mean goes from approximately µ (for
some value µ) to 1, 000µ, and the variance goes from σ2 (for some value σ) to
1, 000, 000σ2, the scaling certainly should not affect any analysis that involves
that variable alone.

Suppose, however, that another variable in the dataset is also length and
that typical values of that variable are 1,100 meters, 930 meters, and so on.
For this variable, a more appropriate unit of measure may be kilometers. To
change the unit of measurement results in dividing the data values by 1,000.
The differential effects on the mean and variance are similar to the previous
effects when the units were changed from meters to millimeters; the effects on
the means and on the variances differ by a factor of 1,000. Again, the scaling
certainly should not affect any analysis that involves that variable alone.

This scaling, however, does affect the relative values of measures of similar-
ity and dissimilarity. Consider, for example, the Euclidean distance between
two observations, x1 = (x11, x12) and x2 = (x21, x22). The squared distance
prior to the scaling is

(x11 − x21)2 + (x12 − x22)2.
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Following the scaling, it is

106(x11 − x21)2 + 10−6(x12 − x22)2.

The net effect depends on the relative distances between x1 and x2 as mea-
sured by their separate components.

As we mention above, an orthogonal transformation preserves Euclidean
distances and angular separations; that is, it is an isometric transformation.
An orthogonal transformation also preserves measures of similarity based on
the L2 norm. An orthogonal transformation, however, does not preserve other
measures of similarity or distance.

Outlying Observations and Robust Measures

Many methods of data analysis may be overly affected by observations that lie
at some distance from the other observations. Using a least squares criterion
for locating the center of a set of observations, for example, can result in a
“central point” that is outside of the convex hull of all of the data except for
just one observation. As an extreme case, consider the mean of 100 univariate
observations, all between 0 and 1 except for one outlying observation at 100.
The mean of this set of data is larger than 99% of the data.

An outlier may result in one row and column in the dissimilarity matrix
D having very large values compared to the other values in the dissimilarity
matrix. This is especially true of dissimilarities based on the L2 norm. Dis-
similarities based on other norms, such as the L1 norm, may not be as greatly
affected by an outlier.

Methods of data analysis that are not as strongly affected by outlying
observations are said to be “robust”. (There are various technical definitions of
robustness, which we will not consider here.) The variance-covariance matrix S
in equation (9.8), because it is based on squares of distances from unweighted
means, may be strongly affected by outliers. A robust alternative is

SR = (sRjk), (9.25)

where the sRjk are robust alternatives to the sjk in equation (9.9).
There are various ways of defining the sRjk . In general, they are formed

by choosing weights for the individual observations to decrease the effect of
outlying points; for example,

sRjk =
∑n

i=1 w2
i (xij − x̄Rj)(xik − x̄Rk)∑n

i=1 w2
i − 1

, (9.26)

where

x̄Rj =
n∑

i=1

wixij

/ n∑

i=1

wi, (9.27)

for a given function ω,
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wi = ω(di)/di, (9.28)

and
di = (xi − x̄R)TS−1

R (xi − x̄R). (9.29)

(In this last expression, xi represents the m-vector of the ith observation,
and x̄R represents the m-vector of the weighted means. These expressions are
circular and require iterations to evaluate them.)

The function ω is designed to downweight outlying observations. One pos-
sibility, for given constants b1 and b2, is

ω(d) = d if d ≤ d0

= d0e−
1
2 (d−d0)

2/b22 if d > d0,
(9.30)

where d0 =
√

m + b1/
√

2.
Instead of defining the “center” as a weighted mean as in equation (9.27),

we may use some other measure of the center, such as a median, a geometric
mean, or a harmonic mean. The effect of outlying observations on these mea-
sures is different. Similarity measures based on these measures may be more
robust to outlying observations. Some comparisons are given by Sebe, Lew,
and Huijsmans (2000).

Collinear Variables

A problem of a different type arises when the variables are highly correlated.
In this case, the covariance matrix S and the correlation matrix R, which
are based on the L2 norm, are both ill-conditioned. The ranking transfor-
mation mentioned on page 385 results in a correlation matrix that is better
conditioned.

Depending on the application, some type of regularization may be useful
when the variables are highly correlated. We consider some regularization
methods in Chapter 17.

Multidimensional Scaling: Determining Observations that Yield a
Given Distance Matrix

Given an n × n distance matrix such as D in equation (9.20), could we re-
construct an n×m data matrix X that yields D for some metric ∆(·, ·)? The
question, of course, is constrained by m (that is, by the number of variables).
The problem is to determine the elements of rows of X such that

d̃ij = ∆(xi, xj)
≈ dij .

This is called multidimensional scaling.
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The approximation problem can be stated precisely as an optimization
problem to minimize ∑

i

∑
j f(d̃ij − dij)∑

i

∑
j f(dij)

,

where f(·) is some function that is positive for nonzero arguments and is
monotone increasing in the absolute value of the argument, and f(0) = 0. An
obvious choice is f(t) = t2. Clarkson and Gentle (1986) describe an alternating
iteratively reweighted least squares algorithm to compute the minimum when
f is of the form f(t) = |t|p. If the distances in D do not arise from a metric,
they discussed ways of transforming the dissimilarities so that the least squares
approach would still work.

The larger the value of m, of course, the closer the d̃ij will be to the
dij . If m ≪ n and the approximations are good, significant data reduction is
achieved.

There are various modifications of the basic multidimensional scaling prob-
lem, and software programs are available for different ones. The S-Plus and R
function cmdscale performs computations for multidimensional scaling when
the dissimilarities are Euclidean distances. (In R, cmdscale is in the mva
package.)

Notes and Further Reading

Because many of the similarity and dissimilarity measures are based on least
squares approaches, they may be sensitive to heavy tailed distributions or to
samples with outliers. Ammann (1989) and (1993) discusses ways of robusti-
fying the measures prior to such analyses as principal components. Amores,
Sebe, and Radeva (2006) discuss robust measures of distance for use in nearest
neighbor classification.

Exercises

9.1. Determine the rotation matrix that transforms the vector x = (5, 12) into
the vector x̃ = (0, 13).

9.2. Reproduce the surface shown in the wire frame of Figure 9.5, and then
add a circular band around the surface centered at (0, 0), and with radius
1.

9.3. Write a program for the simple linear congruential random number gen-
erator

xi ≡ 35xi−1 mod 215.

Generate a sequence of length 1008. Look for structure in d-tuples of
sequential values, (xi, xi+1, . . . , xi+d−1), for 3 ≤ d ≤ 1005.
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Compare this with the output of the similar generator in Exercise 8.4
where we consider d = 3.
a) Use a program that plots points in three dimensions and rotates the

axes. Now, look for structure in higher dimensions. Hint: All of the
points lie on the hyperplanes

xi+3 − 9xi+2 + 27xi+1 − 27xi = j,

where j is an integer.
b) Examine this structure using parallel coordinates.

9.4. Develop a grand tour in parallel coordinates plots. Apply it to data gen-
erated by the random number generator in Exercise 9.3.

9.5. Develop a grand tour in Andrews curves. Apply it to data generated by
the random number generator in Exercise 9.3. What is the difference in
the grand tour and the pseudo grand tour in Andrews curves discussed
on page 364?

9.6. Data exploration.
a) Generate 25 numbers independently from U(0, 1), and form five five-

dimensional vectors, xi, from them by taking the first five, the second
five, and so on. Now, using Gram-Schmidt orthogonalization, form a
set of orthogonal vectors yi from the x’s. You now have two multivari-
ate datasets with very different characteristics. See if you can discover
the difference graphically using either cartesian or noncartesian dis-
plays.

b) Now, generate five n-dimensional vectors, for n relatively large. Do
the same thing as in the previous part. (Now, you can decide what is
meant by “n relatively large”.) In this exercise, you have two datasets,
each with five variables and n observations. Your graphical displays
have been of the variables instead of the observations.

c) Now, use the two datasets of the previous part and graph them in
the traditional way using displays in which the upper-level graphical
objects are the n observations.

Summarize your findings in a clearly-written report.
9.7. Consider the relative interpoint distances between the three 3-vectors

x1 = (x11, x12, x13),

x2 = (x21, x22, x23),

and
x3 = (x31, x32, x33).

For each of the other distance measures listed on pages 389 and 390, give
specific values (small integers) for the xij such that, for the Euclidean
distance, the distance between the first and second, d12, is less than the
distance between the second and third, d23, but for that other distance
measure, d12 > d23. For the Hamming and binary distances, use the binary
representations of the elements.
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9.8. Show that the Mahalanobis distance (9.24), on page 392, between any two
observations is nonnegative.

9.9. Show that the norm of the difference between two vectors is a metric; that
is, if

∆(x1, x2) = ∥x1 − x2∥,

∆(x1, x2) is a metric.
9.10. a) Show that all of the distance measures in equations (9.14) through (9.18),

as well as the Hamming distance and the binary difference, are met-
rics.

b) Which of those distance measures are based on norms?
c) Why are the correlation-based distances, including equation (9.19),

not metrics?
9.11. Consider a two-dimensional surface with an orthogonal coordinate system

over which there is a fluid flow with constant velocity f = (f1, f2). Suppose
that an object can move through the fluid with constant velocity v with
respect to the fluid and measured in the same units as f . (The magnitude
of the velocity is ∥v∥ =

√
v2
1 + v2

2 .) Assume that ∥v∥ > ∥f∥.
a) Define a distance measure, d, over the surface such that for two points

xi and xj , the distance from xi to xj is proportional to the time
required for the object to move from xi to xj .

b) Compare your distance measure with those listed on page 388.
c) What properties of a norm does your distance measure possess?

9.12. Consider the problem of a dissimilarity measure for two-dimensional data
represented in polar coordinates, as discussed on page 392. One possibil-
ity, of course, is to transform the data to cartesian coordinates and then
use any of the distance measures for that coordinate system. Define a
dissimilarity measure based on dd

ij and dr
ij . Is your measure a metric?

9.13. Given two n-vectors, x1 and x2, form a third vector, x3, as x3 = a1x1 +
a2x2 + ϵ, where ϵ is a vector of independent N(0, 1) realizations. Although
the matrix X = [x1 x2 x3] is in IRn×3, the linear structure, even obscured
by the noise, implies a two-dimensional space for the data matrix (that
is, the space IRn×2).
a) Determine a rotation matrix that reveals the linear structure. In other

words, determine matrices Q and P such that the rotation XQ fol-
lowed by the projection (XQ)P is a noisy line in two dimensions.

b) Generate x1 and x2 as realizations of a U(0, 1) process and x3 as
5x1 + x2 + ϵ, where ϵ is a realization of a N(0, 1) process. What are Q
and P from the previous question?

9.14. Given the distance matrix

D =

⎡

⎢⎢⎢⎢⎣

0 4.34 4.58 7.68 4.47
4.34 0 1.41 4.00 4.36
4.58 1.41 0 5.10 5.00
7.68 4.00 5.10 0 6.56
4.47 4.36 5.00 6.56 0

⎤

⎥⎥⎥⎥⎦
,
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where the elements are Euclidean distances, determine a 5 × m matrix
with a small value of m that has a distance matrix very close to D.
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Estimation of Functions

An interesting problem in statistics, and one that is generally difficult, is the
estimation of a continuous function, such as a probability density function or
a nonlinear regression model. The statistical properties of an estimator of a
function are more complicated than statistical properties of an estimator of a
single parameter or of a countable set of parameters.

In Chapter 4 we discussed ways of numerically approximating functions.
In this brief chapter we will discuss ways of statistically estimating functions.
Many of these methods are based on approximation methods such as orthog-
onal systems, splines, and kernels discussed in Chapter 4. The PDF decom-
position plays an important role in the estimation of functions.

We will discuss the properties of an estimator in the general case of a real
scalar-valued function over real vector-valued arguments (that is, a mapping
from IRd into IR). One of the most common situations in which these prop-
erties are relevant is in nonparametric probability density estimation, which
we discuss in Chapter 15. (In that application, of course, we do not have
to do a PDF decomposition.) The global statistical properties we discuss in
Section 10.3 are the measures by which we evaluate probability density esti-
mators.

First, we say a few words about notation. We may denote a function by a
single letter, f , for example, or by the function notation, f(·) or f(x). When
f(x) denotes a function, x is merely a placeholder. The notation f(x), however,
may also refer to the value of the function at the point x. The meaning is
usually clear from the context.

Using the common “hat” notation for an estimator, we use f̂ or f̂(x) to
denote the estimator of f or of f(x). Following the usual terminology, we use
the term “estimator” to denote a random variable, and “estimate” to denote
a realization of the random variable.

The hat notation is also used to denote an estimate, so we must determine
from the context whether f̂ or f̂(x) denotes a random variable or a realization
of a random variable.
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The estimate or the estimator of the value of the function at the point x
may also be denoted by f̂(x). Sometimes, to emphasize that we are estimating
the ordinate of the function rather than evaluating an estimate of the function,
we use the notation f̂(x). In this case also, we often make no distinction in
the notation between the realization (the estimate) and the random variable
(the estimator). We must determine from the context whether f̂(x) or f̂(x)
denotes a random variable or a realization of a random variable. In most of the
following discussion, however, the hat notation denotes a random variable. Its
distribution depends on the underlying random variable that yields the sample
from which the estimator is computed.

The usual optimality properties that we use in developing a theory of
estimation of a finite-dimensional parameter must be extended for estimation
of a general function. As we will see, two of the usual desirable properties of
point estimators, namely unbiasedness and maximum likelihood, cannot be
attained globally or in general by estimators of functions.

There are many similarities in estimation of functions and approximation
of functions, but we must be aware of the fundamental differences in the two
problems. Estimation of functions is similar to other estimation problems: We
are given a sample of observations; we make certain assumptions about the
probability distribution of the sample; and then we develop estimators. The
estimators are random variables, and how useful they are depends on proper-
ties of their distribution, such as their expected values and their variances.

Approximation of functions is an important aspect of numerical analysis.
Functions are often approximated to interpolate functional values between
directly computed or known values. Functions are also approximated as a
prelude to quadrature. In this chapter, we will often approximate a function
as a step in the statistical estimation of the function.

In the problem of function estimation, we may have observations on the
function at specific points in the domain, or we may have indirect measure-
ments of the function, such as observations that relate to a derivative or an
integral of the function. In either case, the problem of function estimation
has the competing goals of providing a good fit to the observed data and
predicting values at other points. In many cases, a smooth estimate satisfies
this latter objective. In other cases, however, the unknown function itself is
not smooth. Functions with different forms may govern the phenomena in dif-
ferent regimes. This presents a very difficult problem in function estimation,
but it is one that we will not consider in any detail here.

There are various approaches to estimating functions. Maximum likelihood
(see page 70) has limited usefulness for estimating functions because in gen-
eral the likelihood is unbounded. A practical approach is to assume that the
function is of a particular form and estimate the parameters that character-
ize the form. For example, we may assume that the function is exponential,
possibly because of physical properties such as exponential decay. We may
then use various estimation criteria, such as least squares, to estimate the
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parameter. An extension of this approach is to assume that the function is a
mixture of other functions. The mixture can be formed by different functions
over different domains or by weighted averages of the functions over the whole
domain. Estimation of the function of interest involves estimation of various
parameters as well as the weights.

Another approach to function estimation is to represent the function of
interest as a linear combination of basis functions, that is, to represent the
function in a series expansion. The basis functions are generally chosen to be
orthogonal over the domain of interest, and the observed data are used to
estimate the coefficients in the series. We discuss the use of basis functions
beginning on page 18 and again on page 161.

It is often more practical to estimate the function value at a given point.
(Of course, if we can estimate the function at any given point, we can effec-
tively have an estimate at all points.) One way of forming an estimate of a
function at a given point is to take the average at that point of a filtering func-
tion that is evaluated in the vicinity of each data point. The filtering function
is called a kernel, and the result of this approach is called a kernel estimator.
We discussed use of kernels in approximation of functions in Section 4.5. Ker-
nel methods have limited use in function approximation, but they are very
useful in function estimation. We briefly discuss the use of kernel filters in
function estimation on page 406, but we discuss those kinds of methods more
fully in the context of probability density function estimation in Section 15.3,
beginning on page 499.

In the estimation of functions, we must be concerned about the properties
of the estimators at specific points and also about properties over the full
domain. Global properties over the full domain are often defined in terms of
integrals or in terms of suprema or infima.

10.1 General Approaches to Function Estimation

The theory of statistical estimation is based on probability distributions. In
order to develop an estimation procedure, we need to identify random vari-
ables, and make some assumptions about their distributions. In the case of
statistical estimation of a function, this may involve decomposing the function
of interest so as to have a factor that is a PDF. This PDF decomposition is a
preliminary step in function estimation.

Once a random variable and a probability distribution are identified, meth-
ods for estimation of functions often parallel the methods of approximation
of functions as in Chapter 4.

Function Decomposition and Estimation of the Coefficients in an
Orthogonal Expansion

In the following, we will work with functions that are square-integrable over
some domain D; that is, functions in L2(D).
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The estimation approach follows the approximation approach discussed in
Sections 4.2 and 4.3. It begins, however, with a PDF decomposition.

We decompose the function of interest to have a factor that is a probability
density function, say

f(x) = g(x)p(x), (10.1)

where ∫

D
p(x)dx = 1

and p(x) > 0 on D; that is, p is a PDF and the distribution has support D.
This PDF decomposition is important, because now we can introduce the

expectation of a random variable. We expand the function as in equation (4.25)
on page 162, and then from equation (4.26), we have

ck = ⟨f, qk⟩

=
∫

D
qk(x)g(x)p(x)dx

= E(qk(X)g(X)), (10.2)

where X is a random variable whose probability density function is p.
If we have a random sample, x1, . . . , xn, from the distribution with density

p, an estimator of ck is

ĉk =
1
n

n∑

i=1

qk(xi)g(xi). (10.3)

It is clear that this estimator is unbiased for the expectation in equation (10.2),
if we assume that the expectation is finite.

The series estimator of the function for all x using the truncated series
approximation, as in equation (4.27), therefore is

f̂(x) =
1
n

j∑

k=0

n∑

i=1

qk(xi)g(xi)qk(x) (10.4)

for some truncation point j. Note that this estimator assumes a random sample
from a known distribution over the domain of f .

The random sample, x1, . . . , xn, may be an observed dataset, or it may be
the output of a random number generator.

For univariate function, the basis functions in the expansion above are
often chosen from the standard series of univariate orthogonal polynomials,
such as the Legendre, Laguerre, or Hermite polynomials. (See Table 4.1 on
page 170.)
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Use of Splines

The approach to function estimation that we pursued in the previous section
makes use of a finite subset of an infinite basis set which often consists of
polynomials of degrees p = 0, 1, . . .. This approach yields a smooth estimate
f̂(x). The polynomials in f̂(x), however, cause oscillations that may be unde-
sirable. This is because of the approximation used prior to the estimation. The
approximation oscillates a number of times one less than the highest degree
of the polynomial used. Also, if the function being approximated has quite
different shapes in different regions of its domain, the global approach of using
the same polynomials over the full domain may not be very effective.

Another approach is to subdivide the interval over which the function is
to be approximated and then on each subinterval use polynomials with low
degree. The approximation at any point is a sum of one or more piecewise poly-
nomials. Even with polynomials of very low degree, if we use a large number
of subintervals, we can obtain a good approximation to the function. Zero-
degree polynomials, for example, would yield a piecewise constant function
that could be very close to a given function if enough subintervals are used.
Using more and more subintervals, of course, is not a very practical approach.
Not only is the approximation a rather complicated function, but it may be
discontinuous at the interval boundaries. We can achieve smoothness of the
approximation by imposing continuity restrictions on the piecewise polyno-
mials and their derivatives. This is the approach in spline approximation and
smoothing, which we discussed in Section 4.4.

As described on page 178, there are three types of spline basis functions
commonly used:

• truncated power functions (or just power functions),
• B-splines,
• “natural” polynomial splines.

Some basis functions for various types of splines over the interval [−1, 1]
are shown in Figure 4.5 on page 181.

Smoothing Splines

Smoothing splines are generally more useful in function estimation than are
interpolating splines. The individual points may be subject to error, so the
approximating spline may not go through any of the given points. In this
usage, the splines are evaluated at each abscissa point, and the ordinates are
fitted by some criterion (such as least squares) to the spline.

The choice of knots is a difficult problem. One approach is to include the
knots as decision variables in the optimization problem for determining the fit.
Other approaches are to add (pre-chosen) knots in a stepwise manner or to use
a regularization method (addition of a component to the fitting optimization
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objective function that increases for roughness or for some other undesirable
characteristic of the fit).

In an important type of application of splines, we have assumed a linear
relationship similar to equation (4.62) on page 179, but with an error term:

y =
j∑

k=1

ckbk(x) + ϵ. (10.5)

If we have a sample (y1, x1), . . . , (yn, xn), we first evaluate each of the spline
basis functions bk at each xi, yielding x̃ik , where

x̃ik = bk(xi). (10.6)

The observations on the dependent variable yi are then fit to the spline func-
tion values by choosing appropriate values of ck. The fit can be based on any
of the criteria that we discussed in Section 1.8. A least squares fit is most
commonly used; that is, the ck are chosen to minimize

n∑

i=1

(
yi −

j∑

k=1

ckx̃ik

)2

. (10.7)

Kernel Methods

An approach to function approximation discussed in Section 4.5 is to use a
filter or kernel function to provide local weighting of the observed data. This
approach ensures that at a given point the observations close to that point
influence the estimate at the point more strongly than more distant obser-
vations. A standard method in this approach is to convolve the observations
with a unimodal function that decreases rapidly away from a central point.
This function is the filter or the kernel. A kernel has two arguments represent-
ing the two points in the convolution, but we typically use a single argument
that represents the distance between the two points.

The univariate kernel functions equations (4.65) through (4.67) are often
used in function estimation. These are the uniform,

Ku(t) = 1/(2λ)I[−λ,λ](t),

the quadratic,

Kq(t) = 3/(λ2(6 − 2λ))(λ − t2)I[−λ,λ](t),

and the normal,

Kn(t) =
1√
2π

e−(t/λ)2/2,

each with a smoothing parameter λ. Kernel methods are often used in the
estimation of probability density functions which we discuss in Chapter 15,
and in Section 15.3, we will discuss some more kernels.
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In kernel methods, the locality of influence is controlled by a smoothing
parameter or a window around the point of interest. The choice of the size
of the window is the most important issue in the use of kernel methods. In
practice, for a given choice of the size of the window, the argument of the kernel
function is transformed to reflect the size. In general, the transformation is
accomplished using a positive definite matrix, V , whose determinant measures
the volume (size) of the window.

To estimate the function f at the point x, we first form a PDF decompo-
sition of f , as in equation (10.1),

f(x) = g(x)p(x),

where p is a probability density function. In the multivariate case, for a given
set of data, x1, . . . , xn, and a given scaling transformation matrix V , the kernel
estimator of the function at the point x is

f̂(x) = (n|V |)−1
n∑

i=1

g(x)K
(
V −1(x − xi)

)
. (10.8)

In the univariate case, the size of the window is just the width h. The
argument of the kernel is transformed to s/h, so the function that is convolved
with the function of interest is K(s/h)/h. The univariate kernel estimator is

f̂(x) =
1

nh

n∑

i=1

g(x)K
(

x − xi

h

)
.

10.2 Pointwise Properties of Function Estimators

The statistical properties of an estimator of a function at a given point are
analogous to the usual statistical properties of an estimator of a scalar para-
meter. The statistical properties involve expectations or other properties of
random variables. In the following, when we write an expectation, E(·), or
a variance, V(·), the expectations are usually taken with respect to the (un-
known) distribution of the underlying random variable. Occasionally, we may
explicitly indicate the distribution by writing, for example, Ep(·), where p is
the density of the random variable with respect to which the expectation is
taken.

Bias

The bias of the estimator of a function value at the point x is

E
(
f̂(x)

)
− f(x).

If this bias is zero, we would say that the estimator is unbiased at the point
x. If the estimator is unbiased at every point x in the domain of f , we say
that the estimator is pointwise unbiased. Obviously, in order for f̂(·) to be
pointwise unbiased, it must be defined over the full domain of f .
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Variance

The variance of the estimator at the point x is

V
(
f̂(x)

)
= E

((
f̂(x) − E

(
f̂(x)

))2
)

.

Estimators with small variance are generally more desirable, and an optimal
estimator is often taken as the one with smallest variance among a class of
unbiased estimators.

Mean Squared Error

The mean squared error, MSE, at the point x is

MSE
(
f̂(x)

)
= E

((
f̂(x) − f(x)

)2
)

. (10.9)

The mean squared error is the sum of the variance and the square of the bias:

MSE
(
f̂(x)

)
= E

((
f̂(x)

)2
− 2f̂(x)f(x) + (f(x))2

)

= V
(
f̂(x)

)
+
(
E
(
f̂(x)

)
− f(x)

)2
. (10.10)

Sometimes, the variance of an unbiased estimator is much greater than
that of an estimator that is only slightly biased, so it is often appropriate to
compare the mean squared error of the two estimators. In some cases, as we
will see, unbiased estimators do not exist, so rather than seek an unbiased
estimator with a small variance, we seek an estimator with a small MSE.

Mean Absolute Error

The mean absolute error, MAE, at the point x is similar to the MSE:

MAE
(
f̂(x)

)
= E

(∣∣∣f̂(x) − f(x)
∣∣∣
)

. (10.11)

It is more difficult to do mathematical analysis of the MAE than it is for the
MSE. Furthermore, the MAE does not have a simple decomposition into other
meaningful quantities similar to the MSE.

Consistency

Consistency of an estimator refers to the convergence of the expected value of
the estimator to what is being estimated as the sample size increases without
bound. A point estimator Tn, based on a sample of size n, is consistent for θ
if
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Tn − θ → 0 as n → ∞.

The convergence is stochastic, of course, so there are various types of con-
vergence that can be required for consistency. The most common kind of
convergence considered is weak convergence, or convergence in probability.

In addition to the type of stochastic convergence, we may consider the
convergence of various measures of the estimator. In general, if m is a function
(usually a vector-valued function that is an elementwise norm), we may define
consistency of an estimator Tn in terms of m if

E(m(Tn − θ)) → 0. (10.12)

For an estimator, we are often interested in weak convergence in mean
square or weak convergence in quadratic mean, so the common definition of
consistency of Tn is

E
(
(Tn − θ)T(Tn − θ)

)
→ 0,

where the type of convergence is convergence in probability. Consistency de-
fined by convergence in mean square is also called L2 consistency.

If convergence does occur, we are interested in the rate of convergence. We
define rate of convergence in terms of a function of n, say r(n), such that

E(m(Tn − θ)) = O(r(n)).

A common form of r(n) is nα, where α < 0. For example, in the simple case
of a univariate population with a finite mean µ and finite second moment, use
of the sample mean x̄ as the estimator Tn, and use of m(z) = z2, we have

E(m(x̄ − µ)) = E
(
(x̄ − µ)2

)

= MSE(x̄)
= O

(
n−1

)
.

See Exercise 10.1, page 414.
In the estimation of a function, we say that the estimator f̂n of the function

f is pointwise consistent if

E
(
f̂n(x)

)
→ f(x) (10.13)

for every x the domain of f . Just as in the estimation of a parameter, there
are various kinds of pointwise consistency in the estimation of a function. If
the convergence in expression (10.13) is in probability, for example, we say
that the estimator is weakly pointwise consistent. We could also define other
kinds of pointwise consistency in function estimation along the lines of other
types of consistency.
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10.3 Global Properties of Estimators of Functions

Often, we are interested in some measure of the statistical properties of an
estimator of a function over the full domain of the function. The obvious way
of defining statistical properties of an estimator of a function is to integrate
the pointwise properties discussed in the previous section.

Statistical properties of a function estimator, such as the bias of the esti-
mator, are often defined in terms of a norm of the function.

For comparing f̂(x) and f(x), the Lp norm of the error is
(∫

D

∣∣∣f̂(x) − f(x)
∣∣∣
p

dx

)1/p

, (10.14)

where D is the domain of f . The integral may not exist, of course. Clearly,
the estimator f̂ must also be defined over the same domain.

Three useful measures are the L1 norm, also called the integrated absolute
error, or IAE,

IAE(f̂ ) =
∫

D

∣∣∣f̂(x) − f(x)
∣∣∣ dx, (10.15)

the square of the L2 norm, also called the integrated squared error, or ISE,

ISE(f̂ ) =
∫

D

(
f̂(x) − f(x)

)2
dx, (10.16)

and the L∞ norm, the sup absolute error, or SAE,

SAE(f̂ ) = sup
∣∣∣f̂(x) − f(x)

∣∣∣ . (10.17)

The L1 measure is invariant under monotone transformations of the coor-
dinate axes, but the measure based on the L2 norm is not. See Exercise 4.1
on page 199.

The L∞ norm, or SAE, is the most often used measure in general function
approximation. In statistical applications, this measure applied to two cumu-
lative distribution functions is the Kolmogorov distance. The measure is not
so useful in comparing densities and is not often used in density estimation.

Other measures of the difference in f̂ and f over the full range of x are
the Kullback-Leibler measure,

∫

D
f̂(x) log

(
f̂(x)
f(x)

)
dx,

and the Hellinger distance,
(∫

D

(
f̂ 1/p(x) − f1/p(x)

)p
dx

)1/p

.

For p = 2, the Hellinger distance is also called the Matusita distance.
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Integrated Bias and Variance

We now want to develop global concepts of bias and variance for estimators of
functions. Bias and variance are statistical properties that involve expectations
of random variables. The obvious global measures of bias and variance are just
the pointwise measures integrated over the domain. In the case of the bias,
of course, we must integrate the absolute value, otherwise points of negative
bias could cancel out points of positive bias.

The estimator f̂ is pointwise unbiased if

E
(
f̂(x)

)
= f(x) for all x ∈ IRd.

Because we are interested in the bias over the domain of the function, we
define the integrated absolute bias as

IAB
(
f̂
)

=
∫

D

∣∣∣E
(
f̂(x)

)
− f(x)

∣∣∣ dx (10.18)

and the integrated squared bias as

ISB
(
f̂
)

=
∫

D

(
E
(
f̂(x)

)
− f(x)

)2
dx. (10.19)

If the estimator is unbiased, both the integrated absolute bias and inte-
grated squared bias are 0. This, of course, would mean that the estimator is
pointwise unbiased almost everywhere. Although it is not uncommon to have
unbiased estimators of scalar parameters or even of vector parameters with a
countable number of elements, it is not likely that an estimator of a function
could be unbiased at almost all points in a dense domain. (“Almost” means
all except possibly a set with a probability measure of 0.)

The integrated variance is defined in a similar manner:

IV
(
f̂
)

=
∫

D
V
(
f̂(x)

)
dx

=
∫

D
E
((

f̂(x) − E
(
f̂(x)

))2
)

dx. (10.20)

Integrated Mean Squared Error and Mean Absolute Error

As we suggested above, global unbiasedness is generally not to be expected.
An important measure for comparing estimators of functions is, therefore,
based on the mean squared error.

The integrated mean squared error is
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IMSE
(
f̂
)

=
∫

D
E
((

f̂(x) − f(x)
)2
)

dx

= IV
(
f̂
)

+ ISB
(
f̂
)

(10.21)

(compare equations (10.9) and (10.10)).
If the expectation integration can be interchanged with the outer integra-

tion in the expression above, we have

IMSE
(
f̂
)

= E
(∫

D

(
f̂(x) − f(x)

)2
dx

)

= MISE
(
f̂
)

,

the mean integrated squared error. We will assume that this interchange leaves
the integrals unchanged, so we will use MISE and IMSE interchangeably.

Similarly, for the integrated mean absolute error, we have

IMAE
(
f̂
)

=
∫

D
E
(∣∣∣f̂(x) − f(x)

∣∣∣
)

dx

= E
(∫

D

∣∣∣f̂(x) − f(x)
∣∣∣ dx

)

= MIAE
(
f̂
)

,

the mean integrated absolute error.

Mean SAE

The mean sup absolute error, or MSAE, is

MSAE
(
f̂
)

=
∫

D
E
(
sup

∣∣∣f̂(x) − f(x)
∣∣∣
)

dx. (10.22)

This measure is not very useful unless the variation in the function f is rela-
tively small. For example, if f is a density function, f̂ can be a “good” estima-
tor, yet the MSAE may be quite large. On the other hand, if f is a cumulative
distribution function (monotonically ranging from 0 to 1), the MSAE may be
a good measure of how well the estimator performs. As mentioned earlier, the
SAE is the Kolmogorov distance. The Kolmogorov distance (and, hence, the
SAE and the MSAE) does poorly in measuring differences in the tails of the
distribution.

Large-Sample Statistical Properties

The pointwise consistency properties are extended to the full function in the
obvious way. In the notation of expression (10.12), consistency of the function
estimator is defined in terms of
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∫

D
E
(
m
(
f̂n(x) − f(x)

))
dx → 0,

where m is some function, usually a norm or a power of a norm.
The estimator of the function is said to be mean square consistent or L2

consistent if the MISE converges to 0; that is,
∫

D
E
((

f̂n(x) − f(x)
)2
)

dx → 0. (10.23)

If the convergence is weak, that is, if it is convergence in probability, we say
that the function estimator is weakly consistent; if the convergence is strong,
that is, if it is convergence almost surely or with probability 1, we say the
function estimator is strongly consistent.

The estimator of the function is said to be L1 consistent if the mean
integrated absolute error (MIAE) converges to 0; that is,

∫

D
E
(∣∣∣f̂n(x) − f(x)

∣∣∣
)

dx → 0. (10.24)

As with the other kinds of consistency, the nature of the convergence in the
definition may be expressed in the qualifiers “weak” or “strong”.

As we have mentioned above, the integrated absolute error is invariant
under monotone transformations of the coordinate axes, but the L2 measures
are not. As with most work in L1, however, derivation of various properties
of IAE or MIAE is more difficult than for analogous properties with respect
to L2 criteria.

If the MISE converges to 0, we are interested in the rate of convergence.
To determine this, we seek an expression of MISE as a function of n. We do
this by a Taylor series expansion.

In general, if θ̂ is an estimator of θ, the Taylor series for ISE(θ̂), equa-
tion (10.16), about the true value is

ISE
(
θ̂
)

=
∞∑

k=0

1
k!

(
θ̂ − θ

)k
ISEk′ (θ), (10.25)

where ISEk′(θ) represents the kth derivative of ISE evaluated at θ.
Taking the expectation in equation (10.25) yields the MISE. The limit of

the MISE as n → ∞ is the asymptotic mean integrated squared error, AMISE.
One of the most important properties of an estimator is the order of the
AMISE.

In the case of an unbiased estimator, the first two terms in the Taylor
series expansion are zero, and the AMISE is

V(θ̂) ISE′′(θ)

to terms of second order.
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Other Global Properties of Estimators of Functions

There are often other properties that we would like an estimator of a function
to possess. We may want the estimator to weight given functions in some
particular way. For example, if we know how the function to be estimated,
f , weights a given function r, we may require that the estimate f̂ weight the
function r in the same way; that is,

∫

D
r(x)f̂ (x)dx =

∫

D
r(x)f(x)dx.

We may want to restrict the minimum and maximum values of the esti-
mator. For example, because many functions of interest are nonnegative, we
may want to require that the estimator be nonnegative.

We may want to restrict the variation in the function estimate. This can
be thought of as the “roughness” of the function (see page 151). Often, in
function estimation, we may seek an estimator f̂ such that its roughness (by
some definition) is small.

Notes and Further Reading

Function estimation of course is closely related to the problem in numerical
analysis of function approximation, which is the topic of Chapter 4. “Esti-
mation” in this case means statistical estimation; that is, the use of observed
data to make inferences about the objects that define a function. In simpler
cases, these objects are just parameters in a given parametric representa-
tion of the function. In more interesting cases, the function is not specified
parametrically. The result of the estimation procedure is not a mathematical
expression of a functional form; rather, it is an algorithm that takes as input
an argument of the function and produces the corresponding estimated value
of the function. Extensive discussions of methods of function estimation are
available in Ramsay and Silverman (2002, 2005) and Efromovich (1999).

This chapter has surveyed general methods of function estimation and
properties of function estimators. The most common kind of function that we
estimate in statistical applications is the probability density function. That is
the topic of Chapters 14 and 15.

Exercises

10.1. Consider the problem of estimating µ and σ (the mean and standard
deviation) in a normal distribution. For estimators in a sample of size n,
we will use the sample mean, ȳn, and the sample standard deviation, sn.
Assume that
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MSE(ȳn) = O(nα)

and
MSE(sn) = O(nβ).

Perform a Monte Carlo experiment to estimate α and β. Plot your data
on log-log axes, and use least squares to estimate α and β. Now, derive
the exact values for α and β and compare them with your estimates.

10.2. Formally derive equation (10.21) using equations (10.20), and (10.19).
10.3. Some problems in function estimation are relatively easy. Consider the

problem of estimation of
f(t) = α+ βt,

for t ∈ [0, 1]. Suppose, for t1, . . . , tn we observe f(t1) + ϵ1, . . . , f(tn) + ϵn,
where the ϵi are independent realizations from a N(0,σ2) distribution. As
we know, a good estimator of f(t) is f̂(t) = α̂ + β̂t, where α̂ and β̂ are
the least squares estimators from the data. Determine MISE(f̂).

10.4. Consider the U(0, θ) distribution, with θ unknown. The true probability
density is p(x) = 1/θ over (0, θ) and 0 elsewhere. Suppose we have a sample
of size n and we estimate the density as p̂(x) = 1/x(n) over (0, x(n)) and 0
elsewhere, where x(n) is the maximum order statistic. The density of the
distribution of X(n) is nxn−1

(n) θ
−n over (0, θ) and 0 elsewhere.

a) Determine (that is, write an explicit expression for) the integrated
squared bias, ISB, of p̂(x).

b) Determine the integrated squared error, ISE, of p̂(x).
c) Determine the mean integrated squared error, MISE, of p̂(x).
d) Determine the asymptotic (as n → ∞) mean integrated squared error,

AMISE, of p̂(x).
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Monte Carlo Methods for Statistical Inference

Monte Carlo methods are experiments. Monte Carlo experimentation is the
use of simulated random numbers to estimate some functional of a probabil-
ity distribution. A problem that does not have a stochastic component can
sometimes be posed as a problem with a component that can be identified
with an expectation of some function of a random variable. This is often done
by means of a PDF decomposition. The problem is then solved by estimating
the expected value by use of a simulated sample from the distribution of the
random variable.

Monte Carlo methods use random numbers, so to implement a Monte Carlo
method it is necessary to have a source of random numbers. On the computer,
we generally settle for pseudorandom numbers, that is, numbers that appear
to be random but are actually deterministic. Generation of pseudorandom
numbers is the topic of Chapter 7.

Often, our objective is not to simulate random sampling directly, but
rather to estimate a specific quantity related to the distribution of a given
sample. In this case, we may want to ensure that a chosen sample closely re-
flects the distribution of the population we are simulating. Because of random
variation, a truly random sample or a pseudorandom sample that simulates
a random sample would not necessarily have this property. Sometimes, there-
fore, we generate a quasirandom sample, which is a sample constrained to re-
flect closely the distribution of the population we are simulating, rather than
to exhibit the variability that would result from random sampling. Because
in either case we proceed to treat the samples as if they were random, we will
refer to both pseudorandom numbers and quasirandom numbers as “random
numbers”, except when we wish to emphasize the “pseudo” or “quasi” nature.

In this chapter, we discuss various ways random numbers are used in statis-
tical inference. Monte Carlo methods are also used in many of the techniques
described in other chapters.
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11.1 Monte Carlo Estimation

The general objective in Monte Carlo simulation is to estimate some char-
acteristic of a random variable X . Often, the objective is to calculate the
expectation of some function g of X .

We begin by reviewing some of the material covered in Section 4.7.

Estimation of a Definite Integral

Monte Carlo inference, as for statistical inference generally, can be formulated
as estimation of either a definite integral

θ =
∫

D
f(x)dx (11.1)

or, given the integral θ, of a domain D, or of a function f that satisfies certain
optimality conditions. If the integral can be evaluated in closed form, there is
no need for Monte Carlo methods. If D is of only one or two dimensions, there
are several good, straightforward numerical quadrature methods available to
solve the problem. For domains of higher dimension, Monte Carlo estimation
is sometimes the best method for the quadrature.

Function Decomposition

If the function f is decomposed to have a factor that is a probability density
function, say

f(x) = g(x)p(x), (11.2)

where ∫

D
p(x)dx = 1

and p(x) ≥ 0, then the integral θ is the expectation of the function g of the
random variable with probability density p; that is,

θ = E(g(X)) =
∫

D
g(x)p(x)dx. (11.3)

Notice that this PDF decomposition is a standard method in statistical es-
timation; we identify a random variable, a probability distribution, and fi-
nally an expectation. Compare this with the development leading up to equa-
tion (10.2) on page 404 for estimating a function.

With a random sample x1, . . . , xm from the distribution with probability
density p, an estimate of θ is

θ̂ =
∑

g(xi)
m

. (11.4)

We use this technique in many settings in statistics. There are three steps:
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1. Decompose the function of interest to include a probability density func-
tion as a factor;

2. identify an expected value;
3. use a sample (simulated or otherwise) to estimate the expected value.

The PDF decomposition is not unique, of course, and sometimes a particular
decomposition is more useful than another. In the Monte Carlo application,
it is necessary to be able to generate random numbers easily from the distri-
bution with the given density. As we will see in the discussion of importance
sampling on page 426, there are other considerations for efficient Monte Carlo
estimation.

We should note here that the use of Monte Carlo procedures for numerical
quadrature is rarely the best method for lower-dimensional integrals. Use of
Newton-Cotes or Gaussian quadrature, as discussed in Chapter 4, is usually
better. For higher-dimensional integrals, however, Monte Carlo quadrature is
often a viable alternative.

Estimation of the Variance

A Monte Carlo estimate usually has the form of the estimator of θ in equa-
tion (11.4). An estimate of the variance of this estimator is

V̂(θ̂) =

∑(
g(xi) − g(x)

)2

m(m − 1)
. (11.5)

This is because the elements of the set of random variables {g(Xi)}, on which
we have observations {g(xi)}, are (assumed to be) independent and thus to
have zero correlations.

Estimating the Variance Using Batch Means

If the g(Xi) do not have zero correlations, as may be the case when the
Xi are from a Markov process, the estimator (11.5) has an expected value
that includes the correlations; that is, it is biased for estimating V(θ̂). This
situation arises often in simulation. In many processes of interest, however,
observations are “more independent” of observations farther removed within
the sequence than they are of observations closer to them in the sequence. A
common method for estimating the variance in a sequence of nonindependent
observations, therefore, is to use the means of successive subsequences that are
long enough that the observations in one subsequence are almost independent
of the observations in another subsequence. The means of the subsequences
are called “batch means”.

If G1, . . . , Gb, Gb+1, . . . , G2b, G2b+1, . . . , Gkb is a sequence of random vari-
ables such that the correlation of Gi and Gi+b is approximately zero, an
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estimate of the variance of the mean, G, of the m = kb random variables can
be developed by observing that

V(G) = V
(

1
m

∑
Gi

)

= V

⎛

⎝1
k

k∑

j=1

⎛

⎝1
b

jb∑

i=(j−1)b+1

Gi

⎞

⎠

⎞

⎠

≈ 1
k2

k∑

j=1

V

⎛

⎝1
b

jb∑

i=(j−1)b+1

Gi

⎞

⎠

≈ 1
k

V(Gb),

where Gb is the mean of a batch of length b. If the batches are long enough,
it may be reasonable to assume that the means have a common variance.
An estimator of the variance of Ḡb is the standard sample variance from k
observations, ḡ1, ḡ2, . . . , ḡk: ∑

(ḡj − ḡ)2

k − 1
.

Hence, the batch-means estimator of the variance of G is

V̂(G) =
∑

(ḡj − ḡ)2

k(k − 1)
. (11.6)

This batch-means variance estimator should be used if the Monte Carlo
study yields a stream of nonindependent observations, such as in a time series
or when the simulation uses a Markov chain. The size of the subsamples should
be as small as possible and still have means that are independent. A test of
the independence of the Gb may be appropriate to help in choosing the size
of the batches.

Batch means are useful in variance estimation whenever a Markov chain
is used in the generation of the random deviates.

Convergence of Iterative Monte Carlo and Mixing of
the Markov Chain

In ordinary Monte Carlo simulation, estimation relies on the fact that for
independent, identically distributed variables X1, X2, . . . from the distribution
P of X ,

1
n

n∑

i=1

g(Xi) → E(g(X))

almost surely as n goes to infinity. This convergence is a simple consequence of
the law of large numbers in the case of i.i.d. random variables. In Monte Carlo
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simulation, a random number generator simulates an independent stream.
When X is multivariate or a complicated stochastic process, however, it may
be difficult to simulate independent realizations.

The mean of a sample from an irreducible Markov chain X1, X2, . . . that
has P as its equilibrium distribution also converges to the desired expectation.
For this fact to have relevance in applications, the finite sampling from a
Markov chain in the application must be concentrated in the equilibrium
distribution; that is, the burn-in sample must not dominate the results. We
mention below some methods for assessing convergence of MCMC samples to
the stationary distribution, but it is not easy to determine when the Markov
chain has begun to resemble its stationary distribution.

Once convergence to the stationary distribution is achieved, however, sub-
sequent iterations are from that distribution; that is, they do not depend on
the starting point. In Gibbs sampling, if

X1, . . . , Xi−1, Xi+1, . . . , Xd

have the marginal stationary distribution and Xi is given a new realization
from the correct conditional distribution given the rest, then all of them still
have the correct joint distribution.

In MCMC we must be concerned with more than just the length of a
burn-in period and convergence to the stationary distribution, however. We
must also be concerned with the mixing of the Markov chain, that is, how
independently states Xi and Xi+k behave. Rapid mixing of the chain (meaning
Xi and Xi+k are “relatively independent” for small k) ensures that the regions
in the state-space will be visited in relatively small sequences with a frequency
similar to long-term frequencies in the stationary distribution.

Some of the most important issues in MCMC concern the rate of con-
vergence, that is, the length of the burn-in, and how fast the sampler mixes.
These issues are more difficult to assess for multivariate distributions, but it
is for multivariate distributions that MCMC is most important. The burn-in
can often be much longer than a quick analysis might lead us to expect.

Various diagnostics have been proposed to assess convergence. A general
approach to assess convergence is to use multiple simultaneous simulations of
the chain and compare the output of the simulations. Large differences in the
output would indicate that one or more of the simulations is in the burn-in
phase. A related approach using only a single simulation is to inspect and
compare separate subsequences or blocks of the output. Large differences in
relatively long blocks would indicate that convergence has not occurred.

The results of a method for assessing convergence may strongly indicate
that convergence has not occurred, but they cannot strongly indicate that
convergence has occurred. Different methods may be more or less reliable in
different settings, but no single method is completely dependable. In practice,
the analyst generally should use several different methods and conclude that
convergence has occurred only if no method indicates a lack of convergence.
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There are many possibilities for assessing convergence of MCMC meth-
ods, but unfortunately, the current methodology is not sufficiently reliable
to allow decisions to be made on the basis of any standard set of tests (see
Chib, 2004, page 96). The careful analyst chooses and performs various ad
hoc assessments, often based on exploratory graphics.

Monte Carlo, Iterative Monte Carlo, and Simulation

Convergence of the Monte Carlo estimator 1
n

∑n
i=1 g(Xi) to its expectation

E(g(X)) is not the only issue. If the constant c is such that

g(c) = E(g(X)),

a random number generator that yields xi = c in each iteration would yield
a very good estimate of E(g(X)). Usually, however, our objectives in using
Monte Carlo include obtaining other estimates or assessing the behavior of
a random process that depends on the distribution P of X . The degenerate
generator yielding xi = c would not provide these other results. Although it
may not be efficient, sometimes it is very important to simulate the underlying
random process with all of its variability.

Whenever a correlated sequence such as a Markov chain is used, variance
estimation must be performed with some care. In the more common cases
of positive autocorrelation, the ordinary variance estimators are negatively
biased. The method of batch means or some other method that attempts to
account for the autocorrelation should be used.

If the noniterative approach is possible, it is to be preferred. There are
many situations in which an MCMC method is easy to devise but performs
very poorly. See Robert (1998) for an example of such a problem.

11.2 Simulation of Data from a Hypothesized Model:
Monte Carlo Tests

One of the most straightforward methods of computational inference is the
Monte Carlo test. Barnard (1963) suggested use of Monte Carlo methods to
estimate quantiles of a test statistic, T , under the null hypothesis. In Barnard’s
Monte Carlo test, m random (or pseudorandom) samples of the same size as
the given sample are generated under the null hypothesis, and the test sta-
tistic is computed from each sample. This yields a sample of test statistics,
t∗1, . . . , t

∗
m. The ECDF, P ∗m, of the sample of test statistics is used as an esti-

mate of the CDF of the test statistic, PT ; and the critical region for the test
or the p-value of the observed test statistic can be estimated from P ∗m.

An estimate of the p-value of the observed test statistic can be taken as the
proportion of the number of simulated values that exceed the observed value.
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If the distribution of the test statistic is continuous, and r is the number that
exceed the observed value,

r/m

is an unbiased estimate of the p-value. Because this quantity can be 0, we
usually use

r + 1
m + 1

as an estimate of the p-value associated with the upper tail of the test statistic.
This is also the simple empirical quantile if, as under the null hypothesis, the
observed value is from the same distribution. For test statistics with discrete
distributions, we must estimate the probability of the observed value, and
allocate that proportionally to the rejection and acceptance regions.

The expected power of a Monte Carlo test can be quite good even for
relatively small values of m. In simple situations (testing means, for example),
m = 99 may be a good choice. This allows the p-value to be expressed simply
in two decimal places. In more complicated situations (inference concerning
higher moments or relationships between variables), a value of m = 999 may
be more appropriate. The p-value resulting from a Monte Carlo test is an
estimate based on a sample of size m, so in general the larger m is, the
better the estimate. In practical applications, it is not likely that a decision,
other than to gather additional data, would be made based on more than two
significant digits in a p-value.

To use a Monte Carlo test, the distribution of the random component
in the assumed model must be known, and it must be possible to generate
pseudorandom samples from that distribution under the null hypothesis. No-
tice that a Monte Carlo test is based on an estimate of a critical value of the
test statistic rather than on an approximation of it.

In many applications of statistics, there is no simple model of the phenom-
enon being studied. If a simple approximation is chosen as the model, sub-
sequent decisions rely on the adequacy of the approximation. On the other
hand, if a more realistic model is chosen, the distributions of the statistics
used in making inferences are intractable. The common approach is to ap-
proximate the distributions using asymptotic approximations. Monte Carlo
tests provide an alternative; the distributional properties can be estimated
by simulation. Computational inference can replace asymptotic inference. (Of
course, in many complicated models, both approaches may be used.) If the
sample size is not compatible with the order of the asymptotic approximation,
an inferential procedure using Monte Carlo methods is clearly better than one
using the approximation.

The ECDF of the simulated test statistic provides us with more infor-
mation about the test statistic than just the critical values. It allows us to
make other inferences about the distribution of the test statistic under the
null hypothesis, such as an estimate of the variance of the test statistic, its
symmetry, and so on.
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An obvious problem with a Monte Carlo test is that the null hypothesis,
together with underlying assumptions, must fully specify the distribution at
least up to any pivotal quantity used in the test. In Chapter 13, we discuss
Monte Carlo methods that involve resampling from the given sample; hence,
a complete specification of an underlying distribution is not necessary.

11.3 Simulation of Data from a Fitted Model:
“Parametric Bootstraps”

Instead of using the hypothesized value of the parameter, another approach
in computational inference is to use an estimate of the parameter from the
sample. In a similar manner as in the previous section, we can simulate samples
from the fitted model to obtain a sample of test statistics t∗1, . . . , t

∗
m. Again,

the ECDF, P ∗m, of the sample of test statistics can be used as an estimate of
the CDF of the test statistic, PT ; and critical regions for a test, p-values of
the observed test statistic, or other properties of the distribution of the test
statistic can be estimated from P ∗m. In this case, of course, the distributional
properties are not those that hold under a particular hypothesis; rather they
are the properties under a model whose parameters correspond to values fitted
from the data. This kind of approach to statistical inference is sometimes
called a parametric bootstrap.

In the parametric bootstrap, the CDF of the population of interest, P , is
assumed known up to a finite set of parameters, θ. An estimate of the CDF is
P with θ replaced by an estimate θ̂ obtained from the given sample. Hence,
the first step is to obtain estimates of the parameters that characterize the
distribution within the assumed family. After this, the procedure is to generate
m random samples each of size n from the estimated distribution, and for each
sample, compute an estimator T ∗j of the same functional form as the original
estimator T . The distribution of the T ∗j ’s is used to make inferences about
the CDF of T . The estimate of the CDF of T can be used to test hypotheses
about θ, using the observed value of T from the original sample. If f(T, θ) is
a pivotal quantity when the distribution of T is known, the estimate of the
CDF of T can be used to form confidence intervals for θ.

11.4 Random Sampling from Data

Some statistical methods involve formation of subsets of the data or random-
ization of the data. The number of subsets or permutations can be very large.
For this reason, in the application of such methods, rather than using all
possible subsets or all possible permutations, we generally resort to generat-
ing random samples of subsets or permutations. Some methods we discuss in
Chapters 12 and 13 necessitate use of Monte Carlo sampling.
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The discrete uniform population defined by the data is a useful surrogate
for the population from which the data were drawn. Properties of the discrete
population are used in making an inference about the “real” population. The
analysis of the discrete population is often facilitated by drawing samples from
it. This is, in effect, a resampling of the given data, which is a sample from the
“real” population. Some of the bootstrap methods discussed in Chapter 13
use Monte Carlo procedures in this way.

Many other statistical methods involve sampling from the data. For ex-
ample, in survey sampling, the dataset often includes incomplete records or
missing data. In the missing-data problem, we think of the full dataset as
being represented by an n×d matrix Y (that is, n observations, each of which
contains d elements), of which a certain portion, Y mis, is actually not observed.
The missing portion together with the observed portion, Y obs, constitute the
full dataset. For analyzing the data and providing descriptive statistics of the
population, it is often desirable to fill in the missing data using complete
records as “donors” to impute the missing data. There are various approaches
to this problem. In one approach, called multiple imputation, m simulated val-
ues, Y mis∗

1 , . . . , Y mis∗
m , of the missing data are generated from an appropriate

population, and the complete datasets, Y ∗1 , . . . , Y ∗m, are analyzed. This proce-
dure provides a measure of the uncertainty due to the missing data. (In order
for this approach to be valid, the simulated missing data must come from an
appropriate distribution. See Rubin, 1987, or Schafer, 1997, for discussions
of the properties the distribution must have.) Because multiple imputation
only simulates from the missing data portion of the dataset and because the
simulation variance is likely to be relatively small compared to the overall
sampling variance, the value of m does not need to be large. A value of m = 3
is often adequate in multiple imputation.

11.5 Reducing Variance in Monte Carlo Methods

Monte Carlo methods involve a inferences from random (or pseudorandom)
samples. The usual principles of inference apply. We seek procedures with
small (generally zero) bias and small variance. As with other methods for
statistical inference, various procedures with differing bias and variance are
available. In sampling from artificially generated random numbers on the com-
puter, just as in taking observations of other events, an objective is to devise
a sampling plan that will yield estimators with small variance. It is often pos-
sible to modify a procedure to reduce the bias or the variance. There are a
number of ways of reducing the variance in Monte Carlo sampling.

As with any statistical estimation procedure, an objective is to choose an
estimator and/or a sampling design that will have a small, possibly minimum,
variance. The first principle in achieving this objective is to remove or reduce
sampling variation wherever possible. This principle is analytic reduction. An
example that has been considered in the literature (see Ripley, 1987, for ex-
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ample) is the estimation of the probability that a Cauchy random variable is
larger than 2; that is, the evaluation of the integral

∫ ∞

2

1
π(1 + x2)

dx.

This integral can be transformed analytically to
∫ 1/2

0

y−2

π(1 + y−2)
dy,

and the variance of a simple estimator of the latter integral using a sample
from U(0, 1

2 ) is only about one-thousandth the variance of a simple estimator
of the former integral using a sample from a Cauchy distribution. Inspection of
the original integral, however, reveals that the antiderivative of the integrand
is the arctangent. If reasonable software for evaluating trigonometric functions
is available, one should not estimate the integral in the original problem. The
rule is do not resort to Monte Carlo methods unnecessarily.

Importance Sampling

Given the integral
∫

D f(x)dx, there may be a number of ways that we can
decompose f into g and a probability density function p. This PDF decomposi-
tion determines the variance of our estimator θ̂. The intuitive rule is to sample
more heavily where |f | is large. This principle is called importance sampling.
As we do following equation (11.1) on page 418, we write the integral as

θ =
∫

D
f(x) dx

=
∫

D

f(x)
p(x)

p(x) dx.

where p(x) is a probability density over D. The density p(x) is called the
importance function. The objective in importance sampling is to use an opti-
mal PDF decomposition. We will now proceed to determine the optimal PDF
decomposition.

From a sample of size m from the distribution with density p, we have the
estimator

θ̂ =
1
m

∑ f(xi)
p(xi)

. (11.7)

It is clear that θ̂ is unbiased for θ (assuming, of course, that the integral
exists). The variance of this estimator is

V(θ̂) =
1
m

V
(

f(X)
p(X)

)
, (11.8)



11.5 Reducing Variance in Monte Carlo Methods 427

where the variance is taken with respect to the distribution of the random
variable X with density p(x). The variance of the ratio can be expressed as

V
(

f(X)
p(X)

)
= E

(
f2(X)
p2(X)

)
−
(

E
(

f(X)
p(X)

))2

. (11.9)

The objective in importance sampling is to choose p so this variance is mini-
mized. Because (

E
(

f(X)
p(X)

))2

=
(∫

D
f(x) dx

)2

, (11.10)

the choice involves only the first term in the expression above for the variance.
By Jensen’s inequality, we have a lower bound on that term:

E
(

f2(X)
p2(X)

)
≥
(

E
(
|f(X)|
p(X)

))2

=
(∫

D
|f(x)| dx

)2

. (11.11)

That bound is obviously achieved when

p(x) =
|f(x)|∫

D |f(x)| dx
. (11.12)

This is the optimal PDF decomposition.
Of course, if we knew

∫
D |f(x)| dx, we would probably know

∫
D f(x) dx

and would not even be considering a Monte Carlo procedure to estimate the
integral. In practice, for importance sampling, we generally seek a probability
density p that is nearly proportional to |f | (that is, such that |f(x)|/p(x) is
nearly constant).

Control Variates

Another way of reducing the variance, just as in ordinary sampling, is to
use covariates, or control variates, as they are often called in Monte Carlo
sampling. Any variable that is correlated with the variable of interest has
potential value as a control variate. The control variate is useful if it is easy
to generate and if it has properties that are known or that can be computed
easily.

As an example, consider a method of using control variates to reduce the
variance in Monte Carlo tests in two-way contingency tables described by
Senchaudhuri, Mehta, and Patel (1995). An r × c contingency table can be
thought of as an r × c matrix, A, whose nonnegative integer elements aij

represent the counts in the cells of the table. For such tables, we may be
interested in patterns of values in the cells. Specifically, we ask whether, given
the marginal totals
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a•j =
r∑

i=1

aij

and

ai• =
c∑

j=1

aij ,

the cells are independent. (Here, we use the “dot notation” for summation:
a•j is the sum of the counts in the jth column, for example, and a•• is the
grand total. Also, below we use the notation a∗j to represent the vector that is
the jth column.) There are several statistical tests that address this question
or aspects of it under various assumptions. The test statistic is some function
of the observed table, T (A). The objective is to compute the p-value of the
observed value of the test statistic. The distributions of most test statistics
for this problem are very complicated, so either an approximation is used or
a Monte Carlo test is performed.

A Monte Carlo test involves generation of a large number of random tables
that satisfy the null hypothesis and for each table computing the test statistic
to determine if it is more extreme than that of the observed table. The prob-
lem with the Monte Carlo test, however, is the large amount of computation
involved. Both generation of the tables and computation of the test statistic
are tedious.

Senchaudhuri et al. suggested use of an additional statistic related to the
test statistic of interest to serve as a control variate. The auxiliary statistic,
which is easy to compute, has a known mean.

The relationship between the auxiliary statistic and the test statistic relies
on a “separability property” of the test statistic that allows the test statistic
to be written as

T (A) =
c∑

j=1

Tj(a∗j),

where a∗j is the jth column of A. Given this representation, form T̃j(a∗j) as
the contribution Tj(a∗j) rounded to p digits,

T̃j(a∗j) =
⌊
Tj(a∗j) × 10p + 0.5

⌋
× 10−p,

and form the new test statistic as

T̃ (A) =
c∑

j=1

T̃j(a∗j). (11.13)

As an example, consider Pearson’s test, a common test for lack of depen-
dence between the rows and columns that uses the test statistic

T (A) =
r∑

i=1

c∑

j=1

(aij − ai•a•j/a••)2

ai•a•j/a••
.
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The distribution of this statistic is complicated, but under the null hypothesis,
the statistic has an asymptotic chi-squared distribution with (r − 1)(c − 1)
degrees of freedom. The exact significance level of an observed value of this
test statistic is often determined by Monte Carlo methods.

Pearson’s test statistic has the separability property, so the procedure
described above can be used.

Identification of appropriate control variates and other techniques of vari-
ance reduction often requires some ingenuity. The techniques are often ad
hoc.

Replication of the Inherent Variance

Although generally we want to construct Monte Carlo estimators with small
variance, we must be aware that sometimes it is very important to simulate
the underlying random process in such a way that variances of the Monte
Carlo stream are representative of variances within the process.

Acceleration of Markov Chain Monte Carlo Methods

In MCMC, not only are we concerned with the variance of estimators, but also
with the convergence of the chain. Until the stationary distribution is reached,
the Monte Carlo sample may not be representative of the target distribution.
Even after the stationary distribution is reached, the Monte Carlo samples
must be large enough that the Markov chain moves through the state-space
sufficiently to ensure that the sample is representative. In many practical
applications, MCMC is extremely slow.

The efficiency of MCMC may vary depending on the approach. In some
cases, the Gibbs algorithm is more efficient because there is no rejection step
as there is in the Metropolis-Hastings method. The setup step in the Gibbs
method is more complicated, however, and unless the sampling from the one-
dimensional conditionals is very fast, there may be simple Metropolis-Hastings
methods that will run faster.

The progress of Markov chain used in Monte Carlo can sometimes be
assessed and possibly accelerated by running sequences in parallel. There are
various possibilities for exchanging information from one sequence to another,
possibly the rates of change of the different sequences. When one sequence
seems more stable than another, it may be advantageous to restart other
sequences at the state of the more stable sequence.

11.6 Software for Monte Carlo

Monte Carlo studies typically require many repetitive computations, which
are usually implemented through looping program-control structures. Some
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higher-level languages do not provide efficient looping structures. For this rea-
son, it is usually desirable to conduct moderate- to large-scale Monte Carlo
studies using a lower-level language such as C or Fortran. Some higher-level
languages provide the capability to produce compiled code, which will exe-
cute faster. If Monte Carlo studies are to be conducted using an interpretive
language, and if the production of compiled code is an option, that option
should be chosen for the Monte Carlo work.

Controlling the Seeds in Monte Carlo Studies

There are three reasons why the user must be able to control the seeds in
Monte Carlo studies: for testing of the program, for use of blocks in Monte
Carlo experiments, and for combining results of Monte Carlo studies.

In the early phases of programming for a Monte Carlo study, it is very
important to be able to test the output of the program. To do this, it is
necessary to use the same seed from one run of the program to another.

Controlling seeds in a parallel random number generator is much more
complicated than in a serial generator. Performing Monte Carlo computations
in parallel requires some way of ensuring the independence of the parallel
streams.

In Section 7.6, we describe how to control the seed in IMSL and R random
number generators.

Notes and Further Reading

Monte Carlo Tests

Several applications of Monte Carlo tests are reported in the literature. Many
involve spatial distributions of species of plants or animals. Manly (2006), for
example, describes several uses of Monte Carlo tests in biology, some of which,
for example, are based on interpoint distances to assess randomness in a spatial
distribution. (In Exercise 11.7, you are asked to devise a Monte Carlo test for
spatial independence.) Zhu (2005) provides a very comprehensive coverage of
theory and applications of Monte Carlo tests.

Hope (1968) and Marriott (1979) studied the power of the test and found
that the power of Monte Carlo tests can be quite good even for relatively
small values of m. Hall and Titterington (1989) compared the power of Monte
Carlo tests with that of tests that use asymptotic approximations. The results
obviously depend on the sample size of the observations. Some asymptotic
approximations become fairly good for samples as small as 20, while others
require sample sizes in the hundreds.

Senchaudhuri, Mehta, and Patel (1995) describe Monte Carlo tests in con-
tingency tables. Ziff (2006) develops a Monte Carlo test for a type of lattice in
chemical bond systems. Brigo and Liinev (2005) and Dufour and Khalaf (2002)
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describe Monte Carlo tests for hypotheses regarding financial models. Forster,
McDonald, and Smith (1996) describe conditional Monte Carlo tests based on
Gibbs sampling in log-linear and logistic models. Besag and Clifford (1989,
1991) describe randomized significance tests with exact p-values using Markov
chain Monte Carlo methods. Dufour (2006) discusses Monte Carlo tests in the
presence of nuisance parameters.

Markov Chain Monte Carlo

MCMC has been one of the most active areas of statistical research since
around 1990. Chib (2004) provides a summary of much of the work. The most
important unsettled issue is the assessment of convergence. Robert (1998)
provides an interesting example for the evaluation of various convergence as-
sessment techniques that have been proposed.

The use of Markov chains to form a “proposal” distribution and the appli-
cations in Bayesian analyses that depend on this approach are discussed and
illustrated extensively in Albert (2007) and Marin and Robert (2007).

Other Applications of Monte Carlo

In this chapter we have been concerned with the use of Monte Carlo as a
statistical method for inference. An important and common use of Monte
Carlo is to evaluate and compare other statistical methods for inference. This
type of use is the subject of Appendix A.

Exercises

11.1. Monte Carlo integration. Use Monte Carlo to evaluate each of the following
integrals:
a) ∫ 1

0
x2dx

b) ∫ 1

0

∫ 2

−2
x2 cos(xy)dxdy

c) ∫ ∞

0

3
4
x4e−x3/4dx

11.2. Use Monte Carlo methods to study least squares/normal drift. Let µ = 0
and σ2 = 1, and generate a sample of size 100 from a N(µ,σ2) distribution.
From this sample, compute ȳ(1) and s̄2(1). Now let µ = ȳ(1) and σ2 = s̄2(1);
generate a sample of size 100 and compute ȳ(2) and s̄2(2). Continue in this
way, generating the sequences {ȳ(k)} and {s̄2(k)}. Describe these stochastic
processes.



432 11 Monte Carlo Methods for Statistical Inference

11.3. Assume that we have a sample, x1, . . . , xn from a N(µ,σ2) distribution,
and we wish to test the hypothesis

H0 : µ = 0
versus

H1 : µ ̸= 0.

a) Describe a Monte Carlo test for this hypothesis. Hint: Use the stan-
dard test statistic for this situation.

b) How would you study the power of this test?
11.4. Suppose a random sample of size n is taken from what is believed to be a

double exponential distribution, that is, a distribution with density

f(y) =
1
2θ

e−|y|/θ.

