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Introduction

information from their current pricing behavior and use this information
to improve its strategy in the future. Anticipating this, Cupcake Corp. and
Sweetstufl may be reluctant to let their prices reveal information that
enhances Piemax’s competitive position. That is, they may try to manipu-
late Piemax’s information. Part [V extends the analysis to games in which
both dynamic issues and incomplete information are important.

We began this introduction with a story of oligopoly pricing because we
expected it to be familiar to many of our readers. But game theory has a
much broader scope. The theory of noncooperative games studies the
behavior of agents in any situation where each agent’s optimal choice may
depend on his forecast of the choices of his opponents. Although the
common usage of the word “games” refers to parlor games such as chess
and poker, the Piemax example is far more typical of the kinds of games
we will consider, in that the players’ objectives are more complex than
simply to beat the others: The firms have competing interests in market
shares, but a common interest in high prices. The word “noncooperative”
means that the players’ choices are based only on their perceived self-
interest, in contrast to the theory of cooperative games, which develops
axioms meant in part to capture the idea of fairness. “Noncooperative”
does not mean that the players do not get along, or that they always refuse
to cooperate. As we explain in chapters 5 and 9, noncooperative players,
motivated solely by self-interest, can exhibit “cooperative™ behavior in
some settings.

Although game theory has been applied to many fields, this book focuses
on the kinds of game theory that have been most useful in the study of
economic problems. (We have included some applications to political
science as well.) The game-theoretic viewpoint is more useful in settings
with a small number of players, for then each player’s choice is more likely
to matter to his opponents. For example, when the number of firms in a
market is small, each firm’s output is likely to have a large impact on the
market price; thus, it is not reasonable for each firm to take the market
price as given.

The first studies of games in the economics literaturc were the papers by
Cournot (1838), Bertrand (1883), and Edgeworth (1925) on oligopoly pric-
ing and production, but these were seen as special models that did little
to change the way economists thought about most problems. The idea of
a general theory of games was introduced by John von Neumann and
Oskar Morgenstern in their famous 1944 book Theory of Games and
Economic Behavior, which proposed that most economic questions should
be analyzed as games. They introduced the ideas of the extensive-form and
normal-form (or strategic-form) representations of a game, defined the
minmax solution, and showed that this solution exists in all two-player
zero-sum games. (In a zero-sum game, the interests of the players are
directly opposed, with no common interests at all.)
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reference and guide to some portions of the literature. its primary role is
to serve as a text for courses in game thcory. We focus on presenting
concepts and general resuits, with more “toy examples” than detailed
applications. The applications we do develop are chosen to illustrate the
power of the theory; we have not given a comprehensive survey of applica-
tions to any particular field. Most of our applications are drawn from
the economics literature, and we expect that most of our readers will be
economists: however, we have included a few examples from political
science. and the book may be useful to political scientists as well.

The book is intended for use in a first course in game theory and in
courses for more advanced students, No previous knowledge of game
theory is assumed, and the key concepts of Nash equilibrium, subgame
perfection, and incomplete information are developed relatively slowly.
Most chapters progress from easier to more difficult material, to facilitate
jumping from chapter to chapter. The level of mathematics is kept at that
of Kreps 1990 and Varian 1984 except in the sections labeled “technical,”
and none of the technical material is needed to read the other sections.

A first course for advanced undergraduates or first-ycar graduvate stu-
dents could use most of the core chapters (1, 3, 6. and 8), with the technical
sections omitted, and a few selected applications from the other chapters.

One pedagogical innovation in the book is that in chapter 3 we develop -
subgame perfection in the class of multi-stage games with observed actions
without first developing the general extensive form. We do this in the belief
that the extensive form involves more notation and more foundational
issues fe.g., mixed versus behavior strategies) than are appropriatc for the
typical first-year course, in which class time is better spent on applications.
Similarly, a first course might cover only perfect Bayesian equilibrium from
chapter 8, leaving scquential equilibrium and trembling-hand perfection
for a second course.

The median audience for this book is a class of first- or second-year
graduate students who have already been informally exposed to the ideas of
Nash cquilibrium, subgame-perfect equilibrium, and incomplete informa-
tion and who are now interested in a more formal treatment of these ideas
and their implications. A one-semester course for these students could be
built using all of chapters 1, 3, 6, and 8 and selections from the other
chapters. (Sections 3.2 and 3.3, which concern perfection in multi-stage
games, could be assigned as background reading but not discussed in class.)
As a guide to the amount of material one might cover in a semester. the
class here covers all of chapter 4, folk theorems and renegotiation from
chapter 5, a little on reputation effects from chapter 9, bargaining from
chapter 10, and a few lectures on the equilibrium refinements of chapter
11. Alternatively, the discussion of repeated games could be shortened to
make time for Markov equilibrium (chapter 13). One could also incorpo-
rate a little on the formal treatment of “common knowledge” from chapter
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14. The coverage of chapter 7, on mechanism design, might depend on what
other courses the students have available. If another course is offered on
contracts and mechanisms, chapter 7 can be skipped entirely. (Indeed, it
might be a useful part of the other course.} If the students will not otherwise
be exposed to optimal mechanisms, it may be desirable to work through
the results on optimal auctions with risk-neutral buyers and on the neces-
sity of disagreement in bargaining with incomplete information.

Some of the material would fit most naturally into an advanced-topics
class for third-year students, either because of its difficulty or because it
is of more specialized interest. Here we include chapter 12 (which presents
more mathematically difficult results about strategic-form games), many of
the variants of the repeated-games model covered in chapter §, the identifi-
cation of the “payoff-relevant state™ in chapter 13, the optimal mechanisms
covered in chapter 7, the refinements discussed in chapter 11, and chapter
t4 on common knowledge. Of course, each instructor will have his or her
own views on the relative importance of the various topics; we have tried
to allow a great deal of flexibility as to which topics are covered.

We have used daggers to indicate the suitability of various sections to
segments of the intended audience as follows:

t advanced undergraduates and first-year graduate students
t+  first- and second-year graduate students
t++ advanced students and researchers.

(In a few cases, certain subsections have been marked with more daggers
than the section as a whole.) The difficulty of the material is closely related
to the intended audience; however, not all of the “advanced” topics are
difficult. A few of the sections are labeled “technical” to note the use of more
powerful mathematical tools than are required in the rest of the book.

The exercises are indexed by degree of difficulty, from one asterisk to
three. One-asterisk exercises should be appropriate for first-year graduate
students; some of the three-asterisk exercises, as far as we know, have not
yet been solved. A set of solutions to selected exercises, prepared by Glenn
Ellison, 1s available to instructors from The MIT Press.
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Games in Strategic Form and Nash Equilibrium

We begin with a simple, informal cxample of a game. Rousseau, in his
Discourse on the Origin and Basis of Equality among Men, comments:

if a group of hunters set out to take a stag, they are fully aware that they would all
have to remain faithfully at their posts in order to succeed; but if a hare happens
to pass near one of them, there can be no doubt that he pursued it without qualm,
and that once he had caught his prey, he cared very little whether or not he had
made his companions miss theirs.’

To make this into a game, we need to fill in a few details. Suppose that there
are only two hunters, and that they must decide simultaneously whether
to hunt for stag or for hare. If both hunt for stag, they will catch one stag
and share it cqually. If both hunt for hare, they each will catch one hare.
If one hunts for hare while the other tries to take a stag, the former will
catch a hare and the latter will catch nothing. Each hunter prefers half a
stag to one hare.

This is a simple example of a game. The hunters arc the players. Each
player has the choice between two strategies: hunt stag and hunt hare. The
payoff to their choice is the prey. If, for instance, a stag is worth 4 “utils”
and a hare is worth 1, then when both players hunt stag each has a
payoff of 2 utils. A player who hunts hare has payofl 1, and a player who
hunts stag by himself has payolf 0.

What prediction should one make about the outcome of Rousseau’s &
game? Cooperation  both hunting stag  is an equilibrium, or more pre-
cisely a “Nash equilibrium,” in that neither player has a unilateral incentive
to change his strategy. Therefore, stag hunting seems like a possible out-
come of the game. However, Rousseau (and later Waltz (1959)) also warns
us that cooperation is by no means a foregone conclusion. If cach player
believes the other will hunt hare, each is better off hunting harc himself.
Thus, the noncooperative outcome  both hunting hare- is also a Nash
equilibrium, and without more information about the context of the game
and the hunters’ cxpectations it is difficult to know which outcome to
predict.

This chapter will give precise definitions of a “game” and a “Nash
equilibrium,” among other concepts, and explore their properties. There
are two nearly equivalent ways of describing games: the strategic (or
normal) form and the extensive form.? Section 1.1 develops the idea of the
stratcgic form and of dominated strategies. Section 1.2 defines the solution
concept of Nash equilibrium, which is the starting point of most applica-
tions of game theory. Section 1.3 offers a first look at the question of when
Nash equilibria exist; it is the one place in this chapter where powerful
mathematics is used.

1. Quoted by Ordeshook {1986).

2. Historically. the term “normal form™ has been standard, but many game theorists now
prefer 1o use “strategic form,” as this formulation treats the players’ strategies as primitives
of the modet.



4 Chapter 1

It may appear at first that the strategic form can model only those games
in which the players act simultaneously and once and for all, but this is not
the case. Chapter 3 develops the extensive-form description of a game,
which explicitly models the timing of the players’ decisions. We will then
explain how the strategic form can be used to analyze extensive-form
games.

1.1 Introduction to Games in Strategic Form and Iterated Strict Dominance’

I.1.1 Strategic-Form Games

A game in strategic (or normal) form has three elements: the sct of players
ie.#, which we take to be the finite set {1,2,....1}, the pure-strategy
space S; for each player i, and payoff functions u; that give player i’s von
Neumann-Morgenstern utility u;(s) for each profile s = (s,,....s;) of strate-
gies. We will frequently refer to all players other than some given player i
as “player I's opponents” and denote them by “—i.” To avoid misunder-
standing, let us emphasize that this terminology does not mean that the
other players are trying to “beat” player i. Rather, each player’s objective
is to maximize his own payoff function, and this may involve “helping” or
“hurting” the other players. For economists, the most familiar interpreta-
tions of strategies may be as choices of prices or output levels, which
correspond to Bertrand and Cournot competition, respectively. For politi-
cal scientists, strategies might be votes or choices of electoral platforms.

A two-player zero-sum game is a game such that } 2 u,(s) = 0 for all s.
(The key feature of these games is that the sum of the utilities is a constant;
setting the constant to equal 0 is a normalization.) In a two-player zero-sum
game, whatever one player wins the other loses. This is the extreme case
where the players are indeed pure “oppofients™ in the colloquial sense.
Although such games are amenable to elegant analysis and have been
widely studied in game theory, most games of interest in the social sciences
are non-zero-sum.

It is helpful to think of players’ strategies as corresponding to various
“buttons™ on a computer keyboard. The players are thought of as being
in separate rooms, and being asked to choose a button without communi-
cating with each other. Usually we also assume that all players know the
structure of the strategic form, and know that their opponents know it, and
know that their opponents know that they know, and so on ad infinitum.
That is, the structure of the game is common knowledge, a concept examined
more formally in chapter 14. This chapter uses common knowledge infor-
mally, to motivate the solution concept of Nash equilibrium and iterated
strict dominance. As will be seen, common knowledge of payoffs on its own
is in fact neither necessary nor sufficient to justify Nash equilibrnum. In
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L Y R

U | 43 5,1 6,2

M 2.1 8.4 3,6

D 3,0 9.6 2,8

Figure 1.1

particular, for some justifications it suffices that the players simply know
their own payofls.

We focus our attention on finite games, that is, games where § = x; S, is
finite; finiteness should be assumed wherever we do not explicitly note
otherwise. Strategic forms for finite two-player games arc often depicted as
matrices, as in figure 1.1. In this matrix, players 1 and 2 have three pure
strategies each: U, M, D (up, middle, and down) and L, M, R (left, middle,
and right), respectively. The first entry in each box is player I’s payoff for the
corresponding strategy profile; the second is player 2's.

A mixed strategy a; is a probability distribution over pure strategies.
(We postpone the motivation for mixed strategies until later in this chapter.)
Each player’s randomization is statistically independent of those of his .
opponents, and the payoffs to a profile of mixed strategies are the expected
values of the corresponding pure-strategy payoffs. (One reason we assume
that the space of pure strategies is finite is to avoid measure-theoretic
complications.) We will denote the space of player i's mixed strategies by
T., where a(s;) is the probability that o; assigns to s, The space of mixed-
strategy profiles is denoted £ = x,X;, with element . The support of a
mixed strategy o, is the set of pure strategies to which o, assigns positive
probability. Player i's payolff to profile o is

I
ZS (l:! Uj(sj)) u;(s),

which we denote u,(c) in a slight abusc of notation. Note that player i's
payoff to a mixed-strategy profilc is a linear function of player i’s mixing
probability ¢, a fact which has many important implications. Note also
that player i’s payolff is a polynomial function of the strategy profile, and
50 in particular is continuous. Last, note that the set of mixed strategies
contains the pure strategies, as degenerate probability distributions are
included. (We will speak of nondegenerate mixed strategies when we want
to exclude pure strategies from consideration.)

For instance, in figure 1.1 a mixed strategy for player 1 1s a vector
(o, (U), o,(M),a,(D)) such that ,(U), ¢,{M), and o,(D) are nonnegative
and o,(U) + a,(M) + a,(D) = 1. The payoffs to profiles a, = (3,}.}) and
g, =(0,},3)are
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u(o;,6,)=5404+45+53-6)+30-2+1-8+1-3)

+30-34+39+32)

— 11
= 5.

Similarly, u,(7,,0,) = % .

1.1.2 Dominated Strategies

Is there an obvious prediction of how the game described in figure 1.1
should be played? Note that, no matter how player 1 plays, R gives player
2 a strictly higher payoff than M does. In formal language, strategy M is
strictly dominated. Thus, a “rational” player 2 should not play M. Further-
morg, if player | knows that player 2 will not play M, then U is a better
choice than M or D. Finally, if player 2 knows that player 1 knows that
player 2 will not play M, then player 2 knows that player 1 will play U,
and so player 2 should play L.

The process of elimination described above is calied iterated dominance,
or, more precisely, iterated strict dominance.® In section 2.1 we give a formal
definition of iterated strict dominance, as well as an application to an
economic example. The reader may worry at this stage that the set of
strategics that survive iterated strict dominance depends on the order in
which strategies are eliminated, but this is not the case. {The key is that, if
strategy s; is strictly worse than strategy s; against all opponents’ strategies
in some set D, then strategy s; is strictly worse than strategy s against all
opponents’ strategies in any subset of D. Exercise 2.1 asks for a formal
proof.)

Next, consider the game illustrated in figure 1.2, Here player 1's strategy
M is not dominated by U, because M is better than U if player 2 moves R;
and M is not dominated by D, because M is better than D when 2 moves
L. However, if player 1 plays U with probability } and D with probability
3. he is guaranteed an expected payoff of 4 regardless of how player 2 plays,
which exceeds the payoff of 0 he receives from M. Hence, a pure strategy

L R

u 2,0 -1,0

M 0,0 0.0

D -1.0 20

Figure 1.2

3. lterated elimination of weakly dominated strategies has been studied by Luce and Raiffa
{1957), Fahrquarson (1969), and Moulin (1979).
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may be strictly dominated by a mixed strategy even if it is not strictly
dominated by any pure strategy.

We will frequently wish to discuss varying the strategy of a single playcr
i while holding the strategies of his opponents fixed. To do so, we let

s_;€8_;

denote a strategy selection for all players but i, and write
{si.s )

for the profile
(S10eren Sic1aS8is8iugs-es5p)

Similarly, for mixed strategies we let
(6/,0.)=(0\,....6,1,6],06;41,...,0}).

Definition 1.1 Pure strategy s; is strictly dominated for player i if there
exists g, € ¥, such that

ulo/.s_;) > uls,s_;)foralls_;e S_;. (.n

The strategy s; is weakly dominated if there exists a g; such that inequality
1.1 holds with weak inequality, and the inequality is strict for at least one
S_i

Note that, for a given s, strategy a; satisfies inequality 1.1 for all pure
strategies s_; of the opponents if and only if it satisfies inequality 1.1 for all
mixed strategies o_; as well, because player i’s payoff when his opponents
play mixed strategies is a convex combination of his payoffs when his
opponents play pure strategies.

So far we have considered dominated pure strategies. [t is easy to see
that a mixed strategy that assigns positive probability to a dominated pure
strategy is dominated. However, a mixed strategy may be strictly domi-
nated even though it assigns positive probability only to pure strategies
that are not even weakly dominated. Figure 1.3 gives an example. Playing
U with probability } and M with probability ; gives expected payoff

Figure 1.3
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L R

po—————— —_

U 8,10 |-1009
b i
1

D 7.6 6.5
Figure 1.4

— } regardless of player 2’s play and so is strictly dominated by playing D,
even though neither U nor M is dominated.

When a game is solvable by iterated strict dominance in the sense that
each player is left with a single strategy, as in figure 1.1, the unique
strategy profile obtained is an obvious candidate for the prediction of how
the game will be played. Although this candidate is often a good prediction,
this need not be the case, especially when the payoffs can take on extreme
values. When our students have been asked how they would play the
game illustrated in figure 1.4, about half have chosen D even though
iterated dominance yields (U, L} as the unique solution. The point is that
although U is better than D when player 2 is certain not to use the
dominated strategy R, D is better than U when there is a 1-percent chance
that player 2 plays R. (The same casual empiricism shows that our students
in fact do always play L.) If the loss to (U, R) is less extreme, say only — I,
then almost all players 1 choose U, as small fears about R matter less. This
cxample illustrates the role of the assumptions that payoffs and the strategy
spaces are common knowledge (as they were in this experiment) and that
“rationality,” in the sense of not playing a strictly dominated strategy, is
common knowledge (as apparently was not the case in this experiment).
The point is that the analysis of some games, such as the one illustrated in
figure 1.4, is very sensitive to small uncertainties about the behavioral
assumptions players make about each other. This kind of “robustness”
test—testing how the theory’s predictions change with smail changes in
the model -is an idea that will return in chapters 3, 8 and 11.

At this point we can illustrate a major difference between the analysis
of games and the analysis of single-player decisions: In a decision, there is
a single decision maker, whose only uncertainty is about the possible moves
of “nature,” and the decision maker is assumed to have fixed, exogenous
beliefs about the probabilitics of nature’s moves. In a game, there are
several decision makers, and the expectations players have about their
opponents’ play are not exogenous. One implication is that many familiar
comparative-statics conclusions from decision theory do not extend once
we take into account the way a change in the game may change the actions
of all players.

Consider for example the game illustrated in figure I.5. Here player 1's
dominant strategy is U, and iterated strict dominance predicts that the
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Figure 1.5

L R

U -1.3 21

D 02 - 34 |

Figure 1.6

solution is (U, L). Could it help player 1 to change the game and reduce his
payofls if U occurs by 2 utils, which would result in the game shown in
figure 1.6? Decision theory teaches that such a change would not help, and
indecd it would not if we held player 2’s action fixed at L. Thus, player 1
would not benefit from this reduction in payoff if it were done without
player 2’s knowledge. However, if player 1 could arrange for this reduction
to occur, and to become known to player 2 before player 2 chose his action,
player 1 would indeed benefit, for then player 2 would realize that D is
player 1's dominant choice, and player 2 would play R, giving player 1 a
payoff of 3 instead of 1.

As we will see, similar observations apply to changes such as decreasing
a player’s choice set or reducing the quality of his information: Such
changes cannot help a player in a fixed decision problem, but in a game they
may have beneficial effects on the play of opponents. This is true both when
one is making predictions using iterated dominance and when one is
studying the equilibria of a game.

1.1.3  Applications of the Elimination of Dominated Strategies

In this subsection we present two classic games in which a single round of
climination of dominated strategies reduces the strategy set of each player
to a single pure strategy. The first example uses the elimination of strictly
dominated strategies, and the second uses the elimination of weakly domi-
nated strategies.

