Multiple linear regression

Jean-Michel Marin

University of Montpellier
Faculty of Sciences
HAX912X - 2023/2024
(1) Homoscedastic models

- Hypotheses
- Estimations of β and σ^{2}
- Geometric properties
(2) Heteroscedastic models

Homoscedastic models

Data

- n individuals : $\mathfrak{i}=1, \ldots, n$
- $y_{i} \in \mathbb{R}$ variable to explain (response)
$\Rightarrow \mathbf{x}_{i}=\left(x_{i 1}, \ldots, x_{i p}\right) \in \mathbb{R}^{p}$ values of p explanatory variables including the constant term constant $x_{i 1}=1, \forall i=1, \ldots, n$

Matrix notation

$$
\mathbf{y}=\left(y_{1}, \ldots, \mathbf{y}_{n}\right) \quad ; \quad \mathbf{X}=\left[\begin{array}{c}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
1 & x_{12} & \ldots & x_{1 p} \\
1 & x_{22} & \ldots & x_{2 p} \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{n 2} & \ldots & x_{n p}
\end{array}\right]
$$

Homoscedastic models

The multiple linear regression model is such that

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}
$$

$\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$ is an unknown parameter
$\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ vector of residuals
We can write, $\forall i=1, \ldots, n$

$$
y_{i}=\beta_{1}+\beta_{2} x_{i 2}+\ldots+\beta_{p} x_{i p}+u_{i}
$$

y_{i} is a random variable for which we have a realization \mathbf{x}_{i} is a fixed vector

Homoscedastic models Hypotheses

- the constant regressor is present in all models
- $n>p$ more observations than variables
- $\mathbf{X}^{\top} \mathbf{X}$ invertible, the rank of X is equal to p, the model is identifiable
- $\mathbb{E}[\mathbf{u}]=0_{\mathrm{n}}$ residuals are centered
- $\mathbb{E}\left[\mathbf{u u}^{\top}\right]=\mathbb{V}(\mathbf{u})=\sigma^{2} I_{n}$ residuals are decorrelated and have the same variance σ^{2}

Homoscedastic models
 Estimations of β and σ^{2}

Ordinary least squares (OLS) estimator of β

$$
\begin{gathered}
\hat{\beta} \in \arg \min _{\beta \in \mathbb{R}^{p}}\|\mathbf{y}-\mathbf{X} \beta\|^{2}\left(=\arg \min _{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{\top} \boldsymbol{\beta}\right)^{2}\right) \\
\hat{\beta}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
\end{gathered}
$$

Unbiased estimator of σ^{2}

$$
\hat{\sigma}^{2}=\frac{\|\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2}}{n-p}=\frac{R S S}{n-p}
$$

Estimator of the standard error of $\hat{\beta}_{j} \quad \hat{\sigma}\left(\hat{\beta}_{j}\right)=\sqrt{\hat{\sigma}^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{(j, j)}^{-1}}$

Homoscedastic models

Geometric properties

χ vector subspace of \mathbb{R}^{n} generated by the columns of \boldsymbol{X}
$\mathrm{H}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}$ orthogonal projector on χ
$K=I_{n}-H$ projector on χ^{\perp}

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}=\mathbf{H} \mathbf{y}
$$

$\hat{\mathbf{y}}$ orthogonal projection of y on x

$$
\hat{\mathbf{u}}=\mathbf{y}-\hat{\mathbf{y}}=\mathbf{y}-\mathrm{H} \mathbf{y}=\left(\mathrm{I}_{\mathrm{n}}-\mathrm{H}\right) \mathbf{y}=\mathrm{K} \mathbf{y}
$$

$\hat{\mathbf{u}}$ orthogonal projection of \mathbf{y} on χ^{\perp}

$$
\hat{\mathbf{y}} \perp \hat{\mathbf{u}}
$$

Homoscedastic models Geometric properties

According to the Pythagorean theorem

$$
\begin{gathered}
\left\|\mathbf{y}-\overline{\mathbf{y}} \mathbf{1}_{\mathrm{n}}\right\|^{2}=\|\mathbf{y}-\hat{\mathbf{y}}\|^{2}+\left\|\hat{\mathbf{y}}-\overline{\mathbf{y}} 1_{\mathrm{n}}\right\|^{2} \\
\mathrm{TSS}=\mathrm{RSS}+\mathrm{ESS}
\end{gathered}
$$