All you have available from the sample are the mean m and the second
and fourth central moments:

m2 =
∑

(yi − m)2/n,

m4 =
∑

(yi − m)4/n.

Describe a test, at the 0.05 level of significance, of the hypothesis that the
original sample came from a distribution with that density.

11.5. Consider a common application in statistics: Three different treatments
are to be compared by applying them to randomly selected experimental
units. This, of course, usually leads us to “analysis of variance” using a
model such as yij = µ + αi + eij with the standard meanings of these
symbols and the usual assumptions about the random component eij in
the model. Suppose that instead of the usual assumptions, we assume that
the eij have independent and identical double exponential distributions
centered on zero.
a) Describe how you would perform a Monte Carlo test instead of the

usual AOV test. Be clear in stating the alternative hypothesis.
b) Is the Monte Carlo test that you described nonparametric? Describe

some other computer-intensive test that you could use even if you
make no assumptions about the distribution of the eij .

11.6. It is often said in statistical hypothesis testing that “if the sample size is
large enough, any test will be significant”.
Is that true?
Study this by Monte Carlo methods. Use a two-sample t test for equality
of means on some data you generate from N(µ,σ2) and N(µ + δ,σ2). Set
δ = 0, and generate various sizes of samples n1 and n2. Does the size of
your test increase as the sample sizes increase? (It should not, despite the
quote from the folklore.) What about the power? (It should, of course;
that is, the sensitivity of the test to δ should increase.) There are, of
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course, valid reasons to be aware of the increasing chance of rejecting the
null hypothesis because of a large sample size. The analyst must balance
statistical significance with practical significance.

11.7. A biologist studying the distribution of maple trees within New Eng-
land forests is interested in how the trees tend to cover areas within the
forests. The question is whether mature trees tend to be at maximal spa-
tial separation or tend to cluster by some spatial measure (perhaps due
to prevailing winds or other environmental factors). The biologist plotted
a given area in a forest of mature maple trees and located each tree in a
rectangular coordinate system. The area contained 47 trees.
a) Describe how the biologist might construct a Monte Carlo test of the

null hypothesis that the trees are randomly distributed. There are sev-
eral possibilities for constructing a Monte Carlo test. (There are also
alternative procedures that do not involve Monte Carlo tests.) The
test statistic might be various functions of the cartesian coordinates
of the trees (such as distances between trees).

b) Now, to be specific and to change the problem to be much smaller,
suppose that in a given area on which a coordinate system has been
imposed in such a way that the area constitutes a unit square, trees
were observed at the following 5 points:
(.2, .3)
(.8, .3)
(.3, .7)
(.4, .5)
(.7, .9)

Using this random sample, develop and perform a Monte Carlo test
based on interpoint distances that the positions of the trees are inde-
pendent of one another. (In Chapter 12, we will discuss a randomiza-
tion test for this hypothesis, and we will consider the problem again
in Exercise 12.1.)

11.8. Suppose that we want to use Monte Carlo methods to compare the vari-
ances of two estimators, T1 and T2. In a simple approach to the problem,
we wish to estimate the sign of V(T1) − V(T2). Suppose that it is known
that both of the estimators are unbiased. Why is it better to compute the
Monte Carlo estimate as V(T1 − T2) rather than as V(T1) − V(T2)?
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Data Randomization, Partitioning, and
Augmentation

Although subsampling, resampling, or otherwise rearranging a given dataset
cannot increase its information content, these procedures can sometimes be
useful in extracting information. Randomly rearranging the observed dataset,
for example, can give an indication of how unusual the dataset is with respect
to a given null hypothesis. This idea leads to randomization tests.

There are many useful procedures for data analysis that involve partition-
ing the original sample. Using subsets of the full sample, we may be able to
get an estimate of the bias or the variance of the standard estimator or test
statistic without relying too heavily on the assumptions that led to that choice
of estimator or test statistic. It is often useful to partition the dataset into
two parts and use the data in the “training set” or “estimation set” to arrive
at a preliminary estimate or fit and then use the data in the “validation set”
or “test set” to evaluate the fit. This kind of approach is particularly appro-
priate when we are unsure of our model of the data-generating process. In
actual applications, of course, we are always at least somewhat unsure of our
model. If the full dataset is used to fit the model, we are very limited in the
extent to which we can validate the model.

No matter what we do with a given dataset, we are still left with un-
certainty about the relevance of that dataset to future modeling problems.
Prediction requires some assumption about the model of the data-generating
processes, both the one that yielded the given data and the unseen one for
which inferences are to be made. The variance of predictors is called prediction
error or generalization error. Obviously, since this involves unseen data and
unknown scenarios, there is no way of measuring or estimating this kind of
error with any confidence. The use of partitions of the given dataset, however,
is one way of getting some feel for the generalization error for scenarios that
are somewhat similar to the one that gave rise to the observed dataset.

Subsets of the data can be formed systematically or they can be formed as
random samples from the given dataset. Sometimes the given dataset is viewed
as a set of mass points of a finite distribution whose distribution function is
the same as the empirical distribution function of the given dataset. In this
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case, the data partitioning may be done in such a way that observations may
occur multiple times in the various partitions. In most cases, when we speak
of “sets” or “subsets”, we mean “multisets” (that is, collections in which items
may occur more than once and are distinguished in each occurrence).

12.1 Randomization Methods

The basic idea of randomization tests is to compare an observed configuration
of outcomes with all possible configurations. The randomization procedure
does not depend on assumptions about the underlying probability distribu-
tion, so it is usable in a wide range of applications. When a hypothesis of
interest does not have an obvious simple test statistic, a randomization test
may be useful. It is important to note, however, that the procedure does de-
pend on the overall data-generating process. The data collection process and
the sampling design must be respected in any randomization of the data. For
clinical trials, for example, it is unlikely that randomization methods could
be used in the analysis.

In straightforward applications of randomization tests, the null hypothesis
for the test is that all outcomes are equally likely, and the null hypothesis is
rejected if the observed outcome belongs to a subset that has a low proba-
bility under the null hypothesis but a relatively higher probability under the
alternative hypothesis.

A simple example of a randomization test is a test of whether the means
of two data-generating processes are equal. The decision would be based on
observations of two samples of results using the two treatments. There are
several statistical tests for this null hypothesis, both parametric and nonpara-
metric, that might be used. Most tests would use either the differences in the
means of the samples, the number of observations in each sample that are
greater than the overall mean or median, or the overall ranks of the obser-
vations in one sample. Any of these test statistics could be used as a test
statistic in a randomization test. Consider the difference in the two sample
means, for example. Without making any assumptions about the distributions
of the two populations, the significance of the test statistic (that is, a measure
of the extremeness of the observed difference) can be estimated by considering
all configurations of the observations among the two treatment groups. This
is done by computing the same test statistic for each possible arrangement
of the observations, and then ranking the observed value of the test statistic
within the set of all computed values.

More precisely, consider two samples,

x1, . . . , xn1 ,

y1, . . . , yn2 ,
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for which we want to test the equality of the respective population means.
We choose the unscaled test statistic t0 = x̄ − ȳ. Now consider a different
configuration of the same set of observations,

y1, x2, . . . , xn1 ,

x1, y2, . . . , yn2 ,

in which an observation from each set has been interchanged with one from
the other set. The same kind of test statistic, namely the difference in the
sample means, is computed. Let t1 be the value of the test statistic for this
combination. Now, consider a different configuration in which other values of
the original samples have been switched. Again, compute the test statistic.
Continuing this way through the full set of x’s, we would eventually obtain(

n1 + n2

n2

)
different configurations and a value of the test statistic for each

one of these artificial samples. Without making any assumptions about the
distribution of the random variable corresponding to the test statistic, we can
consider the set of computed values to be a realization of a random sample
from that distribution under the null hypothesis. The empirical “significance”
of the value corresponding to the observed configuration could then be com-
puted simply as the rank of the observed value in the set of all values.

In Exercise 11.7 on page 433, we considered the problem of deciding
whether the locations of trees within a field were randomly distributed. This
question can be addressed by a Monte Carlo test, as suggested in the exercise,
or by a randomization test (or by several other methods).

Mead (1974) described a randomization test based on counts within nested
grids. If the field is divided into four quadrants as shown by the solid lines in
Figure 12.1, and then each quadrant is divided as shown by the dashed lines,
the uniformity of the distribution can be assessed by comparing the counts
within the two levels of gridding.

Mead’s test is based on a ratio of measures of variation of counts within
the larger grids to variation of counts within the smaller grids. Let nij be the
count of observations within the jth grid cell of the ith large cell, and let n̄i•

be the mean within the ith large cell and n̄•• be the overall mean, using the
common AOV notation. There are various measures that could be used. One
measure of overall variation among the small grids is the total sum of squares,

t =
∑

i

∑

j

(nij − n̄••)2,

and a measure of variation among the small grids within the larger grids is
the sum of squares,

w = 4
∑

i

(n̄i• − n̄••)2.

A test statistic is
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1,1 1,2 2,1 2,2

1,3 1,4 2,3 2,4

3,1 3,2 4,1 4,2

3,3 3,4 4,3 4,4

2 2

5 8

3 3

4 2

0 0

3 3

4 3

3 5

Fig. 12.1. Quadrants and Subquadrants i, j with Cell Counts for a Randomization
Test

Q = w/t. (12.1)

Notice the similarity of Q to the F statistic in ANOVA. The numerator in
both is the pooled among-sums-of-squares, but in Q the denominator is the
total-sum-of-squares, rather than the error-sum-of-squares.

Clearly, values of Q that are either very small (close to 0) or very large
(close to 1) indicate nonuniformity. In the example shown in Figure 12.1,
Q = 0.309.

Although an approximation to the distribution of Q under the null hy-
pothesis may be possible, a randomization approach can provide an accurate
value for the significance level of the observed statistic. We consider values
of Q computed by all possible arrangements of the small grid cells into the
large grid. The total number of arrangements of the 16 counts and the ways
of organizing them into 4 quadrants with 4 subquadrants is 16!/(4!)4, which
is a very large number. (Of course, in our small example, because of the du-
plication of counts, the effective number of arrangements is much smaller.)
Instead of computing Q for all possible arrangements, we may consider only a
random sample of the arrangements. In this sampling for the randomization
test, we generally do sampling with replacement because of the bookkeeping
involved otherwise.

In this example, in a sample of 5,000 arrangements, the observed value of
Q was near the second quartile, so this partitioning provided no evidence of
nonrandomness. Mead’s test, however, proceeds to further subdivisions. Each
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of the quadrants in Figure 12.1 could be divided into quadrants and subquad-
rants, and Q statistics could be computed for each as shown in Figure 12.2.

Q=0.600 Q=0.046

Q=0.327 Q=0.056

Fig. 12.2. Further Subdivision into Quadrants and Subquadrants

There are various ways to handle the statistics for the smaller quadrants.
One way is to take the average of the individual values as a single value for Q.
There are many ways of doing the randomization that results in an unbiased
test. It is difficult to make statements about the omnibus power of this test
or any other test for randomness.

If tests from different levels of subdivision are combined, some kind of Bon-
ferroni bound may be used on the significance level. Randomization, however,
can allow us to avoid complications of multiple tests if the statistics com-
puted in each randomization are the same as those computed on the observed
sample.

Mead’s test may have some difficulties caused by edge effects that occur
because of the original square (or rectangular) outline we impose on the field.
It may be advisable to compute the test statistic for different grids that have
just been shifted slightly.

In many applications of randomization methods, as in the one above, be-
cause there may be a very large number of all possible configurations, it may
be necessary to sample randomly from the possible configurations rather than
considering them all. When a sample of the configurations is used, the test is
sometimes called an “approximate randomization test”.
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12.2 Cross Validation for Smoothing and Fitting

Cross validation methods are used with a variety of statistical procedures,
such as regression, time series analysis, and density estimation, that yield a
“fit” at each observation.

Consider the problem of fitting Y using X ; that is, the problem of deter-
mining a function gX,Y (x) such that Y ∼ gX,Y (X). For a given point, (x0, y0),
how well does gX,Y (x0) match y0? The goodness of the match probably de-
pends on whether the point (x0, y0) was used in determining the function g.
If that point is used in fitting, then it is likely that gX,Y (x0) is closer to y0

than it would be if the point (x0, y0) is not used in the fitting. Our interest, of
course, is in how well our fitted model gX,Y (x) would perform at new points;
that is, how useful the model is in prediction.

Let R(y, g) be a measure of the error between an observed value y and the
predicted value g. (Often, R is the L2 norm of the difference of the observed
and the predicted. In the univariate case, this is just the square, (y − g)2.)
We are interested in the expected value of this error. More precisely, we are
interested in the expected value with respect to the conditional distribution
of Y given X ; that is,

EPY |X

(
R(Y0, gX,Y (x0))

)
. (12.2)

Of course, we do not know PY |X .
The fitted function gX,Y (x) provides an estimate of the conditional distri-

bution of Y given X , P̂Y |X , so we can evaluate the expectation with respect
to this distribution. We could estimate it as the sample average:

EPY |X

(
R(Y0, gX,Y (x0))

)
=

1
n

n∑

i=1

R(yi, gX,Y (xi)). (12.3)

This quantity, which is easy to compute, is the “apparent error”. It is typically
smaller than the true error at any point x0 whether or not a point correspond-
ing to x0 was in the dataset used in fitting gX,Y . The fit is usually chosen to
minimize a sum such as in equation (12.3).

We may arrive at a better estimate if we partition the dataset into two
parts, say S1 and S2, and use the data in the training set or “estimation set”
S1 to get the fit g1X,Y and then use the data in the “validation set” or “test
set” S2 to estimate the error:

EP1Y |X

(
R(Y0, gX,Y (X0))

)
=

1
#(S1)

∑

i∈S2

R(yi, g1X,Y (xi)). (12.4)

This quantity is likely to be larger than the quantity in equation (12.3).
We can also get an estimate after exchanging the roles of S1 and S2 and

then combine the estimates:
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EPY |X

(
R(Y0, gX,Y (X0))

)
=

1
n

(
∑

i∈S2

R(yi, g1X,Y (xi)) +
∑

i∈S1

R(yi, g2X,Y (xi))

)
.

(12.5)

This is an old idea. An extension and related idea is balanced half-sampling,
which is a technique that is often used in finite-population sampling.

This kind of data partitioning is the idea behind cross validation. Instead
of dividing the sample in half, we could form multiple partial datasets with
overlap. One way would be to leave out just one observation at a time. The
idea is to hold out one (or more) observation(s) at a time, apply the basic
procedure, and compare the fitted value with the observed value. In K-fold
cross validation, the sample is divided into K approximately equal-sized sub-
sets, and each subset is used to get a measure of the prediction error by using
the fit from all of the rest of the data. The average from the K subsets is then
taken as the estimate of the prediction error.

Cross validation can be useful in model building. In regression model build-
ing, the standard problem is, given a set of potential regressors, to choose a
relatively small subset that provides a good fit to the data. Standard tech-
niques include “stepwise” regression and all best subsets. One of the main
problems in model building is overfitting. In regression models, the more in-
dependent variables are included in the model, the better the fit unless the
observations on the added variables do not increase the rank of the coefficient
matrix. This is a simple consequence of having more decision variables in the
optimization problem that is used to fit the model. Various statistics, such
as the adjusted R2 or Cp, can be used to determine when the improvement
of the fit due to an additional variable is “worthwhile”. These statistics are
based on penalties for the number of variables in the model.

Allen (1971, 1974) suggested a cross-validation “prediction sum of squares”,
PRESS, to aid in variable selection in full-rank linear models that are fit using
a least squares criterion. PRESS is similar to the sums in equation (12.5) ex-
cept that instead of just one partition into two sets, the dataset is partitioned
n times into an estimation set with n − 1 observation and a test set with
only one observation. In the linear model y = Xβ, where y is an n-vector of
observations, X is an n × m matrix of corresponding observations, and β is
an m-vector of parameters, using the notation β̂−j to denote the least squares
estimate of β based on all but the jth observation, PRESS is defined as

n∑

j=1

(yj − xT
j β̂−j)2, (12.6)

where xT
j is the jth row of X (that is, the one that was not used in computing

β̂−j).
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As more variables are added to the model, PRESS may decrease initially
and then begin to increase when overfitting occurs. It is important to under-
stand that variable selection and model fitting are very different from inferen-
tial statistical procedures. Our usual concerns about bias, power, significance
levels, and so on just do not apply. The problem is because to make state-
ments about such things we must have a model, which we do not have if we
are building a model.

Although computation of PRESS involves n regression fits, when efficient
updating and downdating techniques are used, the additional amount of com-
putation is only about twice the amount of computation to do a single regres-
sion fit.

In fitting models to data, it is often appropriate to limit the range of in-
fluence of observations. For example, in estimation of a probability density
function, observations at one extreme of the distribution may provide very
little information about the shape of the density in a different range of the
distribution. The range of influence of observations in a statistical procedure
is often controlled by “smoothing” parameters. A smoothing parameter may
be the width of an interval to use in constructing a frequency function, for
example. Another example of a smoothing parameter is the number of knots
in splines. Cross validation is a common method of selecting smoothing para-
meters. Further examples of smoothing parameters include such things as bin
widths in histograms or window sizes for various kernel methods.

12.3 Jackknife Methods

Jackknife methods make use of systematic partitions of a dataset to estimate
properties of an estimator computed from the full sample. Quenouille (1949,
1956) suggested the technique to estimate the bias of an estimator. John
Tukey coined the term “jackknife” to refer to the method, and showed that
the method is also useful in estimating the variance of an estimator.

Suppose that we have a random sample, Y1, . . . , Yn, from which we com-
pute a statistic T as an estimator of a parameter θ in the population from
which the sample was drawn. In the jackknife method, we partition the given
dataset into r groups, each of size k. (For simplicity, we will assume that the
number of observations n is kr.)

Now, we remove the jth group from the sample and compute the estimator
from the reduced sample. Let T(−j) denote the estimator computed from the
sample with the jth group of observations removed. (This sample is of size
n−k.) The estimator T(−j) has properties similar to those of T . For example,
if T is unbiased, so is T(−j). If T is not unbiased, neither is T(−j); its bias,
however, is likely to be different.

The mean of the T(−j),
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T (•) =
1
r

r∑

j=1

T(−j), (12.7)

can be used as an estimate of θ. The T(−j) can also be used in some cases
to obtain more information about the estimator T from the full sample. (For
the case in which T is a linear functional of the ECDF, then T (•) = T , so the
systematic partitioning of a random sample will not provide any additional
information.)

Consider the weighted differences in the estimate for the full sample and
the reduced samples:

T ∗j = rT − (r − 1)T(−j). (12.8)

The T ∗j are called “pseudovalues”. (If T is a linear functional of the ECDF
and k = 1, then T ∗j = T (xj); that is, it is the estimator computed from the
single observation, xj .) We call the mean of the pseudovalues the “jackknifed”
T and denote it as J(T ):

J(T ) =
1
r

r∑

j=1

T ∗j

= T ∗. (12.9)

We can also write J(T ) as

J(T ) = T + (r − 1)
(
T − T (•)

)

or
J(T ) = rT − (r − 1)T (•). (12.10)

In most applications of the jackknife, it is common to take k = 1, in
which case r = n. It has been shown that this choice is optimal under certain
assumptions about the population (see Rao and Webster, 1966).

Jackknife Variance Estimate

Although the pseudovalues are not independent (except when T is a linear
functional), we treat them as if they were independent, and use V(J(T )) as
an estimator of the variance of T , V(T ). The intuition behind this is simple:
a small variation in the pseudovalues indicates a small variation in the esti-
mator. The sample variance of the mean of the pseudovalues can be used as
an estimator of V(T ):

V̂(T )J =
∑r

j=1

(
T ∗j − J(T )

)2

r(r − 1)
. (12.11)

(Notice that when T is the mean and k = 1, this is the standard variance
estimator.) From expression (12.11), it may seem more natural to take V̂(T )J
as an estimator of the variance of J(T ), and indeed it often is.
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A variant of this expression for the variance estimator uses the original
estimator T : ∑r

j=1(T
∗
j − T )2

r(r − 1)
. (12.12)

There are several methods of estimating or approximating the variances
of estimators, including the delta method we discussed on page 50, which de-
pends on knowing the variance of some simpler statistic; Monte Carlo meth-
ods, discussed in Chapter 11; and bootstrap methods, discussed in Chapter 13.
How good any of these variance estimates are depends on the estimator T and
on the underlying distribution. Monte Carlo studies indicate that V̂(T )J is of-
ten conservative; that is, it often overestimates the variance (see Efron, 1982,
for example). The alternate expression (12.12) is greater than or equal to
V̂(T )J, as is easily seen; hence, it is an even more conservative estimator (see
Exercises 12.4 and 12.5).

Jackknife Bias Correction

In the following, for simplicity, we will consider the group sizes to be 1; that
is, we assume that r = n. As we mentioned above, this is the most common
case in practice, and it has certain optimality properties.

Suppose that we can represent the bias of T as a power series in n−1; that
is,

Bias(T ) = E(T ) − θ

=
∞∑

q=1

aq

nq
, (12.13)

where the aq do not involve n. If all aq = 0, the estimator is unbiased. If
a1 ̸= 0, the order of the bias is n−1. (Such an estimator is sometimes called
“second-order accurate”. “First-order” accuracy implies a bias of order n−1/2.)

Using the power series representation for the bias of T , we see that the
bias of the jackknife estimator is

Bias(J(T )) = E(J(T )) − θ

= n(E(T ) − θ) − n − 1
n

n∑

j=1

E(T(−j) − θ)

= n
∞∑

q=1

aq

nq
− (n − 1)

( ∞∑

q=1

aq

(n − 1)q

)

= a2

(
1
n
− 1

n − 1

)
+ a3

(
1
n2

− 1
(n − 1)2

)
+ . . .

= −a2

(
1

n(n − 1)

)
+ a3

(
1
n2

− 1
(n − 1)2

)
+ . . . ; (12.14)
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that is, the bias of the jackknife estimator, Bias(J(T )), is at most of order
n−2. If aq = 0 for q = 2, . . ., the jackknife estimator is unbiased.

This reduction in the bias is a major reason for using the jackknife. Any
explicit analysis of the bias reduction, however, depends on a representation
of the bias in a power series in n−1 with constant coefficients. This may not
be possible, of course.

From

E(J(T )) − θ = E(T ) − θ + (n − 1)

⎛

⎝E(T ) − 1
n

n∑

j=1

E(T(−j))

⎞

⎠ ,

we have the jackknife estimator of the bias in T ,

BJ = (n − 1)
(
T (•) − T

)
, (12.15)

and the jackknife bias-corrected estimator of θ,

TJ = nT − (n − 1)T (•). (12.16)

Higher-Order Bias Corrections

Suppose that we pursue the bias correction to higher orders by using a second
application of the jackknife. The pseudovalues are

T ∗∗j = nJ(T ) − (n − 1)J(T(−j)). (12.17)

Assuming the same series representations for the bias as before, a second-order
jackknife estimator,

J2(T ) =
n2J(T ) − (n − 1)2

∑n
j=1 J(T )(−j)/n

n2 − (n − 1)2
, (12.18)

is unbiased to order O(n−3).
There are two major differences between this estimator and the first-order

jackknifed estimator. For the first-order jackknife, J(T ) differs from T by a
quantity of order n−1; hence, if T has variance of order n−1 (as we usually
hope), the variance of J(T ) is asymptotically the same as that of T . In other
words, the bias reduction carries no penalty in increased variance. This is not
the case for higher-order bias correction of J2(T ).

The other difference is that in the bias expansion,

E(T )− θ =
∞∑

q=1

aq/nq,

if aq = 0 for q ≥ 2, then the first-order jackknifed estimator is unbiased. For
the second-order jackknifed estimator, even if aq = 0 for q ≥ 3, the estimator
may not be unbiased. Its bias is

Bias(J2(T )) =
a2

(n − 1)(n − 2)(2n − 1)
; (12.19)

that is, it is still of order n−3.
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The Generalized Jackknife

Schucany, Gray, and Owen (1971) suggested a method of systematically reduc-
ing the bias by combining higher-order jackknives. First, consider two biased
estimators of θ, T1 and T2. Let

w =
Bias(T1)
Bias(T2)

.

Now, consider the estimator

Tw =
T1 − wT2

1 − w
. (12.20)

We have

E(Tw) =
1

1− w
E(T1) −

w

1 − w
E(T2)

=
1

1− w
(θ + Bias(T1)) −

w

1 − w
(θ + Bias(T2))

= θ,

so this weighted combination of the estimators is unbiased.
Now, consider the biases of the jackknifed estimators, from equations (12.14)

and (12.19),
Bias(J(T )) = − a2

n(n − 1)
+ O(n−3)

and
Bias(J2(T )) = − a2

(n − 1)(n − 2)(2n − 1)
+ O(n−3),

and let
w =

Bias(J(T ))
Bias(J2(T ))

.

Notice that if w = (n − 1)/n, then the jackknife estimator,

nT − (n − 1)T (−j),

is unbiased. This suggests a different second-order jackknife instead of the one
in equation (12.18). Schucany, Gray, and Owen (1971) therefore set

w =
1

n(n−1)
1

(n−1)(n−2)

=
n − 2

n

and take
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J2(T ) =
n

2
J(T ) − n − 2

2

n∑

j=1

T ∗(−j)/n (12.21)

as the second-order jackknifed estimator.
So, generalizing, and writing T1 = T and T2 = T (−j), we jackknife T1 by

the ratio of the determinants

J(T1) =

∣∣∣∣
T1 T2

1/n 1/(n− 1)

∣∣∣∣
∣∣∣∣

1 1
1/n 1/(n− 1)

∣∣∣∣
.

Suppose that for two estimators, T1 and T2, we can express the biases as

E(T1) − θ = f1(n)b

and
E(T2) − θ = f2(n)b.

We define the generalized jackknife of T1 as

J(T1) =

∣∣∣∣
T1 T2

f1(n) f2(n)

∣∣∣∣
∣∣∣∣

1 1
f1(n) f2(n)

∣∣∣∣

=
1

1 − w
T1 −

w

1 − w
T2, (12.22)

where
w =

f1(n)
f2(n)

.

The higher-order generalized jackknife estimators can be developed by
writing the bias of the jth estimator as

E(Tj) − θ =
∞∑

i=1

fij(n)bi

for j = 1, . . . , k + 1. Then

J(Tk) =

∣∣∣∣∣∣∣∣∣

T1 T2 · · · Tk+1

f11(n) f12(n) · · · f1,k+1(n)
...

fk1(n) fk2(n) · · · fk,k+1(n)

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

1 1 · · · 1
f11(n) f12(n) · · · f1,k+1(n)

...
fk1(n) fk2(n) · · · fk,k+1(n)

∣∣∣∣∣∣∣∣∣

,
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where T2, . . . , Tk+1 are the means of the estimators of the successive jackknifed
estimators from the reduced samples.

The generalized jackknife reduces the order of the bias by 1/n in each
application and if all terms beyond the kth in the expansion of the bias are
zero, then J(Tk) is unbiased. The variance of the jackknifed estimator may
increase, however.

The Delete-k Jackknife

Although as we mentioned earlier it has been shown that deleting one obser-
vation at a time is optimal under certain assumptions about the population,
it does not lead to a consistent procedure for some estimators that are not
differentiable functions of the sample. An example, considered by Efron and
Tibshirani (1993), is the jackknife estimate of the variance of the sample me-
dian. Because in leaving out one observation at a time, the median of the
reduced samples will only take on at most two different values, the jackknife
procedure cannot lead to a good estimate of the variance. This is obviously
the case, no matter how large is the sample size.

In a practical sense, the consistency is not the issue. The jackknife does
not perform well in finite samples in this case. (Note that “performing well”
in real applications may not be very closely related to consistency.)

Instead of deleting a single observation, we can form pseudo-observations
by deleting k observations. This leads to the “delete-k jackknife”. The delete-k
jackknifed estimator may be consistent for a wider range of estimators than is
the delete-one jackknife. The delete-k jackknifed estimator is consistent in the
case of estimation of the variance of the median under certain conditions. The
asymptotics require that k also gets large. For the median, the requirements
are n1/2/k → 0 and n − k → ∞; see Efron and Tibshirani (1993). (See
also Shao and Tu, 1995, for further discussion of properties of the delete-k
jackknife.)

In the delete-k jackknife, if each subset of size k is deleted, this could lead
to a large number of pseudo-observations; we have the number of combinations
of k items from a set of n items. The large number of pseudo-observations can
be accommodated by random sampling, however; that is, we do not form the
exact mean of all pseudo-observations.

Notes and Further Reading

The idea of partitioning data is an old one. It may be done prior to collecting
data and, in this case, the statistician may use principles of experimental
design to enhance the power of the procedure. “Half samples” have been used
for many years in sampling finite populations. The immediate purpose is to
get better estimates of variances, but a more general purpose is to assess the
validity of assumptions and the quality of estimates.
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The use of a training set and a test set has been standard procedure in clas-
sification and machine learning for years. Various ways of selecting and using
multiple training sets have also been proposed; see Amit and Geman (1997)
and Breiman (2001), for example. We will also discuss some of these methods,
called boosting, bagging, arcing, and random forests, again in Chapter 17.

In building a model of a data-generating process, generally the more com-
plicated we allow the model to become, the better the model will appear to
fit a given set of data. Rather than using some measure of the goodness-of-fit
that depends on all of the data at once, such as an R-squared, it is much
more sensible to use a criterion such as PRESS that depends on the ability of
the model to fit data that were not included in the fitting process. The latter
approach uses partitions of the data. Picard and Berk (1990) discuss and give
examples of various uses of data partitioning in statistical inference.

Randomization tests have been used on small datasets for a long time.
R. A. Fisher’s famous “lady tasting tea” experiment (Fisher, 1935) used a
randomization test. Because such tests can require very extensive compu-
tations, however, their use has been limited until recently. Edgington and
Onghena (2007) give an extensive description of randomization tests and
their applications.

Data from spatial point processes are particularly difficult to analyze.
There are no really effective tests to distinguish a completely random dis-
tribution of locations from various models of relationships among the loca-
tions. This is one reason that the methods of statistical inference for such
processes are often based on randomization or Monte Carlo methods. Møller
and Wasgepetersen (2004) discuss various models of spatial point processes
and methods of simulating data from the models.

The generalized jackknife was developed by Gray and Schucany (1972).
See their paper and Sharot (1976) for further discussions of it.

Exercises

12.1. Consider again the problem of Exercise 11.7 on page 433, in which we
must decide whether the locations of trees within a field were randomly
distributed. In that exercise, you were to develop a Monte Carlo test,
possibly based on distances between pairs of trees.
a) Write a program in Fortran, C, or a higher-level language to com-

pute the randomization test statistic of Mead, allowing three levels of
nested grids.

b) Design and conduct a small Monte Carlo study to compare the Monte
Carlo test of Exercise 11.7 with the Mead randomization test. The
important issue here is the omnibus alternative hypothesis (that the
distribution is not randomly uniform). There are many ways that the
distribution could be nonrandom, and it is possible that the relative



450 12 Data Randomization, Partitioning, and Augmentation

performance of the tests is dependent on the nature of the nonran-
domness. Define and study some different types of nonrandomness.
One simple type you may include is due to a neighborhood exclusion,
in which one tree exerts an inhibition on other trees within a neigh-
borhood of radius r. Obviously, the larger r is, the less random is the
distribution.

12.2. PRESS.
a) Write a program in Fortran, C, or a higher-level language that com-

putes PRESS efficiently.
b) Generate n observations according to the polynomial model

yi = 1 + xi + x2
i + ei,

where ei is from a normal distribution with a variance of 1. Let n = 50,
and let xi be from a standard normal distribution. Compute PRESS
for each of the models:

yi = β0 + β1xi + ei,

yi = β0 + β1xi + β2x
2
i + ei,

yi = β0 + β1xi + β2x
2
i + β3x

3
i + ei.

12.3. For r = n, show that the jackknife variance estimate, VJ (equation (12.11),
page 443), can be expressed as

n − 1
n

n∑

j=1

(
T(−j) − T (•)

)2
.

12.4. Show that

VJ ≤
∑n

j=1(T
∗
j − T )2

n(n − 1)
.

12.5. The statistic
b2 =

∑
(yi − ȳ)4

(∑
(yi − ȳ)2

)2

is sometimes used to decide whether a least squares estimator is appro-
priate (otherwise, a robust method may be used). What is the jackknife
estimate of the standard deviation of b2?
Design and conduct a Monte Carlo study of the performance of the jack-
knife estimator of the standard deviation of b2 in two specific cases: a
normal distribution and a double exponential distribution. In each case,
use only one sample size, n = 100, but for each case, use both k = 1 and
k = 5 (nonoverlapping partitions).
Summarize your findings in a clearly-written report. Be specific about the
basis on which you assess the performance of the jackknife estimator.

12.6. Jackknife bias reduction. Assume that Y1, . . . , Yn are i.i.d.
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a) Consider M2 =
∑

Y 2
i /n as an estimator of the second raw population

moment, µ2 = E(Y 2). What is the jackknife bias-reduced estimator
of µ2? Is it unbiased?

b) Consider M3 =
∑

Y 3
i /n as an estimator of the third raw population

moment, µ3 = E(Y 3). What is the jackknife bias-reduced estimator
of µ3? Is it unbiased?
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Bootstrap Methods

Resampling methods involve the use of many samples, each taken from a
single sample that was taken from the population of interest. Inference based
on resampling makes use of the conditional sampling distribution of a new
sample (the “resample”) drawn from a given sample. Statistical functions on
the given sample, a finite set, can easily be evaluated. Resampling methods
therefore can be useful even when very little is known about the underlying
distribution.

A basic idea in bootstrap resampling is that, because the observed sample
contains all the available information about the underlying population, the
observed sample can be considered to be the population; hence, the distribu-
tion of any relevant test statistic can be simulated by using random samples
from the “population” consisting of the original sample.

Suppose that a sample y1, . . . , yn is to be used to estimate a population
parameter, θ. For a statistic T that estimates θ, as usual, we wish to know
the sampling distribution so as to correct for any bias in our estimator or to
set confidence intervals for our estimate of θ. The sampling distribution of T
is often intractable in applications of interest.

A basic bootstrapping method formulated by Efron (1979) uses the discrete
distribution represented by the sample to study the unknown distribution from
which the sample came. The basic tool is the empirical cumulative distribution
function. The ECDF is the CDF of the finite population that is used as a model
of the underlying population of interest.

The functional of the CDF that defines a parameter defines a plug-in
estimator of that parameter when the functional is applied to the ECDF. A
functional of a population distribution function, Θ(P ), defining a parameter
θ can usually be expressed as

θ = Θ(P )

=
∫

g(y) dP (y). (13.1)

The plug-in estimator T is the same functional of the ECDF:
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T = T (Pn)
= Θ(Pn)

=
∫

g(y) dPn(y). (13.2)

(In both of these expressions, we are using the integral in a general sense. In
the second expression, the integral is a finite sum. It is also a countable sum
in the first expression if the random variable is discrete. Note also that we use
the same symbol to denote the functional and the random variable.) Various
properties of the distribution of T can be estimated by use of “bootstrap
samples”, each of the form {y∗1 , . . . , y∗n}, where the y∗i ’s are chosen from the
original yi’s with replacement.

We define a resampling vector, p∗, corresponding to each bootstrap sample
as the vector of proportions of the elements of the original sample in the given
bootstrap sample. The resampling vector is a realization of a random vector
P ∗ for which nP ∗ has an n-variate multinomial distribution with parameters
n and (1/n, . . . , 1/n). The resampling vector has random components that
sum to 1. For example, if the bootstrap sample (y∗1 , y∗2 , y

∗
3 , y∗4) happens to be

the sample (y2, y2, y4, y3), the resampling vector p∗ is

(0, 1/2, 1/4, 1/4).

The bootstrap replication of the estimator T is a function of p∗, T (p∗).
The resampling vector can be used to estimate the variance of the bootstrap
estimator. By imposing constraints on the resampling vector, the variance of
the bootstrap estimator can be reduced.

The bootstrap principle involves repeating the process that leads from a
population CDF to an ECDF. Taking the ECDF Pn to be the CDF of a
population, and resampling, we have an ECDF for the new sample, P (1)

n . (In
this notation, we could write the ECDF of the original sample as P (0)

n .) The
difference is that we know more about P (1)

n than we know about Pn. Our
knowledge about P (1)

n comes from the simple discrete uniform distribution,
whereas our knowledge about Pn depends on knowledge (or assumptions)
about the underlying population.

The bootstrap resampling approach can be used to derive properties of
statistics, regardless of whether any resampling is done. Most common uses of
the bootstrap involve computer simulation of the resampling; hence, bootstrap
methods are usually instances of computational inference.

13.1 Bootstrap Bias Corrections

For an estimator T that is the same functional of the ECDF as the parameter
is of the CDF, the problem of bias correction is to find a functional fT that
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allows us to relate the distribution function of the sample Pn to the population
distribution function P , that is, such that

E(fT (P, Pn) | P ) = 0. (13.3)

Correcting for the bias is equivalent to finding b that solves the equation

fT (P, Pn) = Θ(Pn) −Θ(P ) − b

= T (Pn) − T (P ) − b

so that fT has zero expectation with respect to P .
Using the bootstrap principle, we look for f (1)

T so that

E
(
f (1)

T

(
Pn, P (1)

n

) ∣∣∣ Pn

)
= 0, (13.4)

where P (1)
n is the empirical cumulative distribution function for a sample from

the discrete distribution formed from the original sample.
We know more about the items in equation (13.4) than those in equa-

tion (13.3), so we now consider the simpler problem of finding b1 so that

E
(
T
(
P (1)

n

)
− T (Pn) − b1

∣∣∣ Pn

)
= 0.

We can write the solution as

b1 = T (Pn) − E
(
T
(
P (1)

n

) ∣∣∣ Pn

)
. (13.5)

An estimator with less bias is therefore

T1 = 2T (Pn) − E
(
T
(
P (1)

n

) ∣∣∣ Pn

)
. (13.6)

Suppose, for example, that

θ = Θ(P )

=
∫

y dP (y),

and we wish to estimate θ2. From a random sample of size n, the plug-in
estimator of θ is

Θ(Pn) =
∫

y dPn(y)

= ȳ.

A candidate estimator for θ2 is the square of the sample mean, that is, ȳ2.
Because Pn completely defines the sample, we can represent the estimator as a
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functional T (Pn), and we can study the bias of T by considering the problem
of estimating the square of the mean of a discrete uniform distribution with
mass points y1, . . . , yn. We do this using a single sample of size n from this
distribution, y∗1 , . . . , y∗n. For this sample, we merely work out the expectation
of (

∑
y∗i /n)2. You are asked to complete these computations in Exercise 13.2.

In general, to correct the bias, we must evaluate

E
(
T
(
P (1)

n

) ∣∣∣ Pn

)
(13.7)

in equation (13.6). We may be able to compute E
(
T (P (1)

n ) | Pn

)
, as in the

simple example above, or we may have to resort to Monte Carlo methods to
estimate it.

The Monte Carlo estimate is based on m random samples each of size
n, taken with replacement from the original sample. This is a nonparamet-
ric procedure. Specifically, the basic nonparametric Monte Carlo bootstrap
procedure for bias correction is

• take m random samples each of size n, with replacement from the given
set of data, the original sample y1, . . . , yn;

• for each sample, compute an estimate T ∗j of the same functional form as
the original estimator T .

The mean of the T ∗j , T ∗, is an unbiased estimator of E
(
T (P (1)

n ) | Pn

)
.

The distribution of T ∗j is related to the distribution of T . The variability
of T about θ can be assessed by the variability of T ∗j about T (see below),
and the bias of T can be assessed by the mean of T ∗j − T .

Notice that in the bootstrap bias correction we use an estimate of the bias
of bootstrap estimators T ∗j − T of the estimate T from the original sample.
This estimate may not be independent of the true estimand. Another problem
with our standard approach may arise in a multiparameter case when the bias
of individual estimators depends on the bias of other estimators. There is no
universal approach to addressing these problems, but often ad hoc methods
can be developed.

13.2 Bootstrap Estimation of Variance

From a given sample y1, . . . , yn, suppose that we have an estimator T (y). The
estimator T ∗ computed as the same function T , using a bootstrap sample
(that is, T ∗ = T (y∗)), is a bootstrap observation of T .

The bootstrap estimate of some function of the estimator T is a plug-in
estimate that uses the empirical distribution Pn in place of P . This is the
bootstrap principle, and this bootstrap estimate is called the ideal bootstrap.



13.3 Bootstrap Confidence Intervals 457

For the variance of T , for example, the ideal bootstrap estimator is the
variance V(T ∗). This variance, in turn, can be estimated from bootstrap sam-
ples. The bootstrap estimate of the variance, then, is the sample variance of
T ∗ based on the m samples of size n taken from Pn:

V̂(T ) = V̂(T ∗)

=
1

m − 1

∑
(T ∗j − T ∗)2, (13.8)

where T ∗j is the jth bootstrap observation of T . This, of course, can be com-
puted by Monte Carlo methods by generating m bootstrap samples and com-
puting T ∗j for each.

If the estimator of interest is the sample mean, for example, the bootstrap
estimate of the variance is V̂(Y )/n, where V̂(Y ) is an estimate of the variance
of the underlying population. (This is true no matter what the underlying
distribution is, as long as the variance exists.) The bootstrap procedure does
not help in this situation.

13.3 Bootstrap Confidence Intervals

As in equation (1.128) on page 55, a method of forming a confidence interval
for a parameter θ is to find a pivotal quantity that involves θ and a statistic
T , f(T, θ), and then to rearrange the terms in a probability statement of the
form

Pr
(
f(α/2) ≤ f(T, θ) ≤ f(1−α/2)

)
= 1 − α. (13.9)

When distributions are difficult to work out, we may use bootstrap methods
for estimating and/or approximating the percentiles, f(α/2) and f(1−α/2).

Basic Intervals

For computing confidence intervals for a mean, the pivotal quantity is likely
to be of the form T − θ. The simplest application of the bootstrap to forming
a confidence interval is to use the sampling distribution of T ∗ − T0 as an
approximation to the sampling distribution of T − θ; that is, instead of using
f(T, θ), we use f(T ∗, T0), where T0 is the value of T in the given sample.
The percentiles of the sampling distribution determine f(α/2) and f(1−α/2) in
the expressions above. If we cannot determine the sampling distribution of
T ∗ − T0, we can easily estimate it by Monte Carlo methods.

For the case f(T, θ) = T −θ, the probability statement above is equivalent
to

Pr
(
T − f(1−α/2) ≤ θ ≤ T − f(α/2)

)
= 1 − α. (13.10)

The f(π) may be estimated from the percentiles of a Monte Carlo sample of
T ∗ − T0.
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Bootstrap-t Intervals

Methods of inference based on a normal distribution often work well even when
the underlying distribution is not normal. A useful approximate confidence
interval for a location parameter can often be constructed using as a template
the familiar confidence interval for the mean of a normal distribution,

(
Y − t(1−α/2) s/

√
n, Y − t(α/2) s/

√
n
)
,

where t(π) is a percentile from the Student’s t distribution, and s2 is the usual
sample variance.

A confidence interval for any parameter constructed in this pattern is
called a bootstrap-t interval. A bootstrap-t interval has the form

(
T − t̂(1−α/2)

√
V̂(T ), T − t̂(α/2)

√
V̂(T )

)
, (13.11)

where t̂(π) is the estimated percentile from the studentized statistic,

T ∗ − T0√
V̂(T ∗)

.

For many estimators T , no simple expression is available for V̂(T ). The vari-
ance could be estimated using a bootstrap and equation (13.8). This bootstrap
nested in the bootstrap to determine t̂(π) increases the computational burden
multiplicatively.

If the underlying distribution is normal and T is a sample mean, the in-
terval in expression (13.11) is an exact (1 − α)100% confidence interval of
shortest length. If the underlying distribution is not normal, however, this
confidence interval may not have good properties. In particular, it may not
even be of size (1−α)100%. An asymmetric underlying distribution can have
particularly deleterious effects on one-sided confidence intervals. Exercise 1.14
on page 76, provides some insight as to why this is the case.

If the estimators T and V̂(T ) are based on sums of squares of deviations,
the bootstrap-t interval performs very poorly when the underlying distribution
has heavy tails. This is to be expected, of course. Bootstrap procedures can
be no better than the statistics used.

Bootstrap Percentile Confidence Intervals

Given a random sample (y1, . . . , yn) from an unknown distribution with CDF
P , we want an interval estimate of a parameter, θ = Θ(P ), for which we have
a point estimator, T .

A bootstrap estimator for θ is T ∗, based on the bootstrap sample (y∗1 , . . . , y∗n).
Now, if GT∗(t) is the distribution function for T ∗, then the exact upper 1−α
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confidence limit for θ is the value t∗(1−α), such that GT∗(t∗(1−α)) = 1 − α.
This is called the percentile upper confidence limit. A lower limit is obtained
similarly, and an interval is based on the lower and upper limits.

In practice, we generally use Monte Carlo and m bootstrap samples to es-
timate these quantities. The probability-symmetric bootstrap percentile con-
fidence interval of size (1 − α)100% is thus

(
t∗(α/2), t∗(1−α/2)

)
,

where t∗(π) is the [πm]th order statistic of a sample of size m of T ∗. (Note
that we are using T and t, and hence T ∗ and t∗, to represent estimators
and estimates in general; that is, t∗(π) here does not refer to a percentile of
the Student’s t distribution.) This percentile interval is based on the ideal
bootstrap and may be estimated by Monte Carlo simulation.

Confidence Intervals Based on Transformations

Suppose that there is a monotonically increasing transformation g and a con-
stant c such that the random variable

W = c(g(T ∗) − g(θ)) (13.12)

has a symmetric distribution about zero. Here g(θ) is in the role of a mean
and c is a scale or standard deviation.

Let H be the distribution function of W , so

GT∗(t) = H
(
c(g(t) − g(θ))

)
(13.13)

and
t∗(1−α/2) = g−1

(
g(t∗) + w(1−α/2)/c

)
, (13.14)

where w(1−α/2) is the (1−α/2) quantile of W . The other quantile t∗(α/2) would
be determined analogously.

Instead of approximating the ideal interval with a Monte Carlo sample, we
could use a transformation to a known W and compute the interval that way.
Use of an exact transformation g to a known random variable W , of course, is
just as difficult as evaluation of the ideal bootstrap interval. Nevertheless, we
see that forming the ideal bootstrap confidence interval is equivalent to using
the transformation g and the distribution function H .

Because transformations to approximate normality are well-understood
and widely used, in practice, we generally choose g as a transformation to
normality. The random variable W above is a standard normal random vari-
able, Z. The relevant distribution function is Φ, the normal CDF. The normal
approximations have a basis in the central limit property. Central limit ap-
proximations often have a bias of order O(n−1), however, so in small samples,
the percentile intervals may not be very good.
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Correcting the Bias in Intervals Due to Bias in the Estimator or
to Lack of Symmetry

It is likely that the transformed statistic g(T ∗) in equation (13.12) is biased
for the transformed θ, even if the untransformed statistic is unbiased for θ.
We can account for the possible bias by using the transformation

Z = c(g(T ∗) − g(θ)) + z0,

and, analogous to equation (13.13), we have

GT∗(t) = Φ
(
c(g(t) − g(θ)) + z0

)
.

The bias correction z0 is Φ−1
(
GT∗(t)

)
.

Even when we are estimating θ directly with T ∗ (that is, g is the identity),
another possible problem in determining percentiles for the confidence interval
is the lack of symmetry of the distribution about z0. We would therefore need
to make some adjustments in the quantiles instead of using equation (13.14)
without some correction.

Rather than correcting the quantiles directly, we may adjust their levels.
For an interval of confidence (1 − α), instead of (t∗(α/2), t∗(1−α/2)), we take

(
t∗(α1), t∗(α2)

)
,

where the adjusted probabilities α1 and α2 are determined so as to reduce the
bias and to allow for the lack of symmetry.

As we often do, even for a nonnormal underlying distribution, we relate
α1 and α2 to percentiles of the normal distribution.

To allow for the lack of symmetry —that is, for a scale difference below and
above z0 — we use quantiles about that point. Efron (1987), who developed
this method, introduced an “acceleration”, a, and used the distance a(z0 +
z(π)). Using values for the bias correction and the acceleration determined
from the data, Efron suggested the quantile adjustments

α1 = Φ
(

ẑ0 +
ẑ0 + z(α/2)

1 − â(ẑ0 + z(α/2))

)

and
α2 = Φ

(
ẑ0 +

ẑ0 + z(1−α/2)

1 − â(ẑ0 + z(1−α/2))

)
.

Use of these adjustments to the level of the quantiles for confidence inter-
vals is called the accelerated bias-corrected, or “BCa”, method. This method
automatically takes care of the problems of bias or asymmetry resulting from
transformations that we discussed above.

Note that if â = ẑ0 = 0, then α1 = Φ(z(α)) and α2 = Φ(z(1−α)). In this
case, the BCa is the same as the ordinary percentile method.
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The problem now is to estimate the acceleration a and the bias correction
z0 from the data.

The bias-correction term z0 is estimated by correcting the percentile near
the median of the m bootstrap samples:

ẑ0 = Φ−1

⎛

⎝ 1
m

∑

j

I(−∞,T ]

(
T ∗j

)
⎞

⎠ .

The idea is that we approximate the bias of the median (that is, the bias of a
central quantile) and then adjust the other quantiles accordingly.

Estimating a is a little more difficult. The way we proceed depends on
the form the bias may take and how we choose to represent it. Because one
cause of bias may be skewness, Efron (1987) adjusted for the skewness of
the distribution of the estimator in the neighborhood of θ. The skewness is
measured by a function of the second and third moments of T . We can use
the jackknife to estimate those moments. The expression is

â =
∑(

J(T ) − T(i)

)3

6
(∑(

J(T ) − T(i)

)2)3/2
. (13.15)

There may be a bias that results from other departures from normality, such
as heavy tails. This adjustment does nothing for this kind of bias.

Bootstrap-t and BCa confidence intervals may be used for inference con-
cerning the difference in the means of two groups. For moderate and approx-
imately equal sample sizes, the coverage of BCa intervals is often closer to
the nominal confidence level, but for samples with very different sizes, the
bootstrap-t intervals are often better in the sense of coverage frequency.

Because of the variance of the components in the BCa method, it gen-
erally requires relatively large numbers of bootstrap samples. For location
parameters, for example, we may need m = 1, 000.

A delta method approximation (equation (1.124)) for the standard de-
viation of the estimator may also be useful for bootstrap confidence inter-
vals. Terms in the Taylor series expansions are used for computing â and ẑ0

rather than using bootstrap estimates for these terms. As with the usual BCa

method, however, there may be a bias that results from other departures from
normality, such as heavy tails.

13.4 Bootstrapping Data with Dependencies

When there are relationships among the variables originally sampled, resam-
pling methods must preserve these relationships.

In analyzing data in a regression model,
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y = Xβ + ϵ,

we may resample the (yi, xi) observations (note xi is a vector), or we may
attempt to resample the ϵi. The former approach is generally less efficient.
The latter approach uses the fitted β̂ to provide a set of residuals, which are
then resampled and added to the xT

i β̂ to obtain y∗i . This approach is more
efficient, but it relies more strongly on the assumption that the distribution
of ϵ is the same in all regions of the model.

Another common case in which dependencies do not allow a straightfor-
ward application of the bootstrap is in time series data, or data with serial
correlations. This problem can often be addressed by forming subsequences
in batches whose summary statistics are (almost) independent. The method
of batch means described on page 419 in Chapter 11 is one way of doing this.

Bootstrapping is critically dependent on reproducing the variance in the
original population. A correlated sample will not reproduce this variance, so
the first step in bootstrapping data with serial correlations, such as time series
data, is to model out the dependencies as well as any serial trend. This can
be done with various time series models. The simplest model assumes that
residuals from the means of disjoint blocks of data are essentially independent
(batch means). A linear model or a higher-degree polynomial model may be
useful for removal of trends. Diagnostic plots based on histograms of block
means can be used to assess the success of blocking schemes.

In more complicated problems with dependencies, such as the problem of
selection of variables in a regression model, bootstrapping is rarely useful.
Other methods, such as cross validation, that provide comparative measures
must be used. Bootstrapping does not provide such measures.

13.5 Variance Reduction in Monte Carlo Bootstrap

Monte Carlo bootstrap estimators have two sources of variation: one is due
to the initial sampling, and the other is due to the bootstrap sampling.

Jackknife After Bootstrap

The first problem, of course, is to estimate the variance of the bootstrap
estimator. One way of estimating the variance is to use a jackknife. The brute
force way would be to do n separate bootstraps on the original sample with
a different observation removed each time.

A more computationally efficient way, called jackknife-after-bootstrap, was
suggested by Efron (1992). The procedure is to store the indices of the sample
included in each bootstrap sample (an n × m matrix) and then, for each
bootstrap sample that does not contain a given element yj of the original
sample, treat that bootstrap sample as if it had been obtained from an original
sample from which yj had been omitted. The two bootstrap samples do indeed
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have the same distribution; that is, the distribution of a bootstrap sample
conditioned on not containing yj is the same as the unconditional distribution
of a bootstrap sample from a given sample that does not contain yj .

This procedure would have problems, of course, if it so happened that for
a given yj , every bootstrap sample contained yj . Efron (1992) shows that the
probability of this situation is extremely small, even for n as small as 10 and
m as small as 20. For larger values of m relative to n, the probability is even
lower.

Efron and Tibshirani (1993) report on a small Monte Carlo study that in-
dicates that the jackknife-after-bootstrap tends to overestimate the variance
of the bootstrap estimator, especially for small values of m. Efron and Tib-
shirani attribute this to the overestimation by the jackknife of the resampling
variance caused by using the same set of m bootstrap samples to obtain the
n jackknife estimates. The jackknife-after-bootstrap should only be used for
large values of m, where “large” is subject to user discretion but generally is
of the order of 1,000.

The Bootstrap Estimate of the Bias of a Plug-In Estimator

The Monte Carlo estimate of the bootstrap estimate of the bias can be im-
proved if the estimator whose bias is being estimated is a plug-in estimator.

Consider the resampling vector, p∗0 = (1/n, . . . , 1/n).
Such a resampling vector corresponds to a permutation of the original

sample. If the estimator is a plug-in estimator, then its value is invariant to
permutations of the sample; and, in fact,

T (p∗0) = T (Pn),

so the Monte Carlo estimate of the bootstrap estimate of the bias can be
written as

m∑

j=1

s(y∗j1 , . . . , y∗jn )/m − T (p∗0).

Instead of using T (p∗0), however, we can increase the precision of the Monte
Carlo estimate by using the mean of the individual p∗’s actually obtained:

∑
s(y∗j1 , . . . , y∗jn )/m − T (p̄∗),

where
p̄∗ =

∑
p∗j/m.

Notice that for an unbiased plug-in estimator (e.g., the sample mean), this
quantity is 0.

If the objective in Monte Carlo experimentation is to estimate some quan-
tity, just as in any estimation procedure, we want to reduce the variance of
our estimator (while preserving its other good qualities).
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The basic idea is usually to reduce the problem analytically as far as
possible and then to use Monte Carlo methods on what is left.

Beyond that general reduction principle, in Monte Carlo experimentation,
there are several possibilities for reducing the variance, as discussed in Sec-
tion 11.5 on page 425. The two main types of methods are judicious use of
an auxiliary variable and use of probability sampling. Auxiliary variables may
be:

• control variates (any correlated variable, either positively or negatively
correlated);

• antithetic variates (in the basic uniform generator);
• regression covariates.

Probability sampling is:

• stratified sampling in the discrete case;
• importance sampling in the continuous case.

Balanced Resampling

Another way of reducing the variance in Monte Carlo experimentation is to
constrain the sampling so that some aspects of the samples reflect precisely
some aspects of the population.

We may choose to constrain p̄∗ to equal p∗0. This makes T (p̄∗) = T (p∗0)
and hopefully makes

∑
s(y∗j1 , . . . , y∗jn )/m closer to its expected value while

preserving its correlation with T (p̄∗). This is called balanced resampling.
Hall (1990) has shown that the balanced-resampling Monte Carlo esti-

mator of the bootstrap estimator has a bias O(m−1) but that the reduced
variance generally more than makes up for it.

Notes and Further Reading

Standard references on the bootstrap are Efron and Tibshirani (1993) and
Davison and Hinkley (1997). Each of these texts has associated software.
A library of R and S-Plus software called bootstrap is used with the
Efron/Tibshirani text, and a library called boot developed by A. J. Canty
is associated in the Davison/Hinkley text. The R program boot.ci in boot
computes BCa confidence intervals and abc.ci computes ABC confidence
intervals.

Chernick (2008) provides a very extensive bibliography on the bootstrap.
The volume edited by LePage and Billard (1992) contains a number of articles
that describe situations requiring special care in the application of the boot-
strap. Politis and Romano (1992, 1994) describe the “stationary bootstrap”
and other methods of blocking to overcome serial dependencies.

Manly (2006) discusses many applications of bootstrap methods, especially
in biology.
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Exercises

13.1. Let S = {Y1, . . . , Yn} be a random sample from a population with mean
µ, variance σ2, and distribution function P . Let P̂ be the empirical distri-
bution function. Let Y be the sample mean for S. Let S∗ = {Y ∗1 , . . . , Y ∗n }
be a random sample taken with replacement from S. Let Y ∗ be the sample
mean for S∗.
a) Show that

EP (Y ∗) = Y .

b) Show that
EP (Y ∗) = µ.

c) Note that in the questions above there was no replication of the boot-
strap sampling. Now, suppose that we take m samples S∗j , compute
Y ∗j for each, and compute

V =
1

m − 1

∑

j

(
Y ∗j − Y ∗

)2
.

Derive EP (V ).
d) Derive EP (V ).

13.2. Use equation (13.5) to determine the bootstrap bias correction for the
square of the sample mean as an estimate of the square of the population
mean.

13.3. Show that the bootstrap estimate of the bias of the sample second central
moment is

∑
(yi − ȳ)2/n2. (Notice that here the y’s are used to denote

the realization of the random sample rather than the random sample.)
13.4. Show that, for the sample mean, both the bootstrap estimate of the bias

and the Monte Carlo estimate of the bootstrap estimate of the bias using
the mean resampling vector are 0. Is this also true for the ordinary Monte
Carlo estimate?

13.5. The questions in Exercise 10.4 on page 415 assume we know p(x). How
would you use the bootstrap to estimate the bias in X(n) for θ (know-
ing only that θ is the upper bound on the range, but not knowing the
distribution is uniform)?
Is the bootstrap very reliable in this case? Why or why not?

13.6. Consider a bootstrap estimate of the variance of an estimator T. Show that
the estimate from a bootstrap sample of size m has the same expected
value as the ideal bootstrap estimator but that its variance is greater than
or equal to that of the ideal bootstrap estimate. (This is the variance of the
variance estimator. Also, note that the expectation and variance of these
random variables should be taken with respect to the true distribution,
not the empirical distribution.)
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13.7. Conduct a Monte Carlo study of confidence intervals for the variance in
a normal distribution. (This is similar to a study reported by Schenker,
1985.) Use samples of size 20, 35, and 100 from a normal distribution
with variance of 1. Use the nonparametric percentile, the BCa, and the
ABC methods to set 90% confidence intervals, and estimate the coverage
probabilities using Monte Carlo methods. You can use the R library boot
developed by A. J. Canty (see Davison and Hinkley, 1997) to compute the
confidence intervals. The library is available from statlib. Use bootstrap
m = 1, 000 and 1,000 Monte Carlo replications. Prepare a two-way table
of the estimated coverage percentages:

n Percentile BCa ABC
20 % % %
35 % % %

100 % % %

Summarize your findings in a clearly-written report. Explain the difference
in the confidence intervals for the mean and for the variance in terms of
pivotal quantities.

13.8. Let (y1, y2, ..., y20) be a random sample from an exponential distribution
with mean θ = 1. Based on a Monte Carlo sample size of 400 and bootstrap
sizes of 200, construct a table of percentages of coverages of 95% confidence
intervals based on:
• a standard normal approximation;
• a nonparametric percentile method;
• the BCa method;
• the nonparametric ABC method.

13.9. Assume that we have a random sample, Y1, . . . , Yn from a gamma distri-
bution with shape parameter α and scale parameter 1.
a) Describe how you would use a parametric bootstrap to set a 95% lower

one-sided confidence interval for the standard deviation,
√
α.

b) Carefully describe how you would perform a Monte Carlo test at the
0.05 significance level for

H0 :
√
α ≤ 10

versus
H1 :

√
α > 10.

c) What is the relationship (if any) between the answers to the previous
two questions?

d) What estimator would you use for
√
α? Your estimator is probably

biased. Describe how you would use the jackknife to reduce the bias
of the estimator.

e) Describe how you would use the jackknife to estimate the variance of
your estimator.
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f) Now, assume that you have the same sample as before, but you do not
assume a particular form of the distribution. Describe how you would
use a nonparametric bootstrap to set a 95% two-sided confidence in-
terval for the standard deviation. (Use any type of nonparametric
bootstrap confidence interval you wish.) Clearly specify the interval
limits. Is your interval symmetric in any sense?

13.10. Assume a sample of size n. Write a program to generate m resampling
vectors p∗j so that p̄∗ = (1/n, . . . , 1/n).



Part IV

Exploring Data Density and Relationships



Introduction to Part IV

A canonical problem in statistics is to gain understanding of a given random
sample,

y1, . . . , yn,

in order to understand better the data-generating process that yielded the
data. The specific objective is to make inferences about the population from
which the random sample arose. In many cases, we wish to make inferences
only about some finite set of parameters, such as the mean and variance, that
describe the population. In other cases, we want to predict a future value
of an observation. Sometimes, the objective is more difficult: We want to
estimate a function that characterizes the distribution of the population. The
cumulative distribution function (CDF) or the probability density function
(PDF) provides a complete description of the population, so we may wish to
estimate these functions.

In the simpler cases of statistical inference, we assume that the form of the
CDF P is known and that there is a parameter, θ = Θ(P ), of finite dimension
that characterizes the distribution within that assumed family of forms. An
objective in such cases may be to determine an estimate θ̂ of the parameter θ.
The parameter may completely characterize the probability distribution of the
population, or it may just determine an important property of the distribution,
such as its mean or median. If the distribution or density function is assumed
to be known up to a vector of parameters, the complete description is provided
by the parameter estimate. For example, if the distribution is assumed to be
normal, then the form of P is known. It involves two parameters, the mean
µ and the variance σ2. The problem of completely describing the distribution
is merely the problem of estimating θ = (µ,σ2). In this case, the estimates
of the CDF, P̂ , and the density, p̂, are the normal CDF and density with the
estimate of the parameter, θ̂, plugged in.

If no assumptions, or only weak assumptions, are made about the form
of the distribution or density function, the estimation problem is much more
difficult. Because the distribution function or density function is a characteri-
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zation from which all other properties of the distribution could be determined,
we expect the estimation of the function to be the most difficult type of sta-
tistical inference. “Most difficult” is clearly a heuristic concept and here may
mean that the estimator is most biased, most variable, most difficult to com-
pute, most mathematically intractable, and so on.

Estimators such as θ̂ for the parameter θ or p̂ for the density p are usu-
ally random variables; hence, we are interested in the statistical properties of
these estimators. If our approach to the problem treats θ and p as fixed (but
unknown), then the distribution of θ̂ and p̂ can be used to make informative
statements about θ and p. Alternatively, if θ and p are viewed as realizations
of random variables, then the distribution of θ̂ and p̂ can be used to make
informative statements about conditional distributions of the parameter and
the function, given the observed data.

Although the CDF in some ways is more fundamental in characterizing
a probability distribution (it always exists and is defined the same for both
continuous and discrete distributions), the probability density function is more
familiar to most data analysts. Important properties such as skewness, modes,
and so on can be seen more readily from a plot of the probability density
function than from a plot of the CDF. We are therefore usually more interested
in estimating the density, p, than the CDF, P . Some methods of estimating the
density, however, are based on estimates of the CDF. The simplest estimate of
the CDF is the empirical cumulative distribution function, the ECDF, which
is defined as

Pn(y) =
1
n

n∑

i=1

I(−∞,y](yi).

(See page 669 for the definition and properties of the indicator function IS(·)
in the ECDF.) As we have seen on page 59, the ECDF is pointwise unbiased
for the CDF.

The derivative of the ECDF, the empirical probability density function
(EPDF),

pn(y) =
1
n

n∑

i=1

δ(y − yi),

where δ is the Dirac delta function, is just a series of spikes at points cor-
responding to the observed values. It is not very useful as an estimator of
the probability density. It is, however, unbiased for the probability density
function at any point.

In the absence of assumptions about the form of the density p, the estima-
tion problem may be computationally intensive. A very large sample is usually
required in order to get a reliable estimate of the density. The goodness of
the estimate depends on the dimension of the random variable. Heuristically,
the higher the dimension, the larger the sample required to provide adequate
representation of the sample space.
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Density estimation generally has more modest goals than the development
of a mathematical expression that yields the probability density function p
everywhere. Although we may develop such an expression, the purpose of the
estimate is usually a more general understanding of the population:

• to identify structure in the population, its modality, tail behavior, skew-
ness, and so on;

• to classify the data and to identify different subpopulations giving rise to
it; or

• to make a visual presentation that represents the population density.

There are several ways to approach the probability density estimation
problem. In a parametric approach mentioned above, the parametric family of
distributions, such as a normal distribution or a beta distribution, is assumed.
The density is estimated by estimating the parameters of the distribution and
substituting the estimates into the expression for the density. In a nonpara-
metric approach, only very general assumptions about the distribution are
made. These assumptions may only address the shape of the distribution,
such as an assumption of unimodality or an assumption of continuity or other
degrees of smoothness of the density function. There are various semiparamet-
ric approaches in which, for example, parametric assumptions may be made
only over a subset of the range of the distribution, or, in a multivariate case,
a parametric approach may be taken for some elements of the random vector
and a nonparametric approach for others. Another approach is to assume a
more general family of distributions, perhaps characterized by a differential
equation, for example, and to fit the equation by equating properties of the
sample, such as sample moments, with the corresponding properties of the
equation.

In the case of parametric estimation, we have a complete estimate of the
density (that is, an estimate at all points). In nonparametric estimation, we
generally develop estimates of the ordinate of the density function at specific
points. After the estimates are available at given points, a smooth function
can be fitted.

Chapters 14 and 15 in this part address the problem of estimating a proba-
bility density function, either parametrically or nonparametrically. The prob-
ability density of a data-generating process is one of the most important de-
terminants of the structure in data, and it is by studying some aspects of that
structure that we make inferences about the probability density.

Chapter 16 considers the problems of finding other structure in the data.
Many of the methods we discuss are sensitive to artificial structure, which,
similar to artificial ill-conditioning that we discussed on page 208, is structure
that can be removed by univariately scaling the data. Scaling has implica-
tions not only for numerical computations; it also affects the results of many
multivariate analyses, even if the computations are exact.

