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Summary

We examine the difference between Bayesian and frequentist statistics in making statements about
the relationship between observable values. We show how standard models under both paradigms
can be based on an assumption of exchangeability and we derive useful covariance and correlation
results for values from an exchangeable sequence. We find that such values are never negatively
correlated, and are generally positively correlated under the models used in Bayesian statistics. We
discuss the significance of this result as well as a phenomenon which often follows from the differing
methodologies and practical applications of these paradigms – a phenomenon we call Bayes’ effect.
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1 Independence in the Bayesian and Frequentist Paradigms

Bayesian statistics differs from frequentist statistics in its treatment of unknown values.
Bayesian statistics regards probability as an epistemic concept without any necessary meta-
physical analogue (see de Finetti, 1974, pp. xi–xii). This epistemic interpretation, coupled with
assumptions of completeness of preferences and various measurement assumptions, implies
the existence of some non-degenerate probabilistic belief for any unknown value (see Fishburn,
1986; Bernardo & Smith, 1994, pp. 13–104). Under this approach unknown parameters are given
a prior probability distribution, reflecting the prior beliefs and uncertainty of the observer. This
contrasts with the frequentist paradigm where parameters are regarded as unknown constants.
Indeed, under the epistemic interpretation, the notion of an unknown constant is a contradiction
in terms.

Standard models under both the Bayesian and frequentist paradigm treat observable values as
infinitely exchangeably extendable and therefore independent and identically distributed (IID)
conditional on some unknown parameter (see below for discussion). However, the different
treatment of the unknown parameter leads to different results regarding the relationship between
observable values. In particular, frequentists regard the observable values as independent,
whereas Bayesians do not. In this paper, we examine the relationship between exchangeability
and correlation under each paradigm and we discuss a phenomenon we call Bayes’ effect. We
begin with an examination of exchangeability as the basis for standard models under either
paradigm.
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2 Exchangeability and the Representation Theorem

We let x ≡ (x1, x2, x3, . . .) be a countably infinite sequence of real values and we then let
xk ≡ (x1, x2, . . . , xk) for all k ∈ N.

Definition 1 (Exchangeability). If the probability measure for xk is invariant under permutations
of the elements of xk , then we say that xk is exchangeable. If xk is exchangeable for all
k ∈ N, then we say that x is exchangeable (also called infinitely exchangeable, though the latter
is a redundancy since we are already referring to an infinite sequence). If xk can be embedded
in an exchangeable sequence x, then we say that xk is infinitely exchangeably extendable.

As stated above, both the Bayesian and frequentist paradigm treat observable values as
infinitely exchangeably extendable. This assertion may be unfamiliar to many. After all, the
standard modelling form of IID values conditional on some unknown “parameter” is often taken
as the starting point for Bayesian or frequentist analysis, and exchangeability is seldom invoked
(in fact, many are not even aware of what the property of exchangeability is).

This standard methodology is contrary to the operational approach to statistics, under which
we seek to model our beliefs about observables by making structural assumptions about those
observables. Following the operational method, Bernardo & Smith (1994) explain that:

In much statistical writing, the starting point for formal analysis is the assumption of a mathematical
model form, typically involving “unknown parameters”, the main object of the study being to infer
something about the value of these parameters. From our perspective, this is all somewhat premature
and mysterious! We are seeking to represent degrees of belief about observables . . . (p. 167)

Under the operational approach, it can be shown that assumptions of invariance about
observable values can lead us to the standard model forms of IID observations from some
standard probability distribution. These invariance conditions involve an assumption that our
probabilistic beliefs are invariant with respect to some aspect of the observable values. In
particular, the invariance condition of exchangeability corresponds to the belief that the order
of our observations is irrelevant.

The assumption of exchangeability leads us to our standard model as follows. For all k ∈ N,
we let Fk be the empirical distribution of xk defined by

Fk(t) ≡ 1

k

k∑
i=1

I (xi ≤ t) for all t ∈ R.

We then let Fx be the empirical distribution of x defined as set out in Definition 2 in the
Appendix. Under this definition we have

Fx(t) = lim
k→∞

1

k

k∑
i=1

I (xi ≤ t) for all t ∈ R,

so long as this limit exists (i.e. the function Fx is an extension of this limit function).

