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The Bayesian paradigm

Bayes theorem = Inversion of probabilities

If A and B are events such that P(B) , 0,

P(A|B) =
P(A ∩ B)
P(B)

=
P(B|A)P(A)

P(B)
=

P(B|A)P(A)

P(A)P(B|A) + P(Ā)P(B|Ā)
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The Bayesian paradigm

Subjectivism

Frank Plumpton Ramsey (1903-1930)

Bruno de Finetti (1906-1985)

Leonard Jimmie Savage (1921-1971)
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The Bayesian paradigm

Given an iid sample Dn = (x1, . . . , xn) from a density f(x|θ),
depending upon an unknown parameter θ ∈ Θ, the associated
likelihood function is

`(θ|Dn) =
n∏
i=1

f(xi|θ)
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The Bayesian paradigm

When Dn is a normal N (µ,σ2) sample of size n and θ = (µ,σ2),
we get

`(θ|Dn) =
n∏
i=1

exp{−(xi − µ)
2/2σ2}/

√
2πσ

∝ exp

{
−
∑
i=1

(xi − µ)
2/2σ2

}
/σn

∝ exp

{
−

(
nµ2 − 2nx̄µ+

∑
i=1

x2
i

)/
2σ2

}
/σn

∝ exp
{
−
[
n(µ− x̄)2 + s2] /2σ2} /σn,

x̄ denotes the empirical mean and s2 =
∑n
i=1(xi − x̄)

2
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The Bayesian paradigm

In the Bayesian approach θ is considered as a random vari-
able

In some sense, the likelihood function is transformed into a pos-
terior distribution, which is a valid probability distribution on Θ

π(θ|Dn) =
`(θ|Dn)π(θ)∫
`(θ|Dn)π(θ) dθ

π(θ) is called the prior distribution and it has to be chosen to
start the analysis
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The Bayesian paradigm

The posterior density is a probability density on the parameter,
which does not mean the parameter θ need be a genuine ran-
dom variable

This density is used as an inferential tool, not as a truthful
representation
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The Bayesian paradigm

Two motivations:

I the prior distribution summarizes the prior information on θ.
However, the choice of π(θ) is often decided on practical
grounds rather than strong subjective beliefs

I the Bayesian approach provides a fully probabilistic
framework for the inferential analysis, with respect to a
reference measure π(θ)
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The Bayesian paradigm

Suppose Dn is a normal N (µ,σ2) sample of size n

When σ2 is known, if µ ∼ N
(
0,σ2

)
, then

π(µ|Dn) ∝ π(µ) `(θ|Dn)
∝ exp{−µ2/2σ2} exp

{
−n(x̄− µ)2/2σ2}

∝ exp
{
−(n+ 1)µ2/2σ2 + 2nµx̄/2σ2}

∝ exp
{
−(n+ 1)[µ− nx̄/(n+ 1)]2/2σ2}

µ|Dn ∼ N
(
nx̄/(n+ 1),σ2/(n+ 1)

)
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The Bayesian paradigm

When σ2 is unknown, θ = (µ,σ2), if µ|σ2 ∼ N
(
0,σ2

)
and σ2 ∼

I G (1, 1), then π((µ,σ2)|Dn) ∝ π(σ2)× π(µ|σ2)× f(Dn|µ,σ2)

∝ (σ−2)1/2+2 exp
{
−(µ2 + 2)/2σ2} 1σ2>0

(σ−2)n/2 exp
{
−
(
n(µ− x)2 + s2) /2σ2}

µ|Dn,σ2 ∼ N

(
nx̄

n+ 1
,
σ2

n+ 1

)

σ2|Dn ∼ I G

({
1 +

n

2

}
,
{

1 +
s2

2
+

nx̄

2(n+ 1)

})
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The Bayesian paradigm

Variability in σ2 induces more variability in µ, the marginal pos-
terior in µ being then a Student’s t distribution

µ|Dn ∼ T

(
n+ 2,

nx̄

n+ 1
,
2 + s2 + (nx̄)/(n+ 1)

(n+ 1)(n+ 2)

)
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Bayesian estimates

For a given loss function L
(
θ, θ̂(Dn)

)
, we deduce a Bayesian

estimate by minimizing the posterior expected loss:

Eπθ|Dn
(
L
(
θ, θ̂(Dn)

))

To minimize the posterior expected loss is equivalent to
minimize the Bayes risk, the frequentist risk integrated over
the prior distribution
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Bayesian estimates

For instance, for the L2 loss function, the corresponding Bayes
optimum is the expected value of θ under the posterior distribu-
tion,

θ̂(Dn) =

∫
θπ(θ|Dn) dθ =

∫
θ `(θ|Dn)π(θ) dθ∫
`(θ|Dn)π(θ) dθ
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Bayesian estimates

When no specific penalty criterion is available, the posterior ex-
pectation is often used as a default estimator, although alterna-
tives are also available. For instance, the maximum a posteriori
estimator (MAP) is defined as

θ̂(Dn) ∈ argmaxθ π(θ|Dn)

Similarity of with the maximum likelihood estimator: the in-
fluence of the prior distribution π(θ) on the estimate pro-
gressively disappears as the number of observations n in-
creases
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Conjugate prior