Example 1.1: Prisoner’s Dilemma

One round of the elimination of strictly dominated strategies gives a unique
answer in the famous “prisoner’s dilemma™ game, depicted in figure 1.7.
The story behind the game is that two people are arrested for a crime. The
police lack sufficient evidence to convict either suspect and consequently
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Figure 1.7

need them to give testimony against each other. The police put each suspect
in a different cell to prevent the two suspects from communicating with
each other. The police tell each suspect that if he testifies against (doesn’t
cooperate with) the other, he will be reieased and will receive a reward for
testifying, provided the other suspect does not testify against him. If neither
suspect testifies, both will be released on account of insufficient evidence,
and no rewards will be paid. If onc testifies, the other will go to prison; if
both testify, both will go to prison, but they will still collect rewards for
testifying. In this game, both players simultaneously choose between two
actions. If both players cooperate (C) (do not testify), they get I each. If they
both play noncooperatively (D, for defect), they obtain 0. If one cooperates
and the other does not, the latter is rewarded (gets 2) and the former is
punished (gets — 1). Although cooperating would give each player a payoff
of 1, self-interest leads to an inefficient outcome with payoffs 0. (To readers
who feel this outcome is not reasonable, our response is that their intuition
probably concerns a different game-- perhaps one where players “feel
guilty” if they defect, or where they fear that defecting will have bad
consequences in the future. If the game is played repeatedly, other outcomes
can be equilibria; this is discussed in chapters 4, 5, and 9.)

Many versions of the prisoner’s dilemma have appeared in the social
sciences. One example is moral hazard in teams. Suppose that there are two
workers, i = 1,2, and that each can “work” (s; = 1) or “shirk” (s; = 0). The
total output of the team is 4(s, + s,)and is shared equally between the two
workers. Each worker incurs private cost 3 when working and 0 when
shirking. With “work” identified with C and “shirk” with D, the payoff
matrix for this moral-hazard-in-teams gamc is that of figure 1.7, and “work™
is a strictly dominated strategy for each worker.

Exercise 1.7 gives another example where strict dominance leads to a
unique solution: that of a mechanism for deciding how to pay for a public
good.

Example 1.2: Second-Price Auction

A seller has one indivisible unit of an object for sale. There are I potential
buyers, or bidders, with valuations 0 < v, <--- < v, for the object, and
these valuations are common knowledge. The bidders simultaneously
submit bids s; € [0, +00). The highest bidder wins the object and pays

the second bid (ie., if he wins (s; > max;,;s;), bidder i has utility u, =
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v, — max;,,s;), and the other bidders pay nothing {and therefore have
utility 0). If several bidders bid the highest price, the good is allocated
randomly among them. (The exact probability determining the allocation
is irrclevant because the winner and the losers have the same surplus, i.e..0.)

For each player i the strategy of bidding his valuation (s; = v;) weakly
dominates all other strategies. Let r; = max;;s;. Suppose first that s; > v,.
if r, > s;, bidder i obtains utility 0, which he would get by bidding v;. If
r; < t;, bidder i obtains utility v; — r;, which again is what he would get by
bidding ;. If »; < r; < s;, then bidder i has utility r; — r; < 0; if he were to
bid v,, his utility would be 0. The reasoning is similar for s5; < v;; When
r, < s, Or r; > v;, the bidder's utility is unchanged when he bids v; instcad
of s;. However, if 5; < r; < v;, the bidder forgoes a positive utility by
underbidding.

Thus, it is reasonable to predict that bidders bid their valuation in the
second-price auction. Therefore, bidder I wins and has utility v; — vy .
Note also that because bidding one’s valuation is a dominant strategy, it
does not matter whether the bidders have information about one¢ another’s
valuations. Hence, if bidders know their own valuation but do not know
the other bidders' valuations (see chapter 6), it is still a dominant strategy
for each bidder to bid his valuation.

1.2 Nash Equilibrium’

Unfortunately, many if not most games of ecconomic interest are not solv-
able by iterated strict dominance. In contrast, the concept of a Nash-
equilibrium solution has the advantage of existing in a broad class of games.

1.2.1 Definition of Nash Equilibrium

A Nash equilibrium is a profile of strategies such that each player’s strategy
is an optimal response to the other players’ strategies.

Definition 1.2 A mixed-strategy profile a* is a Nash equilibrium if, for all
players i,

uloc*.o*) > u(s,oX)foralls,e§;. (1.2)

A pure-strategy Nash equilibrium is a pure-strategy profile that satisfies the
same conditions. Since cxpected utilities are “linear in the probabilities,”
if a player uses a nondegenerate mixed strategy in a Nash equilibrium (one
that puts positive weight on more than one pure strategy)} he must be
indifferent between all pure strategies to which he assigns positive prob-
ability. (This linearity is why, in equation 1.2, it suffices to check that no
player has a profitable purc-strategy deviation.)

A Nash equilibrium is strict (Harsanyl 1973b) if cach player has a
unique best responsc to his rivals’ strategies. That is, s* is a strict equi-
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librium if and only if it is a Nash equilibrium and, for all i and all 5; # s¥,
u‘-{st-*,s*l') > ui(Si,Sfi .

By definition, a strict equilibrium is necessarily a pure-strategy equilibrium.
Strict equilibria remain strict when the payoff functions are slightly per-
turbed, as the strict inequalities remain satisfied.*-’

Strict equilibria may seem more compelling than equilibria where play-
ers are indifferent between their equilibrium strategy and a nonequilibrium
response, as in the latter case we may wonder why players choose to
conform to the equilibrium. Also, strict equilibria are robust to various
small changes in the nature of the game, as is discussed in chapters 11
and 14. However, strict equilibria need not exist, as is shown by the
“matching pennies” game of example 1.6 below: The unique equilibrium of
that game is in (nondegenerate) mixed strategies, and no (nondegenerate)
mixed-strategy equilibrium can be strict.® (Even pure-strategy equilibria
need not be strict; an example is the profile (D, R)in figure 1.18 when 4 = 0.)

To put the idea of Nash equilibrium in perspective, observe that it was
implicit in two of the first games to have been studied, namely the Cournot
(1838) and Bertrand (1883) models of oligopoly. In the Cournot model,
firms simultaneously choose the quantities they will produce, which they
then sell at the market-clearing price. (The model does not specify how this
price is determined, but it is helpful to think of it being chosen by a
Walrasian auctioneer so as to equate total output and demand.) In the
Bertrand model, firms simultaneously choose prices and then must produce
cnough output to meet demand after the price choices become known. In
cach model, equilibrium is determined by the condition that all firms
choose the action that is a best response to the anticipated play of their
opponents. It is common practice to speak of the equilibria of these two
models as “Cournot equilibrium™ and “Bertrand equilibrium,” respectively,
but it is more helpful to think of them as the Nash equilibria of the two
different games. We show below that the concepts of “Stackelberg equi-

4. Harsanyi called this “strong™ equilibrium; we use the term “strict” to avoid confusion with
“strong equilibrium™ of Aumann 1959 -see note 11.

5. An equilibrium is guasi-strict if each pure-strategy best response to one’s rivals’ strategies
betongs to the support of the equilibrium strategy: {07}, , is a quasi-strict equilibrium if it is
a Nash equilibrium and if, for all i and s,

uls, o%) = ulo*. a*}=a*s;) > 0.

The equilibrium in matching pennies is quasi-strict, but some games have equilibria that are
not quasi-strict. The game in figure 1.18b for 4 = 0 has two Nash equilibria, (U, L) and (D, R).
The equilibrium (U, L) is strict, but the equilibrium (D, R) is not even quasi-strict. Harsanyi
(1973b} has shown that, for “almost all games,” all equilibria are quasi-strict (that is, the set of
all pames that possess an equilibrium that is not quasi-strict is a closed set of measure 0 in
the Euclidean space of strategic-form payoff vectors).

6. Remember that in a mixed-strategy equilibrium a player must receive the same expected
payoff from every pure strategy he assigns positive probability.
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librium™ and “open-loop equilibrium™ are also best thought of as shorthand
ways of referring to the equilibria of different games.

Nash equilibria are “consistent” predictions of how the game will be
played, in the sense that if all players predict that a particular Nash
equilibrium will occur then no player has an incentive to play differently.
Thus, a Nash equilibrium, and only a Nash equilibrium, can have the
property that the players can predict it, predict that their opponents predict
it, and so on. [n contrast, a prediction that any fixed non-Nash profile will
occur implies that at least one player will make a “mistake,” either in his
prediction of his opponents’ play or (given that prediction) in his optimiza-
tion of his payoff.

We do not maintain that such mistakes never occur. In fact, they may be
likely in some special situations. But predicting them requires that the game
theorist know more about the outcome of the game than the participants
know, This is why most economic applications of game theory restrict
attention to Nash equilibria.

The fact that Nash cquilibria pass the test of being consistent predictions
does not make them good predictions, and in situations it seems rash to
think that a precise prediction is available. By “situations” we mean to draw
attention to the fact that the likely outcome of a game depends on more
information than s provided by the strategic form. For example, one
would like to know how much experience the players have with games of
this sort, whether they come from a common culture and thus might share
certain expectations about how the game will be played, and so on.

When one round of elimination of strictly dominated strategies yields a
unique strategy profile s* = (s¥,...,s}), this strategy profile is necessarily
a Nash cquilibrium (actually the unique Nash equilibrium). This is because
any strategy s; = s¥ is necessarily strictly dominated by s¥. In particular,

s, s*: ) < u(s, s*;).

Thus, s* is a pure-strategy Nash equilibrium (indeed a strict equilibrium).
In particular, not cooperating is the unique Nash equilibrium in the prni-
soner’s dilemma of example 1.1.7

We show in section 2.1 that the same property holds for iterated domi-
nance. That is, if a single strategy profile survives iterated deletion of
strictly dominated strategies, then it is the unique Nash equilibrium of the
game.

Conversely, any Nash-equilibrium strategy profile must put weight only
on strategies that are not strictly dominated (or, more generally, do not
survive iterated deletion of strictly dominated strategies), because a player

7. The same reasoning shows that if there exists a single strategy profile surviving one round
of deletion of weakly dominated strategies, this strategy profile is a Nash equilibrium. So,
bidding one’s valuation in the second-price auction (example 1.2) is a Nash equilibrium.
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could increase his payoff by replacing a dominated strategy with one that
dominates it. However, Nash equilibria may assign positive probability to
weakly dominated strategies.

1.2.2  Examples of Pure-Strategy Equilibria

Example 1.3: Cournot Competition

We remind the reader of the Cournot model of a duopoly producing a
homogeneous good. The strategies are quantities. Firm 1 and firm 2
simultaneously choose their respective output levels, g;, from feasible sets
Q; = [0. ). say. They sell their output at the market-clearing price p(q),
where ¢ = q, + ¢,. Firm i’s cost of production is ¢;(g;), and firm i's total
profit is then

ulgy. 42t = q;plq) — cilyg;).

The feasible sets Q; and the payoff functions u, determine the strategic
form of the game. The “Cournot reaction functions” r,: Q,—Q, and
ry: @, — @, specily each firm’s optimal output for each fixed output level
of its opponent. If the u; are differentiable and strictly concave, and the
appropriate boundary conditions are satisfied,® we can solve for these
reaction functions using the first-order conditions. For example, r,(-)
satisfies

Play + radgy)) + p'lgy + rylg (g — c3(ralq,)) = 0. (1.3)

The intersections (if any exist) of the two reaction functions r, and r, are
the Nash equilibria of the Cournot game; Neither firm can gain by a change
in output, given the output level of its opponent.

For instance, for linear demand (p(q) = max(0,1 — g)) and symmetric,
lincar cost (¢,(g;) = cq; where 0 < ¢ < 1), firm 2’s reaction function, given
by equation 1.3, is (over the relevant range)

ralg,) = (1 — g, — ¢)/2.
By symmetry, firm 1's reaction function is

rilay) = (1 — g, — c)2.
The Nash equilibrium satisfies g% = r,(¢¥) and q* = r,(g%) or gt = g% =
(1 —¢)/3.

Example 1.4: Hotelling Competition
Consider Hotelling’s (1929) model of differentiation on the line. A linear
city of length | lies on the abscissa of a line, and consumers are uniformly

& The “appropriate boundary conditions™ refer to sufficient conditions for the optimal
reaction of each firm to be in the interior of the feasible set (. For example, if alt positive
autputs are feasible (Q, = [0, + o)), it suffices that p(g) — ¢5(0) > 0 for all q (which, in general,
implies that ¢3(0) = 0) for 7,(g, ) to be strictly positive for all g,, and lim, .. p(¢) + p'(g)q —
calgh < O for rytg,) to be finite for all q,.
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distributed with density | along this interval. There are two stores (firms)
located at the two extremes of the city, which sell the same physical product.
Firm [ is at x =0, firm 2 at x = 1. The unit cost of each store is c.
Consumers incur a transportation cost ¢ per unit of distance. They have
unit demands and buy one unit if and only if the minimum generalized
price (price plus transportation cost) for the two stores does not exceed
some large number 5. If prices are “not too high,” the demand for firm 1 is
equal to the number of consumers who find it cheaper to buy from firm 1.
Letting p; denote the price of firm i, the demand for firm 1 is given by

Dy(py.p2) = x,
where

pyobix=py, +t(l — x)
or

P2l

Dip.p)= 3

and
Dy(p,.p2)=1—Dp;.p;3)

Suppose that prices are chosen simultaneously. A Nash equilibrium is a
profile (p¥. p¥) such that, for each player i,

p € argmax {(p; — o)Di(p;, p*)}.

pl
For instance, firm 2’s reaction curve, r,(p, ), is given (in the relevant range)
by
v , cD
Dy(py ralp)) + [ralpy) — ] #(Ple’é(?l)] =0.
‘P2

In our example, the Nash equilibrium is given by p¥ = p% = ¢ + ¢ (and the
above analysis is valid as long as ¢ + 3¢/2 <'5).

Example 1.5: Majority Voting

There are three players. 1, 2, and 3, and three alternatives, A, B, and C.
Players vote simultaneously for an alternative; abstaining is not allowed.
Thus, the strategy spaces are S; = {A, B, C}. The alternative with the most
votes wins; if no alternative receives a majority, then alternative A is
selected. The payoff functions are

) (A) = u,(B) = u,;(C) = 2,
u,(B) = u,{C) = u(A) =1,
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and
1, (C) = u(A) = u3(B) = 0.

This game has three pure-strategy equilibrium outcomes: A, B, and C. There
arc more equilibria than this: If players 1 and 3 vote for outcome A, then
player 2's vote does not change the outcome, and player 3 is indifferent
about how he votes. Hence, the profiles (A, A, A)and (A, B, A}are both Nash
cquilibria whose outcome is A. (The profile (A, A, B) is not a Nash equi-
librium, since if player 3 votes for B then player 2 would prefer to vote for
B as well)

Nonexistence of a Pure-Strategy Equilibrium

Not all games have pure-strategy Nash equilibria. Two examples of games
whose only Nash equilibrium is in (nondegenerate) mixed strategies follow.

Example 1.6: Matching Pennies

A simple example of nonexistence is “matching pennies” (figure 1.8). Players
t and 2 stimultaneously announce heads (H}) or tails (T). If the announce-
ments match, then player 1 gains a util and player 2 loses a util. If the
announcements differ, it is player 2 who wins the util and player 1 who
loses. If the predicted outcome is that the announcements will match, then
player 2 has an incentive to deviate, while player 1 would prefer to deviate
from any prediction in which announcements do not match. The only
“stable” situation is onc¢ in which cach player randomizes between his two
pure stratcgics, assigning cqual probability to each. To see this, note
that if player 2 rundomizes 3-3 between H and T, player 1's payoff is
Y1+ 5-(—1)=0whenplaying H and }-(—~ 1) + }- 1 = 0 when playing T.
In this casc player 1 is completely indifferent between his possible choices
and is willing to randomize himseif.

This raises the question of why a player should bother to play a mixed
strategy when he knows that any of the pure strategies in its support would
do equally well. In matching pennies, if player 1 knows that player 2 will
randomize between H and T with equal probabilities, player 1 has expected
value 0 from all possible choices. As far as his payoff goes, he could
just as well play “heads™ with certainty, but if this is anticipated by player
2 the equilibrium disintegrates. Subsection 1.2.5 mentions one defense of
mixed strategies, which is that it represents a large population of players

H T
H . 1,-1 . =11

1
1

T =11 1,1

Figure 1.8
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who use different pure strategies. If we insist that there is only one “player
1.” though, this interpretation does not apply. Harsanyi (1973a) offered the
alternative defense that the “mixing” should be interpreted as the result of
small, unobservable variations in a player’s payoffs. Thus, in our example,
sometimes player 1 might prefer matching on T to matching on H, and
conversely. Then, for each value of his payofl, player 1 would play a pure
strategy. This “purification” of mixed-strategy equilibria is discussed in
chapter 6.

Example 1.7: Inspection Game

A popular variant of the "matching pennies” game is the “inspection game,”
which has been applied to arms control, crime deterrence, and worker
incentives. The simplest version of this game is depicted in figure 1.9. An
agent (player 1) works for a principal (player 2). The agent can either
shirk (S) or work (W). Working costs the agent g and produces output of
value ¢ for the principal. The principal can either inspect (I) or not inspect
(NI). An inspection costs 4 to the principal but provides evidence of whether
the worker shirks. The principal pays the agent a wage w unless he has
evidence that the agent has shirked. (The principal is not allowed to
condition the wage on the observed level of output.) If the agent is caught
shirking, he gets 0 (because of limited liability). The two players choose
their strategies simultaneously (in particular, the principal does not know
whether the worker has chosen to shirk when he decides whether to
inspect). To limit the number of cases to consider, assume that g > h > 0,
To make things interesting we also assume that w > g (otherwise working
would be a weakly or strictly dominated strategy for the agent).

There is no pure-strategy equilibrium in the inspection game: If the
principal does not inspect, the agent strictly prefers shirking, and therefore
the principal is better off inspecting as w > h. On the other hand, if the
principal inspects with probability 1 in equilibrium, the agent prefers
working (as w > g), which implies that the principal is better off not
inspecting. Thus, the principal must play a mixed strategy in equilibrium.
Similarly, the agent must also randomize. Let x and y denote the probabili-
ties that the agent shirks and the principal inspects, respectively. For the
agent to be indifferent between shirking and working, it must be the case
that the gain from shirking (g} equals the expected loss in income (yw). For
the principal to be indifferent between inspecting and not inspecting, the

W w-gv-w-hl w-gv-w

Figure 1.9
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cost of inspection (h) must equal the expected wage savings (xw). Hence,
¥ =g/wund x = h/w (both x and y belong to (0, 1)).°

1.24 Multiple Nash Equilibria, Focal Points, and Pareto Optimality

Many games have several Nash equilibria. When this is the case, the
assumption that a Nash equilibrium is played relies on there being some
mechanism or process that leads all the players to expect the same
cquilibrium.

One well-known example of a game with multiple equilibria is the “battle
of the sexes,” illustrated by figure 1.10a. The story that goes with the name
“battle of the sexcs” is that the two players wish to go to an event together,
but disagree about whether to go to a football game or the ballet. Each
player gets a utility of 2 if both go to his or her preferred event, a utility of
I 1f both go to the other’s preferred event, and 0 if the two are unable to
agree and stay home or go out individually. Figure 1.10b displays a closely
related game that goes by the names of “chicken™ and “hawk-dove.” (Chap-
ter 4 discusses a related dynamic game that is also called “chicken.”) One
version of the story here is that the two players meet at a one-lane bridge
and each must choose whether to cross or to wait for the other. If both
play T (for “tough™), they crash in the middle of the bridge and get — |
cach:if both play W (for “weak™), they wait and get 0; if one player chooses
T and the other chooses W, then the tough player crosses first, recerving
2. and the weak one receives 1. In the bridge-crossing story, the term
“chicken” is used in the colloguial sense of “coward.” (Evolutionary
biologists call this game “hawk-dove,” because they interpret strategy T
as “hawk-like™ and strategy W as “dove-like.”)

Though the diffcrent payoff matrices in figures 1.10a and 1.10b describe
different sorts of situations, the two games are very similar. Each of them
has three equilibria: two in pure strategies, with payoffs (2, 1) and (1,2), and

¢. Building on this result, one can compute the optimal contract, i.., the w that maximizes
the principal’s expected payofl

(=) w(l —xpb—hy = (1 — hiw) — w.

