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Projet 4 Bayesian inference for a log-linear model

A standard approach to the analysis of associations (or dependencies) between categorical
variables (that is, variables that take a finite number of values) is to use log-linear models.
These models are special cases of generalized linear models connected to the Poisson
distribution, and their name stems from the fact that they have traditionally been based
on the logarithmic link function.
In such models, a sufficient statistic is the contingency table, which is a multiple-entry
table made up of the cross-classified counts for the different categorical variables.
The airquality dataset was obtained from the New York State Department of Conser-
vation (ozone data) and from the American National Weather Service (meteorological
data).
This dataset involves two repeated measurements over 111 consecutive days, namely the
mean ozone u (in parts per billion) from 1 pm to 3 pm at Roosevelt Island, the maximum
daily temperature v (in degrees F) at La Guardia Airport, and, in addition, the month w
(coded from 5 for May to 9 for September). If we discretize the measurements u and v into
dichotomous variables (using the empirical median as the cutting point), we obtain the
following three-way contingency table of counts per combination of the three (discretized)
factors:

month 5 6 7 8 9

ozone temp

[1,31] [57,79] 17 4 2 5 18

(79,97] 0 2 3 3 2

(31,168] [57,79] 6 1 0 3 1

(79,97] 1 2 21 12 8

This contingency table thus has 5 × 2 × 2 = 20 entries deduced from the number of
categories of the three factors, among which some are zero because the corresponding
combination of the three factors has not been observed in the study.



Each term in the table being an integer, it can then in principle be modeled as a Poisson
variable. If we denote the counts by y = (y1, . . . , yn), where i = 1, . . . , n is an arbitrary
way of indexing the cells of the table, we can thus assume that yi ∼ P(µi). Obviously,
the likelihood

`(µ|y) =
n∏
i=1

1

yi!
µyii exp(−µi) ,

where µ = (µ1, . . . , µn), shows that the model is saturated, namely that no structure can
be exhibited because there are as many parameters as there are observations. To exhibit
any structure, we need to constrain the µi’s and do so via a GLM whose covariate matrix
X is directly derived from the contingency table itself.
When we express the mean parameters µi of a log-linear model as

log(µi) = xT
i β ,

the covariate vector xi is indeed quite special in that it is made up only of indicators. The
so-called incidence matrix X with rows equal to the xi’s is thus such that its elements are
all zeros or ones. Given a contingency table, the choice of indicator variables to include
in xi can vary, depending on what is deemed (or found) to be an important relation
between some categorical variables. For instance, suppose that there are three categorical
variables, u, v, and w as in airquality, and that u takes I values, v takes J values, and w
takes K values. If we only include the indicators for the values of the three categorical
variables in X, we have

log(µτ ) =
I∑
b=1

βub Ib(uτ ) +
J∑
b=1

βvb Ib(vτ ) +
K∑
b=1

βwb Ib(wτ ) ;

that is, (1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ k ≤ K),

log(µl(i,j,k)) = βui + βvj + βwk

(1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ k ≤ K), where l(i, j, k) corresponds to the index of the
(i, j, k) entry in the table, namely the case when u = i, v = j, and w = k. Similarly, the
saturated log-linear model corresponds to the use of one indicator per entry of the table;
that is,

log(µl(i,j,k)) = βuvwijk

(1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ k ≤ K).
For comparison reasons that will very soon be apparent, and by analogy with analysis of
variance (ANOVA) conventions, we can also over-parameterize this representation as

log(µl(i,j,k)) = λ+ λui + λvj + λwk + λuvij + λuwik + λvwjk + λuvwijk , (1)

where λ appears as the overall or reference average effect, λui appears as the marginal
discrepancy (against the reference effect λ) when u = i, λuvij as the interaction discrepancy
(against the added effects λ+ λui + λvj ) when (u, v) = (i, j), etc.



Using the representation (1) is quite convenient because it allows a straightforward pa-
rameterization of the nonsaturated models, which then appear as submodels of (1) where
some groups of parameters are null. For example,

(i) if both categorical variables v and w are irrelevant, then

log(µl(i,j,k)) = λ+ λui ;

(ii) if all three categorical variables are mutually independent, then

log(µl(i,j,k)) = λ+ λui + λvj + λwk ;

(iii) if u and v are associated but are both independent of w, then

log(µl(i,j,k)) = λ+ λui + λvj + λwk + λuvij ;

(iv) if u and v are conditionally independent given w, then

log(µl(i,j,k)) = λ+ λui + λvj + λwk + λuwik + λvwjk ; and

(v) if there is no three-factor interaction, then

log(µl(i,j,k)) = λ+ λui + λvj + λwk + λuvij + λuwik + λvwjk ,

which appears as the most complete submodel (or as the global model if the satu-
rated model is not considered at all).

As stressed above, the representation (1) is not identifiable. Although the following
is not strictly necessary from a Bayesian point of view (since the Bayesian approach
can handle nonidentifiable settings and still estimate properly identifiable quantities), it
is customary to impose identifiability constraints on the parameters as in the ANOVA
model. A common convention is to set to zero the parameters corresponding to the
first category of each variable, which is equivalent to removing the indicator (or dummy
variable) of the first category for each variable (or group of variables). For instance, for
a 2 × 2 contingency table with two variables u and v, both having two categories, say 1
and 2, the constraint could be

λu1 = λv1 = λuv11 = λuv12 = λuv21 = 0 .

For notational convenience, we assume below that β is the vector of the parameters once
the identifiability constraint has been applied and that X is the indicator matrix with the
corresponding columns removed.
The choice of a prior distribution for log-linear models is open to debate, a good choice
is the following prior distribution

β|X ∼ N
(
0p, n(XTX)−1

)
where X is an n× p matrix.



1 Give the density of the posterior distribution up to its normalizing contants. This
is a non-standard density. This is our target density.

2 We consider the most general nonsaturated model, case (v). How many parameters
does this model contain? Create the matrix X and the associated vector y with the
following correspondances between the columns of X and the levels of the factors.

X1: intercept

X2: ozo2

X3: temp2

X4: mon2

X5: mon3

X6: mon4

X7: mon5

X8: ozo2:temp2

X9: ozo2:mon2

X10: ozo2:mon3

X11: ozo2:mon4

X12: ozo2:mon5

X13: temp2:mon2

X14: temp2:mon3

X15: temp2:mon4

X16: temp2:mon5

3 Use an Hastings-Metropolis algorithm based on a multivariate Gaussian random
walk to get some realizations coming approximately from the target posterior dis-
tribution.

As starting value, one can use the maximum likelihood estimation β̂ of β and as scale
matrix the estimated covariance matrix Σ̂ of the maximum likelihood estimator.

mod <- summary(glm(y~-1+X,family=poisson()))

provides β̂ in mod$coeff[,1] and Σ̂ in mod$cov.unscaled.

4 Compare the maximum likelihood and the bayesian estimates of β.