It is now common to search through datasets and compute summary sta-
tistics from various items that may indicate relationships that were not previ-
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ously recognized. The individual items or the relationships among them may
not have been of primary interest when the data were originally collected.
This process of prowling through large datsets is sometimes called data min-
ing or knowledge discovery in databases (KDD). (The names come and go
with current fads; there is very little of substance indicated by use of different
names. The meaning of “large” in the phrase “large datasets” becomes ever
more restrictive as the capacity of computer systems grows.) The objective is
to discover characteristics of the data that may not be expected based on the
existing theory. In the language of the database literature, the specific goals
of data mining are:

• classification of observations;
• linkage analysis;
• deviation detection;

and finally

• predictive modeling.

Of course, the first three of these are the objectives of any exploratory statis-
tical data analysis. Data mining is exploratory data analysis (EDA) applied
to large datasets. An objective of an exploratory analysis is often to generate
hypotheses, and exploratory analyses are generally followed by more formal
confirmatory procedures. The explorations in massive datasets must be per-
formed without much human intervention. Searching algorithms need to have
some means of learning and adaptively improving. This will be a major area
of research for some time.

Predictive modeling uses inductive reasoning rather than the more com-
mon deductive reasoning, which is much easier to automate.

In the statistical classification of observations, the dataset is partitioned
recursively. The partitioning results in a classification tree, which is a decision
tree, each node of which represents a partition of the dataset. The decision at
each node is generally based on the values of a single variable at a time.

The partitioning can also be based on linear combinations of the variables.
This is sometimes called “oblique partitioning” because the partitions are not
parallel to the axes representing the individual variables. Seeking good linear
combinations of variables on which to build oblique partitions is a much more
computationally intensive procedure than just using single variables.

Linkage analysis is often the most important activity of data mining. In
linkage analysis, relationships among different variables are discovered and
analyzed. This step follows partitioning and is the interpretation of the par-
titions that were formed.

It is also important to identify data that do not fit the patterns that are
discovered. The deviation of some subsets of the data often makes it difficult
to develop models for the remainder of the data.

In Chapter 17 we consider building models that express asymmetric rela-
tionships between variables and then making inferences about those models.
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Estimation of Probability Density Functions
Using Parametric Models

The problem addressed in this chapter is the estimation of an unknown prob-
ability density p(y). The way of doing this that we discuss in this chapter is to
approximate the unknown distribution by use of familiar parametric functions,
and then to estimate the parameters in these functions. While mechanically
this is essentially point estimation, there are differences in the objectives. We
are more concerned about the estimator of the function p̂ or the value of the
function at the point y, p̂(y), than we are about the point estimators of some
parameters.

Parametric statistical procedures involve inference about the parameters
of a model. In this chapter, although we use parametric models, we can view
the methods as nonparametric, in the sense that the role of the parameters is
to serve as tuning constants so as to have a density function that corresponds
to the density of the observed data. The phrase “nonparametric density es-
timation”, however, is generally reserved for methods such as we discuss in
Chapter 15. In Section 15.6, however, we consider use of parametric models in
more obviously nonparametric methods. While we can identify certain proce-
dures that are “parametric”, the classification of other statistical procedures
is less clear. “Semiparametric” is sometimes used, but it is generally not a
very useful term for describing a statistical procedure.

There are some relatively simple standard distributions that have proven
useful for their ability to model the distribution of observed data from many
different areas of application. The normal distribution is a good model for
symmetric, continuous data from various sources. For skewed data, the log-
normal and gamma distributions often work very well. Discrete data are often
modeled by the Poisson or binomial distributions. Distributions such as these
are families of distributions that have various numbers of parameters to spec-
ify the distribution completely. To emphasize that the density is dependent
on parameters, we may write the density as p(y | θ), where θ may be a vector.
Several of the standard parametric families are shown in Tables B.1 and B.2
beginning on page 660.
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A standard way of estimating a density is to identify appropriate charac-
teristics, such as symmetry, modes, range, and so on, choose some well-known
parametric distribution that has those characteristics, and then estimate the
parameters of that distribution. For example, if the density is known or as-
sumed to be zero below some point, to be unimodal, and to extend without
limit along the positive axis, a three-parameter gamma distribution with den-
sity

p(y |α,β, γ) =
1

Γ(α)βα
(y − γ)α−1e−(y−γ)/β, for γ ≤ y,

may be used to model the data. The three parameters α, β, and γ are then
estimated from the data.

If the probability density of interest has a finite range, a beta distribution
may be used to model it, and if it has an infinite range at both ends, a normal
distribution, a Student’s t distribution, or a stable distribution may be a useful
approximation.

14.1 Fitting a Parametric Probability Distribution

Fitting a parametric density to a set of data is done by estimating the pa-
rameters. The estimate of the density, p̂(y), is formed by substitution of the
estimate of the parameters:

p̂(y) = p(y | θ̂). (14.1)

There are several ways of estimating the parameters, and for more com-
plicated models there are many issues that go beyond just estimating the
parameters. Many of the methods of fitting the model involve minimization of
residuals. To fit a parametric probability density, the most common ways of
estimating the parameters are maximum likelihood, matching moments, and
matching quantiles.

Maximum Likelihood Methods

The method of maximum likelihood involves the use of a likelihood function
that comes from the joint density for a random sample. If p(y | θ) is the
underlying density, the joint density is just

∏
i p(yi | θ). The likelihood is a

function of the parameter θ:

L(θ; y1, . . . , yn) =
∏

i

p(yi | θ).

Note the reversal in roles of variables and parameters.
The mode of the likelihood (that is, the value of θ for which L attains its

maximum value) is the maximum likelihood estimate of θ for the given data,
y. The data, which are realizations of the variables in the density function,
are considered as fixed and the parameters are considered as variables of the
optimization problem in maximum likelihood methods.
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Fitting by Matching Moments

Because many of the interesting distributions are uniquely determined by a
few of their moments, another method of estimating the density is just to
determine parameters of a given family so that the population moments (or
model moments) match the sample moments. In some distributions, the pa-
rameter estimates derived from matching moments are the same as the maxi-
mum likelihood estimates. In general, we would expect the number of moments
that can be matched exactly to be the same as the number of parameters in
the family of distributions being used.

Fitting by Matching Quantiles

The moments of distributions with infinite range may exhibit extreme vari-
ability. This is particularly true of higher-order moments. For that reason it
is sometimes better to fit distributions by matching population quantiles with
sample quantiles. In general, we would expect the number of quantiles that
can be matched exactly to be the same as the number of parameters in the
family of distributions being used. A quantile plot may be useful in assessing
the goodness of the fit.

14.2 General Families of Probability Distributions

Instead of using some parametric family with relatively limited flexibility of
shape, a more general parametric family may be defined. The parameters
of these families are generally viewed as tuning parameters to control such
things as skewness or kurtosis. These kinds of general distributions are often
used in simulation. The general families of distributions are useful in model-
ing an observed set of data in order to simulate observations from a similar
population.

The parameters of these distributions generally do not have any intrinsic
meaning. We usually estimate them for the sole purpose of approximating the
distribution of the population that gave rise to an observed dataset. The most
common ways of estimating the parameters in these families is by use of sample
moments and known relationships between the population moments and the
parameters of the distribution, and by matching quantiles of the sample and
those of the family of distributions.

The data are standardized before fitting the parameters. The fitted distri-
bution is then translated and scaled to match the sample mean and standard
deviation.

Pearson Curves

Because a probability density is a derivative of a function, a family of dif-
ferential equations may be used to model the density. The Pearson family
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of distributions is based on a differential equation whose parameters allow a
wide range of characteristics.

The univariate Pearson family of probability density functions is developed
from the probability function of a hypergeometric random variable, Y ,

p(y) = Pr(Y = y)

=

(
Nπ
y

)(
N(1 − π)

n − y

)

(
N
n

) .

The difference equation at y is

∆p

p
=

Pr(Y = y) − Pr(Y = y − 1)
Pr(Y = y)

= 1 − y(N(1 − π) − n + y)
(Nπ − y + 1)(n − y + 1)

=
y − (n+1)(Nπ+1)

N+2

− (n+1)(Nπ+1)
N+2 + Nπ+n+2

N+2 y − 1
N+2y2

=
(y − a)

b + cy + dy2
,

where we have introduced the parameters a, b, c, and d. The associated dif-
ferential equation is

d(log p(y))
dy

=
(y − a)

b + cy + dy2

or
(b + cy + dy2) dp = (y − a)p dy. (14.2)

The solution of the differential equation (b + cy + dy2) dp = (y − a)p dy
depends on the roots of (b + cy + dy2) = 0. Certain common parametric
families correspond to particular situations. For example, if the roots are real
and of opposite sign (that is, if c2 − 4bd > 0 and |c2 − 4bd| > |b|), then the
corresponding density function is that of a beta distribution. This is called a
Pearson Type I distribution.

If the roots are real, but of the same sign, the distribution is called a
Pearson Type VI distribution. A familiar member of this family is the beta
distribution of the second kind, which can be obtained from a common beta
distribution by means of the transformation of a common beta random vari-
able Y as X = Y/(1 − Y ).

Although Karl Pearson distinguished eleven types and subtypes based on
the differential equation, the only other one that corresponds to a common
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distribution is the Pearson Type III, in which d = 0. After a translation of
the origin, this is the gamma distribution.

The usefulness of the Pearson family of distributions arises from its ability
to model many types of empirical data. By multiplying both sides of equa-
tion (14.2) by yk, for k = 1, 2, 3, 4, and integrating (by parts), we can express
the parameters a, b, c, d in terms of the first four moments. For modeling the
distribution of observed data, the first four sample moments are used to de-
termine the parameters of the Pearson system.

The Johnson Family

The Johnson family of distributions is based on transformations to an ap-
proximate normal distribution. There are three distributional classes, called
SB , SL, and SU , based on the form of the transformation required to cause a
given random variable Y to have an approximate normal distribution. Each
type of transformation has four parameters. If Z is the random variable that
has an approximate normal distribution, the transformations that define the
distributional classes are

SB : Z = γ + η log
(

Y−ϵ
λ+ϵ−Y

)
, for ϵ ≤ Y ≤ ϵ+ λ, (14.3)

SL : Z = γ + η log
(

Y−ϵ
λ

)
, for ϵ ≤ Y, (14.4)

SU : Z = γ + η sinh−1 (Y−ϵ
λ

)
, for −∞ ≤ Y ≤ ∞, (14.5)

where η,λ > 0, and γ and ϵ are unrestricted.
An attractive property of the Johnson family is the ability to match it to

empirical quantiles.

The Burr Family of Distributions

The Burr family of distributions (Burr, 1942, and Burr and Cislak, 1968) is
defined by the distribution function

P (y) =
1

1 + exp(−G(y))
, (14.6)

where
G(y) =

∫ y

−∞
g(t) dt, (14.7)

and g(y) is a nonnegative integrable function (a scaled density function). There
are many forms that the Burr distribution function can take; for example,

P (y) = 1 − 1
(1 + yα)β

for 0 ≤ y; 0 < α,β. (14.8)



480 14 Estimation of Probability Density Functions Using Parametric Models

The Tukey Lambda Family of Distributions

John Tukey introduced a general symmetric distribution with a single parame-
ter, called λ, for fitting a given set of data. The lambda family of distributions
is described by its inverse distribution function,

P−1(u) = (uλ − (1 − u)λ)/λ for λ ̸= 0
= log(u) − log(1 − u) for λ = 0. (14.9)

Ramberg and Schmeiser (1974) extended this distribution to accommodate
various amounts of skewness and kurtosis. The generalized lambda family of
distributions is also defined by its inverse distribution function,

P−1(u) = λ1 +
uλ3 − (1 − u)λ4

λ2
. (14.10)

Least squares can be used to fit moments or to match quantiles to determine
values of the λ parameters that fit a given set of data well.

The lambda and the generalized lambda distributions are particularly use-
ful in simulation because the percentiles can be taken as uniform random
variables. The λ variates are directly generated by the inverse CDF method.

14.3 Mixtures of Parametric Families

Rather than trying to fit an unknown density p(y) to a single parametric family
of distributions, it may be better to fit it to a finite mixture of densities and
to represent it as

p(y) ≈
m∑

j=1

ωjpj(y | θj), (14.11)

where
∑m

j=1 ωj = 1. Such a linear combination provides great flexibility for
approximating many distributions, even if the individual densities pj(y | θj)
are from a restricted class. For example, even if the individual densities are
all normals, a skewed distribution can be approximated by a proper choice of
the ωj .

The use of mixtures for density estimation involves choice of the number
of terms m and of the component families of densities pj(y | θj) and estimation
of the weights ωj and the parameters θj . The mixture density estimator is

p̂M (y) =
m∑

j=1

ω̂jpj(y | θ̂j). (14.12)

Here, we have written the number of terms as m̂ because we can think of it
as an estimated value under the assumption that the true density is a finite
mixture of the pj .
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The choice of the number of terms is usually made adaptively; that is,
after an initial arbitrary choice, terms are added or taken away based on the
apparent fit of the data.

The process of fitting a mixture of probability densities to a given dataset
involves what is called “model-based clustering”. Each observation is assigned
to a particular distribution, and each set of observations from a given distri-
bution is a cluster.

A standard way of fitting a mixture of distributions if the densities have
known forms is by maximum likelihood estimation of the mixing weights and of
the individual parameters. Given a random sample Y1, . . . , Yn from a mixture
distribution, if the particular distribution from which each given observation
arose, the MLE of the mixing parameter ω, is the vector of counts of the
individual memberships normalized by the sample size. In the more common
case of modeling mixture distributions, we do not know the memberships
of the individual observations. Instead, we introduce an auxiliary unobserved
variable, D, to represent the distribution from 1 to m to which the observation
belongs. Our data then consists of the pairs (Yi, Di), in which D is missing.
This is a classic setup for an EM method, and indeed that is the standard
way of fitting mixture distributions by maximum likelihood.

We will illustrate the EM fitting in a simple example. The general EM
method is described beginning on page 296 in Chapter 6.

A two-component normal mixture model can be defined by two normal
distributions, N(µ1,σ2

1) and N(µ2,σ2
2), and the probability that the random

variable (the observable) arises from the first distribution is w.
The parameter in this model is the vector θ = (w, µ1,σ2

1 , µ2,σ2
2). (Note

that w and the σ’s have the obvious constraints.)
The PDF of the mixture is

p(y; θ) = ωp1(y; µ1,σ
2
1) + (1 − ω)p2(y; µ2,σ

2
2),

where pj(y; µj ,σ2
j ) is the normal PDF with parameters µj and σ2

j . (I am
just writing them this way for convenience; p1 and p2 are actually the same
parameterized function of course.)

In the standard formulation with C = (X, U), X represents the observed
data, and the unobserved U represents class membership.

Let U = 1 if the observation is from the first distribution and U = 0 if the
observation is from the second distribution.

The unconditional E(U) is the probability that an observation comes from
the first distribution, which of course is ω.

Suppose we have n observations on X , x1, . . . , xn.
Given a provisional value of θ, we can compute the conditional expected

value E(U |x) for any realization of X . It is merely

E(U |x, θ(k)) =
ω(k)p1(x; µ(k)

1 ,σ2(k)

1 )

p(x;ω(k), µ(k)
1 ,σ2(k)

1 , µ(k)
2 ,σ2(k)

2 )
.
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The M step is just the familiar MLE of the parameters:

ω(k+1) =
1
n

∑
E(U |xi, θ

(k))

µ(k+1)
1 =

1
nω(k+1)

∑
q(k)(xi, θ

(k))xi

σ2(k+1)

1 =
1

nω(k+1)

∑
q(k)(xi, θ

(k))(xi − µ(k+1)
1 )2

µ(k+1)
2 =

1
n(1 − ω(k+1))

∑
q(k)(xi, θ

(k))xi

σ2(k+1)

2 =
1

n(1 − ω(k+1))

∑
q(k)(xi, θ

(k))(xi − µ(k+1)
2 )2.

(Recall that the MLE of σ2 has a divisor of n, rather than n − 1.)
The estimation procedure proceeds by iterations over k from the starting

value of θ(0).

14.4 Statistical Properties of Density Estimators Based
on Parametric Families

The use of a parametric family to estimate a probability density depends on
two things. One is an approximation. The unknown probability density is ap-
proximated by some standard probability density. Of course, this is what is
always done in statistics; some probability model is used as an approximation
for some unknown data-generating process. There is a slight difference in the
present case, however. In the usual case, we assume the probability model is
the data-generating process. (Of course, we know that we are assuming this,
and if pressed, we might just say that the assumed probability model is an
approximation.) In the case of probability density estimation by the means
discussed in this chapter, however, we begin explicitly with an approximation;
we assume that the probability model that we are using is an approximation.
Now, the second thing that our estimator depends on is our fit of the ap-
proximant; that is, on our estimators of the parameters of the approximating
probability model.

The statistical properties of parametric density estimators depend on the
properties of the estimators of the parameters. The properties also depend
on the approximation, that is, on the parametric family chosen to use in the
estimation. The true density is a function of the parameter, and the estimator
of the density is a function of an estimator of the parameter, so, as we discussed
on page 49, properties of the estimator such as unbiasedness do not carry over
to the density estimator. This applies to the pointwise properties of the density
estimator and so obviously applies to global properties.
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The use of a parametric family of densities for estimating an unknown
density will result in good estimators if the unknown density is a member of
that parametric family. If this is not the case, the density estimator is not
robust to many types of departures from the assumed distribution. Use of a
symmetric family, for example, would not yield a good estimator for a skewed
distribution.

We generally assess the performance of statistical procedures based on as-
sumed probability models. Both the pointwise and global properties of the
estimator are difficult to assess because of the dependence on the approxi-
mating distribution (not the assumed distribution). Of course, this is not so
different from what we always try to do in statistical applications: assess the
correspondence of the observed data to our assumptions about its distribu-
tion. The cross validation and jackknife methods discussed in Chapter 12 can
be used to estimate the combined effects of estimation and model selection.

Notes and Further Reading

General Families of Distributions

Many of the common distributions arise from first principles. For example,
an exponential distribution results from the definition of a Poisson process;
a normal distribution arises from axioms about transformations or, from a
different perspective, from central limit theorems. Other distributions, such
as a gamma or a t are derived from those basic distributions.

Definitions of general, flexible families of distributions are motivated by
modeling applications. The parameters of these families act as tuning para-
meters that control skewness and kurtosis or other general properties of a
distribution.

For the Johnson family of distributions, Chou et al. (1994) identify the
distributional classes and the appropriate transformations for a number of
well-known distributions. Slifker and Shapiro (1980) describe a method for
selection of the particular Johnson family based on ratios of quantiles of the
density to be fitted. Chou et al. (1994) give a method for fitting Johnson curves
using quantiles. Devroye (1986) describes a method for simulating variates
from a Johnson family.

Albert, Delampady, and Polasek (1991) defined another family of distribu-
tions that is very similar to the lambda distributions with proper choice of the
parameters. The family of distributions of Albert, Delampady, and Polasek is
particularly useful in Bayesian analysis with location-scale models.

Mixture Distributions

Solka, Poston, and Wegman (1995) describe visualization methods to accom-
pany EM methods for estimation of the mixture parameter.
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Everitt and Hand (1981) provide a good general discussion of the use of
finite mixtures for representing distributions. Solka et al. (1998) describe how
fitting mixtures to observed data can provide insight about the underlying
structure of the data. Roeder and Wasserman (1997) describe the use of mix-
tures in Bayesian density estimation.

Exercises

14.1. Consider the U(0, θ) distribution. The maximum likelihood estimator of θ
is the maximum order statistic, x(n), in a sample of size n. This estimator,
which is biased, provides a parametric estimator of the function p(x) =
1/θ, which is the probability density function corresponding to U(0, θ):

p̂P (x) = 1/x(n), for 0 < x < x(n).

a) Determine the ISE of p̂P (x) = 1/x(n). Remember that the domain is
(0, θ).

b) Determine the MISE of p̂P (x) = 1/x(n) (with respect to U(0, θ)).
c) The bias in x(n) can be reduced by taking θ̂ = cx(n) for some c > 1.

Determine the value of c that minimizes the MISE.
Notice that this exercise and the following ones do not address the prop-
erties of the estimator of the density that gave rise to the sample; they
only concern the properties of the estimator of the given density, using
the given sample and assuming that it came from the given density. See
Exercise 14.7

14.2. Repeat Exercise 14.1 for the IAE and the MIAE instead of the ISE and
the MISE.

14.3. Repeat Exercise 14.1 for the SAE and the MSAE.
14.4. For the U(0,1) distribution, compute the SAE and the MSAE of the ECDF

as an estimator of the CDF.
14.5. Consider the gamma(α,β) distribution, with probability density,

p(x) =
1

Γ(α)βα
xα−1e−x/β for 0 ≤ x ≤ ∞.

a) Generate a random sample of size 100 from a gamma(2,3) distribution.
b) Using your sample, compute the MLE of α and β in a gamma(α,β)

distribution.
c) Using as p̂ the density above with the MLE substituted for the para-

meters, plot your estimated density and superimpose on it a histogram
of the random sample you generated.

d) Using a histogram with 10 bins, compute an estimate of the integrated
error of your estimate.
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14.6. Consider a mixture of three normal densities:

p(x) =
ω1√
2πσ1

e−(x−µ1)
2/2σ2

1 +
ω2√
2πσ2

e−(x−µ2)
2/2σ2

2+
ω3√
2πσ3

e−(x−µ3)
2/2σ2

3 .

a) Given a random sample x1, x2, . . . , xn, where n is greater than 9, from
this population, what is the likelihood function of ωi, µi,σi?

b) With
µ1 = 0 µ2 = 2 µ3 = 6
σ2

1 = 1 σ2
2 = 4 σ2

3 = 9
ω1 = 0.5 ω2 = 0.4 ω3 = 0.1

generate a random sample of size 1000 from this mixture.
c) Using your sample, compute the MLE of ωi, µi,σi. (This is a rather

complicated optimization problem.)
d) Now, consider your sample to be bivariate random variables, (X, J),

where X is as before and J with range {1, 2, 3} is an indicator variable
corresponding to the population in the mixture from which X arises.
Write out the likelihood for the bivariate sample, and recognizing that
J is missing in the sample, use an EM method to compute the MLE of
ωi, µi,σi. Do you get the same results as using a direct computational
approach?

e) Using p̂ as the mixture above with the MLE substituted for the para-
meters, plot your estimated density and superimpose on it a histogram
of the random sample you generated.

f) Using a histogram with 10 bins, compute an estimate of the integrated
error of your estimate.

14.7. Suppose we have a set of data from an unknown distribution. We use a
Tukey’s lambda distribution with λ = 0.14 as an approximation to the
density of the standardized sample.
a) Suppose the sample is actually from a N(0, 1) distribution. What is

the MISE of the estimated (that is, the approximated) density?
b) Suppose the sample is actually from a N(µ,σ2) distribution. What is

the MISE of the estimated (that is, the approximated) density?
c) Suppose the sample is actually from a standard Cauchy distribution.

What is the MISE of the estimated (that is, the approximated) den-
sity?

The setting λ = 0.14 is the best fit (by matching of quantiles) of Tukey’s
lambda distribution to a normal distribution. The setting λ = −1 is the
best fit (by same criterion) of Tukey’s lambda distribution to a Cauchy
distribution.
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Nonparametric Estimation of Probability
Density Functions

Estimation of a probability density function is similar to the estimation of
any function, and the properties of the function estimators that we have dis-
cussed are relevant for density function estimators. A density function p(y) is
characterized by two properties:

• it is nonnegative everywhere;
• it integrates to 1 (with the appropriate definition of “integrate”).

In this chapter, we consider several nonparametric estimators of a den-
sity; that is, estimators of a general nonnegative function that integrates to 1
and for which we make no assumptions about a functional form other than,
perhaps, smoothness.

It seems reasonable that we require the density estimate to have the char-
acteristic properties of a density:

• p̂(y) ≥ 0 for all y;
•

∫
IRd p̂(y) dy = 1.

A probability density estimator that is nonnegative and integrates to 1 is
called a bona fide estimator.

Rosenblatt (1956) showed that no unbiased bona fide estimator can exist
for all continuous p. Rather than requiring an unbiased estimator that can-
not be a bona fide estimator, we generally seek a bona fide estimator with
small mean squared error or a sequence of bona fide estimators p̂n that are
asymptotically unbiased; that is,

Ep(p̂n(y)) → p(y) for all y ∈ IRd as n → ∞.

15.1 The Likelihood Function

Suppose that we have a random sample, y1, . . . , yn, from a population with
density p. Treating the density p as a variable, we write the likelihood func-
tional as
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L(p; y1, . . . , yn) =
n∏

i=1

p(yi).

The maximum likelihood method of estimation obviously cannot be used di-
rectly because this functional is unbounded in p. We may, however, seek an
estimator that maximizes some modification of the likelihood. There are two
reasonable ways to approach this problem. One is to restrict the domain of
the optimization problem. This is called restricted maximum likelihood. The
other is to regularize the estimator by adding a penalty term to the functional
to be optimized. This is called penalized maximum likelihood.

We may seek to maximize the likelihood functional subject to the con-
straint that p be a bona fide density. If we put no further restrictions on
the function p, however, infinite Dirac spikes at each observation give an un-
bounded likelihood, so a maximum likelihood estimator cannot exist, subject
only to the restriction to the bona fide class. An additional restriction that
p be Lebesgue-integrable over some domain D (that is, p ∈ L1(D)) does not
resolve the problem because we can construct sequences of finite spikes at
each observation that grow without bound.

We therefore must restrict the class further. Consider a finite dimensional
class, such as the class of step functions that are bona fide density estimators.
We assume that the sizes of the regions over which the step function is constant
are greater than 0.

For a step function with m regions having constant values, c1, . . . , cm, the
likelihood is

L(c1, . . . , cm; y1, . . . , yn) =
n∏

i=1

p(yi)

=
m∏

k=1

cnk
k , (15.1)

where nk is the number of data points in the kth region. For the step function
to be a bona fide estimator, all ck must be nonnegative and finite. A maximum
therefore exists in the class of step functions that are bona fide estimators.

If vk is the measure of the volume of the kth region (that is, vk is the
length of an interval in the univariate case, the area in the bivariate case, and
so on), we have

m∑

k=1

ckvk = 1.

We incorporate this constraint together with equation (15.1) to form the La-
grangian,

L(c1, . . . , cm) + λ

(
1 −

m∑

k=1

ckvk

)
.
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Differentiating the Lagrangian function and setting the derivative to zero, we
have at the maximum point ck = c∗k, for any λ,

∂L

∂ck
= λvk.

Using the derivative of L from equation (15.1), we get

nkL = λc∗kvk.

Summing both sides of this equation over k, we have

nL = λ,

and then substituting, we have

nkL = nLc∗kvk.

Therefore, the maximum of the likelihood occurs at

c∗k =
nk

nvk
.

The restricted maximum likelihood estimator is therefore

p̂(y) =
nk

nvk
, for y ∈ region k,

= 0, otherwise.
(15.2)

Instead of restricting the density estimate to step functions, we could
consider other classes of functions, such as piecewise linear functions. For
given subsets Si of densities for which a maximum likelihood estimator exists,
Grenander (1981) developed estimators based on sequences of such subsets,
each containing its predecessor. The sequence is called a sieve, so the ap-
proach is called the method of sieves. Such sequences have been constructed
that yield standard estimators of the density, such as histogram estimators
and orthogonal series estimators (see Banks, 1989, for example).

We may also seek other properties, such as smoothness, for the estimated
density. One way of achieving other desirable properties for the estimator is
to use a penalizing function to modify the function to be optimized. Instead
of the likelihood function, we may use a penalized likelihood function of the
form

Lp(p; y1, . . . , yn) =
n∏

i=1

p(yi)e−T (p),

where T (p) is a transform that measures some property that we would like to
minimize. For example, to achieve smoothness, we may use the transform R(p)
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of equation (4.7) on page 151 in the penalizing factor. To choose a function p̂
to maximize Lp(p) we could use some finite series approximation to T (p̂).

For densities with special properties there may be likelihood approaches
that take advantage of those properties. For example, for nonincreasing densi-
ties, Grenander (1981) suggested use of the slope of the least concave majorant
of the ECDF.

15.2 Histogram Estimators

Let us assume finite support D, and construct a fixed partition of D into a grid
of m nonoverlapping bins Tk. (We can arbitrarily assign bin boundaries to one
or the other bin.) Let vk be the volume of the kth bin (in one dimension, vk

is a length and in this simple case is often denoted hk; in two dimensions, vk

is an area, and so on). The number of such bins we choose, and consequently
their volumes, depends on the sample size n, so we sometimes indicate that
dependence in the notation: vn,k. For the sample y1, . . . , yn, the histogram
estimator of the probability density function is defined as

p̂H(y) =
m∑

k=1

1
vk

∑n
i=1 ITk (yi)

n
ITk(y), for y ∈ D,

= 0, otherwise.

The histogram is the restricted maximum likelihood estimator (15.2).
Letting nk be the number of sample values falling into Tk,

nk =
n∑

i=1

ITk(yi),

we have the simpler expression for the histogram over D,

p̂H(y) =
m∑

k=1

nk

nvk
ITk (y). (15.3)

As we have noted already, this is a bona fide estimator:

p̂H(y) ≥ 0

and
∫

IRd

p̂H(y)dy =
m∑

k=1

nk

nvk
vk

= 1.

Although our discussion generally concerns observations on multivariate
random variables, we should occasionally consider simple univariate observa-
tions. One reason why the univariate case is simpler is that the derivative is a
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scalar function. Another reason why we use the univariate case as a model is
because it is easier to visualize. The density of a univariate random variable
is two-dimensional, and densities of other types of random variables are of
higher dimension, so only in the univariate case can the density estimates be
graphed directly.

In the univariate case, we assume that the support is the finite interval
[a, b]. We partition [a, b] into a grid of m nonoverlapping bins Tk = [tn,k, tn,k+1)
where

a = tn,1 < tn,2 < . . . < tn,m+1 = b.

The univariate histogram is

p̂H(y) =
m∑

k=1

nk

n(tn,k+1 − tn,k)
ITk (y). (15.4)

If the bins are of equal width, say h (that is, tk = tk−1 +h), the histogram
is

p̂H(y) =
nk

nh
, for y ∈ Tk.

This class of functions consists of polynomial splines of degree 0 with fixed
knots, and the histogram is the maximum likelihood estimator over the class
of step functions. Generalized versions of the histogram can be defined with
respect to splines of higher degree. Splines with degree higher than 1 may
yield negative estimators, but such histograms are also maximum likelihood
estimators over those classes of functions.

The histogram as we have defined it is sometimes called a “density his-
togram”, whereas a “frequency histogram” is not normalized by the n.

Some Properties of the Histogram Estimator

The histogram estimator, being a step function, is discontinuous at cell bound-
aries, and it is zero outside of a finite range. As we have seen (page 344 and
Figure 8.4 on page 347), it is sensitive both to the bin size and to the choice
of the origin.

An important advantage of the histogram estimator is its simplicity, both
for computations and for analysis. In addition to its simplicity, as we have
seen, it has two other desirable global properties:

• It is a bona fide density estimator.
• It is the unique maximum likelihood estimator confined to the subspace

of functions of the form

g(t) = ck, for t ∈ Tk,

= 0, otherwise,

and where g(t) ≥ 0 and
∫
∪kTk

g(t) dt = 1.
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Pointwise and Binwise Properties

Properties of the histogram vary from bin to bin. From equation (15.3), the
expectation of the histogram estimator at the point y in bin Tk is

E(p̂H(y)) =
pk

vk
, (15.5)

where
pk =

∫

Tk

p(t) dt (15.6)

is the probability content of the kth bin.
Some pointwise properties of the histogram estimator are the following:

• The bias of the histogram at the point y within the kth bin is

pk

vk
− p(y). (15.7)

Note that the bias is different from bin to bin, even if the bins are of
constant size. The bias tends to decrease as the bin size decreases. We can
bound the bias if we assume a regularity condition on p. If there exists γ
such that for any y1 ̸= y2 in an interval

|p(y1) − p(y2)| < γ∥y1 − y2∥,

we say that p is Lipschitz-continuous on the interval, and for such a density,
for any ξk in the kth bin, we have

|Bias(p̂H(y))| = |p(ξk) − p(y)|
≤ γk∥ξk − y∥
≤ γkvk . (15.8)

• The variance of the histogram at the point y within the kth bin is

V
(
p̂H(y)

)
= V(nk)/(nvk)2

=
pk(1 − pk)

nv2
k

. (15.9)

This is easily seen by recognizing that nk is a binomial random variable
with parameters n and pk. Notice that the variance decreases as the bin
size increases. Note also that the variance is different from bin to bin. We
can bound the variance:

V(p̂H(y)) ≤ pk

nv2
k

.

By the mean-value theorem, we have pk = vkp(ξk) for some ξk ∈ Tk, so
we can write
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V(p̂H(y)) ≤ p(ξk)
nvk

.

Notice the tradeoff between bias and variance: as h increases the variance,
equation (15.9), decreases, but the bound on the bias, equation (15.8), in-
creases.

• The mean squared error of the histogram at the point y within the kth

bin is

MSE
(
p̂H(y)

)
=

pk(1 − pk)
nv2

k

+
(

pk

vk
− p(y)

)2

. (15.10)

For a Lipschitz-continuous density, within the kth bin we have

MSE
(
p̂H(y)

)
≤ p(ξk)

nvk
+ γ2

kv2
k. (15.11)

We easily see that the histogram estimator is L2 pointwise consistent for
a Lipschitz-continuous density if, as n → ∞, for each k, vk → 0 and
nvk → ∞. By differentiating, we see that the minimum of the bound on
the MSE in the kth bin occurs for

h∗(k) =
(

p(ξk)
2γ2

kn

)1/3

. (15.12)

Substituting this value back into MSE, we obtain the order of the optimal
MSE at the point x,

MSE∗
(
p̂H(y)

)
= O

(
n−2/3

)
.

Asymptotic MISE (or AMISE) of Histogram Estimators

Global properties of the histogram are obtained by summing the binwise prop-
erties over all of the bins.

The expressions for the integrated variance and the integrated squared bias
are quite complicated because they depend on the bin sizes and the probability
content of the bins. We will first write the general expressions, and then we will
assume some degree of smoothness of the true density and write approximate
expressions that result from mean values or Taylor approximations. We will
assume rectangular bins for additional simplification. Finally, we will then
consider bins of equal size to simplify the expressions further.

First, consider the integrated variance for a histogram with m bins,
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IV
(
p̂H

)
=
∫

IRd

V(p̂H (t)) dt

=
m∑

k=1

∫

Tk

V(p̂H(t)) dt

=
m∑

k=1

pk − p2
k

nvk

=
m∑

k=1

(
1

nvk
−
∑

p(ξk)2vk

n

)
+ o(n−1)

for some ξk ∈ Tk, as before. Now, taking
∑

p(ξk)2vk as an approximation
to the integral

∫
(p(t))2 dt, and letting S be the functional that measures the

variation in a square-integrable function of d variables,

S(g) =
∫

IRd

(g(t))2 dt, (15.13)

we have the integrated variance,

IV
(
p̂H

)
≈

m∑

k=1

1
nvk

− S(p)
n

, (15.14)

and the asymptotic integrated variance,

AIV
(
p̂H

)
=

m∑

k=1

1
nvk

. (15.15)

The measure of the variation, S(p), is a measure of the roughness of the
density because the density integrates to 1.

Now, consider the other term in the integrated MSE, the integrated
squared bias. We will consider the case of rectangular bins, in which hk =
(hk1 , . . . , hkd) is the vector of lengths of sides in the kth bin. In the case of
rectangular bins, vk = Πd

j=1hkj .
We assume that the density can be expanded in a Taylor series, and we

expand the density in the kth bin about t̄k, the midpoint of the rectangular
bin. For t̄k + t ∈ Tk, we have

p(t̄k + t) = p(t̄k) + tT∇p(t̄k) +
1
2
tTHp(t̄k)t + · · · , (15.16)

where Hp(t̄k) is the Hessian of p evaluated at t̄k.
The probability content of the kth bin, pk, from equation (15.6), can be

expressed as an integral of the Taylor series expansion:



15.2 Histogram Estimators 495

pk =
∫

t̄k+t∈Tk

p(t̄k + t) dt

=
∫ hkd/2

−hkd/2
· · ·
∫ hk1/2

−hk1/2

(
p(t̄k) + tT∇p(t̄k) + . . .

)
dt1 · · ·dtd

= vkp(t̄k) + O
(
hd+2

k∗

)
, (15.17)

where hk∗ = minj hkj . The bias at a point t̄k + t in the kth bin, after substi-
tuting equations (15.16) and (15.17) into equation (15.7), is

pk

vk
− p(t̄k + t) = −tT∇p(t̄k) + O

(
h2

k∗
)
.

For the kth bin the integrated squared bias is

ISBk(p̂H)

=
∫

Tk

(
(
tT∇p(t̄k)

)2 − 2O
(
h2

k∗
)
tT∇p(t̄k) + O

(
h4

k∗
)
)

dt

=
∫ hkd/2

−hkd/2
· · ·
∫ hk1/2

−hk1/2

∑

i

∑

j

tkitkj∇ip(t̄k)∇jp(t̄k) dt1 · · · dtd + O
(
h4+d

k∗

)
.

(15.18)

Many of the expressions above are simpler if we use a constant bin size,
v, or h1, . . . , hd, where, if the bins are rectangular, v = h1 · · ·hd. In the case
of constant bin size, the asymptotic integrated variance in equation (15.15)
becomes

AIV
(
p̂H

)
=

m

nv
. (15.19)

In this case, the integral in equation (15.18) simplifies as the integration is
performed term by term because the cross-product terms cancel, and the
integral is

1
12

(h1 · · ·hd)
d∑

j=1

h2
j

(
∇jp(t̄k)

)2
. (15.20)

This is the asymptotic squared bias integrated over the kth bin.
When we sum the expression (15.20) over all bins, the

(
∇jp(t̄k)

)2 become
S
(
∇jp

)
, and we have the asymptotic integrated squared bias,

AISB
(
p̂H

)
=

1
12

d∑

j=1

h2
jS
(
∇jp

)
. (15.21)

Combining the asymptotic integrated variance, equation (15.19), and
squared bias, equation (15.21), for the histogram with rectangular bins of
constant size, we have
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AMISE
(
p̂H

)
=

m

n(h1 · · ·hd)
+

1
12

d∑

j=1

h2
jS
(
∇jp

)
. (15.22)

As we have seen before, smaller bin sizes increase the variance but decrease
the squared bias.

Bin Sizes

As we have mentioned and have seen by example, the histogram is very sen-
sitive to the bin sizes, both in appearance and in other properties. Equa-
tion (15.22) for the AMISE assuming constant rectangular bin size is often
used as a guide for determining the bin size to use when constructing a his-
togram. This expression involves S

(
∇jp

)
and so, of course, cannot be used

directly. Nevertheless, differentiating the expression with respect to hj and
setting the result equal to zero, we have the bin width that is optimal with
respect to the AMISE,

hj∗ = S
(
∇jp

)−1/2

(
6

d∏

i=1

S
(
∇ip

)1/2

) 1
2+d

n−
1

2+d . (15.23)

Substituting this into equation (15.22), we have the optimal value of the
AMISE

1
4

(
36

d∏

i=1

S
(
∇ip

)1/2

) 1
2+d

n−
2

2+d . (15.24)

Notice that the optimal rate of decrease of AMISE for histogram estimators
is O(n−

2
2+d ). Although histograms have several desirable properties, this order

of convergence is not good compared to that of some other bona fide density
estimators, as we will see in later sections.

The expression for the optimal bin width involves S
(
∇jp

)
, where p is

the unknown density. An approach is to choose a value for S
(
∇jp

)
that cor-

responds to some good general distribution. A “good general distribution”,
of course, is the normal with a diagonal variance-covariance matrix. For the
d-variate normal with variance-covariance matrix Σ = diag(σ2

1 , . . . ,σ2
d),

S
(
∇jp

)
=

1
2d+1πd/2σ2

j |Σ|1/2
.

For a univariate normal density with variance σ2,

S(p′) = 1/(4
√
πσ3)

(Exercise 4.2b on page 200), so the optimal constant one-dimensional bin
width under the AMISE criterion is
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3.49σn−1/3.

In practice, of course, an estimate of σ must be used. The sample standard
deviation s is one obvious choice. Freedman and Diaconis (1981a) proposed
using a more robust estimate of the scale based on the sample interquartile
range, r. The sample interquartile range leads to a bin width of 2rn−1/3.

The AMISE is essentially an L2 measure. The L∞ criterion— that is, the
sup absolute error (SAE) of equation (10.17)— also leads to an asymptotically
optimal bin width that is proportional to n−1/3. Based on that criterion,
Freedman and Diaconis (1981b) derived the rule

1.66s

(
log n

n

)1/3

,

where s is an estimate of the scale.
One of the most commonly used rules is for the number of bins rather

than the width. Assume a symmetric binomial model for the bin counts, that
is, the bin count is just the binomial coefficient. The total sample size n is

m−1∑

k=0

(
m − 1

k

)
= 2m−1,

and so the number of bins is

m = 1 + log2 n.

Bin Shapes

In the univariate case, histogram bins may vary in size, but each bin is an
interval. For the multivariate case, there are various possibilities for the shapes
of the bins. The simplest shape is the direct extension of an interval, that is a
hyperrectangle. The volume of a hyperrectangle is just vk =

∏
hkj . There are,

of course, other possibilities; any tessellation of the space would work. The
objects may or may not be regular, and they may or may not be of equal size.
Regular, equal-sized geometric figures such as hypercubes have the advantages
of simplicity, both computationally and analytically. In two dimensions, there
are three possible regular tessellations: triangles, squares, and hexagons.

For two dimensions, hexagons are slightly better than squares and trian-
gles with respect to the AMISE (see Exercise 15.6 on page 511). Binning in
hexagons can be accomplished using two staggered tessellations by rectangles,
as indicated in Figure 15.1 (see also Exercise 15.7). The lattice determining
one tessellation is formed by the points at the centers of the rectangles of the
other tessellation. For nonrectangular tessellations, different data structures
are necessary for efficient processing.

Various other tessellations may also work well, especially adaptive tes-
sellations. We discuss tessellations for use in clustering data beginning on
page 528.
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Fig. 15.1. Regular Hexagonal Tiling of 2-Space with Two Rectangular Lattices
Superimposed

For hyperrectangles of constant size, the univariate theory generally ex-
tends fairly easily to the multivariate case. The histogram density estimator
is

p̂H(y) =
nk

nh1h2 · · ·hd
, for y ∈ Tk,

where the h’s are the lengths of the sides of the rectangles. The variance within
the kth bin is

V(p̂H(y)) =
npk(1 − pk)

(nh1h2 · · ·hd)2
, for y ∈ Tk,

and the integrated variance is

IV(p̂H) ≈ 1
nh1h2 · · ·hd

− S(f)
n

.

Other Density Estimators Related to the Histogram

There are several variations of the histogram that are useful as probability
density estimators. The most common modification is to connect points on the
histogram by a continuous curve. A simple way of doing this in the univariate
case leads to the frequency polygon. This is the piecewise linear curve that
connects the midpoints of the bins of the histogram. The endpoints are usually
zero values at the midpoints of two appended bins, one on either side.

The histospline is constructed by interpolating knots of the empirical CDF
with a cubic spline and then differentiating it. More general methods use
splines or orthogonal series, such as we discuss in Section 15.5, to fit the
histogram.

As we have mentioned and have seen by example, the histogram is some-
what sensitive in appearance to the location of the bins, even for a fixed width
of the bins. To overcome the problem of location of the bins, the estimate of
the density at a given point can be taken as the average of several histograms
with equal bin widths but different bin locations. This is called the average
shifted histogram, or ASH. It also has desirable statistical properties, and it is
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computationally efficient in the multivariate case. See Scott (2004) for further
discussions of ASH.

15.3 Kernel Estimators

Kernel methods are probably the most widely used technique for building
nonparametric probability density estimators. They are best understood by
developing them as a special type of histogram. The difference is that the bins
in kernel estimators are centered at the points at which the estimator is to
be computed. The problem of the choice of location of the bins in histogram
estimators does not arise.

Rosenblatt’s Histogram Estimator; Kernels

For the one-dimensional case, Rosenblatt (1956) defined a histogram that is
shifted to be centered on the point at which the density is to be estimated.
Given the sample y1, . . . , yn, Rosenblatt’s histogram estimator at the point y
is

p̂R(y) =
#{yi s.t. yi ∈ (y − h/2, y + h/2] }

nh
. (15.25)

This histogram estimator avoids the ordinary histogram’s constant-slope con-
tribution to the bias. This estimator is a step function with variable lengths
of the intervals that have constant value.

Rosenblatt’s centered histogram can also be written in terms of the ECDF:

p̂R(y) =
Pn(y + h/2) − Pn(y − h/2)

h
, (15.26)

where, as usual, Pn denotes the ECDF. As seen in this expression, Rosenblatt’s
estimator is a centered finite-difference approximation to the derivative of the
empirical cumulative distribution function (which, of course, is not differen-
tiable at the data points). We could, of course, use the same idea and form
other density estimators using other finite-difference approximations to the
derivative of Pn.

Another way to write Rosenblatt’s shifted histogram estimator over bins
of length h is

p̂R(y) =
1

nh

n∑

i=1

K

(
y − yi

h

)
, (15.27)

where K(t) = Ku(t) is the uniform or “boxcar” kernel of equation (4.65) with
smoothing parameter λ = 1/2. Notice, however, that the role of λ in our earlier
formulation of kernel functions is effectively taken over by the h; hence, we will
consider it to be the smoothing parameter in this kind of density estimator.
Other values of the smoothing parameter or kernel functions could be used,



500 15 Nonparametric Estimation of Probability Density Functions

and equation (15.27) is the general form of the univariate kernel probability
density estimator.

The estimator extends easily to the multivariate case. In the general kernel
estimator, we usually use a more general scaling of y − yi,

V −1(y − yi),

for some positive-definite matrix V . The determinant of V −1 scales the esti-
mator to account for the scaling within the kernel function. The general kernel
estimator is given by

p̂K(y) =
1

n|V |

n∑

i=1

K
(
V −1(y − yi)

)
, (15.28)

where the function K is the kernel, and V is the smoothing matrix. The
determinant of the smoothing matrix is exactly analogous to the bin volume
in a histogram estimator. The univariate version of the kernel estimator is the
same as Rosenblatt’s estimator (15.27), but in which a more general function
K is allowed.

In practice, V is usually taken to be constant for a given sample size, but,
of course, there is no reason for this to be the case, and indeed it may be
better to vary V depending on the number of observations near the point y.
The dependency of the smoothing matrix on the sample size n and on y is
often indicated by the notation Vn(y).

Properties of Kernel Estimators

The appearance of the kernel density estimator depends to some extent on the
support and shape of the kernel. Unlike the histogram estimator, the kernel
density estimator may be continuous and even smooth.

It is easy to see that if the kernel satisfies

K(t) ≥ 0, (15.29)

and ∫

IRd

K(t) dt = 1 (15.30)

(that is, if K is a density), then p̂K(y) is a bona fide density estimator.
There are other requirements that we may impose on the kernel either for

the theoretical properties that result or just for their intuitive appeal. It also
seems reasonable that in estimating the density at the point y, we would want
to emphasize the sample points near y. This could be done in various ways,
but one simple way is to require

∫

IRd

tK(t) dt = 0. (15.31)
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In addition, we may require the kernel to be symmetric about 0.
For multivariate density estimation, the kernels are usually chosen as a

radially symmetric generalization of a univariate kernel. Such a kernel can be
formed as a product of the univariate kernels. For a product kernel, we have
for some constant σ2

K ,
∫

IRd

ttTK(t) dt = σ2
KId, (15.32)

where Id is the identity matrix of order d. We could also impose this as a
requirement on any kernel, whether it is a product kernel or not. This makes
the expressions for bias and variance of the estimators simpler. The spread of
the kernel can always be controlled by the smoothing matrix V , so sometimes,
for convenience, we require σ2

K = 1.
In the following, we will assume the kernel satisfies the properties in equa-

tions (15.29) through (15.32).

Pointwise Properties

The pointwise properties of the kernel estimator are relatively simple to de-
termine because the estimator at a point is merely the sample mean of n
independent and identically distributed random variables. The expectation of
the kernel estimator (15.28) at the point y is the convolution of the kernel
function and the probability density function,

E (p̂K(y)) =
1
|V |

∫

IRd

K
(
V −1(y − t)

)
p(t) dt

=
∫

IRd

K(u)p(y − V u) du, (15.33)

where u = V −1(y − t) (and, hence, du = |V |−1dt).
If we approximate p(y − V u) about y with a three-term Taylor series,

using the properties of the kernel in equations (15.29) through (15.32) and
using properties of the trace, we have

E (p̂K(y)) ≈
∫

IRd

K(u)
(

p(y) − (V u)T∇p(y) +
1
2
(V u)THp(y)V u

)
du

= p(y) − 0 +
1
2
trace

(
V THp(y)V

)
. (15.34)

To second order in the elements of V (that is, O(|V |2)), the bias at the point
y is therefore

1
2
trace

(
V V THp(y)

)
. (15.35)

Using the same kinds of expansions and approximations as in equa-
tions (15.33) and (15.34) to evaluate E

(
(p̂K(y))2

)
to get an expression of order
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O(|V |/n), and subtracting the square of the expectation in equation (15.34),
we get the approximate variance at y as

V (p̂K(y)) ≈ p(y)
n|V |

∫

IRd

(K(u))2 du,

or
V (p̂K(y)) ≈ p(y)

n|V |S(K). (15.36)

Integrated Properties

Integrating the variance at each point y, because p is a density, we have

AIV
(
p̂K

)
=

S(K)
n|V | , (15.37)

and integrating the square of the asymptotic bias in expression (15.35), we
have

AISB
(
p̂K

)
=

1
4

∫

IRd

(
trace

(
V THp(y)V

))2 dy. (15.38)

These expressions are much simpler in the univariate case, where the
smoothing matrix V is the smoothing parameter or window width h. We have
a simpler approximation for E (p̂K(y)) than that given in equation (15.34),

E (p̂K(y)) ≈ p(y) +
1
2
h2p′′(y)

∫

IR
u2K(u) du,

and from this we get a simpler expression for the AISB. After likewise simpli-
fying the AIV, we have

AMISE
(
p̂K

)
=

S(K)
nh

+
1
4
σ4

Kh4R(p), (15.39)

where we have left the kernel unscaled (that is,
∫

u2K(u) du = σ2
K).

Minimizing this with respect to h, we have the optimal value of the smooth-
ing parameter (

S(K)
nσ4

KR(p)

)1/5

. (15.40)

Substituting this back into the expression for the AMISE, we find that its
optimal value in this univariate case is

5
4
R(p)(σKS(K))4/5 n−4/5. (15.41)

The AMISE for the univariate kernel density estimator is thus O(n−4/5).
Recall that the AMISE for the univariate histogram density estimator is
O(n−2/3) (expression (15.24) on page 496).
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We see that the bias and variance of kernel density estimators have similar
relationships to the smoothing matrix that the bias and variance of histogram
estimators have. As the determinant of the smoothing matrix gets smaller
(that is, as the window of influence around the point at which the estimator
is to be evaluated gets smaller), the bias becomes smaller and the variance
becomes larger. This agrees with what we would expect intuitively.

Choice of Kernels

On page 183, we listed three common kernels, the uniform, Ku(t), which is
the one used in Rosenblatt’s shifted histogram estimator (15.27), the normal,
Kn(t) = 1√

2π
e−t2/2, and the quadratic,

Kq(t) = 0.75(1− t2)I[−1,1](t). (15.42)

The quadratic kernel is also called the “Epanechnikov” kernel, because Epanech-
nikov (1969) showed that it yields the optimal rate of convergence of the MISE.
As it turns out, however, the kernel density estimator is not very sensitive to
the form of the kernel.

Kernels with finite support (that is, compact kernels) are generally easier
to work with. In the univariate case, a useful general form of a compact kernel
is

K(t) = κrs(1 − |t|r)sI[−1,1](t), (15.43)

where
κrs =

r

2B(1/r, s + 1)
, for r > 0, s ≥ 0,

and B(a, b) is the complete beta function. This general form leads to several
simple specific cases:

• for r = 1 and s = 0, it is the uniform or rectangular kernel;
• for r = 1 and s = 1, it is the triangular kernel;
• for r = 2 and s = 1 (κrs = 3/4), it is the quadratic or Epanechnikov

kernel;
• for r = 2 and s = 2 (κrs = 15/16), it is the “biweight” kernel.

If r = 2 and s → ∞, we have the Gaussian kernel (with some rescaling),
which, of course, is not compact.

As mentioned above, for multivariate density estimation, the kernels are
often chosen as a product of the univariate kernels. The product Epanechnikov
kernel, for example, is

K(t) =
d + 2
2cd

(1 − tTt)I(tTt≤1), (15.44)

where

cd =
πd/2

Γ(d/2 + 1)
.
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We have seen that the AMISE of a kernel estimator (that is, the sum of
equations (15.37) and (15.38)) depends on S(K) and the smoothing matrix
V . As we mentioned above, the amount of smoothing (that is, the window of
influence) can be made to depend on σK . We can establish an approximate
equivalence between two kernels, K1 and K2, by choosing the smoothing ma-
trix to offset the differences in S(K1) and S(K2) and in σK1 and σK2 .

Although the kernel may be from a parametric family of distributions, in
kernel density estimation, we do not estimate those parameters; hence, the
kernel method is a nonparametric method.

Computation of Kernel Density Estimators

If the estimate is required at one point only, it is simplest just to compute it
directly. If the estimate is required at several points, it is often more efficient
to compute the estimates in some regular fashion.

If the estimate is required over a grid of points, a fast Fourier transform
(FFT) can be used to speed up the computations. Silverman (1982) describes
an FFT method using a Gaussian kernel. He first takes the discrete Fourier
transform of the data (using a histogram on 2k cells) and then inverts the prod-
uct of that and the Fourier transform of the Gaussian kernel, exp(−h2s2/2).

15.4 Choice of Window Widths

An important problem in nonparametric density estimation is to determine
the smoothing parameter, such as the bin volume, the smoothing matrix, the
number of nearest neighbors, or other measures of locality. In kernel density
estimation, the window width has a much greater effect on the estimator than
the kernel itself does.

An objective is to choose the smoothing parameter that minimizes the
MISE. We often can do this for the AMISE, as in equation (15.23) on page 496.
It is not as easy for the MISE. The first problem, of course, is just to estimate
the MISE.

In practice, we use cross validation with varying smoothing parameters
and alternate computations between the MISE and AMISE.

In univariate density estimation, the MISE has terms such as hαS(p′) (for
histograms) or hαS(p′′) (for kernels). We need to estimate the roughness of a
derivative of the density.

Using a histogram, a reasonable estimate of the integral S(p′) is a Riemann
approximation,

Ŝ(p′) = h
∑(

p̂′(tk)
)2

=
1

n2h3

∑
(nk+1 − nk)2,
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where p̂′(tk) is the finite difference at the midpoints of the kth and (k + 1)th
bins; that is,

p̂′(tk) =
nk+1/(nh) − nk/(nh)

h
.

This estimator is biased. For the histogram, for example,

E(Ŝ(p′)) = S(p′) + 2/(nh3) + . . . .

A standard estimation scheme is to correct for the 2/(nh3) term in the bias and
plug this back into the formula for the AMISE (which is 1/(nh) + h2S(r′)/12
for the histogram).

We compute the estimated values of the AMISE for various values of h
and choose the one that minimizes the AMISE. This is called biased cross
validation because of the use of the AMISE rather than the MISE.

These same techniques can be used for other density estimators and for
multivariate estimators, although at the expense of considerably more com-
plexity. The sampling variability in cross validation, however, makes it of
limited value in selecting the window width.

15.5 Orthogonal Series Estimators

A continuous real function p(x), integrable over a domain D, can be repre-
sented over that domain as an infinite series in terms of a complete spanning
set of real orthogonal functions {qk} over D:

p(x) =
∑

k

ckqk(x). (15.45)

The orthogonality property allows us to determine the coefficients ck in
the expansion (15.45):

ck = ⟨qk , p⟩. (15.46)
Approximation using a truncated orthogonal series can be particularly

useful in estimation of a probability density function because the orthogonality
relationship provides an equivalence between the coefficient and an expected
value. Expected values can be estimated using observed values of the random
variable and the approximation of the probability density function. Assume
that the probability density function p is approximated by an orthogonal series
{qk}:

p(y) =
∑

k

ckqk(y).

From equation (15.46), we have

ck = ⟨qk, p⟩

=
∫

D
qk(y)p(y)dy

= E(qk(Y )), (15.47)
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where Y is a random variable whose probability density function is p.
The ck can therefore be unbiasedly estimated by

ĉk =
1
n

n∑

i=1

qk(yi)w(yi).

Notice that we do not even have to do a PDF decomposition, as we do for a
general function in equation (10.1) on page 404.

The orthogonal series estimator is therefore

p̂S(y) =
1
n

j∑

k=0

n∑

i=1

qk(yi)qk(y) (15.48)

for some truncation point j.
Without some modifications, this generally is not a good estimator of the

probability density function. It may not be smooth, and it may have infinite
variance. The estimator may be improved by shrinking the ĉk toward the
origin. This could be done by formulating an objective function that consists
of a weighted average of the estimated AMISE and ∥ĉk∥. (This is similar to
shrinkage estimators in the linear model, such as ridge regression models, that
we discuss beginning on page 607.)

The number of terms in the finite series approximation also has a major
effect on the statistical properties of the estimator. Having more terms is not
necessarily better.

One useful property of orthogonal series estimators, however, is that the
convergence rate is independent of the dimension of the random variable. This
may make orthogonal series methods more desirable for higher-dimensional
problems.

There are several standard orthogonal series that could be used, as we
discuss in Sections 4.2 and 4.3. These two most commonly used series are the
Fourier and the Hermite.

A Fourier series is commonly used for distributions with bounded sup-
port. In those cases, it yields estimators with generally better properties than
estimators based on the Hermite series. In the bounded support cases, an or-
thogonal series estimator based on Jacobi polynomials may be even better,
however, due to the flexibility of choosing the two shape parameters. Tarter,
Freeman, and Hopkins (1986) gave a Fortran program for computing proba-
bility density estimates based on the Fourier series.

For distributions with unbounded support, the Hermite polynomials are
most commonly used. Some of the “natural” Hermite polynomials are shown
in equation (4.53) on page 174.

15.6 Other Methods of Density Estimation

There are several other methods of probability density estimation. Most of
them are modifications of the ones we have discussed. A simple example is to
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form a density estimator as a smooth function interpolating or approximating
a histogram. This can be done with splines or Bézier curves, for example.
Either the midpoint or one of the vertices of the top of each cell could be
used.

Another variation is to fit a spline or Bézier curve to a cumulative his-
togram; that is, to a grouped ECDF, and then differentiate the spline or
Bézier curve.

Any estimator based on an approximating function must be constrained
to be nonnegative, of course, and the issue of an integral of 1 may not be
easily settled.

Some methods work only in the univariate case, whereas others can be
applied in multivariate density estimation.

All of the nonparametric methods of density estimation involve decisions
such as window width, number of mixtures, number of terms in an expansion,
and so on. All of these quantities can be thought of as smoothing parameters.
There are various rules for making these decisions in an asymptotically optimal
fashion for some known distributions. (See Stone, 1984, for window selection
rules for kernel density estimators.) Absent assumptions about the nature of
the true distribution, it is difficult to decide on the extent of smoothing. Much
of the current work is on developing adaptive methods in which these choices
are made based on the data.

As we mentioned earlier, it may be reasonable to vary the smoothing
parameter in the kernel density estimator in such a way that the locality
of influence is smaller in areas of high density and larger in sparser regions.
In this case, the general kernel density estimator of equation (15.28) would
become

p̂K(y) =
1
n

n∑

i=1

1
|Vi|

K
(
V −1

i (y − yi)
)
. (15.49)

The Vi would likely be chosen to be constant over various regions. The vari-
able smoothing parameter would be selected adaptively in the various regions,
possibly using the estimated AMISE in a manner similar to biased cross val-
idation mentioned above.

Mixtures and Kernel Methods

In Chapter 14 we discussed the use of mixtures of parametric models as
probability density estimators. We can combine that approach with the use
of kernels. We choose a set of weighting functions f1, f2, . . . , fm, such that∑

fj(x) = 1, and associated smoothing matrices Vj , and form the estimator

p̂F (y) =
1
n

n∑

i=1

m∑

j=1

fj(yi)
|Vj |

K
(
V −1

i (y − yi)
)
. (15.50)

This is sometimes called a filtered kernel density estimator.
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If the kernel function is the standard d-variate normal density φd(t) and
the filtering functions are weighted normal densities πjφd(t |µj ,Σj), we can
express the filtered kernel density estimator as

p̂F (y) =
1
n

n∑

i=1

m∑

j=1

πjφd(t |µj ,Σ)

h
∣∣∣Σ1/2

j

∣∣∣ f•(yi)
φd

(
Σ−1/2

j (y − yi)/h
)

,

where f•(t) =
∑m

j=1 πjφd(t |µj ,Σj). We now have the choices in the estimator
as m, πj , µj , and Σj . This, of course, gives us more flexibility, but it makes
the adaptive selection of the tuning parameters more difficult.

Another approach is to alternate between nonparametric filtered kernel
estimators and parametric mixture estimators composed of the same number
of terms (filter functions or component densities). The estimator is computed
iteratively by beginning with a mixture estimator p̂(1)

M (y) of the form in equa-
tion (14.12) on page 480 and a filtered kernel estimator p̂(1)

F (y) of the form
in equation (15.50) above. A new mixture estimator p̂(2)

M (y) is chosen as the
mixture estimator closest to p̂(1)

F (y) (in some norm). The new mixture esti-
mator is used to determine the choices for a new filtered kernel estimator. (In
general, these are the fj and the Vj in equation (15.50). For normal filters
and kernels, they are the variances.) The process is continued until

∥∥∥p̂(k+1)
M (y) − p̂(k)

M (y)
∥∥∥

is small.
The method of alternating kernel and mixture estimators can easily be

used for multivariate density estimation.

Comparisons of Methods

Nonparametric probability density estimation involves the fundamental trade-
off between a spike at each observation (that is, no smoothing) and a constant
function over the range of the observations (that is, complete smoothing) ig-
noring differences in relative frequencies of observations in various intervals.
It is therefore not surprising that the comparison of methods is not a trivial
exercise.

One approach for comparing methods of estimation is to define broad
classes of densities and to evaluate the performance of various estimators
within those classes. One way of forming interesting families of distributions
is to use a mixture of normal densities φ(y |µj ,σ2

j ). (You are asked to do this
in Exercise 15.9.) The triangular density, p(y) = (1− |x|)+, can also be used to
form mixtures of densities with interesting shapes. Three useful special cases
are the following.

• claw density
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p(y) =
1
10

(
5φ(y | 0, 1) + φ(y | − 1, 0.1) + φ(y | − 0.5, 0.1) +

φ(y | 0, 0.1) + φ(y | 0.5, 0.1) + φ(y | 1, 0.1)
)
;

• smooth comb density

p(y) =
32
63
φ

(
y | − 31

21
,
32
63

)
+

16
63
φ

(
y | 17

21
,
16
63

)
+

8
63
φ

(
y | 41

21
,

8
63

)
+

4
63
φ

(
y | 53

21
,

4
63

)
+

2
63
φ

(
y | 59

21
,

2
63

)
+

1
63
φ

(
y | 62

21
,

1
63

)
;

• saw-tooth density

g(y) = p(y + 9) + p(y + 7) + · · · p(y − 7) + p(y − 9),

where p is the triangular density.

These densities cover a wide range of shapes.

Notes and Further Reading

Nonparametric estimation of probability density functions was a topic for
much research during the last twenty years of so of the twentieth century.
Much of the research focused on the univariate problem, of course. While some
of the methods extend to higher dimensions, the issues of structures become
much more important because they ultimately involve all possible subsets of
the variables. The increasing number of subsets, which is of exponential order,
is one manifestation of the curse of dimensionality. The focus is generally
restricted to relationships within subsets of size two.

In all methods of nonparametric probability density function estimation,
there is some kind of smoothing parameter.

Scott (2004) summarizes the theory and methods of nonparametric proba-
bility density function estimation, with an emphasis on histogram and kernel
methods. He also discusses visualization of the densities, which is an impor-
tant aid in choosing the fineness of the structure that should be conveyed by
the estimate.

Bin Shapes

Newman and Barkema (1999) discuss data structures for working with hexag-
onal grids and a related type of grid formed by a Kagomé lattice, which is a
tessellation composed of hexagons and twice as many triangles, in which the
hexagons meet at their vertices and spaces between three hexagons are form
the triangles.
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General discussions of tessellations are given by Conway and Sloane (1999)
(particularly Chapter 2 of that book) and by Okabe et al. (2000). Conway and
Sloane (1982) give algorithms for binning data into lattices of various types
for dimensions from 2 to 8.

Smoothing Functions

The orthogonal series estimators generally are based on a smoothing of a his-
togram; thus, the smoothing parameter is the bin size. In addition to the or-
thogonal series we discussed, other orthogonal systems can be used in density
estimation. Walter and Ghorai (1992) describe the use of wavelets in density
estimation, and discuss some of the problems in their use. Vidakovic (2004)
also discusses density estimation and other applications of wavelets.

Kooperberg and Stone (1991) describe use of splines to smooth the his-
togram. Kim et al. (1999) propose use of the cumulative histogram and fitting
it using Bézier curves.

Exercises

15.1. Use Monte Carlo methods to study the performance of the histogram
density estimator p̂H(x) using univariate normal data. Generate samples
of size 500 from a N(0, 1) distribution. Use a Monte Carlo sample size of
100.
a) Choose three different bin sizes. Tell how you chose them.
b) For each bin size, estimate the variance of p̂(0).
c) For each bin size, compute the average MISE.

Summarize your findings in a clearly-written report.
15.2. Use Monte Carlo methods to study the performance of the histogram

density estimator p̂H(x) using a simple but nonstandard univariate dis-
tribution that has density

p(x) = 3x for 0.0 ≤ x < 0.5
= 3 − 3x for 0.5 ≤ x < 1.0
= x − 1 for 1.0 ≤ x < 1.5
= 2 − x for 1.5 ≤ x < 2.0
= 0 otherwise.

The programs you will need to write are incremental; that is, the program
written in one question may be used in another question.
a) Generation of random variates.

i. Describe a method for generating random variables from this dis-
tribution.

ii. Write a program to generate random variables from this distribu-
tion.
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b) Use Monte Carlo methods to estimate the variance of p̂H(1) for a fixed
sample size of 500, using three different bin widths: 0.2, 0.3, and 0.4.
Use a Monte Carlo sample size of 100. If a cutpoint corresponds to
x = 1, use the average of the two bins. (Notice that this is the variance
of the density estimator at one point.)
Now, work out the true variance of p̂H(1) for this distribution when
a bin width of 0.4 is used. (Tell what bin this point is in. It depends
on how you set the cutpoints.)

c) For each bin size in the previous question, compute an estimate of the
MISE.

d) Now, investigate the order of the MISE in the sample size for a given
bin width that is dependent on the sample size. Choose the bin width
as 0.84n−1/3.
i. First, show that this bin width is optimal for the AMISE. (The

coefficient is given to two decimal places.)
ii. Use Monte Carlo methods to study the order of the MISE; that is,

estimate α in AMISE = O(nα), for the given bin width sequence.
Use sample sizes of 128, 256, 512, and 1,024. Compute the MISE
at each sample size, and plot the MISE versus n on log-log axes.
Estimate α using least squares.

