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Homoscedastic models

Data

» nindividuals:i=1,...,n

» y; € R variable to explain (response)

> xi = (xi1,...,Xip) € RP values of p explanatory variables
including the constant term constant x;y =1,vVi=1,...,n

Matrix notation

y=(Y1,.--,Yn)
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Homoscedastic models

The multiple linear regression model is such that

B =(B1,...,Bp) is an unknown parameter
u = (uq,...,uy) vector of residuals
We can write, Vi=1,...,n

Yi = B1 + PBaxia + ...+ Bpxip + Wi

yi is a random variable for which we have a realization
x; is a fixed vector
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Homoscedastic models
Hypotheses

> the constant regressor is present in all models
» m > p more observations than variables

» XX invertible, the rank of X is equal to p, the model is
identifiable

» [Elu] = 0,, residuals are centered

» E[uu'] = V(u) = 0?1, residuals are decorrelated and
have the same variance o2
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Homoscedastic models
Estimations of 3 and o2

Ordinary least squares (OLS) estimator of 3

A . B 2 B . e o T 2
B € arg min [ly — XB| (— arg Brglﬂgp;(yl x{ B) )

B=(X"X)"

1

XTy

Unbiased estimator of 02

— XBl”2
w2 ly—XB|

_ RSS

n—p

e

Estimator of the standard error of 3; | 5(3;)
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Homoscedastic models

Geometric properties
x vector subspace of R™ generated by the columns of X
H=X (XTX)*1 XT orthogonal projector on x
K = I, — H projector on x*

1

y=XB=X(X'X) X'y=Hy

y orthogonal projection of y on x

G=y-y=y—Hy= (I, —H)y=Ky

@ orthogonal projection of y on x*

v L
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Homoscedastic models
Geometric properties

According to the Pythagorean theorem

ly = y1nll? = lly — 917 + Iy — y1nlP

| TSS = RSS + ESS|

Coefficient of determination

ESS RSS

2_ B>, Koo
R_TSS ! TSS
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Heteroscedastic models

n > p, X of full rank, identifiable model
E(u) =0,
V(u) =E [uuT] =02Qand Q # I,

C(ui,u5) = 02Qy; heteroccedasticity and error correlation
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Heteroscedastic models

It is assumed that Q is known
Let R be such that Q' = RTR
Sety* = Ry, X* = RX and u* = Ru.

y" =Ry =R(XB +u) = RXB +Ru =X"B +u*
E(u*) =0, ; V(u*)=RV(uR' =%,

We have decorrelated the residuals and returned to the case of
classical classical linear regression (homoscedastic)
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Heteroscedastic models

We can calculate the Ordinary Least Squares (OLS) estimator
for the homoscedastic model

3" c arg min [ly* — X*B|2
B" < arg uin Iy — X6

B* _ ((X*)TX*)f‘I (X*)Ty* _ (XTQ71X)71 XTQ71y

This is the Generalized Least Squares (GLS) estimator of 3.
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Heteroscedastic models

It's difficult to estimate Q without additional constraints. Q of
particular parametric forms

General estimation method

If we have an estimator Q() of Q, we can iterate until stabiliza-
tion. we can iterate to stabilize

> estimate 3 with

Y — <XT [Q (3&—1))}—1 x)

> estimate Q with

Jean-Michel Marin (FdS) Generalized linear models HAX912X 12/12



	Homoscedastic models
	Hypotheses
	Estimations of bold0mu mumu  and 2
	Geometric properties

	Heteroscedastic models

