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Homoscedastic models

Data

▶ n individuals : i = 1, . . . ,n

▶ yi ∈ R variable to explain (response)

▶ xi =
(
xi1, . . . , xip

)
∈ Rp values of p explanatory variables

including the constant term constant xi1 = 1,∀i = 1, . . . ,n

Matrix notation

y = (y1, . . . ,yn) ; X =


x1
x2
...

xn

 =


1 x12 . . . x1p
1 x22 . . . x2p
...

...
...

...
1 xn2 . . . xnp


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Homoscedastic models

The multiple linear regression model is such that

y = Xβ+ u

β = (β1, . . . ,βp) is an unknown parameter
u = (u1, . . . ,un) vector of residuals

We can write, ∀i = 1, . . . ,n

yi = β1 + β2xi2 + . . . + βpxip + ui

yi is a random variable for which we have a realization
xi is a fixed vector
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Homoscedastic models
Hypotheses

▶ the constant regressor is present in all models
▶ n > p more observations than variables
▶ XTX invertible, the rank of X is equal to p, the model is

identifiable
▶ E[u] = 0n residuals are centered
▶ E[uuT ] = V(u) = σ2In residuals are decorrelated and

have the same variance σ2
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Homoscedastic models
Estimations of β and σ2

Ordinary least squares (OLS) estimator of β

β̂ ∈ arg min
β∈Rp

||y − Xβ||2
(
= arg min

β∈Rp

n∑
i=1

(
yi − xTi β

)2
)

β̂ =
(
XTX

)−1
XTy

Unbiased estimator of σ2

σ̂2 =
||y − Xβ̂||2

n− p
=

RSS

n− p

Estimator of the standard error of β̂j σ̂(β̂j) =
√
σ̂2 (XTX)−1

(j,j)
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Homoscedastic models
Geometric properties

χ vector subspace of Rn generated by the columns of X
H = X

(
XTX

)−1 XT orthogonal projector on χ

K = In −H projector on χ⊥

ŷ = Xβ̂ = X
(
XTX

)−1
XTy = Hy

ŷ orthogonal projection of y on χ

û = y − ŷ = y −Hy = (In −H)y = Ky

û orthogonal projection of y on χ⊥

ŷ ⊥ û
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Homoscedastic models
Geometric properties

According to the Pythagorean theorem

||y − ȳ1n||
2 = ||y − ŷ||2 + ||ŷ − ȳ1n||

2

TSS = RSS+ ESS

Coefficient of determination

R2 =
ESS

TSS
= 1 −

RSS

TSS
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Heteroscedastic models

y = Xβ+ u

n > p, X of full rank, identifiable model

E(u) = 0n

V(u) = E
[
uuT

]
= σ2Ω and Ω , In

C(ui,uj) = σ2Ωij heteroccedasticity and error correlation
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Heteroscedastic models

It is assumed that Ω is known

Let R be such that Ω−1 = RTR

Set y∗ = Ry, X∗ = RX and u∗ = Ru.

y∗ = Ry = R(Xβ+ u) = RXβ+ Ru = X∗β+ u∗

E(u∗) = 0n ; V(u∗) = RV(u)RT = σ2In

We have decorrelated the residuals and returned to the case of
classical linear regression (homoscedastic)
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Heteroscedastic models

We can calculate the Ordinary Least Squares (OLS) estimator
for the homoscedastic model

y∗ = X∗β+ u∗

β̂ ∈ arg min
β∈Rp

||y∗ − X∗β||2

β̂ =
(
(X∗)TX∗)−1

(X∗)Ty∗ =
(
XTΩ−1X

)−1
XTΩ−1y

This is the Generalized Least Squares (GLS) estimator of β
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Heteroscedastic models

It’s difficult to estimate Ω without additional constraints. Ω of
particular parametric forms

General estimation method

If we have an estimator Ω̂(β) of Ω, we can iterate until stabiliza-
tion. we can iterate to stabilize

▶ estimate β with

β̂
(t)

=

(
XT
[
Ω̂
(
β̂
(t−1)

)]−1
X
)−1

XT
[
Ω̂
(
β̂
(t−1)

)]−1
y

▶ estimate Ω with
Ω̂
(
β̂(t)

)
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