15.3. Derive the variance of the histogram (equation (15.9) on page 492).
15.4. Derive the bin size that achieves the lower bound of the MSE for the

histogram (equation (15.12), page 493).
15.5. Let

p(y) =
1

Γ(α)βα
yα−1e−y/β for 0 ≤ y,

= 0 elsewhere.

(This is the probability density function for a gamma distribution.) De-
termine S(p′), as in equation (15.13) on page 494.

15.6. Bivariate histograms over any of the three regular tessellations are rel-
atively easy to construct. (The triangular and square tessellations are
straightforward. See Exercise 15.7 for the hexagonal tessellation.) For a
random sample from a density p(y1, y2), show that a bivariate histogram
has AMISE of the form

1
nh2

+ ch2
(
S(py1) + S(py2)

)
,

where h2 is the area of the bin, py1 = ∂p(y1, y2)/∂y1 and py2 = ∂p(y1, y2)/∂y2.
Notice that the number of bins is different for the three bin shapes. Deter-
mine the value of c for each of the regular tessellations. Which tesselation
has the best AMISE, given equal bin sizes (but unequal numbers of bins)?

15.7. Write a program to count the bivariate observations for regular hexagonal
bins. The input to your program is a set of observations, the bin defi-
nitions, and the bin counts from prior sets of observations. The output
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is the updated array of bin counts. Use the fact that the centers of the
hexagons are the lattice points of two rectangular tilings of the plane. See
Figure 15.1 on page 498.

15.8. Frequency polygons.
a) Show that the univariate frequency polygon is a bona fide estimator.
b) Suppose that it is known that the true density is zero below a certain

bound (for example, suppose that the nature of the phenomenon being
modeled requires the data to be nonnegative, so the support is the
positive half line). Derive an expression for the integrated squared
bias of the frequency polygon density estimator. (The main thing to
determine is the order of the bias in the bin width h.)

c) For the density estimation problem when a fixed bound is known, sug-
gest a modification to the frequency polygon that might reduce the
bias. (Reflection is one possibility, but you may want to suggest a dif-
ferent approach.) Derive an expression for the integrated squared bias
of your modified frequency polygon density estimator. Show whether
your modified estimator is a bona fide estimator.

15.9. Use a random number generator to generate a sample of size 1,000 from a
mixture of two univariate normal distributions to study the performance
of a histogram density estimator and a kernel estimator. Among other
things, the object of the study will be to assess the ability of the two
types of estimators to identify mixtures. In each case, the width of the bins
must be decided on empirically in such a way that the resulting density
estimator is visually smooth (that is, so that it is not very jagged), yet
may have more than one “hump”. (Of course, since you know the density,
you can “cheat” a little on this.) Let the population consist of a fraction π
from a N(0, 1) distribution and a fraction 1−π from a N(δ, 1) distribution.
Let π take the values 0.5, 0.7, and 0.9. Let δ take two positive values, δ1
and δ2.
a) For each value of π, choose δ1 and δ2 so that for δ1 the distribution

is unimodal and for δ2 the distribution is bimodal. (δ is nested in π.)
Choose δ2 so that the minimum of the density between the two modes
is at least 0.05. (Marron and Wand, 1992, describe general types of
bimodal and multimodal families of distributions useful in assessing
the performance of density estimators.)

b) For each of the six combinations of π and δ, choose a sequence of bin
widths, compute the estimates, and by visual inspection of plots of
the estimates, choose an “optimal” bin size.

The functions hist and density in R can be used to compute the density
estimates.

15.10. Using the univariate analogue of equation (15.34) on page 501, derive the
AMISE for the kernel density estimator given in expression (15.39).

15.11. Suppose that we have a random sample as follows:

−1.8, −1.2, −.9, −.3, −.1, .1, .2, .4, .7, 1.0, 1.3, 1.9.
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(Be aware that this sample is too small for any serious density estimation!)
a) Compute the kernel density estimate at the point 0 using a normal

kernel.
b) Compute the kernel density estimate at the point 0 using the Epanech-

nikov kernel.
c) Compute a smoothed kernel density estimate over the range (−2, 2)

using the Epanechnikov kernel.
d) Compute the orthogonal series estimator of the probability density

using Hermite polynomials in equation (15.48) and truncating at j =
4.

15.12. Given a random sample y1, . . . , yn from an unknown population, the basic
problems in density estimation are to estimate Pr(Y ∈ S) for a random
variable Y from that population, to estimate the density at a specific point,
p(y0), or to estimate the density function p or the distribution function P
at all points.
Suppose instead that the problem is to generate random numbers from
the unknown population.
a) Describe how you might do this. There are several possibilities that

you might want to explore. Also, you should say something about
higher dimensions.

b) Suppose that we have a random sample as follows:

−1.8, −1.2, −.9, −.3, −.1, .1, .2, .4, .7, 1.0, 1.3, 1.9.

Generate a random sample of size 5 from the population that yielded
this sample. There are obviously some choices to be made.
Describe your procedure in detail, and write a computer program to
generate the random sample.

15.13. Consider another problem related to density estimation:
Given a random sample y1, . . . , yn from an unknown population, estimate
the mode of that population.
a) Describe how you might do this. Again, there are several possibilities

that you might want to explore, and your solution will be evaluated
on the basis of how you address the alternative possibilities and how
you select a specific procedure to use. (You might also want to say
something about higher dimensions.)

b) Suppose that we have a random sample as follows:

−1.8, −1.2, −.9, −.3, −.1, .1, .2, .4, .7, 1.0, 1.3, 1.9.

Estimate the mode of the population that yielded this sample. De-
scribe your procedure in detail, and write a computer program to
estimate the mode.

15.14. Consider the three density estimators

p̂1(y) =
Pn(y) − Pn(y − h)

h
,
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p̂2(y) =
Pn(y + h) − Pn(y)

h
,

p̂3(y) =
Pn(y + h

2 ) − Pn(y − h
2 )

h
,

where Pn is the empirical distribution function based on a random sample
of size n. For each,
a) putting the estimator in the form of a kernel density estimator, write

out the kernel;
b) compute the integrated variance; and
c) compute the integrated squared bias.

15.15. The Lp error of bona fide density estimators.
a) Show that the L1 error is less than or equal to 2.
b) Let g be a monotone, continuous function, and consider the random

variable, Z = g(Y ). Show that the L1 error is invariant to this change
of variable. (Apply the same function g to the elements of the sample
of y’s.)

c) By an example, show that the L2 error has no bound.
15.16. A common way of fitting a parametric probability density function to

data is to use estimates of the parameters that yield moments of the
fitted density that match the sample moments. The second and higher
moments used in this method of estimation are usually taken as the central
moments. This means that if p̂ is the density estimated from the sample
y1, . . . , yn, then

Ep(Y ) = ȳ

and, in the univariate case,

Ep(Y r) =
1
n

∑
(yi − ȳ)r

for r = 2, . . ..
a) For the univariate histogram estimator, p̂H , and a sample y1, . . . , yn,

how does EpH (Y r) compare to the rth sample moment?
b) For the univariate kernel estimator, p̂K , with a rectangular kernel,

how does EpK (Y r) compare to the rth sample moment?
15.17. Make a plot of each of the test densities shown on page 508.
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Statistical Learning and Data Mining

A major objective in data analysis is to identify interesting features or struc-
ture in the data. In this chapter, we consider the use of some of the tools
and measures discussed in Chapters 9 and 10 to identify interesting structure.
The graphical methods discussed in Chapter 8 are also very useful in discov-
ering structure, but we do not consider those methods further in the present
chapter.

There are basically two ways of thinking about “structure”. One has to
do with counts of observations. In this approach, patterns in the density are
the features of interest. We may be interested in whether the density is multi-
modal, whether it is skewed, whether there are holes in the density, and so on.
The other approach seeks to identify relationships among the variables. The
two approaches are related in the sense that if there are relationships among
the variables, the density of the observations is higher in regions in which
the relationships hold. Relationships among variables are generally not exact,
and the relationships are identified by the higher density of observations that
exhibit the approximate relationships.

An important kind of pattern in data is a relationship to time. Often, even
though data are collected at different times, the time itself is not represented
by a variable on the dataset. A simple example is one in which the data are
collected sequentially at roughly equal intervals. In this case, the index of the
observations may serve as a surrogate variable. Consider the small univariate
dataset in Table 16.1, for example.

A static view of a histogram of these univariate data, as in Figure 16.1,
shows a univariate bimodal dataset. Figure 16.2, however, in which the data
are plotted against the index (by rows in Table 16.1), shows a completely
different structure. The data appear to be sinusoidal with an increasing fre-
quency. The sinusoidal responses at roughly equal sampling intervals result in
a bimodal static distribution, which is the structure seen in the histogram.

Interesting structure may also be groups or clusters of data based on some
measure of similarity, as discussed in Section 9.2 beginning on page 383. When
there are separate groups in the data, but the observations do not contain
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Table 16.1. Dataset with Two Interesting Structures

0.85 0.89 0.94 0.95 0.99 1.00 0.96 0.94 0.97 0.90
0.84 0.71 0.57 0.43 0.29 0.08 -0.09 -0.30 -0.49 -0.72

-0.83 -0.88 -1.02 -0.94 -0.95 -0.78 -0.60 -0.38 -0.04 0.26
0.55 0.77 0.97 1.04 0.91 0.69 0.41 0.02 -0.37 -0.70

-0.96 -1.01 -0.87 -0.50 -0.06 0.44 0.79 0.99 0.95 0.59
0.10 -0.46 -0.87 -0.95 -0.77 -0.22 0.36 0.89 1.03 0.66
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Fig. 16.1. Histogram of the Data in Table 16.1
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Fig. 16.2. Data in Table 16.1 Plotted against Its Index

an element or an index variable representing group membership, identifying
nearby elements or clusters in the data requires some measure of similarity
(or, equivalently, of dissimilarity).
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Figure 16.3 shows four different bivariate datasets, each of which consists
of two clusters. The criteria that distinguish the clusters are different in the
datasets. In Figure 16.3(a), the clusters are defined by proximity; the points
in each cluster are closer to the respective cluster centroid than they are to
the centroid of the other cluster.

In Figures 16.3(b), 16.3(c), and 16.3(d), the definitions of the clusters
are somewhat more difficult. The clusters are defined by characteristics of
the clusters themselves (that is, by structures that the clusters individually
exhibit). These clusters are sometimes called “conceptual clusters”; the points
are members of a cluster because of some concept or holistic characteristic of
the set of points, such as lying close to a straight line.

The plots in Figure 16.3 also illustrate one of the problems in the identifi-
cation of clusters: In some cases, although the clusters are obvious, there are
a few individual observations that could apparently belong to either cluster.

(a) Two Locations

1

(b) Tight and Loose Clusters

(c) Two Concentric Circles (d) Two Lines

Fig. 16.3. Clusters in Bivariate Datasets
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Figure 16.4 shows two different two-dimensional datasets (that is, datasets
containing two variables) whose members fall almost within one-dimensional
manifolds.

Linear Structure Nonlinear Structure

Fig. 16.4. Relational Structures in Bivariate Datasets

We may occasionally wish to identify any of the types of groups or struc-
tures shown in Figures 16.2, 16.3, and 16.4, but we will concentrate in this
chapter on identifying the types of clusters shown in the first graph in Fig-
ure 16.3 (that is, clusters whose centroids are different).

Although we often assume that the data space is a subspace of IRm, a
data space may be more general. Data, for example, may be character strings
such as names. The more general types of data may be mapped from the
original data space to a “feature space”, which is a subspace of IRm. The
variables may be measured on different scales; they may, of course, represent
completely different phenomena, so measurement scales cannot be made the
same. One way of reconciling the measurements, however, is to standardize
the data using the transformation (9.22) on page 392,

XS = (X − X) diag(1/
√

sii),

where X is the matrix whose constant columns contain the means of the
corresponding columns of X , and

√
sii is the sample standard deviation of

the ith column of X .
We may be interested in finding the nearest neighbors of a given observation

based on their similarity; or, alternatively, we may be interested in identifying
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all observations within a given degree of closeness to a given observation. This
problem is called a “proximity search”.

In the following sections, we consider general problems in multivariate data
analysis. Our emphasis will be on exploratory analysis, and the main goals will
be to identify clusters in data and to determine lower-dimensional structures
in multidimensional data. We will use the methods and measurements that
we discussed in Section 9.2 beginning on page 383.

Interesting structure may involve clusters of data, or it may be the result
of the data lying on or near a space of reduced dimension. Interesting struc-
ture may also be defined generically as properties of the data that differ from
expected properties if the data were a random sample from a multivariate
normal distribution or from some other standard distribution. The normal
(or Gaussian) distribution lies at the heart of many methods of data analysis.
The heuristic definition of structure as a departure from normality can be mo-
tivated by the fact that most randomly selected low-dimensional projections
of any high-dimensional dataset will appear similar to a random sample from
a multivariate normal distribution (see Diaconis and Freedman, 1984).

The usual objective in cluster analysis is to divide the observations into
groups that are close to each other or are more homogeneous than the full set
of observations. An observation may consist of categorical variables that may
(or may not) specify the class to which the observation belongs. In general,
as we discuss on page 385, if the ith observation can be represented as

xi = (xr
i , xc

i ), (16.1)

where the subvector xc
i represents values of the categorical variables, we may

wish to handle the xc
i component separately. In Figure 16.3, for example, sup-

pose that each observation consists of values for three variables, x1 and x2

as shown and a third variable that represents group membership that cor-
responds to the symbol in the graphical depiction. In that case, the classes
may already be defined, or we may want to allow the possibility that obser-
vations with different values of the categorical variable nevertheless belong
to the same class. In most of the following, we will assume that none of the
variables are categorical.

16.1 Clustering and Classification

Identifying groups of similar observations in a dataset is an important step in
making sense of the data and in understanding the phenomena represented
by the data. Clustering, classification, and discrimination are terms that de-
scribe this activity, which lies at the crossroads of a number of traditional
disciplines, including statistics, computer science, artificial intelligence, and
electrical engineering. Classification is sometimes called statistical learning or
machine learning, especially in the more engineering-oriented disciplines. As
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is often the case when scientific methods are developed within diverse areas,
there are several slight variations of theory and methodology, which are some-
times described as “statistical”, “inductive”, and so on. The slight variations
lead to a variety of terms to describe the methods, and there is generally
scant theory to support optimality of one method over another. The various
approaches to clustering and classification also lead to the use of terms such as
“hypothesis”, “bias”, and “variance” that have different meanings from their
technical statistical definitions.

Clustering and classification make use of a wide range of statistical tech-
niques, both descriptive methods utilizing simple summary statistics and
graphics and methods of fitting equations to data. Statistical techniques in
clustering and classification often emphasize uncertainty and the importance
of dealing with noise in the data. A good general reference on clustering
and classification, generally from a statistical perspective, is Gordon (1999).
Hastie, Tibshirani, and Friedman (2009) discuss classification using terminol-
ogy from both the statistics and machine learning disciplines.

The first step in forming groups is to develop a definition of the groups.
This may be based on similarities of the observations or on closeness of the
observations to one another.

Clustering

Cluster analysis is generally exploratory. It seeks to determine what groups
are present in the data. If the groups are known from some training set,
“discriminant analysis” seeks to understand what makes the groups different
and then to provide a method of classifying observations into the appropriate
groups. When discriminant analysis is used to “train” a clustering method,
we refer to the procedure as “supervised” classification. Discriminant analysis
is mechanically simpler than cluster analysis. Clustering is “unsupervised”
classification. We will discuss classification in Chapter 17.

Because of the large number of possibilities for grouping a set of data into
clusters, we generally must make some decisions to simplify the problem. One
way is to decide a priori on the number of clusters; this is done in K-means
clustering, discussed below. Another way is to do recursive clustering; that
is, once trial clusters are formed, observations are not exchanged from one
cluster to another. Two pairs of observations that are in different clusters at
one stage of the clustering process would never be split so that at a later stage
one member of each pair is in one cluster and the other member of each pair
is in a different cluster.

There are two fundamentally different approaches to recursive clustering.
One way is to start with the full dataset as a single group and, based on
some reasonable criterion, partition the dataset into two groups. This is called
divisive clustering. The criterion may be the value of some single variable; for
example, any observation with a value of the third variable larger than 5
may be placed into one group and the other observations placed in the other
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group. Each group is then partitioned based on some other criterion, and
the partitioning is continued recursively. This type of divisive clustering or
partitioning results in a classification tree, which is a decision tree each node
of which represents a partition of the dataset.

Another way of doing recursive clustering is to begin with a complete
clustering of the observations into singletons. Initially, each cluster is a single
observation, and the first multiple-unit cluster is formed from the two closest
observations. This agglomerative, bottom-up approach is continued so that at
each stage the two nearest clusters are combined to form one bigger cluster.

K-Means Clustering

The objective in K-means clustering is to find a partition of the observations
into a preset number of groups, k, that minimizes the variation within each
group. The variation of the jth variable in the gth group is measured by the
within sum-of-squares,

s2
j(g) =

∑ng

i=1

(
xij(g) − x̄j(g)

)2

ng − 1
, (16.2)

where ng is the number of observations in the gth group, and x̄j(g) is the mean
of the jth variable in the gth group. Assuming there are m variables in each
observation, there are m such quantities.

A measure of the overall variation within each group is some combination
of the individual s2

j(g). As we have suggested, in most multivariate analyses,
it is best to scale or normalize the data prior to the analysis (see page 391).
If the X data have been normalized, then an appropriate measure for the
variation within a group is just the the sum of the within sum-of-squares for
each variable,

∑m
j=1

∑ng

i=1(xij(g) − x̄j(g))2.
Now, to state more precisely the objective in K-means clustering, it is to

find a partition of the observations into a preset number of groups k that
minimizes, over all groups, the total of the linear combinations of the within
sum-of-squares for all variables. For linear combinations with unit coefficients,
this quantity is

w =
k∑

g=1

m∑

j=1

ng∑

i=1

(
xij(g) − x̄j(g)

)2
. (16.3)

Determining the partitioning to minimize this quantity is a computationally
intensive task.

In practice, we seek a local minimum (that is, a solution such that there
is no single switch of an observation from one group to another group that
will decrease the objective). Even the procedure used to achieve the local
minimum is rather complicated. Hartigan and Wong (1979) give an algorithm
(and Fortran code) for performing the clustering. Their algorithm forms a
set of initial trial clusters and then transfers observations from one cluster to
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another while seeking to decrease the quantity in equation (16.3). Simulated
annealing can also be used to do K-means clustering.

Most of the algorithms for K-means clustering will yield different results if
the data are presented in a different order. The algorithms, such as simulated
annealing, that use techniques that depend on random numbers may yield
different results on different runs with the same data in the same order.

In whatever method is used for K-means clustering, it is necessary to
choose initial points, and then trial points to move around. The points can be
chosen randomly or chosen arbitrarily. A random choice gives preference to
points in dense regions, which is consistent with an underlying concept of K-
means clustering in which the inner two sums in expression (16.3) are similar
to an expected value with respect to a distribution from which the observed
data constitute a random sample.

The clustering depends on the variability of the variables. It is generally
best to scale the variables in order for the clustering to be sensible because
the larger a variable’s variance, the more impact it will have on the clustering.
See page 533, however, for further discussion of the issue of scaling variables
prior to clustering.

Choosing the Number of Clusters

A major issue is how many clusters should be formed. The question of the
number of groups must generally be addressed in an ad hoc manner. Most
algorithms form nonempty clusters, so the number of clusters is pre-specified.
Minimizing the within-groups sum-of-squares, w, in equation (16.3) leads to
exactly k clusters except in an extreme case of multiple observations with the
same values, which yields multiple solutions. For a fixed k, w is function of
the assignments of observations to groups, indicated in the equation by the
subscript ij(g).

If k is also made a decision variable in the optimization problem of min-
imizing w, that is, if w is also a function of k, then w(k, g) is minimized by
increasing k until each ng is 1. Hence, it is not appropriate simply to make k
a variable in the objective function.

We may modify the objection function w(k, g) with a penalty for the num-
ber of groups. The simplest penalty is just division by the degrees of freedom
n − k. Even if we normalize w by the degrees of freedom, however, the mini-
mum value occurs at a point where k is fairly large.

In addition to homogeneity of the observations within each group, we
also seek heterogeneity of the groups; hence, intuitively, an F -like statistic as
a ratio of the between-group dissimilarity to the within-group dissimilarity
could be used to indicate the goodness of a given clustering. We define a
“pseudo F”:

F̃k =
b/(k − 1)
w/(n − k)

, (16.4)

where b is the between-groups sum-of-squares,
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b =
k∑

g=1

m∑

j=1

(
x̄j(g) − x̄j

)2
,

and w is the pooled within-groups sum-of-squares of equation (16.3). This
measure is also called the Calinski-Harabasz index after Calinski and Harabasz
(1974) who suggested its use as a stopping criterion in hierarchical cluster-
ing (see below). The larger that ratio, the better the clustering at any fixed
number of clusters. In general, however, the within-groups sum-of-squares of
equation (16.3) will decrease more quickly than the between-groups sum-of-
squares will decrease as more groups are formed, so the pseudo F favors a
value of k that is too large.

A practical approach to the problem is to vary k, as k0, k0 + 1, . . ., com-
puting F̃k , which will initially increase fairly rapidly, and to choose the value
of k as the point at which F̃k+1 − F̃k is relatively small. This is similar to
the type of approach in a different context; that is, choosing the number of
principal components, which we consider on page 554.

Hierarchical Clustering

It is useful to consider a hierarchy of clusterings from a single large cluster
to a large number of very small clusters. Hierarchical clustering yields these
alternative clusterings.

The results of a hierarchical clustering can be depicted as a tree, as shown
in Figure 16.5. Each point along the bottom of the tree may correspond to
a single observation. Nodes higher up in the diagram represent successively
larger groups. The number of clusters depends on the level in the tree, as
indicated in the plot.

The vertical axis, which is not shown in Figure 16.5, corresponds to a
distance metric, which could be based on any of the measures of distance
described beginning on page 388. The actual units of the vertical axis must
be interpreted in that context.

Many of the algorithms for hierarchical clustering will yield different results
if the data are presented in a different order.

Agglomerative Hierarchical Clustering

In agglomerative hierarchical clustering, we first begin with a large number of
clusters, generally as many as the number of observations, so that each cluster
consists of a single observation, and then we combine clusters that are nearest
to each other.

To define distances between groups, we must first consider from what
points within the groups to measure distance. As we mentioned on page 393,
there are several ways of doing this. One way is to measure the distance
between a central point in one group, such as the mean or median of the group,



524 16 Statistical Learning and Data Mining

4 clusters

9

Fig. 16.5. A Cluster Tree. Each Leaf Represents an Observation or a Group of
Observations

and the corresponding central point in the other group. These methods often
do not work very well in hierarchical clustering. In agglomerative hierarchical
clustering, the distance between two clusters is usually chosen in one of the
following three ways.

• The minimum distance between a point in the first cluster and a point in
the second cluster. Using this criterion results in what is sometimes called
“single linkage” clustering.

• The distance between clusters is the average of the distances between the
points in one cluster and the points in the other cluster.

• The largest distance between a point in one cluster and a point in the other
cluster. Using this criterion results in what is sometimes called “complete
linkage” clustering.

In addition to the choice of the two points to define the distance, different
distance metrics can be chosen. Any of the distances described beginning on
page 388 could be used, and in a given situation, one may be more appropriate
than another. Most clustering methods use an L2 metric. Other metrics will
produce different clusters, and it may be appropriate to consider the clustering
produced by various metrics.

By changing the distance metric and the clustering method, several dif-
ferent cluster trees can be created from a single dataset. Which one is more
appropriate depends on the situation. For example, if the data has outliers in
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one or more dimensions, an L1 metric might yield clusters that appear more
reasonable.

We can see the differences in hierarchical clustering with different distance
measures between clusters using a simple example that consists of five obser-
vations with the distance matrix

D =

⎡

⎢⎢⎢⎢⎣

2 3 4 5
1 4.34 4.58 7.68 4.47
2 1.41 4.00 4.36
3 5.10 5.00
4 6.56

⎤

⎥⎥⎥⎥⎦
. (16.5)

Using either type of distance measure, the first cluster is formed from obser-
vations 2 and 3 because 1.41 is the minimum in any case. The subsequent
clusters are different in the three methods, as shown in Figure 16.6 by the
matrices that contain distances between clusters.

2 3 4 5
1 4.34 4.58 7.68 4.47
2 1.41 4.00 4.36
3 5.10 5.00
4 6.56

single linkage average complete linkage
(“connected”) (“compact”)

2, 3 4 5
1 4.34 7.68 4.47

2, 3 4.00 4.36
4 6.56

2, 3 4 5
1 4.46 7.68 4.47

2, 3 4.55 4.68
4 6.56

2, 3 4 5
1 4.58 7.68 4.47

2, 3 5.10 5.00
4 6.56

2, 3, 4 5
1 4.34 4.47

2, 3, 4 4.36

4 5
1, 2, 3 6.12 4.58

4 6.56

2, 3 4
1, 5 4.58 7.68
2, 3 5.10

5, 1, 4, (2, 3) 4, 5, 1, (2, 3) 4, (2, 3), (1, 5)

Fig. 16.6. Hierarchical Clustering Using Three Different Methods

In this example, we have carried the clustering to a single final cluster.
The clusters at any intermediate stage except the first are different. Thus, in
complete linkage, for example, after the cluster with observations 2 and 3 is
formed, a separate cluster with observations 1 and 5 is formed; then, these
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two clusters are grouped into a cluster with four observations, and finally
observation 4 is added to form a single cluster.

Another agglomerative hierarchical clustering method proceeds by forming
the clusters in such a way that each new cluster leads to a minimum increase
in the total within-cluster sums of squares, equation (16.2). Beginning with
all clusters consisting of single observations, this total is 0. The closest two
points are combined to form the first cluster with two elements. In the example
in Figure 16.6, this would be observations 2 and 3, the same as in all of
the other methods. Assuming that the distances are Euclidean distances in
D in equation (16.5), the increase in the sum of squares is 1.412/2. This is
sometimes called Ward’s method, from Ward (1963).

Figure 16.7 shows the cluster trees that result from each method of clus-
tering. The lengths of the vertical lines indicate the closeness of the clusters
that are combined. In each tree, for example, the first level of combination
(between observations 2 and 3) occurred at a measure of 1.41, as shown on
the vertical scale. In the connected linkage, as shown in the tree on the left-
hand side, the second step was to add observation 4 to the cluster containing
observations 2 and 3. This combination occurred at a measure of 4.00. On the
other hand, in the compact linkage, as shown in the tree on the right-hand
side, the cluster containing observations 2 and 3 was unchanged and a second
cluster was formed between observations 1 and 5 at a measure of 4.47.

The cluster trees in Figure 16.7 were produced with the following R com-
mands:

plclust(hclust(D,method="single"))
plclust(hclust(D,method="average"))
plclust(hclust(D,method="complete"))
plclust(hclust(D,method="ward"))

The height hik at which the two observations i and k enter the same cluster
is a measure of the closeness of the two observations. For any reasonable
dissimilarity matrix and any reasonable method of linkage, the heights will
satisfy the ultrametric inequality

hik ≤ max
j

(hij , hkj).

This property is trivially satisfied by the linkages illustrated in Figures 16.6
and 16.7, as may be easily checked.

Consideration of the heights in a hierarchical clustering may suggest the
appropriate number of clusters. For example, the relative heights separating
clusters in the tree in the upper left in Figure 16.7 indicates that there may be
four clusters: (5), (1), (4), and (2,3), three of which are singletons. (Remember
that this is a toy dataset!) The tree on the lower left indicates that there may
be three clusters: (4), (2,3), and (1,5).

The R function agnes also does agglomerative hierarchical clustering and
provides more information about the levels at which clusters are combined.
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Fig. 16.7. Cluster Trees Corresponding to the Methods in Figure 16.6

It is important to note the computational and storage burdens in agglom-
erative hierarchical clustering that begins with individual observations. The
size of the distance matrix (D in the example above) is of order O(n2).

Model-Based Hierarchical Clustering

In the general clustering problem, we may assume that the data come from
several distributions, and our problem is to identify the distribution from
which each observation arose. Without further restrictions, this problem is
ill-posed; no solution is any better than any other. We may, however, impose
the constraint that the distributions be of a particular type. We may then
formulate the problem as one of fitting the observed data to a mixture of
distributions of the given type. The problem posed thusly is similar to the
problem of density estimation using parametric mixtures, as we discuss in
Section 14.3 beginning on page 480. The R function mclust performs model-
based clustering.
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Divisive Hierarchical Clustering

Most hierarchical clustering schemes are agglomerative; that is, they begin
with no clusters and proceed by forming ever-larger clusters. In divisive hier-
archical clustering, we begin with a single large cluster and successively divide
the clusters into smaller ones.

Kaufman and Rousseeuw (1990) have described a divisive hierarchy in
which clusters are divided until each cluster contains only a single observation.
At each stage, the cluster with the largest dissimilarity between any two of
its observations is selected to be divided. To divide the selected cluster, the
observation with the largest average dissimilarity to the other observations of
the selected cluster is used to define a “splinter group”. Next, observations that
are closer to the splinter group than to their previous groups are assigned to
the splinter group. This is continued until all observations have been assigned
to a single cluster. The result is a hierarchical clustering. The R function
diana in the cluster package determines clusters by this method.

Other Divisive Clustering Schemes

Because of the computational time required in agglomerative clustering or
global partitioning such as by K-means, for large datasets, simpler methods
are sometimes more useful. A recursive partitioning scheme can be efficient.
One simple recursive method groups the observations into hyperrectangular
regions based on the medians of the individual variables. In the first step of the
median-split divisive scheme, the n observations are divided into two sets of
n/2 based on the median of the variable with the largest range. The subsequent
steps iterate that procedure. At any stage, the number of observations in all
clusters is nearly equal. This procedure and the motivation for it are closely
related to the k-d-tree (see page 547). A related scheme uses the mean rather
than the median. This scheme is less intensive computationally. It does not
have the property of almost equal-size clusters, however.

Clustering and Classification by Space Tessellations

Groups in data can naturally be formed by partitioning a space in which the
data are represented. If the data are represented in a cartesian coordinate
system, for example, the groupings can be identified by polytopes that fill the
space. Groups are separated by simple planar structures.

Groups may be formed by the values of only a subset of the variables. A
simple example is data in which one or more variables represent geographic
location. Clusters may be defined based on location, either by methods such
as we have discussed above or by regions that tessellate the space. The tessel-
lations may be preassigned regions, perhaps corresponding to administrative
or geographical boundaries.
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More interesting tessellations can be constructed from data. Let T be a
set of points, possibly all of the observations in a dataset, a random sample of
the data, or some statistics formed from subsets of the data. The set T may
be used to form a tessellation that defines groups, and the tessellation may
be used to classify additional data. Formation of a subset of observations for
classification is a form of dimension reduction, which, as we have noted with
caveats, is one of the general approaches for understanding multivariate data.

A simple and useful tessellation constructed from a dataset is the Dirichlet
tessellation, or the Voronoi tessellation. (The names are synonymous.) This
tiling forms regions containing single points of T in such a way that all points
within a region are closer to the given point than they are to any other point
in T . The points in T that form the tessellation are called generators. The
points on a boundary in a Dirichlet tessellation are equidistant to two points
in T . This type of tessellation generalizes to higher dimensions.

The set of edges of the polygons (or faces of polyhedra or hyperpolyhedra)
on which points are equidistant to two points in T is called the Voronoi
diagram. The Dirichlet tessellation determined by a set of six points is shown
in Figure 16.8.

Fig. 16.8. A Dirichlet Tessellation in a Plane Formed by Six Generator Points

The other points shown in Figure 16.8 are clustered with respect to the
tessellation formed by the given six points.

A unique set of simplices is obtained by joining all nodes that share an
edge in the Voronoi diagram. The set of triangles (which are simplices in two
dimensions) formed by the Dirichlet tessellation in Figure 16.8 is shown in
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Figure 16.9. This construction is called a Delaunay triangulation. The trian-
gulation is also a tessellation and is sometimes called a Delaunay tessellation.
The Voronoi diagram and the Delaunay triangulation are duals of each other;
one determines the other.

Fig. 16.9. A Delaunay Triangulation

The Dirichlet tessellation or Voronoi diagram and the Delaunay triangu-
lation have many interesting properties. One important property of the De-
launay triangulation is that it is the unique triangulation that maximizes the
minimum angle in a grid formed from a fixed set of vertices. This property is
easy to see in two dimensions. (See Figure 16.10 for an example of another tri-
angulation that obviously lacks this property when compared to Figure 16.9.)
This property makes the Delaunay triangulation very useful in various fields
of scientific computation. For example, it is a good way to form a set of solu-
tion points for the numerical solution of partial differential equations. (This
is an “unstructured grid”.)

Another property of the Voronoi diagram and the associated Delaunay
triangulation in two dimensions is that a circle centered at a point where
three Voronoi tiles meet and that passes through the vertices of the Delaunay
triangle enclosing that point will not contain a vertex of any other triangle.
(There are possible degeneracies when multiple points are collinear, but the
property still holds when more than three tiles meet.) This property also holds
in higher dimensions for spheres and hyperspheres.

The Bowyer-Watson algorithm exploits this property for computing a De-
launay triangulation (Bowyer, 1981, Watson, 1981). Starting with d+1 points
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Fig. 16.10. Another Triangulation

and a simplex, the algorithm proceeds by recursive insertion of nodes. For each
new node:

1. Find any simplices whose circumscribed hyperspheres include the new
node.

2. Create a cavity by eliminating these simplices (if there are any).
3. Create the new set of simplices by connecting the new point to the nodes

that define this cavity.

This triangulation is relatively simple to implement in two dimensions, as
in the simple application of unstructured grids for the numerical solution of
partial differential equations. O’Rourke (1998) and Lee (1999a, 1999b) provide
general descriptions of computational methods for Delaunay triangulations as
well as other problems in computational geometry. Various programs for per-
forming the tessellations and other computations in d dimensions are available
at

www.geom.umn.edu/software/download/

Renka (1997) gives an algorithm for computing the Delaunay tessellation
on the surface of a sphere.

A special type of Voronoi tessellation is one in which the generators are
the centroids of the regions of the tessellation. This is called a centroidal
Voronoi tessellation. A centroidal Voronoi tessellation with k regions can be
formed by an iterative routine in which a random set of k generators is chosen,
the Voronoi tessellation is determined, and the centroids of the regions are
taken as generators for a new tessellation. The generators, which were the
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centroids of the previous tessellation, will not in general be the centroids of
the new tessellation, so the iterations are continued until a stopping criterion
is achieved. See Lloyd (1982) for descriptions and properties of the process.
Kieffer (1983) proved convergence of the process for a fairly restricted class of
problems. General convergence properties are open questions.

A tessellation of a finite point set, T , can be defined in terms of a tiling
over a continuous region. The points within a given tile form the finite set
of points within a given tessellation of the set T . A K-means clustering is a
centroidal Voronoi tessellation of a finite point set in which the means of the
clusters are the generators.

A minimal spanning tree (see page 538) can also be used to cluster by
tessellations, as shown in Figure 16.18 on page 547.

Meanings of Clusters; Conceptual Clustering

Identification of clusters in a dataset is usually only a small part of a larger
scientific investigation. Another small step toward the larger objective of un-
derstanding the phenomenon represented by the data is to characterize the
groups in the data by simple descriptions in terms of ranges of individual
variables. For the case of hierarchical clustering, decision trees may be an ef-
fective way of describing the clustering. A decision tree can be expressed as a
set of conjunctive rules that can aid in understanding the phenomenon being
studied. The rules that define classes can be formulated in terms of either
numerical or categorical variables. We consider this way of summarizing a
clustered dataset again on page 623.

If the intent of an analysis is interpretation or understanding of the phe-
nomenon that gave rise to the data, simplicity of the description of clusters
has great value, even if it is achieved at some cost in accuracy. If, on the other
hand, the objective is an ad hoc classification of the observations in a given
dataset, simplicity is not important, and often an algorithmic “black box” is
a more effective classifier (see Breiman, 2001).

We could formulate the clustering problem so that there are unobserved
categorical variables whose values range over a predetermined set. In this
situation, the observation x may be represented as

x = (xr, xc), (16.6)

as we have discussed on page 519, but we may not observe xc directly. We
may know, however, that xc ∈ C, where C is some given set of characteristics.

In another variation, we may have a set of characteristics of interest, C,
and wish to assign to each observation a variable xc that takes a value in our
previously identified set C. The set C may consist of rules or general character-
istics. The characteristics may be dependent on the context, as we discussed
on page 388. The set of characteristics of interest may include such things as
“lies on a straight line with negative slope”, for example. The data represented
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by triangles in the graph in the lower left of Figure 16.3 on page 517 would
have this characteristic, so all of those points are similar in that respect.

This kind of similarity cannot be identified by considering only pairwise
similarity measurements. Michalski (1980) and Michalski and Stepp (1983)
described methods for clustering using sets of characteristics, or “concepts”.
They called this approach conceptual clustering.

Fuzzy Clustering

Fuzzy set theory has been applied to clustering, as it has to most problems
that have a component of uncertainty. Instead of observations being grouped
into definite or “crisp” clusters, they are given membership probabilities. The
membership probability of the ith observation in the gth group is uig . The
memberships satisfy

0 ≤ uig ≤ 1

and
k∑

g=1

uig = 1 for all i = 1, . . . , n.

The quantity analogous to equation (16.3) in standard K-means clustering is

k∑

g=1

m∑

j=1

n∑

i=1

u2
ig

(
xij − x̄j(g)

)2
, (16.7)

where, as before, x̄j(g) is the mean of the jth element of the vectors xi that
are in the gth group. Because group membership is a weight, however,

x̄j(g) =
∑n

i=1 u2
igxij∑n

i=1 u2
ig

.

Clustering and Transformations of the Data

As we discuss on page 394, transformations on the data may change the rel-
ative values of measures of similarity. This, of course, affects any method of
analysis that depends on measures of similarity. A severe limitation of clus-
tering results from the dependence of the clusters on the scaling of the data.
In many data-analytic procedures, we perform various linear transformations
on the data, with predictable results on the analysis. For example, we often
perform a simple univariate standardization of the data by subtracting the
sample mean and dividing by the sample standard deviation. For the typical
data matrix X whose columns represent variables and whose rows represent
multivariate observations, we may standardize each variable by subtracting
the column mean from each value in the column and dividing by the stan-
dardization of the column. Doing this, however, affects the clustering, as seen
in Figure 16.11.
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Fig. 16.11. Cluster Trees; Raw Data and Standardized Data

The cluster trees in Figure 16.11 were produced with the following R com-
mands that first create a matrix of seven observations with five variables and
perform hierarchical clustering (using largest distances) and then standardize
the data univariately and perform the same hierarchical clustering. (As men-
tioned in Section 7.6, the same seed and rnorm function in R do not produce
the same data as in S-Plus. Also, there is no guarantee that the S-Plus code
executed on a different computer system will produce the same data.)

set.seed(3)
x <- matrix(rnorm(35),ncol=5)
plclust(hclust(dist(x)),axes=F,sub="",xlab="",ylab="")
# univariate standardization
standard <- function(vec) (vec-mean(vec))/sqrt(var(vec))
y<-apply(x,2,standard)
plclust(hclust(dist(y)),axes=F,sub="",xlab="",ylab="")

The dependence of the clustering on transformations of the data results
from the effect on the distance measures discussed in Section 9.2 beginning
on page 383. Whether one variable is measured in grams or kilograms affects
the relative distance of any one observation to the other observations. If all
variables in the dataset are of the same type (mass, say), it is easy to measure
them all in the same units; if some are of one type and some are of another
type, decisions on units are not as easy. These decisions, however, affect the
results of clustering. As we mentioned in Section 1.1 scaling induces artificial
structure. Cluster analysis is sensitive to artificial structure.

We also observe effects of transformations of the data on other structures
in the data, such as some we discuss in later sections.
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Transformations are useful in finding other types of structure in data, as
we will see in later sections. Even in the identification of clusters, transforma-
tions can help. The two clusters called “concentric circles” in Figure 16.3 on
page 517 could be identified easily using any of the clustering methods dis-
cussed in the section if the data were centered and then transformed to polar
coordinates. (Other methods for this kind of structure may involve “slicing”
the data.)

Clustering of Variables

There is a basic duality between the m “variables” and the n “observations”
of the dataset X . We have been discussing clustering of observational units.
Clustering observations is done by measures of distance, possibly scaled by S.
Consider reversing the roles of variables and observations. Suppose that we
wish to cluster the variables (that is, we wish to know which variables have
values that are strongly related to each other).

The relative values of the variables provide information on how similar
or dissimilar the observations are; conversely, the relative values of the mul-
tivariate observations provide information on the similarity of the variables.
Clustering of variables is conceptually and mechanically the same as clus-
tering of observations. Instead of an n × n matrix of dissimilarities between
observations, such as D in equation (9.20), we would use an m × m matrix
of association between variables, such as S in equation (9.8) or R in equa-
tion (9.11) on page 385.

There is one obvious difference in the variance-covariance matrix or the
correlation matrix and the dissimilarity matrix: Covariances and correlations
can be positive or negative. Positive and negative covariances or correlations
of the same magnitude, however, represent the same degree of association
between the variables, so instead of S or R, similar matrices with all elements
replaced by their absolute values are more useful for clustering variables. See
Soffritti (1999) for some comparisons of various ways of using these and other
measures of association for clustering variables.

Comparing Clusterings

As we have seen, various methods of clustering yield different results, and,
furthermore, the same method yields different results if the data have been
transformed. Which clustering is best cannot in general be determined by
analysis of data with no context. The purpose of the clustering, after all, is to
develop a better understanding of a phenomenon of which the data measure
various aspects. Nevertheless, it is instructive to develop numerical measures
of the agreement (or, equivalently, disagreement) of different clusterings of the
same dataset.

A two-way contingency table can be used to represent agreement of two
clusterings. (A p-way contingency table could be used to represent agreement
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of p clusterings.) If the classes of one clustering are denoted as C11, . . . , C1k1

and those of a second clustering as C21, . . . , C2k2 , a two-way table of the
numbers of units falling in the cells is constructed, as shown.

C11 . . . C1k1

C21 n11 . . . n1k1 n1•

...
. . .

...
C2k2 nk21 . . . nk2k1 nk2•

n•1 . . . n•k2 n

The labeling of the clusters is arbitrary. (In a classification problem, the clus-
ters correspond to classes, which are usually known and fixed, given the data.)

From the cluster trees shown in Figure 16.11, there appear to be two obvi-
ous clusters in the first clustering and three clusters in the second clustering.
If we identify the clusters from left to right in each tree (so that, for example,
the first cluster in the first tree contains the points 2, 5, and 7, and the first
cluster in the second tree contains the single point 3), we would have the table
below.

C11 C12

C21 0 1 1
C22 3 0 3
C23 0 3 3

3 4 7

The marginal totals are the counts for the corresponding clusters. The
numbers in the cells indicate the extent of agreement of the two clusterings.
Perfect agreement would yield, first of all, k1 = k2, and, secondly, a table in
which each column and each row contains only one nonzero value.

Rand (1971) suggested a measure of the agreement of two clusterings by
considering the number of pairs of points that are in common clusters. Of the
total of

(
n
2

)
pairs of points, each pair may be:

1. in the same cluster in both clusterings;
2. in different clusters in both clusterings;
3. in the same cluster in one clustering but in different clusters in the other

clustering.

Both the first and second events indicate agreement of the clusterings, and the
third indicates disagreement. Rand’s statistic is a count of the number of pairs
of the first and second types divided by the total number of pairs. This statistic
is obviously in the interval [0, 1], and a value of 0 indicates total disagreement
and a value of 1 complete agreement. Rand gave a method of computing the
total number of pairs of the first and second types by subtracting the count
of the number of the third type from the total:



16.1 Clustering and Classification 537

(
n

2

)
− 1

2

⎛

⎝
∑

i

n2
i• − 2

∑

i

∑

j

n2
ij +

∑

j

n2
•j

⎞

⎠ .

This can be seen by expanding (
∑

i

∑
j nij)2. Rand’s statistic therefore is

R = 1 −
∑

i n2
i• − 2

∑
i

∑
j n2

ij +
∑

j n2
•j

n(n − 1)
. (16.8)

For the two clusterings shown in Figure 16.11, with two clusters in the first
clustering and three clusters in the second, we see that the count of agreements
is 18; hence, Rand’s statistic is 6/7.

Statistical significance may be determined in terms of the distribution of
such a statistic given random clusterings. Hubert and Arabie (1985) studied
and modified Rand’s measure to account for the expected values of random
clusterings. Their statistic is

RHA =
∑

i

∑
j

(
nij

2

)
−
∑

i

(
ni•
2

)∑
j

(
n•j

2

)
/
(
n
2

)
(∑

i

(ni•
2

)
+
∑

j

(n•j

2

))
/2 −

∑
i

(ni•
2

)∑
j

(n•j

2

)
/
(n
2

) , (16.9)

where the sums over i go to k1 and the sums over j go to k2. In practice, the
statistical significance of such a comparison of two observed clusterings would
be approximated by use of a few randomly formed clusterings.

An interesting problem that has received very little attention is to develop
methods for drawing cluster trees to facilitate comparisons of clusterings.

There have been and will continue to be a multitude of Monte Carlo studies
assessing the performance of various clustering procedures in various settings.
The difficulty in making a simple statement about the performance of clus-
tering methods arises from the multitude of possible clustering patterns.

Computational Complexity of Clustering

The task of identifying an unknown number of clusters that are distinguished
by unknown features is an exceedingly complex problem. In practical cluster-
ing methods, there are generally trade-offs between how clusters are defined
and the algorithm used to find the clusters. In the hierarchical clustering algo-
rithms, the algorithm dominates the approach to the problem. In those hierar-
chical clustering methods, the definition of clusters at any level is merely what
results from a specified algorithm. After the O(mn2) computations to compute
the distance matrix, the algorithm requires only O(n) computations. As we
have discussed, identification of clusters may involve concepts and iterations
requiring human interactions. Even with a fixed algorithm-based approach,
however, the method is computationally intensive.

K-means clustering begins with a reasonable definition of clusters, assum-
ing a known number of clusters. Even with the simplifying assumption that the
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number of clusters is known, the definition of clusters requires a very compu-
tationally intensive algorithm. Just to compute the objective function (16.3)
on page 521 for a given trial clustering requires kmn computations. A trial
clustering is defined by a permutation of the n data elements together with a
choice of k nonnegative integers ng such that

∑
ng = n. Clearly, the number

of computations required to satisfy the definition of clusters, even under the
assumption of a known number of clusters, is often not acceptable.

Development of clustering algorithms that are feasible for large datasets
is an important current activity.

16.2 Ordering and Ranking Multivariate Data

For univariate data, many nonparametric methods and methods of comparing
distributions use ranks of the data. Many of these methods, such as q-q plots,
tests for equality of distributions of two samples, and nonparametric regres-
sion can be extended to multivariate data once there are meaningful ways of
ranking the data, such as by minimal spanning trees. The rankings can also
be used for systematically exploring graphical projections of the data such as
in a grand tour.

The concept of order or rank within a multivariate dataset can be quite
complicated. (See Barnett, 1976, and Eddy, 1985, for general discussions of
the problem.) The simple approach of defining a “sort key” that consists of a
priority ordering of the variables to use in ranking the data is not very useful
except in simple, well-structured datasets.

Ranking of a multivariate dataset means among other things that we iden-
tify exactly one “first” and one “last” in the data. We may decide that the
first and last are both on the “outside” boundary of the data, and so from
one extreme to the other, the rankings pass through the central portion of
the data. This extreme ranking is the natural way we rank univariate ordinal
data, which, of course, has a natural “smallest” and “largest” element. In
the multivariate case, there may be natural extremes, but sometimes which
extreme is smallest and which is largest may be arbitrary. Another way of
thinking of the first and last is in terms of “most central” first (or last), and
“farthest out” as last (or first). This is a radial ranking, and is rarely used in
ordering univariate data, but for multivariate data it may be the most useful
way of ranking the data.

In this section, we will describe three approaches to ranking multivariate
data. They are based on minimal spanning trees, on convex hulls, and on
data clusters. Each general approach may yield different rankings depending
on how the extremes are identified.

Minimal Spanning Trees

A spanning tree for a graph is a tree subgraph that contains all nodes of
the given graph. A spanning tree is not necessarily rooted. A useful graph of
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observations is the spanning tree whose edges have the least total distance.
This is called a minimal spanning tree, or MST. It is obvious that the number
of edges in a minimal spanning tree would be one less than the number of
nodes. A minimal spanning tree may not be unique.

A minimal spanning tree can be used to determine an ordering of the
data so that the total distance between successive observations is least. This
ranking, which would start at one extreme of the data and move to the other
extreme, is in the spirit of the definition of the tree. Another ranking is a radial
ranking in which the next element in the ranking has the smallest maximum
distance to any of the remaining (unranked) elements.

Kruskal (1956) gave the method shown in Algorithm 16.1 for forming a
minimal spanning tree. The set of all edge distances should first be put into
a minimum heap so that the updating can proceed more rapidly.

Algorithm 16.1 Formation of a Minimal Spanning Tree T from a
Connected Graph with n Nodes and with Edge Distances in H

0. Set T = Ø (the empty set), and set k = 0.
1. Choose the edge e from H with shortest distance.
2. Remove e from H .
3. If e does not create a cycle in T , then add e to T and set k = k + 1.
4. If k < n − 1, go to step 1.

It is easy to see that the problem of determining an MST is O(n2) and
Algorithm 16.1 is of that order. This is prohibitive for large datasets. Bentley
and Friedman (1978) described an algorithm to approximate an MST that is
O(n log n).

A tree that connects observations with nearby ones helps us to understand
the distribution of the observations and to identify clusters of observations
and outlying observations. The number of edges in the longest path starting
at any node is called the eccentricity of that node or observation. The node
most distant from a given node is called an antipode of the node, and the path
between a node with greatest eccentricity and its antipode is called a diameter
of the tree. The length of such a path is also called the diameter. (This word
also carries both meanings in the familiar context of a circle.) A node with
minimum eccentricity is called a center node or a median.

Minimal spanning trees have a variety of uses in multivariate analysis. A
related problem is to determine the shortest path between two given nodes.
An algorithm to determine the shortest path, called Dijkstra’s algorithm, is
described in Horowitz, Sahni, and Rajasekaran (1998), for example.

In the following few pages, we will use a simple bivariate dataset for illus-
trations. The dataset is shown in Table 16.2. A plot of the data and a minimal
spanning tree for this simple bivariate dataset is shown in Figure 16.12. In
most cases, when we display this dataset we will suppress the scales on the
axes.

The median of the tree shown in the right-hand plot in Figure 16.12 is
observation number 6 (as labeled in the left-hand plot in Figure 16.12).
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Table 16.2. Dataset for Illustrations

Obs.
Number x1 x2

1 10 66
2 19 52
3 8 88
4 37 25
5 66 75
6 53 55
7 89 76
8 73 91
9 21 32

10 12 23
11 29 41
12 86 65
13 91 81
14 42 23
15 36 38
16 90 85
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Fig. 16.12. A Scatter Plot of the Bivariate Dataset (Table 16.2) and a Minimal
Spanning Tree for It

Although we cannot produce a useful visual graph of an MST in higher
dimensions, the concept carries through, and the same algorithm applies.
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Ranking Data Using Minimal Spanning Trees

Friedman and Rafsky (1979a, 1979b) defined a method for sorting multivariate
observations based on a minimal spanning tree. The procedure is to define a
starting node at an endpoint of a tree diameter and then to proceed through
the tree in such a way as to visit any shallow subtrees at a given node before
proceeding to the deeper subtrees. For the tree shown in the right-hand plot
in Figure 16.12, for example, if we choose to begin on the right of the tree,
the next seven nodes are in the single path from the first one. Finally, at the
eighth node, we choose the shallow subtree for the ninth and tenth nodes.
The eleventh node is then the other node connected to the eighth one. This
ordering is shown in Figure 16.13.

x1

x 2

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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(11)

(12)

(13)

(14)

(15)

(16)

Fig. 16.13. Extreme Ranking of the Dataset Using the MST

A radial ranking of the dataset is shown in Figure 16.14. The first element
is the most central, as determined by the interpoint distances of the MST, and
the last element is the most extreme. Notice, as expected, the most extreme
radially is one of the extremes in the extreme ranking of Figure 16.13. In that
case, it was chosen as the “first” element. The “last” element in Figure 16.13
is the next to last in the radial ranking, as we should expect if the “first”
element in Figure 16.13 is the last in the radial ranking. There is a certain
amount of arbitrariness in “first” and “last”.

There are several other ways of using a graph to define a sequence or
ranking of multivariate data. A connected acyclic graph that contains only one
path would be a reasonable possibility. (A cyclic path that includes every node
exactly once is called a “Hamiltonian circuit”.) Such a graph with minimal
diameter is the solution to the traveling salesperson problem. The traveling
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Fig. 16.14. Radial Ranking of the Dataset Using the MST

salesperson problem is computationally more complex than determining the
minimal spanning tree.

Ranking Data Using Convex Container Hulls

Another way to order data is by convex hull peeling. The idea behind convex
hull peeling, which is due to John Tukey, is that the convex hull of a dataset
identifies the extreme points, and the most extreme of these is the one whose
removal from the dataset would yield a much “smaller” convex hull of the
remaining data. In two dimensions, convex hull peeling takes as the most
extreme observation the one on the convex hull with the smallest angle. Next,
the convex hull of all remaining points is determined, and the second most
extreme observation is the one on this convex hull with the smallest angle.
This process continues until a total ordering of all observations is achieved.
The first few steps are shown in Figure 16.15. The ordering by convex hull
peeling tends to move around the edges of the set of points, often similar to
the radial ordering in a minimal spanning tree. Notice that the three largest
observations identified by convex hull peeling are all among the six largest
identified by the MST radial ordering shown in Figure 16.14.

Various programs for computing convex hulls and other problems in com-
putational geometry are available at the site,

www.geom.umn.edu/software/download/

The convex hull of a two-dimensional dataset is particularly easy to compute.
Instead of a convex hull, formed by planes, we may consider a smoothed

figure such as an ellipsoid with minimum volume. Hawkins (1993a), Cook,
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Fig. 16.15. Ordering of the Dataset (Table 16.2) by Peeling the Convex Hull

Hawkins, and Weisberg (1993), and Woodruff and Rocke (1993) give algo-
rithms for computing the minimum-volume ellipsoid. The algorithms in the
last reference include various heuristic combinatorial algorithms, such as simu-
lated annealing, genetic algorithms, and tabu searches. The minimum-volume
ellipsoid that contains a given percentage of the data provides another way
of ordering the points in a multivariate dataset. It would be expected to pro-
duce a very similar ranking as that resulting from peeling a convex hull. The
convex hull algorithms are generally faster than those for minimum-volume el-
lipsoids, and so would probably be a better choice for very large datasets (that
is, datasets with very large numbers of observations or very large numbers of
variables).

Ranking Data Using Location Depth

A peeled convex hull or an ellipsoid containing a given percentage of data
provides an ordering of the data from the outside in. Another approach to
ordering data is to begin in the inside — that is, at the densest part of the
data— and proceed outward. For bivariate data, John Tukey introduced the
concept of halfspace location depth for a given point xc relative to the dataset
X whose rows are in IR2. The halfspace location depth, dhsl(xc, X), is the
smallest number of xi contained in any closed halfplane whose boundary
passes through xc. The halfspace location depth is defined for datasets X
whose rows are in IRm by immediate extension of the definition for the bivari-
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ate case. Figure 16.16 shows some halfspaces defined by lines, together with
the counts of points on either of the lines.
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Fig. 16.16. Halfplanes that Define Location Depths in the Dataset (Table 16.2)

There are 15 possible pairs of counts for each point in Figure 16.16 (no
three points in this dataset are collinear). Some halfplanes for which point A
lies on the boundary contain as few as six points (one such halfplane is shown
in the figure), but all contain at least six points. Thus,

dhsl(a, X) = 6.

Of all the points in this dataset, a has the greatest halfspace location depth.
The halfspace location depth of point b, dhsl(b, X), for example, is 4. The
halfplane shown in Figure 16.16 with point b on the boundary contains five
points. A clockwise rotation of that boundary line yields a halfplane containing
four points.

The halfspace location depth provides another way of ordering the data.
There are generally many ties in this ordering.

Rousseeuw and Ruts (1996) provide an algorithm for computing the half-
space location depth for bivariate data. (See also Ruts and Rousseeuw, 1996,
who discuss contours of regions with equal location depth.)

Ordering by location depth emphasizes the interior points, whereas convex
hull peeling emphasizes the outer points. The outer points have a halfspace
location depth of 0, and generally the first few points removed in convex hull
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peeling, such as points 15 and 16 in Figure 16.15, have a location depth of 0.
The point that is removed next, however, has a location depth of 1, whereas
there are other points in the dataset with location depths of 0.

If a single point has a greater location depth than any other point in
the dataset, the point is called the depth median. If multiple points have the
largest location depth of any in the dataset, the depth median is the centroid
of all such points.

The depth median of the dataset shown in Figure 16.16 is the point labeled
“a”. That is the same as observation number 6 as labeled in the left-hand plot
in Figure 16.12 (page 540), which was the median of the minimal spanning
tree shown in the right plot in Figure 16.12.

Determination of the depth median is computationally intensive. Rousseeuw
and Ruts (1998) give an algorithm for computing the depth median in a bivari-
ate dataset, and Struyf and Rousseeuw (2000) give an approximate algorithm
for higher-dimensional data.

There are other ways of defining data depth. One approach is to define a
measure of distance of depth based on maximal one-dimensional projections.
This measure can be used to order the data, and it is also useful as an in-
verse weight for robust estimators of location and scale. It is computationally
intensive, and most methods in use depend on sampling of the data.

Ordering by Clustering

Clustering also provides a way of ordering or, especially, of partially ordering
data. The ordering that arises from clustering, whether divisive or agglomer-
ative, however, depends on local properties, and a global ordering is difficult
to identify. A hierarchical clustering of the data in Table 16.2 is shown in
Figure 16.17. The ordering, or partial ordering, would be from left to right
(or from right to left) along the leaves of the tree. Comparison of the cluster
tree with the scatter plot in Figure 16.12 (page 540) shows how nearby points
are grouped first. In this dataset, the points closest together are on the pe-
riphery of the data cloud. For a cloud of points that is concentrated around
the median, as is perhaps more common, the central points would be grouped
first.

Clustering by Ordering

The ordering of the data by the minimal spanning tree can be used to cluster
the data. The minimal spanning tree shown in Figure 16.12 can be used to
form the clusters indicated in Figure 16.18. The clusters are formed by a
tessellation formed by boundaries perpendicular to the longer edges in the
MST.

As it turns out, the four clusters shown in the MST correspond to the
four clusters formed by the hierarchical clustering shown in Figure 16.17. It
is not always the case that a clustering can be formed by simple cuts of the
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Fig. 16.17. Hierarchical Clustering of the Dataset (Table 16.2)

branches of a minimal spanning tree to correspond to the clustering formed
by a particular hierarchical algorithm.

Nearest Neighbors and k-d-Trees

For a given observation, xi, we may want to find its “nearest neighbor”, xk ,
where we define a nearest neighbor as one for which some function, f(xi, xk),
is minimized. For example, f may be the square of the Euclidean distance,

m∑

j=1

(xij − xkj)2.

To search bivariate data for a point that is close in Euclidean distance to
a given point, a quad tree is useful (see Knuth, 1973).

For the more general problem of finding nearest neighbors in multivariate
data, a k-d-tree developed by Friedman, Bentley, and Finkel (1977) may be
more useful. A k-d-tree is a multivariate form of a B-tree; see Bentley and
Friedman (1979).

Consider an n × m data matrix X in which columns represent variables
and rows represent observations. A k-d-tree for X is defined by two arrays, v,
which contains indicators of the variables to be used as discriminators, and
p, which contains values of the corresponding variables to be used in forming
partitions. Let b be the maximum bucket size (that is, the largest number of
elements to be left at a terminal node).
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Fig. 16.18. Clustering Using the MST of the Dataset (Table 16.2)

Algorithm 16.2 Formation of a k-d-Tree

0. Set l = 1 and h = n.
1. Let k = ⌊(l + h)/2⌋.
2. Let vk be the column number with maximum spread.
3. Let pk be the median in the range [l, h] of the vth

k column.
4. Interchange the rows of X so that all rows of X with values in the vth

k
column less than or equal to pk occur before (or at) the kth element.

5. If k − l > b, then form a submatrix with h = k.
If h−k− l > b, then form a submatrix with l = k+1 (with h as in step 4).
Process steps 1 through 4 for each submatrix formed and then return to
step 5.

Although trees are used often at a lower level, there is not much software
available at the user level to form trees. The IMSL Fortran routine QUADT
builds a k-d-tree and the routine NGHBR uses a k-d-tree to find nearest neigh-
bors.

Murtagh (1984) provides a comparative review of algorithms for computing
nearest neighbors.

Ordering and Ranking of Transformed Data

Minimal spanning trees depend on relative distances between points, so, as we
would expect, the minimal spanning tree and any ordering based on it may
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be different if the data are transformed. Likewise, of course, orderings based
on clustering may be changed by transformations of the data.

An important property of convex hulls and the depth of data is that they
are not affected by affine transformations.

16.3 Linear Principal Components

In addition to clusters and orderings in data, other types of interesting struc-
ture are lower-dimensional relationships in the data. The information in ob-
servations that consist of m components may be adequately represented by
transformed observations consisting of a smaller set of k components. This
reduction in the dimension of the data may allow a reduction in the storage
requirements, but, more importantly, it may help in understanding the data.
Dimension reduction is useful in identifying structure in the data and also in
discovering properties that the data do not measure directly. We may wish to
extract features in the data that have been obscured by measurement error
or other sources of noise.

A basic tenet of data analysis is that variation provides information, and
an important approach in statistics is the analysis of variation. When many
variables are present, however, it is often difficult to identify individual effects,
so it may be useful to reduce the number of variables.

Another basic tenet is that covariance among a set of variables reduces
the amount of information that the variables contain. We therefore seek to
combine variables in such a way that their covariance is reduced or, more
generally, that they are independent. For normal variables, of course, zero
covariance is equivalent to independence.

The basic problem therefore is to transform the observed m-vectors x into
k-vectors x̃ that, as a set, exhibit almost as much variation as the original set
and are mutually independent or “almost” so.

Because of differences in the meanings of the variables, it is best first to
standardize the data using the transformation (9.22)

XS = (X − X) diag(1/
√

sii),

where X is the matrix whose constant columns contain the means of the
corresponding columns of X , and √

sii is the sample standard deviation of
the ith column of X .

There are various ways of combining a set of variables into a smaller set
(that is, of transforming m-vectors into k-vectors). One of the simplest meth-
ods is to use linear transformations. If the linear transformations result in new
variables that are orthogonal (that is, if they have zero sample correlation),
and if the data are multivariate normal, then the new variables are indepen-
dent. The linear combinations are called “principal components”, “empirical
orthogonal functions” or “EOF” (especially in meteorology and atmospheric
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research), “latent semantic indices” (especially in information retrieval), “fac-
tors” (especially in the social sciences), Karhunen-Loève transforms (especially
in signal analysis), or “independent components” (also in signal analysis).

There are some differences among and within these methods. The differ-
ences have to do with assumptions about probability distributions and with
the nature of the transformations. In factor analysis, which we discuss in Sec-
tion 16.4, a rather strong stochastic model guides the analysis. In independent
components analysis, rather than seeking only orthogonality, which yields zero
correlations, and hence independence for normal data, transformations may
be performed to yield zero cross moments of higher order. (Correlations are
cross moments of second order.) Independent component analysis, therefore,
may involve nonlinear transformations. Any of the methods mentioned above
may also utilize nonlinear combinations of the observed variables.

Linear principal components analysis (PCA) is a technique for data reduc-
tion by constructing linear combinations of the original variables that account
for as much of the total variation in those variables as possible. We discuss
this method first.

The Probability Model Underlying Principal Components Analysis

Linear principal components is a method of “decorrelating” the elements of a
vector random variable. The method depends on the variances of the individ-
ual elements, so it is generally best to perform transformations as necessary
so that all elements have the same variance. In addition and without loss of
generality, it is convenient to subtract the mean of each element of the ran-
dom variable. The transformed vector is thus standardized so that the mean
of each element is 0 and the variance of each element is 1.

Consider an m-vector random variable Y with variance-covariance matrix
Σ, which has 1’s along the diagonal. We will refer to the elements of the
random variable as “variables”. We seek a transformation of Y that produces
a random vector whose elements are uncorrelated; that is, we seek a matrix
W with m columns such that V(WY ) is diagonal. (Here, V(·) is the variance.)
Now,

V(WY ) = WΣWT,

so the matrix W must be chosen so that WΣWT is diagonal.
The obvious solution is to decompose Σ:

Σ = WTΛW. (16.10)

The spectral decomposition of the variance-covariance matrix is

Σ =
m∑

k=1

λkwkwT
k , (16.11)

with the eigenvalues λk indexed so that 0 ≤ λm ≤ · · · ≤ λ1 and with the wk

orthonormal; that is,
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I =
∑

k

wkwT
k .

Now, consider the random variables

Ỹ(k) = wT
k Y,

which we define as the principal components of Y .
The first principal component, Ỹ(1), is the projection of Y in the direction

in which the variance is maximized; the second principal component, Ỹ(2), is
the projection of Y in an orthogonal direction with the largest variance; and
so on.

It is clear that the variance of Ỹ(k) is λk and that the Ỹ(k) are uncorrelated;
that is, the variance-covariance matrix of the random vector (Ỹ(1), . . . , Ỹ(m))
is diag(λ1, . . . ,λm). Heuristically, the kth principal component accounts for
the proportion

λk∑
λj

of the “total variation” in the original random vector Y .
The linear combinations Ỹ(k) that correspond to the largest eigenvalues

are most interesting. If we consider only the ones that account for a major
portion of the total variation, we have reduced the dimension of the original
random variable without sacrificing very much of the potential explanatory
value of the probability model. Thus, using only the p largest eigenvalues,
instead of the m-vector Y , we form the transformation matrix W as

W =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wT
1

wT
2

...

wT
p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This produces the p-vector Ỹ = (Ỹ(1), . . . , Ỹ(p)).
The matrix

Σp =
p∑

k=1

λkwkwT
k (16.12)

is the variance-covariance matrix of Ỹ .
Eckart and Young (1936) proved an interesting fact about Σp as an ap-

proximation to Σ. It is the matrix of rank p closest to Σ as measured by the
Frobenius norm,

∥Σ −Σp∥F.
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Although all of the statements above are true for any distribution for
which the first two moments exist, the properties of the principal components
are even more useful if the underlying random variable Y has a multivariate
normal distribution. In this case, the principal components vector Ỹ also has
a multivariate normal distribution, and the elements of Ỹ are independent.

Principal Components Analysis of Data

In the basic multivariate data structure of X , we often consider the rows to be
realizations of some multivariate random variable, such as Y in the discussion
above. Because of differences in the meanings of the variables in the data ma-
trix X , it is best first to standardize the data using the transformation (9.22)
on page 392:

XS = (X − X) diag(1/
√

sii).

In the following, we will assume that this has been done. We will assume that
X has been standardized and not continue to use the notation XS.

