
Chapter 2
Log-Linear Models

2.1 Introduction

This chapter gives an account of graphical models for multivariate discrete data.
Such data are usually summarized as contingency tables, and Sect. 2.2 describes
some general utilities useful when working with such tables. Section 2.3 introduces
the theory of log-linear models, illustrating this using dModel objects from the
gRim package. Section 2.5.1 shows how log-linear models can be fit using the glm
function, and Sect. 2.5.2 describes some aspects of working with dModel objects.
Some more advanced topics are dealt with in Sect. 2.5.

2.2 Preliminaries

2.2.1 Four Datasets

To introduce contingency table data we consider four examples. All datasets used
here are in gRbase. The first is shown in Table 2.1. These data originate from
Schoener (1968) and are discussed in numerous places, e.g. Edwards (2000) and
Whittaker (1990). In a study of lizard behaviour, characteristics of 409 lizards were
recorded, namely species (S), perch diameter (D) and perch height (H). The focus of
interest is in how the propensities of the lizards to choose perch height and diameter
are related, and whether and how these depend on species.

The second dataset we consider is a 26 contingency table concerning risk factors
for coronary heart disease. The data originated in a prospective study of coronary
heart disease carried out in Czechoslovakia (Reiniš et al. 1981). For a sample of
1841 car-workers, the following information was recorded: whether they smoked,
whether their work was strenuous mentally, whether their work was strenuous phys-
ically, whether their systolic blood pressure was less than 140 mm), whether the
ratio of beta to alpha lipoproteins was less than 3, and whether there was a family
history of coronary heart disease.

S. Højsgaard et al., Graphical Models with R, Use R!,
DOI 10.1007/978-1-4614-2299-0_2, © Springer Science+Business Media, LLC 2012

27

http://dx.doi.org/10.1007/978-1-4614-2299-0_2

28 2 Log-Linear Models

Table 2.1 Perching
behaviour of two species of
lizards

Species Perch diameter
(inches)

Perch Height (feet)

> 4.75 ≤ 4.75

Anoli ≤ 4 32 86

> 4 11 35
Distichus ≤ 4 61 73

> 4 41 70

> data(reinis)
> str(reinis)

table [1:2, 1:2, 1:2, 1:2, 1:2, 1:2] 44 40 112 67 129 145 12 23 35 12 ...
- attr(*, "dimnames")=List of 6
..$ smoke : chr [1:2] "y" "n"
..$ mental : chr [1:2] "y" "n"
..$ phys : chr [1:2] "y" "n"
..$ systol : chr [1:2] "y" "n"
..$ protein: chr [1:2] "y" "n"
..$ family : chr [1:2] "y" "n"

The third dataset is a 26 contingency table taken from genetics, and analyzed in
Edwards (2000). Two isolates of the barley powdery mildew fungus were crossed,
and for 70 progeny 6 binary characteristics (genetic markers) were recorded.

> data(mildew)
> str(mildew)

table [1:2, 1:2, 1:2, 1:2, 1:2, 1:2] 0 0 0 0 3 0 1 0 0 1 ...
- attr(*, "dimnames")=List of 6
..$ la10: chr [1:2] "1" "2"
..$ locc: chr [1:2] "1" "2"
..$ mp58: chr [1:2] "1" "2"
..$ c365: chr [1:2] "1" "2"
..$ p53a: chr [1:2] "1" "2"
..$ a367: chr [1:2] "1" "2"

The fourth dataset is a three-way table containing the results of a study comparing
four different surgical operations on patients with duodenal ulcer, carried out in four
centres, and described in Grizzle et al. (1969). The four operations were: vagotomy
and drainage, vagotomy and antrectomy (removal of 25% of gastric tissue), vago-
tomy and hemigastrectomy (removal of 50% of gastric tissue), and gastric restriction
(removal of 75% of gastric tissue). The response variable is the severity of gastric
dumping, an undesirable syndrome associated with gastric surgery.

> data(dumping)
> str(dumping)

table [1:3, 1:4, 1:4] 23 7 2 23 10 5 20 13 5 24 ...
- attr(*, "dimnames")=List of 3
..$ Symptom : chr [1:3] "none" "slight" "moderate"
..$ Operation: chr [1:4] "Vd" "Va" "Vh" "Gr"
..$ Centre : chr [1:4] "1" "2" "3" "4"

The first and second variables are ordinal.

2.2 Preliminaries 29

2.2.2 Data Formats

Multivariate discrete data are usually stored in one of three forms, here illustrated
with the lizard data.

As a Raw Case-List For example, the lizard data could be represented as 409 ob-
servations of three discrete variables: species, perch diameter and perch height. This
is typically represented in R as a dataframe, with the discrete variables represented
as factors. For example,

> data(lizardRAW)
> head(lizardRAW)

diam height species
1 >4 >4.75 dist
2 >4 >4.75 dist
3 <=4 <=4.75 anoli
4 >4 <=4.75 anoli
5 >4 <=4.75 dist
6 <=4 <=4.75 anoli

As an Aggregated Case-List Sometimes discrete data are represented in aggre-
gated case-list form (again typically represented as a data.frame in R), where one
variable (usually called Freq) stores the counts for each configuration of variables:

> data(lizardAGG)
> lizardAGG

diam height species Freq
1 <=4 >4.75 anoli 32
2 >4 >4.75 anoli 11
3 <=4 <=4.75 anoli 86
4 >4 <=4.75 anoli 35
5 <=4 >4.75 dist 61
6 >4 >4.75 dist 41
7 <=4 <=4.75 dist 73
8 >4 <=4.75 dist 70

As a Contingency Table Another aggregated representation of data is as a con-
tingency table (which in R is represented as a table or as an array):

> data(lizard)
> lizard

, , species = anoli

height
diam >4.75 <=4.75
<=4 32 86
>4 11 35

, , species = dist

height

30 2 Log-Linear Models

diam >4.75 <=4.75
<=4 61 73
>4 41 70

Note that the contingency table form is a compact representation of data when these
are dense, in the sense that the number of observations is larger than the number of
combinations of variable levels. With sparse data, for which the number of combi-
nations of variable levels exceeds the number of observations, the case list format is
more compact.