The optimal wage is thus w ~ /hr (assuming \/"hv > g). Note that the principal would be
better off if he could “commit™ to an inspection level. To see this, consider the different game
in which the principal plays first and chooses a probability y of inspection, and the agent,
after vbserving y, chooses whether to shirk. For a given w (>g), the principal can choose
V= y/w + ¢ where 2 1s positive and arbitrarily small. The agent then works with probability
I, and the principal has (approximately) payoff

=W hgiw > oe(] - hiw) — w

Technically, commitment eliminates the constraint xw > h, (i.e, that it is ex post worthwhile
to inspect). (It is crucial that the principal is committed to inspecting with probability y. If
the “toss of the coin™ determining inspection is not public, the principal has an ex post incentive
not to inspect, as he knows that the agent works.) This reasoning will become familiar in
chapter 3. See chapters 5 and 10 for discussions of how repeated play might make the
commitment credible whereas it would not be if the game was played only once.
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Figure 1.10

one that is mixed. In the battle of the sexes, the mixed equilibrium is that
player 1 plays F with probability £ (and B with probability ) and player
2 plays B with probability Z (and F with probability 3). To obtain these
probabilities, we solve out the conditions that the players be indifferent
between their two pure strategies. So, if x and y denote the probabilities
that player 1 plays F and player 2 piays B, respectively, player 1's in-
difference between F and B is equivalent to

OGy+2(1—y=1y+0(1 - p),
or
y=1
Similarly, for player 2 to be indifferent between B and F it must be the case
that

0 x+2(1—x)=1x+0-( —x),
or
x=1

In the chicken game of figure 1.10b, the mixed-strategy equilibrium has
players ! and 2 play tough with probability 3.

If the two players have not played the battle of the sexes before, it is
hard to see just what the right prediction might be, because there is
no obvious way for the players to coordinate their expectations. In this case
we would not be surprised to see the outcome (B, F). (We would still be
surprised if (B, F) turned out to be the “right” prediction, i.e., if it occurred
almost every time.) However, Schelling’s (1960) theory of “focal points”
suggests that in some “real-life” situations players may be able to coordi-
nate on a particular equilibrium by using information that is abstracted
away by the strategic form. For example, the names of the strategies
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may have some commonly understood “focal” power. For example, sup-
pose two players are asked to name an exact time, with the promise of a
reward if their choices match. Here “12 noon™ is focal; “1:43 p.M.” is not.
One reason that game theory abstracts away from such considerations is
that the “focalness” of various strategies depends on the players’ culture
and past experiences. Thus, the focal point when choosing between “Left”
and “Right™ may vary across countries with the direction of flow of auto
traffic.

Another example of multiple equilibria is the stag-hunt game we used to
begin this chapter, where each player has to choose whether to hunt hare by
himself or to join a group that hunts stag. Suppose now that there are {
players, that choosing hare gives payoff 1 regardless of the other players’
actions, and that choosing stag gives payoff 2 if all players choose stag and
gives payoff O otherwise. This game has two pure-strategy equilibria: “all
stag” and “all hare.” Nevertheless, it is not clear which equilibrium should
be expected. In particular, which equilibrium is more plausible may depend
on the number of players. With only two players, stag is better than hare
provided that the single opponent plays stag with probability 3 or more,
and given that “both stag” is efficient the opponent might be judged this
likely to play stag. However, with nine players stag is optimal only if
there is a probability of at least } that all eight opponents play stag; if
each opponent plays stag with probability p independent of the others, then
this requires p® > 1, or p 2 0.93. In the language of Harsanyi and Selten
(19¥8), “all hare™ risk-dominates “all stag.”*° (See Harsanyi and Selten 1988
for a formal definition. In a symmetric 2 x 2 game—that is, a symmetric
two-player game with two strategies per player—if both players strictly
prefer the same action when their prediction is that the opponent ran-
domizes -3, then the profile where both players play that action is the
risk-dominant equilibrium.)

Although risk dominance then suggests that a Pareto-dominant equi-
librium need not always be played, it is sometimes argued that players will

[). Very similar games have heen discussed in the economics literature, where they are called
“coordination failures.” For example, Diamond (1982) considered a game where two players
have to decide whether to produce one unit of a good that they cannot consume themselves
in the hope of trading it for a good produced by the other player. Consumption yields
2 units of utility, and production costs | unit. Trade takes place only if both players have
produced. Not producing yields 0; producing yields 1 if the opponent produces and — 1
otherwise. This game is exactly “stag hunt” in the two-player case. With more players the twa
games can differ, as the payoff to producing might not equal 2 but might instead be

2{no. of opponents who produce)/{total no. of oppanents) — 1,

assuming that a trader is matched randomly to another trader, who may or may not have
produced. The literature on network cxternalities in adopting a new technology (e.g. Farrell
and Saloner 1985} is a more recent study of coordination problems in economics. For example,
all players gain if all switch to the new technology: but if less than half of the population is
going to switch, each individual is better off staying with the old technology.
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U 9.9 0.8
D 8,0 7.7
Figure 1.11

in fact coordinate on the Pareto-dominant equilibrium (provided one
exists) if they are able to talk to one another before the game is played. The
intuition for this is that, even though the players cannot commit themselves
to play the way they claim they will, the preplay communication lets the
players reas ure one another about the low risk of playing the strategy of
the Pareto-dominant equilibrium. Although preplay communication may
indeed make the Pareto-dominant equilibrium more likely in the stag-hunt
game, it is not clear that it does so in general.

Consider the game iliustrated in figure 1.11 (from Harsanyi and Selten
1988). This game has two pure-strategy equilibria ({U,L) with payoffs
(9.9 and (D, R) with payoffs (7, 7)) and a mixed equilibrium with even lower
payoffs. Equilibrium (U, L) Pareto-dominates the others. Is this the most
reasonable prediction of how the game will be played?

Suppose first that the players do not communicate before play. Then,
while the Pareto efficiency of (U,L) may tend to make it a focal point,
playing D is much safer for player 1, as it guarantees 7 regardless of how
player 2 plays. and player 1 should play D if he assesses the probability of
R 10 be greater than } (so (D,R) is risk dominant). Moreover, player 1
knows that player 2 should play R if player 2 believes the probability of
D is more than }. In this situation we are not certain what outcome to
predict.

Does (U, L) become compelling if we suppose that the players are able
to meet and communicate before they play? Aumann (1990) argues that the
answer is no. Suppose that the players meet and assure each other that they
plan to play (U, L). Should player ! take player 2’s assurances at face value?
As Aumann observes, regardless of his own play, player 2 gains if player 1
plays U; thus, no matter how player 2 intends to play, he should tell player
I that he intends to play L. Thus, it is not clear that the players should
expect their assurances to be believed, which means that (D, R) might be
the outcome after all. Thus, even with preplay communication, (U, L) does
not secem like the necessary outcome, although it may seem more likely
than when communication is not possible.

Another difficulty with the idea that the Pareto-dominant equilibrium is
the natural prediction arises in games with more than two players. Consider
the game illustrated in figure 1.12 (taken from Bernheim, Peleg, and Whins-
ton 1987). where player t chooses rows, player 2 chooses columns, and
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U 00,10 -5-5,0 U —2,—2,02-5.—5.0]
D -5-80 1,1-5 D -5-50/-1,-15,
; Do
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Figure 1.12

player 3 chooses matrices. (Harsanyl and Sciten (1988) give a closely
related example where player 3 moves before players | and 2.) This game
has two pure-strategy Nash equilibria, (U,L,A) and (D,R,B), and an
equilibrium in mixed strategies. Bernheim, Peleg, and Whinston do not
consider mixed strategies, so we will temporarily restrict our attention to
pure ones. The equilibrium (U, L, A) Pareto-dominates (D, R, B). Is (U, L, A)
then the obvious focal point? Imagine that this was the cxpected solution,
and hold player 3's choice fixed. This induces a two-player game between
players 1 and 2. In this two-player game, (D, R) is the Pareto-dominant
equlibrium! Thus, if players 1 and 2 expect that player 3 wili play A, and
if they can coordinate their play on their Pareto-preferred equilibrium in
matrix A, they should do so, upseting the “good” equilibrium (U, L, A).

[n response to this example, Bernheim, Peleg, and Whinston propose the
idea of a coalition-proof equilibrium, as a way of extending the idea of
coordinating on the Pareto-dominant equilibrium to games with more
than two players.'!

To summarize our remarks on multiple equilibria: Although some games
have focal points that are naturai predictions, game theory lacks a general
and convincing argument that a Nash outcome will occur.’? However,
equilibrium analysis has proved useful to economists, and we will focus
attention on equilibrium in this book. (Chapter 2 discusses the “rationaliza-
bility™ notion of Bernheim and Pearce, which investigates the predictions

1. The definition of a coalition-proof equilibrium proceeds by induction an coalition size.
First one requires that no one-player coalition can deviate, 1.e., that the given strategics are a
Nash equilibrium. Then one requires that no two-player coalition can deviate, given that once
such a deviation has “occurred™ either of the deviating players (but none of the others) is free
to deviate again. That is, the two-player deviations must be Nash equilibria of the two-player
game induced by holding the strategies of the others fixed. And one proceeds in this way up
to the coalition of all players. Clearly (U, L, A) in figure 1.12 is not coalition-proof; brief
inspection shows that (D, R, B) is.

Coalition-proof equilibrium s a weakening of Aumann’s {1959) “strong equitibrium,”™ which

requires that no subset of players, taking the actions of others as given, can jointly deviate in
a way that increases the payolls of all its members. Since this requirement applies to the grand
coalition of all players, strong cquilibria must be Parcto cfficient, unlike coalition-proof
equilibria. No strong equilibrium exists in the game of figure 1.12.
12. Aumann (1987} argues that the “Harsanyi doctrine.” according to which all players’ beliefs
must be consistent with Bayesian updating from a common prior, implies that Bayesian
rational players must predict a “correlated equilibrium™ (a generalization of Nash equilibrium
defined in section 2.2).
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one can make without invoking equilibrium. As we will see, rationaliza-
bility is closely linked to the notion of iterated strict dominance.)

1.2.5 Nash Equilibrium as the Result of Learning or Evolution

To this point we have motivated the solution concepts of dominance,
iterated dominance, and Nash equilibrium by supposing that players make
their predictions of their opponents’ play by introspection and deduction,
using their knowledge of the opponents’ payoffs, the knowledge that the
opponents are rational, the knowledge that each player knows that the
others know these things, and so on through the infinite regress implied by
“common knowledge.”

An alternative approach to introspection for explaining how players
predict the behavior of their opponents is to suppose that players extra-
polate from their past observations of play in “similar games,” either with
their current opponents or with “similar™?? ones. At the end of this subsec-
tion we will discuss how introspection and extrapolation differ in the nature
of their assumptions about the players’ information about one another.

The idea of using learning-type adjustment processes to explain equi-
librium goes back to Cournot, who proposed a process that might lead the
players to play the Cournot-Nash equilibrium outputs. In the Cournot
adjustment process, players take turns setting their outputs, and each
player’s chosen output is a best response 1o the output his opponent chose
the period before. Thus, if player 1 moves first in period 0, and chooses
47, then player 2’s output in period 1 is g} = r,(¢?), where r, is the Cour-
not reaction function defined in example 1.3. Continuing to iterate the
process,

41 = ri(a3) = r,(ra(q?)),

and so on. This process may settle down to a steady state where the output
levels arc constant, but it need not do so. If the process does converge to
(gt.4q%), then g3 = ry(g¥) and gF = r,(g%}), so the steady state is a Nash
equilibrium.

[f the process converges to a particular steady state for all initial quanti-
ties sufficiently close to it, we say that the stcady state is asymptotically
stable. As an example of an asymptotically stable equilibrium, consider the
Cournot game where p(q) =1 — g, ¢;(q;) = 0, and the feasible sets are
Qi = [0, 1]. The reaction curves for this game are r,(g;) = (1 — ¢,)/2, and the
unique Nash equilibrium is at the intersection of the reaction curves, which

is the point 4 = (3, }). Figure 1.13 displays the path of the Cournot adjust-

t3. Of course the distinction between introspection and extrapolation is not absolute. One
might suppose that introspection leads to the idea that cxtrapolation is likely to work, or
conversely that past experience has shown that introspection is likely to make the correct
prediction.
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Figure 1.13

ment or tdtonnement process for the initial condition ¢¢ = &. The process
converges to the Nash equilibrium from every starting point; that is, the
Nash equilibrium is globally stable.

Now suppose that the cost and demand functions yield reaction curves
as in figure 1.14 (we spare the reader the derivation of such reaction
functions from a specification of cost and demand functions). The reaction
functions in figure 1.14 intersect at three points, B, C, and D, all of which
are Nash equilibria. Now, however, the intermediate Nash equilibrium, C,
is not stable, as the adjustment process converges either to B or to D unless
it starts at exactly C.

Comparing figures 1.13 and 1.14 may suggest that the question of asymp-
totic stahility is related to the relative slopes of the reaction functions, and
this is indeed the case. If the payoff functions are twice continuously
differentiable, the slope of firm i’s reaction function is

dr, u, [8%u

P —
> 2
dyg; dq;0q;! O4;

and a sufficient condition for an equilibrium to be asymptotically stable is
AN

dr,
dq,

dr,

<1
dq,

or

0w, u,  *uy Otu,

24,09, 6q,3q, 097 0q}

in an open neighborhood of the Nash equilibrium,
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Technical aside The condition for asymptotic stability when firms react
simultaneously, instead of alternatively, to their opponent’s most recent
outputs is the same as the one just described. To see this, suppose that both
players simultancously adjust their quantities each period by choosing a
best response to their opponent’s output in the previous period. View this
as a dynamic process

4" =(41.9%) = (n(gy " hralai ) = flg"").

From the study of dynamical systems (Hirsch and Smale 1974), we know
that a fixed point g* of f is asymptotically stable in this process if all the
cigenvalues of éf(g*) have rcal parts whose absolute value is less than 1.
The condition on the slopes of the reaction functions is exactly sufficient
to imply that this cigenvalue condition is satisfied. Classic references on the
stability of the Cournot adjustment process include Fisher 1961, Hahn
1962, Scade 1980, and Dixit 1986; see Moulin 1986 for a discussion of more
recent work and of subtleties that arise with more than two players.

One way to interpret Cournot’s adjustment process with either alternat-
ing or simultaneous adjustment is that in each period the player making
a move expects that his opponent’s output in the future will be the same
as it 1s now. Since output in fact changes every period, it may seem more
plausible that players base their forecasts on the average valuc of their
opponent’s past play, which suggests the alternative dynamic process

-1
q: = ri( _ZO qu./t)-

This alternative has the added valuc of converging under a broader set
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of assumptions, which makes it more useful as a tool for computing
cquilibria.'®

However, cven when players do respond to the past averages of their
opponents’ play, the adjustment process need not converge, especially once
we move away from games with one-dimensional strategy spaces and
concave payoffs. The first example of cycles in this context is due to Shapley
(1964), who considered the gamec illustrated here in figure 1.15,

Suppose first that, in each period, each player chooscs a best response
to the uction his opponent played the period before. If play starts at the
point (M, L), it will proceed to trace out the cycle (M, L), (M.R), (U, R),
(U, M), (D, M), (D, L}, (M, L). If instead players take turns reacting to one
another’s previous action, then once again play switches from one point to
the next cach period. If playcrs respond to their opponents’ average play,
the play cycles increasingly (in fact, geometrically) siowly but never con-
verges: Once (M, L) is played, (M, R) occurs for the next two periods, then
player | switches to U; (U, R) occurs for the next four periods, then player
2 switches to M after eight periods of (U, M), player 1 switches to D: and so
on.

Thus, even assuming that behavior follows an adjustment process does
not imply that play must converge to a Nash equilibrium. And the adjust-
ment processes are not compelling as a description of players' behavior.
One problem with all the processes we have discussed so far is that the
players ignore the way that their current action will influence their oppo-
nent’s action in the next period. That is, the adjustment process itself may
not be an equilibrium of the “rcpeated game,” where players know they
face one another repeatedly.'® Tt might seem natural that if the same two
players face cach other repeatedly they would come to recognize the
dynamic effect of their choices. (Note that the effect is smaller if players
react to past averages.)

14. For a detailed study of convergence when Cournot oligopolists respond to averages, see
Thorlund-Petersen 1990,

15.1f firms have perfect foresight, they choose their output taking into account its effect on
their rival’s future reaction. On this, see exercise 13.2. The Cournot titonnement process can

be viewed as a special case of the perfect-foresight model where the firms have discount factor
(1.
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A related defense of Nash equilibrium supposes that there is a large
group of players who are matched at random and asked to play a specific
game. The players are not allowed to communicate or even to know who
their opponents are. At each round, each player chooses a strategy. ob-
serves the strategy chosen by his opponent, and receives the corresponding
payoff. If there are a great many players then a pair of players who are
matched today are unlikely to meet again, and players have no reason to
worry about how their current choice will affect the play of their future
opponents. Thus, in each period the players should tend to play the strategy
that maximizes that period’s expected payoff. (We say “tend to play” to
allow for the possibility that players may occasionally “experiment” with
other choices.)

The next step is to specify how players adjust their expectations about
their opponents’ play in light of their experience. Many different specifica-
tions are possible, and, as with the Cournot process, the adjustment process
need not converge to a stable distribution. However, if players observe their
opponents’ strategies at the end of each round, and players eventually
receive a great many observations, then one natural specification is that
cach player's expectations about the play of his opponents converges
to the probability distribution corresponding to the sample average of play
he has observed in the past. In this case, if the system converges to
a steady state, the steady state must be a Nash equilibrium.*®

Caution The assumption that players observe one another's strategies at
the end of each round makes sense in games like the Cournot competition
where strategies correspond to uncontingent choices of actions, In the
general extensive-form games we introduce in chapter 3, strategies are
contingent plans, and the observed outcome of play need not reveal the
action a player would have used in a contingency that did not arise
(Fudenberg and Kreps 1988).

The idea of a large population of players can also be used to provide an
alternative interpretation of mixed strategies and mixed-strategy cquilibria.
Instead of supposing that individual players randomize among several
strategics, 4 mixed strategy can be viewed as describing a situation in which
different fractions of the population play different pure strategies. Once
again a Nash equilibrium in mixed stratcgics requires that all pure strate-
gics that receive positive probability arc cqually good responses, since if one
pure strategy did better than the other we would expect more and more of
the players to learn this and switch their play to the strategy with the higher
payofl.

16. Recent papers on the cxplanation of MNash equilibrium as the result of learning include
Gul 1989, Milgrom and Roberts 1989, and Nyarko 1989.
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The large-population model of adjustment to Nash equilibrium has yet
another application: It can be used to discuss the adjustment of population
fractions by evolution as opposed to learning. In theoretical biology, May-
nard Smith and Price (1973) pioneered the idea that animals are genetically
programmed to play different pure strategies, and that the genes whose
strategies are more successful will have higher reproductive fitness. Thus,
the population fractions of strategies whose payoff against the current
distribution of opponents’ play is relatively high will tend to grow at a
faster rate, and, any stable steady statc must be a Nash equilibrium.
(Non-Nash profiles can be unstable steady states, and not all Nash equi-
libria are locally stable.) It is interesting to notc that there is an extensive
litcrature applying game theory to questions of animal behavior and of the
determination of the relative frequency of male and female offspring.
(Maynard Stith 1982 is the classic reference.)

More recently, some economists and political scientists have argued that
cvolution can be taken as a metaphor for learning, and that evolutionary
stability should be used more broadly in economics. Work in this area
inciudes Axelrod’s (1984} study of evolutionary stability in the repeated
prisoner’s dilemma game we discuss in chapter 4 and Sugden’s (1986) study
of how evolutionary stability can be used to ask which equilibria are more
likely to become focal points in Schelling’s sense.

To conclude this section we compare the informational assumptions of
deductive and extrapolative explanations of Nash equilibrium and iterated
strict dominance. The deductive justification of the iterated deletion of
strictly dominated strategies requires that plavers are rational and know
the payoff functions of all playcrs, that they know their opponents are
rational and know the payoff functions, that they know the opponents
know. and so on for as many stcps as it takes for the iterative process to
terminate. In contrast, if players play one another repeatedly, then, even if
players do not know their opponents’ payoffs, they will eventually learn
that the opponents do not play certain strategies, and the dynamics of the
Icarning system will replicate the iterative deletion process. And for an
cxtrapolative justification of Nash equilibrium, it suffices that players know
their own payoffs, that play eventually converges to a steady state, and that
if play does converge all players eventually learn their opponents’ steady-
state strategies. Players need not have any information about the payoff
functions or information of their opponents.

Of course, the reduction in the informational requirements is made
possible by the additional hypotheses of the learning story: Players must
have enough experience to learn how their opponents play, and play must
converge to a steady state. Moreover, we must suppose either that there
is a large population of players who are randomly matched, or that,
cven though the same players mcet one another repeatedly, they ignore
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any dynamic links between their play today and their opponents’ play
(OmMorrow.