Using S as an estimate of Σ, we can perform a principal components
analysis of the data that follows the same techniques as above for a random
variable. We determine the spectral decomposition of S just as we did for Σ
in equation (16.11):

S =
∑

j

λ̂jŵj ŵ
T
j . (16.13)

The principal components of the vector of observed variables x are

x̃(j) = ŵT
j x. (16.14)

Corresponding to the generic data vector x is the generic vector of principal
components,

x̃ = (x̃(1), . . . , x̃(m)). (16.15)

For each observation xi, we can compute a value of the principal components
vector, x̃i. From the spectral decomposition that yields the principal com-
ponents, it is easy to see that the sample variance-covariance matrix of the
principal components is diagonal.

Figure 16.20 shows the marginal distributions of the elliptical data cloud
shown in Figure 16.19 in the original coordinates x1 and x2 and in the coor-
dinates of the principal components z1 and z2.

The first principal component is the hyperplane that minimizes the orthog-
onal distances to the hyperplane as discussed on page 610, and illustrated in
Figure 17.3.

The principal components are transformations of the original system of
coordinate axes. It is difficult to relate any of the new axes to the old axes,
however. To aid in their interpretability, Hausman (1982) suggests a con-
strained PCA in which each principal component is approximated by a linear
combination of the original axes with coefficients of the combination being +1,
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Fig. 16.19. Principal Components of Some Bivariate Data

−1, or 0. Presumably, a combination in which the original variables are just
added or subtracted is easier to interpret in terms of the quantities measured
by the original variables.

In the same spirit, Vines (2000) and Jolliffe and Uddin (2000) describe
methods to determine “simple components”. In Vines’s approach, “simplicity
preserving” transformations—that is, linear combinations with integer coef-
ficients (but not just +1, −1, or 0)— are applied sequentially in such a way
that the combination with the largest variance has a larger variance than that
of the original variable with the largest variance. The allowable combinations
result from a fixed set of coefficients or from a rule that defines allowable coef-
ficients. After fixing that combination as the first simple component, another
simple component is chosen similarly. There are several different criteria that
could be applied to determine the order of all of the transformations, and
more studies are needed to evaluate various ways of proceeding. Of course,
underlying any decision on the exact algorithm is the question of what is a
“simple” component.
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Fig. 16.20. Univariate Histograms of the Original Coordinates and the Principal
Components

In the method of Jolliffe and Uddin (2000), instead of choosing a pri-
ori a set of allowable combinations, a penalty function is used to push the
combinations, which are determined sequentially, toward simplicity. Jolliffe,
Trendafilov, and Uddin (2003) carried this idea further by using a regulariza-
tion similar to that in lasso (see page 608) to drive some of the ŵj to zero, so
that the corresponding original variables are no longer in the picture.

Dimension Reduction by Principal Components Analysis

We can reduce the dimension of the data by considering the transformed
variables x̃(i), each of which is a vector formed using the eigenvectors cor-
responding only to the p largest eigenvalues. As before, we form the p × m
transformation matrix Ŵ ,
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Ŵ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŵT
1

ŵT
2

...

ŵT
p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For the ith observation xi, this produces the p-vector x̃i = (x̃i(1), . . . , x̃i(p)).
The application of this transformation matrix is often called the (discrete)
Karhunen-Loève transform in signal analysis after independent work by K.
Karhunen and M. Loève in the late 1940s or the Hotelling transform after the
work of H. Hotelling in the 1930s.

Choosing p

The question arises, naturally, of how to choose p. This is the question of
how much we can reduce the dimensionality of the original dataset. A simple
approach that is often employed is to choose p as the number of the ranked
eigenvalues just prior to a large gap in the list. For example, if m = 6 and
the eigenvalues are 10.0, 9.0, 3.0, 2.5, 2.1, and 2.0, a logical choice of p may
be 2, because of the large decrease after the second eigenvalue. A plot of
these ordered values or of the values scaled by their total may be useful in
identifying the point at which there is a large dropoff in effect. Such a plot,
called a scree plot, is shown as the left-hand plot in Figure 16.21. The scree
plot can be either a line plot as in the figure or a bar chart in which the
heights of the bars represent the relative values of the eigenvalues. The key
feature in a scree plot is an “elbow”, if one exists. A plot of the accumulated
“total variation” accounted for by the principal components, as shown in the
right-hand plot in Figure 16.21, may also be useful.

The effect of each of the original variables (the elements of x) on each
principal component is measured by the correlation between the variable and
the principal component. This is called the “component loading” of the vari-
able on the principal component. The component loading of the jth variable
on the kth principal component is the correlation

wkj

√
λ̂k√

sjj
.

(Note that wkj is the jth element of the kth eigenvector.)

Principal Components and Transformations of the Data

As we mentioned at the outset, variation provides information. Variables with
large sample variances will tend to predominate in the first principal compo-
nent. Consider the extreme case in which the variables are uncorrelated (that
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Fig. 16.21. Scree Plot of Scaled Eigenvalues and Plot of Proportion of “Total
Variance”

is, in which S is diagonal). The principal components are determined exactly
by the variances, from largest to smallest. This is a natural and desirable
consequence of the fact that variation provides information. In principal com-
ponents analysis, the relative variation from one variable to another is the
important factor in determining the rankings of the components. It is diffi-
cult, however, to measure the relative variation from one variable to another.
The variance of a variable depends on the units of measurement. Suppose that
one variable represents linear measurements in meters. If, for some reason, the
unit of measurement is changed to centimeters, the effect of that variable in
determining the principal components will increase one hundredfold.

The component loadings can help in understanding the effects of data
reduction through principal components analysis. Notice that the component
loadings are scaled by the square root of the variance. Another approach
to scaling problems resulting from the choice of unit of measurement is to
use the correlation matrix, R (see equation (9.11)), rather than the variance-
covariance matrix. The correlations result from scaling the covariances by the
square roots of the variances. The obvious should be noted, however: The
principal components resulting from the use of R are not the same as those
resulting from the use of S.

Change of units of measurement is just one kind of simple scaling trans-
formation. Transformations of any kind are likely to change the results of
a multivariate analysis, as we see, for example, in the case of clustering on
page 533. As we mentioned in Section 1.1 scaling induces artificial structure.
Principal component analysis is sensitive to artificial structure.
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Principal Components of Observations

Just as in Section 16.1, on page 535, we observed the basic symmetry between
the “variables” and the “observations” of the dataset X , we can likewise re-
verse their roles in principal components analysis. Suppose, for example, that
the observational units are individual persons and the variables are responses
to psychological tests. Principal components analysis as we have described it
would identify linear combinations of the scores on the tests. These princi-
pal components determine relationships among the test scores. If we replace
the data matrix X by its transpose and proceed with a principal compo-
nents analysis as described above, we identify important linear combinations
of the observations that, in turn, identify relationships among the observa-
tional units. In the social sciences, a principal components analysis of vari-
ables is called an “R-Type” analysis and the analysis identifying relationships
among the observational units is called “Q-Type”.

In the usual situation, as we have described, the number of observations,
n, is greater than the number of variables, m. If X has rank m, then the
variance-covariance matrix and the correlation matrix are of full rank. In a
reversal of the roles of observations and variables, the corresponding matrix
would not be of full rank. Of course, the analysis could proceed mechanically
as we have described, but the available information for identifying meaningful
linear combinations of the observations would be rather limited. This problem
could perhaps be remedied by collecting more data on each observational unit
(that is, by defining and observing more variables).

Principal Components Directly from the Data Matrix

Formation of the S or R matrix emphasizes the role that the sample covari-
ances or correlations play in principal component analysis. However, there is
no reason to form a matrix such as (X − X)T(X − X), and indeed we may
introduce significant rounding errors by doing so.

The singular value decomposition (SVD) of the n×m matrix X−X yields
the square roots of the eigenvalues of (X −X)T(X −X) and the same eigen-
vectors. (The eigenvalues of (X−X)T(X−X) are (n−1) times the eigenvalues
of S.) We will assume that there are more observations than variables (that
is, that n > m). In the SVD of the centered data matrix, we write

X − X = UAV T,

where U is an n×m matrix with orthogonal columns, V is an m×m orthogonal
matrix, and A is an m × m diagonal matrix with nonnegative entries, called
the singular values of X − X.

The spectral decomposition in terms of the singular values and outer prod-
ucts of the columns of the factor matrices is

X − X =
m∑

i=1

σiuiv
T
i . (16.16)
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The vectors ui, called the “left eigenvectors” or “left singular vectors” of X −
X, are the same as the eigenvectors of S in equation (16.13). The vectors vi,
the “right eigenvectors”, are the eigenvectors that would be used in a Q-type
principal components analysis. The reduced-rank matrix that approximates
X −X is

X̃p =
p∑

i=1

σiuiv
T
i (16.17)

for some p < min(n, m).

Computational Issues

For the eigenanalysis computations in PCA, if the sample variance-covariance
matrix S is available, it is probably best to proceed with the decomposition of
it as in equation (16.13). Because the interest is generally only in the largest
eigenvalues, the power method (see Gentle, 2007, Section 7.2) may be the best
method to use. If S is not available, there is generally no reason to compute
it just to perform PCA. The computations to form S are O(m3). Not only do
these computations add significantly to the overall computational burden, but,
as we see from inequality (5.18), on page 208, S is more poorly conditioned
than X (or X − X). The SVD decomposition (16.16) is therefore the better
procedure.

Artificial neural nets have been proposed as a method for computing the
singular values in equation (16.16). A study by Nicole (2000), however, indi-
cates that neural nets may not perform very well for identifying any but the
first principal component.

PCA for Clustering

An objective of principal components analysis is to identify linear combina-
tions of the original variables that are useful in accounting for the variation
in those original variables. This is effectively a clustering of the variables. For
many purposes, these derived features carry a large amount of the information
that is available in the original larger set of variables. For other purposes, how-
ever, the principal component may completely lose the relevant information.
For example, the information carried by the smaller set of features identified
in PCA may be useless in clustering the observations. Consider the bivariate
dataset in Figure 16.22. There are two clusters in this dataset, each of which
appears to be a sample from an elliptical bivariate normal distribution with a
small positive correlation. The two clusters are separated by a displacement of
the mean of the second component. The two principal components are shown
in Figure 16.22. As would be expected, the first principal component is in the
direction of greater spread of the data, and the second principal component
is orthogonal to the first.



558 16 Statistical Learning and Data Mining

−20 −10 0 10 20

−
2
0

−
1
0

0
1
0

2
0

x1

x 2

Fig. 16.22. Principal Components of a Bivariate Dataset with Two Clusters

The first principal component contains no information about the clusters
in the data. Figure 16.23 shows histograms of the data projected onto the two
principal components. The second principal component carries information
about the two clusters, but the first principal component appears to be a
single normal sample.

Principal components analysis emphasizes the direction of maximum vari-
ation. If the main source of variation in the dataset is the variation between
clusters, then PCA will identify the clusters. This is not always the case, and
the principal component may not lie in the most informative direction. Other
techniques, such as projection pursuit (see Section 16.5), seek projections of
the data in directions that exhibit other interesting structure, such as the bi-
modality in the direction of the second principal component in this example.

Robustness of Principal Components

As we have mentioned above, outlying observations or (nearly) collinear vari-
ables can present problems in data analysis. Principal components is one way
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Fig. 16.23. Histograms of Projections of Bivariate Dataset onto the Two Principal
Components

of dealing with collinear variables. These variables have large correlations
among themselves. The dimension of the space of principal components will
likely be reduced so that all variables that are collinear with each other are
replaced by a single variable.

Outlying observations, however, may have a major effect on the principal
components analysis. The first few principal components are very sensitive to
these outlying observations. If the outliers were not present, or if they were
perturbed slightly, a different set of the first few principal components would
likely result.

There are generally two ways of dealing with outlying observations. One
way is to identify the outliers and remove them temporarily. Another way is
to use methods that are not much affected by outliers. Use of a robust sample
variance-covariance, SR, in equation 9.25 on page 395 will yield principal
components that are less affected by outliers than those resulting from the
usual sample variance-covariance, S.

If outliers can be identified and removed temporarily, a standard analysis
can be performed. This identification, removal, and analysis procedure can
be applied in stages. The major problem, of course, is that as extreme ob-
servations are removed, the variability in the dataset is reduced, so other,
valid observations are more likely to appear as outliers. In general, a data
analyst must assume that every observation carries useful information, and
no observation must be discarded until its information is incorporated into
the analysis.

For purposes of PCA, outliers can be identified in a preliminary step using
a clustering procedure or even by using Q-type principal components analysis.
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Caroni (2000) describes a way of using the robust PCA based on SR to identify
outliers.

16.4 Variants of Principal Components

Factor Analysis

Factor analysis is mechanically similar to principal components analysis. The
main differences involve the probability model. Our discussion of factor analy-
sis will be brief.

The Probability Model Underlying Factor Analysis

In factor analysis, we begin with a model that relates a centered m-vector
random variable Y (observable) to an underlying, unobservable k-vector ran-
dom variable, whose elements are called “factors”. The factors have a mean
of 0. In this model, the observable vector Y consists of linear combinations
of the factors plus an independent random vector of “unique errors”, which
is modeled by a random variable with a mean of 0. The unique errors are
independent of the factors. Now, letting F represent the vector of factors and
E represent the errors, we have

Y − µ = ΓF + E, (16.18)

where µ is the mean of Y and Γ is an m × k fixed (but unknown) matrix,
called the “factor loadings” matrix. Generally, the number of factors is less
than the number of the observable variables. In some applications, such as in
psychology, the factors may be related to some innate characteristics that are
manifested in observable behavior.

We denote the variance-covariance matrix of Y by Σ, that of F by ΣF ,
and that of E by Ψ , which is diagonal by the assumptions in the model. We
therefore have the relationship

Σ = ΓΣFΓ
T + Ψ.

Now, if we let Γ̃ = ΓΣ
1
2
F and F̃ = (Σ

1
2
F )−1F , we have

Σ = Γ̃ Γ̃T + Ψ.

Hence, a model equivalent to equation (16.18) is one in which we assume that
the underlying factors have the identity as their variance-covariance matrix,
and so we have

Σ = ΓΓT + Ψ. (16.19)

The diagonal elements of Ψ are called the specific variances of the factors and
the diagonal elements of ΓΓT are called the commonalities of the factors.
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The transformations above that indicate that ΓΓT can be used instead of
ΓΣFΓT raise the issue of more general transformations of the factors, leading
to an indeterminacy in the analysis.

If we decompose Σ − Ψ as we did in PCA with Σ in equation (16.10) on
page 549, (with ∆ replacing Λ) we have

Σ − Ψ = WT∆W. (16.20)

The factor-loading matrix therefore is

Γ = WT∆
1
2 . (16.21)

Factor Analysis of Data

In practical applications of factor analysis, we must begin with a chosen value
of k, the number of factors. This is similar to choosing the number of principal
components in PCA, and there are some ways of adaptively choosing k, but
the computational approaches that we discuss below assume a fixed value for
k. As usual, we consider the rows of the data matrix X to be realizations
of a multivariate random variable. In factor analysis, the random variable
has the same relationships to other random variables as Y above; hence, the
observation x (a row of X) is related to the realization of two other random
variables, f and e, by

x − x̄ = Γf + e.

The objective in factor analysis is to estimate the parameters in the model
(16.18)—that is, the factor loadings, Γ , and the variances, Σ and Ψ , in equa-
tion (16.19). There are several methods for estimating these parameters. In
one method, the estimation criterion is least squares of the sum of the dif-
ferences in the diagonal elements of Σ and S, that is, minimize the function
g:

g(Γ,Ψ) = trace
(
(S −Σ)2

)
. (16.22)

This criterion leads to the principal factors method. The minimization
proceeds by first choosing a value Ψ̂ (0) and then performing a decomposition
similar to that in principal components, except that instead of decompos-
ing the sample variance-covariance matrix S, an eigenanalysis of S − Ψ̂ (0) as
suggested by equation (16.20) is performed:

S − Ψ̂ (0) =
(
Ŵ (0)

)T
∆̂(0) Ŵ (0). (16.23)

This yields the value for Γ , analogous to equation (16.21):

Γ̂ (0) =
(
Ŵ (0)

)T(
∆̂(0)

) 1
2
.

Next, the minimization problem (16.22) is solved for Ψ with the fixed value
of Γ̂ (0), that is,
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min g
(
Γ̂ (0),Ψ

)
. (16.24)

Newton’s method is usually used to solve this problem, leading to Ψ̂ (1). The
steps are then repeated; that is, S − Ψ̂ (1) is decomposed, leading to

Γ̂ (1) =
(
Ŵ (1)

)T(
∆̂(1)

) 1
2
,

which is used in the next application of Newton’s method to solve min g
(
Γ̂ (1),Ψ

)
.

Convergence criteria are usually chosen based on norms of the change in the
estimates from one iteration to the next.

A simple method that is often used to get started is to take ψ̂(0)
jj as

(
1 − k

2m

)(
S−1

jj

)−1
,

where S−1
jj is the jth diagonal element of S−1 if S is full rank; otherwise, take

ψ̂(0)
jj as sjj/2.

The factors derived using the principal factors method (that is, the linear
combinations of the original variables) are the same as would be obtained in
ordinary PCA if the variance of the noise (the unique errors) were removed
from the variance-covariance of the observations prior to performing the PCA.

Another common method for estimating Γ , Σ, and Ψ uses the likelihood
criterion that results from the asymptotic distributions. Using the negative
of the log of the likelihood, we have the minimization problem,

min l(Γ,Ψ) = min
(
log
∣∣Σ−1S

∣∣− trace
(
Σ−1S

))
. (16.25)

This criterion results in the method of maximum likelihood. In this method,
we require that S be positive definite.

Solution of the minimization problem (16.25) is also done in iterations over
two stages, as we did in the least squares method above. First, we choose a
starting value Ψ̂ (0). Its square root,

(
Ψ̂ (0)

) 1
2 , is symmetric. We then decompose

(
Ψ̂ (0)

) 1
2 S−1

(
Ψ̂ (0)

) 1
2 as in equation (16.23):

(
Ψ̂ (0)

) 1
2
S−1

(
Ψ̂ (0)

) 1
2

=
(
Ŵ (0)

)T
∆̂(0) Ŵ (0). (16.26)

Using the relationship (16.19) and equation (16.21), we get a value for Γ :

Γ̂ (0) =
(
Ψ̂ (0)Ŵ (0)

)T(
∆̂(0) − I

) 1
2
.

Next, the minimization problem (16.25) is solved for Ψ with the fixed value
of Γ̂ (0). This problem may be rather ill-conditioned, and the convergence can
be rather poor. The transformations
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θj = ψjj

can help. (The ψjj are the only variable elements of the diagonal matrix Ψ .)
Hence, the minimization problem is

min l
(
Γ̂ (0), θ

)
. (16.27)

An advantage of the maximum likelihood method is that it is indepen-
dent of the scales of measurement. This results from the decomposition of
Ψ̂

1
2 S−1Ψ̂

1
2 in equation (16.26). Suppose that we make a scale transformation

on the random variable, Y , in equation (16.18); that is, we form T = Y D,
where D is a fixed diagonal matrix with positive entries. The resulting
variance-covariance matrix for the unique errors, ΨT , is DΨDT. Likewise, the
corresponding sample variance-covariance matrix, ST , is DSDT. The matrix
to be decomposed as in equation (16.26) is

(
Ψ̂ (0)

T

) 1
2
S−1

T

(
Ψ̂ (0)

T

) 1
2

=
(
DΨ̂ (0)DT

) 1
2
(
DSDT

)−1(
DΨ̂ (0)DT

) 1
2

=
(
Ψ̂ (0)

) 1
2
DT
(
DT
)−1

S−1D−1D
(
Ψ̂ (0)

) 1
2

=
(
Ψ̂ (0)

) 1
2
S−1

(
Ψ̂ (0)

) 1
2
,

which is the same as the one for the untransformed data.
Other common methods for factor analysis include generalized least squares,

image analysis (of two different types), and alpha factor analysis.
The methods for factor analysis begin with the computation of the sample

variance-covariance matrix S or the sample correlation matrix R. As we noted
in the case of PCA, the results are different, just as the results are generally
different following any transformation of the data.

Note that the model (16.18) does not define the factors uniquely; any
rotation of the factors would yield the same model. In principal components
analysis, a similar indeterminacy could also occur if we allow an arbitrary
basis for the PCA subspace defined by the chosen k principal components.

The factors are often rotated to get a basis with some interesting proper-
ties. A common criterion is parsimony of representation, which roughly means
that the matrix has few significantly nonzero entries. This principle has given
rise to various rotations, such as the varimax, quartimax, and oblimin rota-
tions.

Factor analysis is often applied to grouped data under a model with the
same factors in each group, called a common factor model.

In general, because of the stronger model, factor analysis should be used
with more caution than principal components analysis.

Latent Semantic Indexing

An interesting application of the methods of principal components, called
latent semantic indexing, is used in matching keyword searches with docu-
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ments. The method begins with the construction of a term-document matrix,
X , whose rows correspond to keywords, whose columns correspond to doc-
uments (web pages, for example), and whose entries are the frequencies of
occurrences of the keywords in the documents. A singular value decomposi-
tion is performed on X (or on X − X) as in equation (16.16), and then a
reduced-rank matrix X̃p is defined, as in equation (16.17). A list of keywords
is matched to documents by representing the keyword list as a vector, q, of
0’s and 1’s corresponding to the rows of X . The vector X̃T

p q is a list of scores
for the documents. Documents with larger scores are those deemed relevant
for the search.

A semantic structure for the set of documents can also be identified by X̃p.
Semantically nearby documents are mapped onto the same singular vectors.

A variation of latent semantic indexing is called probabilistic latent seman-
tic indexing, or nonnegative-part factorization. This approach assumes a set
of hidden variables whose values in the matrix H correspond to the columns
of X by a nonnegative matrix factorization,

X = WH,

where W is a matrix with nonnegative elements.
The relationship of the model in probabilistic latent semantic indexing to

the standard latent semantic indexing model is similar to the differences in
factor analysis and principal components analysis.

Linear Independent Components Analysis

Independent components analysis (ICA) is similar to principal components
analysis and factor analysis. Both PCA and ICA have nonlinear extensions.
In linear PCA and ICA, the objective is to find a linear transformation W of
a random vector Y so that the elements of WY have small correlations. In
linear PCA, the objective then is to find W so that V(WY ) is diagonal, and,
as we have seen, this is simple to do. If the random vector Y is normal, then 0
correlations imply independence. The objective in linear ICA is slightly differ-
ent; instead of just the elements of WY , attention may be focused on chosen
transformations of this vector, and instead of small correlations, independence
is the goal. Of course, because most multivariate distributions other than the
normal are rather intractable, in practice small correlations are usually the
objective in ICA. The transformations of WY are often higher-order sample
moments. The projections that yield diagonal variance-covariance matrices
are not necessarily orthogonal.

We discuss independent components analysis further in Section 16.6.

16.5 Projection Pursuit

The objective in projection pursuit is to find “interesting” projections of mul-
tivariate data. Interesting structure in multivariate data may be identified by
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analyzing projections of the data onto lower-dimensional subspaces. The pro-
jections can be used for optimal visualization of the clustering structure of
the data or for density estimation or even regression analysis. The approach
is related to the visual approach of the grand tour (page 363). Reduction of
dimension is also an important objective, especially if the use of the projec-
tions is in visualization of the data. Projection pursuit requires a measure of
the “interestingness” of a projection.

Diaconis and Freedman (1984) showed that a randomly selected projec-
tion of a high-dimensional dataset onto a low-dimensional space will tend to
appear similar to a sample from a multivariate normal distribution with that
lower dimension. This result, which may be thought of as a central limit the-
orem for projections, implies that a multivariate normal dataset is the least
“interesting”. A specific projection of the given dataset, however, may reveal
interesting features of the dataset. In projection pursuit, therefore, the objec-
tive is to find departures from normality in linear projections of the data.

Departures from normality may include such things as skewness and
“holes” in the data, or multimodality. The projection whose histogram is
shown on the right-hand side of Figure 16.23 on page 559 exhibits a depar-
ture from normality, whereas the histogram on the left-hand side appears to
be of normal univariate data. The projections are of the same dataset.

The Probability Model Underlying Projection Pursuit

Consider an m-vector random variable Y . In general, we are interested in a
k-dimensional projection of Y , say ATY , such that the random variable ATY
is very different from a k-variate normal distribution.

Because all one-dimensional marginals of a multivariate normal are nor-
mal, and cross products of normals are multivariate normal, we will concen-
trate on one-dimensional projections of Z. For a given m-variate random vari-
able Y , our problem is to find Z = aTY such that the scalar random variable
Z is “most different” from a normal random variable. Two-dimensional pro-
jections are also of particular interest, especially in graphics. In the following,
we will discuss just the one-dimensional projections.

The structure of interest (that is, a departure from normality) can be
considered separately from the location, variances, and covariances of the
vector Y ; therefore, we will assume that E(Y ) = 0 and V(Y ) = I . Prior to
applying projection pursuit to data, we center and sphere the data so that
the sample characteristics are consistent with these assumptions.

To quantify the objectives in projection pursuit, we need a measure, or
index, of the departure from normality.

Projection Indexes for the Probability Model

One way to quantify departure from normality is to consider the probability
density function of the projected variable and compare it to the probability
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density function φ of a standard normal random variable. For a given random
variable Y and Z = aTY , if the PDF of Z is p, the question is how different is
p from φ. This is similar to the problem in function approximation. Whereas
in function approximation, the Chebyshev norm is generally of most interest,
in seeking a function that is “different”, an L2 norm,

H(a) =
∫ ∞

−∞
(p(z) − φ(z))2dz, (16.28)

may be more appropriate as a measure of the difference, because it is not just
the difference at a single point.

We consider projections The objective in projection pursuit is to find an a
that maximizes this norm. It has become common practice in the literature on
projection pursuit to name indexes of departure from normality by the type
of orthogonal polynomials used in approximating the index. The index in ex-
pression (16.28) is called the Hermite index because Hermite polynomials are
appropriate for approximation over the unbounded domain (see Table 4.1 on
page 170). It is also called Hall’s index because it was studied by Hall (1989).

For a given a, Friedman (1987) proposed first mapping Z = aTY into
[−1, 1] by the transformation

Ra = 2Φ(Z) − 1, (16.29)

where Φ is the CDF of a standard normal distribution. If pZ is the probability
density of Z, then the probability density of Ra is

pRa(r) =
1
2pZ

(
Φ−1

(
r+1
2

))

φ
(
Φ−1

(
r+1
2

)) .

If Z has a normal distribution with a mean of 0 and variance of 1, Ra has
a uniform distribution over (−1, 1) and so has a constant density of 1

2 . (This
is the idea behind the inverse CDF method of random number generation.)
Hence, the problem is to find a such that the density, pR, of Ra is very different
from 1

2 . The relevant L2 norm is

L(a) =
∫ 1

−1

(
pRa(r) − 1

2

)2

dr,

which simplifies to

L(a) =
∫ 1

−1
p2

Ra
(r)dr − 1

2
. (16.30)

This norm, which is a scalar function of a and a functional of pRa , is sometimes
called the Legendre index because Legendre polynomials are natural approxi-
mating series of orthogonal polynomials for functions over finite domains (see
Table 4.1, on page 170).
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Cook, Buja, and Cabrera (1993) suggested another index based on the L2

norm in equation (16.28) being weighted with the normal density:

Hn(a) =
∫ ∞

−∞
(p(z) − φ(z))2φ(z)dz. (16.31)

Cook, Buja, and Cabrera call this the natural Hermite index. The index is eval-
uated by expanding both p(z) and φ(z) in the Hermite polynomials that are
orthogonal with respect to e−x2/2 over (−∞, ∞). (These are not the standard
Hermite polynomials, but they are the ones most commonly used by statisti-
cians because the weight function is proportional to the normal density.) These
Hermite polynomials are the He

k in equations (4.53) on page 174. The index is
called “natural” because the difference in p and φ is weighted by the normal
density. The natural Hermite index has some desirable invariance properties
for two-dimensional projections. See Cook, Buja, and Cabrera (1993) for a
discussion of these properties.

Various other measures of departure from normality are possible; in fact,
almost any goodness-of-fit criterion could serve as the basis for a projection
index.

The normal distribution is a member of a class of distributions that are
elliptically symmetric. We could extend the concept of “interesting” structure
to be ones that lack an elliptical symmetry. Nason (2001) suggested use of
a circular multivariate t distribution following sphering of the data. Nason
defined three indices similar to those in equations (16.28) and (16.31), but
based on departures from an m-variate t distribution,

∫

IRm

(p(z) − tν,m(z))2(tν,m(z))αdz,

where tν,m(z) is the density function of a spherical m-variate t distribution
with ν degrees of freedom, and α is 0, as in equation (16.28) or 1, as in
equation (16.31). As Nason points out and confirms empirically, a procedure
based on an index of departure from a multivariate t distribution is likely
to be more robust to a small number of outlying observations than would a
procedure based on a normal distribution.

Projection Pursuit in Data

We now consider one-dimensional projection pursuit in a given set of data X
(the familiar n×m matrix in our data analysis paradigm). For each projection
a, we estimate the projection index associated with a under the assumption
that the rows in X are independent realizations of a random variable Y . The
vector Xa contains independent realizations of the scalar random variable
Z = aTY = Y Ta.

The question is how similar the distribution of Z is to a normal distribu-
tion. The problem with measures of departure from normality is the difficulty
in estimating the terms.
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To estimate the projection index, we must approximate an integral. As we
suggested above, the indexes lend themselves to approximation by standard
series of orthogonal polynomials.

For L(a), expanding one factor of p2
Ra

in equation (16.30) in Legendre
polynomials and leaving the other unexpanded, we have

L(a) =
∫ 1

−1

( ∞∑

k=0

ckPk(r)

)
pRa(r) dr − 1

2
,

where Pk is the kth Legendre polynomial.
Using equations (4.26) and (4.44), we have the Legendre coefficients

ck =
2k + 1

2

∫ 1

−1
Pk(r)pRa(r) dr

for the expansion.
Substituting this into the expression above, because of the orthogonality

of the Pk, we have

L(a) =
1
2

∞∑

k=0

(2k + 1)
(
E
(
Pk(Ra)

))2
− 1

2
, (16.32)

where the expectation E is taken with respect to the distribution of the random
variable Ra. Each term in equation (16.32) is an expectation and therefore
can be estimated easily from a random sample. The sample mean is generally
a good estimate of an expectation; hence, for the kth term, from the original
observations xi, the projection a, and the normal CDF transformation, we
have

Ê (Pk(Ra)) =
1
n

n∑

i=1

Pk(ri)

=
1
n

n∑

i=1

Pk(2Φ(aTxi) − 1).

A simple estimate of the squared expectation is just the square of this quantity.
Obviously, in practice, we must use a finite approximation to the infinite

expansion of pRa . After terminating the expansion at j, we have the truncated
Legendre projection index, Lj(a),

Lj(a) =
1
2

j∑

k=0

(2k + 1) (E (Pk(Ra)))2 − 1
2
. (16.33)

The approximation in equation (16.33) can be estimated easily from the
sample:
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L̂j(a) =
1

2n2

j∑

k=0

(2k + 1)

(
n∑

i=1

Pk(2Φ(aTxi) − 1)

)2

− 1
2
. (16.34)

This expression is easily evaluated. The first six Legendre polynomials are
shown in equation (4.43) on page 171. We usually use the recurrence relation-
ship, equation (4.45), in computing the truncated Legendre index, especially
if we are using more than three or four terms.

The problem now is to determine

max
a

L̂j(a).

Scaling of a is not relevant, so we may restrict a so that the sum of its elements
is some given value, such as 1. In general, this is not an easy optimization prob-
lem. There are local minima. Use of an optimization method such as Newton’s
method may require multiple starting points. An optimization method such
as simulated annealing may work better.

After both p(z) and φ(z) are expanded in the Hermite polynomials, the
natural Hermite index of equation (16.31) reduces to

∞∑

k=0

(dk − bk)2,

where the dk are the coefficients of the expansion of p(z) and the bk are the
coefficients of the expansion of φ(z). The bk can be evaluated analytically.
They are, for k = 0, 1, . . .,

b2k =
(−1)k((2k)!)1/2

22k+1k!
√
π

b2k+1 = 0.

The dk can be represented as expected values, and are estimated from the
data in a similar manner as done for the Legendre index above. The estimates
are given by

d̂k =
n∑

i=1

He
k(xi)φ(xi). (16.35)

The index is the truncated series
j∑

k=0

(d̂k − bk)2.

The first six Hermite polynomials are shown in equation (4.53) on page 174.
We usually use the recurrence relationship, equation (4.54), in computing the
truncated Hermite index, especially if we are using more than three or four
terms.
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Although the more terms retained in the orthogonal series expansions,
the better is the approximation, it is not necessarily the case that the better-
approximated index is more useful. Hall (1989) develops an asymptotic theory
that suggests that the optimal choice of j depends on the sample size and
type of index. (He considers both the norm in expression (16.28) and that
in equation (16.30).) Sun (1992) suggests the choice of j between 3 and 6
inclusive, with smaller values being chosen for smaller numbers of observations
and smaller values being chosen for larger values of the dimension m. Cook,
Buja, and Cabrera (1993) found that the discrimination ability of the index
for different values of j depends on the nature of the nonnormality in the
data.

Friedman (1987) addresses the statistical significance of L(a) (that is, the
question of whether the projection using random data is significantly different
from a projection of normal data). He gives a method for computing a p-value
for the projection.

Exploratory Projection Pursuit

The most important use of projection pursuit is for initial exploratory analysis
of multivariate datasets.

Different indexes may be useful in identifying different kinds of structure.
The Legendre index is very sensitive to outliers in the data. If identification
of the outliers is of specific interest, this may make the index useful. On the
other hand, if the analysis should be robust to outliers, the Legendre index
would not be a good one. The Laguerre-Fourier index, which is based on an
expansion in Laguerre polynomials, is particularly useful in identifying clusters
in the data.

Example

As an example of projection pursuit, consider the simple dataset shown in
Figure 16.22. The obvious nonnormal structure in that dataset is the existence
of two groups. Performing principal components analysis on the data resulted
in a first principal component that completely obscured this structure (see
Figure 16.23). As it turned out, the second principal component identified the
structure very well.

In projection pursuit, the first step is generally to sphere the data. The
result of the sphering is to make the variances in all directions almost equal.
A “principal” component is no longer very relevant. As we have emphasized,
scaling or sphering or any other transformation of the data is likely to have an
effect on the results. Because sphering obscures important structure, whether
or not to sphere the data in projection pursuit is subject to question.

The sphered data corresponding to those in Figure 16.22 are shown in
Figure 16.24. (See Exercise 16.7 for the data.)
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Fig. 16.24. The Sphered Bivariate Dataset with Two Clusters

After sphering the data, the plot does not show the correlations or the
elliptical scatter of Figure 16.22. The principal components would be along
the axes. The sphered data do, however, continue to exhibit a bimodality,
which is a departure from normality.

Now, consider the Legendre index for the principal components— that is,
for the projections a1 = (1, 0) and a2 = (0, 1). Using equation (16.34) with
j = 5, we obtain L̂5(a1) = 1.03 and L̂5(a2) = 1.66. Clearly, the projection
onto z2 exhibits the greater nonnormality.

In most applications of projection pursuit, of course, we have datasets of
higher dimension.

Computational Issues

Projection pursuit involves not only the computation of an index but the
optimization of the index as a function of the linear combination vector. This
approach is therefore computationally intensive.

The optimization problem is characterized by many local maxima. Rather
than being interested in a global maximum, in data analysis with projection
pursuit, we are generally interested in inspecting several projections, each
of which exhibits an interesting structure —that is, some locally maximal
departure from normality as measured by a projection index. This also adds
to the computational intensity.



572 16 Statistical Learning and Data Mining

16.6 Other Methods for Identifying Structure

Structure in data is defined in terms of transformations of the data. In PCA,
for example, the linear structure that is identified consists of a set of one-
dimensional linear projections that is ordered by the norm of the projection
of the centered dataset. In projection pursuit, the linear structure is also a set
of projections, but they are ordered by their deviation from normality.

Nonlinear structure is generally much more difficult to detect. One ap-
proach is to generalize the methods of PCA. Girard (2000) describes a nonlin-
ear PCA based on manifolds instead of linear projections. Hastie and Stuet-
zle (1989) discuss the generalization of principal (linear) components to prin-
cipal curves.

Independent Components Analysis

In PCA, the objective is to determine components (that is, combinations
of the original variables) that have zero correlations. If the data are normally
distributed, zero correlations imply independence. If the data are not normally
distributed, independence does not follow. Independent components analysis
(ICA) is similar to PCA except that the objective is to determine combinations
of the original variables that are independent. In ICA, moments of higher
order than two are used to determine base vectors that are statistically as
independent as possible. PCA is often used as a preprocessing step in ICA.

The probability model underlying independent components analysis as-
sumes the existence of k independent data-generating processes that yield an
observable n-vector through an unknown mixing process. Because many ap-
plications of ICA involve a time series in the observed x, we often express the
model as

x(t) = As(t),

where A is a mixing matrix. The problem of uncovering s(t) is sometimes
called blind source separation. Let xi for i = 1, . . . , m be measured signals
and sj for j = 1, . . . , k be independent components (ICs) with the zero mean.
The basic problem in ICA is to estimate the mixing matrix A and determine
the components s in

x = As.

Independent components analysis is similar to principal components analy-
sis and factor analysis, but much of the research on ICA has been conducted
without reference to PCA and factor analysis. Both PCA and ICA have non-
linear extensions. In linear PCA and ICA, the objective is to find a linear
transformation W of a random vector Y so that the elements of WY have
small correlations. In linear PCA, the objective then is to find W so that
V(WY ) is diagonal, and, as we have seen, this is simple to do. If the random
vector Y is normal, then 0 correlations imply independence. The objective in
linear ICA is slightly different; instead of just the elements of WY , attention
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may be focused on chosen transformations of this vector, and instead of small
correlations, independence is the goal. Of course, because most multivariate
distributions other than the normal are rather intractable, in practice, small
correlations are usually the objective in ICA. The transformations of WY
are often higher-order sample moments. The projections that yield diagonal
variance-covariance matrices are not necessarily orthogonal.

In the literature on ICA, which is generally in the field of signal processing,
either a “noise-free ICA model”, similar to the simple PCA model, or a “noisy
ICA model”, similar to the factor analysis model, is used. Most of the research
has been on the noise-free ICA model.

16.7 Higher Dimensions

The most common statistical datasets can be thought of as rows, represent-
ing observations, and columns, representing variables. In traditional multiple
regression and correlation and other methods of multivariate analysis, there
are generally few conceptual hurdles in thinking of the observations as rang-
ing over a multidimensional space. In multiple regression with m regressors,
for example, it is easy to visualize the hyperplane in m + 1 dimensions that
represents the fit ŷ = Xβ̂. It is even easy to visualize the projection of the
n-dimensional vector that represents a least-squares fit.

Many properties of one- and two-dimensional objects (lines and planes)
carry over into higher-dimensional space just as we would expect.

Although most of our intuition is derived from our existence in a three-
dimensional world, we generally have no problem dealing with one- or two-
dimensional objects. On the other hand, it can be difficult to view a 3-D
world from a two-dimensional perspective. The delightful fantasy, Flatland,
written by Edwin Abbott in 1884, describes the travails of a two-dimensional
person (one “A. Square”) thrown into a three-dimensional world. (See also
Stewart, 2001, Flatterland, Like Flatland Only More So.) The small book by
Kendall (1961), A Course in the Geometry of n Dimensions, gives numerous
examples in which common statistical concepts are elucidated by geometrical
constructs.

There are many situations, however, in which our intuition derived from
the familiar representations in one-, two-, and three-dimensional space leads
us completely astray. This is particularly true of objects whose dimensional-
ity is greater than three, such as volumes in higher-dimensional space. The
problem is not just with our intuition, however; it is indeed the case that
some properties do not generalize to higher dimensions. Exercise 16.11 in this
chapter illustrates such a situation.

The shape of a dataset is the total information content that is invariant un-
der translations, rotations, and scale transformations. Quantifying the shape
of data is an interesting problem.
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Data Sparsity in Higher Dimensions

We measure space both linearly and volumetrically. The basic cause of the
breakdown of intuition in higher dimensions is that the relationship of linear
measures to volumetric measures is exponential in dimensionality. The cubing
we are familiar with in three-dimensional space cannot be used to describe the
relative sizes of volumes (that is, the distribution of space). Volumes relative
to the linear dimensions grow very rapidly. There are two consequences of
this. One is that the volumes of objects with interior holes, such as thin boxes
or thin shells, are much larger than our intuition predicts. Another is that the
density of a fixed number of points becomes extremely small.

The density of a probability distribution decreases as the distribution is
extended to higher dimensions by an outer product of the range. This hap-
pens fastest going from one dimension to two dimensions but continues at a
decreasing rate for higher dimensions. The effect of this is that the proba-
bility content of regions at a fixed distance to the center of the distribution
increases; that is, outliers or isolated data points become more common. This
is easy to see in comparing a univariate normal distribution with a bivariate
normal distribution. If X = (X1, X2) has a bivariate normal distribution with
mean 0 and variance-covariance matrix diag(1, 1),

Pr(|X1| > 2) = 0.0455,

whereas
Pr(∥X∥ > 2) = 0.135.

The probability that the bivariate random variable is greater than two stan-
dard deviations from the center is much greater than the probability that the
univariate random variable is greater than two standard deviations from the
center. We can see the relative probabilities in Figures 16.25 and 16.26. The
area under the univariate density that is outside the central interval shown is
relatively small. It is about 5% of the total area. The volume under the bi-
variate density in Figure 16.26 beyond the circle is relatively greater than the
volume within the circle. It is about 13% of the total volume. The percentage
increases with the dimensionality (see Exercises 16.9 and 16.10).

The consequence of these density patterns is that an observation in higher
dimensions is more likely to appear to be an outlier than one in lower dimen-
sions.

Volumes of Hyperspheres and Hypercubes

It is interesting to compare the volumes of regular geometrical objects and
observe how the relationships of volumes to linear measures change as the
number of dimensions changes. Consider, for example, that the volume of a
sphere of radius a in d dimensions is



16.7 Higher Dimensions 575

−3 −2 −1 0 1 2 3

0.0
0.1

0.2
0.3

0.4

x

p(x
)

( )

Fig. 16.25. Univariate Extreme Regions

x

y

p(x,y)

Fig. 16.26. Bivariate Extreme Regions

adπd/2

Γ(1 + d/2)
.

The volume of a superscribed cube is (2a)d. Now, compare the volumes. Con-
sider the ratio

πd/2

d2d−1Γ(d/2)
.

For d = 3 (Figure 16.27), this is 0.524; for d = 7, however, it is 0.037. As the
number of dimensions increases, more and more of the volume of the cube is
in the corners.

For two objects of different sizes but the same shape, with the smaller one
centered inside the larger one, we have a similar phenomenon of the content
of the interior object relative to the larger object. The volume of a thin shell
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Fig. 16.27. A Superscribed Cube

as the ratio of the volume of the outer figure (sphere, cube, whatever) is

Vd(r) − Vd(r − ϵ)
Vd(r)

= 1 −
(
1 − ϵ

r

)d
.

As the number of dimensions increases, more and more of the volume of the
larger object is in the outer thin shell. This is the same phenomenon that
we observed above for probability distributions. In a multivariate distribution
whose density is the product of identical univariate densities (which is the
density of a simple random sample), the relative probability content within
extreme regions becomes greater as the dimension increases.

The Curse of Dimensionality

The computational and conceptual problems associated with higher dimen-
sions have often been referred to as “the curse of dimensionality”. How many
dimensions cause problems depends on the nature of the application. Golub
and Ortega (1993) use the phrase in describing the solution to the diffusion
equation in three dimensions, plus time as the fourth dimensions of course.

In higher dimensions, not only do data appear as outliers, but they also
tend to lie on lower dimensional manifolds. This is the problem sometimes
called “multicollinearity”. The reason that data in higher dimensions are
multicollinear, or more generally, concurve, is that the number of lower di-
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mensional manifolds increases very rapidly in the dimensionality: The rate is
2d.

Whenever it is possible to collect data in a well-designed experiment or
observational study, some of the problems of high dimensions can be amelio-
rated. In computer experiments, for example, Latin hypercube designs can be
useful for exploring very high dimensional spaces.

Data in higher dimensions carry more information in the same number of
observations than data in lower dimensions. Some people have referred to the
increase in information as the “blessing of dimensionality”. The support vector
machine approach in fact attempts to detect structure in data by mapping
the data to higher dimensions.

Tiling Space

As we have mentioned in previous chapters, tessellations of the data space
are useful in density estimation and in clustering and classification. Gener-
ally, regular tessellations, or tilings (objects with the same shapes), are used.
Regular tessellations are easier both to form and to analyze.

Regular tessellations in higher dimensional space have counterintuitive
properties. As an example, consider tiling by hypercubes, as illustrated in
Figure 16.28 for squares in two dimensions.

Fig. 16.28. Hypercube (Square) Tilings of 2-Space

The tiling on the left-hand side in Figure 16.28 is a lattice tiling. In both
tilings, we see that each tile has an entire side in common with at least one
adjacent tile. This is a useful fact when we use the tiles as bins in data analy-
sis, and it is always the case for a lattice tiling. It is also always the case in
two dimensions. (To see this, make drawings similar to those in Figure 16.28.)
In fact, in lower dimensions (up to six dimensions for sure), tilings by hyper-
cubes of equal size always have the property that some adjacent tiles have
an entire face (side) in common. It is an open question as to what number
of dimensions ensures this property, but the property definitely does not hold
in ten dimensions, as shown by Peter Shor and Jeff Lagarias. (See What’s
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Happening in the Mathematical Sciences, Volume 1, American Mathematical
Society, 1993, pages 21–25.)

Notes and Further Reading

Statistical learning has been one of the most rapidly growing areas of statistics
during the past several years. Indicating the importance of this field, the
American Statistical Association in 2009 formed a new section, Statistical
Learning & Data Mining, and began a new journal, Statistical Analysis and
Data Mining.

Recursive Partitioning

Many of the statistical learning methods that we have discussed are based on
recursively partitioning the dataset. Trees or other graphs are used to maintain
the status during the recursion. General methods as well as specific applica-
tions of recursive partitions are summarized by Zhang (2004). We encounter
some of these methods again in Chapter 17.

Tesselations

Ash et al. (1988), Aurenhammer (1991), and Okabe et al. (2000) discuss many
interesting properties of the Dirichlet tessellation or Voronoi diagram and
the Delaunay triangulation that hold in d dimensions. Du, Faber, and Gun-
zburger (1999) discuss additional properties as well as applications.

Conceptual Clustering and Fuzzy Clustering

Dale (1985) provides a comparison of conceptual clustering with other clus-
tering methods.

Hathaway and Bezdek (1988) discuss the performance of algorithms that
identify fuzzy clusters by minimizing the quantity (16.7) above. Seaver, Tri-
antis, and Reeves (1999) describe an algorithm for fuzzy clustering that begins
with a stage of hard clustering and in the second step treats cluster member-
ship as fuzzy. Rousseeuw (1995) discusses concepts of fuzzy clustering, and
Laviolette et al. (1995) discuss some general issues in fuzzy methods.

Data Depth

Maronna and Yohai (1995) and Zuo and Serfling (2000a, 2000b) describe
properties of the measure of depth based on maximal one-dimensional pro-
jections. Liu (1990) defined the simplicial location depth as the proportion of
data simplices (triangles formed by three observations in the bivariate case)
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that contain the given point. Rousseeuw and Hubert (1999) define and study
a depth measure based on regression fits. Liu, Parelius, and Singh (1999) de-
scribe and compare measures of data depth and discuss various applications
of data depth in multivariate analysis.

Nearest Neighbor Classification

Different distance measures used in clustering methods generally result in
different clusters or classifications, especially in the presence of outlying ob-
servations. Robust measures of distance, such as discussed in Chapter 9 may
be more appropriate. Amores, Sebe, and Radeva (2006) discuss an adaptive
approach to measuring distance for use in nearest neighbor classification.

Dimension Reduction

One of the main objectives in exploratory statistical learning is to reduce
the dimension of the observable data. This means finding manifolds of lower
dimension that contain all or most of the interesting features of the original
dataset. There are many ways to reduce the dimensionality, and we have
discussed some in this chapter. Mizuta (2004) provides further discussion, as
well as consideration of others beyond those discussed in this chapter.

Independent Components Analysis

In the literature on ICA, which is generally in the field of signal process-
ing, either a “noise-free ICA model”, similar to the simple PCA model, or
a “noisy ICA model”, similar to the factor analysis model, is used. Most of
the research has been on the noise-free ICA model. The reader is referred
to Comon (1994) for further descriptions of ICA and an iterative algorithm.
Comon also discusses some of the similarities and differences between ICA
and PCA. Hyvärinen, Karhunen, and Oja (2001) provide a comprehensive
discussion of ICA.

Projection Pursuit

Cook, Buja, and Cabrera (1993) discuss two-dimensional projections and their
applications in graphics. They also consider the use of the natural Hermite
index as a measure of the non-normality of the projection.

Other kinds of measures of departure from normality can be contemplated.
Almost any goodness-of-fit criterion could serve as the basis for a projec-
tion index. Posse (1990, 1995a, 1995b) suggests a projection index based on
a chi-squared measure of departure from normality. It has an advantage of
computational simplicity. Jones (see Jones and Sibson, 1987) suggested an
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index based on ratios of moments of a standard normal distribution, and Hu-
ber (1985) suggested indexes based on entropy (called Shannon entropy or
differential entropy):

−
∫

IRm

p(z) log p(z)dz.

The entropy is maximized among the class of all random variables when
the density p is the standard multivariate normal density (mean of zero and
variance-covariance matrix equal to the identity). For any other distribution,
the entropy is strictly smaller.

Morton (1992) suggests an “interpretability index” that gives preference
to simple projections (that is, to linear combinations in which a has more
zeros), and when comparing two combinations a1 and a2, the vectors are
(nearly) orthogonal. This work anticipated similar attempts in PCA to deter-
mine approximate principal components that are “simple” (see Vines, 2000,
and Jolliffe and Uddin, 2000).

Sun (1992, 1993) reports comparisons of the use of Friedman’s Legendre
index, L(a), and Hall’s Hermite index (16.28). Cook, Buja, and Cabrera (1993)
give comparisons of these two indexes and the natural Hermite index, Hn(a).
Posse (1990, 1995a, 1995b) and Nason (2001) also report comparisons of the
various indices. The results of these comparisons were inconclusive; which
index is better in identifying departures from normality (or from uninteresting
structure) seems to depend on the nature of the nonnormality.

Cook et al. (1995) describe the use of projection pursuit in a grand tour.
Cabrera and Cook (1992) discuss the relationship of projection pursuit to the
fractal dimension of a dataset.

Exercises

16.1. Consider the clusterings of the toy dataset depicted in Figure 16.7 on
page 527.
a) How many clusters seem to be suggested by each?
b) Compute Rand’s statistic (16.8) on page 537 and the modified Rand

statistic (16.9) to compare the clustering on the left-hand side with
that in the middle. Assume four clusters in each.

c) Compute Rand’s statistic and the modified Rand statistic to compare
the clustering in the middle with that on the right-hand side. Assume
four clusters in the middle, and three clusters on the right-hand side.

d) Compute Rand’s statistic and the modified Rand statistic to compare
the clustering in the middle with that on the right-hand side. Assume
two clusters in the middle, and three clusters on the right-hand side.

16.2. a) Develop a combinatorial optimization algorithm, perhaps using simu-
lated annealing or a genetic algorithm, to perform K-means clustering
in such a way that less than k groups may be formed. The objective
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function would need to be penalized for the number of groups. Try a
modification of expression (16.3),

k∑

g=1

m∑

j=1

ng∑

i=1

(
xij(g) − x̄j(g)

)2
+ αk,

where α is a tuning parameter. Its magnitude depends on the sizes of
the sums of squares, which of course are unknown a priori. Write a
program to implement your algorithm. In the program, α is an input
parameter. Use your program to form five or fewer clusters of the data:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 2
1 3
1 4
2 1
2 2
2 3
2 4
3 1
3 2
3 3
3 4
4 1
4 2
4 3
4 4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

How many clusters do you get?
b) Using the given data, do K-means clustering for k = 1, 2, 3, 4, 5. For

each number of clusters, compute the Calinski-Harabasz index (16.4)
on page 522. How many clusters are suggested?

16.3. What happens in cluster analysis if the data are sphered prior to the
analysis? Sphere the data used in Figure 16.11 (on page 534), and then
do the hierarchical clustering. To do this, replace the statement

y <- apply(x,2,standard)

with

y <- x %*% solve(chol(var(x)))

The strange result in this case of clustering sphered data does not always
occur, but the point is that sphering can have unexpected effects.

16.4. Consider the problem of identification of the “concentric circles” struc-
ture in Figure 16.3 on page 517. As we mentioned, representation of the
data in polar coordinates provides one way of finding this structure. A
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dissimilarity measure consisting of an angular component dd
ij and a radial

component dr
ij may be defined, as discussed on page 392 and in Exer-

cise 9.12. Develop a procedure for clustering the concentric circles. Test
your procedure using data similar to that in Figure 16.3, which can be
generated in R by

x1<-rnorm(10)
x2<-rnorm(10)
x<-cbind(x1,x2)
y1<-rnorm(40,0,5)
y2<-rnorm(40,0,5)
sel<-y1^2+y2^2>25
y<-cbind(y1[sel],y2[sel])

16.5. Consider the problem of Exercise 9.13 on page 399; that is, given two n-
vectors, x1 and x2, form a third vector x3 as x3 = a1x1 + a2x2 + ϵ, where
ϵ is a vector of independent N(0, 1) realizations. Although the matrix
X = [x1 x2 x3] is in IRn×3, the linear structure, even obscured by the
noise, implies a two-dimensional space for the data matrix (that is, the
space IRn×2). Generate x1 and x2 as realizations of a U(0, 1) process,
and x3 as 5x1 + x2 + ϵ, where ϵ is a realization of a N(0, 1) process.
Do a principal components analysis of the data (perhaps using prcomp
or princomp in R). Make a scree plot of the eigenvalues (perhaps using
plot.pcs.scree in the R bio3d package or screeplot in S-Plus, which
produces a bar plot, rather than a line plot as shown in Figure 16.21).
How many principal components would you choose?

16.6. a) Write out the gradient and Hessian for the optimization problem (16.24)
on page 562. Remember Ψ is a diagonal matrix.

b) Write out the gradient and Hessian for the optimization problem (16.27)
on page 563.

16.7. The data shown in Figure 16.22 and used in the PCA and the projection
pursuit examples were generated by the R commands

n <- 200
x <- rnorm(n)
y <- rnorm(n)
xx <- 10*x + y
yy <- 2*y +x
n2 <- n/2
yy[1:n2] <- yy[1:n2] + 5
yy[(n2+1):n] <- yy[(n2+1):n] - 5

a) Sphere this dataset and plot it. Your plot should look like that in
Figure 16.24.

b) Determine the optimal projection a using the estimated truncated
Legendre index with j = 4.

16.8. Indexes for projection pursuit.
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a) Derive equation (16.35) on page 569 for use in the natural Hermite
index, equation (16.31). (Compare equation (16.34).) See page 174 for
the Hermite polynomials.

b) Determine the optimal projection of the data in Exercise 16.7 using
the estimated truncated natural Hermite index with j = 4.

16.9. Let X be a standard 10-variate normal random variable (the mean is 0
and the variance-covariance is diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)). What is the
probability that ∥X∥ > 6? In other words, what is the probability of
exceeding six sigma?
Hint: Use polar coordinates. (Even then, the algebra is messy.)

16.10. Consider the use of a d-variate multivariate normal density as a ma-
jorizing density for another d-variate multivariate normal in an accep-
tance/rejection application. (See Figure 7.2 on page 311 and the discussion
concerning it.) To be specific, let d = 1, 000, let the majorizing density
have a diagonal variance-covariance matrix with constant diagonal terms
of 1.1, and let the target density also have a diagonal variance-covariance
matrix but with constant diagonal terms of 1. (As mentioned in the dis-
cussion concerning Figure 7.2, this is just an illustrative example. This
kind of majorizing density would not make sense for the given target be-
cause if we could generate from the majorizing density we could generate
directly from the target.)
a) Determine the value of c in Algorithm 7.1 on page 309.
b) Determine the probability of acceptance.

Is the interior hypersphere always inside the hypercube? (The answer
is “No!”) At what number of dimensions does the interior hypersphere
poke outside the hypercube? (See What’s Happening in the Mathematical
Sciences, Volume 1, American Mathematical Society, 1993.)

16.12. Consider a cartesian coordinate system for IRd, with d ≥ 2. Let x be a
point in IRd

+ such that ∥x∥2 = 1 and x is equidistant from all axes of the
coordinate system.

✫✪
✬✩

)
(−1,−1) ✫✪

✬✩
)

(1,−1)

✫✪
✬✩

)
(−1, 1) ✫✪

✬✩
)

(1, 1)

✍✌✎☞)

16.11. In d dimensions, construct 2d hyperspheres with centers at the points
(±1, . . . ,±1), and construct the hypercube with edges of length 2 that
contains the unit hyperspheres. At the point (0, . . . , 0), construct the hy-
persphere that is tangent to the other 2d spheres. In two dimensions, the
spheres appear as
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✻

✑
✑

✑
✑

✑
✑

✑✰

❳❳❳❳❳❳❳❳❳❳③

✂
✂
✂
✂
✂
✂✂✍

x❩
❩
❩ ✡

✡
✡

✡
✡

✡
✡

✡✡

✑✑✡✡

❈
❈
❈
❈
❈
❈
❈

❳❳
❈❈

θ

What is the angle between the line through x and any of the positive
axes? Hint: for d = 2, the angles are ±π/4.
What are the angles as d → ∞?



17

Statistical Models of Dependencies

In the models and data-generating processes we have considered in previous
chapters of Part IV, all of the variables or features were treated essentially
in the same way. In this chapter, we consider models in which a subset of
variables, often just one, is of special interest. This variable is the “response”,
and we seek to understand its dependence on the other variables. “Depen-
dence” here refers to a stochastic relationship, not a causal one. By knowing
the relationship of the other variables to the response variable, we may bet-
ter understand the data-generating process, or we may be able to predict the
response, given the values of the associated variables.

The models we consider in this chapter describe the stochastic behavior
of one variable, Y , possibly a vector, as a function of other variables. Models
of this type that express dependencies are called regression models if Y is a
numeric variable or classification models if Y is a categorical variable. If Y
is a numeric variable that takes on only a countable number of values, the
model can be considered either a regression model (sometimes a “generalized
model”) or a classification model.

Another important type of dependency arises in sequentially sampled vari-
ables. The distribution of a random variable at time tk depends on the realiza-
tion of that random variable at times before tk. There may also be covariates
whose realizations affect the distribution of the variable of interest. A random
process that possibly changes in time is called a stochastic process. Because
change itself is of interest in such processes, the model is often expressed as a
differential equation.

The development and use of a model is an iterative process that includes
data collection and analysis. It requires looking at the data from various per-
spectives. The model embodies both knowledge and assumptions. The knowl-
edge may result from first principles or from previous observations. A model
can be strong (very specific) or weak (leaving open many possibilities).

If the range of possibilities in a model can be limited to a set of real num-
bers, the possibilities are represented by a parameter. Parametric statistical
procedures involve inference about the parameters of a model. Nonparamet-
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ric methods in statistics also rely on models that usually contain parameters;
the phrase “nonparametric” often refers to a method that does not specify a
family of probability distributions except in a very general way.

Models

While some methods are referred to as “model-free”, and the phrase “model-
based approach” is sometimes used to describe a statistical method, implying
that other, “non-model-based” approaches exist, in reality some model under-
lies all statistical analyses. The model is not immutable, however, and much
of the effort of an analysis may go into developing and refining a model. In
exploratory data analysis, or EDA, the model is quite weak. The patterns and
other characteristics identified in an exploratory data analysis help to form a
stronger model. In general, whenever the model is weak, a primary objective
is usually to build a stronger model.

There are various types of models. They may have different purposes. A
common form of a model is a mathematical equation or a system of equa-
tions. If the purpose of the model is to enhance the understanding of some
phenomenon, there would be a large premium on simplicity of the model. If
the model is very complicated, it may correspond very well to the reality being
studied, but it is unlikely to be understandable. If its primary purpose is to
aid understanding, an equation model should be relatively simple. It should
not require an extensive period of time for scrutiny.

A model may be embedded in a computer program. In this case, the model
itself is not ordinarily scrutinized; only its input and output are studied. The
complexity of the model is not of essential consequence. Especially if the ob-
jective is prediction of a response given values of the associated variables, and
if there is a large premium on making accurate predictions or classifications in
a very short time, an algorithmic model may be appropriate. An algorithmic
model prioritizes prediction accuracy. The details of the model may be very
different from the details of the data-generating process being modeled. That
is not relevant; the important thing is how well the output of the algorithmic
model compares to the output of the data-generating process being modeled
when they are given the same input.

Model Inference Using Data

Data analysis usually proceeds through some fairly standard steps. Before
much is known about the process being investigated, the statistician may just
explore the data to arrive at a general understanding of its structure. This
may involve many graphical displays in various coordinate systems and under
various projections. When more than one variable is present, relationships
among the variables may be explored and models describing these relation-
ships developed.
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One aspect of the modeling process is to fit a tentative model to observed
data. In a parametric model, this means determination of values of parameters
in the model so that the model corresponds in some way to the observations.
The criteria for the model to correspond to the observations may be based
on some distributional motivation or merely on some heuristic measure of the
correspondence of pairs of points to an equation. These criteria include the
following.

• Some model moments match the corresponding sample moments (method
of moments).

• Some norm of the vector of deviations of observed values from mean model
values is minimized (least squares, for example).

• The joint probability density function evaluated at the observed values is
maximized (maximum likelihood).

• Observations that are similar have similar responses in the model (homo-
geneity of classes).

• If the data are partitioned into two sets and a model is fit based on one
set, the model fits the data in the other set well (training set and test
set, or cross validation). In this case, the emphasis is on classification or
prediction accuracy (based on an appropriate definition and a suitable
quantification).

These criteria are not mutually exclusive, and some combination of them may
be used. The criteria can be viewed purely as intuitive guidelines, or the sto-
chastic components of the model may be modeled by some family of statistical
probability distributions, and the distributional properties of the estimators
under various assumptions can determine the approach. More formal meth-
ods of estimation as described in Chapter 1 may be used, especially if prior
knowledge or beliefs are to be incorporated formally.

An important part of the modeling process is statistically testing of the
correspondence of the available data to the model that has been fit. Depending
on the type of model, the goodness-of-fit testing may or may not be a relatively
straightforward process. We should also understand that goodness-of-fit tests
generally are rather ineffective for addressing the basic question of what is the
correct model.

The distributions of estimators under various assumptions may be quite
difficult to work out. Rather than basing inference on asymptotic approxima-
tions, we can use computational inference for confidence levels or statements
of probability about model parameters. Computational inference using simu-
lated datasets can also be useful in assessing the fidelity of the evolving models
to the observed data.

In this chapter we will consider statistical models of relationships among
observable features. In Section 17.1, we briefly discuss models of dependencies
in a general way. In Section 17.2, we discuss the incorporation of a probability
distribution into the model. This gives us a basis for statistical inference. In the
longer Section 17.3, we discuss the use of observational data to fit the model.
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In Section 17.4, we discuss the use of observational data to fit a particular kind
of model, namely a classification model. Finally, in Section 17.5, we discuss
the use of transformations of data so that a model of a given form will fit it
better. One-to-one transformations do not result in any information loss, and
they often make observational data easier to understand.

17.1 Regression and Classification Models

In many applications, some subset of variables may be characterized as “de-
pendent” on some other subset of variables; in fact, often there is just a single
“dependent” variable, and our objective is to characterize its value in terms
of the values of the other variables. (The word “dependent” is in quotes here
because we do not wish necessarily to allow any connotation of causation or
other stronger meanings of the word “dependence”. In the following, we use
“dependent” in this casual way but do not continue to emphasize that fact
with quotation marks.) The dependent variable is often called the “response”,
and the other variables are often called “factors”, “regressors”, “independent
variables”, “carriers”, “stimuli”, or “covariates”. (The word “independent”
has some connotative difficulties because of its use in referring to a stochastic
property, and some authors object to the use of “independent” here. Most
choices of words have one kind of problem or another. A problem with “stim-
ulus”, for example, is the implication of causation. I am likely to use any one
of these terms at various times. Fortunately, it does not matter; the meaning
is always clear from the context.)

The asymmetric relationship between a random variable Y and a variable
x may be represented as a black box that accepts x as input and outputs Y :

Y ← unknown process ← x. (17.1)

The relationship might also be described by a statement of the form

Y ← f(x)

or
Y ≈ f(x). (17.2)

If f has an inverse, the model (17.2) appears symmetric. Even in that case,
however, there is an asymmetry that results from the role of random variables
in the model; we model the response as a random variable. We may think of
f(x) as a systematic effect and write the model with an additive adjustment,
or error, as

Y = f(x) + E (17.3)

or with a multiplicative error as

Y = f(x)∆, (17.4)
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where E and ∆ are assumed to be random variables. (The “E” is the Greek
uppercase epsilon.) We refer to these as “errors”, although this word does not
indicate a mistake. Thus, the model is composed of a systematic component
related to the values of x and a random component that accounts for the
indeterminacy between Y and f(x). The relative contribution to the variability
in the observed Y due to the systematic component and due to the random
component is called the signal to noise ratio. (Notice that this is a nontechnical
term here; we could quantify it more precisely in certain classes of models.)

In the case of the black-box model (17.1), both the systematic and random
components are embedded in the box.

Models with multiplicative random effects are not as widely used. In the
following, we will concentrate on models with additive random effects. In such
models, E is also called the “residual”.

Because the functional form f of the relationship between Y and x may
contain a parameter, we may write the equation in the model as

Y = f(x; θ) + E, (17.5)

where θ is a parameter whose value determines a specific relationship within
the family specified by f . In most cases, θ is a vector. In the usual linear re-
gression model, for example, the parameter is a vector with two more elements
than the number of elements in x,

Y = β0 + xTβ + E, (17.6)

where θ = (β0,β,σ2).
A generalization of the linear model (17.6) is the additive model,

Y = β0 + f1(x1,β1) + · · · + fm(xm,βm) + E. (17.7)

The specification of the distribution of the random component is a part of
the model, and that part of the model can range from very general assumptions
about the existence of certain moments or about the general shape of the
density to very specific assumptions about the distribution. If the random
component is additive, the mean, or more generally (because the moments
may not exist) the appropriate location parameter, is assumed without loss
of generality to be 0.

The model for the relationship between Y and x includes the equa-
tion (17.5) together with various other statements about Y and x such as
the nature of the values that they may assume, statements about θ, and
statements about the distribution of E. Thus, the model is

⎧
⎨

⎩

Y = f(x; θ) + E

additional statements about Y, x, θ, E.
(17.8)
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In the following, for convenience, we will often refer to just the equation as
the “model”.