Note that coercion between the different representations can be obtained as fol-
lows:

> ##
> ## Raw case-list to aggregated case-list:
> as.table(ftable(lizardRAW))
> ##
> ## Raw case-list to table
> xtabs(~., data=lizardRAW)
> ##
> ## Aggregated case-list to table
> xtabs(Freq~., data=lizardAGG)
> ##
> ## Table to aggregated case--list
> as.data.frame(lizard)

Note also that the lizard data can be specified as a contingency table using

> counts <- c(32, 11, 86, 35, 61, 41, 73, 70)
> dimn <- list(diam=c("<=4", ">4"),
+ height=c(">4.75", "<=4.75"),
+ species=c("anoli", "dist"))
> lizard <- as.table(array(counts, dim=c(2,2,2), dimnames=dimn))

2.3 Log-Linear Models

In this section we give a brief account of the theory of log-linear models.

2.3.1 Preliminaries and Notation

Suppose that we have a dataset with N observations of d discrete random vari-
ables. For example, the lizard data had N = 409 and d = 3. We write the collection
of discrete variables as X = (Xv)v∈!, and we call the possible values a discrete
variable may take its levels. Write the number of levels of Xv as |Xv|. For nota-
tional convenience we label the levels 1, . . . , |Xv| though in practice they should be
given more meaningful labels. We can then write a generic observation (or cell) as
i = (i1, . . . , id), and the set of possible cells as I .

2.3 Log-Linear Models 31

We assume that the observations are independent and are interested in modelling
the probabilities p(i) = Pr(X = i) for i ∈ I . The joint probability of the observa-
tions represented as a case list (iν, ν = 1, . . . ,N) is then

p(iν,ν = 1, . . . ,N) =
N∏

ν=1

p(iν) =
∏

i∈I
p(i)n(i) (2.1)

where we have formed an aggregated case list or, equivalently, the contingency table
{n(i)}i∈I , where n(i) is the number of cases iν with iν = i. The joint probability of
the observed contingency table is

p({n(i)}i∈I) = N !∏
i∈I n(i)!

∏

i∈I
p(i)n(i) (2.2)

which differs from (2.1) by a multinomial coefficient which does not affect the like-
lihood as the latter is only determined up to a constant factor.

L(p) ∝
∏

i∈I
p(i)n(i). (2.3)

If we do not restrict the probabilities in any way (except requiring that they are
non-negative and sum to unity), then it is easily shown that the maximum likelihood
estimates are given by p̂(i) = n(i)/N for i ∈ I . The unrestricted model is known as
the saturated model. In most substantive contexts it is of interest to restrict the prob-
abilities further to obtain parsimony and to identify or exploit structural information,
see further in Sect. 2.3.2 below.

We need a little more notation. The expected cell counts are written m(i) =
Np(i) for i ∈ I , and the fitted values as m̂(i) = Np̂(i). We need to work with
marginal tables and to do this must first define marginal cells. Recall that ! con-
tains d variables and so a generic cell i is a d-tuple, that is i = (i1, . . . , id). For a
subset A ⊆ !, the corresponding marginal cell is written iA, and contains the in-
dices (iv, v ∈ A). The corresponding marginal counts and probabilities are written
n(iA) and p(iA). So, for example, we have that n(iA) = ∑

j∈I:jA=iA
n(j).

2.3.2 Hierarchical Log-Linear Models

Log-linear models are defined by constraining the logarithms of the probabilities
to follow ANOVA-like factorial expansions. For example, for a three-dimensional
table (such as Table 2.1) we write a generic cell as i = (j, k, l), the variables as
! = {a, b, c}, and the saturated model as

logp(i) = u + ua
j + ub

k + uc
l + uab

jk + uac
jl + ubc

kl + uabc
jkl . (2.4)

Here the u’s are unknown parameters—usually called interaction terms. To esti-
mate these uniquely we would need to constrain them further in some way, but we
do not need to bother about this now.

32 2 Log-Linear Models

The expansion (2.4) is only valid when p(i) > 0. We obtain higher generality by
letting ũ = expu and writing the expansion in product form

p(i) = ũ · ũa
j · ũb

k · ũc
l · ũab

jk · ũac
j l · ũbc

kl · ũabc
jkl (2.5)

as this enables us to deal with cells i with p(i) = 0. In general we have to includes
limits of distributions satisfying (2.4) or (2.5), see further discussion in Sects. 2.3.4
and 2.5.1 below.

In log-linear models, certain interaction terms are set to zero. For example, we
could set all two- and three-factor interaction terms equal to zero, by positing that

logp(i) = u + ua
j + ub

k + uc
l .