The selection of the prior distribution is an important issue in
Bayesian statistics

When prior information is available about the data or the model,
it can be used in building the prior

In many situations, however, the selection of the prior distribution
is quite delicate

Since the choice of the prior distribution has a considerable
influence on the resulting inference, this inferential step
must be conducted with the utmost care
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Conjugate prior

Conjugate priors are such that the prior and posterior den-
sities belong to the same parametric family

An advantage when using a conjugate prior, is that one has to
select only a few parameters to determine the prior distribution

But the information known a priori may be either insufficient or
incompatible with the structure imposed by conjugacy
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Conjugate prior

Justifications
I Device of virtual past observations
I First approximations to adequate priors, backed up by

robustness analysis
I But mostly... tractability and simplicity
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Conjugate prior
Formation de statistique bayésienne 29 septembre 2015

f(x|✓) ⇡(✓) ⇡(✓|x)

Normal Normal

N (✓, �2) N (µ, ⌧2) N (⇢(�2µ + ⌧2x), ⇢�2⌧2)

⇢�1 = �2 + ⌧2

Poisson Gamma

P(✓) G(↵, �) G(↵ + x, � + 1)

Gamma Gamma

G(⌫, ✓) G(↵, �) G(↵ + ⌫, � + x)

Binomial Beta

B(n, ✓) Be(↵, �) Be(↵ + x, � + n � x)

Institut de l’élevage page 20/61Jean-Michel Marin (IMAG) Bayesian inference HMMA401 19 / 28



Conjugate priorFormation de statistique bayésienne 29 septembre 2015

f(x|✓) ⇡(✓) ⇡(✓|x)

Negative Binomial Beta

N eg(m, ✓) Be(↵, �) Be(↵ + m,� + x)

Multinomial Dirichlet

Mk(✓1, . . . , ✓k) D(↵1, . . . , ↵k) D(↵1 + x1, . . . , ↵k + xk)

Normal Gamma

N (µ, 1/✓) Ga(↵, �) G(↵ + 0.5, � + (µ � x)2/2)

Institut de l’élevage page 21/61
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Noninformative prior

Conjugate priors are nice to work with, but require hyperparam-
eters’s determination

One can opt for a completely different perspective and rely on
so-called noninformative priors that aim at attenuating the im-
pact of the prior on the resulting inference

These priors are fundamentally defined as coherent extensions
of the uniform distribution
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Noninformative prior

For unbounded parameter spaces, the densities of noninforma-
tive priors actually may fail to integrate to a finite number and
they are defined instead as positive measures

Generalized Bayesian estimators with improper
prior distributions
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Noninformative prior

Location models x|θ ∼ f(x − θ) are usually associated with flat
priors π(θ) ∝ 1

Scale models x|θ ∼ 1
θ f
(
x
θ

)
are usually associated with the log-

transform of a flat prior, that is, π(θ) ∝ 1/θ× 1θ>0
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Jeffreys prior

In a more general setting, the noninformative prior favored by
most Bayesians is the so-called Jeffreys prior which is related
to the Fisher information matrix

IFx(θ) = −E

(
∂2 log f(x|θ)

(∂θ)2

)
by

πJ(θ) ∝
√
|IFx(θ)]× 1θ∈Θ ,

where |I| denotes the determinant of the matrix I
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Jeffreys prior

Suppose Dn is a normal N (µ,σ2) sample of size n and θ =
(µ,σ2)

The Fisher information matrix leads to the Jeffreys prior

πJ(µ,σ2) ∝ 1/{
(
σ2)}3/21σ2>0

µ|σ2, Dn ∼ N
(
x̄,σ2/n

)
σ2|Dn ∼ I G

(
n/2, s2/2

)
µ|Dn ∼ T

(
n, x̄, s2/n

)
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Bayesian Credible Intervals

Since the Bayesian approach processes θ as a random variable,
a natural definition of a confidence region on θ is to determine
C(Dn) such that

π(θ ∈ C(Dn)|Dn) = 1 − α

where α is a predetermined level

The integration is done over the parameter space, rather
than over the observation space

The quantity 1 − α thus corresponds to the probability that a
random θ belongs to this set C(Dn), rather than to the probability
that the random set contains the true value of θ
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Bayesian Credible Intervals

Given this drift in the interpretation of a confidence set is called
a credible set by Bayesians.

A standard credible set corresponds to the values of θ with the
highest posterior values,

C(Dn) = {θ; π(θ|Dn) > kα}

where kα is determined by the coverage constraint

This region is called the Highest Posterior Density (HPD) re-
gion
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Bayesian Credible Intervals

Once again, suppose Dn is a normal N (µ,σ2) sample of size
n and θ = (µ,σ2)

µ|σ2, Dn ∼ N
(
x̄,σ2/n

)
σ2|Dn ∼ I G

(
n/2, s2/2

)
µ|Dn ∼ T

(
n, x̄, s2/n

)

Therefore, the credible interval of probability 1 − α on µ is

[x̄− t1−α/2,n

√
s2/n, x̄+ t1−α/2,n

√
s2/n]
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