1.3

1.3.1

Existence and Properties of Nash Equilibria (technical

!

We now tackle the question of the existence of Nash equilibria. Although
some of the material in this section is technical, it is quite important for
those who wish to read the formal game-theory literature. However, the
section can be skipped in a first reading by thosc who are pressed for time
and have little interest in technical detail.

Existence of a Mixed-Strategy Equilibrium

Theorem 1.1 (Nash 1950b} Every finitc strategic-form game has a mixed-
strategy equilibrium.

Remark Remcmber that a pure-strategy equilibrium is an equilibrium in
degenerate mixed strategics. The theorem does not assert the existence of an
equilibrium with nondegencrate mixing.

Proof Since this is the archetypal existence proof in game theory, we will
go through it in detail. The idea of the proof is to apply Kakutani’s
fixed-point theorem to the players’ “reaction correspondences.” Player i's
reaction correspondence. r;, maps each strategy profile o to the set of mixed
strategies that maximize player i's payoff when his opponents play o ;.
(Although r, depends only on ¢_; and not on g;, we write it as a function of
the strategies of all players. because later we will look for a fixed point in the
space T of strategy profiles.) This is the natural generalization of the
Cournot reaction function we defined above. Define the correspondence
r: £ 3 ¥ to be the Cartesian product of the r,. A fixed pointof risa o
such that o € r(a), so that, for each player, o; € ri(o). Thus, a fixed point
of r1s a Nash equilibrium.

From Kakutani’s theorem, the following are sufficient conditions for
r: Z 3 X to have a fixed point:

(1) X i1s a compact,'” convex,'® nonempty subset of a (finite-dimensional)
Euchidean space.

(2) rio) 1s nonempty for all o.

(3) r(o) 1s convex for all o.

17. A subset X of 4 Euclidean space is compact if any sequence in X has a subsequence that
converges Lo a limit point in X. The definition of compactness for more general topological
spaves uses the notion of “cover.” which is a collection of open sets whosc union includes the
set X. X s compact if any cover has a finite subcover.

18. A sct X in a linear vector space is convex if, for any x and x’ belonging to X and any
A |O0L) Ax + (1 £)x belongsto X.
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(4} r(-) has a closed graph: If (6", ") — (o, 6) with ¢” € r(a”), then ¢ € r(o).
(This property is also often referred to as upper hemi-continuity.'®)

Let us check that these conditions are satisfied.

Condition 1 is easy—ecach Z, is a simplex of dimension (# 5; — 1). Each
player’s payoff function is linear, and therefore continuous in his own mixed
strategy, and since continuous functions on compact sets attain maxima,
condition 2 is satisfied, If r(s) were not convex, there would be a ¢ € #(g),
a ag”er(o), and a A€ (0,1) such that i¢’ + (1 — A)o” ¢ ric). But for each
player i,

ulro! + (1 — Ao/ 0 ;) = Aule/ o) + (1 — Aulal o),

so that if both 6/ und ¢, are best responses to o_,, then so is their weighted
average. This verifics condition 3.

Finaily, assume that condition 4 is violated so there is a sequence
(a".8") > (5.6), 6" € r(c"), but & ¢ r(v). Then 6, ¢ r,(s) for some player i.
Thus, there is an ¢ > 0 and a g such that wlo],0_;) > uié,,6_;) + 3s.
Since u; 1s continuous and (6", 6"} — (o, 6), for n sufficiently large we have

ula .al,) > ulo/, o ;) — e > wld,0_;) + 2e > udé",a”,) + ¢

Thus. o; does strictly better against a”; than ¢" does, which contradicts
a; € rdo"™). This verifies condition 4. [ ]

Once cxistence has been cstablished, it is natural to consider the char-
acterization of the equilibrium set. ldeally one would prefer there to be
&4 unique equilibrium, but this is true only under very strong conditions.
When several equilibria exist, one must see which, if any, seem to be
reasonable predictions. but this requires examination of the entire Nash set,
The reasonableness of one equilibrium may depend on whether there are
others with competing claims. Unfortunately, in many interesting games
the set of equilibria is difficult to characterize.

Nash-Equilibrium Correspondence Has a Closed Graph

We now analyze how the set of Nash cquilibria changes when the payoff
functions change continuously with some parameters. The intuition for the
results can be gleancd from the case of a single decision maker (see figure
1.16). Suppose that the decision maker gets payoff | + 4 when playing L
and 1/ when playing R. Let x denote the probability that the decision
maker plays L, and consider the optimal x for each 2 in [—1,1]. This

[9. The graph of a correspondence f: X =2 ¥ is the set of {x.)) such that ¥y € f(x). Upper
hemi-cantinuity requires that, for any x,, and for any open set V that contains f(x,). there
exists a neighborhood U of x4 such thal f{x) € Vif xe U, In general this differs from
the clased-graph notion, but the two concepts coincide if the range of f is compact and f(x)
15 closed for each x—conditions which are generally satisficd when applying fixed-point
theorems. See Green and Heller 1981,
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defines the Nash-cquilibrium correspondence for this one-player game.
In particular, for 4 = 0, any x € [0, 1] is optimal. Figure 1.17, which exhib-
its the graph of the Nash correspondence (in bold), suggests its main
properties. First, the correspondence has a closed graph (is upper hemi-
continuous). For any sequence (4", x"} belonging to the graph of the cor-
respondence and converging 1o some (4, x}, the limit (4, x) belongs to the
graph of correspondence.?® Second, the correspondence may not be “lower
hemi-continuous.” That is, there may exist (4, x} belonging to the graph of
the correspondence and a sequence A” — 4 such that there exists no x” such
that (2", x"} belongs to the graph of the correspondence and x” — x. Here,
tauke 4 = 0 and x € (0, 1). These two properties generalize to multi-player
situations.**

One key step in the proof of existence of subsection 1.3.1 is verifying that
when payofls are continuous the reaction correspondences have closed
graphs. The same argument applies to the set of Nash equilibria: Consider
a family of strategic-form games with the same finite pure-strategy space S
and payoffs u(s, 4) that are continuous functions of 4. Let G(4) denote the
game associated with ~ and let E(-) be the Nash correspondence that
associates with each 4 the set of (mixed-strategy) Nash equilibria of G(A).
Then, if the set of possible values A of 2 is compact. the Nash correspon-
dence has a closed graph and, in particular, E(4) i1s closed for each 4. The
proof s as in the verification of condition (4) in the existence proof. Con-

20. This result is part of the “theorem of the maximum™ {Berge 1963).

21. A correspondence . X = Yis lower hemi-continuous if. for any (x, v} € X x Ysuch that
v € fix), and any sequence x" € X such that x" — x, there cxists a sequence y" in Ysuch that
"=y and v" ¢ f(x") for each x".
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sider two sequences " — A and ¢” — o such that ¢" € r(¢”) and o ¢ r(o).
That is, ¢” 1s a Nash equilibrium of G(4"), but 4 is not a Nash equilibrium
of G(4), Then there is a player i and a ¢; that does strictly better than o,
against o_;. Since payoffs are continuous in A, for any A" near /. and
any o, near o ,, d; is a strictly better response to ¢°, than ¢! is—a
contradiction.

It is important to note that this does not mean that the correspondence
£(-) 1s continuous. Loosely speaking, a closed graph (plus compactness)
implies that the set of equilibria cannot shrink in passing to the limit. If ¢”
are Nash equilibria of G(A"} and 4" — 4, then ¢" has a limit point ¢ € E(4).
However, E(4) can contain additional cquilibria that are not limits of
equilibria of “nearby” games. Thus, E(-)is not lower hemi-continuous, and
hence is not continuous. We illustrate this with the two games in figure
1.18. In both of these games, (U, L) is the unique Nash equilibrium if 4 < 0,
while for 2 > 0 there are three equilibria (U, L), (D, R), and an equilibrium
in mixed strategics. While the equilibrium correspondence has a closed
graph in both games, the two games have very different sets of equilibria
at the point A = 0.

First consider the game itlustrated in figurc 1.18a. For 4 > 0, there are
two pure-strategy equilibria and a unique equilibrium with nondegenerate
mixing, as each player can be indifferent between his two choices only if
the other player randomizes. If we let p denote the probability of U and 4
denote the probability of L, a simple computation shows that the unique
mixed-strategy equilibrium is

oo (2
PO =3y 4 4)

As required by a closed graph, the profiles (p, ¢) = (1, 1), (0, 0), and (3.0) are
all Nash equilibria at 4 = 0. There are also additional equilibria for 2 = 0
that are not limits of cquilibria for any sequence A* — 0, namely (p, 0) for
any p e [0,5]. When /. = 0, player 1 is willing to randomize even if player
2 plays R with probability 1, and so long as the probability of U is
not too large player 2 is stitl willing to play R. This illustrates how the
cquilibrium correspondence can fail to be lower hemi-continuous.

In the game of figure 1.18b, the equilibria for 4 > 0 are (1, 1), (0,0),
and (A1 + A), 241 + 1)), whereas for 2 = 0 there are only two equilibria;
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(1. 1) and (0, 0). (To see this, note that if p is greater than O then player 2
will sct ¢ = 1, and so p must cqual [, and (1, 1)1s the only equilibrium with
g > 0.)

At first sight a decrease in the number of cquilibria might appear to
violate the closed-graph property. but this is not the case: For 4 positive
but small. the mixed-strategy equilibrium (4/(1 + A), 2/(1 + A})is very close
to the pure-strategy cquilibrium (0,0). Figures 1.19 and 1.20 display the
cquilibrium correspondences of these two games. More precisely, for each
~ we display the set of p such that (p, g) 1s an equilibrium of N (4) for some
g: this allows us to give a two-dimensional diagram.

Inspection of the diagrams reveals that each of these games has an odd
number of Nash equilibria everywhere except 4 = 0. Chapter 12 explains
that this observation is generally true: If the strategy spaces are held fixed,
thereis an odd number of Nash equilibria for “almost all” payoff functions.

Finally, note that in figures 1.18a and 1.18b, although (D. R} is not a Nash
cquilibrium for 4 < 0, it is an “s-Nash equilibrium” in the sense of Radner
(1980) if & > {4|: Each player’s maximum gain to deviation is less than &.
More generally, an equilibrium of a given game will be an ¢-Nash equi-
librium for games “nearby”—a point developed and expioited by Fuden-
berg and Levine {1983, 1986), whose results are discussed in chapter 4.
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1.3.3  Existence of Nash Equilibrium in Infinite Games with Continuous Payoffs

Economists often use models of games with an uncountable number of
actions (as in the Cournot game of example 1.3 and the Hotelling game of
example 1.4). Some might argue that prices or quantitics are “really”
infinitely divisible, while others might argue that “reality” is discrete and
the continuum is a mathematical abstraction, but it is often easier to work
with a continuum of actions rather than a large finite grid. Moreover, as
Dasgupta and Maskin (1986} argue, when the continuum game does not
huave a Nash equilibrium, the equilibria corresponding to fine, discrete grids
{whose existence was proved in subsection 1.3.1) could be very sensitive to
exactly which finite grid is specified: If there were equilibria of the finite-grid
version of the game that were fairly insensitive to the choice of the grid,
one could take a sequence of finer and finer grids “converging” to the
continuum, and the limit of a convergent subsequence of the discrete-
action-space equilibria would be a continuum equilibrium under appropri-
ate continuity assumptions. (To put it another way, one can pick equilibria
of the discrete-grid version of the game that do not fluctuate with the
grid if the continuum game has an equilibrium.)

Theorem 1.2 (Debreu 1952; Glicksberg 1952; Fan 1952) Consider a
strategic-form game whose strategy spaces §; are nonempty compact con-
vex subsets of an Euclidean space. If the payoff functions u; are continuous in
s and quasi-concave in s, there exists a pure-strategy Nash equilibrium.*?

Proof The proofis very similar to that of Nash's theorem: We verify that
continuous payoffs imply nonempty, closed-graph rcaction correspon-
dences, and that quasi-concavity in players’ own actions implies that the
reaction correspondences are convex-valued. |

Note that Nash’s theorem is a special case of this theorem. The set of
mixed strategies over a finite set of actions, being a simplex, is a compact,
convex subset of an Euclidean space; the payoffs are polynomial, and
therefore quasi-concave, in the player’s own mixed strategy.

If the payolf functions are not continuous, the reaction correspondences
can fail to have a closed graph and/or fail to be nonempty. The latter
problem arises because discontinuous functions need not attain a maxi-
mum, as for example the function f(x) = —|x}, x # 0, f(0) = — 1. To scc
how the reaction correspondence may fail to have a closed graph even when
optimal reactions always exist, consider the foliowing two-player game:

Sl = SZ - [O‘ l],

s, 8,)= —(s; — Sz)zs

32, It is interesting to nole that Debreu (1952) used a generalization of theorem 1.2 to prove
that competitive equilibria exist when consumers have quasi-convex preferences.
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Here each player’s payoff is strictly concave in his own strategy, and a best
response exists (and is unique) for each strategy of the opponent. Howcver,
the game does not have a pure-strategy equilibrium: Player I's reaction
function is r,(s,) = s,, while player 2's reaction function is r,(s,) = s, — 3}
for 5, = },ry(s;) = s, + 1 for s; < 1, and these reaction functions do not
intersect.

Quasi-concavity is hard to satisfy in some contexts. For example, in the
Cournot game the quasi-concavity of payoffs requires strong conditions
on the second derivatives of the price and cost functions. Of course, Nash
cquilibria can exist even when the conditions of the existence theorems are
not satisfied, as these conditions are sufficient but not necessary. However,
in the Cournot case Roberts and Sonnenschein (1976) show that pure-
strategy Cournot equilibria can fail to exist with “mce™ preferences and
technologies.

The absence of a pure-strategy equilibrium in some games should not be
surprising, since pure-strategy equilibria nced not exist in finite games, and
these games can be approximated by games with real-valued action spaces
but nonconcave payoffs. Figure 1.21 depicts the payoffs of player 1, who
chooses an action s, in the interval [ s,,%, . Payoff function u, is contin-
uous in s but not quasi-concave in s,. This game is “almost™ a game wherc
player 1 has two actions, s; and s{. Suppose the same holds for player 2.
Then the game is similar to a game with two actions per player, and we
know (from “matching pennies,” for instance) that such games may have no
pure-strategy equilibrium.

When payoffs are continuous (but not nccessarily quasi-concave), mixed
strategies can be used to obtain convex-valucd reactions, as in the following
theorem.

Theorem 1.3 (Glicksberg 1952} Consider a strategic-form game whose
strategy spaces §; are nonempty compact subsets of a metric space. If the
payoff functions u, are continuous then there exists a Nash equilibrium
in mixed strategies.

u1(s1.82)

Figure 1.21
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Here the mixed strategies are the (Borel) probability measures over the
pure strategies, which we endow with the topology of weak convergence.*
Once more, the proof applies a fixed-point theorem to the reaction corre-
spondences. As we remarked above, the introduction of mixed strategies
again makes the strategy spaces convex, the payoffs linear in own strategy
and continuous in all strategies (when payoffs are continuous functions of
the pure strategies, they are continuous in the mixed strategies as well**),
and the reaction correspondences convex-valued. With infinitely many
pure strategies, the space of mixed strategies is infinite-dimensional, so a
more powerful fixed-point theorem than Kakutani’s is required. Alterna-
tively. one can approximate the strategy spaces by a sequence of finite grids.
From Nash’s theorem, each grid has a mixed-stratcgy equilibrium. One
then argues that, since the space of probability measures is weakly compact,
the sequence of these discrete equilibria has an accumulation point. Since
the payoffs are continuous, it is easy to verify that the limit point is an
equilibrium.

We have already seen that pure-strategy equilibria need not exist when
payoffs are discontinuous. There are many examples to show that in this
cuse mixed-strategy equilibria may fail to exist as well. (The oldest such
example we know of is given in Sion and Wolfe 1957-—see exercise 2.2
below.) Note: The Glicksberg theorem used above fails because when the
pure-strategy payoffs are discontinuous the mixed-strategy payoffs are
discontinuous too. Thus, as before, best responses may fail to exist for some
of the opponents’ strategies. Section 12.2 discusses the existence of mixed-
strategy equilibria in discontinuous games and conditions that guarantee
the existence of pure-strategy equilibria.

Exercises

Exercise 1.1* This exercisc asks you to work through the characterization
of ail the Nash equilibria of general two-player games in which each player
has two actions (i.e., 2 x 2 matrix games). This process is time consuming
but straightforward and is recommended to the student who is unfamitiar
with the mechanics of determining Nash equilibria.

Let the game be as illustrated in figure 1.22.

The pure-strategy Nash equilibria are easily found by testing each cell
of the matrix; e.g., (U,L) is a Nash equilibrium if and only if a > ¢ and
h=d.

23. Fix a compact metric space A. A sequence of measures x” on A converges “weakly™ to a
limit g if §fdp"— §fdu for cvery real-valued continuous function f on A. The set of
probability measures on 4 endowed with the topology of weak convergence is compact.

24. This is an immediate consequence of the definition of convergence we gave in note 23.



Strategic Form and Nash Equilibrium 37

L R
U ab c,d

D e,f g.h

Figure 1.22

Figure 1.23

To determine the mixed-strategy equilibria requires more work. Let x be
the probability player 1 plays U and let y be the probability player 2 plays
L. We provide an outline, which the student should complete:

(i} Compute each player’s reaction correspondence as a function of his
opponent’s randomizing probability.

(ii} For which parameters is player i indifferent between his two strategies
regardless of the play of his opponent?

{iii) For which parameters does player i have a strictly dominant
strategy?

(iv) Show that if neither plaver has a strictly dominant strategy, and the
game has a unique equilibrium, the equilibrium must be in mixed strategies.

{(v) Consider the particular cxample illustrated in figure 1.23.

(a) Derive the best-response correspondences graphically by plotting
player i’s payoff to his two pure strategies as a function of his opponent’s
mixed strategy.

(b) Plot the two rcaction correspondences in the (x,y) space. What are
the Nash equilibria?

Exercise 1.2* Find all the equilibria of the voting game of example 1.5.

Exercise 1.3 (Nash demand game)* Consider the problem of dividing a
pie between two players. If we let x and y denote player I's and player
2's payoffs, the vector (x,y) is feasible if and only if x > x4, ¥ = y,. and
g(x.y) < 1, where g is a differentiable function with ég/¢éx > Oand Jgy/cy >
0 (for instance, g(x, ¥) = x + y). Assume that the feasible set is convex. The
point (x,. o) will be called the status quo. Nash (1950a) proposed axioms
which implied that the “right” way to divide the pic is the allocation
(x*, v*) that maximizes the product of the differences from the status quo
(x — x,(y¥  ¥o)subject to the feasibility constraint g(x, ¥} < 1. In his 1953
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paper, Nash looked for a game that would give this axiomatic bargaining
solution as a Nash equilibrium.

(a} Suppose that both players simultaneously formulate demands x and
v I{x, y)isfeasible, each player gets what he demanded. If (x, y) is infeasible,
playcr | gets x,, and player 2 gets v,. Show that there exists a continuum of
pure-strategy equilibria, and, more preciscly, that any efficient division
(x.y) (i.c.. feasible and satisfying g(x, y) = 1) is a pure-strategy-equilibrium
outcome.

{b}** Consider Binmore’s (1981} version of the Nash “modified demand
game.” The feasible sct is defined by x > x,, y > v, and g(x, y) < z, where
z has cumulative distribution F on [z,Z] (suppose that Vz, the feasible
sct is nonempty). The players do not know the realization of z before
making demands. The allocation is made as previously, after the demands
arc made and z is realized. Derive the Nash-cquilibrium conditions. Show
that when F converges to a mass point at 1, any Nash equilibrium con-
verges to the axiomatic bargaining solution.

Exercise 1.4 (Edgeworth duopoly)**  There are two identical firms produc-
ing a homogeneous good whose demand curve is ¢ = 100 — p. Firms
simultaneously choose prices. Each firm has a capacity constraint of K. If
the firms choose the sume price they share the market equally. If the
prices arc unequal, p; < p;, the low-price firm, i, sells min(100 — p,, K) and
the high-price firm, j, sells min{max(0,100 — p, — K), K]. (There are many
possible rationing rules, depending on the distribution of consumers’
preferences and on how consumers are allocated to firms. If the aggregate
demand represents a group of consumers each of whom buys one unit if
the price p; is less than his reservation price of r, and buys no units
otherwise. and the consumer’s reservation prices are uniformly distributed
on [0,100], the above rationing rule says that the high-value consumers
are allowed to purchase at price p; before lower-value consumers are.) The
cost of production is 10 per unit.
{a) Show that firm 1’s payoff function is

((p, — 10)min(100 — p,, K), Py <p;
{p,— lo)min(so_pl/zoK)s Py =D

u(pyapy) =+ .
(py — 10O)mMIn(100 - K —p,K), p, >p,,p, <100-K

0, otherwise.