THEOREM 1 (REPRESENTATION THEOREM). If x is exchangeable, then it follows that the elements
of x|Fx are independent with sampling distribution Fx (i.e. the sampling distribution is the
empirical distribution of x) so that for all k ∈ N we have

F(xk) =
∫ k∏

i=1

Fx(xi )d P(Fx).
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If Fx is indexed by another parameter θ (and with densities defined), then we have

p(xk) =
∫ k∏

i=1

p(xi |θ )d P(θ).

Proof. This is an expression of the celebrated Representation Theorem of de Finetti (1980).
See Appendix for an outline proof.

The Representation Theorem shows that if x is exchangeable, then the elements of x are IID
conditional on the empirical distribution of x (or equivalently, conditional on any other parameter
indexing this distribution).

This resulting Bayesian model form contrasts with the frequentist model form which takes
the parameter as an unknown constant. Frequentists generally argue directly for such a model
form on the grounds of random sampling, although implicit in such arguments is an assertion
of exchangeability. Indeed, although frequentists rarely purport to justify this model on the
grounds of exchangeability, it is easy to see that this model form does indeed follow from the
Representation Theorem above, coupled with the frequentist practice of treating parameters as
unknown constants.

COROLLARY 1. If x is exchangeable and if Fx is an unknown constant (so that Fx has a point
mass distribution on its own unknown value), then for all k ∈ N we have

F(xk) =
k∏

i=1

Fx(xi ).

If Fx is indexed by a parameter θ (so that θ has a point mass distribution on its own true but
unknown value θT), then we have

p(xk) =
k∏

i=1

p(xi |θ = θT).

Corollary 1 shows us that the standard IID frequentist model can be justified by an assumption
of exchangeability of the sequence of observable values, coupled with treating the unknown
parameter (indexing the empirical distribution) as having a point mass distribution on its own
unknown value (that is, treating it as an unknown constant). However, we can see that, under
this approach, the unconditional distribution of the observable values is still a function of the
unknown parameter.

The Representation Theorem demonstrates that it is our judgement of exchangeability of the
sequence of observable values that underlies our use of the standard statistical model involving
IID observable values based on an unknown parameter. In Bayesian modelling, we regard the
unknown parameter as a random variable with the observable values being IID conditional on
this parameter. In frequentist modelling, we regard the unknown parameter as a constant with
the observable values being unconditionally IID.

Frequentists may retort that they do not in fact assert unconditional independence of the
observable values, since they only ever refer to densities that are a function of the parameters.
They may reject the notion that the parameter can be taken to have a density at all since the
parameter is not repeatable and is therefore not amenable to frequentist probability statements.
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However, even in this case, frequentists do explicitly assert that the observable values are
independent regardless of the true parameter value. It follows from an elementary application
of modus ponens that the observable values are independent, unconditional on any assertion of
the true value of the parameter.

3 Exchangeability, Correlation, and Bayesian Prediction

If x is exchangeable, then the elements of x are independent if and only if the empirical
distribution (or equivalently, any other parameter indexing the empirical distribution) is almost
surely constant. Of course, under the epistemic interpretation of probability, this is only the
case when the empirical distribution is known. Thus, under the Bayesian paradigm, when the
empirical distribution is unknown (which is always the case in problems of interest), the elements
of x will be dependent. This immediately explains why we use observed values in our predictions
of future values.

We have said that Bayesians regard conditionally independent values as predictive of one
another insofar as they give information on the underlying parameters. Since any observation
means that the empirical distribution is more likely to put greater mass on this observation
than is the case a priori this suggests that unconditionally, the observable values should be
positively related. Indeed, we can demonstrate that, under wide conditions, such observations
will be positively correlated.

THEOREM 2. If x is exchangeable, then for all i �= j we have

Cov(xi , x j ) = Var(μ(θ)) ≥ 0 and Corr(xi , x j ) = Var(μ(θ))

Var(μ(θ)) + E(σ 2(θ))
≥ 0

where μ(θ) ≡ E(x|θ) and σ 2(θ) ≡ Var(x|θ).

Proof. Since x is exchangeable, it follows from Theorem 1 that the elements of x are IID
conditional upon Fx, or equivalently, conditional upon θ . It follows that

Cov(xi , x j ) = E(xi x j ) − E(xi )E(x j )

= E(E(xi x j |θ )) − E(E(xi |θ ))E(E(x j |θ ))

= E(μ(θ)2) − E(μ(θ))2

= Var(μ(θ)) ≥ 0,

so that

Corr(xi , x j ) = Cov(xi , x j )

Var(x)
= Var(μ(θ))

Var(μ(θ)) + E(σ 2(θ))
≥ 0.