This is called the main effect model.
Usually only hierarchical log-linear models are of interest. The term hierarchical

means that if a term is set to zero, all its higher-order relatives are also set to zero.
Alternatively expressed, if a term is allowed in the expansion, so are other terms of
lower order involving the relevant variables. For example, if we set uab

jk = 0 for all
j, k, then we must also set uabc

jkl = 0 for all j, k, l and if uab
jk ≠ 0 is allowed, we must

allow ua
j ≠ 0 and ub

k ≠ 0.
Hierarchical models can be specified in terms of the maximal interaction terms

permitted: these are called the generators of the model. For example, the generators
of the model

logp(i) = u + ua
j + ub

k + uc
l + uab

jk + uac
jl (2.6)

are {a, b} and {a, c}.
The gRim package has a function dmod() to define and fit hierarchical log-linear

models. The models can be specified using a model formula or list of character
vectors representing the generators. For example,
> m1 <- dmod(~species*height+species*diam, data=lizard)
> m2 <- dmod(list(c("species","height"),c("species", "diam")),

data=lizard)

specify the same model. The first form is most useful when specifying small models
by hand.

Under (2.6) specified as m1 or m2 above the probabilities can be factored into

p(i) = (ũ · ũa
j · ũb

k · ũab
jk)(ũ

c
l · ũac

j l),

i.e. into two factors, the first not involving c and the second not involving b. It then
follows from the factorization criterion (1.1) that b ⊥⊥ c | a. More generally this
reasoning implies that under any hierarchical model, two factors are conditionally
independent given the rest if and only if the corresponding two-factor interaction
term is set to zero or, equivalently, if no generator contains both factors.

Thus, this model implies that perching diameter and height are independent given
species. In other words, for each species considered separately, perching diameter
and height are independent.

The dependence graph of a hierarchical model is an undirected graph with edges
present whenever the corresponding two-factor interaction is allowed. We can dis-
play the graph of a dModel object using plot (see Fig. 2.1).

2.3 Log-Linear Models 33

Fig. 2.1 Conditional
independence of diam and
height given species

From the global Markov property (Sect. 1.3) we can find out which conditional
independences hold under a model:

> separates("height","diam","species", as(m1,"graphNEL"))

[1] TRUE

In the present case the property is evident from the graph, but the facility is useful
for higher-dimensional models.

2.3.3 Graphical and Decomposable Log-Linear Models

Suppose that we are given an undirected graph G = (!,E), and consider the hier-
archical log-linear model M for ! whose generators are identical to the cliques of
the graph. A model that can be specified in this way is called a graphical model.
Since the two-factor interaction terms that are set to zero in the model correspond
to edges that are not present in G, we see that G is the dependence graph of M. By
the hierarchical principle, any higher-order interaction term containing such a ‘zero’
two-factor term is also set to zero. And any higher-order term that does not contain
a ‘zero’ two-factor term is contained in a generator and so is not set to zero. So one
characterization of a graphical log-linear model is that the two-factor interaction
terms present in the model completely determine which higher-order interactions
are also present. Log-linear models that are not graphical set higher order interac-
tions to zero even though all the corresponding two-factor interactions are not set to
zero. The simplest non-graphical model is the no three-factor interaction model for
a three-way table:

> no3f <- dmod(~species:height + species:diam + height:diam,
data=lizard)

Note that this model has the same dependence graph as the saturated model:

> par(mfcol=c(1,2))
> sat <- dmod(~species:height:diam, data=lizard)
> plot(no3f, main='no 3-factor interaction')
> plot(sat, main='saturated model')

34 2 Log-Linear Models

The attractive feature of graphical models is that they can be interpreted solely in
terms of patterns of conditional independences, which can be displayed in terms of
a graph.

We can also obtain the graphical model corresponding to a given undirected
graph, as in

> g <- ug(~la10:locc:mp58 + locc:mp58:c365 + mp58:c365:p53a +
+ c365:p53a:a367)
> mg <- dmod(g, data=mildew)

In general, to obtain maximum likelihood estimates for log-linear models, itera-
tive methods must be used. But for an important subclass of log-linear models, the
decomposable models, closed-form expressions are available; see Sect. 2.3.4 for
details.

To get information about properties of a model, the summary() method may be
used:

> summary(no3f)

is graphical=FALSE; is decomposable=FALSE
generators (glist):
:"species" "height"
:"species" "diam"
:"height" "diam"

2.3.4 Estimation, Likelihood, and Model Fitting

Decomposable models are characterized as graphical models whose graphs are tri-
angulated. For decomposable models, closed-form expressions exist for the maxi-
mum likelihood estimate. The closed-form expressions are closely related to RIP-
orderings of the cliques; see Sect. 1.4.1 for further details.

2.3 Log-Linear Models 35

Let C = (C1, . . . ,Ck) be such an ordering and S = (S1, . . . , Sk) the correspond-
ing separators. Then the ML estimator is given by

m̂(i) =
∏

j=1...k n(iCj)∏
j=1...k n(iSj)

.

For non-decomposable models we need another way to find the maximum likeli-
hood estimates. Most commonly the IPS (iterative proportional scaling) algorithm
is used. This is a simple and robust algorithm, which works by storing and iteratively
updating a table of fitted values {m(i)}i∈I .

Let C = {a1, . . . , aQ} be the generators of a hierarchical log-linear model. The
corresponding marginal tables n(iak), k = 1, . . . ,Q, are a set of sufficient statistics.
The maximum likelihood estimate is obtained by equating the sufficient statistics
with their expectations m(iak).

Initially the m(i) are set to some constant, say m(i) = 1 for all i ∈ I . One itera-
tion consists of updating for each k = 1, . . . ,Q

m(i) ← m(i)
n(iak)

m(iak)
∀i ∈ I. (2.7)

Iteration continues until convergence which happens when m(iak) = n(iak). The
algorithm is always theoretically convergent with the limiting value being the max-
imum likelihood estimate under the model {m̂(i)}i∈I , although these may not all
have m̂(i) > 0 for all cells i and thus may not admit a logarithmic expansion.