-

(b) Suppose 30 < K < 45. (Note that these inequalities are strict.) Show
that this game does not have a pure-strategy Nash equilibrium by proving
the following sequence of claims:

() If (py, p,) is a pure-strategy Nash equilibrium, then p, = p,. (Hint: If
p1 # pa. then the higher-price firm has customers (Why?) and so the
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lower-price firm's capacity constraint is strictly binding. What happens if
this firm charges a slightly higher pricc?)

(i1) If (p. p) is a pure-strategy Nash ecquilibrium, then p > 10.

{iii) If (p.p} is a pure-strategy Nash equilibrium, then p satisfies p <
00 2K.

(iv} If (p.p} is a purc-strategy Nash cquilibrium, then p = 100 — 2K.
(Hint: If p < 100 — 2K, is a deviation to a price between p and 100 — 2K
profitable for either firm?)

(v) Since K > 30, there exists & > 0 such that a price of 100 - 2K + ¢
curns 4 firm a higher profit than 100 - 2K when the other firm charges
100 — 2K.

Note: The Edgeworth duopoly game does satisfy the assumptions of theo-
rem 1.3 (restrict prices to the set [0,100]) and so has a mixed-strategy
cquilibrium.

Exercise 1.5 (final-offer arbitration)* Farber (1980) proposes the follow-
ing model of final-offer arbitration. There are three playcrs: a management
(i = 1),aunion{i = 2),and anarbitrator (i = 3). The armtrator must choosc
a settlement t € B from the two offers, s, € R and s, € R. made by the
management and the union respectively. The arbitrator has exogenously
given preferences v, = — (t — s0)%. That is, he would like to be as closc to
his “bliss point,” s,, as possible. The management and the union don’t know
the arbitrator’s bliss point; they know only that it is drawn from the
distribution P with continuous, positive density p on [ sy, 8o]- The manage-
ment and the union choose their offers simultancously. Their objective
functions are u, = —t and u, = +1, respectively.

Derive and interpret the first-order conditions for a Nash equilibrium.
Show that the two offers are equally likely to be chosen by the arbitrator.

Exercise 1.6¥* Show that the two-player game illustrated in figure 1.24
has 4 unique equilibrium. (Hint: Show that it has a unique pure-strategy
equilibrium; then show that player 1, say, cannot pul positive weight on
both U and M: then show that player 1, say, cannot put positive weight on
both U and D, but not on M, for instance.)

U ‘1-2 -211 00

M -21.1-2 00

D 0.0 0,0 1,1

Figure 1.24
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Exercise 1.7 (public good)* Consider an economy with I consumers with
“quasi-hnear” utility functions,

= V(x.0) + t,,

where ¢; is consumer i’s income, x is a public decision (for instance, the

yuantity of a public good), ¥(x, f};}is consumer i’s gross surplus for decision

x, and f} 1s a utility parameter. The monetary cost of decision x is C(x).
The socially efficient decision is

]
x*(0,....,0,) € arg max {Z Vi(x,0) — C(x}}.
X i=1

Assume (i) that the maximand in this program is strictly concave and (i1)
that for all ¢ ,, ¢, and ¢/,

0 # 0, = x¥0_,, 07) # X*(6_.6).

Condition ii says that the optimal decision is responsive to the utility
parameter of each consumer. (Condition 1 is satisfied if x belongs to R, V
is strictly concave in x, and C is strictly convex in x. Furthermore, if &,
belongs to an interval of R, ¥, and C are twice differentiable, ¢V,/0x&f, > 0
or < 0.and x* is an interior solution, then x* is strictly increasing or strictly -
decreasing in ), so that condition (ii) is satisfied as well.)

Now consider the following “demand-revelation game™. Consumers are
asked to announce their utility parameters simultaneously. A pure strategy
for consumer i is thus an announcement é; of his parameter (6, may differ
from the true parameter §,). The realized decision is the optimal one for the
announced parameters x*(8,,...,0,), and consumer i receives a transfer
from a “social planner” equal to

0y, 0 = K+ T Viekdy, o, 00,6) — Cx* 6y, ),

J#I
when K; 1s a constant.

Show that telling the truth is dominant, in that any report 6, # 0, is
strictly dominated by the truthful report 9,» = f;.

Because each player has a dominant strategy, it does not matter whether
he knows the other players’ utility parameters. Hence, even if the players do
not know one another’s payoffs (scc chapter 6), it is still rational for them
to tell the truth. This property of the dominant-strategy demand-revelation
mechanism (called the Groves mechanism) makes it particularly interesting
in a situation in which a consumer’s utility parameter is known only to that
consumer.

Exercise 1.8* Consider the following model of bank runs, which is due to
Diamond and Dybvig (1983). There are three periods (¢ = 0, 1, 2). There are
many consumers  a continuum of them, for simplicity. All consumers are
ex unte identical. At date 0, they deposit their entire wealth, St, in a bank.
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The bank invests in projects that yield $R each if the money is invested for
two periods, where R > 1. However, if a project is interrupted after one
period, it viclds only $1 (it breaks cven). Each consumer “dies™ (or “needs
money immediately™) at the end of date | with probability x, and lives for
two periods with probability 1 — x. He lcarns which one obtains at the
beginning of date 1. A consumer’s utility is u(c, } if he dies in period 1 and
ulc, + ¢,) if he dies in period 2, where w' > 0, 4" < 0, and ¢, and ¢, are
the consumptions in periods 1 and 2.

An optimal insurance contract {¢¥, ¢¥) maximizes a consumer’s ¢x anle or
expected utility. The consumer receives ¢ if he dies at date 1, and otherwise
consumes nothing at date 1 and reccives % at date 2. The contract satisfies
xe¥ + (I — x)c¥/R = 1(thebank breakseven)and u'(cT) = R u'(¢¥}(equal-
ity between the marginal rates of substitution). Note that | <cf <.
The issuc is whether the bank can implement this optimal insurance scheme
if it is unable to observe who needs money at the end of the first period.
Suppose that the bank offers to pay r, = ¢} to consumers who want to
withdraw their money in period 1. If f € [0, 1] is the fraction of consumers
who withdraw at date 1, each withdrawing consumer gets r, if fr; < 1, and
gets 1/( if fr, > L. Similarly, consumers who do not withdraw at date 1
receive max {0, R(1 — r, f)/(1 — f)} in period 2.

(a) Show that it is a Nash equilibrium for each consumer to withdraw at
date 1 if and only if he “dies” at that date.

(b) Show that another Nash ¢quilibrium exhibits a bank run {f = 1).

(c) Compare with the stag hunt.

Exercise 1.9* Suppose p(q) = @ - bg in the Cournot duopoly game of
example 1.3.

(a) Check that the second-order and boundary conditions for cquation
(1.3) are satisfied. Compute the Nash equilibrium.

(b) Now suppose there are [ identical firms, which all have cost function
¢i(q;) = ¢q;. Compute the limit of the Nash equilibria as [ — oc, Comment.

Fxercise 1.10*  Supposc there are I farmers, each of whom has the right
to graze cows on the village common. The amount of milk a cow produces
depends on the total number of cows, N, grazing on the green. The revenue
produced by n; cows is np(N) for N < N.and (N} = 0 for N > N, where
r(0) >0, ' <0, and " < 0. Each cow costs ¢, and cows are perfectly
divisible. Suppose v(0) > c¢. Farmers simultaneously decide how many
cows to purchase; all purchased cows will graze on the common.

{a) Write this as a game in strategic form.

(b) Find the Nash equilibrium, and compare it against the social
optimum.

(c) Discuss the rclationship between this game and the Cournot oligopoly
model.
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(This exercise, constructed by R. Gibbons, is based on a discussion in Hume
1739.)

Exercise 1.11**  We mentioned that theorem 1.3, which concerns the
cxistence of a mixed-strategy Nash equilibrium when strategy spaces arc
nonempty, compact subsets of a metric space (R”, say) and when the payoff
functions are continuous, can also be proved by taking a sequence of
discrete approximations of the strategy spaces that “converge” to it. Go
through the steps of the proof as carefully as you can.

Here is a sketch of the proof: Each discrete grid has a mixed-strategy
cquilibrium. By compactness, the scquence of discrete-grid equilibria has
an accumulation point. Argue that this limit must be an equilibrium of
the limit game with a continuum of actions. (This relies on the discrete
grids becoming increasingly good approximations and the payoffs being
continuous.)

Exercise 1.12*  Consider a simultaneous-move auction in which two play-
ers simuitancously choose bids, which must be in nonnegative intcger
multiples of onc cent. The higher bidder wins a dollar bill. If the bids are
cqual, neither player receives the dollar. Each player must pay his own bid,
whether or not he wins the dollar. (The loser pays too.) Each player’s utility
ts simply his net winnings; that is, the players are risk neutral. Construct a
symmetric mixed-strategy cquilibrium in which every bid less than 1.00 has
a positive probability.
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Iterated Strict Dominance, Rationalizability,
and Correlated Equilibrium

Most economic applications of game theory use the concept of Nash
equilibrium or one of the more restrictive “equilibrium refinements™ we
introduce in later chapters. However, as we warned in chapter 1, in some
situations the Nash concept seems too demanding. Thus, it is interesting
to know what predictions onc can make without assuming that a Nash
cquilibrium will occur. Section 2.1 presents the notions of iterated strict
dominance and rationalizability, which derive predictions using only the
assumptions that the structure of the game (i.e., the strategy spaces and the
payoffs) and the rationality of the players are common knowledge. As we
will see, these two notions are closely related, as rationalizability 1s essen-
tially the contrapositive of iterated strict dominance.

Section 2.2 introduces the idea of a correlated equilibrium, which extends
the Nash concept by supposing that players can build a “correlating device™
that sends cach of them a private signal before they choose their strategy.

2.1

2.11

Iterated Strict Dominance and Rationalizability '’

We introduced iterated strict dominance informally at the beginning of
chapter 1. We will now define it formally, derive some of its properties, and
apply it to the Cournot model, We will then define rationalizability and
relate the two concepts. As throughout, we restrict our attention to finite
gumes except where we explicitly indicate otherwise.

Iterated Strict Dominance: Definition and Properties

Definition 2.1 The process of iterated deletion of strictly dominated strat-
egies proceeds as follows: Set §7 = S; and £ = X,. Now define S} recur-
sively by
St =I5, e S' | there is nog; € £77! such that
u{o, s_;) > uls;, s_;)foralls ;e 8"}
and define
¥ =lo,e Llals;) > 0onlyifs; e §'}.

Set
S/ = ﬂ St

n=4)
S;” is the set of player i’s pure strategies that survive iterated deletion of
strictly dominated strategies. Set £ to be all mixed strategies o; such that
there is no a; with y;(a,s_;} > uo;,5_;) for all s_; € §Z;. This 1s the set of
player i's mixed stratcgies that survive iterated strict dominance.

In words, S” is the set of player i's strategies that are not strictly domi-
nated when players j # i are constrained to play strategies in §/~' and Zf
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is the set of mixed strategies over S7. Note, however, that £ may be smaller
than the set of mixed strategies over $”, The reason for this, as was shown
in figure 1.3, is that some mixed strategies with support S can be domi-
nated. (In that example, 57 = §; for both players i because no pure strategy
is eliminated in the first round of the process.)

Note that in a finite game the sequence of iterations defined above must
ccase to delete further strategies after a finite number of steps. The intersec-
tion §;" is simply the final set of surviving strategics. Note also that each
step of the iteration requires one more level of the assumption “I know that
you know ... that I know the payoffs.” For this reason, conclusions based
on a large number of iterations tend to be less robust to small changes in
the information players have about one another.

The reader may wonder whether the limit set §* = §* x -+ x § de-
pends on the particular way that we have specified the process of deletion
procceds: We assumed that at each iteration all dominated strategies of
cach player are deleted simultaneously. Alternatively, we could have elimi-
nated player I's dominated strategics, than player 2%s,..., then player I’s,
and started again with player 1,..., ad infinitum. Clearly there are many
other iterative procedures that can be defined to eliminate strictly domi-
nated strategies. Fortunately all these procedures yield the same surviving
strategies S and £, as is shown by exercise 2.1. (We will show in chapter
L'l that this property does not hold for weakly dominated strategies; that
s, which strategies survive in the limit may depend on the order of deletion.)

The reader may also wonder whether one could not delete all the domi-
nated (pure and mixed) strategies at each round of the itcrative process
instead of first deleting only dominated pure strategies and then deleting
mixed strategies at the end. The two ways to proceed actually yield the
same scts £ . The reason is that a strategy is strictly dominated against
all purc strategies of the opponents if and only if it is dominated against
all of their mixed strategies, as we saw in subsection 1.1.2. Thus, whether
a nondcgenerate mixed strategy o, for player i is deleted at round n doesn’t
alter which strategies of player i's opponents are deleted at the next round.
Thus, at cach round, the sets of remaining pure strategics are the same
under the two alternative definitions. Therefore, the undominated mixed
strategies X are the same.

Definition 2.2 A game is solvable by iterated (strict) dominance if, for cach
player i, §;” is a singleton (i.e., a onc-element set).

When the iterated deletion of strictly dominated strategies yields a
unique strategy profile (as is the case in figure 1.1 or in the prisoner’s
dilemma of figure 1.7), this strategy profile is necessarily a Nash equilibrium
(indeed, it is the unique Nash equilibrium). The proof goes as follows: Let
(s¥.....sF) denote this strategy profile, and suppose that there exist i and
5; € §; such that u,(s;, s*,) > u,(s*,s*,). Then if one round of elimination of
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strictly dominated strategies has sufficed to yield this unique profile, s¥
must dominate all other strategies in §;, which is impossible as s; is a better
response to s*; than s¥. More generally, suppose that in the iterated
deletion s, is strictly dominated at some round by s{, which in turn is
climinated at a later round because it becomes strictly dominated by s/, ...,
which is finally eliminated by s*. Because s*; belongs to the undominated
strategies of player i’s opponents al each round, by transitivity s* must be
a better response to s*; than s,—a contradiction. Conversely, it is casy to
see that in any Nash equilibrium the players must play stratcgics that are
not eliminated by iterated strict dominance.

It is also easy to sec that if players repeatedly play the same game, and
infer their opponcnts’ behavior from past observations, eventuaily only
strategics that survive iterated deletion of strictly dominated strategies
will be played. First, because opponents won't play dominated strategies,
players will learn that such strategies are not used. They will then use only
strategies that are not strictly dominated, given that the dominated strate-
gies of their opponents are not used. After more learning, this will be learned
by the opponents, and so on.

2.1.2 An Application of Iterated Strict Dominance

Example 2.1: Iterated Deletion in the Cournot Model’

We now make stronger assumptions on the (infinite-action) Cournot model
introduced in example 1.3: Suppose that w; is strictly concave in
¢;(C*u,/¢q, < 0), that the cross-partial derivative is negative (¢%u,/éq;0q; <
0. which is the case if p” < 0 and p” < 0), and that the reaction curves r,
and r, (which are continuous and downward-sloping from the previous two
assumptions) intersect only once at a point N, at which 7, is strictly steeper
than r,. This situation is depicted in figure 2.1. {Note that N is stable, in
the terminology introduced in subsection 1.2.5.)

Let ¢ and g7 denote the monopoly outputs: g7 = r,(0) and g7 = r,{0).
The first round of deletion of strictly dominated strategies yields S} =
[0,4]). The sccond round of deletion yields S? = [rq™).q"] = (47, a7"].
as indicated in figure 2.1. Consider, for instance, firm 2. Knowing that
firm | won't pick output greater than gf", choosing output g, under
r,(gT) = g% is strictly dominated by playing g3 by strict concavity of firm
2’s payoff in its own output. And similarly for firm 1. The third round of
deletion yields S = [g?.r(q7)] = [g}.47], and so on. More generally,
itcrated deletion yields a scqlrence of shrinking intervals around the outputs
ig*.g%) corresponding to the intersection N of the reaction curves. For
n—=2k+1,

K41 2k S2kH1 2Ky,
4q; ={q; and UF = r;{q5");

1. This example is inspired by Gabay and Moulin 1980. See also Moulin 1984,
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forn = 2k,
g =r{qi*”")  and  g¥ =gH

A differcnce between this process and the case of finite strategy spaces is
that the process of deletion does not stop after a finitc number of steps.
Nevertheless, the process does converge, because the scquences g/ and g*
both converge to g¥, so that the process of iterated deletion of strictly
dominated strategies yields N as the unique “reasonable” prediction. {Let
g =limgq! < ¢¥ and g = limg" > g*. From the definition of q and g
and by continuity of the reaction curves, one has q;" =rlqy) and q; =
riqi"). Hence. g7 = r{r{(g;"}), which is possiblc only if 7* = gF¥. and simi-
larly for g .}

We conclude that this Cournot game is solvable by iterated strict domi-
nance. This need not be the case for other specifications of the payoff
functions; see exercise 2.4,

2.1.3 Rationalizability

The concept of rationalizability was introduced independently by
Bernheim (1984) and Pearce (1984), and was used by Aumann (1987) and
by Brandenberger and Dekel (1987) in their papers on the “Bayesian
approach™ to the choice of strategies.

Like iterated strict dominance, rationalizability derives restrictions on
play from the assumptions that the payoffs and the “rationality” of the
players are common knowledge. The starting point of iterated strict domi-
nance is the observation that a rational player will never play a strictly
dominated strategy. The starting point of rationalizability is the comple-
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mentary question: What are afl the strategies that a rational player could
play? The answer is that a rational player will use only those strategies
that are best responses to some beliefs he might have about the strategics
of his opponents. Or, to use the contrapositive, a player cannot reasonably
play a strategy that is not a best response to some beliefs about his
opponents’ strategies. Moreover, since the player knows his opponents’
payoffs, and knows they are rational, he should not have arbitrary beliefs
about their strategies. He should expect his opponents to use only strategies
that are best responses to some beliefs that they might have. And these
opponents’ beliefs, in turn, should also not be arbitrary, which leads to an
infinite regress. In the two-player casc, the infinite regress has the form “T'm
playing strategy o, because I think player 2 is using ¢,, which is a reason-
able belief because I would play it if [ were player 2 and I thought player
1 was using o, which is a reasonable thing for player 2 to expcct because
@, is a best response to a3,....7

Formally, rationalizability is defined by the following iterative process.

Definition 2.3 Set £° = X, and for each i recursively define

= {a,' e¥" '3 0., € x convex hull (if") such that

FEN!
u(o,,0_;) > uiof,o_;)forall o/ € Z;‘“‘}.

The rationalizable strategies for player i are R; = { /L, X7.

In words, "' are the strategies for player i’s opponents that “survive”
through round (n — 1), and Z7 is the set of i’s surviving strategies that are
best responses to some strategy in ¥"7' The reason the convex hull oper-
ator appears in the definition is that player i might not be certain which of
several strategies g; € ij’-H player j will use.? And it may be that, although
both ¢ and ;" are in 17", the mixture (40/, $;") is not. This is illustrated
in figure 2.2. In the game of figure 2.2, player 2 has only two purc strategies:
L and R. Then any pure strategy s, of player 1 is associated with two
potential payoffs: x = u,(s,,L) and y = u,(s,, R). Figure 2.2a describes x
and y for player I's four pure strategies. Strategy A is a best response for
player 1 to L and strategy B is a best response to R, but the mixed strategy
(1A, 1B} is dominated by C and hence is not a best response to any strategy
of player 2.

A strategy profile o is rationalizable if g, is rationalizable for each player
i. Note that every Nash equilibrium is rationalizable, since if o* is a Nash

2. The convex hull of a set X 1s the smallest convex set that contains it.
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cquilibrium then 6 € £7for each . Thus, the set of rationalizable strategies
IS nonempty.

Theorem 2.1 (Bernheim 1984; Pearce 1984) The set of rationalizable strat-
egies is nonempty and contains at least one pure strategy for each player.
Further, each ¢; € R; is (in Z,) a best response to an element of

X ; 4; convex hull (R;).