COROLLARY 2. If x is exchangeable and if Var(μ(θ)) > 0, then the elements of x are positively
correlated.

Theorem 2 establishes that the elements of an exchangeable sequence can never be negatively
correlated and are uncorrelated only when μ(θ) is almost surely constant (so that they are
positively correlated if μ(θ) is not almost surely constant). The former result was observed by
Kingman (1978). Of course, under the frequentist paradigm, μ(θ) is an unknown constant so
that the observable values are indeed uncorrelated, and, in fact, independent (see Corollary 1).
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However, under the Bayesian paradigm it is often the case that Var(μ(θ)) > 0, so that the
observable values are positively correlated. Of course, this is not always the case, even for
standard models.

Example 1. Suppose that x is exchangeable with spherical symmetry and with precision θ

defined by 1/θ ≡ limk→∞
∑k

i=1 x2
i /k. Then it follows from Lemma 9 of Freedman (1963) that

p(x|θ) = N(x|0, θ) so that μ(θ) = 0 and σ 2(θ) = 1/θ. In this case, even under the Bayesian
approach of treating θ as a random variable, the elements of x are uncorrelated (though they are
not independent unless θ is known almost surely).

4 Frequentist Prediction and Pseudo-Correlation

Under the standard frequentist model, we assume that the elements of x are independent with
sampling density dependent upon the parameter θ . We have shown that this is equivalent to
assuming that x is exchangeable coupled with treatment of θ as having a point mass density on
its own true value θT. In either case, we obtain the model

p(xk) =
k∏

i=1

p(xi |θ = θT).

This model gives us the predictive density

p(xk+1|xk) = p(xk+1) = p(xk+1|θ = θT).

Thus, the frequentist is able to conclude that the elements of x are independent regardless of
the true value of θ and in particular that xk+1 and xk are independent. As such, one might expect
that observed values would not be used in predicting unknown values.

However, since frequentists take the underlying parameter θ as an unknown constant, they
are unable to obtain the above densities exactly. Instead, the frequentist must be content with an
estimate of these densities using an estimate of θ that is based on the observed value xk . Thus,
the frequentist estimates the predictive density as

p̂(xk+1|xk) ≡ p(xk+1|θ = θ̂ (xk)),

where θ̂(xk) is some estimate of θ based on observing xk . Thus, we see that, in practice,
frequentists do indeed use observed values of xk in predicting unknown values so that they
effectively treat the elements of x as dependent notwithstanding their model assumptions to the
contrary.

This result may seem incongruous. Since independence means that conditioning on observed
values does not affect the probability measure for unobserved values, how can the frequentist
legitimately use the former in predicting the latter? The answer appears to be that the frequentist
does accept unconditional independence but is nonetheless forced to use only an estimate of the
predictive density. This means that the estimated behaviour (including the obvious dependence
between observable values) is indeed inaccurate, but this is only natural given the limited data.
Indeed, if the estimator θ̂ is strongly consistent, then limk→∞ p̂(x |xk) = p(x |θ = θT) almost
surely so that, as we obtain perfect information, our predictive density becomes less and less
dependent upon the idiosyncrasies of the observed data.

We have seen that both Bayesians and frequentists use observed data in their predictions
of unobserved data. Bayesians do so by virtue of an explicit assertion of dependence (usually
positive correlation) between these values. Frequentists assert that the vales are independent but
that they use these values in practice to estimate the unknown densities involved. Essentially,
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Bayesians treat the observable values as dependent de jure, whereas frequentists treat these
values as dependent de facto.

This may seem like a trivial difference. In either case, observed values are used to make
predictions regarding unobserved values. However, in addition to avoiding any apparent
incongruity between model assumptions and results, the explicit treatment of observable values
as dependent under the Bayesian paradigm allows Bayesians to quantify the degree to which
observed values affect predictions of unobserved values.