In R, the IPS algorithm is implemented in the loglin() function: the function
dmod() in the gRim package provides an interface to this.

Notice that if the cliques of a decomposable model are given such that they follow
a RIP-ordering then the IPS algorithm will converge after one iteration. If the cliques
do not follow a RIP-ordering then IPS will converge after two iterations.

A disadvantage of IPS is that for high-dimensional problems it can be computa-
tionally expensive to store and update the whole table, as the iteration (2.7) passes
through all possible values of i. It is possible to avoid this using message passing
techniques based on the factorization (2.5), similar to those implemented in gRain
and described in Chap. 3.

Another algorithm is that of iteratively reweighted least squares which is used
for generalized linear models. This alternative is attractive when there is interest
in the log-linear parameters (u-terms) themselves, since as a byproduct it provides
estimates and standard errors of these. However, this approach can be problematic
for other reasons; see Sect. 2.5.1 for an example and further discussion.

2.3.5 Hypothesis Testing

The maximized log-likelihood of a model m is given, up to an arbitrary additive
constant, by

ℓ =
∑

i∈I
n(i) log p̂(i)

where p̂(i) are the maximum likelihood estimates.

36 2 Log-Linear Models

The deviance of a model M is twice the log-likelihood ratio of M versus the
saturated model, i.e.,

D = dev= 2(ℓ̂s − ℓ̂m),

where ℓ̂s and ℓ̂m are the maximized log-likelihoods under the saturated model and
M, respectively. In this case we obtain

D = dev= G2 = 2
∑

i∈I
n(i) log

n(i)

m̂(i)
.

Under M, D is asymptotically χ2(k) where the degrees of freedom k is the dif-
ference in dimension (number of free parameters) between the saturated model and
m. So the deviance provides a goodness-of-fit test for the model. For example the
following model fits rather well:

> m1 <- dmod(~species:height+species:diam, data=lizard)
> m1

Model: A dModel with 3 variables
graphical : TRUE decomposable : TRUE
-2logL : 1604.43 mdim : 5 aic : 1614.43
ideviance : 23.01 idf : 2 bic : 1634.49
deviance : 2.03 df : 2

An alternative to the deviance is Pearson’s goodness-of-fit test, defined by

X2 =
∑

i∈I

{n(i) − m̂(i)}2

m̂(i)

which has the same asymptotic distribution under the null hypothesis. This can be
obtained using

> m1$fitinfo$pearson

[1] 2.017

Notice that it follows from the general definition of deviance given above that to
calculate the deviance, it must be possible to fit the saturated model. This can always
be done for log-linear models, but may not be possible in general, for example for
Gaussian models; see Chap. 4. When working with sparse graphical models it is
therefore often simpler to consider the ideviance (or independence deviance) which
we define as twice the log-likelihood ratio between the model in question and the
model of complete independence, corresponding to a graph with no edges, i.e. in
this case

iD = idev= 2
∑

i∈I
n(i) log

m̂(i)∏
v∈V n(iv)

.

The deviance or ideviance difference between two nested models makes always
sense, provided both can be fitted, and it is in both cases equal to twice the log-
likelihood ratio.

2.3 Log-Linear Models 37

A related issue is that the dimension of a model depends, strictly speaking, on
the sampling scheme employed, whereas the difference in dimension between two
nested models (i.e. the degrees of freedom) does not. As we have described it, data
have been assumed to be collected as a fixed number of independent units, referred
to as the multinomial sampling scheme. If we instead assume that the total num-
ber of observations follows a Poisson distribution with unknown parameter λ > 0,
the counts N(i) become independent with parameters e{N(i)} = m(i). This is the
Poisson sampling scheme.

It can be shown that the maximum likelihood estimate of λ is then equal to λ̂ =
n and the likelihood function for λ = λ̂ is proportional to the likelihood function
in the multinomial sampling scheme, thus not affecting deviances nor maximum
likelihood estimates. This is known as the Poisson trick.

In general, it is simplest to calculate dimensions of models for the Poisson sam-
pling scheme and therefore all dimensions refer to this scheme.

The calculation of the model dimension by dmod() assumes that m̂(i) > 0 for all
cells i, which will be the case when the data are dense, for example when all the cell
counts are positive. When the data are sparse, as is usually the case for moderate
to high-dimensional problems, some cells may have m̂(i) = 0 and so the degrees of
freedom shown need adjustment. Calculation of the appropriate degrees of freedom
when the data are sparse is a hard problem, and we are aware of no software that
does this correctly in all cases. In any case the asymptotic χ2 approximation may
be poor if m̂(i) is small.

A viable approach to analysis is to focus on comparisons of nested decompos-
able models, for which the correct adjustment to the degrees of freedom can be
calculated, and for which it is straightforward to calculate exact conditional tests.
A key result is that if M0 ⊂ M1 are decomposable log-linear models differing by
one edge e = {u,v} only, then e is contained in one clique C of M1 only, and the
likelihood ratio test for M0 versus M1 can be performed in the marginal C-table as
a test of u ⊥⊥ v |C \ {u,v}. The point being partly that the marginal table on C may
not be sparse, but more importantly, that it is straightforward to adjust the degrees of
freedom for a pure test of conditional independence like this, as we describe shortly.

For example, suppose that we specify a decomposable model m3 for the mildew
data, and delete the edge {locc, a367} from m3 using the update() function, ob-
taining a model m4. This function is described below in Sect. 2.5.2. The edge deleted
is contained in one clique only of m3, so m4 is also decomposable.