Coefficient of determination

$$
\mathrm{R}^{2}=\frac{\mathrm{ESS}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}
$$

Heteroscedastic models

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{u}
$$

$\mathrm{n}>\mathrm{p}, \mathrm{X}$ of full rank, identifiable model
$\mathbb{E}(\mathbf{u})=0_{\mathrm{n}}$
$\mathbb{V}(\mathbf{u})=\mathbb{E}\left[\mathbf{u} \mathbf{u}^{\mathrm{T}}\right]=\sigma^{2} \Omega$ and $\Omega \neq \mathrm{I}_{\mathrm{n}}$
$\mathbb{C}\left(u_{i}, u_{j}\right)=\sigma^{2} \Omega_{i j}$ heteroccedasticity and error correlation

Heteroscedastic models

It is assumed that Ω is known
Let R be such that $\Omega^{-1}=R^{\top} R$
Set $\mathbf{y}^{*}=\mathrm{Ry}, \mathbf{X}^{*}=\mathrm{RX}$ and $\mathbf{u}^{*}=\mathrm{Ru}$.

$$
\begin{gathered}
\mathbf{y}^{*}=\mathrm{R} \mathbf{y}=\mathrm{R}(\mathbf{X} \boldsymbol{\beta}+\mathbf{u})=\mathrm{R} \mathbf{X} \boldsymbol{\beta}+\mathrm{R} \mathbf{u}=\mathbf{X}^{*} \boldsymbol{\beta}+\mathbf{u}^{*} \\
\mathbb{E}\left(\mathbf{u}^{*}\right)=0_{\mathrm{n}} \quad ; \quad \mathbb{V}\left(\mathbf{u}^{*}\right)=\mathrm{R} \mathbb{V}(\mathbf{u}) \mathrm{R}^{\top}=\sigma^{2} \mathrm{I}_{\mathrm{n}}
\end{gathered}
$$

We have decorrelated the residuals and returned to the case of classical classical linear regression (homoscedastic)

Heteroscedastic models

We can calculate the Ordinary Least Squares (OLS) estimator for the homoscedastic model

$$
\mathbf{y}^{*}=\mathbf{X}^{*} \boldsymbol{\beta}+\mathbf{u}^{*}
$$

$$
\hat{\boldsymbol{\beta}}^{*} \in \arg \min _{\boldsymbol{\beta} \in \mathbb{R}^{p}}\left\|\mathbf{y}^{*}-\mathbf{X}^{*} \boldsymbol{\beta}\right\|^{2}
$$

$$
\hat{\boldsymbol{\beta}}^{*}=\left(\left(\mathbf{X}^{*}\right)^{\top} \mathbf{X}^{*}\right)^{-1}\left(\mathbf{X}^{*}\right)^{\top} \mathbf{y}^{*}=\left(\mathbf{X}^{\top} \Omega^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \Omega^{-1} \mathbf{y}
$$

This is the Generalized Least Squares (GLS) estimator of β.

Heteroscedastic models

It's difficult to estimate Ω without additional constraints. Ω of particular parametric forms

General estimation method
If we have an estimator $\hat{\Omega}(\beta)$ of Ω, we can iterate until stabilization. we can iterate to stabilize

- estimate β with

$$
\hat{\boldsymbol{\beta}}^{(\mathrm{t})}=\left(\mathbf{X}^{\top}\left[\hat{\Omega}\left(\hat{\boldsymbol{\beta}}^{(\mathrm{t}-1)}\right)\right]^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}\left[\hat{\Omega}\left(\hat{\boldsymbol{\beta}}^{(\mathrm{t}-1)}\right)\right]^{-1} \mathbf{y}
$$

- estimate Ω with

$$
\hat{\Omega}\left(\hat{\beta}^{(t)}\right)
$$

