

Licence 2 - 2020/2021

HLMA304: Arithmétique

Thierry Mignon Octobre 2020

Contrôle continu

Durée : 1h30 - Documents, calculatrices et téléphones interdits

Exercice 1. Cours. Soit (a, b) un couple d'entiers ; énoncer et démontrer le résultat d'existence et d'unicité de la division euclidienne de a par b.

Exercice 2. Prouver que, pour tout entier relatif m, la fraction

$$\frac{21m+4}{14m+3}$$

est irréductible.

Exercice 3. Soit P = (x, y) un point du plan \mathbb{R}^2 . On dira que P est entier si l'abscisse x et l'ordonnée y de P sont tous deux dans \mathbb{Z} .

(1) Trouver l'ensemble des points entiers de la droite :

$$345x + 714y - 6 = 0$$

(2) Soit D une droite d'équation :

$$ax + by + c = 0$$
, où $(a, b, c) \in \mathbb{Z}^3$.

Montrer que D contient soit aucun, soit une infinité de points entiers. Donner des exemples de chacune des deux situations.

Exercice 4. Trouver tous les couples $(a, b) \in \mathbb{N}^2$ tels que $a \wedge b = 30$ et $a \vee b = 600$.

Exercice 5. On rappelle que la valuation 2-adique d'un nombre entier n est le plus grand entier naturel k tel que 2^k divise n. Dit autrement, c'est l'exposant du nombre premier 2 dans la décomposition en facteurs premiers de n. On la note $v_2(n)$.

- (1) Calculer les valuations 2-adiques de 5+1, 5^2+1 . Calculer ensuite celles de 5-1, 5^2-1 .
- (2) Montrer que, quelque soit k dans \mathbb{N}^* , $5^k + 1$ n'est pas divisible par 4. En déduire $v_2(5^k + 1)$ pour $k \in \mathbb{N}^*$.
- (3) Calculer, par récurrence sur $n \in \mathbb{N}$, la valuation 2-adique de $5^{(2^n)} 1$.