> m3 <- dmod(~la10*locc*mp58*c365*p53a+locc*mp58*c365*p53a*a367,
data=mildew)

> m4 <- update(m3, list(dedge=~locc*a367))
> oldpar<-par(mfrow=c(1,2))
> plot(m3, "neato")
> plot(m4, "neato")
> par(oldpar)

38 2 Log-Linear Models

A direct comparison of m3 and m4 using the following function gives an incorrect
value for the degrees of freedom

> comparemodels <- function(m1,m2) {
+ lrt <- m2$fitinfo$dev - m1$fitinfo$dev
+ dfdiff <- m1$fitinfo$dimension[1] - m2$fitinfo$dimension[1]
+ c('lrt'=lrt, 'df'=dfdiff)
+ }
> m3

Model: A dModel with 6 variables
graphical : TRUE decomposable : TRUE
-2logL : 366.16 mdim : 47 aic : 460.16
ideviance : 209.32 idf : 41 bic : 565.83
deviance : 0.40 df : 16
Notice: Table is sparse
Asymptotic chi2 distribution may be questionable.
Degrees of freedom can not be trusted.
Model dimension adjusted for sparsity : 21

> m4

Model: A dModel with 6 variables
graphical : TRUE decomposable : TRUE
-2logL : 370.73 mdim : 39 aic : 448.73
ideviance : 204.74 idf : 33 bic : 536.42
deviance : 4.98 df : 24
Notice: Table is sparse
Asymptotic chi2 distribution may be questionable.
Degrees of freedom can not be trusted.
Model dimension adjusted for sparsity : 22

> comparemodels(m3,m4)

lrt df.mod.dim
4.573 8.000

The correct test may be obtained using the testdelete() function:

> testdelete(m3, edge=c("locc","a367"))

2.3 Log-Linear Models 39

dev: 4.573 df: 3 p.value: 0.20585 AIC(k=2.0): -1.4 edge: locc:a367
host: locc mp58 c365 p53a a367
Notice: Test performed in saturated marginal model

This function identifies that m3 is decomposable and that the edge {locc,a367} is
in one clique C only. The test is then performed as a test of u ⊥⊥ v |C \ {u,v}. Note
that the test statistic matches with that of comparemodels() and the degrees of
freedom have been correctly adjusted.

Tests of general conditional independence hypotheses of the form u ⊥⊥ v |W can
be performed using the ciTest_table() function.

> cit <- ciTest_table(mildew, set=c("locc","a367","mp58","c365",
"p53a"))

Testing locc _|_ a367 | mp58 c365 p53a
Statistic (DEV): 4.573 df: 3 p-value: 0.2059 method: CHISQ

The general syntax of the set argument is of the form (u, v,W) where u and v

are variables and W is a set of variables. The set argument can also be given as a
right-hand sided formula.

Notice that in this case the results are identical to those given by the test-
delete() function, since we have specified the correct conditioning set. If we had
conditioned on more variables

> cit2 <- ciTest_table(mildew, set=c("locc","a367","mp58","c365",
+ "p53a","la10"))

Testing locc _|_ a367 | mp58 c365 p53a la10
Statistic (DEV): 4.553 df: 3 p-value: 0.2076 method: CHISQ

different results would be obtained.
In model terms, the test performed by ciTest_table() corresponds to the test

for removing the edge {u,v} from the saturated model with variables {u,v} ∪ W . If
we (conceptually) form a factor S by crossing the factors in W , we see that the test
can be formulated as a test of the conditional independence u ⊥⊥ v |S in a three way
table. The deviance decomposes into independent contributions from each stratum:

D = 2
∑

ijs

nijs log
nijs

m̂ijs

=
∑

s

2
∑

ij

nijs log
nijs

m̂ijs
=

∑

s

Ds

where the contribution Ds from the sth slice is the deviance for the independence
model of u and v in that slice. For example,

> cit$slice

statistic p.value df mp58 c365 p53a
1 0.0000 1.00000 0 1 1 1
2 0.5053 0.47716 1 2 1 1
3 1.2953 0.25508 1 1 2 1
4 2.7726 0.09589 1 2 2 1
5 0.0000 1.00000 0 1 1 2
6 0.0000 1.00000 0 2 1 2

40 2 Log-Linear Models

7 0.0000 1.00000 0 1 2 2
8 0.0000 1.00000 0 2 2 2

The sth slice is a |u| × |v| table {nijs}i=1...|u|,j=1...|v|. The output shows the degrees
of freedom corresponding to the test for independence in each slice, given by

dfs = (#{i : ni·s > 0} − 1)(#{j : n·js > 0} − 1)

where ni·s and n·js are the marginal totals. So the correct number of degrees of
freedom for the test in the present example is not 8 but 3, as calculated by the
ciTest_table() and testdelete() functions.

An alternative to the asymptotic χ2 test is to determine the reference distribution
using Monte Carlo methods. The marginal totals are sufficient statistics under the
null hypothesis, and in a conditional test the test statistic is evaluated in the condi-
tional distribution given the sufficient statistics. Hence one can generate all possible
tables with those given margins, calculate the desired test statistic for each of these
tables and then see how extreme the observed test statistic is relative to those of the
calculated tables. A Monte Carlo approximation to this procedure is to randomly
generate a large number of tables with the given margins, evaluate the statistic for
each simulated table and then see how extreme the observed test statistic is in this
distribution. This is called a Monte Carlo exact test and it provides a Monte Carlo p-
value. In the present example we get a Monte Carlo p-value which is considerably
larger than the asymptotic one:

> ciTest_table(mildew, set=c("locc","a367","mp58","c365","p53a"),
+ method='MC')