Example 2. Suppose that x is exchangeable with elements having range {0, 1}. It follows from
Theorem 1 and the strong law of large numbers that

p(xk |θ ) = θn(xk )(1 − θ)k−n(xk ),

where n(xk) ≡ ∑k
i=1 xi and θ ≡ θ(x) ≡ limk→∞ n(xk)/k. It can easily be shown that μ(θ) = θ

and σ 2(θ) = θ(1 − θ), so that we have

Corr(xi , x j ) = Var(θ)

Var(θ) + E(θ(1 − θ ))
= E(θ2) − E(θ)2

E(θ) − E(θ)2
.

So, if our prior beliefs are such that θ ∼ Be(α, β), then it can easily be shown that
Corr(xi , x j ) = 1/(1 + α + β). This gives us an explicit expression for the correlation between
our observable values, and demonstrates that the correlation can potentially be quite high (if
α + β is low).

Frequentists are left in a most unsatisfactory position. They simultaneously assert the
independence of observable values while using them to make predictions of one another. If
pressed about this pseudo-correlation, they must explain that this is merely a practical measure
to approximate the unknown predictive density. However, when asked about the degree to which
this practical measure causes observed values to affect the predictions, they are unable to give a
satisfactory answer.

5 Constants Versus Random Parameters: Bayes’ Effect

Aside from the fact that Bayesians are able to make explicit assertions of positive correlation
between observations, there is another difference that often arises between the Bayesian and
frequentist paradigms. In dealing with parameters that we believe a priori are probably close
to a particular value, Bayesians are able to accommodate this belief in the form of a prior
measure concentrated narrowly around this value. However, since frequentists view parameters
as constants, they are unable to accommodate such information in any probabilistic sense.
Instead they are left with a choice: discard the information and treat the parameter as an
unknown constant as normal, or use the information to treat the parameter as a known constant
or a constant that is known to fall within some narrow range. In practice, where this prior
information is strong, frequentists are often inclined to take the parameter value as known and
ignore the uncertainty. This is the case in many gambling examples where frequentists generally
assume that the gambling device in question is fair (that is, that the long-run proportions of
various outcomes are equal) and is not subject to any possible imperfections that may cause bias.

We have seen from Theorems 1 and 2 that, for any exchangeable sequence, treating
the associated empirical distribution as a random variable rather than a constant induces
some dependence (usually positive correlation) between the observable values. We call this
phenomenon Bayes’ effect since it follows from the Bayesian practice of treating the parameters
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as random variables. Moreover, unlike the case where the frequentist uses an unknown constant,
the positive correlation induced by treating the parameters as random variables is not merely an
explicit substitute for pseudo-correlation – it is a substitute for genuine independence.

Bayes’ effect explains why Bayesians are more inclined to view observable values as
informative of one another. In gambling examples, frequentists regard outcomes as independent
and generally take the long-run proportions of various outcomes as equal – without the possibility
of bias – so that, even in practice, no information on future outcomes is gained from past
outcomes. Bayesians on the other hand, are able to accommodate slight uncertainty in these
values by the use of an appropriately concentrated prior measure.

6 A Simple Example Involving Bias in Coin Tossing

There is both theoretical and empirical evidence that suggests that flipping a coin and catching
it (so that it does not bounce) results in a random process that is close to “fair”, in the sense that
the long-run proportions of heads and tails will be close to equal. Using a theoretical analysis
based on an idealized physical model, Keller (1986) finds that this occurs so long as either the
initial vertical velocity or the initial angular momentum for the coin flip is sufficiently high to
ensure a large number of revolutions of the coin before it lands (see Theorem 1 of Keller, 1986
for a more precise statement of this result). Keller includes gravity in his model (or else the coin
would not land) but ignores air resistance or any other form of friction which would diminish
the vertical velocity or angular momentum of the coin during the flip.

In empirical experiments where the number of revolutions of the coin is of course finite,
Diaconis et al. (2007) find a small bias for coin flipping based on the side that begins the flip
facing up. Gelman & Nolan (2002) also analyse empirical trials of coin flipping and find that
even weighting of the coins does not result in any significant bias. However, they also find that
large biases can occur due to weighting when a coin is spun instead of flipped or when a coin is
flipped onto a hard surface so that it is able to bounce.

Both Bayesians and frequentists are able to test claims of bias through empirical trials using
hypothesis testing (Bayesian and frequentist hypothesis testing, respectively). Indeed, when the
Belgian Euro coin was minted, there were claims that the weighting of the coin was such that it
was biased, and this was initially tested using a classical hypothesis test with a small amount of
data (see MacKensie, 2002).