Sketch of Proof The proof shows inductively that the £7 in the definition
of rationalizability are closed, nonempty, and nested and that they contain
a pure strategy. Their infinite intersection is thus nonempty and contains
a pure strategy. The existence of an element of x X ;»; convex hull (R;) to
which g; € R, is a best response is obtained by induction on n. [ |

2.1.4 Rationalizability and Iterated Strict Dominance (technical)

The condition of not being a best response, which is used in defining
rationalizability, looks very close to that of being strictly dominated. In fact
these two conditions are equivalent in two- -player games.

Itis clear that, with any number of players, a strictly dominated qlrdtegv
is never a best response: If o/ strictly dominates o; relative to £ |, then ¢/
is a strictly better response than g, to every o_;in X_;. Thus, in general
games, the set of rationalizable strategies is contained in the set that survives
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iterated strict dominance. The converse in two-player games is a con-
sequence of the separating hyperplane theorem.

To gain some intuition, consider the game in figure 2.2. Figure 2.2b plots
player 1's payoff possibilities (x, y} corresponding to diffcrent strategies of
player 1. A strategy o, is strictly dominated if there is another strategy that
gives player 1 a strictly higher payoff no matter how player 2 plays—i.e.,
E if o, yields payoff possibility (x, y) and there is a strategy that yields (x', y'),
S with x’ > x and y’ > y. Itis clear that the pure strategy D is dominated by
] C and that the only undominated strategies correspond to payoffs on the
line segments AC and BC. (Note that mixtures of A and B are dominated,
even though neither A nor B is dominated as a pure strategy.)

It is also casy to see from the diagram which strategies are not best
responses to any strategy of player 2: A strategy (p,. | — p;) for player 2
corresponds to weights on L and R, and thus to a family of lines which we
can interpret as player 1's “indifference curves.” Player 1's best responses to
(pa. | p,) are those strategies yielding the maximal payoffs with these
weights, which are exactly the points of the efficient set AC w BC with which
the indifferecnce curves are “tangent” (subtangent) (scc figure 2.3). Any
strategy of player | that is a best response to some strategy of player 2 thus
corresponds to a point on the efficient frontier (the bold linc in the figure).
so any strategy that is not a best response must lie in the interior and hence
be dominated. This is the intuition for the following thcorem.

Theorem 2.2 (Pearce 1984) Rationalizability and iterated strict domi-
1 nance coincide in two-playcr games.

Proof L.t S"denote the set of pure strategies remaining after n rounds of
the deletion of strictly dominated strategies, let " be the corresponding
mixed strategics, and let £ be the set of mixed strategies that survive n
rounds of the iteration in the definition of rationalizability. Clearly the set
T of mixed strategies corresponding to S° equals £°, Assume that £" = .
For any finite sct A, let A(A) denote the space of probability distributions
over A. Any s; in 87! is undominated in A(S!"") given that o; belongs to
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2% otherwisc it would have been eliminated. Now consider the vectors
Ulo) = {“f(ai=3j)}chs;P

for each g; € . The set of such vectors is convex, and, by the definition of
iterated dominance, S$"*! contains exactly the s; such that (s, is un-
dominated in this set. Fix §;in 57*!. By the separating hyperplanc thcorem,
there exists

;= 108} )5 e 57

such that, for all ; € X7,
0; (Ui(5) — Uilo)) 2 0

(where a dot denotes the inner product), or
ud$,0;) = ulo,0,) ¥ 0, € T = £,

This means that §, is a best response in £" to a strategy o; in convex hull
(Z7). Thus, §; € 7", and we conclude that £"*! = ¥+, ]

Remark Pearce gives a different proof based on the existence of the
minmax value in finite two-player zero-sum games.® The minmax theorem,
in turn, is usually proved with the separating hyperplane theorem.

The equivalence between being strictly dominated and not being a best
response breaks down in games with three or more players (see exercise
2.7). The point is that, since mixed strategies assumc independent mixing,
the set of mixed strategies is not convex. In figure 2.2, the problem becomes
that the mixed strategies no longer correspond to the sct of all tangents to
the efficient surface, so a strategy might be on the efficient surface without
being a best response to a mixed strategy. However, allowing for correlation
in the definition of rationalizability restores cquivalence: A strategy is
strictly dominated if and only if it is not a best responsc to a correlated
mixed strategy of the opponents. (A correlated mixed strategy for player
i’s opponents 1s a general probability distribution on S_, i.e., an element of
A(S_,;), while a mixed-strategy profile for player i’s opponents is an element
of x,,;A(S;).) This gives rise to the notion of correlated rationalizability,
which is equivalent to iterated strict dominance.

To see this, modify the proof above, replacing the subscript j with the
subscript —i. The separating hyperplane theorem shows that if §; e S**!,

3. A iwo-persan, zero-sum game with strategy spaces S, and §, has a (minmax) value if

sup inf u,(s,.s,) = inf sup wu,(s,s,).
1, €8, 568, 5,685, 3,€85,

If a game has a value uf and if there exists (s}, s%) such that u,(s¥.s3) = u?. then (s?,s¥) is
called a saddle point. Von Neumann (1928) and Fan (1952, 1953) have given sufficient condi-
tions for the existence of a saddle point.
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there is a vector
— | . - -
7= '|0'(-\1----’5i~1~5i+11---w‘:)}s.,-es"..

such that u(3,,0_;) = u,(g,,0_;) for all 5; € $7 However, o_; is an arbitrary
probability distribution over S";, and in general it cannot bc interpreted
as a mixed strategy, as it may involve player i’s rivals’ correlating their
randomizations.

2.1.5 Discussion

Rationalizability, by design, makes very weak predictions; it docs not
distinguish between any outcomes that cannot be excluded on the basis of
common knowledge of rationality. For example, in the battle of the sexes
{figure 1.10a), rationalizability allows the prediction that the players are
certain to end up at (F, B), where both get 0. (F, B)is not a Nash equilibrium;
in fact, both players can gain by deviating. We can scc how it might
nevertheless occur: Player 1 plays F, expecting player 2 to play F, and
2 plays B expecting 1 to play B. Thus, we might be unwilling to say
(F, B) wouldn't happen, especially if these players haven’t played each other
before. In some special cases, such as if we know that player 2's past play
with other opponents has led him to expect (B, B) while player 1's has led
him to expect (F, F), (F, Bymight cven be the most likely outcome. However,
such situations seem rare; most often we might hesitate to predict that
(F., B) has high probability. Rabin (1989) formalizes this idea by asking how
likely each player can consider a given outcome. If player ! is choosing a
best response to his subjective beliefs &, about player 2’s strategy, then for
any value of 4, player 1 must assign (F, B) a probability no greater than .
If he assigns a probability greater than 3§ to player 2's playing B, player |
will play B. Similarly, player 2 cannot assign (F, B) a probability greater
than 3. Thus, Rabin argues that we ought to be hesitant to assign (F, B) a
probability greater than the maximum of the two probabilities (that is, §).

2.2 Correlated Equilibrium’*

The concept of Nash equilibrium is intended to be a minimal necessary
condition for “reasonable” predictions in situations where the players must
choose their strategies independently. Now consider players who may
engage in preplay discussion, but then go off to isolated rooms to choosc
their strategies. In some situations, both players might gain if they could
build a “signaling device” that sent signals to the scparate rooms. Aumann’s
(1974) notion of a correlated equilibrium captures what could be achieved
with any such signals. (See Myerson 1986 for a fuller introduction to this
concept, and for a discussion of its relationship to the theory of mechanism
design.)
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To motivate this concept, consider Aumann’s example, presented in
figure 2.4. This game has three equilibria: (U, L),(D, R), and a mixed-
strategy equilibrium in which each player puts equal weight on each of his
pure strategies and that gives each player 2.5. If they can jointly observe a
“coin flip” (or sunspots, or any other publicly observable random variable)
before play, they can achieve payoffs (3, 3) by a joint randomization between
the two pure-strategy equilibria. (For example, flip a fair coin, and use the
strategies “player 1 plays U if heads and D if tails; player 2 plays L if heads
and R if tails”). More generally, by using a publicly observable random
variable, the players can obtain any payoff vector in the convex hull of
the set of Nash-equilibrium payoffs. Conversely, the players cannot obtain
any payoff vector outside the convex hull of Nash payoffs by using publicly
observable random variables.

However, the players can do even better (still without binding contracts)
if they can build a device that sends different but correlated signals to each
of them. This device will have three equally likely states: A, B, and C.
Suppose that if A occurs player 11s perfectly informed, but if the state is B
or C player | does not know which of the two prevails. Player 2, conversely,
is perfectly informed if the state is C, but he cannot distinguish between A
and B. In this transformed game, the following is @ Nash cquilibrium:
Player | plays U when told A, and D when told (B, C); player 2 plays R
when told C, and L when told (A, B). Let’s check that player | does not
want to deviate. When he observes A, he knows that player 2 observes
(A, B), and thus that player 2 will play L; in this case U is player 1's best
response. If player | observes (B, C), then conditional on his information
he expects player 2 to play L and R with equal probability. In this case
player | will average 2.5 from either of his choices, so he is willing to choose
D. So player 1 is choosing a best response; the same is easily seen to be true
for player 2. Thus, we have constructed an equilibrium in which the players’
choices are correlated: The outcomes (U, L}, (D, L), and (D, R) are chosen
with probability § each, and the “bad” outcome (U, R) never occurs. In this
new equilibrium the expected payoffs are 3% each, which is outside the
convex hull of the equilibrium payoffs of the original game without the
signaling device. (Note that adding the signaling device does not remove
the “old” equilibria: Since the signals do not influence payoffs, if player |
ignores his signal, player 2 may as well ignore hers.)
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L R L R L R
u 0,13 | 0,0,0 U | 2,22 | 0,0,0 u “.0,1>.O » 0,0,0
o 1,11 ’1.0.0. D l2,2,0”‘2,2,2“ D 1.1,0"1,0.3.‘

Figure 2.5

The next example of a correlated equilibrium illustrates the familiar
game-theoretic point that a player may gain from limiting his own informa-
tion if the opponents know he has done so, because this may induce the
opponents to play in a desirable fashion.

In the game illustrated in figure 2.5, player 1 chooses rows, player 2
chooses columns, and player 3 chooses matrices. In this game the unique
Nash equilibrium is (D, L, A}, with payoffs (1,1, 1).

Now imagine that the players build a correlating device with two equally
likely outcomes, H (*heads™) and T (“tails™), and that they arrange for the
outcome to be perfectly revealed to players | and 2, while player 3 receives
no information at all. In this game, a Nash equilibrium is for plaver 1 to
pluy U if H and D if T, player 2 to play L if H and R if T, and player 3 to
play B. Player 3 now faces a distribution of 3(U, L) and (DD, R), which
makes B a best response. Note the importance of players 1 and 2 knowing
that player 3 does not know whether heads or tails prevailed when choosing
the matrix. If the random variable were publicly observable and players |
and 2 played the above strategies, then player 3 would choose matrix A if
H and matrix C if T, and thus players | and 2 would deviate as well. As we
observed, the equilibrium would then give player 3 a payoff of 1.

With these examples as an introduction, we turn to a formal definition
of correlated equilibrium. There are two equivalent ways to formulate the
definition.

The first definition explicitly defines strategies for the “cxpanded game™
with a correlating device and then applies the definition of Nash equi-
librium to the expanded game. Formally, we identify a correlating device
with a triple (©, {H,},p). Here Q is a (finite) state space corresponding to
the outcomes of the device (e.g., H or T in our discussion of figure 2.5), and
p is a probability measure on the state space Q.

Player i's information about which « € Q occurred is represented by the
information partition H;: if the true state is o, player i is told that the state
lies in k(). In our discussion of figure 2.4, player 1’s information partition
is {(A).(B, C)) and player 2's partition is ((A, B).(C)}. In the discussion of
figure 2.5, players | and 2 have the partition ((H).(T)); player 3's partition
is the one-element set (H, T).

More generally, a partition of a finite set Q is a collection of disjoint
subsets of @ whose union is Q. An information partition H; assigns an h{w)
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to each w in such a way that w € h,(w) for all w. The sct h{w) consists of
those states that player i regards as possible when the truth is w: the
requirement that w € h;(w) means that player i is never “wrong” in the weak
sense that he never regards the true statc as impossible. However, player
i may be poorly informed. If his partition is the one-element set hiw) = Q
for all <, he has no information at all beyond his prior. (This is called the
“trivial partition.™)

For all i, with positive prior probability, player i’s posterior beliefs about
Q are given by Bayes’ law: p(w| h,) = p(w)/p(h;) for w in h;, and plw|h) =0
for w not in h,.

Given a correlating device (2, {H, }, p), the next step is to define strategies
for the expanded game where players can condition their play on the signal
the correlating device sends them. A pure strategy for the expanded game
can be viewed as a function s, that maps elements h; of H,—the possible
signals that player i receives—to pure strategics s, € S, of the game without
the correlating device. Note that if € h,(w), then necessarily s; prescribes
the same actions in states w and @', Instead of defining strategies in this
way as maps from information sets to elements of §;, it will be more
convenient for our analysis Lo use an equivalent formulation: We will define
pure strategies s; as maps {rom Q to S; with the additional property that
silm) = L) if o’ € h{w). The formal term for this is that the strategies are
adapted to the information structure. (Mixed strategies can be defined in
the obvious way, but they will be irrelevant if we take the state space Q to
be sufficiently large. For example, instead of player 1 playing (3 U, D) when
given signal h;, we could construct an expanded state space {} where each
w € h; is replaced by two equally likely states, ' and ", and player 1 is
told both “h;” and whether the state is of the single-prime or the double-
prime kind. Then player i can use the pure strategy “play U if told h; and
single-prime, play D if told h; and double-prime.” This will be equivalent
to the original mixed strategy.)

Definition 2.4A A correlated equilibrium s relative to information struc-
ture (Q, {H,}, p} is a Nash equilibrium in strategies that are adapted to this
information structure. That is, (4,,..., 4,) is a correlated equilibrium if, for
every i and every adapted strategy 3,
Y ployu(sdw), s (w) > Y p)u(Giw), s_,(w)). 2.0
wrF Al well
This definition, where the distribution p over Q is the same for all players,
is sometimes called an “objective correlated equilibrium” to distinguish it
from “subjective correlated equilibria” where players may disagree on prior

beliefs and each p]ayer i Is allowed to have different beliefs p, We say

LAVLIVIY ULIU WAL prake ¥ s A saav rrwWAR WA

more about subjective correlated equilibrium in section 2.3.
Definition 2.4A, which requires that s; maximize player i’s “ex ante
payofl  her expected payoff before knowing which #; contains the true
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state  1mplies that 5; maximizes player i’s payoff conditional on h; for each
h. that player i assigns positive prior probability (this conditional payoff is
often calied an “interim™ payoff). That is, (2.1) is equivalent to the condition
that, for all players i, information sets k; with p(h;} > 0, and all s;,

Z plerlhu(odw), s_dw)) = z plo|h)uls, o (w). (2.2)

Veoth tex)— Ry ) {olh(w)—h;}

When all players have the same prior, any h; with p(h;) = 0 is irrele-
vant, and all states « € h; can be omitted from the specification of 2. New
issucs arisc when the priors are different, as we will scc when we discuss
Brandenburger and Dekel 1987,

An awkward feature of this definition is that it depends on the particuiar
information structure specified, yet there arc an infinite number of possible
state spaces © and many information structures possible for each. For-
tunately there is a more concise way to define corrclated equilibrivm. This
alternative definition is based on the realization that any joint distribution
over actions that forms a correlated equilibrium for some correlating device
can be attained as an equilibrium with the “universal device” whose signals
to each player constitute a recommendation of how that player should piay.
In the example of figure 2.4, player | would be told “play D” instead of
“the state is (B, C),” and player 1 would be willing to follow this recommen-
dation so long as, when he is told to play D, the conditional probability of
player 2 being instructed to play R is . (Those familiar with the literature
on mechanism design will recognize this observation as a version of the
“revelation principle”; see chapter 7.)

Definition 2.4B A correlated equilibrium is any probability distribution
p(-) over the pure strategies S; x --- x §; such that, for every player i and
every function di(-) that maps §; to S;,

Y pSudsnso) = Y plshuddis;hs-;).

s S se8

Just as with definition 2.4A, there is an equivalent version of the defini-
tion stated in terms of maximization conditional on cach recommendation:
p(+) is a correlated equilibrium if, for every player i and cvery s; with
pls;) > 0,

Z pls_ifsdudsis )= 3 pls ilsdulsis-) VsieS.

X ,eN s_;e85_;
That is, player i should not be able to gain by disobeying the recommenda-
tion to play s, if every other player obeys his recommendation.

et us explain why the two definitions of correlated equilibrium are
equivalent. Clearly an equilibrium in the sense of definition 2.4B is an
equilibrium according to definition 2.4A—just take = S, and hy(s) =
18780 = 8.
{ t I3
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Conversely, if 4 is an equilibrium relative to some (Q, {H,},p) as in
definition 2.4A, set p(s) to be the sum of p(w) over all w e Q such that
ui{e) = 5; for all players i. Let us check that no player i can gain by
disobeying any recommendation s; € S;. (The only reason this isn’t com-
pletely obvious is that there may have been several information sets A,
where player i played s;, in which casc his information has been reduced
to s; alone.) Set

Jilsi) = lw|idw) = Si}s

so that p(Ji(s;)) = p(s;) is the probability that player i is told to play s,. If
we view each pure-strategy profile s_,(w) as a degenerate mixed strategy
that places probability 1 on s_; = s5_,{(w), then the probability distribution
on opponents’ stratcgies that player i belicves he faces, conditional on being
told to play s,, is

Plar)s_(w)

weds) ﬁ{‘ll(st)}

)

which is a convex combination of the distributions conditional on each h,
such that s;(h;} = s;. Since player i could not gain by deviating from ., at
any such h;, hc cannot gain by deviating when this finer information
structure is replaced by the one that simply tells him his recommended
strategy.

A pure-strategy Nash equilibrium is a correlated equilibrium in which
the distribution p(-) is degenerate. Mixed-strategy Nash equilibria are also
correlated equilibria: Just take p(+) to be the joint distribution implied by
the equilibrium strategies, so that the recommendations made to cach
player convey no information about the play of his opponents.

Inspection of the definition shows that the sct of correlated equilibria is
convex, so the set of correlated equilibria is at lcast as large as the convex
hull of the Nash equilibria. This convexification could be attained by using
only public correlating devices. But, as we have seen, nonpublic (imperfect)
correlation can lead to equilibria outside the convex hull of the Nash set.

Since Nash equilibria exist in finite games, correlated equilibria do too.
Actually, the existence of correlated equilibria would scem to be a simpler
problem than the existence of Nash equilibria, because the set of correlated
cquilibria is defined by a system of linear inequalities and is therefore
convex; indeed, Hart and Schmeidler (1989) have provided an existence
proof that uses only linear methods (as opposed to fixed-point theorems).
One might also like to know when the set of correlated cquilibria differs
“greatly” from the convex hull of the Nash equilibria, but this question has
not yet been answered.

One may take the view that the correlation in correlated equilibria
should be thought of as the result of the players receiving “endogenous”
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correlated signals, so that the notion of correlated equilibrium is particu-
larly appropriate in situations with preplay communication, for then the
players might be able to design and implement a procedure for obtaining
correlated, private signals.* When players do not meet and design particu-
lar correlated devices, it is plausible that they may still observe ecxogenous
random signals (i.e., “sunspots™ or “moonspots”) on which they can condi-
tion their play. If the signals are publicly observed they can only serve to
convexify the set of Nash equilibrium payoffs. But if the signals are observed
privately and yet are correlated, they also allow imperfectly corrclated
equilibria, which may have payoffs outside the convex hull of Nash equilib-
ria, such as (33.3}) in figure 2.4. (Aumann (1987} argucs that Bayesian
rationality, broadly construed, implies that play must correspond to a
correlated equilibrium, though not necessarily to a Nash equilibrium.}

T+

2.3 Rationalizability and Subjective Correlated Equilibria”

In matching pennies (figure 1.10a), rationalizability allows player 1 to be
surc he will outguess player 2, and player 2 to be sure he'll outguess player
I; the players’ strategic beliefs need not be consistent. It is interesting to
note that this kind of inconsistency in beliefs can be modeled as a kind of
correlated equilibrium with inconsistent beliefs. We mentioned the pos-
sibility of inconsistent beliefs when we defined subjective correlated equi-
librium, which generalizes objective corrclated equilibrium by allowing
each player i to have different beliefs p;(-) over the joint recommendation
s € 8. That notion is weaker than rationzhzability, as is shown by figure 2.6
(which 1s drawn from Brandenburger and Dekel 1987). One subjective
correlated equilibrium for this game has player 1's beliefs assign probability
I o (U, L) and player 2’s beliefs assign probability 5 each to (U, L) and
(D. L). Given his beliefs, plaver 2 is correct to play L. However, that

L R
U 2.0 1.1

D 1,1 0,0
Figure 2.6

4. Barany (1988) shows that if there are at least four players (F > 4), any correlated equilibrium
of u strategic-form game coincides with a Nash cquilibrium of an extended game in which the
players engage in costless conversations (cheap talk) before they play the stralegic-form game
in guestion. [f there are only lwo players, then the set of Nash equilibria with cheap talk
coincides with the subset of correlated equilibria induced by perfectly correlated signals (i.c..
publicly observed randomizing devices.)
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strategy is deleted by iterated dominance, and so we see that subjective
correlated equilibrium is Iess restrictive than rationalizability.