Testing locc _|_ a367 | mp58 c365 p53a
Statistic (DEV): 4.573 df: NA p-value: 0.5550 method: MC

An advantage of the Monte Carlo method is that any test statistic can be used, so
statistics that are sensitive to specific forms of deviation from independence can be
used. In particular, when one or both of u and v are ordinal, more powerful tests of
u ⊥⊥ v |S can be applied. The ciTest_ordinal() function supports this approach
for three rank tests: the Wilcoxon, Kruskal-Wallis and Jonckheere-Terpstra tests.
The Wilcoxon test is applicable when u is binary and v ordinal; the Kruskal-Wallis
test when u is nominal and v is ordinal; and the Jonckheere-Terpstra test when both
u and v are ordinal. We illustrate use of the function using the dumping syndrome
data described above in Sect. 2.2.1. Recall that the three variables are Symptom,
Operation and Centre. The first two are ordinal and the third is nominal.

> ciTest_ordinal(dumping,c(2,1,3),"jt", N=1000)

$JT
[1] 9566

$EJT
[1] 8705

2.3 Log-Linear Models 41

$P
[1] 0.009804

$montecarlo.P
[1] 0.005

$set
[1] "Operation" "Symptom" "Centre"

> ciTest_ordinal(dumping,c(2,1,3),"deviance", N=1000)

$deviance
[1] 23.54

$df
[1] 24

$P
[1] 0.4883

$montecarlo.P
[1] 0.585

$set
[1] "Operation" "Symptom" "Centre"

The second argument is a vector of column numbers (if a dataframe is supplied) or
dimension numbers (if a table is supplied, as here) of {u,v,S}. The corresponding
names may also be given. The function calculates the Monte Carlo p-value based
on N random samples, together with the asymptotic p-value. If N = 0, only the
latter is calculated. We see that the ordinal test strongly rejects the hypothesis that
Symptom is independent of Operation given Centre, whereas the non-ordinal test
finds no evidence against this. In this example, the Monte Carlo p-values are similar
to the asymptotic ones. To examine whether the conditional distribution of Symptom
given Operation is homogeneous over the centres, the Kruskal-Wallis test may be
used:

> ciTest_ordinal(dumping, c(3,1,2),"kruskal", N=1000)

$KW
[1] 10.02

$df
[1] 12

$P
[1] 0.6143

$montecarlo.P
[1] 0.615

$set
[1] "Centre" "Symptom" "Operation"

The distributions appear to be homogeneous.

42 2 Log-Linear Models

2.4 Model Selection

Using graphs to represent models has the effect of shifting the emphasis from esti-
mation of parameters for a given model towards estimation of the model structure,
that is, selecting an appropriate model. Model selection is challenging, not least be-
cause the number of possible models is huge. For example, the number of undirected
graphs with 30 nodes is 230×29/2 = 2435 > 1080, the estimated number of atoms in
the observable universe.

Many different methods to select graphical models have been proposed, but gen-
erally they fall into three categories:

• Use of low-order conditional independence tests to infer the structure of the joint
model. An example is the PC algorithm (Sect. 4.6.1).

• Heuristic search to optimize some criterion. Often local search around a cur-
rent model is used to find a local optimum, possibly with combined with a
stochastic search method. An example is the hill-climbing algorithm described
in Sect. 4.6.2.1.

• Bayesian methods, often involving Markov chain Monte Carlo methods. We do
not discuss Bayesian approaches to model selection further, but in Chap. 6 we
describe aspects of graphical models from a Bayesian perspective.

Sometimes the first type of methods are used in a preliminary phase and then com-
bined with others for refinement.

The gRim package implements a popular variant of the second type using well-
known model selection criteria of penalized likelihood type. Consider a set of
models M(j) for j = 0,1, . . . ,R. We select the model M(j) which minimizes
−2 logL(j) + kp(j), where p(j) is the number of free parameters in model M(j)

and k is a penalty parameter.
Akaike’s Information Criterion or AIC (Akaike 1974) uses k = 2. A popular al-

ternative is the Bayesian Information Criterion or BIC (Schwarz 1978), which sets k

to the logarithm of the number of observations. Use of a larger k penalizes complex
models more heavily, and so tends to select simpler models. Other values of k can
be chosen. It is standard usage in R to call the criterion AIC, even though strictly
speaking only the value k = 2 gives the “genuine AIC”.

The stepwise() function searches by default incrementally from an initial
model, adding or deleting the edge that gives the largest decrease in the AIC. If
there is none the process stops. The search is directional: either forward (adding
edges) or backward (deleting edges). Alternatively, significance tests can be used to
judge the relative adequacy of the models compared.

The following code selects a model for the reinis dataset. The initial model
is set to be the saturated model, using a model specification shortcut described in
Sect. 2.5.2.

> m.init <- dmod(~.^., data=reinis)
> m.reinis <- stepwise(m.init)
> plot(m.reinis)

2.4 Model Selection 43

The penalty term k is by default 2, but this can be changed using the argument of
the same name. For example, the BIC criterion uses the logarithm of the number of
observations as the penalty term:

> m.reinis.2 <- stepwise(m.init,k=log(sum(reinis)))
> plot(m.reinis.2)

The choice of k is usually argued on the basis of asymptotic considerations. The
motivation for AIC is that, under suitable assumptions, it is an approximate mea-
sure of the expected Kullback–Leibler distance between the true distribution and the
estimated. The BIC difference between two models is the logarithm of a Laplace ap-
proximation to the associated Bayes factor for large number of observations n, but
a term of lower order of magnitude than logn is ignored. Under reasonable assump-
tions the BIC is consistent in the sense that for n large it will choose the simplest
model consistent with the data. This will typically only be true for the AIC if that

44 2 Log-Linear Models

is the saturated model. For a more general discussion of the issues involved, see
Ripley (1996, Sect. 2.6).

