

Licence 2 - 2020/2021

HLMA304: Arithmétique

Thierry Mignon Octobre 2020

Correction du contrôle continu

Durée: 1h30 - Documents, calculatrices et téléphones interdits

Exercice 1. Cours. Soit (a, b) un couple d'entiers ; énoncer et démontrer le résultat d'existence et d'unicité de la division euclidienne de a par b.

Correction : cf. cours.

Exercice 2. Prouver que, pour tout entier relatif m, la fraction

$$\frac{21m+4}{14m+3}$$

est irréductible.

CORRECTION : Il s'agit de prouver que, pour tout entier relatif m, 21m + 4 et 14m + 3 sont premiers entre eux.

Soit $m \in \mathbb{Z}$. On a vu en cours que, si a, b, c, d sont quatre entiers tels que a = bc + d, alors $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(b, d)$. On constate, par exemple en effectuant la division euclidienne polynomiale du polynôme en m "21m + 4" par le polynôme en m "14m + 3", que :

$$(21m+4) = 1.(14m+3) + (7m+1),$$

donc pgcd(21m + 4, 14m + 3) = pgcd(14m + 3, 7m + 1). On observe ensuite que :

$$(14m+3) = 2.(7m+1) + (1),$$

donc pgcd(14m + 3, 7m + 1) = pgcd(7m + 1, 1) = 1.

Exercice 3. Soit P = (x, y) un point du plan \mathbb{R}^2 . On dira que P est entier si l'abscisse x et l'ordonnée y de P sont tous deux dans \mathbb{Z} .

(1) Trouver l'ensemble des points entiers de la droite :

$$345x + 714y - 6 = 0$$

CORRECTION: Calculons d'abord pgcd(345,714) à l'aide de l'algorithme d'Euclide:

$$714 = 2 \times 345 + 24$$
, $345 = 14 \times 24 + 9$, $24 = 2 \times 9 + 6$, $9 = 1 \times 6 + 3$, $6 = 2 \times 3 + 0$

donc $714 \land 345 = 3$. Puisque 3 divise le second membre de l'équation, on sait qu'elle possède une infinité de solutions. Elle est de plus équivalente à l'équation obtenue en divisant tout par 3 :

$$115x + 238y = 2$$
 (*)

Cherchons une solution particulière de (\star) en calculant des coefficients de Bezout pour 115 et 238. On utilise pour cela l'algorithme d'Euclide augmenté :

$$238 = 2 \times 115 + 8$$
, $115 = 14 \times 8 + 3$, $8 = 2 \times 3 + 2$, $3 = 1 \times 2 + 1$

puis, en remontant les équations :

$$1 = 3 - 2 = 3 - (8 - 2 \times 3) = -8 + 3 \times 3 = -8 + 3 \times (115 - 14 \times 8)$$
$$= 3 \times 115 - 43 \times 8 = 3 \times 115 - 43 \times (238 - 2 \times 115) = 89 \times 115 - 43 \times 238$$

En multipliant cette égalité par 2 on obtient :

$$115 \times 178 + 238 \times (-86) = 2$$

Le couple $(x_0, y_0) = (178, -86)$ est donc une solution particulière de l'équation (\star) . Soit maintenant $(x, y) \in \mathbb{Z}^2$ une solution quelconque. La différence des deux égalité : 115x + 238y = 2 et $115x_0 + 238y_0 = 2$ nous donne : $115(x - x_0) = -238(y - y_0)$, et l'entier 115 divise $-238(y - y_0)$. D'après le lemme de Gauss, applicable ici puisque $115 \land 238 = 1$, 115 divise $(y - y_0)$ et il existe $k \in \mathbb{Z}$ tel que $y = y_0 + 115k$. En remplaçant $(y - y_0)$ par 115k dans l'égalité ci-dessus on obtient ensuite : $x = x_0 - 238k$. On vérifie aisément que tous les couples $(x_0 - 238k, y_0 + 115k)$ sont bien des solutions.

L'ensemble des solutions est donc :

$$\{(178 - 238k, -86 + 115k), k \in \mathbb{Z}\}\$$

(2) Soit D une droite d'équation :

$$ax + by + c = 0$$
, où $(a, b, c) \in \mathbb{Z}^3$.

Montrer que D contient soit aucun, soit une infinité de points entiers. Donner des exemples de chacune des deux situations.

CORRECTION: Supposons que l'équation possède au moins une solution (x_0, y_0) , on constate que tous les couples $(x_0 - kb, y_0 + ka)$, où $k \in \mathbb{Z}$, sont aussi des solutions. Il y a donc une infinité de solutions.

