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Recalls on the standard Monte Carlo method

General definition use of randomness to solve a problem cen-
tered on a calculation

There is no consensus to give a more precise definition

Methods that have been used for centuries: traces as far away
as in Babylon and the Old Testament!
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Recalls on the standard Monte Carlo method

[1733, Buffon’s Needle] give an approximate value to π

Throw a l long needle on a floor of parallel slats that create d
widths with l 6 d

If the needle is thrown uniformly on the ground (to be specified!),
the probability that it intersects with one of the joins between the

slats is
2l
πd

If you make several independent rolls and you note p the pro-
portion of tests that hit one of the straight lines forming the sep-

arations between the slats, π can be estimated by
2l
pd
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Recalls on the standard Monte Carlo method

[World War II, Los Alamos: Ulam, Metropolis and von Neu-
mann] preparation of the first atomic bomb

The Monte Carlo appellation is due to Metropolis, inspired by
Ulam’s interest in poker

Work at Los Alamos: directly simulate neutron dispersion and
absorption problems for fissile materials
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Recalls on the standard Monte Carlo method

Theorem (strong law of large numbers) Let (Xn)n∈N be an
iid sequence of random variables with probability distribution f
If Ef(|Xi|) <∞

X̄n =
1
n

n∑
i=1

Xi −→ps Ef(X1)
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Recalls on the standard Monte Carlo method

Theorem (central limit theorem) Let (Xn)n∈N be an iid se-
quence of random variables with probability distribution f
If Ef(|Xi|2) <∞

√
n

(
X̄n − Ef(X1)√
Vf(X1)

)
−→L N(0, 1)
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Recalls on the standard Monte Carlo method

Target

Ef(h(X)) =

∫
h(x)f(x)dµ(x) <∞

(f is the density of X with respect to µ)

Standard Monte Carlo estimator of Ef(h(X))

1
n

n∑
i=1

h(Xi)

where X1, . . . ,Xn is an iid sample from f
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Recalls on the standard Monte Carlo method

1
n

n∑
i=1

h(Xi) −→ps Ef(h(X))

Ef⊗n

(
1
n

n∑
i=1

h(Xi)

)
= Ef(h(X))
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Recalls on the standard Monte Carlo method

Vf⊗n

[
1
n

n∑
i=1

h(Xi)

]
=

1
n
Vf(h(X))

1
n

 1
n− 1

n∑
i=1

h(Xi) − 1
n

n∑
j=1

h(Xj)

2


is an unbiased estimator of Vf(h(X))
/
n
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Recalls on the standard Monte Carlo method

If Ef(|h(X)|2) <∞
√
n
( 1
n

∑n
i=1 h(Xi) − Ef(h(X))

)√
Vf(h(X))

−→L N(0, 1)
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Recalls on the standard Monte Carlo method

Convergence speed for various quadrature rules and for the
Monte Carlo method in s dimension and using n points

I Trapezoidal rule: n−2/s

I Simpson rule: n−4/s

I Gauss rule with m points: n−(2m−1)/s

I Monte-Carlo method: n−1/2
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Reminders and Additions on Markov Chains

Definition
A Markov chain is a random process (Xk)k∈N such that

P(Xk ∈ A|X0 = x0, . . . ,Xk−1 = xk−1) =

P(Xk ∈ A|Xk−1 = xk−1)

The Markov chain is homogenous if P(Xk ∈ A|Xk−1 = x) does
not depend on k

Jean-Michel Marin (IMAG) MCMC HMMA401 13 / 36



Reminders and Additions on Markov Chains

Example: random walk

(Xk)k∈N such that
X0 ∼ ν

and
Xk = Xk−1 + εk, ∀k ∈N∗

where ε1, . . . is a random process with iid variables and proba-
bility distribution L
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Reminders and Additions on Markov Chains

Definition A (transition) kernel on (Ω, A ) is an application P :
(Ω, A ) −→ [0, 1] such that

1) ∀A ∈ A , P(·,A) is measurable
2) ∀x ∈ Ω, P(x, ·) is a probability distribution on (Ω, A )

(Xk)k∈N is an homogenous Markov chain with kernel P if

P(Xk ∈ A|Xk−1 = x) = P(x,A), ∀x ∈ Ω, ∀A ∈ A .
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Reminders and Additions on Markov Chains

For the random walk if L = N(0,σ2), (Xk)k∈N is an homoge-
nous Markov chain with kernel

P(x,A) =
∫
A

1√
2πσ2

exp
(
−

1
2σ2 (y− x)2

)
dy
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Reminders and Additions on Markov Chains