The default direction is backward but may be changed to forward; notice that we
set details=1 to obtain some output from the model selection process:

> mildew.init <- dmod(~.^1, data=mildew)
> m.mildew <- stepwise(mildew.init, k=log(sum(mildew)),
+ direction="forward", details=1)

STEPWISE:
criterion: aic (k = 4.25)
direction: forward
type : decomposable
search : all
steps : 1000
. FORWARD: type=decomposable search=all, criterion=aic(4.25),

alpha=0.00
. Initial model: is graphical=TRUE is decomposable=TRUE
change.AIC -59.0762 Edge added: a367 p53a
change.AIC -55.3386 Edge added: c365 la10
change.AIC -48.3388 Edge added: a367 mp58
change.AIC -6.3085 Edge added: c365 locc
change.AIC -2.1590 Edge added: locc p53a

> plot(m.mildew, "twopi")

The expression ~.^1 is a shortcut for the main effects model (see Sect. 2.5.2). The
selected model shows the order of the markers on the chromosome: see Edwards
(2000).

Other variants are possible. Setting headlong=TRUE results in headlong search:
instead of adding or deleting the edge that gives the greatest decrease in the AIC, the
edges at random are examined in random order and the first one found that decreases
the AIC is added or deleted. This is generally faster for high-dimensional models.

Output can be suppressed using details=0 whereas setting details=2 will
print test statistics for all edges, providings an indication of the strength of evidence
for the edges present and the weakness of evidence for the absent edges. When
searching among decomposable models (obtained by setting type="decomposable"

2.5 Further Topics 45

as opposed to type="unrestricted"), the degrees of freedom are adjusted for
sparsity.
> mildew.init.2 <- dmod(~.^., data=mildew)
> m.mildew.2 <- stepwise(mildew.init.2, crit="test", alpha=0.05,
+ details=0)
> m.mildew.2

Model: A dModel with 6 variables
graphical : TRUE decomposable : TRUE
-2logL : 383.01 mdim : 11 aic : 405.01
ideviance : 192.46 idf : 5 bic : 429.74
deviance : 17.26 df : 52
Notice: Table is sparse
Asymptotic chi2 distribution may be questionable.
Degrees of freedom can not be trusted.
Model dimension adjusted for sparsity : 10

giving the same model as before.

2.5 Further Topics

2.5.1 Fitting Log-Linear Models with glm()

As we described in Sect. 2.3.5, we could just as well have assumed that cell
counts {n(i)}i∈I are independent realisations of Poisson distributions with means
{λ(i)}i∈I . It follows that we can fit log-linear models as generalized linear models
by means of the glm() function, using the Poisson distribution and (default) log-
link. The estimation method is then Fisher Scoring (which requires inversion of a
potentially large matrix).

It is worth mentioning that there may be computational problems with this ap-
proach: if the data are sparse and there are only few observations relative to the
complexity of the model then the glm() estimation algorithm may fail, as it im-
plicitly assumes that m̂(i) > 0 for all i ∈ I . The IPS algorithm, on the other hand,
always works.

The data need to be in aggregrated case list form, as described in Sect. 2.2.2. In
the present case we use
> lizardAGG

diam height species Freq
1 <=4 >4.75 anoli 32
2 >4 >4.75 anoli 11
3 <=4 <=4.75 anoli 86
4 >4 <=4.75 anoli 35
5 <=4 >4.75 dist 61
6 >4 >4.75 dist 41
7 <=4 <=4.75 dist 73
8 >4 <=4.75 dist 70

We use the Freq variable as response variable. Note that it is important that all cells,
also any empty ones, are present in the data. To fit the model shown in (2.1) we can
use the code:

46 2 Log-Linear Models

> m1glm <- glm(Freq~-1+diam:species+height:species,family=poisson,
+ data=lizardAGG)
> summary(m1glm)

Call:
glm(formula = Freq ~ -1 + diam:species + height:species,

family = poisson, data = lizardAGG)

Deviance Residuals:
1 2 3 4 5 6 7 8

0.190 -0.310 -0.114 0.181 0.687 -0.782 -0.596 0.639

Coefficients:
Estimate Std. Error z value Pr(>|z|)

diam<=4:speciesanoli 4.467 0.103 43.30 < 2e-16 ***
diam>4:speciesanoli 3.525 0.155 22.80 < 2e-16 ***
diam<=4:speciesdist 4.359 0.102 42.80 < 2e-16 ***
diam>4:speciesdist 4.171 0.109 38.20 < 2e-16 ***
speciesanoli:height>4.75 -1.035 0.178 -5.83 5.6e-09 ***
speciesdist:height>4.75 -0.338 0.130 -2.61 0.0091 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2514.8188 on 8 degrees of freedom
Residual deviance: 2.0256 on 2 degrees of freedom
AIC: 59

Number of Fisher Scoring iterations: 4

By using glm() we automatically get the asymptotic standard errors of the param-
eter estimates and also these are not affected by the sampling scheme and hence are
valid under both the Poission and multinomial sampling schemes.

By including -1 in the right-hand side of the model formula we set the intercept
to zero. This only affects the parametrisation of the model. The residual deviance
gives the likelihood ratio test against the saturated model.