Example 3. Statisticians Tomasz Gliszczynski and Waclaw Zawadowski conducted repeated
trials spinning the Belgian Euro coin to test for bias – in 250 trials they obtained 140 heads and
only 110 tails (see MacKensie, 2002). Suppose that x is the sequence of outcomes of spins of a
single Belgian Euro coin, where

xi =
{

1 if the i-th spin is a head

0 if the i-th spin is a tail
.

Let n(xk) ≡ ∑k
i=1 xi be the number of heads in the first k coin spins and let θ ≡ θ(x) ≡

limk→∞ n(xk)/k be the long-run proportion of heads in the sequence. If x is exchangeable, then
we have n(xk) ∼ Bi(k, θ). Suppose that, on the basis of our experience with other coins and
our knowledge of the mechanics of coin spinning, we believe a priori that the coin is likely to
be close to unbiased, but we are not certain that it is completely unbiased. With 140 heads out
of 250 spins, it is unlikely that we would be convinced of the existence of bias on the basis of
a classical hypothesis test, since this data yields a p-value of 0.0664, which is not particularly
small. However, it is also difficult to see why this result should lead us to reject the possibility of

International Statistical Review (2009), 77, 2, 241–250
C© 2008 The Author. Journal compilation C© 2008 International Statistical Institute



248 B. O’NEILL

bias in contradiction to our prior belief. Moreover, we would be unlikely to accept the maximum
likelihood estimate θ̂MLE = 140/250 = 0.56 as a sensible estimate of the long-run proportion
of heads, because our prior beliefs suggest that such a large bias is implausible.

By treating the unknown parameter as a constant, the frequentist is left in a bit of a quandary
in attempting to predict the results of future coin spins, since he cannot properly incorporate
prior beliefs about that parameter into the analysis. In practice, unless a hypothesis test reveals
statistically significant evidence of bias, many frequentists would simply ignore their uncertainty
and assume that the coin is unbiased, whereas under the Bayesian paradigm we could instead
incorporate our initial uncertainty into our analysis by using a prior density that is narrowly
concentrated around our prior expectation.

Example 4. Continuing Example 3, suppose that the frequentist ignores any uncertainty about
θ and assumes that θ = θT = 1/2, whereas the Bayesian models his prior uncertainty using the
symmetrical beta prior density:

p(θ) = p(θ |δ) ∝ [θ(1 − θ )](1−12δ2)/8δ2

for some known 0 < δ < 1/2, so that E(θ) = 1/2, Var(θ) = δ2 and Corr(xi , x j ) = 4δ2 for all
i �= j. The frequentist regards and treats the coin tosses as independent, whereas the Bayesian
regards and treats the coin tosses as positively correlated. The frequentist determines that the
probability that the next toss is heads is:

pF ≡ p(xk+1 = 1|n(xk), θ= 1/2) = 1/2,

whereas the Bayesian determines that this probability is:

pB ≡ p(xk+1 = 1|n(xk), δ) = 1/2 + 4δ2(n(xk) − 1/2)

1 + 4δ2(k − 1)
.

Suppose that the Bayesian is sufficiently sceptical of bias in coin spinning that he takes δ =
0.01. Then, pF = 0.5 and pB = 0.5054565, so that the frequentist will regard heads and tails as
equally likely whereas the Bayesian will regard the next toss as being slightly more likely to be
heads than tails, because this is the outcome that has occurred the most frequently.

The principle of predicting the outcome that occurs the most frequently in exchangeable
sequences is not contingent on the specific model form used in these examples. Indeed, O’Neill
& Puza (2005) show that this result occurs for any symmetrical prior belief, regardless of
its particular form. They therefore advocate that, for processes like coin tossing – which are
designed to produce independent and uniformly distributed outcomes but which may be subject
to imperfections leading to bias – ignorance as to the direction of the bias should lead us to
predict the outcome that has occurred the most.