The point is that subjective correlated equilibrium allows each player’s
beliefs about his opponents to be completely arbitrary, and thus cannot
capture the restrictions implied by common knowledge of the payoffs.
Brandenburger and Dekel introduce the idea of an a posteriori equilibrium,
which does capture these restrictions.

Although this equilibrium concept, like correlated equilibrium, can be
defined either with reference to explicit correlating devices or in a “di-
rect version,” it is somewhat simpler here to make the correlating device
explicit.

Given state space Q, partition H,, and priors p,(-), we now require, for
cach w (even those with p(w) = 0),° that player i have well-defined condi-
tional beliefs p, (e’ | h,(w)), satisfying p(h(w)|h(w)) = 1.

Definition 2.5 The adapted strategies (s,,..., ;) are an a posteriori equi-
librium if, for all w € Q, all players i, and all s,,

Z pile’ | (e u(s(w), 5_ ("))

w' € h ()

= Z pi(w' | hi(w)u(s;, s_i(w)).
o' e hi{a)
Thus, player i’s strategy is required to be optimal for all . even those to
which he assigns prior probability 0.

Brandenburger and Dekel show that the set of correlated rationalizable
payofls is precisely the set of interim payoffs to a posteriori equilibria; that
15, they are the payoffs player i can expect to receive conditional on a
particular m e Q.

Exercises

Exercise 2.1**

(a} Consider an alternative definition of iterated strict dominance that
proceeds as in section 2.1 except that, at each state n, only the strictly
dominated pure strategics of players I(n) < I are deleted. Suppose that, for
cach player i, there exists an infinite number of steps » such that i € I(n). If
the game is finite, show that the resulting limit set is $ (as given in
definition 2.1), so that there is no loss of gencrality in taking I(n) = I for
all n. Hint: The intuition is that if a strategy s, is strictly dominated at step
n but is not eliminated because i ¢ I(n), then it will be eliminated at the next
stepn’ > nsuch thati e I(n'), as (i) the set of strategies s_; remaining at step
n' is no larger than the set of strategics s_; remaining at step n and (ii) if

5. Note that we do not require priors to be absolutely continuous with respect 1o each
other  that is, they may disagree on which w's have positive probability.
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strategy s, is strictly dominated relative to a set £_; of opponents’ mixed
strategies it is strictly dominated relative to any subset £_; < X', Show
by induction on n that any strategy that is deleted at stage n under the
maximal-deletion process I(k) = I for all k is deleted in a finitc number of
steps (no fewer than n) when deletion is not required to be maximal.

(b) Verify that, in a finite game, the two definitions of iterated delction
of dominated mixed strategies given in section 2.1 are equivalent.

Fxercise 2.2* Prove that if a game is solvable by iterated strict dominance,
it has a4 unique Nash equilibrium. '

Exercise 2.3** Consider an arbitrary two-player game with action spaces
A, = A, = [0,1] and payoff functions that are twice continuously differ-
entiable and concave in own action. Say that the game is locally solvable
by iterated strict dominance at a* if there is a rectangle N containing a*
such that when players are restricted to choosing actions in N, the succes-
sive elimination of strictly dominated strategies yields the unique point a*.
Relate the conditions for local solvability by iterated strict dominance
of the simultaneous-move process to those for local stability of the
alternating-move Cournot adjustment process. (The answer is in Gabay
and Moulin 1980.)

Exercise 2.4* Show that in the Cournot game with three Nash equilibria
with the reaction curves depicted in figure 1.14, the strategies that survive
iterated deletion of strictly dominated strategics are the outputs that belong
to the interval whose boundaries arc the projections of B and D.

Exercise 2.5** A competitive economy may be described as a game with
a continuum of players. Concepts such as iterated dominance, rationaliz-
ability, and Nash equilibrium can, with minor adjustments, be applied to
such situations. Consider the following “wheat market™ There is a con-
tinuum of farmers indexed by a paramecter i distributed with a density f(i)
on[i.i], where i > 0. They must choose the size of their crop ¢q(i) before
the market for wheat opens. The cost function of farmer i is C{q, i) = ¢*/2i.
The farmer’s utility function is thus u; = pg(i) — q(i)*/2i, where p is the
price of wheat. Let O(p) denote the aggregate supply function when farmers
perfectly predict p:

Gip) = (J” if(i)di)p = kp.

The demand curve is D(p) = a — bp for 0 < p < a/b and 0 otherwise. The
timing is such that the farmers simultaneously choose the sizc of their crop,
then the price clears the market:

[._ qii)f{i)di = D{p).

£y
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A perfect foresight (or Nash equilibrium) is a price p* such that O(p*) =
D(p*) (more correctly, it is a strategy profile g*(-) such that g*{(i) = ip*))
Note that p* = a/(b + k).

Apply iterated strict dominance in this game among farmers. Show that
if b > k, the game is solvable by iterated strict dominance, which yields the
perfect-foresight equilibrium. When b < k, determine the interval of prices
that correspond to outputs that survive iterated strict dominance. Draw
the hink with the stability of the “cobweb” tatdnnement in which the market
1s repeated over time, and farmers have point price expectations cqual to
the last period’s price. (This exercise is drawn from Guesnerie 1989, which
also addresses production and demand uncertainty, price floors and ceil-
ings, and sequential timing of crop planting.)

Exercise 2.6** Consider the two-player game in figure 2.7, This is match-
ing pennies with an outside option a for player 1. Suppose that « € (0, 1).

(a) Show that the set of mixed strategies for player | surviving iterated
deletion of strictly dominated strategies consists of two “edges of the
strategy simplex™; the set of mixed strategies with support (H, o) and the set
of mixed strategies with support (7, 2).

(b) Show dircctly (that is, without applying theorem 2.2) that the set of
rationalizable strategics for player 1 1s also composed of these two edges”
(Hint: Use a diagram similar to figure 2.3.)

H T
| .
H | 1.-1 -1.1l
T i -1,1 . 1,-1
a a,ia,o
Figure 2.7
L R L R
U 9 0 U o ’
D 0 0 D 9 0 i
R S
L R L R
U 0 0 u 6 o} !
D 0 9 D o 6
c b

Figure 2.8
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Exercise 2.7**  Consider the game in figure 2.8, where player | chooses
rows, player 2 chooses columns, and player 3 chooscs matrices. Player 3's
payoffs arc given in the figurc. Show that action D is not a best response
to any mixed strategies of players 1 and 2, but that D is not dominated.
Comment.

Kxercise 2.8*** Find all the corrclated equilibria of the games illustrated
i figures 2.4 and 2.5,
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Extensive-Form Games

3.1

Introduction’

In the examples we examined in part I, such as the stag hunt, the prisoner’s
ditemma, and the battle of the sexes, the players choose their actions
simultaneously. Much of the recent interest in the economic applications
of game theory has been in situations with an important dynamic structure,
such us entry and entry deterrence in industrial organization and the
“time-consistency™ problem in macroeconomics. Game theorists use the
concept of a game in extensive form to model such dynamic situations.
The extensive form makes explicit the order in which players move, and
what each player knows when making each of his decisions. In this setting,
strategies correspond to contingent plans instead of uncontingent actions.
As we will see, the extensive form can be viewed as a multi-player general-
ization of a decision tree. Not surprisingly, many results and intuitions
from decision theory have game-theorctic analogs. We will also see how to
build up the strategic-form representation of a game from its extensive
form. Thus, we will be able to apply the concepts and results of part I to
dynamic games.

As a simple example of an extensive-form game, consider the idea of a
“Stackelberg equilibrium™ in a duopoly. As in the Cournot model, the
actions of the firms are choices of output levels, g, for player 1 and g,
for player 2. The difference is that we now supposc that player I, the
“Stackelberg leader,” chooses her output level g, first, and that player 2
observes ¢, before choosing his own output level. To make things concrete,
we suppose that production is costless, and that demand is linear, with
plg) = 12 — q. so that player i's payoff is u{q,,4,) = [12 — (4, + 42)]14..
How should we extend the idea of Nash equilibrium to this setting? And
how should we expect the players to play?

Since player 2 observes player 1's choice of output g, before choosing
¢, in principle player 2 could condition his choice of g, on the observed
level of ¢,. And since player 1 moves first, she cannot condition her output
on player 2's. Thus, it is natural that player 2's strategies in this game should
be maps of the form s,: @, — @, (where Q, 1s the space of feasible ¢,’s and
Q, is the space of feasible ¢,’s), while player s strategics are simply choices
of ¢,. Given a (pure}) strategy profile of this form, the outcome is the output
vector (¢,.5;(4,)), with payoffs u;(q,, 5,(q,))

Now that we have identified strategy spaccs and the payoff functions, we
can define a Nash equilibrium of this game in the obvious way: as a strategy
profile such that neither player can gain by switching to a different strategy.
Let's consider two particular Nash equilibria of this game.

The first equilibrium gives rise to the Stackelberg output levels normally
associated with this game. In this equilibrium, player 2’s strategy s, is to
choose, for each g,, the level of ¢, that solves max ., u,(g,.45), so that s, is
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identically equal to the Cournot reaction function r, defined in chapter 1.
With the payoffs we have specified, r,(q,) = 6 — q,/2.

Nash cquilibrium requires that player 1's strategy maximize her payoff
given that s, = r,, so that player I's output level g¥ is the solution to
max, u,(q,,7,(¢)), which with the payoffs we specified gives g = 6.

The output levels (g}, ro(g¥)) (here equal to (6, 3)) are called the Stackel-
bery outcome of the game; this is the outcome economics students are
taught to cxpect. In the usual case, r, is a decreasing function, and so
player 1 can decrease player 2's output by increasing her own. As a result,
player I's Stackelberg output level and payoff are typically higher than in
the Cournot equilibrium where both players move simultaneously, and
player 2's output and payoff are typically lower. (In our case the unique
Cournot equilibrium is g5 = ¢5 = 4, with payofls of 16 each; in the Stackel-
berg equilibrium the leader’s payoff is 18 and the follower’s is 9.)

Though the Stackelberg outcome may seem the natural prediction in this
game, there are many other Nash cquilibria. One of them is the profile
“g, = ¢5.5,(q,) = g5 for all q,.” Thesc strategies reaily are a Nash equi-
librium: Given that player 2’s output will be g5 independent of ¢, player
I's probiem is to maximize u,(q,,¢5), and by definition this maximization
is solved by the Cournot output g¢. And given that ¢, = g¢f. player 2's
payoff will be u,(g¢, s,(g¥)), which is maximized by any strategy s, such that
s,(¢%) = g%, including the constant strategy s,(-) = g$. Note, though, that
this strategy is not a best response to other output levels that player 1 might
have chosen but did not; i.e., 45 is not in general a best response to gq, for
40 # 4\

So we have identified two Nash equilibria for the game where player 1
chooses her output first: onc cquilibrium with the “Stackelberg outputs™
and onc where the output levels are the same as if the players moved
simuitaneously. Why is the first cquilibrium more reasonable, and what
is wrong with the second one? Most game theorists would answer that the
sccond cquilibrium is “not credible,” as it relies on an “empty threat™ by
player 2 to hold his output at 45 regardless of player 1's choice. This threat
1s emply because if player | were to present player 2 with the fait accompli
of choosing the Stackelberg output g¥, player 2 would do better to choose a
different tevel of q,—in particular, ¢, = r,(g¥). Thus, if player 1 knows
player 2's payoffs, the argument goes, she should not believe that player 2
would play q$ no matter what player t’s output. Rather, player 1 should
predict that player 2 will play an optimal response to whatever 4, player
1 actually chooses, so that player | should predict that whatever level
of 4, she chooses, player 2 will choose the optimal response r,(g,). This
argument picks out the “Stackelberg equilibrium™ as the unique credi-
ble outcome. A more formal way of putting this 1s that the Stackelberg
equilibrium is consistent with backward induction, so called because the
idea is to start by solving for the optimal choice of the last mover for each
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possible situation he might face, and then work backward to compute the
optimal choice for the player before. The ideas of credibility and backward
induction are clearly present in the textbook analysis of the Stackeiberg
game: they were informally applied by Schelling (1960) to the analysis of
commitment in a number of settings. Seiten (1965) formalized the intuition
with his concept of a subgame-perfect equilibrium, which cxtends the idea
of backward induction to extensive games where playcrs move simulta-
ncously in several periods, so the backward-induction algorithm is not
applicable because there are several “last movers” and cach of them must
know the moves of the others to compute his own optimal choice.

This chapter will develop the formalism for modeling extensive games
and develop the solution concepts of backward induction and subgame
perfection. Although the extensive form is a fundamental concept in game
theory. its deftnition may be a bit dctailed for readers who are more
interested in applications of games than in mastering the general theory.
With such readers in mind, section 3.2 presents a first look at dynamic
gamgs by treating a class of games with a particularly simple structure: the
class of “multi-stage games with observed actions.” These games have
“stages” such that (1) in each stage every player knows all the actions taken
by any player, including “Nature,” at any previous stage, and (2) players
move “simultaneously” within each stage.

Though very special, this class of games includes the Stackelberg cxample
we have just discussed, as well as many other examples from the economics
literaturc. We use multi-stage games to illustrate the idea that strategics
cun be contingent plans, and to give a first definition of subgame perfection.
As an illustration of the concepts, subsection 3.2.3 discusses how to model
the idea of commitment, and addresses the particular cxample called the
“time-consistency problem™ in macroeconomics. Readers who lack the
tume or interest for the general extensive-game model are advised to skip
from the end of section 3.2 to section 3.6, which gives a few cautions about
the potential drawbacks of the ideas of backward induction and subgame
perfection.

Section 3.3 introduces the concepts involved in defining an extensive
form. Section 3.4 discusses strategies in the extensive form, called “behavior
strategies,” and shows how to relate them to the strategic-form strategies
discussed in chapters | and 2. Section 3.5 gives the general definition of
subgame perfection. We postponc discussion of more powerful equilibrium
refinements to chapters 8 and 11 in order to first study several interesting
classes of games which can be fruitfully analyzed with the tools we develop
in this chapter.

Recaders who already have some informal understanding of dynamic
games and subgame perfection probably already know the material of
section 3.2, and are invited to skip directly to section 3.3. (Teaching note:
When planning to cover all of this chapter, it is probably not worth taking
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the time to teach section 3.2 in class; you may or may not want to ask the
students to read it on their own.)

3.2 Commitment and Perfection in Multi-Stage Games with Observed Actions’

32.1 What Is a Multi-Stage Game?

Owr first step is to give a more precise definition of a “muiti-stage game
with observed actions.” Recall that we said that this meant that (I} all
playcrs knew the actions chosen at all previousstages(,1,2,... k — 1 when
choosing their actions at stage k, and that (2) all players move “simulta-
neously™ in euach stage k. (We adopt the convention that the first stage is
“stage 07 in order to simplify the notation concerning discounting when
stages are interpreted as periods.) Players move simultaneously in stage
k if each player chooses his or her action at stage k without knowing the
stage-k action of any other player. Common usage to the contrary, “simul-
tancous moves™ does not exclude games where players move in alterna-
tion, as we allow for the possibility that some of the players have the
one-clement choice set “do nothing.” For cxample, the Stackelberg game
has two stages: In the first stage, the leader chooses an output level (and
the follower “does nothing”). In the second stage, the follower knows the
leader’s output and chooses an output level of his own (and the leader “does
nothing”). Cournot and Bertrand games are one-stage games: All plavers
choose their actions at once and the game ends. Dixit's (1979) model of
entry and entry deterrence (based on work by Spence (1977)) is a more
complex example: In the first stage of this game, an incumbent invests
In capacity: in the second stage, an entrant observes the capacity choice and
decides whether to enter. If there is no cntry, the incumbent chooses output
4s a monopolist in the third stage; if entry occurs, the two firms choose
output simultaneously as in Cournot competition.

Often it is natural to identify the “stages” of the game with time periods,
but this is not always the case. A counterexamplc is the Rubinstein-Stahl
maodel of bargaining (discussed in chapter 4), where cach “time period” has
two stages. In the first stage of each period, one player proposcs an agree-
ment; in the second stage, the other player either accepts or rejects the
proposal. The distinction is that time periods refer to some physical mea-
sure of the passing of time, such as the accumulation of delay costs in the
bargaining model, whereas the stages need not have a direct temporal
interpretation.

In the first stage of a multi-stage game (stage 0), all players i € # simulta-
neously choose actions from choice sets A4,(k°). (Remember that some of
the choice scts may be the singleton “do nothing.” We let 2% = @ be the
“history™ at the start of play.) At the end of each stage, all players observe
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the stage’s action profile. Let a” = (af, ..., af) be the stage-0 action profile.
At the beginning of stage 1, players know history h', which can be identificd
with ¢ given that h° is trivial. In general, the actions player i has available
in stage 1 may depend on what has happened previously, so we let A, (kY
denote the possible second-stage actions when the history is h'. Continuing
iteratively, we define h**!, the history at the end of stage k, to be the
sequence of actions in the previous periods,

and we let A,(k**'}denote player i’s feasible actions in stage k + 1 when the
history is A**'. We let K + 1 denote the total number of stages in the game,
with the understanding that in some applications K = + o0, corresponding
to an infinite number of stages; in this case the “outcome” when the game
is played will be an infinite history, h®. Since each h**' by definition
describes an entire sequence of actions from the beginning of the game on,
the set F157! of all “terminal histories” is the same as the set of possible
outcomes when the game is played.

In this setting, a pure strategy for player i is simply a contingent plan
of how to play in each stage k for possible history h*. (We will postpone
discussion of mixed strategies until section 3.3, as they will not be used in
the examples we discuss here.) If we let H* denote the set of all stage-k
histories, and let

AdHY) = | AiRb),

#e e HE

a pure strategy for player i is a sequence of maps {s}}§_q, where each sf
maps H* to the set of player i's feasible actions A;(H*) (i.e., satisfies sf(h*) €
A,(h*) for all h*). It should be clear how to find the sequence of actions
generated by a profile of such strategies: The stage-0 actions are ¢° = s°(h°),
the stage-1 actions are a' = s'(a®), the stage-2 actions are a* = s*(a% a'),
and so on. This is called the path of the strategy profile. Since the terminal
histories represent an entire sequence of play, we can represent each player
i's payoff as a function u; H¥*' > R. In most applications the payoff
functions are additively separable over stages (i.e., each player’s overall
payoff is some weighted average of single-stage payoffs g (a*), k = 0,..., K),
but this restriction is not necessary.

Since we can assign an outcome in H**! to each strategy profile, and a
payoff vector to each outcome, we can now compute the payoff to any
strategy profile; in an abuse of notation, we will represent the payoff vector
to profile s as u(s). A (pure-strategy) Nash equilibrium in this context is
simply a strategy profile s such that no player i can do better with a different
strategy, which is the familiar condition that u,(s;, s _;) > u;(s;,s_;}forall s;.

The Cournot and Bertrand “equilibria” discussed in chapter 1 are trivial
examples of Nash equilibria of multi-stage (actually one-stage) games. We
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saw two other examples of Nash ¢quilibria when we discussed the Stackel-
berg game at the beginning of this chapter. We also saw that somc of these
Nash equilibria may rely on “empty threats” of suboptimal play at histories
that are not expected to occur—that is, at histories off the path of the
equilibrium.