> msat <- glm(Freq ~ -1 + diam*height*species, family=poisson,
+ data=lizardAGG)
> mno3f <- glm(Freq ~ -1 + diam*height + diam*species + species*height,
+ family=poisson, data=lizardAGG)
> anova(msat, mno3f, m1glm, test="Chisq")

Analysis of Deviance Table

Model 1: Freq ~ -1 + diam * height * species
Model 2: Freq ~ -1 + diam * height + diam * species + species * height
Model 3: Freq ~ -1 + diam:species + height:species
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 0 0.000
2 1 0.149 -1 -0.149 0.70
3 2 2.026 -1 -1.876 0.17

Omission of empty cells from the input data corresponds to treating them as
structural zeroes. This allows exotic hypotheses such as quasi-independence to be

2.5 Further Topics 47

examined (Bishop et al. 1975). But for sparse tables, the glm() approach runs into
problems, and IPS is to be preferred. For example,

> glm(Freq ~.^3, ,family=poisson, data=as.data.frame(mildew))

fails to converge but

> dmod(~.^3, data=mildew)

is unproblematic.

2.5.2 Working with dModel Objects

The dmod() function supports some useful shortcut expressions for model formulae.
For example, ~.^. is the saturated model, ~.^1 is the main effect model and ~.^p
is the model with all p-factor interactions. Furthermore, to specify marginal models
(that is, not including all the variables in the table), the marginal argument can be
used. Lastly, it is possible to abbreviate variable names. For example,

> m <- dmod(~.^2, marginal=c("smo", "prot", "sys","fam"),
+ data=reinis)

Model: A dModel with 4 variables
graphical : FALSE decomposable : FALSE
-2logL : 9021.61 mdim : 10 aic : 9041.61
ideviance : 48.67 idf : 6 bic : 9096.79
deviance : 9.24 df : 5

The generating class of the model as a list and as a right-hand sided formula can be
retrieved using terms() and formula():

> str(terms(m))

List of 6
$: chr [1:2] "smoke" "protein"
$: chr [1:2] "smoke" "systol"
$: chr [1:2] "smoke" "family"
$: chr [1:2] "protein" "systol"
$: chr [1:2] "protein" "family"
$: chr [1:2] "systol" "family"

> formula(m)

~smoke * protein + smoke * systol + smoke * family + protein *
systol + protein * family + systol * family

The dependence graph and adjacency matrix of a model object can be obtained using
the as() function:

> as(m, "graphNEL")

A graphNEL graph with undirected edges
Number of Nodes = 4
Number of Edges = 6

> as(m, "matrix")

48 2 Log-Linear Models

smoke protein systol family
smoke 0 1 1 1
protein 1 0 1 1
systol 1 1 0 1
family 1 1 1 0

The update() function enables dModel objects to be modified by the addition or
deletion of interaction terms or edges, using the arguments aterm, dterm, aedge
or dedge. No prize to work out which does which. Some examples follow:

• Set a marginal saturated model:

> ms <- dmod(~.^., marginal=c("phys","mental","systol","family"),
+ data=reinis)
> formula(ms)

~phys * mental * systol * family

• Delete one edge:

> ms1 <- update(ms, list(dedge=~phys:mental))
> formula(ms1)

~phys * systol * family + mental * systol * family

• Delete two edges:

> ms2<- update(ms, list(dedge=~phys:mental+systol:family))
> formula(ms2)

~phys * systol + phys * family + mental * systol + mental * family

• Delete all edges in a set:

> ms3 <- update(ms, list(dedge=~phys:mental:systol))
> formula(ms3)

~phys * family + mental * family + systol * family

• Delete an interaction term

> ms4 <- update(ms, list(dterm=~phys:mental:systol))
> formula(ms4)

~phys * mental * family + phys * systol * family + mental * systol *
family

2.6 Various 49

• Add three interaction terms:

> ms5 <- update(ms, list(aterm=~phys:mental+phys:systol
+mental:systol))

> formula(ms5)

~phys * mental * systol * family

• Add two edges:

> ms6 <- update(ms, list(aedge=~phys:mental+systol:family))
> formula(ms6)

~phys * mental * systol * family

A brief explanation of these operations may be helpful. To obtain a hierarchical
model when we delete a term from a model, we must delete any higher-order rela-
tives to the term. Similarly, when we add an interaction term we must also add all
lower-order relatives that were not already present. Deletion of an edge is equivalent
to deleting the corresponding two-factor term. Let m − e be the result of deleting
edge e from a model m. Then the result of adding e is defined as the maximal model
m∗ for which m∗ − e = m.

2.6 Various

Other R packages which support discrete graphical models include CoCo (Badsberg
1991) and gRapHD, see Chap. 7. The packages SIN, pcalg and bnlearn support
algorithms to select discrete graphical models: Sects. 4.4.4, 4.6.1, 4.6.2 and the fol-
lowing sections, illustrate their use in a Gaussian context. Chapter 3 describes the
use of discrete, directed graphical models and Sect. 3.4 illustrates the selection of
such a model.

http://www.springer.com/978-1-4614-2298-3

	Chapter 2: Log-Linear Models
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Four Datasets
	2.2.2 Data Formats
	As a Raw Case-List
	As an Aggregated Case-List
	As a Contingency Table

	2.3 Log-Linear Models
	2.3.1 Preliminaries and Notation
	2.3.2 Hierarchical Log-Linear Models
	2.3.3 Graphical and Decomposable Log-Linear Models
	2.3.4 Estimation, Likelihood, and Model Fitting
	2.3.5 Hypothesis Testing

	2.4 Model Selection
	2.5 Further Topics
	2.5.1 Fitting Log-Linear Models with glm()
	2.5.2 Working with dModel Objects

	2.6 Various