Another way of viewing the systematic component of equation (17.5) is as
a conditional expectation of a random variable,

E(Y |x; θ) = f(x; θ). (17.9)

This formulation is very similar to that of equations (17.3) and (17.4). The
main differences are that in the formulation of equation (17.9) we do not
distinguish between an additive error and a multiplicative one, and we consider
the error to be a random variable with finite first moment. In equations (17.3)
and (17.4), or equation (17.5), we do not necessarily make these assumptions
about E or ∆.

If we assume a probability distribution for the random component, we may
write the model in terms of a probability density for the response in terms of
the systematic component of the model,

p(y|x, θ). (17.10)

Cast in this way, the problem of statistical modeling is the same as fitting a
probability distribution whose density depends on the values of a covariate.

Generalized Models

If the response can take on values only in a countable set, a model of the form

Y = f(x; θ) + E

may not be appropriate, especially if the covariate x is continuous.
Suppose, for example, that the response is binary (0 or 1) representing

whether or not a person has had a heart attack, and x contains various bio-
metric measures such as blood pressure, cholesterol level, and so on. The
expected value E(Y |x; θ) is the probability that a person with x has had a
heart attack. Even if a model such as

E(Y |x; θ) = f(x; θ), (17.11)

with continuous regressor x, made sense, it would not be clear how to fit the
model to data or to make inferences about the model. A simple transformation
of the response variable, τ(Y ), does not improve the data-analysis problem;
if Y is binary, so is τ(Y ).

A problem with the model in this form is that the value of f(x; θ) must
range between 0 and 1 for all (reasonable) values of x and θ. A function
f could of course be constructed to have this range, but another way is to
model a transformation of E(Y |x; θ). This can often be done in a way that
has a meaningful interpretation. We first let
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π(x; θ) = E(Y |x; θ), (17.12)

which we generally write simply as π. If Y is binary with values 0 and 1 then
π is just the probability that Y = 1.

Next, we introduce some function g(π), that, it is hoped, relates to the
data-generating process being studied. The function g is called the link func-
tion. The appropriate form of the link function depends on the nature of the
probability distribution. Notice that the link function is not just a transfor-
mation of the observable variable Y , as is τ(Y ) above. The link function is a
transformation of the expected value of Y .

We now can form a “generalized model” that is more similar to the forms
of the models for continuous responses than a form that models Y directly;
that is,

g(π) ≈ h(x; θ). (17.13)

In the case of Y being binary, letting π = E(Y |x; θ), we may introduce the
transformation

g(π) = log
(

π

1 − π

)

= logit(π). (17.14)

The logit function in equation (17.14) is the “odds ratio”. The logit func-
tion is useful for a Bernoulli distribution (that is, a binary response).

In this kind of problem, we often form a generalized model such as

g(π) = β0 + β1x1 + · · · + βmxm. (17.15)

The generalized model formed in this way is called a logistic regression model.
For different distributions, other link functions may be more appropriate

or useful. If Y is not binary, but takes on a countable number of values, the
link function may be the log of the expected value of Y .

In many useful models, h(x; θ) in equation (17.13) is linear in θ. The
resulting model, such as equation (17.15), is called a generalized linear model.

The analysis of generalized models is usually based on a maximum like-
lihood approach, and the elements of the analysis are often identified and
organized in a manner that parallels the ANOVA of general linear models.

Classification Models

In the generic model for the classification problem, the variables are the pairs
(Y, x), where Y is a categorical variable representing the subclass of the pop-
ulation to which the observation belongs.

The generalized models discussed above can be viewed as classification
models. A generalized model yields the probability that an observation has
a particular response, or that the observation is in a given category. A logit
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model as in equations (17.12), (17.14), and (17.15), is often used as a clas-
sification model for binary responses, designated arbitrarily as 0 and 1. The
rounded predicted probability is the class a given observation is assigned to.
The predicted probability can also be viewed as a “fuzzy classification”.

In the classification problem, we often consider x to be a realization of
a random variable X , and we represent the random variable pair as (G, X),
where G is a discrete variable corresponding to the class of the pair. A classi-
fication rule, κ, is a mapping from X , the space of X , to G, the space of G. If
we assume a particular distribution of the data, it may be possible to develop
an optimal approach to the classification problem based on the distribution.
In particular, if we have an expression for the conditional probability p(g|x)
that G = g, given X = x, then we can use a rule that assigns the value of
G based on the largest conditional probability. This is called a Bayes rule.
Given a set of distributional assumptions, a Bayes classification rule has the
minimal expected misclassification rate.

In applications of classification models, we generally have a dataset with
known values of x and G and are interested in predicting the values of G in
another dataset with known values of x only.

Classification is similar to the clustering problem for the x’s that we have
discussed in Section 16.1 beginning on page 519, except that in classification
models, the value of one of the variables indicates the cluster or group to
which the observation belongs.

Generally, we do not assume a specific distribution but rather that the
training set represents randomly chosen examples of the qualities for which we
are trying to build a classification rule. This is sometimes called the probably
approximately correct, or PAC, model of learning.

The starting point for studying the classification problem is classification
into one of two groups. Bayes rules for the binary case are relatively simple to
develop in a variety of scenarios. The multigroup problem is not as simple. One
approach is a sequential one of assigning all unclassified observations to either
the ith group or the group consisting of all other groups, and then continuing
this process considering the observations in the group consisting of all other
groups to be unclassified. This approach, however, does not necessarily yield
an optimal classification, even if it is optimal at each stage.

As more data are collected, the properties of the groups may become known
from the past training datasets, and future data can be classified in a su-
pervised fashion. How well a classification scheme works can be assessed by
observing the similarity of the new observations in each cluster. This process
can also be applied to a single dataset by defining a subset of the data to be
a training dataset. This type of cross validation is often useful in developing
rules for classification.

Classification rules are often based on measures of distance to the means
of the groups scaled by S, the sample variance-covariance matrix. The Ma-
halanobis distance of an observation x to the mean of the ith group, x̄(i),
is
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(x − x̄(i))TS−1(x − x̄(i)). (17.16)

This is the basis for a linear discriminant function for classification, which we
address on page 623.

An observation can be classified by computing its Euclidean distance from
the group means projected onto a subspace defined by a subset of the canonical
variates. The observation is assigned to the closest group. For two groups, this
is easy; the discriminant for the observation x is just

κ(x) = sign
(
xTS−1(x̄(1) − x̄(2))

)
. (17.17)

A positive value of κ(x) assigns x to the first group, and a negative value
assigns it to the second group. Under certain assumptions (for example, nor-
mality), this is a Bayes rule. For more than two groups, it is a little more
complicated. In general, a classification rule based on the Mahalanobis dis-
tance is

κ(x) = argmin
i

(
(x − x̄(i))TS−1(x − x̄(i))

)
. (17.18)

We could represent the data in the classification problem as x = (xr, xc)
as in equation (16.6) on page 532. The xc are categorical variables. If xc is a
vector, some elements may be unobserved. We may know that xc ∈ C, where
C is some given set of general characteristics or rules. The characteristics
may be dependent on the context, as we discussed on page 388. The set of
characteristics of interest may include “concepts” (that is, something more
general than just a class index).

Models of Sequential Dependencies

A stochastic process is indexed by a time parameter, which may be a con-
tinuous variable over an interval or may be assumed to take on fixed values
. . . , tk−1, tk, tk+1, . . .. A model for a stochastic process may be written as

Ytk = ftk(xtk , ytk−1 ; θtk ) + Etk . (17.19)

The response variable in a stochastic process is often referred to as the state
of the process.

In many applications of interest we can assume that ftk , θtk , and the
distribution of Etk do not change in time; that is, the model is stationary.

Another way of formulating a model of a stochastic process is to focus on
the change in the dependent variable and to write a differential equation that
represents the rate of change:

dY

dt
= g

(
x(t), Y (t); θ(t)

)
+ E(t). (17.20)

In many cases, this is a natural way of developing a stochastic model from
first principles of the theory underlying the phenomenon being studied. In
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other cases, such as financial applications, for the variable of interest there
may be no obvious dependency on other variables. In financial analysis, the
change in prices from day to day or from trade to trade is of interest, so the
appropriate model is a differential equation.

Data and Models

The model (17.8) is expressed in terms of the general variables Y and x. The
relationship for a particular pair of observed values of these variables may be
written as

yi = f(xi; θ) + ϵi.

For a sample of n yi’s and xi’s, we may write the model as

y = f(X ; θ) + ϵ, (17.21)

where y is an n-vector, X is an n × m matrix of n observations on the m-
vectors xi, and ϵ is an n-vector representing a realization of the random error
term E in the model equation (17.5).

The usual linear regression model would be written as

y = Xβ + ϵ, (17.22)

where X is understood to contain a column of 1’s in addition to the columns
of values of the covariates.

The problem in data analysis is to select the relevant factors x, the func-
tional form f , the value of θ, and properties of the random component that
best fit the data. Depending on the assumptions of the distribution of E, its
variance may be of interest.

For given observations y and X , either a maximum likelihood approach or
just a heuristic approach often leads to estimating β so as to minimize

∥y − Xb∥

with respect to the variable b.
If the form of the density is known, the theory of statistical inference

can be used to assess properties of estimators or test procedures. Although
the theory that allows identification of optimal procedures is interesting, the
problem of model building is much more complicated than this. For each of
the various models considered, however, it is useful to have simple theoretical
guidelines for fitting a model, even if the model is tentative.

Accounting for an Intercept

Given a set of observations, the ith row of the system Xb ≈ y represents the
linear relationship between yi and the corresponding x’s in the vector xi:
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yi ≈ b1x1i + · · · + bmxmi.

A different formulation of the relationship between yi and the corresponding
x’s might include an intercept term:

yi ≈ b̃0 + b̃1x1i + · · · + b̃mxmi.

There are two ways to incorporate this intercept term. One way is just
to include a column of 1s in the X matrix, as in equation (17.22). Because
we often prefer to think of the columns of X as representing covariates, we
often take a different approach. We assume that the model is an exact fit for
some set of values of y and the x’s. If we assume that the model fits y = 0
and x = 0 exactly, we have a model without an intercept (that is, with a
zero intercept). It may be a reasonable to assume that the model may have a
nonzero intercept, but that it fits the means of the set of observations; that
is, the equation is exact for y = ȳ and x = x̄, where the jth element of x̄ is
the mean of the jth column vector of X . (Students with some familiarity with
the subject may think that this is a natural consequence of fitting the model.
It may not be unless the model fitting is by ordinary least squares.)

If we require that the fitted equation be exact for the means (or if this
happens naturally, as in the case of ordinary least squares), it is convenient to
center each column of X by subtracting its mean from each element, and to
form yc as the vector y− ȳ. The matrix formed by centering all of the columns
of a given matrix is called a centered matrix, and if the original matrix is X ,
we represent the centered matrix as Xc. If we represent the matrix whose ith

column is the constant mean of the ith column of X as X,

Xc = X −X. (17.23)

Using the centered data provides two linear systems: a set of approximate
equations in which the intercept is ignored,

yc ≈ Xcβc, (17.24)

and an equation that fits the point that is assumed to be satisfied exactly:

ȳ = Xβ. (17.25)

Transformations

Sometimes, the response of interest may not have a distribution that is
amenable to analysis, but some transformation of the response variable may
have a more tractable distribution. In such cases, rather than modeling the
response Y , it may be preferable to model a transformation of the response,
τ(Y ). One reason for doing this is to remove dependence of various properties
of the distribution of Y on x and θ. For example, if the variance of Y de-
pends on E(Y ), it may be desirable to consider a transformation τ(Y ) whose
variance does not change as the mean changes as a function of x and θ.
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If statistics of the forms
ȳ|x; θ

and ∑(
yi − ȳ|x; θ

)2

are to be used in data analysis, our objective might be to determine the
transformation so that τ(Y ) has a normal distribution because that is the
only way that the statistics

τ(y)
∣∣∣x; θ

and ∑(
τ(yi) − τ(y)

∣∣∣x; θ
)2

would be independent. Other reasons for transforming the data may be to
make some relationships linear, or else to make the variance of the error term
constant. We describe various transformations beginning on page 629.

As we discuss on page 630, we may also consider transformations of the
independent variable x. Transformations of the variable x in the clustering
problem often result in quite different clusters, as we discuss on page 533.
This effect of transformations can be exploited in the classification problem.

Exploration of various transformations and functional forms, using both
numerical computations and graphical displays, is computationally intensive.
Choice of a functional form involves selection of variables for inclusion in the
model. Evaluation of subsets of potential variables is computationally inten-
sive. We discuss some of the issues of variable selection and transformations
of variables later.

Piecewise Models

As we have seen in Chapters 4 and 10, sometimes it is best to approximate a
function differently over different domains. This can be done by use of splines,
for example. Likewise, different statistical models of dependencies over differ-
ent domains of the independent variables may be appropriate. Although a
systematic component in a model that has a single global function is use-
ful because of its simplicity, the data may not follow a single form of the
systematic component very well.

One approach to developing a model that is piecewise smooth is to use
polynomials over subintervals. We can impose smoothness constraints at the
knots separating the subintervals. The difficult modeling problem is the choice
of where to locate the knots. Obviously, the more knots, the better the model
can fit any given set of data. On the other hand, the more knots, the more
variation the model will exhibit. One approach is to add knots in a stepwise
manner while monitoring the improvement in the fit of the model to the data
(measured by some function of the residuals, as we discuss in Section 17.3, for
example).
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Overfitting

In any application in which we fit an overdetermined system,

y ≈ Xb,

it is likely that the given values of X and y are only a sample (not necessarily
a random sample) from some universe of interest. There is perhaps some error
in the measurements. It is also possible that there is some other variable not
included in the columns of X . In addition, there may be some underlying
randomness that cannot be accounted for.

The fact that y ̸= Xb for all b results because the relationship is not exact.
Whatever value of b provides the best fit (in terms of the criterion chosen)
may not provide the best fit if some other equally valid values of X and y
were used. The given dataset is fit optimally, but the underlying phenomenon
of interest may not be modeled very well. The given dataset may suggest
relationships among the variables that are not present in the larger universe
of interest. Some element of the “true” b may be zero, but in the best fit for
a given dataset, the value of that element may be significantly different from
zero. Deciding on the evidence provided by a given dataset that there is a
relationship among certain variables when indeed there is no relationship in
the broader universe is an example of overfitting.

There are various approaches we may take to avoid overfitting, but there
is no panacea. The problem is inherent in the process.

One approach to overfitting is regularization. In this technique, we restrain
the values of b in some way. Minimizing ∥y − Xb∥ may yield a b with large
elements, or values that are likely to vary widely from one dataset to another.
One way of “regularizing” the solution is to minimize also some norm of b.
We will discuss this approach on page 607.

17.2 Probability Distributions in Models

Statistical inference (that is, estimation, testing, or prediction) is predicated
on probability distributions. This means that the model (17.8) or (17.21)
must include some specification of the distribution of the random component
or the residual term, E. In statistical modeling, we often assume that the
independent variables are fixed — not necessarily that there is no probability
distribution associated with them, but that the set of observations we have
are considered as given—and the random mechanism generating them is not
of particular interest. This is another aspect of the asymmetry of the model.
This distinction between what is random and what is not is a basic distinction
between regression analysis and correlation analysis, although we do not wish
to imply that this is a hard and fast distinction.

The probability distribution for the residual term determines a family of
probability distributions for the response variable. This specification may be
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very complete, such as that E ∼ N(0,σ2I), or it may be much less specific. If
there is no a priori specification of the distribution of the residual term, the
main point of the statistical inference may be to provide that specification. If
the distribution of the residual has a first moment, it is taken to be 0; hence,
the model (for an individual Y ) can be written as

E(Y ) = f(x; θ);

that is, the expected value of Y is the systematic effect in the model. If the
first moment does not exist, the median is usually taken to be 0 so that the
median of y is f(x; θ). More generally, we can think of the model as expressing
a conditional probability density for Y :

pY (y) = p(y | f(x; θ)). (17.26)

Hierarchical Models

The basic general model (17.8) can be a component of a hierarchical model:

y = f(x; θ) + ϵ,
x = g(w; τ) + δ, (17.27)

or

y = f(x; θ) + ϵ,
θ ∼ D(τ), (17.28)

where D(τ) is some distribution that may depend on a parameter, τ . Either
of these models could be part of a larger hierarchy, of course.

Hierarchical models of the form (17.27) arise in various applications, such
as population dynamics, where the components are often called “compart-
ments”, or in situations where the independent variables are assumed not to
be observable or not to be measured without error.

Hierarchical models of the form (17.28) are useful in Bayesian statistics.
In that case, we may identify the components of the model as various joint,
marginal, and conditional distributions. For example, following the general
outline presented on page 43, we may consider the joint distribution of the
random variables Y and Θ (using an uppercase letter to emphasize that it is
a random variable),

(Y,Θ) ∼ DY,Θ(x, τ),

the conditional distribution of Y given Θ,

Y ∼ DY |θ(f(x; θ)),

or the conditional distribution of Θ given Y ,
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Θ ∼ DΘ|y(x, y, τ). (17.29)

In the analysis of data, the second component of model (17.28), which is a
marginal distribution, which we rewrite as

Θ ∼ DΘ(τ),

is called the prior distribution, and the conditional distribution of Θ given Y
(17.29) is called the posterior distribution. The idea is that the conditional
distribution represents knowledge of the “unknown parameter” that includes
information from the observations y and the prior distribution of the parame-
ter.

Probability Distributions in Models of Sequential Dependencies

There are two different ways to develop probability models for the dependent
variable in a stochastic process as described by equation (17.19). In one ap-
proach, we consider a set of probability spaces indexed by t; that is, for each
t, there is a different probability space that depends not only on t but also on
the value of Y (t − ϵ).

In another approach, we define the outcome space to correspond to the
sequence or path of values that can be assumed by Yt. In a continuous sto-
chastic process, the outcome space in the underlying probability space may
be chosen to be the set of continuous mappings (“trajectories”) of [0, t] into
IR. This approach is sometimes called the “canonical” setup.

The parameter space for these models includes time. The parameter that
indexes time may be continuous, but it is often considered to be discrete.

We can develop a differential equation model of a stochastic process, as
in equation (17.20), by starting with models of small changes. One of the
simplest and most commonly used models developed in this way is called
Brownian motion. In this model, the random variable, Bt, with a continuous
index, t, has the following properties:

• the change ∆Bt during the small time interval ∆t is

∆Bt = Z
√
∆t,

where Z is a random variable with distribution N(0, 1);
• ∆Bt1 and ∆Bt2 are independent for t1 ̸= t2.

From the definition, we see that E(∆Bt) = 0 and V(∆Bt) = ∆t. Now, if
B0 = 0, and for the positive integer n we let t = n∆t, we have

Bt =
n∑

i=1

Zi

√
∆t, (17.30)

where the Zi are i.i.d. N(0, 1), so Bt has a N(0, t) distribution.
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In the limit as ∆t → 0,
√
∆t becomes much larger than ∆t, and the change

in Bt (that is,∆Bt) becomes relatively large compared to the change in t (that
is, ∆t). Therefore, as t moves through any finite interval:

• the expected length of the path followed by Bt is infinite; and
• the expected number of times Bt takes on any given value is infinite.

The limiting process is called a Wiener process and is denoted as dBt.
There are some useful generalizations of this process. One, called a gen-

eralized Wiener process, is a linear combination of a Wiener process and a
constant rate in t. This can be represented by

dYt = u dt + v dBt, (17.31)

where u and v are constants and dBt is a Wiener process. (An equation in
differentials of the form (17.31) is called a Langevin equation.) Another gen-
eralization is an Ornstein-Uhlenbeck process, which is similar to a generalized
Wiener process except that the change in time depends on the state. The
Langevin equation is

dYt = uYt dt + v dBt. (17.32)

A further generalization is an Ito process, which is similar to a generalized
Wiener process except that both coefficients are functions of Yt (and, hence,
at least implicitly, of t). The Langevin-type equation for an Ito process is

dYt(ω) = u(Yt(ω), t) dt + v(Yt(ω), t) dBt(ω), (17.33)

where Bt is a Brownian motion. This model is widely used for the price of a
financial asset, such as a stock. The simple form is just

dY = µY dt + σY dBt, (17.34)

where the drift parameter µ is the rate of return of the stock per unit of
time, and σ is the “volatility” of the stock price. (In general terms, ignoring
the ambiguities of continuous time, volatility is the standard deviation of the
relative change in the price.) This version of an Ito process is called geometric
Brownian motion. Variations on geometric Brownian motion that attempt to
capture additional aspects of stock price behavior include discrete changes in
µ or σ, resulting in a “jump process”, and imposition of stochastic constraints
on the magnitude of Y , yielding a “mean-reverting process”.

17.3 Fitting Models to Data

Observational data help us to build a model. The model helps us to under-
stand nature. Standard ways of developing our knowledge of nature involve
estimation and tests of hypotheses— that is, statistical inference.
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Inference about the model y = f(X ; θ) + ϵ involves estimation of the
parameters θ, tests of hypotheses about θ, and inference about the probability
distribution of ϵ. It may also involve further consideration of the model, the
form of f , or other issues relating to the population, such as whether the
population or the sample is homogeneous, whether certain observations are
outliers, and so on.

The statistical characteristics of the estimator, such as its bias and vari-
ance, depend on how the model is fit (that is, on how the estimates are com-
puted) and on the distribution of the random component. For a specific family
of distributions of the random component and a specific form of f , it may be
possible to determine estimators that are optimal with respect to some sta-
tistical characteristic such as mean squared error.

A unified approach to model inference involves a method of estimation
that allows for statements of confidence and that provides the basis for the
subsequent inference regarding the distribution of ϵ and the suitability of the
model. In this section, we will be concerned primarily with methods of fitting
the model rather than on the problem of statistical inference.

The Mechanics of Fitting

Fitting a model using data can be viewed simply as a mechanical problem
of determining values of the parameters so that functional relationships ex-
pressed by the model are satisfied approximately by the given set of data.
Fitting a model to data is often a step in statistical estimation, but estima-
tion generally involves a deeper belief about the nature of the data. The data
are realizations of a random variable whose distribution is related to or speci-
fied by the model. Statistical estimation also includes some assessment of the
distribution of the estimator.

One of the first considerations is what approach to take in modeling. Is
the objective to develop a model in the form of equations and statements
about distributions of elements of the model, as in equation (17.8), or is it
acceptable to have a black box of the form (17.1) together with an algorithm
that accepts x and produces a good prediction of Y ? Often, a set of rules is
sufficient. Because there is no particular restriction on the complexity of the
rules as there would be if we attempt to express the rules in a single equation,
the black box together with a prediction algorithm performs best. A neural
net, which can be quite complicated yet provides no insight into identifiable
functions and parameters, often yields excellent predictions of the response
for a given input x.

An additional consideration is whether the fit is to be global or local (that
is, whether a single model describes the data over the full domain and all
observations are used at once to fit the model, or whether different models
apply in different domains and only “local” observations are used to fit the
model within each domain).
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On page 587, we listed five basic approaches for fitting models using data:
method of moments, minimizing residuals, maximizing the likelihood, homo-
geneity of modeled classes, and predictive accuracy in partitioned data. Any
of these approaches can be applied in fitting models that have a continuous-
valued response. (We can assess class homogeneity if one or more of the covari-
ates is a classification variable, or we may be able to discretize the response
into meaningful groups.) If the model has a discrete-valued response, or if the
purpose is classification, there are two possibilities. One is the use of a gener-
alized model, which effectively makes the response continuous-valued and can
yield a probability-based or fuzzy classification. Otherwise, the fitting problem
can be addressed directly, and the class purity is the primary criterion. In the
classification problem, the predictive accuracy in partitioned data is almost
always considered in the model fitting. The dataset can be partitioned either
randomly or systematically, as we discuss in Chapter 12. Whatever method
is used to fit a model, it may be followed by some further steps to bring the
model and the data into closer agreement. Individual observations that do not
agree well with the fitted model may be treated specially in some way. Some
outlying observations may be modified or even removed from the dataset, and
then the model is refit using the cleaned data.

Estimation by Minimizing Residuals

Of the basic approaches for fitting models using data, listed on page 587,
perhaps the most intuitive is fitting based on minimizing the residuals. This
is the method most often used by data analysts and scientists to fit a curve
to data without any assumptions about probability distributions.

For a given function f , the fit is accomplished by solving an optimization
problem involving some function of the vector of residuals,

r = y − f(X ; θ),

where y is the vector of observed responses and X is the matrix of correspond-
ing observations of the covariates. The decision variable in the optimization
problem is θ.

Notice that the ri are vertical distances as shown in Figure 17.1 for a simple
linear model. Another way of measuring residuals in a model is indicated by
the orthogonal residuals, di, shown in Figure 17.3.

For a given set of data {(yi, xi)}, the residuals ri are functions of f and
θ. Clearly, the space of functions from which to select f must be restricted
in some way; otherwise, the problem is not well-defined. We generally re-
strict the function space to contain only relatively tractable functions, such
as low-degree polynomials, often just linear functions, exponential functions,
or functions that can be formed from common basis functions, as we discuss
in Section 4.2 and in Chapter 10. Once a general form of f is chosen, the
residuals are functions of θ, ri(θ).
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Fig. 17.1. Residuals

There are many reasonable choices as to how to minimize the ri(θ). In
general, we can minimize the sum

∑
ρ(ri(θ)), (17.35)

where ρ(t) is some nonnegative, nondecreasing function in |t|, at least near
t = 0. A value of θ that minimizes the sum (17.35) is called an M-estimator
because log-likelihood equations for common distributions often have a form
similar to the negative of this sum. Most common choices of ρ(·) are such that
the sum is a norm of the residual vector r:

∑
ρ(ri(θ)) = ∥r∥. (17.36)

The Lp norm is commonly used. For p = 2 this is least squares, for p = 1 this is
least absolute values, and for p → ∞ this is least maximum value (minimax).

For data from a normal distribution, least squares is the optimal minimal-
residual criterion by various other criteria, such as maximum likelihood. It is,
however, subject to strong effects of outliers or observations that have large
(positive or negative) residuals. The least absolute values criterion, on the
other hand, is not strongly affected by outlying observations.

In the simple case in which there are no covariates, that is, for the model
of the form y = θ, use of least absolute values leads to a fit that corresponds
exactly to one of the observations. (It is the median, or in the case of a sample
size of even number, either of the two central order statistics or any value in
between.) In a linear regression model, a least absolute values fit also has
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this kind of discontinuous property. One fit always corresponds exactly to
some “central” observations. Any of the other observations may be perturbed
up to a certain amount without affecting the fit. Once the perturbation of a
“noncentral” observation reaches a certain amount, however, that observation
may become a central one that a newly-fitted model matches exactly.

The computations for determining the minimizer of (17.35) are discussed
in Chapter 6. The most common method is some type of quasi-Newton algo-
rithm. Another iterative method that is very simple to implement is one in
which the individual elements of the m-vector θ are updated one at a time.
Beginning with some starting value for θ(0), we have a one-dimensional mini-
mization problem, and letting j range over the indices of θ, we take

θ(k)
j = arg min

θj

∑
ρ
(
ri

(
θ(k−1)
1 , . . . , θj , . . . , θ

(k−1)
m

))
. (17.37)

We then iterate on k until convergence. These kinds of iterations are especially
useful in fitting an additive model such as equation (17.7) on page 589, in
which

ri = yi − β0 −
∑

l ̸=j

fl(xli,βl) − fj(xji,βj). (17.38)

In Chapter 1, in addition to outlining the basic quasi-Newton compu-
tations, we also discuss how those computations may yield estimates of the
variance of the estimator of θ. Other methods of estimating the variance of es-
timators of θ are based on computational inference utilizing data partitioning
(Chapter 12) or bootstrapping (Chapter 13).

Minimizing the sum (17.35) in the case of a generalized model may be quite
difficult. If, however, we restrict attention to certain classes of link functions
and to a simple form of ρ, such as a square, the computations are relatively
stable, and a quasi-Newton method, a Gauss-Newton method, or iteratively
reweighted least squares can be used. The optimization problem for estima-
tion of the parameters in a generalized model is usually formulated as a like-
lihood to be maximized rather than a sum of functions of the residuals to
be minimized. For the link function and ρ of simple forms, the MLE and the
minimum-residual estimates are the same.

Least Squares Estimation in Linear Models

The most familiar example of fitting a statistical model to data uses the linear
regression model (17.22):

y = Xβ + ϵ.

The least-squares fit of this is exactly the same as the least-squares fit of the
overdetermined system (5.54) Xb ≈ y on page 229 in Section 5.6. It is the
solution to the normal equations,

XTXβ̂ = XTy,
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which, as we determined in that section, is

β̂ = X+y,

which, in the case of full-rank X , is

β̂ = (XTX)−1XTy. (17.39)

As we pointed out in Section 5.6, fitting a model is not the same as statistical
inference. Statistical inference requires a probability distribution on ϵ as part
of the model.

If we ignore any distributions on X and β, or at least just state results
conditionally on X and β, we have that if E(ϵ) = 0 then β̂ above is unbiased
for β, that is, E(β̂) = β, and V(β̂) = X+V(ϵ)(X+)T.

With an additional assumption that V(ϵ) = σ2I , for a constant σ2, we
have V(β̂) = X+(X+)Tσ2, but more importantly, we have the Gauss-Markov
theorem that β̂ is the best (in the sense of minimum variance of all linear
combinations) linear unbiased estimator of β.

With the assumption that ϵ ∼ Nn(0,σ2I), we have distributional prop-
erties of β̂ as well as of (y − Xβ̂)T(y − Xβ̂) that allow us to develop most
powerful statistical tests of hypotheses regarding β.

Another interesting property of the least-squares estimator is the relation-
ship between the model with the centered data, as in equation (17.24),

yc = Xcβc + ϵ,

and the model that may include an intercept, equation (17.22),

y = Xβ + ϵ.

The least squares estimators are the same (except of course βc does not contain
a term corresponding to an intercept), and in any event, equation (17.25) is
satisfied by the estimator

ȳ = Xβ̂

without imposing this as a separate constraint. (Recall that fitting the equa-
tion by minimizing some other norm of the residuals does not ensure that the
fit goes through the means.)

Variations on Minimizing Residuals

When data are contaminated with some (unidentified) observations from a
different data-generating process, it is desirable to reduce or eliminate the
effect of these contaminants. Even if all of the observations arise from the
same data-generating process, if that process is subject to extreme variance,
it may be desirable to reduce the effect of observations that lie far from the
mean of the model. It is not possible, of course, to know which observations
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are which in either of these cases. Both situations can be addressed, however,
by assuming that the bulk of the observations are close to the mean values of
the model and fit the model allowing such observations to have larger relative
effect on the fit. The objective is to obtain an estimator that is “robust” or
resistant to contamination.

A useful variation on the sum (17.35) is
∑

wiρ(ri(θ)). (17.40)

If the wi are just given constants that do not depend on ρ(ri(θ)), the ex-
pression (17.40) is a simple weighted sum and presents no difficulties, either
computational or inferential, beyond those of the unweighted sum (17.35).
If, on the other hand, we want to choose smaller weights for the y’s and x’s
that do not fit the model, wi may be some function w(xi, θ, ρ(ri(θ))). The
problems, both computational and inferential, are more difficult in this case.

Another way of approaching this problem is to define a function ρ in the
sum (17.35) that depends on y, x, and a given model determined by θ:

ρ(t; y, x, θ) =

⎧
⎨

⎩

ρ1(t) if θ provides a “good” fit for x and y,

ρ2(t) otherwise.
(17.41)

This heuristic approach is appealing, but to carry it out would require
some preliminary fits and some definition of what it means for “θ to provide
a good fit for x and y”. Once that meaning is quantified, this approach may
be computationally intensive, but it is easily done. In one simple approach,
for example, we could define a function ρ in the sum (17.35) that is a square
near zero (small model residuals) and smoothly becomes an absolute value at
some data-dependent distance from zero:

ρ(t; y, x, θ) =

⎧
⎨

⎩

1
2 t2 if |t| ≤ c,

|t|c − 1
2c2 if |t| > c,

(17.42)

where c = c(y, x, θ) is some constant that depends on the data. The 1
2 factor is

included to make the derivative continuous. (This form of ρ was suggested by
Huber, and the resulting estimator of θ is called a Huber estimator. Various
forms of c(y, x, θ) have been proposed and studied.)

We can easily modify this basic idea to define other estimators. Suppose
that ρ(t) is defined to be 0 for |t| > c. If for |t| ≤ c, ρ(t) = t2, minimizing the
sum (17.35) yields the least trimmed squares estimate; if for |t| ≤ c, ρ(t) = |t|,
minimizing (17.35) yields the least trimmed absolute values estimate. Because
of the dependence of c, computation of such estimators is more difficult. The
basic approach consists of two-step iterations; at the jth iteration, set c(j) =
c(y, x, θ(j)), which determines ρ(j), and then determine θ(j+1) as the solution
to
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min
θ

∑
ρ(j)(ri(θ)). (17.43)

The iterations can be started with some value of θ(0) that is computed without
any trimming. If the functional form of ρ(t) for |t| ≤ c is t2 or some other
simple form with second derivatives, quasi-Newton methods (see pages 269
and following) can be used to solve for θ(j+1).

Instead of defining ρ1 and ρ2 in equation (17.41) based on the size of the
residuals, we could define ρ based on order statistics of the residuals; that is,
decrease the effects of the smallest and largest order statistics. This is the idea
behind the commonly used univariate trimmed mean and winsorized mean
statistics, in which the contributions to the estimator of a certain percentage
of the smallest and largest order statistics are attenuated. If the percentage
approaches 50%, the estimators become the median.

Following this same idea, we could either define weights in expression (17.40)
or a ρ1 in equation (17.41) to reduce the effects on the estimator of the ob-
servations whose residuals are the smallest and largest order statistics of all
residuals. In the extreme case of eliminating the effect of all but one observa-
tion, we can write the optimization problem as

min
θ

Med(ρ(ri(θ))). (17.44)

If ρ(t) = t2, this yields the least median of squares estimator. Fitting the
model by this criterion is obviously computationally intensive.

Regularized Solutions

Other variations on the basic approach of minimizing residuals involve some
kind of regularization, which may take the form of an additive penalty on the
objective function (17.35). Regularization often results in a shrinkage of the
estimator toward 0. The general formulation of the problem then is

min
b

(∥y − Xb∥r + λ∥b∥b), (17.45)

where λ is some appropriately chosen nonnegative number. The norm on the
residuals, ∥ · ∥r, and that on the solution vector b, ∥ · ∥b, are often chosen
to be the same. The weighting factor λ may be chosen adaptively, as various
fits of the data are examined. Its effect depends on the relative sizes of the
residuals and the regression coefficients (which depend on the scaling of the
regressors). Its effect also depends on the number of observations and the
number of regression variables.

If both norms are the L2 norm, the fitting is called Tikhonov regularization
in the applied mathematical literature. In the statistical literature, the fitting
is called ridge regression, after terminology used in the description of the
method by Hoerl (1962).
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Ridge regression is often used in statistical modeling when there are large
correlations among the independent variables. The ridge regression estima-
tor for the model y = Xβ + ϵ is the solution of the normal equations
(XTX+λI)β = XTy. These normal equations correspond to the least squares
approximation ⎛

⎝
y

0

⎞

⎠ ≈

⎡

⎣
X

√
λI

⎤

⎦β. (17.46)

The choice of λ may be based on observing the changes in the parameter
estimates, as λ is increased from 0. After an initial period of rapid change of
the parameter estimates, the estimates generally stabilize and begin chang-
ing more slowly. The value of λ at which this appears to be happening may
be chosen as the optimal value. Often, if there are large correlations among
the independent variables, some of the parameter estimates may have signs
that are different from what their marginal values would be (that is, if the
other variables were not included in the model). A value of λ may be chosen
whenever the signs of all of the parameter estimates are consistent with their
marginal values (if such a value exists and if at that value, the estimated
parameters provide a reasonable fit to the data).

As an indication of the form of ridge regression in a more general setting,
we note that the Levenberg-Marquardt scaling matrix S(k) in the Gauss-
Newton update (6.62) on page 293 can be thought of as a regularization of a
standard Gauss-Newton step. The formulation as a constrained optimization
problem in equation (6.63) emphasizes this view. The general ridge regression
objective function can be formulated in a similar manner. In both the Gauss-
Newton method with a scaling matrix and ridge regression, the computations
can be performed efficiently by recognizing that the system is the normal
equations for the least squares fit of

⎛

⎝
r(θ(k))

0

⎞

⎠ ≈

⎡

⎣
Jr(θ(k))

√
λ(k)

(
S(k)

)

⎤

⎦ p, (17.47)

where p is the update step.
If ∥ · ∥r in expression (17.45) is the L2 norm and ∥ · ∥b is the L1 norm,

the statistical method is called the “lasso”. Because of the special properties
of the L1 norm (in particular, the discontinuity property alluded to above),
increasing the weight of the L1 norm leads to an exact zero for some coeffi-
cients. For this reason, the lasso can be used for selection of variables to be
included in the model.

Figure 17.2 shows the contours of both ∥ · ∥r and ∥ · ∥b for a regression
example with two variables. The norm used for ∥ · ∥r is the L2 norm in both
panels of Figure 17.2, and is shown in the heavier lines. In the left panel, the
norm used for ∥ ·∥b is the L2 norm, while in the right panel, the norm used for
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∥ · ∥b is the L1 norm. The regularized fit in either case would result from min-
imizing a weighted sum of the two norms. The graph in the right panel seems
to indicate that if the weight on ∥ · ∥b is large enough, the optimal b2 would
be 0. This is the variable selection aspect of the method mentioned above.
There are several approaches to the variable selection problem in regression
analysis. We will discuss this topic briefly again on page 613.
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Fig. 17.2. Regularization Function

Comparisons of Estimators Defined by Minimum Residuals

It is easy to describe estimators determined by minimizing various functions
of the residuals. What is difficult is understanding when to use which one.
Because of the range of possibilities of forms of models and of distributions,
it is also difficult to summarize what is known about the relative performance
of various estimators.

Because of the difficulty of working out exact distributions, Monte Carlo
methods are often used in comparing the performance of various estimators.
An example is described in Appendix A that compares the power of a statis-
tical hypothesis test for which the test statistic is computed by minimizing an
L2 norm with a test for which the test statistic is computed by minimizing an
L1 norm.
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Orthogonal Residuals

In the models that we have considered so far, the error or residual is additive
to the systematic part of the model. The method of fitting the model based
on minimizing these additive residuals is appropriate both theoretically and
from the intuitive perspective suggested by Figure 17.1.

The view in Figure 17.3 presents a different perspective, however. The di

are orthogonal distances, and represent the shortest distances between obser-
vations and the model. This may suggest fitting the model by minimizing some
function of the di’s. An obvious choice for the function, just as for vertical
distances, is the sum of the squares, and in that case, the fit is “orthogonal
least squares”. Fitting a model by minimizing the sum of the squared dis-
tances is called orthogonal distance regression, and the criterion is sometimes
called total least squares.

Fig. 17.3. Orthogonal Distances

Whether the vertical residuals in Figure 17.1 or the orthogonal residuals
in Figure 17.3 are more interesting depends on the model. The orthogonal
residuals criterion are sometimes suggested as appropriate for an errors-in-
variables model, in which we assume that both yi and xi are observed with
random error; that is, we observe

yi + ϵi (17.48)

and
xi + δi. (17.49)
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A linear model
yi ≈ β0 + β1xi (17.50)

that includes these errors on yi and xi is an errors-in-variables model. We
might intuitively feel that it is appropriate to fit such a model by minimizing
the orthogonal residuals.

Some reflection on this approach for estimation in an errors-in-variables
model reveals two problems, however. The first is that minimization of the
orthogonal residuals must be based on an assumption that the random errors
have constant and equal variances. The assumption of constant variance is
always problematic, but even ignoring that issue, are the yi’s and xi’s suffi-
ciently similar that we can reasonably assume that they have equal variances?
If not, then instead of a direction orthogonal to the model equation, we would
want to consider the residuals in a direction that is scaled by the individ-
ual variances. (Recall the discussion on page 392 about scaling the Euclidean
space using Mahalanobis distances.)

The second problem arises when we recall how we have been modeling
relationships such as that shown by expression (17.50). If we just assume that
the measurement error makes that expression an equality, we would have

y + E = β0 + β1(x +∆),

where E and ∆ are random variables modeling the measurement errors. In
the form that we have used to represent the data in the model, we would have

y = (X +∆)β + E

(assuming that E has a distribution symmetric about 0). This equation, how-
ever, is quite different from the models that we have been using, in which we
had

response = systematic component + random component, (17.51)

where the “random component” represented all “randomness”, possibly inher-
ent in the physical process, or possibly due to something else, but certainly
not specifically measurement error. The random component in the context of
the canonical model (17.51) is called “model error”. In any event, the decision
to fit the linear model by minimizing orthogonal residuals should not be based
simply on a model of errors-in-variables.

Moving now from the statistical modeling issues, we will consider the me-
chanical problem of fitting a linear model such as in Figure 17.3, so as to
minimize some norm of the orthogonal distances in the more general linear
model in which there may be more than one covariate.

With n observations and with m covariates, we have the n-vector y and
the n×m matrix X , which possibly includes a column of 1’s, as on page 594,
and the equation

(X + D)b = y + e, (17.52)
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where D is also in IRn×m (and we assume n > m).
In fitting the linear model as before only with adjustments to y, we de-

termine b so as to minimize some norm of e. Likewise, with adjustments to
both X and y, we seek b so as to minimize some norm of the matrix D and
the vector e. There are obviously several ways to approach this. We could
take norms of D and e separately and consider some weighted combination of
the norms. Another way is to adjoin e to D and minimize some norm of the
n × (m + 1) matrix [D|e]. We may seek to minimize ∥[D|e]∥F. This, of course,
is the sum of squares of all elements in [D|e]. (That is why numerical analysts
call the problem “total least squares”.)

If it exists, the minimum of ∥[D|e]∥F is achieved at

b = −v2∗/v22, (17.53)

where
[X |y] = USV T (17.54)

is the singular value decomposition (see equation (1.63) on page 28), and V
is partitioned as

V =
[

V11 v∗2
v2∗ v22

]
.

If D has some special structure, the problem of minimizing the orthogonal
residuals may not have a solution. Golub and Van Loan (1980) show that a
sufficient condition for a solution to exist is that the two smallest singular
values sm and sm+1 be such that sm > sm+1. (Recall that the s’s in the SVD
are nonnegative and they are indexed so as to be nonincreasing. If sm = sm+1,
there may or may not be a solution.)

As in the usual case of weighted least squares, the orthogonal residuals can
be weighted by premultiplication by a Cholesky factor of a weight matrix, as
discussed on page 230.

If some norm other than the L2 norm is to be minimized, an iterative
approach must be used. Ammann and Van Ness (1988, 1989) describe an iter-
ative method that is applicable to any norm, so long as a method is available
to compute a value of b that minimizes the norm of the usual vertical dis-
tances. The method is simple. We first fit y = Xb, minimizing the vertical
distances in the usual way; we then rotate y into ỹ and X into X̃, so that the
fitted plane is horizontal. Next, we fit ỹ = X̃b and repeat. After continuing
this way until the fits in the rotated spaces do not change from step to step,
we adjust the fitted b back to the original unrotated space. Because of these
rotations, if we assume that the model fits some point exactly, we must adjust
y and X accordingly (see the discussion on page 594). In the following, we
assume that the model fits the means exactly, so we center the data. We let m
be the number of columns in the centered data matrix. (The centered matrix
does not contain a column of 1s. If the formulation of the model y = Xb
includes an intercept term, then X is n × (m + 1).)
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Algorithm 17.1 Iterative Orthogonal Residual Fitting through the
Means

0. Input stopping criteria, ϵ and kmax.
Set k = 0, y(0)

c = yc, X(0)
c = Xc, and D(0) = Im+1.

1. Set k = k + 1.
2. Determine a value b(k)

c that minimizes the norm of
(
y(k−1)
c − X(k−1)

c b(k)
c

)
.

3. If converged(b(k)
c , ϵ, kmax), go to step 8.

4. Determine a rotation matrix Q(k) that makes the kth fit horizontal.
5. Transform the matrix

[
y(k−1)
c |X(k−1)

c

] [
y(k)
c |X(k)

c

]
by a rotation matrix:

[
y(k)
c |X(k)

c

]
=
[
y(k−1)
c |X(k−1)

c

]
Q(k).

6. Transform D(k−1) by the same rotation: D(k) = D(k−1)Q(k).
7. Go to step 1.
8. For j = 2, . . . , m, choose bj = dj,m+1/dm+1,m+1 (So long as the rotations

have not produced a vertical plane in the unrotated space, dm+1,m+1 will
not be zero.)

9. Compute b1 = ȳ −
∑k

j=2 bj ∗ x̄j (where x̄j is the mean of the jth column
of the original uncentered X).

(Refer to page 244 for discussion of the converged(·) function.) An appropriate
rotation matrix for Algorithm 17.1 is Q in the QR decomposition of

⎡

⎣
Im 0

(b(k))T 1

⎤

⎦ .

Note that forcing the fit to go through the means, as is done in Algo-
rithm 17.1, is not usually done for norms other than the L2 norm.

Variable Selection

If we start with a model such as equation (17.5),

Y = f(x; θ) + E,

we are ignoring the most fundamental problem in data analysis: which vari-
ables are really related to Y , and how are they related?

We often begin with the premise that a linear relationship is at least a good
approximation locally; that is, with restricted ranges of the variables. This
leaves us with one of the most important tasks in linear regression analysis:
selection of the variables to include in the model. There are many statistical
issues that must be taken into consideration.



614 17 Statistical Models of Dependencies

We first note that any measure of how well the model fits the given dataset
will be better, or at least as good, the more variables we include in the model.
This often leads to overfitting. Overfitting is to be avoided for three reasons.
The first two are practical ones. Models with fewer variables are generally
easier to understand. Models with fewer variables are usually easier to use in
prediction because there are fewer variables that require data to be collected.

Some aspects of the statistical analysis involve tests of linear hypotheses.
There is a major difference, however. Most of the theory of statistical hypoth-
esis tests is based on knowledge of the correct model. The basic problem in
variable selection is that we do not know the correct model. Most reasonable
procedures to determine the correct model yield biased statistics. Some people
attempt to circumvent this problem by recasting the problem in terms of a
“full” model; that is, one that includes all independent variables that the data
analyst has looked at. (Looking at a variable and then making a decision to
exclude that variable from the model can bias further analyses.)

We generally approach the variable selection problem in linear models by
writing the model with the data as

y = Xiβi + Xoβo + ϵ, (17.55)

where Xi and Xo are matrices that form some permutation of the columns
of X . We rearrange the columns of X so that Xi|Xo = X , and βi and βo are
vectors consisting of corresponding elements from β. We then consider the
model

y = Xiβi + ϵi. (17.56)

In most cases, we will consider the vector y and the X matrices to be
centered, as in equation (17.24). That means that we are not considering the
intercept to be a variable that is selected; it is always in the model.

It is interesting to note that the least squares estimate of βi in the
model (17.56) is the same as the least squares estimate in the model

ŷio = Xiβi + ϵi,

where ŷio is the vector of predicted values obtained by fitting the full
model (17.55). An interpretation of this fact is that fitting the model (17.56)
that includes only a subset of the variables is the same as using that subset
to approximate the predictions of the full model. The fact itself can be seen
from the normal equations associated with these two models. We have

XT
i X(XTX)−1XT = XT

i . (17.57)

This follows from the fact that X(XTX)−1XT is a projection matrix, and Xi

consists of a set of columns of X (see page 26).
The problem in variable selection in the linear model is to move columns

between Xi and Xo. There are many ways that we can do this systemati-
cally. One approach to the problem is to consider the best matrix Xi with
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one column, the best with two columns, and so on. This is called “all best”
regressions, and there is an efficient algorithm for determining these. Another
way, which is very simple, is called forward selection. We begin with the simple
linear model

y ≈ xkβk

(recall that the data are centered), and determine the j as

j = argmin
k

min
bk

∥y − xkbk∥2. (17.58)

The xj for which this minimum is minimized becomes the first column in
Xi. It is the column vector whose correlation with y is greatest in absolute
value. The process continues by determining the next best variable, after y
has been adjusted for xj , and moving it from Xo to Xi until all variables are
included in the model or until some stopping criterion is satisfied. At each
step, the chosen variable is the one with the greatest correlation (in absolute
value) with the current residuals, that is, with the values of y adjusted for all
variables currently in the model.

In a variation of forward selection, we have forward stepwise selection,
in which we consider the possibility of removing variables; that is, moving
columns from Xi to Xo. Forward stepwise selection requires that some crite-
rion be chosen for including the best variable in Xi; that is, we do not just
identify the best variable, we decide whether it is good enough to enter the
model. If it is not, we terminate the process. Likewise, forward stepwise se-
lection requires that some criterion be chosen for removing the worst variable
in Xi; that is, we do not just identify the worst variable, we decide whether
it should be removed from the model. The criteria are generally based on the
change in the residual L2 norms:

∥y − Xcurrent
i βcurrent

i ∥ − min
βnew
i

∥y − Xnew
i βnew

i ∥. (17.59)

If a new variable is being added to Xcurrent
i we seek the maximum reduction;

if a variable if being removed from Xcurrent
i we seek the minimum increase.

The actual comparisons are often expressed in terms of a pseudo-F statistic.
The relevant computations for updating these solutions efficiently were

discussed in Section 5.6, especially beginning on page 233.
Another interesting approach to variable selection is called least angle

regression. This method begins by identifying the variable that is most corre-
lated with y, just as in forward selection. This would be the same variable as
xj in equation (17.58), but we do not determine the optimal bj . Instead we
begin with bj = 0 and increase it in the direction of the sign of the correlation
between y and xj . If sj = ±1 with the same sign as that correlation, we let αj

increase by small step sizes h, that is, αj = 0, h, 2h, . . ., and take bj = sjαj .
As we do this, we form

r = y − bjxj ,
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and we compute the correlation between r and all the x’s at each step. We
want to identify the variable with the greatest correlation (in absolute value).

Initially xj will have the greatest correlation with r. (That is the way j
was selected at the beginning with bj = 0.) At some point, the correlation
between xj and r becomes zero. (That is one of the properties of the residual
vector in linear regression under least squares.) Suppose that at some value
of bj , xk has greater correlation with r than xj does. At that point, we put
xk in the model, and determine signs on bj and bk in the least squares fit of
y to xj and xk, say sj and sk. We now begin changing bj in the direction sj

from its current value and changing bk from its current value (of 0) in the
direction sk. As we do this, we compute r = y− bjxj − bkxk, and we compute
the correlation between r and all the x’s at each step, and identify the next
variable whose correlation is greatest. The correlation of both xj and xk with
r will approach 0, so at some point we have a new variable to bring into the
model.

We continue in this way until all variables have entered the model.
As we proceed through these steps, it is quite possible that the optimal

values of some coefficients will change signs as new variables enter the model,
hence the direction in which they are changed at each step may change. De-
pending on how far they are moved before another variable enters the model,
the current values of the coefficients may change signs. (Recall that the opti-
mal value and the current value of the coefficients may not be the same. The
current value of each coefficient begins at 0.)

Software for least angle regression is available in the lars function in the
R package lars.

As mentioned above, there are many difficult statistical issues in the vari-
able selection problem. The exact methods of statistical inference generally
do not apply (because they are based on a model, and we are trying to choose
a model). In variable selection, as in any statistical analysis that involves the
choice of a model, the effect of the given dataset may be greater than war-
ranted, resulting in overfitting. One way of dealing with this kind of problem
is to penalize the fitting criterion with some term that measures the complex-
ity of the model. The regularized solutions (17.45) are a step in this direction.
There are also criteria such as Mallow’s Cp and the Akaike information cri-
terion (AIC) that explicitly include the number of parameters to be fitted in
the model. The AIC, for example, is

−2l∗(βm) + 2m (17.60)

where l∗(βm) is the maximum of the log-likelihood of the model with para-
meter βm (see equation (1.110) on page 45) and m is the number of elements
in βm. As various βm subvectors of the full vector β are used in the model,
the one with minimum AIC may be chosen as the best. (Recall that a like-
lihood is defined in terms of a full specification of a probability distribution,
which we have not done in most of this discussion. It is generally just taken
as normal, hence the log-likelihood is just the negative of the residual sum
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of squares.) The R functions step and stepAIC (in MASS) compute the AIC
for the regression models chosen by forward selection (not forward stepwise
selection), as described above.

A general rule when a model or variables within a general type of model
are to be chosen is to use part of the dataset for fitting and part for validation
of the fit. There are many variations on exactly how to do this, but in general,
cross validation is an important part of any analysis that involves building a
model.

Assessing the performance of different variable selection methods is very
difficult because of all of the differences from one scenario to another. These
differences include overall signal to noise ratio, the extent of collinearity among
the independent variables and a host of other factors. In Exercise 17.6 you
are asked to design and conduct a Monte Carlo study to consider some of the
issues in variable selection.

Local Fitting

Often, a single model of the form Y ≈ f(x; θ) over the full range of interest
either does not provide a very good fit or the form of f is overly complicated. If
the functional form is complicated, it is unlikely that it provides insights into
the relationship of Y and x. We may achieve a better fit and more accuracy
in predictions if we abandon the global model. We could, of course, seek a
piecewise model of the

Y ≈ fj(x; θj) for x ∈ Rj ,

where Rj is some connected subregion of the region of interest. This may be a
useful approach, but, of course, we are faced with the problem of determining
the ranges Rj . In some applications, there may be first principles that suggest
particular functional forms over certain ranges.

Two other ways of doing local fitting that we discuss in Chapter 10
(page 405) are by using splines or kernels. Rather than developing single
functional forms, we can think of the problem as simply one of providing a
rule that for a given x0 provides a predicted Ŷ0. The rule may be expressed
in the form of a regression tree (page 621) in which each terminal node is the
predicted value of Y within the region defined by the path to the terminal
node.

An even simpler approach is just to divide the range of x into convenient
sets Rj and take Ŷ in that region to be the mean of the observed values of Y
in that region. This is called a bin smoother. A variation on a bin smoother
is a running smoother, which, at any given point x0, uses weighted averages
of observed values of Y corresponding to observed values of x near x0. This
is the idea behind kernel smoothers. A smoothing procedure based on local
averaging directly uses the fact that the systematic component of the model
is a conditional expectation of y, given x. The fitted systematic component
then takes the form
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f̂(x) =
∑

K(g(x, xi))yi,

where K(g(x, xi)) is a kernel and g(x, xi) is some function that increases in
∥x−xi∥. The kernel is often taken as a radially symmetric function of a scalar,
and we can express the kernel smooth at x as

f̂V (x) =
∑

KV (∥V −1(x − xi)∥yi)∑
KV (∥V −1(x − xi)∥)

,

where V is a scaling matrix, perhaps one that also spheres the data (see
page 391). The scaling matrix V controls the locality of influence of obser-
vations around x. As in the case of density estimation (see page 504), the
scaling matrix, or the window width, has a major effect on the performance
of the estimates. A wide window makes for a very smooth regression surface,
whereas a very small window results in a highly variable surface.

Use of kernels is a common method in nonparametric regression. Another
approach to local fitting is to use splines, as we discuss on page 404.

Projection Pursuit Regression

In Chapter 16, we discussed several methods for analyzing multivariate data
with the objective of identifying structure in the data or perhaps reducing the
dimension of the data. Two projection methods discussed were principal com-
ponents and projection pursuit. In models for dependencies, we often apply
these multivariate methods just to the independent variables. In linear regres-
sion, principal components can be used to reduce the effects of multicollinear-
ity among the independent variables. The dependent variable is regressed on
a smaller number of linear combinations of the original set of independent
variables.

Projection pursuit is a method of finding interesting projections of data.
In the discussion of projection pursuit beginning on page 564, it was applied
to a multivariate dataset with the objective of identifying structure in the
data.

In regression modeling, projection pursuit is often applied to an additive
model of the form

Y = β0 +
m∑

j

fj(xj ,β) + E.

The idea is to seek lower-dimensional projections of the independent variables,
that is, to fit the model

Y = β0 +
m∑

j

fj(αT
j x) + E.

Projection pursuit regression involves the same kind of iterations described
beginning on page 567 except that they are applied to the model residuals.
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Even for the linear model, these computations can be extensive. The R or S-
Plus function ppreg performs the computations for linear projection pursuit
regression.

Fitting Models of Sequential Dependencies

On page 593 of Section 17.1, we briefly discussed models that have a sequential
dependency structure, and on page 599 in Section 17.2 we described probabil-
ity models that account for sequential dependencies. We now consider some
of the issues in fitting such models to data.

Models for dependencies within a sequence such as a time series often
are regression models in which an independent variable is the same as the
dependent variable at a previous point in time. Data for fitting such models
can be put in the same form as data for other regression models by simply
adding variables that represent lagged values.

The model for sequential dependency often expresses a rate in a differential
equation, such as equation (17.34) (in a slightly different form),

dY

Y
= µ dt + σ dBt. (17.61)

A rate cannot be directly observed; the data for fitting such a model are
observations at discrete points in time, and derivatives are approximated by
ratios of finite differences. In applications to financial data, for example, this
model is fit by selecting a fixed time interval ∆t, such as a day, and observing
∆Yt and Yt at a set of points in time. (In this application, there are obvious
problems because of time restrictions on the underlying process; stocks are
not traded on weekends and market holidays.) The parameters in the model,
µ and σ, are generally estimated by the method of moments. If Bt is a Brown-
ian motion— that is, if the random variable has a normal distribution— the
method of moments estimator is also the maximum likelihood estimator.

The geometric Brownian motion model leads to a lognormal distribution
of prices with an expected value that decreases proportionally to the variance
of the rate of return (see Exercise 17.4). The importance of this model is
not because of the stock prices themselves but for applications in pricing
derivatives.

A derivative is a financial instrument whose value depends on values of
other financial instruments or on some measure of the state of the economy
or of nature. The most common types of derivatives available to individuals
are call options on stocks, which are rights to purchase the stock at a fixed
price, and put options on stocks, which are rights to sell the stock at a fixed
price. Both of these types of derivatives have expiration dates at which the
rights terminate. There are many variations on calls and puts that are useful
in academic analyses, but in the usual applications a call option conveys to
the owner the right to buy a stated number of shares of the underlying stock
at a fixed price anytime before the expiration date, and a put option conveys
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to the owner the right to sell a stated number of shares of the underlying
stock at a fixed price anytime before the expiration date. (For no particular
reason, such options are called “American options”. Options that cannot be
exercised prior to the expiration time are called “European options”. Although
European options are rare, their values are easier to analyze.) Stock options
are rights, not obligations, so the value, and consequently the price, cannot be
negative. Much study has been devoted to determining the appropriate price
of a call or a put.

Based on use of equation (17.61) and the associated assumptions of nor-
mality with constant µ and σ as a pricing model, with certain assumptions
about financial markets (no arbitrage and the existence of a riskless invest-
ment, for example) and additional assumptions about the underlying stock
(no dividends, for example), a differential equation for the price of European
options can be developed. This is called the Black-Scholes differential equa-
tion; it has a fairly simple solution (see Hull, 2008, for example).

The failure of any one of the assumptions can invalidate the Black-Scholes
differential equation. In some cases, there is no simple differential equation
that can take its place. In other cases, the resulting differential equation cannot
be solved easily.

More realistic versions of equation (17.61), such as ones with jumps, or
ones that are mean-reverting, can easily be simulated. Likewise, more realistic
assumptions about exercise times, dividend payouts, and so on can easily be
accommodated in a simulation. Our ability to simulate the process allows us
to use Monte Carlo methods to study whether the assumptions about the
process correspond to observable behavior.

If our assumptions about the process do indeed correspond to reality, we
can use Monte Carlo simulation to determine various features of the process,
including the appropriate prices of derivative assets. The way this is done is
one of the standard techniques of the Monte Carlo method; that is, we express
the quantity of interest as an expected value, simulate the process many times,
each time computing the outcome, and then estimate the expected value as
the mean of the outcomes.

17.4 Classification

In Section 16.1, we considered the general problem of clustering data based
on similarities within groups of data. That process is sometimes called “un-
supervised classification”. In “supervised classification”, usually just called
“classification”, we know to which groups all of our observed data, or at least
a training set of data, belong. The objective is to develop a model for classi-
fication of new data.
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Classification and Regression Trees

A rooted tree that is used to define a process based on a sequence of choices is
called a decision tree. Decision trees that are used for classifying observations
are called classification trees. They are similar to the cluster tree shown in Fig-
ure 16.5 on page 524 except that the nodes in the classification trees represent
decisions based on values of the independent variables. Decision trees that are
used for predicting values of a continuous response variable are called regres-
sion trees. The terminal nodes correspond to predicted values or intervals of
predicted values of the response variable.

The objective in building a classification tree is to determine a sequence
of simple decisions that would ultimately divide the set of observations into
the given groups. Each decision is generally in the form of a comparison test
based on the values of the variables that constitute an observation. Often, the
comparison test involves only a single variable. If the variable takes on only a
countable number of values, the comparison test based on the variable may be
chosen to have as many possible outcomes as the values associated with the
variable. If the variable has a continuous range of values, the comparison test
is generally chosen to have a binary outcome corresponding to observations
above or below some cutpoint. Trees with exactly two branches emanating
from each nonterminal node are called binary trees. The terminal nodes of a
classification tree represent groups or classes that are not to be subdivided
further.

How well a test divides the observations is determined by the “impurity”
of the resulting groups. There are several ways of measuring the impurity
or how well a test divides the observations. Breiman et al. (1984) describe
some methods, including a “twoing rule” for a binary test. For classifying the
observations into k groups, at a node with n observations to classify, this rule
assigns a value to a test based on the formula

nLnR

(
k∑

i=1

|LinL − RinR| /n

)2

, (17.62)

where nL and nR are the number of observations that the test assigns to the
left and right child nodes, respectively, and Li and Ri are the number of group
i assigned to the left and right, respectively.

The classification tree can be built by a greedy divide-and-conquer recur-
sive partitioning scheme, as given in Algorithm 17.2.

Algorithm 17.2 Recursive Partitioning for Classification Using a
Training Set

1. Evaluate all tests that divide the given set into mutually exclusive sets.
2. Choose the test that scores highest, and divide the set based on this test.
3. For any subset that contains observations from more than one group,

repeat beginning at step 1.
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The results of a binary partitioning may be presented as a tree, as shown
in Figure 17.4, in which the rule for splitting at each node is shown. In this
example, there are three groups and two numerical variables.

|x1 < 2.45

x2 < 1.75

x1 < 4.95

1

2 3

3

Fig. 17.4. A Classification Tree

The process of building a tree by recursive binary partitioning continues
until either the data at the terminal nodes are sufficiently homogeneous or
consist of a small number of observations. Homogeneity is measured (nega-
tively) by deviance. For continuous response variables, deviance is the sum of
squares; for factor variables, it is two times the log-likelihood of the full model
(that is, all categories) minus the log-likelihood of the current model.

The R function tree in the tree package uses binary recursive partitioning
to build a classification tree.

The rules in a decision tree can be used to define each of the classes
by conjunctive combinations of the rules at each node. In the example of
Figure 17.4, we can define the classes as in the following table, where “∧”
represents “and” and “∨” represents “or”. Rules expressed in these forms are
called conjunctive normal forms, or CNFs (if the major conjunctions are all
∧) or disjunctive normal forms, or DNFs. (A formula in DNF is one written
as a disjunction of terms, each of which may be a conjunction.)

Rules such as these are useful in describing the result of the classification,
and they also aid in our understanding of the basis for the classification.
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Table 17.1. Rules Defining the Clusters Shown in Figure 17.4

cluster rule(s)

1 x1 < 2.45

2 (2.45 ≤ x1) ∧ (x1 < 4.95) ∧ (x2 < 1.75)

3 (2.45 ≤ x1) ∧ (1.75 ≤ x2) ∨ (4.95 ≤ x1) ∧ (x2 < 1.75)

A variety of other classification tree programs have been developed. Some
classification tree programs perform multilevel splits rather than binary splits.
A multilevel split can be represented as a series of binary splits, and because
with multilevel splits predictor variables are used for splitting only once, the
resulting classification trees may be unrealistically short. Another problem
with multilevel splitting is the effect of the order in which the variables are
used in splitting. The number of levels for splits of variables affects the inter-
pretation of the classification tree. These effects are sometimes referred to in
a nontechnical sense as “bias”.

Instead of splitting on a single variable at each node, we can form splits
based on combinations of values of several variables. The most obvious way
of doing this is to use some linear combination of the variables, such as the
principal components (see Section 16.3, page 548). Splits based on linear com-
binations of the variables are called oblique linear splits. Seeking good linear
combinations of variables on which to build oblique partitions is a much more
computationally intensive procedure than just using single variables.

Linear Classifiers

In the following we will assume that there are only two classes. While there
are some apparently obvious ways of extending a binary classification method
to more classes, the problem is not as simple as it may appear, and we will
not pursue it here.

In a very simple instance of binary classification, a oblique linear split on
the single root node of a classification tree yields two pure classes. This is
illustrated in Figure 17.5, in which the points are classified based on whether
they are above or below the line wTx = w0.

This illustrates how the data in two dimensions, that is the 2-vector x,
could be reduced to one dimension. That one dimension would correspond to
points along a single line normal to the line wTx = w0. The bivariate points
projected onto that lower dimensional space would be perfectly classified in
the sense that a single criterion would separate the points. It is obvious from
the figure that the separating line (or in general, separating hyperplane) may
not be unique.
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x1

x 2

wTx=w0

Fig. 17.5. Linear Classification

Real world data rarely can be perfectly separated by a linear classifier as
in this simple example. Whenever the data cannot be perfectly separated, we
might consider some kind of optimal separating hyperplane. A simple criterion
of optimality is a separation such that the sum of squares from the means of
the two classes is maximal with respect to the sums of squares from the means
within the two classes. This is the kind of decomposition done in analysis of
variance.

In the classification problem, however, we generally do not assume that the
variance-covariance matrix is necessarily proportional to the identity, as we
do in the usual analysis of variance. The appropriate sums of squares must be
scaled by the variance-covariance matrix. Since the variance-covariance ma-
trix is likely unknown, we use the sample variance-covariance matrix, equa-
tion (9.10), applied to the separate groups.

A second problem arises in this approach, and that is the question of
whether the variance-covariance matrix is the same in the two groups. There
are various alternative procedures to try to accommodate different variance-
covariance matrices, but we will not pursue them here. (The Behrens-Fisher
problem in a two-group t-test is one of the most familiar of this type of prob-
lem.)
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If we assume that the variance-covariance matrices are equal, for two
groups defined by the indices C1 and C2, the pooled within-class variance-
covariance matrix

SW =
1

n1 + n2 − 2

(
∑

i∈C1

(xi − x̄1)(xi − x̄1)T +
∑

i∈C2

(xi − x̄2)(xi − x̄2)T
)

,

(17.63)
where x̄i is the mean of the ni observations in group i, for i = 1, 2. The
corresponding between-group variance-covariance matrix is simply

SB = (x̄2 − x̄1)(x̄2 − x̄1)T. (17.64)

R. A. Fisher, following the ideas he had put forth in the analysis of variance,
suggested that the optimal separating hyperplane w is one such that

J(w) =
wTSBw

wTSWw
(17.65)

is maximized. Differentiating J(w) and setting the derivative to zero, we have

(wTSBw)SWw = (wTSWw)SBw.

This yields the optimal direction for w as

w∗ = S−1
W (x̄2 − x̄1). (17.66)

This expression is called Fisher’s linear discriminant.
If we project the data onto the space defined by w∗, we can determine an

optimal separation in one dimension. If the data are linearly separable as in
the example in Figure 17.5, all of the w∗ coordinates of one class will be larger
than all of the w∗ coordinates of the other class.

