Multiple linear regression

Jean-Michel Marin

University of Montpellier Faculty of Sciences

HAX912X - 2024/2025

Jean-Michel Marin (FdS)

Generalized linear models

HAX912X - September 2024 1/12

Homoscedastic models

- Hypotheses
- Estimations of β and σ^2
- Geometric properties

3 > 4 3

Homoscedastic models

Data

- n individuals : i = 1,..., n
- $y_i \in \mathbb{R}$ variable to explain (response)
- ▶ $\mathbf{x}_i = (x_{i1}, ..., x_{ip}) \in \mathbb{R}^p$ values of p explanatory variables including the constant term constant $x_{i1} = 1, \forall i = 1, ..., n$

Matrix notation

$$\mathbf{y} = (y_1, \dots, y_n) \quad ; \quad \mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} 1 & x_{12} & \dots & x_{1p} \\ 1 & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n2} & \dots & x_{np} \end{bmatrix}$$

A (1) > A (2) > A (2) >

Homoscedastic models

The multiple linear regression model is such that

 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}$

 $\beta=(\beta_1,\ldots,\beta_p)$ is an unknown parameter $u=(u_1,\ldots,u_n)$ vector of residuals

We can write, $\forall i = 1, ..., n$

$$y_i = \beta_1 + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} + u_i$$

 y_i is a random variable for which we have a realization x_i is a fixed vector

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Homoscedastic models Hypotheses

- the constant regressor is present in all models
- n > p more observations than variables
- X^TX invertible, the rank of X is equal to p, the model is identifiable
- $\mathbb{E}[\mathbf{u}] = \mathbf{0}_n$ residuals are centered
- $\mathbb{E}[\mathbf{u}\mathbf{u}^T] = \mathbb{V}(\mathbf{u}) = \sigma^2 I_n$ residuals are decorrelated and have the same variance σ^2

4 3 5 4 3 5 5

Homoscedastic models Estimations of β and σ^2

Ordinary least squares (OLS) estimator of β

$$\begin{split} \hat{\boldsymbol{\beta}} \in & \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^{p}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^{2} \left(= \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^{p}} \sum_{i=1}^{n} \left(\boldsymbol{y}_{i} - \boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}\right)^{2} \right) \\ & \hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathsf{T}}\boldsymbol{y} \end{split}$$

Unbiased estimator of σ^2

$$\hat{\sigma}^2 = \frac{\|\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}}\|^2}{n-p} = \frac{RSS}{n-p}$$

Estimator of the standard error of $\hat{\beta}_j \left[\hat{\sigma}(\hat{\beta}_j) = \right]$

$$(\hat{\boldsymbol{\beta}}_{j}) = \sqrt{\hat{\sigma}^{2} \left(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X}\right)_{(j,j)}^{-1}}$$

Homoscedastic models Geometric properties

 χ vector subspace of \mathbb{R}^n generated by the columns of X $H = X (X^T X)^{-1} X^T$ orthogonal projector on χ $K = I_n - H$ projector on χ^{\perp}

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{eta}} = \mathbf{X}\left(\mathbf{X}^{\mathsf{T}}\mathbf{X}
ight)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathsf{H}\mathbf{y}$$

 $\hat{\mathbf{y}}$ orthogonal projection of \mathbf{y} on χ

$$\hat{\mathbf{u}} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \mathbf{H}\mathbf{y} = (\mathbf{I}_n - \mathbf{H})\mathbf{y} = \mathbf{K}\mathbf{y}$$

 $\hat{\mathbf{u}}$ orthogonal projection of \mathbf{y} on χ^{\perp}

$$\hat{y} \perp \hat{u}$$

イロト イポト イラト イラト

Homoscedastic models Geometric properties

According to the Pythagorean theorem

$$\|\mathbf{y} - \bar{\mathbf{y}}\mathbf{1}_{n}\|^{2} = \|\mathbf{y} - \hat{\mathbf{y}}\|^{2} + \|\hat{\mathbf{y}} - \bar{\mathbf{y}}\mathbf{1}_{n}\|^{2}$$
$$\boxed{\mathsf{TSS} = \mathsf{RSS} + \mathsf{ESS}}$$

Coefficient of determination

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

A B F A B F

< 6 b

$$y = X\beta + u$$

n > p, X of full rank, identifiable model $\mathbb{E}(u) = 0_n$ $\mathbb{V}(u) = \mathbb{E}\left[uu^T\right] = \sigma^2 \Omega$ and $\Omega \neq I_n$ $\mathbb{C}(u_i, u_j) = \sigma^2 \Omega_{ij}$ heteroccedasticity and error correlation

< 回 > < 回 > < 回 >

It is assumed that Ω is known Let R be such that $\Omega^{-1} = R^T R$ Set $\mathbf{y}^* = R\mathbf{y}$, $\mathbf{X}^* = R\mathbf{X}$ and $\mathbf{u}^* = R\mathbf{u}$.

$$\begin{split} \mathbf{y}^* &= \mathsf{R}\mathbf{y} = \mathsf{R}(\mathbf{X}\boldsymbol{\beta} + \mathbf{u}) = \mathsf{R}\mathbf{X}\boldsymbol{\beta} + \mathsf{R}\mathbf{u} = \mathbf{X}^*\boldsymbol{\beta} + \mathbf{u}^*\\ \mathbb{E}(\mathbf{u}^*) &= \mathbf{0}_n \quad ; \quad \mathbb{V}(\mathbf{u}^*) = \mathsf{R}\mathbb{V}(\mathbf{u})\mathsf{R}^\mathsf{T} = \sigma^2 \mathrm{I}_n \end{split}$$

We have decorrelated the residuals and returned to the case of classical linear regression (homoscedastic)

- A TE N - A TE N

We can calculate the Ordinary Least Squares (OLS) estimator for the homoscedastic model

$$\mathbf{y}^* = \mathbf{X}^* \boldsymbol{\beta} + \mathbf{u}^*$$

$$\hat{\boldsymbol{\beta}} \in \text{arg}\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \|\boldsymbol{y}^* - \boldsymbol{X}^*\boldsymbol{\beta}\|^2$$

$$\hat{\boldsymbol{\beta}} = \left((\boldsymbol{X}^*)^{\mathsf{T}} \boldsymbol{X}^* \right)^{-1} (\boldsymbol{X}^*)^{\mathsf{T}} \boldsymbol{y}^* = \left(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{\Omega}^{-1} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{\Omega}^{-1} \boldsymbol{y}$$

This is the Generalized Least Squares (GLS) estimator of β

Jean-Michel Marin (FdS)

< ロ > < 同 > < 回 > < 回 >

It's difficult to estimate Ω without additional constraints. Ω of particular parametric forms

General estimation method

If we have an estimator $\hat{\Omega}(\beta)$ of $\Omega,$ we can iterate until stabilization. we can iterate to stabilize

estimate β with

$$\hat{\boldsymbol{\beta}}^{(t)} = \left(\boldsymbol{X}^{\mathsf{T}}\left[\hat{\boldsymbol{\Omega}}\left(\hat{\boldsymbol{\beta}}^{(t-1)}\right)\right]^{-1}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\mathsf{T}}\left[\hat{\boldsymbol{\Omega}}\left(\hat{\boldsymbol{\beta}}^{(t-1)}\right)\right]^{-1}\boldsymbol{y}$$

estimate Ω with

 $\hat{\Omega}\left(\boldsymbol{\hat{\beta}}^{(t)} \right)$

- A TE N - A TE N