Let (Xk)k∈N be an homogenous Markov chain with kernel P and
initial distribution X0 ∼ ν, we note

I Pν the distribution of the chain (Xk)k∈N
I νPk the distribution of Xk : ∀A ∈ A ,

νPk(A) = P(Xk ∈ A)

I Pk(x,A) = P(Xk ∈ A|X0 = x)
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Reminders and Additions on Markov Chains

Let Π be a probability distribution on (Ω, A )

We can simulate Π in an approximate way using a homogeneous
Markov chain

To do this, one must be able to build a P kernel such that for any
initial ν, νPk −→VT Π

Total variation convergence

||νPk − π||VT = sup
A∈A

|νPk(A) − π(A)|

Typically
lim

k−→∞νPk(A) = π(A)
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Reminders and Additions on Markov Chains

Definition
I P is Π-irreducible if ∀x ∈ Ω and ∀A ∈ A such that
Π(A) > 0, ∃k(= k(x,A) tel que Pk(x,A) > 0

I P is Π-invariant iff ΠP = Π

ΠP(A) =

∫
Π(dx0)P(x0,A) =

∫
A

Π(dx)

I P is Π-reversible iff ∀A,B ∈ A ,∫
A

P(x,B)Π(dx) =
∫
B

P(x,A)Π(dx)
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Reminders and Additions on Markov Chains

If P est Π-reversible then P is Π-invariant

Indeed if P is Π-reversible, ∀B ∈ A ,∫
Ω

P(x,B)Π(dx) =
∫
B

P(x,Ω)Π(dx) =

∫
B

Π(dx)
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Reminders and Additions on Markov Chains

Definition

I P is periodic with period d > 2 if there exists a partition
Ω1, . . . ,Ωd de Ω such that ∀x ∈ Ωi, P(x,Ωi+1) = 1, ∀i
with the convention d+ 1 = 1

I A chain Π-irreducible and Π-invariant is recurrent
if ∀A ∈ A such that π(A) > 0

1) ∀x ∈ Ω, P(Xk ∈ A infinitely often|X0 = x) > 0
2) ∃x ∈ Ω, P(Xk ∈ A infinitely often|X0 = x) = 1

I The chain is Harris-recurrent is 2) is verified for all x ∈ Ω

I The chain is ergodic if it is Harris-recurrent and aperiodic
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Convergence of Markov chains

If P is Π-irreducible and Π-invariant then P is recurrent

In that case, the invariant measure is unique (up to a multiplica-
tive constant)

The chain is said to be positive recurrent if the invariant measure
is a probability distribution
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Convergence of Markov chains

Theorem Suppose that P is Π-irreducible and Π-invariant, then
P is positive recurrent and Π is the unique invariant distribution
of P. If P is Harris-recurrent and aperiodic (ergodic) then

νPk −→VT Π

The Harris-recurrence condition is difficult to obtain

It is satisfied for two main families of simulators: the Gibbs sam-
pler and the Metropolis-Hastings algorithm
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Convergence of Markov chains

Theorem If the Markov chain (Xk)k∈N is ergodic with stationary
distribution Π and if h is a real function such thatEΠ(|h(X)|) <∞,
then, whatever the initial distribution ν,

1
n

n∑
i=1

h(Xi) −→ps EΠ(h(X))

Convergence speed?
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Convergence of Markov chains

Definition The Markov chain (Xk)k∈N with kernel P is said to be
uniformly ergodic if there is M > 0 and 0 < r < 1 such that

sup
x∈Ω

sup
A∈A

|Pn(x,A) − Π(A)| 6Mrn

Theorem If the Markov chain (Xk)k∈N is uniformly ergodic with
stationary distribution Π and if h such that EΠ(|h(X)|) <∞ then,
whatever the initial distribution ν, there is σ(h) > 0 such that

√
n

(
1
n

n∑
i=1

h(Xi) − EΠ(h(X))

)
−→L N(0, (σ(h))2)

Jean-Michel Marin (IMAG) MCMC HMMA401 25 / 36



The Metropolis-Hastings algorithm

Target distribution

Π(dx) = π(x)µ(dx)

Kernel Q for x such that π(x) > 0

Q(x,dy) = q(x,y)µ(dy)
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The Metropolis-Hastings algorithm

Choose x(0) such that π
(
x(0)

)
> 0 and set t = 1

(∗) Generate x̃ ∼ Q(x(t−1), ·)
If π(x̃) = 0 then set x(t) = x(t−1), t = t+1 and return to (∗)
If π(x̃) > 0 calculate