Montrons que ces deux cas (ensemble de solution vide et ensemble de solutions infini) sont possibles : $Exemple \ 1 : 2x + 2y = 1$. Le terme de gauche est toujours pair et ne peut valoir 1. Plus généralement, dès que $a \wedge b$ ne divise pas c, il n'y a pas de solution.

Exemple 2 : x+y=0. Tous les couples (k,-k) sont solutions. Plus généralement, dès que $a \wedge b$ divise c, il y a une infinité de solutions.

Exercice 4. Trouver tous les couples $(a, b) \in \mathbb{N}^2$ tels que $a \land b = 30$ et $a \lor b = 600$.

CORRECTION : Écrivons a=30a', b=30b' où $a',b'\in\mathbb{Z}$. On sait que $a'\wedge b'=1$. Le produit du pgcd et du ppcm vaut ab et l'on a :

$$a \lor b \times a \land b = ab \iff 30.600 = ab = 30a'.30b' \iff 20 = a'b'$$

Il nous suffit donc de trouver tous les couples $(a',b') \in \mathbb{N}^2$ tels que $a' \wedge b' = 1$ et a'b' = 20. On procède en listant les diviseurs de 20:

- Si a' = 1, b' = 20, on obtient la solution (a, b) = (30, 600).
- Si a' = 2, b' = 10, impossible car ils ne sont pas premiers entre eux.
- Si a' = 4, b' = 5, on obtient la solution (a, b) = (120, 150).
- Si a' = 5, b' = 4, on obtient la solution (a, b) = (150, 120).
- Si a' = 10, b' = 2, impossible car ils ne sont pas premiers entre eux.
- Si a' = 20, b' = 1, on obtient la solution (a, b) = (600, 30).

L'ensemble des solution est donc : $\{(30,600), (120,150), (150,120), (600,30)\}.$

Exercice 5. On rappelle que la valuation 2-adique d'un nombre entier n est le plus grand entier naturel k tel que 2^k divise n. Dit autrement, c'est l'exposant du nombre premier 2 dans la décomposition en facteurs premiers de n. On la note $v_2(n)$.

(1) Calculer les valuations 2-adiques de $5+1,\,5^2+1.$ Calculer ensuite celles de $5-1,\,5^2-1.$

CORRECTION:

- $5 + 1 = 6 = 2^1 \cdot 3^1$, donc $v_2(5+1) = 1$.
- $5^2 + 1 = 26 = 2^1 \cdot 13^1$, donc $v_2(5^2 + 1) = 1$.
- $5-1=4=2^2$, donc $v_2(5-1)=2$.
- $5^2 1 = 24 = 2^3 \cdot 3$, donc $v_2(5^2 1) = 3$.

(2) Montrer que, quelque soit k dans \mathbb{N}^* , $5^k + 1$ n'est pas divisible par 4. En déduire $v_2(5^k + 1)$ pour $k \in \mathbb{N}^*$.

CORRECTION: On sait que $5 \equiv 1[4]$, donc $5^k \equiv 1[4]$ et $5^k + 1 \equiv 2[4]$ n'est pas congru à 0 modulo 4. (On pouvait aussi procéder par récurrence, un peu comme dans la question suivante.) Puisque $k \geq 1$, $5^k + 1$ est pair. Donc $2|(5^k + 1)$ mais $2^2 \not|(5^k + 1)$. Ceci montre que $v_2(5^k + 1) = 1$.

(3) Calculer, par récurrence sur $n \in \mathbb{N}$, la valuation 2-adique de $5^{(2^n)} - 1$.

CORRECTION : Les exemples de la question (1) nous amènent à poser pour tout entier $n \in \mathbb{N}$ l'hypothèse de récurrence

$$H_n: v_2(5^{2^n}-1)=n+2$$

Si n = 0 ou n = 1, H_n est vrai d'après la question (1).

Supposons H_n vraie. Montrons H_{n+1} .

On observe que :

$$5^{2^{n+1}} + 1 = (5^{2^n})^2 - 1 = (5^{2^n} - 1)(5^{2^n} + 1).$$

D'après la question précédente $v_2(5^{2^n}+1)=1$. D'après l'hypothèse de récurrence $v_2(5^{2^n}-1)=n+2$. Les exposants de 2 s'additionnent dans les produits des décompositions en facteurs premiers, donc $v_2(5^{2^{n+1}}-1)=(n+2)+1=n+3$.