These examples demonstrate Bayes’ effect in action. By allowing for uncertainty in the
underlying parameters in situations where the frequentist is willing to ignore this uncertainty,
the Bayesian judges observable values from an exchangeable sequence to be positively correlated
with one another, such that he uses past observations to predict future outcomes, in full awareness
of their correlation.
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Résumé

Nous examinons la différence entre les statistiques Bayesiennes et fréquentistes dans des propositions sur la relation
entre valeurs observées. Nous démontrons comment les modèles normaux dans les deux cas peuvent être basés sur
la supposition d’échangeabilité, et nous obtenons quelques résultats utiles sur la covariance et la corrélation pour des
valeurs dans une suite échangeable. Ces valeurs ne sont jamais corrélées négativement, et sont en général corrélées
positivement dans les modèles Bayesiens. Nous discutons la signification de ce résultat, ainsi que celui du phénomène
qui s’ensuit lorsqu’on emploie ces deux méthodologies, un phénomène que nous appelons l’effet de Bayes.

Appendix

Definition 2. It is tempting to define Fx = limk→∞ Fk , so that Fx is the Cesàro limit of the
indicator functions I(x1 ≤ t), I(x2 ≤ t), . . . , which is given by

Cx(t) ≡ lim
k→∞

1

k

k∑
i=1

I (xk ≤ t) for all t ∈ R.

Unfortunately, this limit does not exist for all possible values of x. Instead, we can define Fx:
R → [0,1] as any Banach limit that extends the Cesàro limit Cx which can be shown to exist for
all possible values of x. Detailed discussion of the Banach limit and the Hahn–Banach theorem
is beyond the scope of this paper, but can be found in most texts on functional analysis including
Morisson (2000).

Proof of Theorem 1 (Representation Theorem). For brevity, we give only a heuristic proof
based on Chow & Teicher (1988) and adapted from Bernardo & Smith (1994), pp. 177–179.
A similar outline proof can be found in Galambos (1982). A more rigorous treatment can be
found in Fortini et al. (2000). Since x is exchangeable, it follows that the indicators I(x1 ≤ t),
I(x2 ≤ t), . . . must also be exchangeable. It then follows that for all k ∈ N and m ∈ N we have

E[(Fk(t) − Fk+m(t))2] = m

k + m

1

k
[P(x1 ≤ t) − P(x1 ≤ t, x2 ≤ t)] ≤ 1

k
for all t ∈ R.

This implies that the sequence F1, F2, F3, . . . is a Cauchy sequence which converges in
probability to some random function. But since Fx = Cx = limk→∞ Fk wherever the latter
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exists, it follows that F1, F2, F3, . . . converges to Fx and therefore also converges in probability
to Fx. It then follows that for all k ∈ N and m ∈ N, we have∫ k∏

i=1

Fx(xi )d P(Fx) = lim
m→∞

∫ k∏
i=1

Fk+m(xi )d P(Fk+m).

Let Iα(xk) ≡ I (xα1 ≤ x1, . . . , xαk ≤ xk) and letNk,m ≡ {α ∈ N
k
k+m : (∀i �= j) : αi �= α j }. For

all k ∈ N and m ∈ N, we have
k∏

j=1

Fk+m(x j ) =
(

1

k + m

)k k∏
j=1

k+m∑
i=1

I (xi ≤ x j ) =
(

1

k + m

)k ∑
α∈N

k
k+m

Iα(xk) = B(m) + B∗(m)

(k + m)k
,

where B(m) ≡ ∑
α∈N

k
k+m−Nk,m

Iα(xk) and B∗(m) ≡ ∑
α∈Nk,m

Iα(xk). We have

B (m) ≤ card
(
N

k
k+m − Nk,m

) = (k + m)k

⎛
⎝1 −

k∏
j=1

(
m + j

m + k

)⎞
⎠ ,

so that limm→∞ B(m)/(k + m)k = 0. Now, since x is exchangeable, we also have∫
Iα(xk)d P(Fk+m) = F(xk) for all α ∈ Nk,m, so that∫

B∗ (m) d P (Fk+m)

(k + m)k
= F(xk)

k∏
j=1

(
m + j

m + k

)
.

Using these results, we then have∫ k∏
i=1

Fx(xi )d P (Fx) = lim
m→∞

∫ k∏
i=1

Fk+m(xi )d P (Fk+m)

= lim
m→∞

∫
B (m) + B∗ (m)

(k + m)k
d P (Fk+m)

= F(xk) lim
m→∞

k∏
j=1

(
m + j

m + k

)
= F(xk).

This demonstrates that the elements of x|Fx are independent with sampling distribution Fx

which was to be shown.
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