ρ(x(t−1), x̃) =
π(x̃)

/
q(x(t−1), x̃)

π(x(t−1))
/
q(x̃, x(t−1))

Generate u ∼ U ([0, 1])
If u 6 ρ(x(t−1), x̃) then x(t) = x̃ else x(t) = x(t−1)

set t = t+ 1 and return to (∗)
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The Metropolis-Hastings algorithm

Starting from x (π(x) > 0), the acceptance probability of y
(π(y) > 0) is given by

α(x,y) = min

[
1,
π(y)

/
q(x,y)

π(x)
/
q(y, x)

]

Whatever the value of x such as π(x) > 0, the kernel associated
with the Metropolis-Hastings algorithm is given by

K(x,dy) = q(x,y)µ(dy)α(x,y)+
[
1 −

∫
q(x, z)α(x, z)µ(dz)

]
δx(dy)

where δx(·) is the Dirac mass at point x

Jean-Michel Marin (IMAG) MCMC HMMA401 28 / 36



The Metropolis-Hastings algorithm

We can easily show that K is Π-reversible

Indeed

Π(dx)K(x,dy) = min [π(y)q(y, x),π(x)q(x,y)]µ(dy)µ(dx)

+

{
π(x)µ(dx) −

∫
min [π(z)q(z, x),π(x)q(x, z)]µ(dz)

}
δx(dy)

and

Π(dy)K(y,dx) = min [π(x)q(x,y),π(y)q(y, x)]µ(dx)µ(dy)

+

{
π(y)µ(dy) −

∫
min [π(x)q(x, z),π(z)q(z, x)]µ(dz)

}
δy(dx)
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The Metropolis-Hastings algorithm

Theorem If the kernel Q is π-irreducible, the Markov chain
generated with the Metropolis-Hastings algorithm is π-irreducible,
π-invariant, Harris-recurrent and aperiodic

Two particular cases

I Q is a random walk kernel: q(x,y) = qRW(x− y) and
qRW(x) = qRW(−x)

I Q is an independent kernel: q(x,y) = q(y)
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The Gibbs sampler

Goal: generate simulations from multivariate distributions

Let X = (X1,X2, . . . ,Xd) with probability distribution Π

Note Πi the conditional distribution of Xi given
X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xd) = x−i

Πi is called the full conditional distribution of Xi
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The Gibbs sampler

Systematic scan Gibbs sampler

Choose x(0) and set t = 1
(∗) Generate x(t)1 ∼ Π1(·|x

(t−1)
2 , . . . , x(t−1)

d )

Generate x(t)2 ∼ Π2(·|x
(t)
1 , x(t−1)

3 , . . . , x(t−1)
d )

Generate x(t)3 ∼ Π3(·|x
(t)
1 , x(t)2 , x(t−1)

4 . . . , x(t−1)
d )

. . .
Generate x(t)d ∼ Πd(·|x

(t)
1 , . . . , x(t)d−1)

Set t = t+ 1 and return to (∗)
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The Gibbs sampler

Gibbs sampling iteratively selects a single variable and resam-
ples it from its conditional distribution, given the other variables
in the model.

The method that selects the variable index to sample is called
the scan order.
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The Gibbs sampler

Two scan orders are commonly used: random scan and system-
atic scan

I In systematic scan, a fixed permutation is selected, and
the variables are repeatedly selected in that order
(previous algorithm)

I In random scan, the variable to sample is selected
uniformly and independently at random at each iteration

Theorem The Markov chain generated using the Gibbs sampler
with systematic or random scans is Π-irreducible, Π-invariant,
Harris-recurrent and aperiodic
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The Gibbs sampler

The existence of these two distinct options raises an obvious
question which scan order produces accurate samples more
quickly?

This question has two components: hardware efficiency how
long does each iteration take? and statistical efficiency how
many iterations are needed to produce an accurate sample?

From the hardware efficiency perspective, systematic scans are
clearly superior As a result, systematic scans are commonly
used in practice

Statistical efficiency is measured by the mixing time, which is the
number of iterations needed to obtain an accurate sample
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The Gibbs sampler

The implementation of Gibbs sampler requires the availability of
full conditional distributions of all the parameters of interest of a
problem

For some problems, however, the full conditional distributions of
all the parameters of interest are not available

In such cases, Metropolis-Hastings method can be incorporated
within a Gibbs sampler to draw samples from the parameters
whose full conditional pdf cannot be analytically determined

Metropolis-Hastings-within Gibbs algorithm
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