If the data are not linearly separable, we have a simple one-dimensional
classification problem in which we must optimally choose a point w0 on the
line determined by w∗ as the point of separation. One obvious way of choosing
this point is a data-based Bayes rule, by which we select the point such that
the frequency with which observations are miss-classified into the two classes
is minimized.

After the direction w∗ is determined the projection matrix can be deter-
mined as described on page 379, possibly following a rotation of the full space
as indicated on page 375.

Kernel Methods and Support Vector Machines

Identification of nonlinear structure in data is often preceded by a nonlin-
ear mapping from the m-dimensional data space to a p-dimensional “feature
space”. The feature space may have more, even many more, dimensions than
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the data space. The mapping carries the basic data m-vector x to a p-vector
f(x). The feature space is a subspace of IRp and thus is an inner-product
space. (The original data space may be more general.) This is essentially the
approach of support vector machines (see Mika et al. 2004). The basic idea
is that while there may be no separating hyperplane in the data space as in
Figure 17.5, there may be a separating hyperplane in the higher-dimensional
feature space.

The function f may be quite general. It may treat the elements of its vector
argument differently, but a common form for the argument x = (x1, . . . , xm),
has the form

(
x

ep

1 , . . . , xep
m , x

ep−1
1 , . . . , xep−1

m , . . . , xe1
1 , . . . , xe1

m

)
.

Another common form is homogeneous in the elements of the data space
vector, for example, for the 2-vector x = (x1, x2),

x̃ = f(x) =
(
x2

1,
√

2x1x2, x
2
2

)
. (17.67)

Figure 17.6 illustrates a situation in which there is no separating hyper-
plane (line) in the two-dimensional data space. After transforming the data
space to a feature space, however, a hyperplane can be chosen to separate
the data. In the case shown in the right side of Figure 17.6, the data were
transformed into a three-dimensional feature space, a separating plane was
determined, and then the data were projected onto a z1-z2 plane that is per-
pendicular to the separating plane.

A basic operation in the use of support vector machines in classification is
the computation of inner products in the feature space; that is, the computa-
tion of x̃Tỹ. The computations to transform a data vector to a feature vector
x̃ = f(x), as well as the computation of the inner products in the higher-
dimensional feature space, may be costly. The overall computations may be
reduced by a simple expedient called the “kernel trick”, which involves finding
a kernel function (see page 23) in the data space that is equivalent to the inner
product in the feature space. The form of the kernel obviously depends on f .
For the function shown in equation (17.67), for example, we have

(f(x))T f(y) =
(
x2

1,
√

2x1x2, x
2
2

)T (
y2
1,
√

2y1y2, y
2
2

)

=
(
xTy

)2

= K(x, y), (17.68)

where we define the kernel K(x, y) as
(
xTy

)2.
Although support vector machines can be used for exploratory clustering,

most of the applications are for classification with a given training set.
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x 2
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z 2

Fig. 17.6. Data Space Transformed to Feature Space and Linear Classification in
the Feature Space

Combining Classifications

Classification methods tend to be unstable; that is, small perturbations in
the training datasets may yield large differences in the classification rules.
To overcome the instability, which manifests itself in large variability of the
classes, various ensemble methods have been suggested. These methods make
multiple passes over the training dataset and then average the results. In
some cases, the multiple passes may use the full training dataset with different
classification methods, different subsets of the classification variables, or with
perturbation of the results. In other cases the multiple passes use subsets or
resamples of the full training dataset.

The averaging is essentially a voting by the various classifications formed
following resampling. The idea of averaging is an old one; in this context it is
sometimes called “stacked generalization”. A similar idea in linear regression
in which subsamples of minimal size are used is called “elemental regression”.
(The minimal size in linear regression is a dataset that has the same number
of observations as variables.) The coefficient estimates are averaged over the
subsamples.
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In some cases, the full training dataset is used on each pass, but differ-
ent classification methods are used or else following each pass, the results are
perturbed. One of the most effective ways of doing this is to reweight the vari-
ables following each classification pass. The variables that show the weakest
discrimination ability in the most recent pass are given heavier weight in the
next pass. This method is called “boosting”. Similar methods are also called
“arcing”, for “adaptively resample and combine”.

In another multiple-pass method that uses the full dataset on each pass,
instead of modifying the weights or the method of classification in each pass,
the results are randomly perturbed, that is, the classes to which the obser-
vations are assigned are randomly changed. The randomly perturbed classes
are then averaged. This method, surprisingly, also sometimes improves the
classification.

Other ensemble methods use either a resample or a subsample of the full
dataset. A method of forming random training sets that uses bootstrapping
(that is, it resamples) the given dataset is called “bagging”, because of the
bootstrap samples. For a given “bag” or bootstrap sample, the classification
tree is constructed by randomly choosing subsets of the features to use in
forming the branches from nodes. The process is continued until the full tree
is formed (that is, the tree is not “pruned”).

If random subsamples of the training dataset are used to form classification
trees, the collection of random trees is called a random forest.

Within the broad range of ensemble classification methods there is a mul-
titude of details that can be changed, resulting in an almost overwhelming
number of classification methods. There does not appear to be a method that
is consistently best. Some methods are better on some datasets than others,
and there is no simple way of describing the optimality properties.

An easy way to explore the various methods is by use of the Weka program,
which is a collection of many algorithms for clustering and classification. Weka
can either be applied directly to a dataset or called from the user’s Java code.
It contains tools for data pre-processing, classification, regression, clustering,
association rules, and visualization. It can also be used for developing new
machine learning schemes. It is open source software available at
http://www.cs.waikato.ac.nz/ml/weka/

It is useful to compare classification methods using different datasets. An
important collection of datasets is available at the Machine Learning Repos-
itory at the University of California at Irvine. The UCI Machine Learning
Repository can be accessed at
http://archive.ics.uci.edu/ml/

17.5 Transformations

Most observable data can be measured in various ways without incurring any
substantive change. If we make a one-to-one transformation on data, we can
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always recover the initial values. The method in which data are represented,
however, can have an effect on how well any simple model fits the data.

Transformations to Make Data Fit Models

Often, a model is so tractable, both statistically and computationally, that
even if it is not a good representation of observed reality, it may be worth
using it as an approximation. Sometimes, the approximation can be made
even better by transforming the data. The use of transformations to make the
data fit simple models is an old idea.

The most common types of transformations are those that attempt to
make the low-order moments of the transformed variable correspond to the
assumptions in the model. In real data, often the second moment (the vari-
ance) increases as the first moment increases, but a common assumption is
that the moments are constant; hence, we may seek a transformation that
stabilizes the variance. Another common assumption in the model is that the
distribution is symmetric. A transformation based on the third moment may
make the data more symmetric.

Variance Stabilization

A transformation may be suggested by some pattern in the observations. For
example, certain types of measurements are often observed to exhibit greater
variability as the magnitude of the observations becomes larger. For a proba-
bility distribution such as the normal distribution, there are two distinct para-
meters for the mean and the variance, and we may wish to model populations
with different means using normal distributions with the same variance. To
use data pooled from the different populations, a variance stabilizing trans-
formation may be useful. It may turn out, for example, that if the variance of
y tends to be proportional to its magnitude, the variance of y1/2 is relatively
constant. In this case, the square root transformation is a variance-stabilizing
transformation.

In general, if the variance of Y is some function V of the mean of Y , a
transformation h(Y ) to stabilize the variance would have the property

∂h(y)
∂y

∝ 1√
V (y)

;

therefore, the appropriate transformation h(y) is the integral of 1/
√

V (y).
In addition to assumptions in the model about the variance, there are

generally assumptions about covariances, either among the variables or among
the same variables in different observations. Often the assumption is that the
correlations are zero. Transformations to reduce correlations would, therefore
be of interest. The same kinds of ideas as those for controlling the variances
would lead to transformations to reduce correlations, and, although the range
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of possibilities is greater (if for no other reason than the fact that two variables
are involved), the problem of finding reasonable transformations to reduce
correlations is more difficult.

Transformations of the Independent Variables

In addition to problems with the random component of the model not cor-
responding well with the data, the systematic component also may not fit
the data. This may suggest transformations of either the independent or the
dependent variables.

For a linear model such as equation (17.6), with the independent variables
taking only positive values, a power transformation

wj =
{

x
αj

j αj ̸= 0
log xj αj = 0 (17.69)

may be useful. Values of the αj ’s that minimize the residual sum of squares,
can be determined by an iterative procedure. Transformations of the indepen-
dent variables of this type are called Box-Tidwell transformations.

Transformations of the Box-Cox Type

Box and Cox (1964) study power transformations of the dependent variable
(assumed to be positive) and suggest use of a maximum likelihood method to
determine the power. The power transformation of equation (17.69) can be
made continuous in the power by making a slight modification. This results
in the Box-Cox transformation,

τ(y;λ) =
{

(yλ − 1)/λ λ ̸= 0
log y λ = 0 . (17.70)

If τ is the dependent variable in a linear model such as equation (17.22)
and the elements of ϵ are from independent normals with mean 0 and variance
σ2, the log-likelihood function is

l(λ,β,σ; y) = −n logσ − (τ(y;λ) − Xβ)T(τ(y;λ) − Xβ)
2σ2

− (λ− 1)
n∑

i

log yi.

(17.71)
(Recall that the yi’s are assumed to be positive.) For a fixed value of λ,
the maximum of equation (17.71) with respect to β and σ yields the usual
least squares estimates, with τ(y;λ) as the dependent variable. The function
l̂(λ; β̂, σ̂, y) is called the profile likelihood. In practice, the profile likelihood is
often computed for a fixed set of values of λ, and the maximum with respect to
λ may be chosen based on an inspection of the plot of the function. The choice
of λ is often restricted to . . . ,−2,−1 1

2 ,−1,− 1
2 , 0, 1

2 , 1, 1 1
2 , 2, . . .. The maximum
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of l̂ with respect to λ is the same as the maximum of l with respect to λ,
β, and σ. If one really believes the likelihood from which equation (17.71) is
derived, confidence intervals on λ could be computed based on the asymptotic
chi-squared distribution of the log-likelihood.

There are several obvious extensions to the transformations discussed
above. The transformations can be applied whether the systematic compo-
nent of the model is linear or of the more general form in equation (17.8).
Instead of the power transformations in equations (17.69) and (17.70), more
general transformations could be used, and the λ in τ(y;λ) could represent a
much more general parameter. Both the Box-Tidwell transformations of the
independent variables and the Box-Cox transformations of the dependent vari-
ables could be applied simultaneously; that is, transform both sides. Either
the same transformation for both the dependent variable and the systematic
components or different transformations could be used.

Alternating Conditional Expectation

In any model, we want to include independent variables that have strong
relationships to the dependent variable. We may seek transformations of all
of the variables to achieve stronger relationships.

Breiman and Friedman (1985a, 1985b) describe and study a method of
fitting an additive model (17.7) that relates the independent variables to a
transformation of the dependent variable:

τ(Y ) ≈ β0 + f1(x1) + · · · fm(xm).

The f ’s are just transformations of the x’s. The basic approach is to transform
the variables iteratively using τ and the f ’s to maximize the sample correlation
of the transformed variables.

The procedure is called alternating conditional expectations, or ACE. It
attempts to maximize the sample correlation between τ(y) and

∑m
j=1 fj(xj)

or to minimize

e2(τ, f1, . . . , fm) =
M

((
τ(y) − α−

∑m
j=1 fj(xj)

)2
)

S(τ(y))
,

where M(·) is the sample mean and S(·) is the sample variance. The method
is shown in Algorithm 17.3, in which we write e2(τ, f1, . . . , fm) as e2(τ, f).

Algorithm 17.3 Alternating Conditional Expectation (ACE)

0. Set k = 0. Set τ (k)(y) = (y − M(y))/(S(y))1/2.
1. Set k = k + 1.
2. Fit the additive model with τ (k−1)(y) (see page 604) to obtain f (k)

j .
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3. Set

τ (k)(y) =
M
(
f (k)(x) | y

)

(
S
(
f (k)(x) | y

))1/2
.

4. If e2
(
τ (k), f (k)

)
< e2

(
τ (k−1), f (k−1)

)
, then go to step 1;

otherwise terminate.

If there is only one explanatory variable x, step 2 is just to compute

f (k)(x) = M
(
τ (k−1)(y) | x

)
.

When the algorithm terminates, the sample of y’s and of the x vectors
have been transformed so that the simple additive model provides a good fit.

Additivity and Variance Stabilization

Transformations to stabilize the variance of the residuals can be performed
simultaneously with the transformations that achieve the strong additive rela-
tionship. Tibshirani (1988) introduced a technique called additivity and vari-
ance stabilization (AVAS) that attempts to do this.

Algorithm 17.4 Additivity and Variance Stabilization (AVAS)

0. Set k = 0. Set
τ (k)(y) =

y − M(y)
(S(y))1/2

.

1. Set k = k + 1.
2. Fit the additive model with τ (k−1)(y) (see page 604) to obtain f (k)

j .
3. Determine the variance function

v(u) = S
(
τ (k−1)(y) |

∑
f (k−1)

j (xj) = u
)

;

compute the variance-stabilizing function (see page 629)

h(t) =
∫ t

0
v(u)−1/2 du;

set
τ̃ (k−1)(t) = h(τ (k−1)(t));

set

τ (k)(t) =
τ̃ (k−1)(t) − M(τ̃ (k−1)(y))

S(τ̃ (k−1)(y))
.

4. If
e2
(
τ (k), f (k)

)
< e2

(
τ (k−1), f (k−1)

)
,

then go to step 1;
otherwise terminate.
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Assessing the Fit of a Model

We have described various approaches to fitting a model using data, such as
maximum likelihood, based on an assumed probability distribution, fitting by
minimizing the residuals, and fitting by matching moments. Each of these
methods has its place. In some cases, a particular type of one of these general
schemes is identical to a particular type of another; for example, maximum
likelihood under a normal distribution is equivalent to minimizing the sum of
the squares of the residuals. Whatever method is used in fitting the model,
we are interested in the goodness of the fit. If the method of fit is to minimize
some norm of the residuals, intuitively it would seem that the proportional
reduction in the norm of the residuals by fitting a model gives some indication
of the goodness of that model. In other words, we compare the norm of the
“residuals” with no model (that is, just the responses themselves) with the
norm of the residuals after fitting the model,

∥r∥
∥y∥ ,

which should be small if the fit is good or, looking at it another way,

∥y∥ − ∥r∥
∥y∥ , (17.72)

which should be close to 1 if the fit is good. Expression (17.72) is the familiar
R2 statistic from least squares linear regression.

Although a particular method of fitting a model may yield a relatively
small norm of the residual vector, certain observations may have very large
residuals. In some cases of model fitting, deleting one or more observations
may have a very large effect on the model fit. If one or more observations have
very large residuals (the meaning of “very large” is not specified here), we may
question whether the model is appropriate for these anomalous observations,
even if the model is useful for the rest of the dataset. We may also question
whether the method of fit is appropriate. The method of fit should come under
special scrutiny if deleting one or more observations has a very large effect on
the model fit.

Quantile plots are especially useful in assessing the validity of assumptions
in a model. If the residuals are ranked from smallest to largest, the pattern
should be similar to a pattern of ranked normal random variables. Given a
sample of n residuals,

r(1) ≤ . . . ≤ r(n),

we compare the observed values with the theoretical values corresponding to
probabilities

p(1) ≤ . . . ≤ p(n).

Although the sample distribution of the residuals may give some indica-
tion of how well the data fit the model, because of the interactions of the
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residuals with the fitting process, the problem of assessing whether the model
is appropriate is ill-posed. The most we can generally hope for is to assess the
predictive ability of the model by use of partitioned data and cross validation,
as discussed in Section 12.2.

Notes and Further Reading

Linear, General Linear, and Generalized Linear Models

Full rank linear statistical models of dependencies are called regression models,
and linear classification models (not of full rank) are called ANOVA models or
general linear models. Kutner, Nachtsheim, and Neter (2004) provide an ex-
tensive coverage of these linear statistical models. Nonlinear regression models
are covered in some detail by Seber and Wild (2003). The generalized linear
model is a special type of nonlinear model that was introduced in its general
setting by Nelder and Wedderburn (1972). A thorough coverage of generalized
linear models is available in McCullagh and Nelder (1990). The special logistic
generalized linear models are the subject of Hosmer and Lemeshow (2000).

An extensive discussion about the modeling issues and the statistical in-
terpretation of the errors-in-variables model is provided by Fuller (1987).

Algorithmic Models

The article by Breiman (2001), with discussion, emphasizes the role of algo-
rithmic models when the objective is prediction instead of a simple description
with the primary aim of aiding understanding.

A classic type of algorithmic model is a neural net. See Ripley (1993, 1994,
1996) for discussion of neural nets in modeling applications.

Transformations

Kutner, Nachtsheim, and Neter (2004) and Carroll and Ruppert (1988) have
extensive discussions of various transformations for linear models. Velilla (1995)
discusses multivariate Box-Cox transformations, as well as the robustness of
the transformations to outliers and diagnostics for detecting the effect of out-
liers.

Recursive Partitioning

Many of the clustering methods discussed in Chapter 16 and the classifica-
tion methods discussed in this chapter are based on recursively partitioning
the dataset. Trees or other graphs are used to maintain the status during
the recursion. General methods as well as specific applications of recursive
partitions are summarized by Zhang (2004).
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Conceptual Clustering

Hunt, Marin, and Stone (1966) called classification that is based on general
concepts “concept learning”, and developed concept-learning systems. (Their
purpose was to study ways that humans learn, rather than to address a given
classification problem.) Michalski (1980) and Michalski and Stepp (1983) de-
scribed “conceptual clustering”, which is a set of methods of classification that
identifies sets of characteristics, or concepts.

Combining Classifications

Most of the best classifiers are based on ensemble methods in which classi-
fiers are combined or improved by reweighting as in bagging and boosting.
Bühlmann (2004) provides an overview and summary of ensemble methods
for classification.

Some examples of applications in classification in which combined clas-
sifiers had markedly superior performance are described by Richeldi and
Rossotto (1997) and by Westphal and Nakhaeizadeh (1997).

Regularized Fitting and Variable Selection

The use of ridge regression to deal with the problems of multicollinearity
in regression analysis was described in a 1962 paper by A. E. Hoerl. Hoerl
and Kennard (1970a,b) discussed various applications of ridge regression, de-
scribed how it ameliorates the effects of multicollinearity, and gave several
suggestions for the choice of the weighting factor λ. The regularization used
in ridge regression is called Tikhonov regularization in the applied mathe-
matical literature after A. N. Tikhonov who described it in a 1963 paper (in
Russian).

The lasso was first described by Tibshirani (1996). The least angle regres-
sion (LAR) algorithm for variable selection, which happens to correspond to
lasso with increasing weights on the L1 penalty on the fitted coefficients, was
described by Efron et al. (2004).

Many statistical issues relating to variable selection and regression model
building are discussed in the book by Miller (2002).

In the linear regression model y = Xβ, instead of fitting the original set of
x’s, we may use a set of the principal components x̃’s from equation (16.15).
This is called principal components regression. While principal components
regression does not remove any of the original variables from the model, the
model itself, y = X̃β, is in a lower dimension. Jolliffe, Trendafilov, and Ud-
din (2003) describe a regularization similar to that in lasso some of the ŵj in
equation (16.14) to zero, so that the corresponding original variables are no
longer in the model at all.
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Stochastic Differential Equations

The extensive theory for stochastic differential equations is covered in a num-
ber of texts, such as Øksendal (2003). Kloeden and Platen (1999) dissuss the
numerical solution of stochastic differential equations. Their book (Kloeden,
Platen, and Schurz, 1994) that discusses simulation with stochastic differential
equations is also interesting, although the computer programs are in Basic.

Local Fitting

Loader(2004) describes various approaches to smoothing of data based on
local criteria. She also discusses the statistical properties of the fits.

Computational Issues of Fitting Models to Data

Many of the methods of fitting models to data discussed in Section 17.3 are
computationally intensive.

Hawkins and Olive (1999) give an algorithm for the least trimmed absolute
values case.

The least median of squares estimator (equation (17.44), page 607, with
ρ(t) = t2) was proposed by Rousseeuw (1984). Fitting the model by this crite-
rion is obviously computationally intensive. Hawkins (1993b) gives a feasible
set algorithm for the least median of squares estimator, and Xu and Shiue
(1993) give a parallel algorithm.

Exercises

17.1. Consider the use of a simple model of the probability density for univariate
data:

f(y; θ1, θ2) =
θ1
2

e−θ1|y−θ2| for −∞ ≤ y ≤ ∞.

(This is the double exponential.) Choose

θ1 = 10,

θ2 = 100,

and generate a random sample of size 100.
a) Write out the likelihood function of θ1 and θ2, and use an optimization

program to maximize it. Make appropriate transformations prior to
optimizing a function.
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b) For the moment, ignore θ1, and estimate θ2 by minimizing various
functions of the residuals y − θ2. Use iteratively reweighted least
squares to obtain the L1, L1.5, and L2 estimates of θ2. Now, in each
case, obtain an estimate of θ1. Using your estimate of θ1 and rescaling,
which of the Lp estimates is closest to the MLE above? Which one
would you expect to be closest?

c) Obtain 95% confidence intervals for both θ1 and θ2 using your Lp

estimates. (Assume asymptotic normality of your location estimator.)
17.2. Consider the simple linear model

yi = β0 + β1xi + ϵi.

a) Assume that the ϵi are independent realizations of a random variable
that has a N(0,σ2) distribution. Taking

β0 = 10,

β1 = 10,

and x to be
0.0, 1.0, 2.0, . . . , 100

(i.e., 101 observations equally spaced from 0 to 100):
i. Let σ = 1, generate the corresponding y’s, estimate β0 and β1 by

ordinary least squares, and plot the data and the fitted line.
ii. Repeat with σ = 100.

b) Assume that the ϵi are independent realizations of a random variable
with a Cauchy distribution with scale parameter a. Now, for a = 1
and a = 100, repeat the previous part of this exercise.

c) Repeat the previous part of this exercise, except use the L1 criterion
for estimating β0 and β1.

17.3. Conduct a Monte Carlo study to determine the size of the test for

βq+1 = βq+2 = · · · = βp = 0

in the linear model

yi = β0 + β1xi1 + · · · + βq+1xi,q+1 + · · · + βpxip + ei

when the parameters are fitted using Huber M estimation. Conduct the
test at the nominal significance level of 0.05. (The “size of the test” is the
actual significance level.) Use a normal distribution, a double exponential
distribution, and a Cauchy distribution for the error term.
Summarize your findings in a clearly-written report.

17.4. The geometric Brownian motion model for changes in stock prices (17.61)
on page 619 leads to a lognormal distribution for the prices themselves
with an expected value that decreases proportionally to the variance of
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the rate of return. Study this decrease by Monte Carlo methods beginning
with the model for changes in price. Give an intuitive explanation why it
should decrease.

17.5. Choose any ten stocks traded on the New York Stock Exchange. Do the
price histories of these stocks over the past 5 years support the validity of
the geometric Brownian motion model?
Stock price data can be accessed online from a variety of sites. One of the
most stable sites is
http://finance.yahoo.com/
Stock data for a particular issue can be obtained either by entering the
symbol on the web page or directly (for IBM, for example) by
http://finance.yahoo.com/q?s=ibm
Historical price data can be downloaded into a csv file, and can be read
in R by read.csv. The R function read.csv can go directly to a URL to
get data. John Nolan wrote the following R statements:

url <- paste("http://ichart.finance.yahoo.com/table.csv?a=",
start.date[1]-1,"&b=",start.date[2],"&c=",start.date[3],
"&d=",stop.date[1]-1,"&e=",stop.date[2],"&f=",
stop.date[3],"&s=",symbol,sep="")

x <- read.csv(url)

The start.date and stop.date are numeric arrays of length 3, containing
the month number, the day, and the year in the four-digit format.

17.6. Use Monte Carlo to study and compare least-squares-based variable se-
lection methods in the linear regression model

yi = β0 + β1x1i + · · · + βmxmi + ϵi,

in which some βj = 0. The problem in variable selection is to determine
which of the β’s are nonzero, and to determine “good” estimates of them.
Fitting this regression model depends on two factors primarily: The mag-
nitude of βk and the variability of the associated xki, the correlations of
the x∗i’s with each other, and the distribution of ϵi. (There are only three
here; the magnitude of βk and the variability of the associated xki make
up only one factor.) Within a fixed distributional family, the variability
of ϵi provides a scale for measuring the other factors.
This exercise is open-ended and encourages you to use your imagination in
designing and conducting your study. As a simple start, however, let all xki

be uncorrelated with each other and have the same variability. Generate
them randomly with the same variance. Choose values for the β’s, some
as zero. Let ϵi be sampled independently from a N(0, 1) distribution. Use
forward selection (step or stepAIC in R) and least angle regression (lars
in R), and see if the nonzero β’s enter the model first.
Summarize these initial findings in a clearly-written report.
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Next, still with ϵi sampled independently from a N(0, 1) distribution, be-
gin systematic explorations of the effect of different magnitudes of the
component terms of the model and differences in the correlations of the
x’s. You can use the same variable-selection methods, or choose others.
Summarize your findings in a clearly-written report.

17.7. Obtain the Weka program and read the introductory usage notes. Next
obtain 5 datasets from the UCI Machine Learning Repository. (Almost any
ones will suffice; just select the first 5 that you encounter.) See page 628
for the websites.
Now try three variations of classification tree methods and a support vec-
tor machine method from Weka on these 5 datasets. How do the methods
that you selected compare?
Summarize your findings in a clearly-written report.

17.8. Suppose that you have data on x and y that follow a model of the form

ypy = β0 + β1x
px + ϵ.

(Of course you would not know that the data follow this model.) Choose
some representative values of the parameters in the model and, for each
combination, generate artificial data to study some of the data transfor-
mations we have discussed. (This is not a Monte Carlo study; it is just an
exercise to yield a better understanding of the methods.) The following R
or S-Plus code would generate a useful example:

nmod <- 50
beta0 <- 3
beta1 <- 2
esd <- 2
xdat <- runif(nmod,0,2)
px <- 2
py <- 2
xmod <- xdat^px
ymod <- beta0 + beta1*xmod + esd*rnorm(nmod)
ydat <- ymod^py

The data that would be observed are in xdat and ydat.
a) Plot the data.
b) Fit the linear model

y = β0 + β1x + ϵ.

Plot the residuals, and notice that a quadratic model seems to be in
order.

c) Fit the model
y = β0 + β1x + β2x

2 + ϵ.

Plot the residuals, and notice that their variance seems to increase
with the mean.
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d) Fit the model
w = β0 + β1x + β2x

2 + ϵ,

where w = y1/2. Comment on what you have observed.
e) Now, for a grid of values of λ, the model

w = β0 + β1x + β2x
2 + ϵ,

where w = (yλ−1)/λ. Compute a profile likelihood as a function of λ,
and select a Box-Cox power transformation that seems appropriate.

f) Apply ACE to x and y (ac <- ace(xdat,ydat)). Use the fit to de-
termine a predicted value of y for x = 1. (You may have to go through
series of smoothing transformations to do this.)

g) Apply AVAS to x and y (av <- avas(xdat,ydat)). Use the fit to
determine a predicted value of y for x = 1. (You may have to go
through a series of smoothing transformations to do this.) Compare
the AVAS results with the ACE results.

h) Using the original data, apply directly one step of the AVAS algorithm.
(The interest here is in computing the variance-stabilizing transforma-
tion from the data.)

Summarize your findings in a clearly-written report.
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Monte Carlo Studies in Statistics

We have seen how Monte Carlo methods can be used in statistical inference,
including Bayesian methods, Monte Carlo tests, and bootstrap methods. Sim-
ulation has also become one of the most important tools in the development
of statistical theory and methods. If the properties of an estimator are very
difficult to work out analytically, a Monte Carlo study may be conducted to
estimate those properties.

Although high-speed computers have helped to expand the usage of Monte
Carlo methods, there is a long history of such usage. Stigler (1991) describes
Monte Carlo simulations by nineteenth-century scientists and suggests that
“simulation, in the modern sense of that term, may be the oldest of the sto-
chastic arts.” One of the earliest documented Monte Carlo studies of a statis-
tical procedure was by Erastus Lyman de Forest in the 1870s. Stigler (1978)
describes how De Forest studied ways of smoothing a time series by simulating
the data using cards drawn from a box.

Another early use of Monte Carlo was the sampling experiment (using
biometric data recorded on pieces of cardboard) that led W. S. Gosset to the
discovery of the distribution of the t-statistic and the correlation coefficient.
(See Student, 1908a, 1908b. Of course, it was R. A. Fisher who later worked
out the distributions.)

Often a Monte Carlo study is an informal investigation whose main pur-
pose is to indicate promising research directions. If a “quick and dirty” Monte
Carlo study indicates that some method of inference has good properties, it
may be worth the time of the research worker in developing the method and
perhaps doing the difficult analysis to confirm the results of the Monte Carlo
study.

In addition to quick Monte Carlo studies that are mere precursors to an-
alytic work, Monte Carlo studies often provide a significant amount of the
available knowledge of the properties of statistical techniques, especially under
various alternative models. A large proportion of the articles in the statistical
literature include Monte Carlo studies. In recent issues of the Journal of the
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American Statistical Association, for example, well over half of the articles
report on Monte Carlo studies that supported the research.

A.1 Simulation as an Experiment

A simulation study that incorporates a random component is an experiment.
The principles of statistical design and analysis apply just as much to a Monte
Carlo study as they do to any other scientific experiment. The Monte Carlo
study should adhere to the same high standards as any scientific experimen-
tation:

• control;
• reproducibility;
• efficiency;
• careful and complete documentation.

In simulation, control, among other things, relates to the fidelity of a non-
random process to a random process. The experimental units are only simu-
lated. Questions about the computer model must be addressed (tests of the
random number generators, and so on).

Likewise, reproducibility is predicated on good random number generators
(or else on equally bad ones!). Portability of the random number generators
enhances reproducibility and in fact can allow strict reproducibility. Repro-
ducible research also requires preservation and documentation of the computer
programs that produced the results.

The principles of good statistical design can improve the efficiency. Use of
good designs (e.g., fractional factorials) can allow efficient simultaneous ex-
ploration of several factors. Also, there are often many opportunities to reduce
the variance (improve the efficiency). Hammersley and Hanscomb (1964, page
8) note,

... statisticians were insistent that other experimentalists should design
experiments to be as little subject to unwanted error as possible, and
had indeed given important and useful help to the experimentalist in
this way; but in their own experiments they were singularly inefficient,
nay negligent in this respect.

Many properties of statistical methods of inference are analytically in-
tractable. Asymptotic results, which are often easy to work out, may imply ex-
cellent performance, such as consistency with a good rate of convergence, but
the finite sample properties are ultimately what must be considered. Monte
Carlo studies are a common tool for investigating the properties of a statis-
tical method, as noted above. In the literature, the Monte Carlo studies are
sometimes called “numerical results”. Some numerical results are illustrated
by just one randomly generated dataset; others are studied by averaging over
thousands of randomly generated sets.
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In a Monte Carlo study, there are usually several different things (“treat-
ments” or “factors”) that we want to investigate. As in other kinds of ex-
periments, a factorial design is usually more efficient. Each factor occurs at
different “levels”, and the set of all levels of all factors that are used in the
study constitute the “design space”. The measured responses are properties
of the statistical methods, such as their sample means and variances.

The factors commonly studied in Monte Carlo experiments in statistics
include the following.

• statistical method (estimator, test procedure, etc.);
• sample size;
• the problem for which the statistical method is being applied (that is, the

“true” model, which may be different from the one for which the method
was developed). Factors relating to the type of problem may be:
– distribution of the random component in the model (normality?);
– correlation among observations (independence?);
– homogeneity of the observations (outliers?, mixtures?);
– structure of associated variables (leverage?).

The factor whose effect is of primary interest is the statistical method. The
other factors are generally just blocking factors. There is, however, usually an
interaction between the statistical method and these other factors.

As in physical experimentation, observational units are selected for each
point in the design space and measured. The measurements, or “responses”
made at the same design point, are used to assess the amount of random vari-
ation, or variation that is not accounted for by the factors being studied. A
comparison of the variation among observational units at the same levels of all
factors with the variation among observational units at different levels is the
basis for a decision as to whether there are real (or “significant”) differences
at the different levels of the factors. This comparison is called analysis of vari-
ance. The same basic rationale for identifying differences is used in simulation
experiments.

A fundamental (and difficult) question in experimental design is how many
experimental units to observe at the various design points. Because the exper-
imental units in Monte Carlo studies are generated on the computer, they are
usually rather inexpensive. The subsequent processing (the application of the
factors, in the terminology of an experiment) may be very extensive, however,
so there is a need to design an efficient experiment.

A.2 Reporting Simulation Experiments

The reporting of a simulation experiment should receive the same care and
consideration that would be accorded the reporting of other scientific exper-
iments. In addition to a careful general description of the experiment, the
report should include mention of the random number generator used, any
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variance-reducing methods employed, and a justification of the simulation
sample size.

Closely related to the choice of the sample size is the standard deviation
of the estimates that result from the study. The sample standard deviations
actually achieved should be included as part of the report. Standard deviations
are often reported in parentheses beside the estimates with which they are
associated. A formal analysis, of course, would use the sample variance of each
estimate to assess the significance of the differences observed between points
in the design space; that is, a formal analysis of the simulation experiment
would be a standard analysis of variance.

The most common method of reporting the results is by means of tables,
but a better understanding of the results can often be conveyed by graphs.

A.3 An Example

One area of statistics in which Monte Carlo studies have been used extensively
is robust statistics. This is because the finite sampling distributions of many
robust statistics are very difficult to work out, especially for the kinds of
underlying distributions for which the statistics are to be studied.

As an example of a Monte Carlo study, we will now describe a simple
experiment to assess the robustness of a statistical test in linear regression
analysis. The purpose of this example is to illustrate some of the issues in
designing a Monte Carlo experiment. The results of this small study are not
of interest here. There are many important issues about the robustness of the
procedures that we do not address in this example.

The Problem

Consider the simple linear regression model

Y = β0 + β1x + E

where a response or “dependent variable”, Y , is modeled as a linear function
of a single regressor or “independent variable”, x, plus a random variable,
E, called the “error”. Because E is a random variable, Y is also a random
variable. The statistical problem is to make inferences about the unknown,
constant parameters, β0 and β1, and about distributional parameters of the
random variable, E. The inferences are made based on a sample of n pairs,
(yi, xi), associated with unobservable realizations of the random error, ϵi, and
assumed to have the relationship

yi = β0 + β1xi + ϵi. (A.1)

We also generally assume that the realizations of the random error are inde-
pendent and are unrelated to the value of x.
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For this example, let us consider just the specific problem of testing the
hypothesis

H0 : β1 = 0 (A.2)

versus the universal alternative. If the distribution of E is normal and we make
the additional assumptions above about the sample, the optimal test for the
hypothesis is based on a least squares procedure that yields the statistic

t =
β̂1

√
(n − 2)

∑
(xi − x̄)2√∑

r2
i

, (A.3)

where x̄ is the mean of the x’s, β̂1 together with β̂0 minimizes the function

L2(b0, b1) =
n∑

i=1

(yi − b0 − b1xi)2

= ∥r(b0, b1)∥2
2,

and

ri = ri(β̂0, β̂1)

= yi − (β̂0 + β̂1xi)

(in the notation of equation (17.37) on page 604).
If the null hypothesis is true, t is a realization of a Student’s t distribution

with n−2 degrees of freedom. The test is performed by comparing the p-value
from the Student’s t distribution with a preassigned significance level, α, or
by comparing the observed value of t with a critical value. The test of the
hypothesis depends on the estimates of β0 and β1 used in the test statistic t.

Another method of fitting the linear regression line that is robust to out-
liers in E is to minimize the absolute values of the deviations. The least
absolute values procedure chooses estimates of β0 and β1 to minimize the
function

L1(b0, b1) =
n∑

i=1

|yi − b0 − b1xi|

= ∥r(b0, b1)∥1.

A test statistic analogous to the one in equation (A.3), but based on the
least absolute values fit, is

t1 =
2β̃1

√∑
(xi − x̄)2

(e(k2) − e(k1))
√

n − 2
, (A.4)

where β̃1 together with β̃0 minimizes the function
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L1(b0, b1) =
n∑

i=1

|yi − b0 − b1xi|,

e(k) is the kth order statistic from

ei = yi − (β̃0 + β̃1xi),

k1 is the integer closest to (n− 1)/2−
√

n − 2, and k2 is the integer closest to
(n−1)/2+

√
n − 2. This statistic has an approximate Student’s t distribution

with n − 2 degrees of freedom (see Birkes and Dodge, 1993, for example).
If the distribution of the random error is normal, inference based on min-

imizing the sum of the absolute values is not nearly as efficient as inference
based on least squares. This alternative to least squares should therefore be
used with some discretion. Furthermore, there are other procedures that may
warrant consideration. It is not our purpose here to explore these important
issues in robust statistics, however.

The Design of the Experiment

At this point, we should have a clear picture of the problem: We wish to
compare two ways of testing the hypothesis (A.2) under various scenarios. The
data may have outliers, and there may be observations with large leverage. We
expect that the optimal test procedure will depend on the presence of outliers,
or more generally, on the distribution of the random error, and on the pattern
of the values of the independent variable. The possibilities of interest for the
distribution of the random error include:

• the family of the distribution (that is, normal, double exponential, Cauchy,
and so on);

• whether the distribution is a mixture of more than one basic distribution
and, if so, the proportions in the mixture;

• the values of the parameters of the distribution; that is, the variance, the
skewness, or any other parameters that may affect the power of the test.

Our objective is to compare the relative power of two tests within different
situations. If our objective were to be to compare the powers of the tests across
those situations, we would need to choose the distributions of the random
errors in such a way that they are comparable with respect to any reasonable
test; that is, we would need to have models whose signal to noise ratios are
essentially the same. In this Monte Carlo study, our interest includes the
differences of the tests within different signal to noise ratios.

In textbooks on the design of experiments, a simple objective of an ex-
periment is to perform a t test or an F test of whether different levels of
response are associated with different treatments. Our objective in the Monte
Carlo experiment that we are designing is to investigate and characterize the
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dependence of the performance of the hypothesis test on these factors. The
principles of design are similar to those of other experiments, however.

It is possible that the optimal test of the hypothesis will depend on the
sample size or on the true values of the coefficients in the regression model,
so some additional issues that are relevant to the performance of a statistical
test of this hypothesis are the sample size and the true values of β0 and β1.

In the terminology of statistical models, the factors in our Monte Carlo
experiment are the estimation method and the associated test, the distribution
of the random error, the pattern of the independent variable, the sample size,
and the true value of β0 and β1. The estimation method together with the
associated test is the “treatment” of interest. The “effect” of interest (that is,
the measured response) is the proportion of times that the null hypothesis is
rejected using the two treatments.

We now can see our objective more clearly: for each setting of the distri-
bution, pattern, and size factors, we wish to measure the power of the two
tests. These factors are similar to blocking factors, except that there is likely
to be an interaction between the treatment and these factors. Of course, the
power depends on the nominal level of the test, α. It may be the case that
the nominal level of the test affects the relative powers of the two tests.

We can think of the problem in the context of a binary response model,

E(Pijklqsr) = f(τi, δj ,φk, νl,αq ,β1s), (A.5)

where the parameters represent levels of the factors listed above (β1s is the
sth level of β1), and Pijklqsr is a binary variable representing whether the
test rejects the null hypothesis on the rth trial at the (ijklqs)th setting of the
design factors. It is useful to write down a model like this to remind ourselves
of the issues in designing an experiment.

At this point, it is necessary to pay careful attention to our terminology.
We are planning to use a statistical procedure (a Monte Carlo experiment) to
evaluate a statistical procedure (a statistical test in a linear model). For the
statistical procedure that we will use, we have written a model (A.5) for the
observations that we will make. Those observations are indexed by r in that
model. Let m be the sample size for each combination of factor settings. This
is the Monte Carlo sample size. It is not to be confused with the data sample
size, n, that is one of the factors in our study.

We now choose the levels of the factors in the Monte Carlo experiment.

• For the estimation method, we have decided on two methods: least squares
and least absolute values. Its differential effect in the binary response
model (A.5) is denoted by τi, for i = 1, 2.

• For the distribution of the random error, we choose three general ones:
1. Normal (0, 1);
2. Normal (0, 1) with c% outliers from normal (0, d2);
3. Standard Cauchy.
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We choose different values of c and d as appropriate. For this example, let
us choose c = 5 and 20 and d = 2 and 5. Thus, in the binary response
model (A.5), j = 1, 2, 3, 4, 5, 6.
For a given systematic component of the model, these choices result in
different signal to noise ratios. If our objective were to be to compare tests
across families of distributions, we might want to normalize the variances
in some way. (With a Cauchy being one distribution in the study, this
would not be possible, of course.)

• For the pattern of the independent variable, we choose three different
arrangements:
1. Uniform over the range;
2. A group of extreme outliers;
3. Two groups of outliers.
In the binary response model (A.5), k = 1, 2, 3. We use fixed values of the
independent variable.

• For the sample size, we choose three values: 20, 200, and 2,000. In the
binary response model (A.5), l = 1, 2, 3.

• For the nominal level of the test, we choose two values: 0.01 and 0.05. In
the binary response model (A.5), q = 1, 2.

• The true value of β0 probably is not relevant, so we just choose β0 = 1. We
are interested in the power of the tests at different values of β1. We expect
the power function to be symmetric about β1 = 0 and to approach 1 as
|β1| increases.

The estimation method is the “treatment” of interest.
Restating our objective in terms of the notation introduced above, for each

of two tests, we wish to estimate the power curve,

Pr(reject H0) = g(β1 | τi, δj ,φk, νl,αq),

for any combination (τi, δj ,φk, νl,αq). The minimum of the power curve should
occur at β1 = 0, and should be α. The curve should approach 1 symmetrically
as |β1|.

To estimate the curve, we use a discrete set of points, and because of
symmetry, all values chosen for β1 can be nonnegative. The first question
is at what point the curve flattens out just below 1. We might arbitrarily
define the region of interest to be that in which the power is less than 0.99
approximately. The abscissa of this point is the maximum β1 of interest. This
point, say β∗1 , varies, depending on all of the factors in the study. We could
work this out in the least squares case for uncontaminated normal errors using
the noncentral Student’s t distribution, but for all other cases, it is analytically
intractable. Hence, we compute some preliminary Monte Carlo estimates to
determine the maximum β1 for each factor combination in the study.

To do a careful job of fitting a curve using a relatively small number of
points, we would choose points where the second derivative is changing rapidly
and especially near points of inflection where the second derivative changes
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sign. Because the problem of determining these points for each combination of
(i, j, k, l, q) is not analytically tractable (otherwise we would not be doing the
study!), we may conveniently choose a set of points equally spaced between 0
and β∗1 . Let us decide on five such points, for this example. It is not important
that the β∗1 ’s be chosen with a great deal of care. The objective is that we be
able to calculate two power curves between 0 and β∗1 that are meaningful for
comparisons.

The Experiment

The observational units in the experiment are the values of the test statis-
tics (A.3) and (A.4). The measurements are the binary variables corresponding
to rejection of the hypothesis (A.2). At each point in the factor space, there
will be m such observations. If z is the number of rejections observed, the es-
timate of the power is z/m, and the variance of the estimator is π(1 − π)/m,
where π is the true power at that point. (z is a realization of a binomial
random variable with parameters m and π.) This leads us to a choice of the
value of m. The coefficient of variation at any point is

√
(1 − π)/(mπ), which

increases as π decreases. At π = 0.50, a 5% coefficient of variation can be
achieved with a sample of size 400. This yields a standard deviation of 0.025.
There may be some motivation to choose a slightly larger value for m because
we can assume that the minimum of π will be approximately the minimum of
α. To achieve a 5% coefficient of variation at that point (i.e., at β1 = 0) would
require a sample of size approximately 160,000. That would correspond to a
standard deviation of 0.0005, which is probably much smaller than we need.
A sample size of 400 would yield a standard deviation of 0.005. Although
that is large in a relative sense, it may be adequate for our purposes. Because
this particular point (where β1 = 0) corresponds to the null hypothesis, how-
ever, we may choose a larger sample size, say 4,000, at that special point. A
reasonable choice therefore is a Monte Carlo sample size of 4,000 at the null
hypothesis and 400 at all other points. We will, however, conduct the experi-
ment in such a way that we can combine the results of this experiment with
independent results from a subsequent experiment.

The experiment is conducted by running a computer program. The main
computation in the program is to determine the values of the test statistics
and to compare them with their critical values to decide on the hypothesis.
These computations need to be performed at each setting of the factors and
for any given realization of the random sample.

We design a program that allows us to loop through the settings of the
factors and, at each factor setting, to use a random sample. The result is a
nest of loops. The program may be stopped and restarted, so we need to be
able to control the seeds (see Section 11.6, page 429).

Recalling that the purpose of our experiment is to obtain estimates, we
may now consider any appropriate methods of reducing the variance of those
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estimates. There is not much opportunity to apply methods of variance reduc-
tion, but at least we might consider at what points to use common realizations
of the pseudorandom variables. Because the things that we want to compare
most directly are the powers of the tests, we perform the tests on the same
pseudorandom datasets. Also, because we are interested in the shape of the
power curves we may want to use the same pseudorandom datasets at each
value of β1 —that is, to use the same set of errors in the model (A.1). Finally,
following similar reasoning, we may use the same pseudorandom datasets at
each value of the pattern of the independent variable. This implies that our
program of nested loops has the structure shown in Figure A.1.

Initialize a table of counts.
Fix the data sample size. (Loop over the sample sizes n = 20, n = 200,
and n = 2, 000.)

Generate a set of residuals for the linear regression model (A.1).
(This is the loop of m Monte Carlo replications.)

Fix the pattern of the independent variable. (Loop over pat-
terns P1, P2, and P3.)

Choose the distribution of the error term. (Loop over
the distributions D1, D2, D3, D4, D5, and D6.)

For each value of β1, generate a set of observations
(the y values) for the linear regression model (A.1),
and perform the tests using both procedures and
at both levels of significance. Record results.

End distributions loop.
End patterns loop.

End Monte Carlo loop.
End sample size loop.

Perform computations of summary statistics.

Fig. A.1. Program Structure for the Monte Carlo Experiment

After writing a computer program with this structure, the first thing is
to test the program on a small set of problems and to determine appropriate
values of β∗1 . We should compare the results with known values at a few points.
(As mentioned earlier, the only points that we can work out correspond to
the normal case with the ordinary t statistic. One of these points, at β1 = 0,
is easily checked.) We can also check the internal consistency of the results.
For example, does the power curve increase? We must be careful, of course,
in applying such consistency checks because we do not know the behavior of
the tests in most cases.
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Reporting the Results

The report of this Monte Carlo study should address as completely as possible
the results of interest. The relative values of the power are the main points
of interest. The estimated power at β1 = 0 is of interest. This is the actual
significance level of the test, and how it compares to the nominal level α is of
particular interest.

The presentation should be in a form easily assimilated by the reader. This
may mean several graphs. Two graphs, for the two test procedures, should be
shown on the same set of axes. It is probably counterproductive to show a
graph for each factor setting. (There are 108 combinations of factor settings.)

In addition to the graphs, tables may allow presentation of a large amount
of information in a compact format.

The Monte Carlo study should be described so carefully that the study
could be replicated exactly. This means specifying the factor settings, the loop
nesting, the software and computer used, the seed used, and the Monte Carlo
sample size. There should also be at least a simple statement explaining the
choice of the Monte Carlo sample size.

As mentioned earlier, the statistical literature is replete with reports of
Monte Carlo studies. Some of these reports (and likely the studies themselves)
are woefully deficient. An example of a careful Monte Carlo study and a good
report of the study are given by Kleijnen (1977). He designed, performed,
and reported a Monte Carlo study to investigate the robustness of a multiple-
ranking procedure. In addition to reporting on the study of the question at
hand, another purpose of the paper was to illustrate the methods of a Monte
Carlo study.

A.4 Computer Experiments

In many scientific investigations, we envision a relationship expressed by a
model

y ≈ f(x).

The quantity of interest y, usually called a “response” (although it may not
be a response to any of the other entities), may be the growth of a crystal, the
growth of a tumor, the growth of corn, the price of a stock one month hence,
or some other quantity. The other variables, x, called “factors”, “regressors”,
or just “input variables”, may be temperature, pressure, amount of a drug,
amount of a type of fertilizer, interest rates, or some other quantity. Both y
and x may be vectors. An objective is to determine a suitable form of f and
the nature of the approximation. The simplest type of approximation is one
in which an additive deviation can be identified with a random variable:

Y = f(x) + E.
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The most important objective, whatever the nature of the approximation,
usually is to determine values of x that are associated with optimal realizations
of Y . The association may or may not be one of causation.

One of the major contributions of the science of statistics to the scientific
method is the experimental methods that efficiently help to determine f , the
nature of an unexplainable deviation E, and the values of x that yield optimal
values of y. Design and analysis of experiments is a fairly mature subdiscipline
of statistics.

In computer experiments, the function f is a computer program, x is
the input, and y is the output. The program implements known or supposed
relationships among the phenomena of interest. In cases of practical interest,
the function is very complicated, the number of input variables may be in the
hundreds, and the output may consist of many elements. The objective is to
find a tractable function, f̂ , that approximates the true behavior, at least over
ranges of interest, and to find the values of the input, say x̂0, such that f̂(x̂0)
is optimal. How useful x̂0 is depends on how close f̂(x̂0) is to f(x0), where x0

yields the optimal value of f .
What makes this an unusual statistical problem is that the relationships

are deterministic. The statistical approach to computer experiments intro-
duces randomness into the problem. The estimate f̂(x̂0) can then be described
in terms of probabilities or variances.

In a Bayesian approach, randomness is introduced by considering the func-
tion f to be a realization of a random function, F . The prior on F may be
specified only at certain points, say F (x0). A set of input vectors x1, . . . , xn

is chosen, and the output yi = f(xi) is used to estimate a posterior distribu-
tion for F (x), or at least for F (x0). The Bayesian approach generally involves
extensive computations for the posterior densities. In a frequentist approach,
randomness is introduced by taking random values of the input, x1, . . . , xn.
This randomness in the input yields randomness in the output yi = f(xi),
which is used to obtain the estimates x̂0 and f̂(x̂0) and estimates of the vari-
ances of the estimators.

Latin Hypercube Sampling

Principles for the design of experiments provide a powerful set of tools for
reducing the variance in cases where several factors are to be investigated
simultaneously. Such techniques as balanced or partially balanced fractional
factorial designs allow the study of a large number of factors while keeping
the total experiment size manageably small. Some processes are so complex
that even with efficient statistical designs, experiments to study the process
would involve a prohibitively large number of factors and levels. For some
processes, it may not be possible to apply the treatments whose effects are
to be studied, and data are available only from observational studies. The
various processes determining weather are examples of phenomena that are
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not amenable to traditional experimental study. Such processes can often be
modeled and studied by computer experiments.

There are some special concerns in experimentation using the computer,
but the issues of statistical efficiency remain. Rather than a model involv-
ing ordinary experimental units, a computer experimental model receives a
fixed input and produces a deterministic output. An objective in computer
experimentation (just as in any experimentation) is to provide a set of inputs
that effectively (or randomly) span a space of interest. McKay, Conover, and
Beckman (1979) introduce a technique called Latin hypercube sampling (as a
generalization of the ideas of a Latin square design) for providing input to a
computer experiment.

If each of k factors in an experiment is associated with a random input
that is initially a U(0, 1) variate, a sample of size n that efficiently covers the
factor space can be formed by selecting the ith realization of the jth factor as

vj =
πj(i) − 1 + uj

n
,

where

• π1(·),π2(·), . . . ,πk(·) are permutations of the integers 1, . . . , n, sampled
randomly, independently, and with replacement from the set of n! possible
permutations; and πj(i) is the ith element of the jth permutation.

• The uj are sampled independently from U(0, 1).

It is easy to see that vj are independent U(0, 1). We can see heuristically that
such numbers tend to be “spread out” over the space. Use of Latin hypercube
sampling is particularly useful in higher dimensions.

Exercises

A.1. Write a computer program to implement the Monte Carlo experiment
described in Section A.3. The R functions lsfit and rq in the quantreg
package, or the IMSL Fortran subroutines rline and rlav can be used
to calculate the fits. See Section 7.6 for discussions of other software you
may use in the program.

A.2. Choose a recent issue of the Journal of the American Statistical Asso-
ciation and identify five articles that report on Monte Carlo studies of
statistical methods. In each case, describe the Monte Carlo experiment.
a) What are the factors in the experiment?
b) What is the measured response?
c) What is the design space— that is, the set of factor settings?
d) What random number generators were used?
e) Critique the report in each article. Did the author(s) justify the sample

size? Did the author(s) report variances or confidence intervals? Did
the author(s) attempt to reduce the experimental variance?
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A.3. Select an article you identified in Exercise A.2 that concerns a statistical
method that you understand and that interests you. Choose a design space
that is not a subspace of that used in the article but that has a nonnull
intersection with it, and perform a similar experiment. Compare your
results with those reported in the article.



B

Some Important Probability Distributions

Development of stochastic models is facilitated by identifying a few proba-
bility distributions that seem to correspond to a variety of data-generating
processes, and then studying the properties of these distributions. In the
following tables, I list some of the more useful distributions, both discrete
distributions and continuous ones. The names listed are the most common
names, although some distributions go by different names, especially for spe-
cific values of the parameters. In the first column, following the name of the
distribution, the parameter space is specified. Also, given in the first column
is the root name of the computer routines in both R and IMSL that apply to
the distribution. In the last column, the PDF (or probability mass function)
and the mean and variance are given.

There are two very special continuous distributions, for which I use special
symbols: the unit uniform, designated U(0, 1), and the normal (or Gaussian),
denoted by N(µ,σ2). Notice that the second parameter in the notation for the
normal is the variance. Sometimes, such as in the functions in R, the second
parameter of the normal distribution is the standard deviation instead of the
variance. A normal distribution with µ = 0 and σ2 = 1 is called the standard
normal. I also often use the notation φ(x) for the PDF of a standard normal
and Φ(x) for the CDF of a standard normal, and these are generalized in the
obvious way as φ(x|µ,σ2) and Φ(x|µ,σ2).

Except for the uniform and the normal, I designate distributions by a
name followed by symbols for the parameters, for example, binomial(n,π) or
gamma(α,β). Some families of distributions are subfamilies of larger families.
For example, the usual gamma family of distributions is a the two-parameter
subfamily of the three-parameter gamma.

There are other general families of probability distributions that are de-
fined in terms of a differential equation or of a form for the CDF. These
include the Pearson, Johnson, Burr, and Tukey’s lambda distributions (see
Section 14.2). Some families of distributions are particularly useful in Monte
Carlo studies of the performance of statistical methods when the usual as-
sumptions are violated. The t family may be useful in this connection, because
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as the degrees of freedom ranges from 1 to ∞, the tails of the distribution
go from very heavy (that is, it is an outlier-generating distribution) to the
standard normal. Other families that are useful in this same way are the skew-
normal (see Gentle, 2003, page 170) and the stable family (ibidem, page 196).
The “claw density”, “smooth comb density”, and “saw-tooth density”, men-
tioned on page 508, are useful in Monte Carlo studies of the performance of
nonparametric probability density estimators.

Most of the common distributions fall naturally into one of two classes.
They have either a countable support with positive probability at each point
in the support, or a continuous (dense, uncountable) support with zero prob-
ability for any subset with zero Lebesgue measure. The distributions listed in
the following tables are divided into these two natural classes.

There are situations for which these two distinct classes are not appro-
priate. For most such situations, however, a mixture distribution provides an
appropriate model. We can express a PDF of a mixture distribution as in
equation (1.90) as

pM (y) =
m∑

j=1

ωjpj(y | θj),

where the m distributions with PDFs pj can be either discrete or continuous.
A simple example is a probability model for the amount of rainfall in a given
period, say a day. It is likely that a nonzero probability should be associated
with zero rainfall, but with no other amount of rainfall. In the model above,
m is 2, ω1 is the probability of no rain, p1 is a degenerate PDF with a value
of 1 at 0, ω2 = 1 − ω1, and p2 is some continuous PDF over (0,∞), possibly
similar to an exponential distribution.

Another example of a mixture distribution is a binomial with constant
parameter n, but with a nonconstant parameter π. In many applications, if
an identical binomial distribution is assumed (that is, a constant π), it is often
the case that “over-dispersion” will be observed; that is, the sample variance
exceeds what would be expected given an estimate of some other parameter
that determines the population variance. This situation can occur in a model,
such as the binomial, in which a single parameter determines both the first
and second moments. The mixture model above in which each pj is a binomial
PDF with parameters n and πj may be a better model.

Of course, we can extend this kind of mixing even further. Instead of
ωjpj(y | θj) with ωj ≥ 0 and

∑m
j=1 ωj = 1, we can take ω(θ)p(y | θ) with

ω(θ) ≥ 0 and
∫
ω(θ) dθ = 1, from which we recognize that ω(θ) is a PDF and

θ can be considered to be the realization of a random variable.
Extending the example of the mixture of binomial distributions, we may

choose some reasonable PDF ω(π). An obvious choice is a beta PDF. This
yields a standard distribution that is not included in the tables below, the
beta-binomial distribution, with PDF

pX,Π(x,π) =
(

n
x

)
Γ(α+ β)
Γ(α)Γ(β)

πx+α−1(1 − π)n−x+β−1.
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This distribution may be useful in situations in which a binomial model is
appropriate, but the probability parameter is changing more-or-less continu-
ously.

We recognize a basic property of any mixture distribution: It is a joint
distribution factored as a marginal (prior) for a random variable, which is often
not observable, and a conditional distribution for another random variable,
which is usually the observable variable of interest.

In Bayesian analyses, the first two assumptions (a prior distribution for
the parameters and a conditional distribution for the observable) lead immedi-
ately to a mixture distribution. The beta-binomial above arises in a canonical
example of Bayesian analysis.

Evans, Hastings, and Peacock (2000) give general descriptions of 40 prob-
ability distributions. Leemis and McQueston (2008) provide an interesting
compact graph of the relationships among a large number of probability dis-
tributions.

Currently, the most readily accessible summary of common probability
distributions is Wikipedia: http://wikipedia.org/ Search under the name
of the distribution.
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Table B.1. Discrete Distributions (PDFs are w.r.t counting measure)

discrete uniform PDF 1
m , y = a1, . . . , am

a1, . . . , am ∈ IR mean ai/m

R: sample; IMSL: und variance (ai − ā)2/m, where ā = ai/m

binomial PDF
n
y

πy(1− π)n−y, y = 0, 1, . . . , n

n = 1, 2, . . . ; π ∈ (0, 1) mean nπ

R: binom; IMSL: bin variance nπ(1− π)

Bernoulli PDF πy(1− π)1−y, y = 0, 1

π ∈ (0, 1) mean π

(special binomial) variance π(1− π)

Poisson PDF θye−θ/y!, y = 0, 1, 2, . . .

θ > 0 mean θ

R: pois; IMSL: poi variance θ

hypergeometric PDF

M
y

L−M
N − y

L
N

,

y = max(0, N − L + M), . . . , min(N, M)

L = 1, 2, . . .; mean NM/L

M = 1, 2, . . . , L; N = 1, 2, . . . , L variance ((NM/L)(1−M/L)(L−N))/(L− 1)

R: hyper; IMSL: hyp

negative binomial PDF
y + r − 1

r − 1
πr(1− π)y, y=0,1,2,. . .

r > 0; π ∈ (0, 1) mean r(1− π)/π

R: nbinom; IMSL: nbn variance r(1− π)/π2

geometric PDF π(1− π)y, y=0,1,2,. . .

π ∈ (0, 1) mean (1− π)/π

(special negative binomial) variance (1− π)/π2

logarithmic PDF − πy

y log(1− π)
, y=1,2,3,. . .

π ∈ (0, 1) mean −π/((1− π) log(1− π))

IMSL: lgr variance −π(π + log(1− π))/((1− π)2(log(1− π))2)

multinomial PDF
n!
πi!

πyi
i , yi = 0, 1, . . . , n, yi = n

n = 1, 2, . . ., πi ∈ (0, 1), πi = 1 means nπi

R: multinom; IMSL: mtn variances nπi(1− πi)
covariances −nπiπj
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Table B.2. Continuous Distributions (PDFs are w.r.t Lebesgue measure)

uniform PDF
1

θ2 − θ1
I(θ1,θ2)(y)

θ1 < θ2 ∈ IR mean (θ2 + θ1)/2

R: unif; IMSL: unf variance (θ2
2 − 2θ1θ2 + θ2

1)/12

normal PDF
1√
2πσ

e−(y−µ)2/2σ2

µ ∈ IR; σ > 0 ∈ IR mean µ

R: norm; IMSL: nor variance σ2

multivariate normal PDF
1

(2π)d/2|Σ|1/2
e−(y−µ)TΣ−1(y−µ)/2

µ ∈ IRd; Σ ≻ 0 ∈ IRd×d mean µ

R: mvrnorm; IMSL: mvn covariance Σ

chi-squared PDF
1

Γ(ν/2)2ν/2
yν/2−1e−y/2 I(0,∞)(y)

ν > 0 mean ν

R: chisq; IMSL: chi variance 2ν

t PDF
Γ((ν + 1)/2)

Γ(ν/2)
√

νπ
(1 + y2/ν)−(ν+1)/2

ν > 0 mean 0

R: t; IMSL: stt variance ν/(ν − 2), for ν > 2

F PDF
νν1/2
1 νν2/2

2 Γ(ν1 + ν2)yν1/2−1

Γ(ν1/2)Γ(ν2/2)(ν2 + ν1y)(ν1+ν2)/2
I(0,∞)(y)

ν1 > 0; ν2 > 0 mean ν2/(ν2 − 2), for ν2 > 2

R: f; IMSL: f variance 2ν2
2 (ν1 + ν2 − 2)/(ν1(ν2 − 2)2(ν2 − 4)), for ν2 > 4

lognormal PDF
1√
2πσ

y−1e−(log(y)−µ)2/2σ2
I(0,∞)(y)

µ ∈ IR; σ > 0 ∈ IR mean eµ+σ2/2

R: lnorm; IMSL: lnl variance e2µ+σ2
(eσ

2
− 1)

gamma PDF
1

Γ(α)βα
yα−1e−y/β I(0,∞)(y)

α > 0, β > 0 ∈ IR mean αβ

R: gamma; IMSL: gam variance αβ2

exponential PDF λe−λy I(0,∞)(y)

λ > 0 ∈ IR mean 1/λ

R: exp; IMSL: exp variance 1/λ2

double exponential PDF 1
2λe−λ|y−µ|

µ ∈ IR; λ > 0 ∈ IR mean µ

(folded exponential) variance 2/λ2
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Table B.2. Continuous Distributions (continued)

Weibull PDF
α
β

yα−1e−yα/β I(0,∞)(y)

α > 0, β > 0 ∈ IR mean β1/αΓ(α−1 + 1)

R: weibull; IMSL: wib variance β2/α Γ(2α−1 + 1)− (Γ(α−1 + 1))2

Cauchy PDF
1

πβ 1 + y−γ
β

2

γ ∈ IR; β > 0 ∈ IR mean does not exist

R: cauchy; IMSL: chy variance does not exist

beta PDF
Γ(α + β)
Γ(α)Γ(β)

yα−1(1− y)β−1 I(0,1)(y)

α > 0, β > 0 ∈ IR mean α/(α + β)

R: beta; IMSL: beta variance αβ/((α + β)2(α + β + 1))

logistic PDF
e−(y−µ)/β

β(1 + e−(y−µ)/β)2

µ ∈ IR; β > 0 ∈ IR mean µ

R: logis variance β2π2/3

Pareto PDF
αγα

yα+1
I(γ,∞)(y)

α > 0, γ > 0 ∈ IR mean αγ/(α− 1) for α > 1

variance αγ2/((α− 1)2(α− 2)) for α > 2

von Mises PDF
1

2πI0(κ)
eκ cos(x−µ) I(µ−π,µ+π)(y)

µ ∈ IR; κ > 0 ∈ IR mean µ

IMSL: vms variance 1− (I1(κ)/I0(κ))2
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Notation and Definitions

All notation used in this work is “standard”. I have opted for simple nota-
tion, which, of course, results in a one-to-many map of notation to object
classes. Within a given context, however, the overloaded notation is generally
unambiguous. I have endeavored to use notation consistently.

This appendix is not intended to be a comprehensive listing of definitions.
The Subject Index, beginning on page 715, is a more reliable set of pointers
to definitions, except for symbols that are not words.

C.1 General Notation

Uppercase italic Latin and Greek letters, A, B, E, Λ, and so on are generally
used to represent either matrices or random variables. Random variables are
usually denoted by letters nearer the end of the Latin alphabet, X , Y , Z,
and by the Greek letter E. Parameters in models (that is, unobservables in
the models), whether or not they are considered to be random variables, are
generally represented by lowercase Greek letters. Uppercase Latin and Greek
letters, especially P , in general, and Φ, for the normal distribution, are also
used to represent cumulative distribution functions. Also, uppercase Latin
letters are used to denote sets.

Lowercase Latin and Greek letters are used to represent ordinary scalar or
vector variables and functions. No distinction in the notation is made
between scalars and vectors; thus, β may represent a vector and βi may
represent the ith element of the vector β. In another context, however, β may
represent a scalar. All vectors are considered to be column vectors, although
we may write a vector as x = (x1, x2, . . . , xn). Transposition of a vector or a
matrix is denoted by a superscript T.

Uppercase calligraphic Latin letters, F , V , W , and so on, are generally
used to represent either vector spaces or transforms.

Subscripts generally represent indexes to a larger structure; for example,
xij may represent the (i, j)th element of a matrix, X . A subscript in paren-
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theses represents an order statistic. A superscript in parentheses represents
an iteration: for example, x(k)

i may represent the value of xi at the kth step
of an iterative process.

xi The ith element of a structure (including a sample, which is a
multiset).

x(i) The ith order statistic.

x(i) The value of x at the ith iteration.

Realizations of random variables and placeholders in functions associated
with random variables are usually represented by lowercase letters correspond-
ing to the uppercase letters; thus, ϵ may represent a realization of the random
variable E.

A single symbol in an italic font is used to represent a single variable. A
Roman font or a special font is often used to represent a standard operator or a
standard mathematical structure. Sometimes, a string of symbols in a Roman
font is used to represent an operator (or a standard function); for example,
exp represents the exponential function, but a string of symbols in an italic
font on the same baseline should be interpreted as representing a composition
(probably by multiplication) of separate objects; for example, exp represents
the product of e, x, and p.

A fixed-width font is used to represent computer input or output; for ex-
ample,

a = bx + sin(c).

In computer text, a string of letters or numerals with no intervening spaces
or other characters, such as bx above, represents a single object, and there is
no distinction in the font to indicate the type of object.

Some important mathematical structures and other objects are:

IR The field of reals, or the set over which that field is defined.

IRd The usual d-dimensional vector space over the reals, or the set
of all d-tuples with elements in IR.

IRd
+ The usual d-dimensional vector space over the reals, or the set

of all d-tuples with positive real elements.

IC The field of complex numbers, or the set over which that field is
defined.
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ZZ The ring of integers, or the set over which that ring is defined.

C0, C1, C2, . . . The set of continuous functions, the set of functions with con-
tinuous first derivatives, and so forth.

i The imaginary unit,
√
−1.

C.2 Computer Number Systems

Computer number systems are used to simulate the more commonly used
number systems. It is important to realize that they have different properties,
however. Some notation for computer number systems follows.

IF The set of floating-point numbers with a given precision,
on a given computer system, or this set together with
the four operators +, -, *, and /. (IF is similar to IR
in some useful ways; see Chapter 2 and Table 2.1 on
page 98.)

II The set of fixed-point numbers with a given length, on
a given computer system, or this set together with the
four operators +, -, *, and /. (II is similar to ZZ in some
useful ways.)

emin and emax The minimum and maximum values of the exponent in
the set of floating-point numbers with a given length.

ϵmin and ϵmax The minimum and maximum spacings around 1 in the
set of floating-point numbers with a given length.

ϵ or ϵmach The machine epsilon, the same as ϵmin.

[·]c The computer version of the object ·.

NA Not available; a missing-value indicator.

NaN Not-a-number.



666 Appendix C. Notation and Definitions

C.3 Notation Relating to Random Variables

A common function used with continuous random variables is a density func-
tion, and a common function used with discrete random variables is a prob-
ability function. The more fundamental function for either type of random
variable is the cumulative distribution function, or CDF. The CDF of a ran-
dom variable X , denoted by PX(x) or just by P (x), is defined by

P (x) = Pr(X ≤ x),

where “Pr”, or “probability”, can be taken here as a primitive (it is defined
in terms of a measure). For vectors (of the same length), “X ≤ x” means
that each element of X is less than or equal to the corresponding element of
x. Both the CDF and the density or probability function for a d-dimensional
random variable are defined over IRd. (It is unfortunately necessary to state
that “P (x)” means the “function P evaluated at x”, and likewise “P (y)”
means the same “function P evaluated at y”, unless P has been redefined.
Using a different expression as the argument does not redefine the function,
despite the sloppy convention adopted by some statisticians.)

The density for a continuous random variable is just the derivative of the
CDF (if it exists). The CDF is therefore the integral. To keep the notation
simple, we likewise consider the probability function for a discrete random
variable to be a type of derivative (a Radon-Nikodym derivative) of the CDF.
Instead of expressing the CDF of a discrete random variable as a sum over a
countable set, we often also express it as an integral. (In this case, however,
the integral is over a set whose ordinary Lebesgue measure is 0.)

A useful analog of the CDF for a random sample is the empirical cumula-
tive distribution function, or ECDF. For a sample of size n, the ECDF is

Pn(x) =
1
n

n∑

i=1

I(−∞,x](xi)

or, equivalently,

Pn(x) =
1
n

n∑

i=1

I[xi,∞)(x).

See page 669 for definition of the indicator function I.
Functions and operators such as Cov and E that are commonly associated

with Latin letters or groups of Latin letters are generally represented by that
letter in a Roman font.

Pr(A) The probability of the event A.

pX(·)
or PX(·)

The probability density function (or probability function), or the
cumulative probability function, of the random variable X .
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pXY (·)
or PXY (·)

The joint probability density function (or probability function),
or the joint cumulative probability function, of the random vari-
ables X and Y .

pX|Y (·)
or PX|Y (·)

The conditional probability density function (or probability
function), or the conditional cumulative probability function, of
the random variable X given the random variable Y (these func-
tions are random variables).

pX|y(·)
or PX|y(·)

The conditional probability density function (or probability
function), or the conditional cumulative probability function, of
the random variable X given the realization y.

Sometimes, the notation above is replaced by a similar notation
in which the arguments indicate the nature of the distribution;
for example, p(x, y) or p(x|y).

pθ(·)
or Pθ(·)

The probability density function (or probability function), or the
cumulative probability function, of the distribution characterized
by the parameter θ.

Y ∼ DX(θ) The random variable Y is distributed as DX(θ), where X is
the name of a random variable associated with the distribution,
and θ is a parameter of the distribution. The subscript may
take forms similar to those used in the density and distribution
functions, such as X |y, or it may be omitted. Alternatively, in
place of DX , a symbol denoting a specific distribution may be
used. An example is Z ∼ N(0, 1), which means that Z has a
normal distribution with mean 0 and variance 1.

CDF A cumulative distribution function.

ECDF An empirical cumulative distribution function.

i.i.d. Independent and identically distributed.

X(i) d→ X
or Xi

d→ X
The sequence of random variables X(i) or Xi converges in distri-
bution to the random variable X . (The difference in the notation
X(i) and Xi is generally unimportant. The former notation is of-
ten used to emphasize the iterative nature of a process.)
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E(g(X)) The expected value of the function g of the random variable
X . The notation EP (·), where P is a cumulative distribution
function or some other identifier of a probability distribution,
is sometimes used to indicate explicitly the distribution with
respect to which the expectation is evaluated.

V(g(X)) The variance of the function g of the random variable X . The
notation VP (·) is also often used.

Cov(X, Y ) The covariance of the random variables X and Y . The notation
CovP (·, ·) is also often used.

Cov(X) The variance-covariance matrix of the vector random variable
X .

Cor(X, Y ) The correlation of the random variables X and Y . The notation
CorP (·, ·) is also often used.

Cor(X) The correlation matrix of the vector random variable X .

Med(X) The median of the scalar random variable X . It may be defined
uniquely by means of equation (1.142) on page 62, with π = 0.5.

Bias(T, θ)
or Bias(T )

The bias of the estimator T (as an estimator of θ); that is,

Bias(T, θ) = E(T )− θ.

MSE(T, θ)
or MSE(T )

The mean squared error of the estimator T (as an estimator of
θ); that is,

MSE(T, θ) =
(
Bias(T, θ)

)2 + V(T ).

J(T ) The Jackknife estimator corresponding to the statistic T .

C.4 General Mathematical Functions and Operators

Functions such as sin, max, span, and so on that are commonly associated
with groups of Latin letters are generally represented by those letters in a
Roman font.

Generally, the argument of a function is enclosed in parentheses (for ex-
ample, sin(x)), but often, for the very common functions, the parentheses are
omitted: sinx. In expressions involving functions, parentheses are generally
used for clarity, for example, (E(X))2 instead of E2(X).
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Operators such as d (the differential operator) that are commonly associ-
ated with a Latin letter are generally represented by that letter in a Roman
font.

|x| The modulus of the real or complex number x; if x is real, |x| is
the absolute value of x.

⌈x⌉ The ceiling function evaluated at the real number x: ⌈x⌉ is the
smallest integer greater than or equal to x.

⌊x⌋ The floor function evaluated at the real number x: ⌊x⌋ is the
largest integer less than or equal to x.

#S The cardinality of the set S.

IS(·) The indicator function:

IS(x) = 1, if x ∈ S,

= 0, otherwise.

If x is a scalar, the set S is often taken as the interval (−∞, y],
and in this case, the indicator function is the Heaviside function,
H, evaluated at the difference of the argument and the upper
bound on the interval:

I(−∞,y](x) = H(y − x).

(An alternative definition of the Heaviside function is the same
as this except that H(0) = 1

2 .) It is interesting to note that

I(−∞,y](x) = I[x,∞)(y).

In higher dimensions, the set S is often taken as the product set,

Ad = (−∞, y1] × (−∞, y2] × · · ·× (−∞, yd]
= A1 × A2 × · · ·× Ad,

and in this case,

IAd(x) = IA1(x1)IA2(x2) · · · IAd(xd),

where x = (x1, x2, . . . , xd). The derivative of the indicator func-
tion is the Dirac delta function, δ(·).
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δ(·) The Dirac delta “function”, defined by

δ(x) = 0, for x ̸= 0,

and ∫ ∞

−∞
δ(t) dt = 1.

The Dirac delta function is not a function in the usual sense. We
do, however, refer to it as a function, and treat it in many ways
as a function. For any continuous function f , we have the useful
fact

∫ ∞

−∞
f(y) dI(−∞,y](x) =

∫ ∞

−∞
f(y) δ(y − x) dy

= f(x).

minf(·)
or min(S)

The minimum value of the real scalar-valued function f , or the
smallest element in the countable set of real numbers S.

argminf(·) The value of the argument of the real scalar-valued function f
that yields its minimum value.

O(f(n)) Big O; g(n) = O(f(n)) means that there exists a positive con-
stant M such that |g(n)| ≤ M |f(n)| as n → ∞. g(n) = O(1)
means that g(n) is bounded from above.

o(f(n)) Little o; g(n) = o(f(n)) means that g(n)/f(n) → 0 as n → ∞.
g(n) = o(1) means that g(n) → 0 as n → ∞.

oP(f(n)) Convergent in probability; X(n) = oP(f(n)) means that, for any
positive ϵ, Pr(|X(n)/f(n)| > ϵ) → 0 as n → ∞.

d The differential operator. The derivative with respect to the vari-
able x is denoted by d

dx .

f ′, f ′′, . . . , fk′ For the scalar-valued function f of a scalar variable, differentia-
tion (with respect to an implied variable) taken on the function
once, twice, . . ., k times.

fT For the vector-valued function f , the transpose of f (a row vec-
tor).

∇f For the scalar-valued function f of a vector variable, the gradient
(that is, the vector of partial derivatives), also often denoted as
gf or Df .
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∇f For the vector-valued function f of a vector variable, the trans-
pose of the Jacobian, which is often denoted as Jf , so ∇f = JT

f
(see below).

Jf For the vector-valued function f of a vector variable, the Jaco-
bian; that is, the matrix whose (i, j)th element is

∂fi(x)
∂xj

.

Hf

or ∇∇f
or ∇2f

For the scalar-valued function f of a vector variable, the Hessian.
The Hessian is the transpose of the Jacobian of the gradient.
Except in pathological cases, it is symmetric. The element in
position (i, j) is

∂2f(x)
∂xi∂xj

.

The symbol ∇2f is sometimes also used to denote the diagonal
of the Hessian, in which case it is called the Laplacian.

f ⋆ g The convolution of the functions f and g,

(f ⋆ g)(t) =
∫

f(x)g(t − x) dx.

The convolution is a function.

Cov(f, g) For the functions f and g whose integrals are zero, the covariance
of f and g at lag t;

Cov(f, g)(t) =
∫

f(x)g(t + x) dx.

The covariance is a function; its argument is called the lag.
Cov(f, f)(t) is called the autocovariance of f at lag t, and
Cov(f, f)(0) is called the variance of f .

Cor(f, g) For the functions f and g whose integrals are zero, the correlation
of f and g at lag t;

Cor(f, g)(t) =
∫

f(x)g(t + x) dx√
Cov(f, f)(0)Cov(g, g)(0)

.

The correlation is a function; its argument is called the lag.
Cov(f, f)(t) is called the autocorrelation of f at lag t.
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f ⊗ g The tensor product of the functions f and g,

(f ⊗ g)(w) = f(x)g(y) for w = (x, y).

The operator is also used for the tensor product of two function
spaces and for the Kronecker product of two matrices.

fT

or T f
The transform of the function f by the functional T .
fF usually denotes the Fourier transform of f .
fL usually denotes the Laplace transform of f .
fW usually denotes a wavelet transform of f .

δ A perturbation operator. δx represents a perturbation of x and
not a multiplication of x by δ, even if x is a type of object for
which a multiplication is defined.

∆(·, ·) A real-valued difference function. ∆(x, y) is a measure of the
difference of x and y. For simple objects, ∆(x, y) = |x − y|; for
more complicated objects, a subtraction operator may not be
defined, and ∆ is a generalized difference.

x̃ A perturbation of the object x; ∆(x, x̃) = δx.

Ave(S) An average (of some kind) of the elements in the set S.

⟨fr⟩p The rth moment of the function f with respect to the density p.

x̄ The mean of a sample of objects generically denoted by x.

x̄ The complex conjugate of the object x; that is, if x = r + ic,
then x̄ = r − ic.

log x The natural logarithm evaluated at x.

sin x The sine evaluated at x (in radians) and similarly for other
trigonometric functions.

x! The factorial of x. If x is a positive integer, x! = x(x−1) · · · 2 ·1.
For other values of x, except negative integers, x! is often defined
as

x! = Γ(x + 1).
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Γ(α) The complete gamma function. For α not equal to a nonpositive
integer,

Γ(α) =
∫ ∞

0
tα−1e−t dt.

We have the useful relationship, Γ(α) = (α − 1)!. An important
argument is 1

2 , and Γ( 1
2 ) =

√
π.

Γx(α) The incomplete gamma function:

Γx(α) =
∫ x

0
tα−1e−t dt.

B(α,β) The complete beta function:

B(α,β) =
∫ 1

0
tα−1(1 − t)β−1 dt,

where α > 0 and β > 0. A useful relationship is

B(α,β) =
Γ(α)Γ(β)
Γ(α + β)

.

Bx(α,β) The incomplete beta function:

Bx(α,β) =
∫ x

0
tα−1(1 − t)β−1 dt.

AT For the matrix A, its transpose (also used for a vector to repre-
sent the corresponding row vector).

AH The conjugate transpose of the matrix A; AH = ĀT.

A−1 The inverse of the square, nonsingular matrix A.

A+ The g4 inverse, or the Moore-Penrose inverse, or the pseudoin-
verse, of the matrix A.

A
1
2 For the nonnegative definite matrix A, the Cholesky factor; that

is,
(A

1
2 )TA

1
2 = A.
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sign(x) For the vector x, a vector of units corresponding to the signs

sign(x)i = 1 if xi > 0,
= 0 if xi = 0,
= −1 if xi < 0,

with a similar meaning for a scalar. The sign function is also
sometimes called the signum function and denoted sgn(·).

Lp For real p ≥ 1, a norm formed by accumulating the pth powers of
the moduli of individual elements in an object and then taking
the (1/p)th power of the result.

∥ · ∥ In general, the norm of the object ·. Often, however, specifically
either the L2 norm, or the norm defined by an inner product.

∥ · ∥p In general, the Lp norm of the object ·.

∥x∥p For the vector x, the Lp norm:

∥x∥p =
(∑

|xi|p
) 1

p
.

∥X∥p For the matrix X , the Lp norm:

∥X∥p = max
∥v∥p=1

∥Xv∥p.

∥f∥p For the function f , the Lp norm:

∥f∥p =
(∫

|f(x)|pdx

) 1
p

.

∥X∥F For the matrix X , the Frobenius norm:

∥X∥F =
√∑

i,j

x2
ij .

⟨x, y⟩ The inner product of x and y.

κp(A) The Lp condition number of the nonsingular square matrix A
with respect to inversion.

diag(v) For the vector v, the diagonal matrix whose nonzero elements
are those of v; that is, the square matrix, A, such that Aii = vi

and for i ̸= j, Aij = 0.
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diag(A1, . . . , Ak)
The block diagonal matrix whose submatrices along the diagonal
are A1, . . . , Ak.

ai∗ The vector whose elements correspond to the elements in the ith

row of the matrix A. ai∗ is a column vector (as are all vectors
in this book).

a∗j The vector whose elements correspond to the elements in the jth

column of the matrix A.

trace(A) The trace of the square matrix A; that is, the sum of the diagonal
elements.

rank(A) The rank of the matrix A, that is, the maximum number of
independent rows (or columns) of A.

det(A) The determinant of the square matrix A, det(A) = |A|.

|A| The determinant of the square matrix A, |A| = det(A).

Ejk The elementary operator matrix that by premultiplication ex-
changes rows j and k of a matrix. Ejk is the identity matrix
with rows j and k interchanged.

Ejk(c) The elementary operator matrix that by premultiplication per-
forms an axpy operation on rows j and k of a matrix. Ejk(c)
is the identity matrix with the 0 in position (j, k) replaced by c.

ei The ith unit vector, that is, the vector with 0s in all positions
except the ith position, which is 1.

A form of model used often in statistics and applied mathematics has three
parts: a left-hand side representing an object of primary interest; a function
of another variable and a parameter, each of which is likely to be a vector;
and an adjustment term to make the right-hand side equal the left-hand side.
The notation varies depending on the meaning of the terms. One of the most
common models used in statistics, the linear regression model with normal
errors, is written as

Y = βTx + E. (C.1)

C.5 Models and Data
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The adjustment term is a random variable, denoted by an uppercase epsilon.
The term on the left-hand side is also a random variable. This model does not
represent observations or data. A slightly more general form is

Y = f(x; θ) + E. (C.2)

A single observation or a single data item that corresponds to model (C.1)
may be written as

y = βTx + ϵ

or, if it is one of several,
yi = βTxi + ϵi.

Similar expressions are used for a single data item that corresponds to
model (C.2).

In these cases, rather than being a random variable, ϵ or ϵi may be a
realization of a random variable, or it may just be an adjustment factor with
no assumptions about its origin.

A set of n such observations is usually represented in an n-vector y, a
matrix X with n rows, and an n-vector ϵ:

y = Xβ + ϵ

or
y = f(X ; θ) + ϵ.

The model is not symmetric in y and x. The error term is added to the
systematic component that involes x. The way the error term is included in
the model has implications in estimation and model fitting (see Chapter 17).
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Solutions and Hints for Selected Exercises

Exercises Beginning on Page 75

1.5. ∥A∥1 = 1.667, ∥A∥2 = 1.333, and ∥A∥∞ = 1.500.
1.8. The distribution of X = s2/σ2 is a gamma with parameters (n−1)/2 and

2 (that is, a chi-squared with n − 1 degrees of freedom). Using this fact,
evaluate E(X1/2) and determine the scaling needed to form an unbiased
estimator for σ.

1.16b.

Ψ(Pn) =
∫ ∞

−∞

(
y −

∫ ∞

−∞
u dPn(u)

)2

dPn(y)

=
1
n

n∑

i=1

(yi − ȳ)2.

1.17a. E(X), E(X2).
1.17b. The median.
1.17c. No; it is a nonlinear combination of two linear functionals, E(X) and

E(X2).
1.20a. α̂ = (n − 2)ȳ2/

∑
(yi − ȳ)2;

β̂ =
∑

(yi − ȳ)2/((n − 2)ȳ).
1.20c. It does not have a closed-form solution.

Exercises Beginning on Page 102

2.8b. g = 0.005 under the assumption of rounding to an even digit.
2.9a. The first thing is to identify the computer numbers in the interval

[0, 1].

The computer numbers have the form of equation (2.2) on page 89 with
b = 10, 0 ≤ di ≤ 9, p = 5, −9 ≤ e ≤ 9. Therefore the numbers in this
system that are in this interval are
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A
e mantissa
1 1 0 0 0 0
0 9 9 9 9 9
0 9 9 9 9 8

....
0 9 9 9 9 0
0 9 9 9 8 9
0 9 9 9 8 8

....
0 9 9 9 8 0
0 9 9 9 7 9
0 9 9 9 7 8

....
0 9 9 9 7 0

....

....
0 1 0 0 0 0

B
e mantissa

-1 9 9 9 9 9
-1 9 9 9 9 8

....
-1 9 9 9 9 0
-1 9 9 9 8 9
-1 9 9 9 8 8

....
-1 9 9 9 8 0
-1 9 9 9 7 9
-1 9 9 9 7 8

....
-1 9 9 9 7 0

....

....
-1 1 0 0 0 0

· · ·

J
e mantissa

-9 9 9 9 9 9
-9 9 9 9 9 8

....
-9 9 9 9 9 0
-9 9 9 9 8 9
-9 9 9 9 8 8

....
-9 9 9 9 8 0
-9 9 9 9 7 9
-9 9 9 9 7 8

....
-9 9 9 9 7 0

....

....
-9 1 0 0 0 0

K
e mantissa

-9 0 9 9 9 9
-9 0 9 9 9 8

....
-9 0 9 9 9 0
-9 0 0 9 8 9
-9 0 0 9 8 8

....
-9 0 0 9 8 0
-9 0 0 9 7 9
-9 0 0 9 7 8

....
-9 0 0 9 7 0

....

....
-9 0 0 0 0 1
0 0 0 0 0 0

Now all we do is count the points and distribute the uniform probability
over them. There are 100,000 points in each column, except for columns
A and K. Column A has one additional point, as shown. Column K is
an interesting one. It contains the 9,999 nonnormalized numbers that al-
low “graceful underflow”, plus the number 0. The probability content to
distribute over the points in each column is the length of the interval rep-
resented by the numbers in the column, plus the proportionate amount
from the interval above and from the interval below. For example, column
A, which does not have an interval above receives 0.9 plus the propor-
tionate amount (that is, half) of the probability in the interval between
0.1 (it smallest number) and 0.099999 (the largest number in the interval
just below it, represented by column B); hence, the probability assigned
to all of the numbers in column A is 0.900005, over those in column B is
0.0899955, over those in column C (not shown) is 0.00899955, and so on,
through column J.
The discrete probability distribution can then be built up in the obvious
way by assigning the proportional probability to each point that is not
some integral power of 10. Those that are integral powers of 10, get a
proportionate amount from the interval above and from the interval below.
For instance,

Pr(1.0000) = 0.000005

because that represents one half of the probability content in the interval
[.99999, 1]. Notice that there is a certain asymmetry here; the probability
assigned to 1 is the appropriate amount without consideration of a number
outside of the interval. The probabilities associated with all of the other
numbers in column A are equal except for the number 0.10000. By the
same process, we get
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Pr(.00000) = 0.000000000000005.

Notice that both 0 and 1 have nonzero probabilities, but they are not
equal. In the case of the U(0, 1) distribution, which is continuous, Pr(0) =
Pr(1) = 0, and the support of the distribution can equivalently be con-
sidered to be (0, 1) or [0, 1]. In the case of a distribution over IF, the
distribution is discrete, and each point in the support matters.
Although the solution given above is the correct one as the exercise was
stated, we consider a different type of problem in Chapter 7. In that
problem we want to simulate the U(0, 1) distribution over the finite set IF,
but because of other computations we may do, we want Pr(0) = Pr(1) = 0
in IF.

Exercises Beginning on Page 142

3.9. An elegant solution to this problem was given by Jay Kadane in 1984. (See
Bentley, 2000.) Here’s some R code that implements Kadane’s algorithm:

### array is the array to be processed
### n is its lenght
subarray <-c(-Inf,0,0)
sum <- 0
start <-1
for (end in 1:n){
sum <- sum +array[end]
if (sum>subarray[1]) subarray <- c(sum,start,end)
if (sum<0) {
sum <- 0
start <- end+1

}
}

Notice the use of -Inf.

Exercises Beginning on Page 199

4.1. For x ∈ D, consider the change of variable y = ax for a ̸= 0. The Jacobian
of the inverse transformation, J, is 1/a. Let Da represent the domain of
y. For the L1 norm,

∫

Da

|fa(y)|dy =
∫

Da

|f(y/a)||J|dy

=
∫

D
|f(x)|dx.

For the L2 norm (squared),
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∫

Da

(fa(y))2dy =
∫

Da

(f(y/a))2|J|dy

̸=
∫

D
(f(x))2dx.

As a specific example, let f(x) be the density 2x over the interval (0, 1),
and let a = 2.

4.2a. 3/(8
√
πσ5).

Exercises Beginning on Page 237

5.1. κ1(A) = 5001, κ2(A) = 3555.67, and κ∞(A) = 5016.

Exercises Beginning on Page 301

6.13b. The Hessian is
x1

(2 + θ)2
+

x2 + x3

(1 − θ)2 +
x4

θ2
.

Coding this in Matlab and beginning at 0.5, we get the first few iterates
0.6364
0.6270
0.6268
0.6268

6.13c. The expected value of the information is

n

4

(
1

2 + θ
+

2
1 − θ +

1
θ

)
,

which we obtain by taking E(Xi) for each element of the multinomial
random variable. Coding the method in Matlab and beginning at 0.5, we
get the first few iterates
0.6332
0.6265
0.6268
0.6268

6.13d. To use the EM algorithm on this problem, we can think of a multino-
mial with five classes, which is formed from the original multinomial by
splitting the first class into two with associated probabilities 1/2 and θ/4.
The original variable x1 is now the sum of x11 and x12. Under this re-
formulation, we now have a maximum likelihood estimate of θ by con-
sidering x12 + x4 (or x2 + x3) to be a realization of a binomial with
n = x12 +x4 +x2 +x3 and π = θ (or 1− θ). However, we do not know x12

(or x11). Proceeding as if we had a five-outcome multinomial observation
with two missing elements, we have the log-likelihood for the complete
data,
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lc(θ) = (x12 + x4) log(θ) + (x2 + x3) log(1 − θ) + k,

and the maximum likelihood estimate for θ is

x12 + x4

x12 + x2 + x3 + x4
.

The E-step of the iterative EM algorithm fills in the missing or unobserv-
able value with its expected value given a current value of the parameter,
θ(k), and the observed data. Because lc(θ) is linear in the data, we have

E (lc(θ)) = E(x12 + x4) log(θ) + E(x2 + x3) log(1 − θ).

Under this setup, with θ = θ(k),

Eθ(k)(x12) =
1
4
x1θ

(k)/(
1
2

+
1
4
θ(k))

= x(k)
12 .

We now maximize Eθ(k) (lc(θ)). This maximum occurs at

θ(k+1) = (x(k)
12 + x4)/(x(k)

12 + x2 + x3 + x4).

The following Matlab statements execute a single iteration.

function [x12kp1,tkp1] = em(tk,x)
x12kp1 = x(1)*tk/(2+tk);
tkp1 = (x12kp1 + x(4))/(sum(x)-x(1)+x12kp1);

Exercises Beginning on Page 329

7.3b. Conditional on u, the distribution of T is geometric:

pT |u(t) = πu(1 − πu)t−1, for t = 1, 2, . . . ,

where
πu =

∫
H
(
gY (y) − u

) pX(y)
cgY (y)

dy,

and H(·) is the Heaviside function. The marginal probability function for
T is

pT (t) =
∫ 1

0
πu(1 − πu)t−1 du, for t = 1, 2, . . . .

Therefore, we have

E(T ) =
∫ 1

0

1
πu

du

and

V(T ) =
∫ 1

0

1
πu

(
2
πu

− 1
)

du − (E(T ))2.
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For certain densities these moments may be infinite. Assume, for example,
that for some y0, gY (y0) = 1, and that we can expand gY about y0:

gY (y0 + δ) = 1 − aδ2 + O(δ3).

For u close to 1, πu is approximately proportional to 2a−1/2(1− u)1/2, so
V(T ) is arbitrarily large (see Greenwood, 1976).

7.5a. First, we obtain the conditional copula for the Gumbel copula,

Cv(u) =
∂

∂v
C(u, v)|v

= (− log(u))θ−1
(
(− log(u))θ + (− log(v))θ

)(1−θ)/θ

exp
(
−
(
(− log(u))θ + (− log(v))θ

)1/θ
)

|v .

We notice that Cv(u) must be inverted numerically, by methods discussed
in Section 6.1. The steps now are
1. Generate indpendently w and v from U(0, 1).
2. Set u = C−1

v (w). (This requires numerical root finding.)
3. Set Y = −α log(1 − u) and Z = −β log(1 − v).

7.6. A small piece of R code for the main loop after the parameters have been
initialized is

x1ind <- rnorm(n)
x2ind <- rnorm(n)
sdf1 <- sig1*sqrt(1-rho2)
mf1 <- rho*sig1
sdf2 <- sig2*sqrt(1-rho2)
mf2 <- rho*sig2
k <- 1
while (k <= n) {

x1 <- sdf1*x1ind[k] + mu1+mf1*(x2-mu2)
x2 <- sdf2*x2ind[k] + mu2+mf2*(x1-mu1)
x[k,]=c(x1,x2)
k <- k + 1

}

Exercises Beginning on Page 368

8.2. It is likely that the tails will be light because the median is smaller in
absolute value than the mean.

Exercise 8.2′: Generate a sample of size 50 of maximum order statis-
tics from samples of size 100 from a normal (0,1) distribution, and plot
a histogram of it. Notice the skewed shape. Because much of our experi-
ence is with symmetric data, our expectations of the behavior of random
samples often are not met when the data are skewed.
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Exercises Beginning on Page 397

9.3. There are 63 planes in 4-D. They may be somewhat difficult to see because
of the slicing and because of the relatively large number of planes.

9.13a. The rotation matrix Q rotates (x1i, x2i, x3) into (a1x1i +a2x2i, 0, x3).
If

Q =

⎡

⎣
c −s 0
s c 0
0 0 1

⎤

⎦ ,

then a2c = a1s and s =
√

1 − c2. Thus, we have two equations in two
unknowns for which we can solve in terms of a1 and a2. The projection
matrix is just

P =
[

1 0 0
0 0 1

]
.

9.13b. The first thing to consider here is whether to use the known model (that
is, in the notation of the previous question, a1 = 5 and a2 = 1), or to use
the data to determine coefficients that better fit the data. (In the latter
case, we would first regress x3 on x1 and x2, and then use the estimates
â1 and â2.) At this point, the problem is almost like Exercise 9.13a. This
depends on the signal-to-noise (that is, on whether the variation in ϵ
dominates the variation in 5x1 + x2). If the noise dominates, it is not
likely that a good projection exists.

9.14. m = 3, and

X =

⎡

⎢⎢⎢⎢⎣

3.31 0.95 −1.38
−0.68 0.79 0.31
−0.31 1.73 1.31
−4.17 −0.72 −0.94

1.85 −2.74 0.69

⎤

⎥⎥⎥⎥⎦
.

Exercises Beginning on Page 414

10.2.
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IMSE
(
f̂
)

=
∫

D
E
((

f̂(x) − f(x)
)2
)

dx

=
∫

D
E
((

f̂(x) − E
(
f̂(x)

)
+ E

(
f̂(x)

)
− f(x)

)2
)

dx

=
∫

D
E
((

f̂(x) − E
(
f̂(x)

))2
)

dx +
∫

D

(
E
(
f̂(x)

)
− f(x)

)2
dx

=
∫

D
E
((

f̂(x) − E
(
f̂(x)

))2
)

dx

+2
∫

D
E
((

f̂(x) − E
(
f̂(x)

))(
E
(
f̂(x)

)
− f(x)

))
dx

+
∫

D

(
E
(
f̂(x)

)
− f(x)

)2
dx

= IV
(
f̂
)

+ ISB
(
f̂
)

.

Exercises Beginning on Page 431

11.4. What we are to do is a goodness-of-fit test. These are hard (in the sense
that there are too many alternatives). Just three O(n) statistics cannot
result in a very powerful omnibus test. Most reasonable tests, such as a
Kolmogorov-Smirnov test, use at least O(n logn) test statistics. What we
can do in this case are just some simple tests for specific aspects of the
hypothesized distribution.
The unknown parameter θ complicates anything we might try; we cannot
generate Monte Carlo samples without knowing this value. Therefore, we
must consider two general approaches: one kind in which we use an es-
timate of θ, and another kind in which we address characteristics of the
distribution that are independent of θ.
First of all, note that the distribution is symmetric; therefore, the mean is
0. Unfortunately, we cannot construct a test based on m unless we know
θ or have an estimate of it.
Because V(X) = 2θ2, where X is a random variable with the hypothesized
distribution, we can estimate θ2 with m2/2. Using this to estimate θ, we
can now construct various tests. We can, for example, do Monte Carlo
tests on m, m2, or m4. These tests would in reality be on the popula-
tion parameters corresponding to the expectations of the corresponding
random variables (that is, the sample mean, the sample second central
moment, and the sample fourth central moment). Each Monte Carlo test
would be performed in the usual way by generating samples from a dou-
ble exponential with the estimated value of θ, computing the appropriate
statistic from each sample, and then comparing the single observed value
of that statistic with the Monte Carlo set. To do a test at the α level, we
have several possibilities. An easy way out is just to do one of the Monte
Carlo tests described; the observed value of just one of the quantities m,



Appendix D. Solutions and Hints for Exercises 685

m2, and m4 would be compared with the ⌊nα/2⌋th and the ⌊n(1−α/2)⌋th
order statistics from the Monte Carlo sample of corresponding statistics.
Another possibility would be to do three tests with appropriately ad-
justed significance levels. There are no (obvious) Bonferroni bounds, so
the adjusted level would just be α/3, and the rejection criterion would be
rejection of any separate test.
Another approach would be to determine salient features of the hypoth-
esized distribution that are independent of the unknown parameter. An
example is the ratio of the fourth moment to the square of the second
moment, which is 12. The expected value of m4/m2

2 is independent of
θ. Therefore, we can choose an arbitrary value of θ and generate Monte
Carlo samples. We would then do a Monte Carlo test using m4/m2

2. This
test would compare the observed value of this ratio with the Monte Carlo
sample of this ratio. (The test would not directly compare the observed
value with the hypothesized population value of 12.)

Exercises Beginning on Page 449

12.4. Consider the numerator,
n∑

j=1

(
T ∗j − T

)2 =
n∑

j=1

(
(T ∗j − T ∗) − (T − T ∗)

)2

=
n∑

j=1

(
T ∗j − T ∗

)2 − 2
n∑

j=1

(T ∗j − T ∗)(T − T ∗) +
n∑

j=1

(
T − T ∗

)2

=
n∑

j=1

(
T ∗j − T ∗

)2 −
n∑

j=1

(
T − T ∗

)2

≤
n∑

j=1

(
T ∗j − T ∗

)2
,

which is the numerator of VJ with r = n. The same arithmetic also holds
for other values of r.

Exercises Beginning on Page 465

13.1a.

EP (ȳ∗b ) = EP

(
1
n

∑

i

y∗i

)

=
1
n

∑

i

EP (y∗i )

=
1
n

∑

i

ȳ

= ȳ.
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Note that the empirical distribution is a conditional distribution, given
the sample. With the sample fixed, ȳ is a “parameter”, rather than a
“statistic”.

13.1d.

EP (V ) = EP (EP (V ))

= EP

(
1
n

∑
(yi − ȳ)2/n

)

=
1
n

n − 1
n
σ2

P .

Exercises Beginning on Page 484

14.1a. ∫ x(n)

0

(
1

x(n)
− 1
θ

)2

dx +
∫ θ

x(n)

(
0 − 1

θ

)2

dx =
1

x(n)
− 1
θ
.

14.1b. 1
n−1 (remember that the ith order statistic from a uniform distribution

has a beta distribution with i and n − i + 1).
14.1c. The minimum occurs at c = 21/(n−1)

Exercises Beginning on Page 510

15.6. For regular triangles, c = 1
6
√

3
; for squares, c = 1

12 ; and for regular
hexagons, c = 5

36
√

3
.

15.8a.
∫

IR
p̂F (y)dy =

1
2

n1

nv1
v1 +

m−1∑

k=1

1
2

(
nk+1

nvk+1
vk+1 +

nk

nvk
vk

)
+

1
2

nm

nvm
vm

= 1.

15.15c. Take the density f(x) = 1 on [0, 1] and the estimator f̂(x) = n on[
0, 1

n

]
.

15.16a. For the first moment,
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EpH (Y ) =
∫

D
yp̂H(y)dy

=
∫

D
y

m∑

k=1

nk

nvk
ITk(y)dy

=
m∑

k=1

∫

Tk

y
nk

nvk
dy

=
m∑

k=1

nk

(
t2k+1 − t2k

)

2nvk

=
m∑

k=1

nk

(
tk+1 + tk

)

2n

= µH .

This is just the weighted mean of the midpoint of the bins. The sample
first moment, of course, is just the sample mean. The bins could be chosen
to make the two quantities equal. The higher central moments have more
complicated expressions. In general, they are

EpH

(
(Y − µH)r

)
=
∫

D
(y − µH)rp̂H(y)dy

=
∫

D
(y − µH)r

m∑

k=1

nk

nvk
ITk(y)dy

=
m∑

k=1

∫

Tk

(y − µH)r nk

nvk
dy

=
m∑

k=1

nk

(
(t − µH)r+1

k+1 − (t − µH)r+1
k

)

(r + 1)nvk
.

For the case of r = 2 (that is, for the variance), the expression above can
be simplified by using E((Y − E(Y ))2) = E(Y 2) − (E(Y ))2. It is just

m∑

k=1

nk

(
t2k+1 + tk+1tk + t2k

)

3n
− mµ2

H .

15.16b. Let K(t) = 1 if |t| < 1/2 and K(t) = 0 otherwise.
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EpK (Y ) =
∫

D
yp̂K(y)dy

=
1

nh

n∑

i=1

∫

D
yK

(
y − yi

h

)
dy

=
1

2nh

n∑

i=1

∫ yi+h/2

yi−h/2
ydy

= µK

= ȳ.

The higher central moments have more complicated expressions. In gen-
eral, they are

EpH

(
(Y − µK)r

)
=
∫

D
(y − µK)rp̂K(y)dy

=
1

nh

n∑

i=1

∫

D
(y − µK)rK

(
y − yi

h

)
dy

=
1

nh

n∑

i=1

∫ yi+h/2

yi−h/2
(y − µK)rdy.

=
1

(r + 1)nh

n∑

i=1

(
(yi − µK + h/2)r+1 − (yi − µK − h/2)r+1

)
.

For the case r = 2, as in Exercise 15.16a, this can be simplified consider-
ably:

EpH

(
(Y − µK)2

)
=

n∑

i=1

y2
i − nȳ2 +

h3

12
.

This is the same as the second central sample moment except for the term
h3

12 .

Exercises Beginning on Page 580

16.1b. 1
16.1c. .9
16.1d. .8
16.5. This depends on the signal-to-noise. If the ratio is large, then there

will be no more than two strong principal components. If x1 and x2 are
independent, then there will be at least two strong principal components.

16.7b. The optimal projection for the data-generating process is clearly (0, 1).
For a given dataset from this process, of course, it may be slightly different.

16.11. 10. This is a simple exercise in the application of the generalized
Pythagorean Theorem.
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Bibliography

The literature on computational statistics is diverse. Relevant articles are
likely to appear in journals devoted to quite different disciplines, especially
computer science, numerical analysis, and statistics.

There are at least ten journals and serials whose titles contain some vari-
ants of both “computing” and “statistics”; but there are far more journals
in numerical analysis and in areas such as “computational physics”, “com-
putational biology”, and so on that publish articles relevant to the fields of
statistical computing and computational statistics. The journals in the main-
stream of statistics also have a large proportion of articles in the fields of
statistical computing and computational statistics because, as we suggested
in the preface, recent developments in statistics and in the computational
sciences have paralleled each other to a large extent.

There are two well-known learned societies whose primary focus is in
statistical computing: the International Association for Statistical Comput-
ing (IASC), which is an affiliated society of the International Statistical In-
stitute, and the Statistical Computing Section of the American Statistical
Association (ASA). The Statistical Computing Section of the ASA has a reg-
ular newsletter carrying news and notices as well as articles on practicum.
Also, the activities of the Society for Industrial and Applied Mathematics
(SIAM) are often relevant to computational statistics.

There are two regular conferences in the area of computational statistics:
COMPSTAT, held biennially in Europe and sponsored by the IASC, and the
Interface Symposium, generally held annually in North America and spon-
sored by the Interface Foundation of North America with cooperation from
the Statistical Computing Section of the ASA.

In addition to literature and learned societies in the traditional forms,
an important source of communication and a repository of information are
computer databases and forums. In some cases, the databases duplicate what
is available in some other form, but often the material and the communications
facilities provided by the computer are not available elsewhere.
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E.1 Literature in Computational Statistics

In the Library of Congress classification scheme, most books on statistics,
including statistical computing, are in the QA276 section, although some are
classified under H, HA, and HG. Numerical analysis is generally in QA279,
and computer science in QA76. Many of the books in the interface of these
disciplines are classified in these or other places within QA.

Current Index to Statistics is an online index produced by the American
Statistical Association and the Institute for Mathematical Statistics. It has a
broad coverage of the statistical literature.

Mathematical Reviews, published by the American Mathematical Society
(AMS), contains brief reviews of articles in all areas of mathematics. The
areas of “Statistics”, “Numerical Analysis”, and “Computer Science” contain
reviews of articles relevant to computational statistics. The papers reviewed in
Mathematical Reviews are categorized according to a standard system that
has slowly evolved over the years. In this taxonomy, called the AMS MR
classification system, “Statistics” is 62Xyy; “Numerical Analysis”, including
random number generation, is 65Xyy; and “Computer Science” is 68Xyy. (“X”
represents a letter and “yy” represents a two-digit number.) Mathematical
Reviews is available to subscribers via the World Wide Web at MathSciNet:

http://www.ams.org/mathscinet/

There are various handbooks of mathematical functions and formulas that
are useful in numerical computations. Three that should be mentioned are
Abramowitz and Stegun (1964), Spanier and Oldham (1987), and Thompson
(1997). Anyone doing serious scientific computations should have ready access
to at least one of these volumes.

Almost all journals in statistics have occasional articles on computational
statistics and statistical computing. The following is a list of journals, pro-
ceedings, and newsletters that emphasize this field.

ACM Transactions on Mathematical Software, published quarterly by the
ACM (Association for Computing Machinery), includes algorithms in For-
tran and C. Most of the algorithms are available through netlib. The
ACM collection of algorithms is sometimes called CALGO.

ACM Transactions on Modeling and Computer Simulation, published quar-
terly by the ACM.

Applied Statistics, published quarterly by the Royal Statistical Society. (Until
1998, it included algorithms in Fortran. Some of these algorithms, with cor-
rections, were collected by Griffiths and Hill, 1985. Most of the algorithms
are available through statlib at Carnegie Mellon University.)

Communications in Statistics — Simulation and Computation, published quar-
terly by Marcel Dekker. (Until 1996, it included algorithms in Fortran.
Until 1982, this journal was designated as Series B.)

Computational Statistics, published quarterly by Physica-Verlag (formerly
called Computational Statistics Quarterly).



E.1 Literature in Computational Statistics 691

Computational Statistics. Proceedings of the xxth Symposium on Computa-
tional Statistics (COMPSTAT), published biennially by Physica-Verlag.
(It is not refereed.)

Computational Statistics & Data Analysis, published by North Holland. Num-
ber of issues per year varies. (This is also the official journal of the Inter-
national Association for Statistical Computing and as such incorporates
the Statistical Software Newsletter.)

Computing Science and Statistics. This is an annual publication containing
papers presented at the Interface Symposium. Until 1992, these proceed-
ings were named Computer Science and Statistics: Proceedings of the xxth

Symposium on the Interface. (The 24th symposium was held in 1992.) In
1997, Volume 29 was published in two issues: Number 1, which contains
the papers of the regular Interface Symposium; and Number 2, which con-
tains papers from another conference. The two numbers are not sequen-
tially paginated. Since 1999, the proceedings have been published only in
CD-ROM form, by the Interface Foundation of North America. (It is not
refereed.)

Journal of Computational and Graphical Statistics, published quarterly by
the American Statistical Association.

Journal of Statistical Computation and Simulation, published irregularly in
four numbers per volume by Gordon and Breach.

Proceedings of the Statistical Computing Section, published annually by the
American Statistical Association. (It is not refereed.)

SIAM Journal on Scientific Computing, published bimonthly by SIAM. This
journal was formerly SIAM Journal on Scientific and Statistical Comput-
ing. (Is this a step backward?)

Statistical Computing & Graphics Newsletter, published quarterly by the Sta-
tistical Computing and the Statistical Graphics Sections of the American
Statistical Association. (It is not refereed and it is not generally available
in libraries.)

Statistics and Computing, published quarterly by Chapman & Hall.
A useful electronic journal for computational statistics is the Journal of

Statistical Software at

http://www.jstatsoft.org/

Resources Available over the Internet

The best way of storing information is in a digital format that can be accessed
by computers. In some cases, the best way for people to access information is
by computers; in other cases, the best way is via hard copy, which means that
the information stored on the computer must go through a printing process
resulting in books, journals, or loose pages.
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A huge amount of information and raw data are available online, much
in publicly accessible sites. Some of the repositories give space to ongoing
discussions to which anyone can contribute.

For statistics, one of the most useful sites on the Internet is the electronic
repository statlib, maintained at Carnegie Mellon University, which contains
programs, datasets, and other items of interest. The URL is

http://lib.stat.cmu.edu

The collection of algorithms published in Applied Statistics is available in
statlib. These algorithms are sometimes called the ApStat algorithms.

The statlib facility can also be accessed by email or anonymous ftp.
Another very useful site for scientific computing is netlib, which was

established by research workers at Bell Laboratories and national laboratories,
primarily Oak Ridge National Laboratories. The URL is

http://www.netlib.org

The Collected Algorithms of the ACM (CALGO), which are the Fortran, C,
and Algol programs published in ACM Transactions on Mathematical Soft-
ware (or in Communications of the ACM prior to 1975), are available in
netlib, under the TOMS link.

There is also an X Windows, socket-based system for accessing netlib,
called Xnetlib; see Dongarra, Rowan, and Wade (1995).

The Guide to Available Mathematical Software (GAMS) can be accessed
at

http://gams.nist.gov

A different interface, using Java, is available at

http://math.nist.gov/HotGAMS/

A good set of links for software are the Econometric Links of the Econo-
metrics Journal (which are not just limited to econometrics):

http://www.eur.nl/few/ei/links/software.html

There are two major problems in using the WWW to gather information.
One is the sheer quantity of information and the number of sites providing
information. The other is the “kiosk problem”; anyone can put up material.
Sadly, the average quality is affected by a very large denominator. The kiosk
problem may be even worse than a random selection of material; the “fools
in public places” syndrome is much in evidence.

It is not clear at this time what will be the media for the scientific literature
within a few years. Many of the traditional journals will be converted to an
electronic version of some kind. Journals will become Web sites. That is for
certain; the details, however, are much less certain. Many bulletin boards and
discussion groups have already evolved into electronic journals.
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E.2 References for Software Packages

There is a wide range of software used in the computational sciences. Some of
the software is produced by a single individual who is happy to share the soft-
ware, sometimes for a fee, but who has no interest in maintaining the software.
At the other extreme is software produced by large commercial companies
whose continued existence depends on a process of production, distribution,
and maintenance of the software. Information on much of the software can
be obtained from GAMS. Some of the free software can be obtained from
statlib or netlib.

The R software system and associated documentation is available at
http://www.r-project.org/

The GNU Scientific Library (GSL) of C functions is available at
http://www.gnu.org/software/gsl/

We refer to several software packages with names that are trademarked or
registered. Our reference to these packages without mention of the registration
in no way implies that the name carries a generic meaning.

E.3 References to the Literature

The following bibliography obviously covers a wide range of topics in statis-
tical computing and computational statistics. Except for a few of the general
references, all of these entries have been cited in the text.

The purpose of this bibliography is to help the reader get more information;
hence I eschew “personal communications” and references to technical reports
that may or may not exist. Those kinds of references are generally for the
author rather than for the reader.

In some cases, important original papers have been reprinted in special
collections, such as Samuel Kotz and Norman L. Johnson (Editors) (1997),
Breakthroughs in Statistics, Volume III, Springer-Verlag, New York. In most
such cases, because the special collection may be more readily available, I list
both sources.

Abbott, Edwin A. (1884), Flatland, A Romance of Many Dimensions, Seeley
& Co. Ltd., London. (Reprinted with an updated introductory note by
Dover Publications, New York, 1992).

Abramowitz, Milton, and Irene A. Stegun (Editors) (1964), Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical Ta-
bles, National Bureau of Standards (NIST), Washington. (Reprinted by
Dover Publications, New York, 1974. Work on an updated version is oc-
curring at NIST. This version is called the Digital Library of Mathematical
Functions (DLMF). See http://dlmf.nist.gov/ for the current status.)

Albert, Jim (2007), Bayesian Computation with R, Springer, New York.
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Wolfgang Härdle, and Yuichi Mori), Springer, Berlin, 237–266.

Nason, Guy P. (2001), Robust projection indices, Journal of the Royal Statis-
tical Society, Series B 63, 551–567.

Nelder, J. A., and R. Mead (1965), A simplex method for function minimiza-
tion, Computer Journal 7, 308–313.

Nelder, J. A., and R. W. M. Wedderburn (1972), Generalized linear models,
Journal of the Royal Statistical Society, Series A 135, 370–384.

Nelsen, Roger B. (2007), An Introduction to Copulas, second edition Springer,
New York.

Newman, M. E. J., and G. T. Barkema (1999) Monte Carlo Methods in Sta-
tistical Physics, Oxford University Press, Oxford, United Kingdom.

Ng, Shu Kay; Thriyambakam Krishnan; and Geoffrey J. McLachlan (2004),
The EM algorithm, Handbook of Computational Statistics: Concepts and
Methods (edited by James E. Gentle, Wolfgang Härdle, and Yuichi Mori),
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hierarchical clustering, 523–528

agglomerative, 523–527
divisive, 528
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hierarchical model, 598
high-performance computing, 127
Hilbert space, 150
histogram, 344
histogram estimator, 490–499
histospline, 498
hit-or-miss Monte Carlo, 197
homogeneous coordinates, 380
Horner’s method, 120, 169, 198
Hotelling transform, 554
Huber estimator, 606
hull, 542
hypergeometric distribution, 478
hypothesis testing, 52, 422–424

IAE (integrated absolute error), 410,
413

ICA (independent components
analysis), 564, 572

ideal bootstrap, 456
idempotent matrix, 26
IEC standards, 86
IEEE standards, 86, 94

Standard 754, 94, 95
i.i.d. (independent and identically

distributed, 37
ill-conditioned (problem or data), 113
ill-conditioned data, 113, 206
Illinois method, 254
IMAE (integrated mean absolute error),

412
image plot, 351
immersive techniques, 340
IMPLOM, 357
importance sampling, 195, 426
imputation, 425
IMSE (integrated mean squared error),

411
IMSL Libraries, 321, 323–325
incomplete factorization, 226
incomplete gamma function, 673
independent components analysis, 549,

564, 572
indicator function, 669
induced matrix norm, 14
Inf (“infinity”), 94
inference, 37–56

approximate, 51
asymptotic, 52

computational, 52, 58, 422
exact, 51

infinity, floating-point representation,
94

information theory, 49
inner product, 11, 12, 148
inner pseudoinverse, 25
integer programming, 289
integer representation, 87
integrated absolute bias, 411
integrated absolute error (IAE), 410,

413
integrated bias, 411
integrated mean absolute error (IMAE),

412
integrated mean squared error (IMSE),

411
integrated squared bias, 411
integrated squared error (ISE), 410
integrated variance, 411
Interface Symposium, 689, 691
interior-point method, 288
internal consistency checks, 112
International Association of Statistical

Computing (IASC), 689, 691
interpolating spline, 180
interpolation, 154
interval arithmetic, 102
invariance property, 374
inversion formula, 165
IRLS (iteratively reweighted least

squares), 293, 294
ISE (integrated squared error), 410
isnan, 95
isometric matrix, 391
isometric transformation, 374, 391, 395
isotropic transformation, 374
iterative method, 128, 243
iterative method for matrix computa-

tions, 221–226
iterative refinement, 226
iteratively reweighted least squares,

293, 294
Ito process, 600

jackknife, 442–448
bias correction, 444–448
variance estimate, 443–444

jackknife-after-bootstrap, 462
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Jacobi polynomial, 173, 342
Jacobian, 259
Jensen’s inequality, 49
jittering, 339
Joe copula, 34
Johnson family of distributions, 479
Journal of Computational and

Graphical Statistics, 365, 691
Journal of Statistical Computation and

Simulation, 691
Journal of Statistical Software, 691

k-d-tree, 546–547
K-means clustering, 521, 532
Kadane’s algorithm, 679
Kagomé lattice, 509
Karhunen-Loève transform, 549, 554
Karush-Kuhn-Tucker conditions, 290
KDD (knowledge discovery in

databases), 474
kernel

positive definite, 23
symmetric, 22

kernel (function), 182, 406, 500, 618,
626

kernel density estimation, 499–504
kernel estimator, 403
kernel function, 21
kernel regression, 618
kernel smoother, 617
kernel trick, 626
knowledge discovery in databases

(KDD), 474
Kolmogorov distance, 350, 410, 412
Kuhn-Tucker conditions, 290
Kullback-Leibler measure, 49, 410
Kumaraswamy distribution, 51

L2 norm, 150
L∞ norm, 150
Lp norm, 13, 150, 389
L2(D), 149, 403
L1 consistency, 413
L2 consistency, 409, 413
L2 metric, 15
L2 norm, 14, 389
Lagrange multiplier, 286, 287
Lagrange polynomial, 155
Lagrangian function, 287

Laguerre-Fourier index, projection
pursuit, 570

Laguerre polynomial, 173
lambda family of distributions, 480
Langevin equation, 600
Laplace approximation, 161, 190
Laplace transform, 31
Laplacian operator, 671
lasso, 608
latent semantic indexing, 549, 563
Latin hypercube sampling, 577, 654
Lattice (graphics system), 368
learning, 572
least absolute values estimator, 48
least angle regression, 615
least median of squares regression, 607,

636
least squares, 291–294
least squares estimator, 48, 67, 229, 604
least squares/normal drift Exer-

cise 11.2:, 431
least trimmed absolute values, 606
least trimmed squares, 606
Legendre polynomial, 171
Legendre’s differential equation, 172
length of a vector, 17
Levenberg-Marquardt algorithm, 293
likelihood equation, 46
likelihood function, 44, 70, 476
likelihood principle, 47
likelihood ratio, 47, 53
limited-memory quasi-Newton method,

272
line search, 263
linear classifier, 623
linear congruential generator, 306
linear convergence, 131
linear estimator, 61
linear functional, 61
linear independence, 16, 160
linear programming, 287
link function, 591
little o (order), 111
little omega (order), 111
local optimum, 243
log order, 118
log-likelihood function, 44, 71
logit function, 591
loss function, 41
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absolute-error, 42
convex, 42
squared-error, 42

LU factorization, 219

M-estimator, 603
MACHAR, 95
machine epsilon, 92, 269
machine learning, 519, 572
MAE (mean absolute error), 408
Mahalanobis distance, 15, 592
Mahalanobis squared distance, 392
Manhattan distance, 389
marginal CDF, 30
Markov chain Monte Carlo, 313
martingale, 8
Mathematical Reviews, 690
Matlab (software), 321
matrix factorization (decomposition),

28–29, 215–219
Matusita distance, 410
maximal linearly independent subset,

16
maximum absolute error (SAE), 410
maximum difference, 389
maximum likelihood method, 70, 71,

294–298, 476, 488
MCMC (Markov chain Monte Carlo),

313
mean absolute error (MAE), 408
mean integrated absolute error (MIAE),

412, 413
mean integrated squared error (MISE),

412
mean square consistent, 413
mean squared error (MSE), 408, 411
mean squared error, of series expansion,

20, 162
mean sup absolute error (MSAE), 412
median-unbiasedness, 39
mergesort, 122
Mersenne twister, 306
message passing, 141
method of moments, 60
metric, 15, 383

Euclidean, 15
Metropolis random walk, 314
MIAE (mean integrated absolute error),

412, 413

minimal spanning tree, 538
minimax approximation, 178
minimum-volume ellipsoid, 543
Minkowski distance, 389
MINRES method, 223
MISE (mean integrated squared error),

412
missing data, 425
mixed integer programming, 289
mixture distribution, 36, 166, 368, 480,

481, 483, 658
model, 5, 56–58, 586–587

algorithm, 586
equation, 586
random component, 58, 611
systematic component, 58, 611

model-based clustering, 481
modified Gram-Schmidt (see also

Gram-Schmidt transformation),
221

moment generating function, 31, 37
monotone likelihood ratio, 47, 53
Monte Carlo evaluation of an integral,

192
Monte Carlo experimentation, 335, 417,

643
Monte Carlo study, 643–656
Monte Carlo test, 422–424
Moore-Penrose inverse, 24, 232

and QR factorization, 216, 217
and SVD, 29

mountain plot, 348
MPI (Message Passing Interface), 141
MR classification system, 690
MSAE (mean sup absolute error), 412
MSE (mean squared error), 39, 408, 411
MST (minimal spanning tree), 538
MT19937 random number generator,

306, 325
multidimensional scaling, 396
multiple imputation, 425
multiple roots of a function, 256
multivariate data, ranking, 538–548
multivariate distributions, 320

NA (“not-available”), 95
NaN (“not-a-number”), 95
natural polynomial spline, 180, 405
nearest neighbors, 518, 546–547
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Nelder-Mead simplex method, 272, 284
nested Newton form, 169
netlib, 322, 690, 692
neural net, 284, 634
Newton form, 169
Newton’s method, 258, 266

solving a single equation, 249–251
Newton-Cotes formula, 186
Newton-Raphson, 266
noisy function optimization, 275
nonlinear regression, 293
nonnegative definite kernel, 23
nonnegative definite matrix, 23, 218
nonnegative matrix factorization, 564
nonparametric density estimation,

487–515
nonparametric method, 475, 586
nonparametric regression, 618
norm, 13

(pseudonorm) of a function, 150
Chebyshev, 150
Euclidean, 14
Frobenius, 14
L2, 14, 150
L∞, 150
Lp, 13, 150, 389
of a matrix, 14
of a vector, 14
uniform, 150

norm of a functional, 152
norm of an operator, 152
normal equations, 230
normal function, 150
normalized data, 391
normalized floating-point numbers, 90
normalized function, 150
normalized generalized inverse (see also

Moore-Penrose inverse), 25
normalized vector, 17
normalizing factor, 167
not-a-number (“NaN”), 95
not-available (“NA”), 95
NP-complete problem, 118
numerical data, 372

oblique partitioning, 474
odd function, 175
OLS (ordinary least squares), 229
online algorithm, 135, 137

online processing, 135
OpenGL (software), 367
operator, 151
optimization, 65–73, 241–304
optimization of stochastic (noisy)

functions, 275
order

big O, 110
big omega, 111
exponential, 118
little o, 111
little omega, 111
log, 118
of the problem, 118
polynomial, 118

order of computations, 117, 137
order of convergence, 110
order of error, 110
order statistic, 62
ordering of multivariate data, 538–548
Ornstein-Uhlenbeck process, 600
orthogonal distance regression, 610
orthogonal polynomials, 191
orthogonal projection, 18, 355
orthogonal transformation, 373
orthogonal vectors, 17
orthogonalization transformation, 18,

219
orthogonalization, Gram-Schmidt, 219
orthonormal vectors, 17
out-of-core algorithm, 135, 137
outer pseudoinverse, 25
outlier, 395, 559
overdetermined linear system, 228
overfitting, 597, 614
overflow, in computer operations, 88
overloading, 14

p-inverse (see also Moore-Penrose
inverse), 25

p-value, 54
Padé approximation, 153
parallel coordinates, 360

grand tour Exercise 9.4:, 398
parameter space, 34
parametric bootstrap, 424
partial pivoting, 212
partial scatter plot matrix, 357
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PCA (principal components analysis),
548–560

PDF (probability density function), 29
PDF decompisition, 162
PDF decomposition, 37, 192, 403, 407,

418, 426–427
Pearson family of distributions, 477
penalized maximum likelihood method,

489
period of random number generator,

306
permutation matrix, 213
perspective plot, 350
φ-divergence, 49
pivotal value, 55
pivoting, 212, 217
pixel, 338, 365, 366
plug-in estimator, 60, 463
pointwise properties, 407
polar coordinates, 382, 392, 535
polynomial order, 118
polynomial, evaluation of, 120, 169
portability, 107
positive definite kernel, 23
positive definite matrix, 23, 218
power of test, 54
precision, double, 94
precision, extended, 94
precision, single, 94
preconditioning, 225
prediction, 38, 440, 441
prediction error, 435
PRESS, 441
principal components, 548–560
principal components regression, 635
principal curves, 572
probabilistic error bound, 110, 196
probabilistic latent semantic indexing,

564
probability density function, 29

estimation, 475–515
probability density function decomposi-

tion, 37, 192, 403, 418
probability distributions (table of),

657–663
probability plot, 349
probably approximately correct (PAC)

model, 592

Proceedings of the Statistical Comput-
ing Section, 691

product kernel, 184, 501
profile likelihood, 45, 630
profiling programs, 136
programming, 134–137
projection, 355, 379
projection matrix, 26, 357
projection pursuit, 564–571, 618
projection pursuit guided tour, 364
projective transformation, 375
proximity search, 519
pseudo grand tour, 364
pseudoinverse (see also Moore-Penrose

inverse), 25
pseudonorm, 149
pseudovalue, 443

Q-convergence, 131
q-q plot, 349
QR factorization, 216, 219
quad tree, 546
quadratic convergence, 131
quadratic form, 22
quadratic programming, 290
quadrature, 184–197
quantile, 62

estimation, 64
quantile plot, 477
quantile-quantile plot, 349
quasi-Newton method, 269, 295
quasirandom numbers, 307, 322
queue, 108
Quicksort, 123

R (software), 140, 693
graphics, 368
packages, 134, 141
random number generation, 321,

325–329
radial ranking, 538
radix, 89
rand, 323
Rand’s statistic, 536
random forest, 628
random number generation, 305–331

software, 320–329, 429–430
rank correlation, 385
rank of matrix, 24, 217
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rank reduction, 235
rank transformation, 385
rank-one update, 227
rank-revealing QR, 217
rank-two update, 271
ranking of multivariate data, 538–548
Rao-Blackwell theorem, 40
raster image, 339
rate constant, 131
rate of convergence, 131
rational approximation, 153
real numbers, 88
real-time algorithm, 135
recursion, 119
recursion formula for orthogonal

polynomials, 168
recursive partitioning, 474, 521, 528,

622
reflexive generalized inverse, 25
registration of data, 387
regression, 293, 588

bootstrapping, 461–462
nonlinear, 293

regression tree, 617, 621
regression variable selection, 613
regula falsi, 253
regularization, 607
regularization method, 607
relative error, 97, 109
relative spacing, 92
reproducible research, 644
resampling, 336, 453
resampling vector, 454
restarting, 225
restricted maximum likelihood method,

488
Richardson extrapolation, 133

quadrature, 188
ridge regression, 607, 635
risk function, 41, 42
Robbins-Monro procedure, 256, 284
robust covariance matrix, 395
robust method, 395, 606
robustness (algorithm or software), 114,

134
Romberg quadrature, 188
root of a function, 101, 245
rotation, 234, 362, 375
roughness of a function, 151, 414, 494

rounding error, 109
rounding mode, 94
row-major, 204
running smoother, 617

S, S-Plus (software), 321
graphics, 368
random number generation, 325–329

saddlepoint approximation, 165
SAE (sup absolute error), 410
sample quantile, 62
sample variance, computing, 115
saw-tooth density, 509
saxpy, 16
scaled data, 391
scaling, 391
scaling of a vector or matrix, 208
scaling of an algorithm, 117
scatter plot, 344, 356
score function, 46
scoring, 295
scree plot, 554
secant method, 251
second-order accurate, 40
section, 357
seed of a random number generator,

307, 321, 325, 326, 430
sequential unconstrained minimization

techniques, 290
series estimator, 404
series expansion, 18, 160, 161
shape of data, 573
shearing transformation, 374
Sherman-Morrison formula, 227, 271
shrinkage, 607
SIAM Journal on Scientific Computing,

691
side effect, 322
sieve, 489
SIGGRAPH, 365
sign bit, 86
signal to noise ratio, 589
significance level, 54
significand, 89
signum function, 674
similarity, 383–397
similarity measure, 384
simplex algorithm, linear programming,

288
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simplex method, 272, 284
simplicial location depth, 578
Simpson’s rule, 186
simulated annealing, 277–281
simulation, 336, 643
single linkage clustering, 524
single precision, 94
singular value, 28, 209, 556
singular value decomposition, 28, 556
6-plot, 8
skinny QR factorization, 216
Sklar’s theorem, 32
smooth comb density, 509
smoothing, 179, 320, 341, 405, 617
smoothing matrix, 500
smoothing parameter, 183, 320, 442,

502, 507
smoothing spline, 181, 405
snowflake, 359
software engineering, 322
SOR (method), 223
sorting, 121–123
sorting of multivariate data, 538–548
span(·), 17
spanning set, 17, 160
sparse matrix, 205, 226
spectral decomposition, 549
spectral radius, 27, 222
sphered data, 391, 570
spline, 179, 405
spline smoothing, 405
splitting extrapolation, 133, 139
SPLOM (“scatter plot matrix”), 356
SPMD, 141
square root factorization, 219
square root matrix, 218
squared-error loss, 42
stability, 114, 214, 256
stack, 108
standard deviation, computing, 115
standard normal distribution, 657
standardized data, 392, 518, 548, 549,

551
star diagram, 359
statistic, 37
Statistical Computing & Graphics

Newsletter, 365, 691

Statistical Computing Section of the
American Statistical Association,
689, 691

statistical function, 31
statistical learning, 519, 572
Statistics and Computing, 691
statlib, 322, 466, 690, 692
steepest descent, 265
Steffensen acceleration, 132
Steffensen’s method, 246, 251
step length factor, 263
stereogram, 353
Stevens’s scale typology, 371
stiff data, 116
stochastic approximation, 254, 284
stochastic integration, 192
stopping criterion, 129, 243
storage unit, 85, 89
stratified sampling, 195
structure in data, 6, 473

artificial, 8, 209, 473, 534, 555
successive overrelaxation, 223
sufficiency, 40
SUMT, 290
sup absolute error (SAE), 410
superlinear convergence, 131
support of a distribution, 30
support of an hypothesis, 47
support vector machine, 626
surface rendering, 351
SVD (singular value decomposition),

28, 556
symmetric kernel, 22
symmetric matrix, 22

tabu search, 284
Taylor series approximation, 160
tensor product, 178
tessellation, 497, 528, 577
TESTU01 (test suite for random

number generators), 307
Tikhonov regularization, 607, 635
timing programs, 136
total least squares, 610, 612
transform-both-sides, 631
transformation of data, 628–634
transition kernel, 312
translation transformation, 380
trapezoid rule, 185
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trapezoidal matrix, 216
traveling salesperson problem, 281
trellis display, 359
triangle inequality, 13, 15
trigonometric basis, 164
trimmed least squares, 606
truncated Newton method, 272
truncated power function, 179, 405
truncation error, 112
trust region, 268
twoing rule, 621
twos-complement representation, 86, 87

UCI Machine Learning Repository, 628
ulp (“unit in the last place”), 93
ultrametric inequality, 383, 526
underflow, in computer operations, 91
Unicode, 85
uniform norm, 149
Uniform Parallel C (UPC), 141
unit in the last place, 93
unit roundoff, 92
unrolling a loop, 134
UPC (Uniform Parallel C), 141
updating a solution, 227, 233

Vandermonde matrix, 172
variable metric method, 269
variable selection, 613
variance, 39
variance estimation, 419, 420

bootstrap, 456–457
jackknife, 443–444

variance reduction, 195, 425–429
bootstrap, 462

variance stabilizing transformation, 629
variance, computing, 115
variance-covariance matrix, 384
vector image, 339
viewing angle, 339, 355
virtual reality, 340
Visualization Toolkit (software), 367
Voronoi diagram, 529
Voronoi tessellation, 529
voxel, 352
vtk (Visualization Toolkit software),

367

Ward’s method of clustering, 526
weak convergence in mean square, 409
Weierstrass approximation theorem,

167
weighted least squares, 69
Weka (software), 628
white matrix, 392
Wiener process, 600
Wilkinson’s polynomial, 113
window size, 500
wire frame, 352
Woodbury formula, 228, 271
word, computer, 85, 89
world coordinate system, 338

xfig (graphics software), 367
Xnetlib, 692

z-buffering, 352
zero of a function, 101, 245
0-1 loss, 42
zooming window, 7