3.2.2 Backward Induction and Subgame Perfection

In the Stackelberg game, it was easy to scc how player 2 “ought™ to play,
becuuse once ¢, was fixed player 2 faced a simple decision problem. This
allowed us to solve for player 2’s optimal second-stage choice for cach g,
and then work backward to find the optimal choice for player 1. This
algorithm can be extended to other games where only one player moves at
gach stage. We say that a multi-stage game has perfect information if, for
every stage k and history h*, exactly one player has a nontrivial choice
set  a choice set with more than one element  and all the others have the
one-element choice set “do nothing.” A simple example of such a game has
player | moving in stages 0, 2, 4, etc. and player 2 moving in stages 1, 3, 5,
and so on. More generally, some players could move several times in a row,
and which player gets to move in stage k could depend on the previous
history. The key thing is that only one player moves at cach stage k. Since
we have assumed that each player knows the past choices of ail rivals, this’
implies that the single player on move at k is “perfectly informed™ of all
aspects of the game except those which will occur in the future.

Backward induction can be applied to any finitc game of perfect informa-
tion, where finite means that the number of stages is finite and the number
of feasible actions at any stage is finite, too.! The algorithm begins by
determining the optimal choices in the final stage K for each history
h* that is, the action for the player on move, given history A%, that
maximizes that player's payoff conditional on k¥ being reached. (There may
be more than one maximizing choice; in this case backward induction
allows the player to choose any of the maximizers.) Then we work back to
stage K — 1, and determine the optimal action for the player on move there,
given that the player on move at stage K with history h* will play the action
we determined previously. The algorithm proceeds to “roll back,” just as
in solving decision problems, until the initial stage is reached. At this point
we have constructed a strategy profile, and it is casy to verify that this
profile is a Nash equilibrium. Moreover, it has the nice property that cach
player’s actions are optimal at every possible history.

The argument for the backward-induction solution in the two-stage
Stackclberg game —that player 1 should be able to forecast player 2's
second-stage play—strikes us as quite compelling. In a three-stage game,

1. Section 4.6 cxtends backward induction 10 infinite games of perfect information, where
there is no last period from which to work backward.
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the argument is a bit more complex: The player on move at stage () must
lorecast that the player on move at stage 1 will correctly forecast the play
of the player on move at stage 2, which clearly is a more demanding
hypothesis. And the arguments for backward induction in longer games
require correspondingly more involved hypotheses. For this reason,
backward-induction arguments may not be compelling in “long” games.
For the moment, though, we will pass over the arguments against backward
induction; scction 3.6 discusscs its limitations in more detail.
As defined above. backward induction applies only to games of perfect
information. It can be extended to a slightly larger class of games. For
instance, in 4 multi-stage game, if all players have a dominant strategy in
the Tast stage, given the history of the game (or, more generaily, if the last
stage1s solvable by iterated strict dominance). one can replace the last-stage
strategics by the dominant strategies, then consider the penultimate stage
and apply the same reasoning, and so on. However, this doesn’t define
backward induction for games that cannot be solved by this backward-
induction version of dominance solvability. Yet one would think that the
backward-induction idea of predicting what the players are likely to choose
in the future ought to carry over to more general games. Soppose that 2
firm call it firm 1 —has to decide whether or not to invest in a new
cast-reducing technology. Its choice will be observed by its only competi-
tor. firm 2. Once the choice is made and observed, the two firms will choose
output levels simultaneously, as in Cournot competition. This is a two-
stige game, but not one of perfect information. How should firm 1 forecast
the second-period output choice of its opponent? In the spirit of equi-
librium analysis, a natural conjecture is that the second-period output
choices will be those of a Cournot equilibrium for the prevailing cost
structure of the industry. That is, each history 4! generates a simultaneous-
move game between the two firms, and firm 1 forecasts that play in this
game will correspond to an equilibrium for the payoffs prevailing under A",
This is exactly the idca of Selten’s {1965) subgame-perfect equilibrium.
Defining subgame perfection requires a few preliminary steps. First, since
all players know the history #* of moves before stage k, we can view
the game from stuge & on with history * as a game in its own right, which
we will denote G(h*). To define the pdyoﬁ"functions in this game, note that
ifthe actions in stages & [hrough K are a* though a*, the final history will be
ek a* a* L a®), and so the payoffs will be u,(h**"). Strategies
in ((h*}are defined in th obvious way: as maps from histories to actions.
where the only histories we need consider arc those consistent with h*. So
now we can speak of the Nash equilibria of G{(h*),
Next, any strategy profile s of the whole game induces a strategy profile
sihe* o any GO in the obvious way: For cach player i, s;|h* is simply the
restriction of s; to the histories consistent with A*.
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Definition 3.1 A strategy profile s of a muiti-stage game with observed
actions is a subgame-perfect equilibriumif, for every h*, the restriction s|h* to
G(h*) is a Nash equilibrium of G(h*).

This definition reduces to backward induction in finite games of perfect
information, for the only Nash equilibrium in game G{h¥) at the final
stage is for the player on move to choose (one of ) his preferred action(s) as
in hackward induction, the only Nash-equilibrium choice in the next-to-
last stage given Nash play at the last stage is as in backward induction, and
SO On.

Example 3.1

To illustrate the ideas of this section, consider the following model of
strategic investment in a duopoly: Firm 1 and firm 2 currently both have a
constant average cost of 2 per unit. Firm 1 can install a new technology
with an average cost of O per unit; installing the technology costs f. Firm
2 will observe whether or not firm | invests in the new technology. Once
firm 1I's investment decision is observed, the two firms will simultaneously
choose output levels ¢, and ¢, as in Cournot competition. Thus, this is a
two-stage game,

To define the payoffs, we suppose that the demand is p(q) = 14 — g
and that each firm’s goal is to maximize its net revenue minus costs.
Firm I's payoff is then [12 — (g, + ¢,)]q, if it does not invest, and
(14 —{q, + g,)]1q, — fifit does; firm 2's payoffis [12 — (g, + g9,)]19,.

To find the subgame-perfect cquilibria, we work backward. If firm |
does not invest, both firms have unit cost 2, and hence their reaction
functions are r(q;} = 6 — ¢;/2. These reaction functions intersect at the
point (4,4), with payoffs of 16 each. If firm 1 does invest, its reaction
becomes 7,(q,) = 7 — ¢,/2, the second-stage equilibrium is (12, %), and
firm I’s total payoff1s 256/9 — f. Thus, firm 1 should make the investment if
256/9 — [ > 16,0r f < 112/9.

Note that making the investment increases firm 1's second-stage profit in
two ways. First, firm 1's profit is higher at any fixed pair of outputs,
because its cost of production has gone down. Second, firm 1 gains becausc
firm 2's second-stage output is decreased. The reason firm 2's output is
lower is because by lowering its cost firm 1 altered its own second-period
incentives, and in particular made itself “morc aggressive™ in the sense that
Filg;) > ri(g;)forall g,. We say more about this kind of “self-commitment”
in the next subsection. Note that firm 2’s output would not decrease if it
continued to believe that firm 1’s cost equaled 2,

3.2.3 The Value of Commitment and “Time Consistency”

One of the recurring themes in the analysis of dynamic games has been
that in many situations players can benefit from the opportunity to make a
hinding commitment to play in a certain way. In a one-plaver game -ie..
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a decision problem —such commitments cannot be of value, as any payoff
that a player could attain while playing according to the commitment couid
be attaincd by playing in exactly the same way without being committed
to do so. With more than one player, though, commitments can be of value,
since by committing himself to a given sequence of actions a player may
be able to alter the play of his opponents. This “paradoxical” value of
commitment is closely related to our observation in chapter 1 that a player
can gain by reducing his action set or decreasing his payoff to some
outcomes, provided that his opponents are aware of the change. Indeed,
some forms of commitment can be represented in exactly this way.

The way to model the possibility of commitments (and related moves like
“promises™) is to explicitly include them as actions the players can take.
(Schelling (1960) was an early proponent of this view.) We have already seen
one example of the value of commitment in our study of the Stackelberg
game, which describes a situation where one firm (the “leader”) can commit
itself to an output level that the follower is forced to take as given when
making its own output decision. Under the typical assumption that each
firm's optimal reaction ri{g;} is a decreasing function of its opponent’s
output, the Stackelberg leader's payoff is higher than in the “Cournot
cquilibrium™ outcome where the two firms choose their output levels
simultancously.

In the Stackelberg example, commitment is achieved simply by moving
carlier than the opponent. Although this corresponds 1o a different exten-
sive form than the simultaneous moves of Cournot competition, the set of
*physical actions” is in some sense the same. The scarch for a way to commit
oneself can also lead to the use of actions that would not otherwise have
heen considered. Classic examples include a general burning his bridges
behind him as a commitment not to retreat and Odysseus having himself
lashed to the mast and ordering his sailors to plug their ears with wax as
4 commitment not to go to the Sirens’ island. (Note that the natural way
to model the Odysseus story is with two “players,” corresponding to
Odysscus before and Odysseus after he is exposed to the Sirens.) Both of
these cases correspond to a “total commitment™ Once the bridge 1s burned,
or Odysseus is lashed to the mast and the sailors’ ears are filled with wax,
the cost of turning back or escaping from the mast is taken to be infinite.
One can also consider partial commitments, which increase the cost of, ¢.g..
turning back without making it infinite.

As a final example of the value of commitment, we consider what 1s
known as the “time-consistency problem™ in macroeconomics. This prob-
lem was first noted by Kydland and Prescott (1977); our discussion draws
on the survey by Mankiw (1988). Suppose that the government scts the
inflation rate 7, and has preferences over inflation and output y represented
by udn, y} =y — n°, so that it is prepared to tolerate inflation if doing
so increases the output level. The working of the macroeconomy is such
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that only unexpected inflation changes output:
V=¥ tin o f), (3.1)

where y* is the “natural level” of output and # is the expected inflation.?

Regardless of the timing of moves, the agents’ expectations of inflation
are correct in any pure-strategy equilibrium, and so output is at its natural
level. (In a mixed-strategy equilibrium the expectations need only be correct
on average.) The variable of interest is thus the level of inflation. Suppose
first that the government can commit itself to an inflation rate, i.e., the
government moves first and chooses a level of  that is observed by the
agents. Then output will equal y* regardless of the chosen level of 7. so the
government should choose n = 0.

As Kydland and Prescott point out, this solution to the commitment
game is not “time consistent,” meaning that if the agents mistakenly believe
that & is sct equal to 0 when in fact the government is free to choose any
level of it wishes, then the government would prefer to choose a different
level of #. That is, the commitment solution is not an cquilibrium of the
game without commitment.

If the government cannot commit itself, it will choose the level of inflation
that cquates the marginal benefit from increased output to the marginal |
cost of increased inflation. The government’s utility function is such that
this tradceofT is independent of the level of output or the level of expected
inflation, and the government will choose = = }. Since output is the same
in the two cases, the government does strictly worse without commitment.
In the context of monetary policy, the “commitment path™ can be inter-
preted as a “money growth rule,” and noncommitment corresponds to a
“discretionary policy™: hence the conclusion that “rules can be better than
discretion.™?

As 4 gloss on the time-consistency problem, let us consider the analogous
questions in rclation to Stackelberg and Cournot equilibria. If we think of
the government and the agents as both choosing output levels, the commit-
ment solution corresponds to the Stackelberg outcome (g§, ¢¥). This out-
come is not an equilibrium of the game where the government cannot
commit itself, because in general ¢¥ is not a best response to g7 when g3

2. Equation 3.1 is a reduced form that incorporates the way that the agents’ cxpectations
influence their production decisions and in turn influence output. Since the actions of the
agents have been suppressed. the model does not directly correspond to an extensive-form
game, but the same intuitions apply. Here is an artificial extensive-form game with the samc
qualitative properties: The government chooses the money supply m, and a single agent
chooses a nominal price p. Aggregate demand 15 y = max{0,m — p), and the agent is con-
strained 1o supply all demanders. The agent’s utility is p — p?/2m. and the government's utility
is v — (m — 1)2 This does not quite give equation 3.1, but the resulling model has very similar
properties.

3. In the extensive-game mode] where the agent choases prices {sce note 2), the agent chooses
p = m and the commitment solution is to set m = 1. Without commitment this is not an
equilibrium, since for fixed p the government could gain by choosing a larger value of m.
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is held fixed. The no-commitment solution n = } derived above corre-
sponds to a situation of simultancous moves that is, to the Cournot
outcome,

Whether and when a commitment to a monetary rule is credible have
been important topics of theoretical and applied research in macroeco-
nomics. This research has started from the observation that decisions about
thc money supply are not made once and for all, but rather are made
repeatedly. Chapter 5, on repeated games, and chapter 9, on reputation
cffects, discuss game-theoretic analyses of the question of when repeated
play makes commitments credible.

Finally, note that a player does not always do better when he moves first
{and his choice of action is observed) than when players move simuitane-
ously: In “matching pennies™ (example 1.6) each player’s equilibrium payoff
1s (), whereas if onc player moves first his equilibrium payoff is — 1.

33

331

The Extensive Form'*

This section gives a formal development of the idea of an extensive-form
game. The extensive form is a fundamental concept in game theory and one
to which we will refer frequently, particularly in chapters 8 and 11, but the
details of the definitions are not essential for much of the material in the
rest of the book. Thus, readers who are primarily interested in applications
of the theory should not be discouraged if they do not master all the fine
points of the extensive-form methodology. Instead of dwelling on this
section. they should proceed along, remembering to review this material
before beginning section 8.3.

Definition

The extensive form of a game contains the following information:

(1) the set of players

(2) the order of moves—i.e., who moves when

(3) the players’ payoffs as a function of the moves that were made
{(4) what the players’ choices are when they move

(5) what each player knows when he makes his choices

(6) the probability distributions over any ¢xogenous events.

The sct of players is denoted by i € .#; the probability distributions over
cxogenous events (point 6) are represented as moves by “Nature,” which 1s
denoted by N. The order of play (point 2) is represented by a game tree, T,
such as the onc shown in figure 3.1.* A tree is a finite collection of ordered

4. (hur devclopment of the extensive form follows that of Kreps and Wilson 1982 with a
simplification suggested by Jim Ratliff. Their assumptions (and ours) are equivalent to those
of Kuhn 1953,



78

Chapter 3

21 Z2

Figure 3.1

nodes x € X endowed with a precedence relation denoted by >; x> x’
means “x is before x".” We assume that the precedence relation is transitive
(if x is before x" and x’ is before x”, then x is before x”) and asymmetric
(if x 1s before x’, then x is not before x). These assumptions imply that the
precedence relation is a partial order. (It is not a complete order, because
two nodes may not be comparable: In figure 3.1, z; is not before x”, and x”
is not before z;.) We include a single initial node o € X that is before all
other nodes in X; this node will correspond to a move by nature if any.
Figure 3.1 describes a situation where “nature’s move” is trivial, as nature
simply gives the move to player 1. As in this figure, we will suppress nature’s
move whenever it is trivial, and begin the tree with the first “real” choice.
The initial node will be depicted with o to distinguish it from the others.
In figure 3.1, the precedence order is from the top of the diagram down.
Given the assumptions we will impose, the precedence ordering will be clear
in most diagrams; when the intended precedence is not clear we will use
arrows (—) to connect a node to its immediate successors.

The assumption that precedence is a partial order rules out cycles of the
kind shown in figure 3.2a: If x> x’> x”> x, then by transitivity x" > x'.
Since we already have x’>- x”, this would violate the asymmetry condition.
However, the partial ordering does not rule out the situation shown in
figure 3.2b, where both x and x’ are immediate predecessors of node

"

X .

We wish to rule out the situation in figure 3.2b, because each node of
the tree is meant to be a complete description of all events that preceded it,
and not just of the “physical situation” at a given point in time. For
example, in figure 3.2¢, a firm in each of two markets, A and B, might have
entered A and then B (node x and then x”) or B and then A (node x’ and
then x”), but we want our formalism to distinguish between these two
sequences of events instead of describing them by a single node x”. (Of
course, we are free to specify that both sequences lead to the same payoff
for the firm.) In order to ensure that there is only one path through the tree
to a given node, so that each node is a complete description of the path
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Figure 3.3

preceding it, we require that each node x (except the initial node o) have
exactly one immediate predecessor--that is, one node x'> x such that
x” > x and x” # x" implies x” > x’. Thus, if x" and x” are both predeces-
sors of x, then either x’ is before x” or x” is before x'. (This makes the pair
(X, >)an arborescence.)

The nodes that are not predecessors of any other node are called “termi-
nal nodes™ and denoted by z € Z. Because each z completely determines a
path through the tree, we can assign payoffs to sequences of moves using
functions u;: Z — R, with u;(z) being player i’s payoff if terminal node z is
rcached. In drawing extensive forms, the payoff vectors (point 3 in the list
above) are displayed next to the corresponding terminal nodes, as in figures
3.3 and 3.4. To complete the specification of point 2 (who moves when), we
introduce a map : X — .# with the interpretation that player ((x) moves
at node x. Next we must describe what player /(x)’s choices are, which was
point 4 of our list. To do so, we introduce a finite set A of actions and a
function 7 that labels each noninitial node x with the last action taken to
reach it. We require that # be one-to-one on the set of immediate successors
of each node x, so that different successors correspond to different actions,
and let A(x) denote the set of feasible actions at x. (Thus A(x) is the range
of 7 on the set of immediate successors of x.)

Point 5, the information players have when choosing their actions, is
the most subtle of the six points. This information is represented using
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information sets h € H, which partition the nodes of the tree—that is, every
node is in exactly one information set.® The interpretation of the informa-
tion set h(x) containing node x is that the player who is choosing an
action at x is uncertain if he is at x or at some other x’ € h(x). We require
that if x" € h(x) the same player move at x and x’. Without this requirement,
the players might disagree about who was supposed to move. Also, we
require that if x” € h(x) then A(x"}) = A(x), so the player on move has the
same set of choices at each node of this information set. (Otherwise he might
“play” an infeasible action.) Thus, we can let A(h) denote the action set at
information set h.

A special case of interest is that of games of perfect information, in which
all the information sets are singletons. In a game of perfect information,
players move one at a time, and each player knows all previous moves when
making his decision. The Stackelberg game we discussed at the start of this
chapter is a game of perfect information. Figure 3.3 displays a tree for this

=4
(18.18) (16,20) (9,18) (20,15} (16,16) (B,12) (18.9) (12,8) {0,0)

(18,48)  120,15) (18,3} {¥5.20) (16,36)  (12.8) {9,18) 8,12} {0,0)

Figure 3.4

5. Notc that we use the same notation, A, for information scts and for historics in multi-stage
games. This should not cause too much confusion, especially as information sets can be viewed
as a generalization of the idea of a history.
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game on the assumption that each player has only three possible output
levels: 3. 4, and 6. The vectors at the end of each branch of the tree
are the payoffs of players 1 and 2, respectively.

Figurc 3.4a displays an extensive form for the Cournot game, where
players 1 and 2 choose their output levels simultaneously. Here player 2
does not know player 1's output level when choosing his own output. We
model this by placing the nodes corresponding to player 1's three possible
actions in the same information set for player 2. This is indicated in the
figure by the broken line connecting the three nodes. (Some authors use
“loops” around the nodes instead.) Note well the way simultaneous moves
are represented: As in figure 3.3, player I's decision comes “before™ player
2's in terms of the precedence ordering of the tree; the difference 1s in player
2’s information set. As this shows, the precedence ordering in the tree need
not correspond to calendar time. To emphasize this point, consider the
extensive form in figure 3.4b, which begins with a move by player 2.
Figures 3.4a and 3.4b describe exactly the same strategic situation: Fach
player chooses his action not knowing the choice of his opponent. However,
the situation represented in figure 3.3, where player 2 observed player 1’s
move before choosing his own, can only be described by an extensive form
in which player 1 moves first.

Almost all games in the economics literature are games of perfect recall:
No player ever forgets any information he once knew, and all players know
the actions they have chosen previously. To impose this formally, we first
require that if x and x’ are in the same information set then ncither is a
predecessor of the other. This is not enough to ensure that a player never
forgets. as figure 3.5 shows. To rule out this situation, we require that if
x" € hix'), if x is a predecessor of x’, and if the same player i moves at x
and at x’ (and thus at x”), then there is a node % {possibly x itself) that is
in the same information set as x, that £ is a predecessor of x”, and that the
action taken at x along the path to x’ is the same as the action taken at
X along the path to x”. Intuitively, the nodes x" and x” are distinguished
by information the player doesn't have, so he can’t have had it when he
was at information set h(x); x" and x” must be consistent with the same
action at h(x), since the player remembers his action there.

When a game involves moves by Nature, the exogenous probabilities are
displayed in brackets, as in the two-playcr extensive form of figure 3.6. In

- 1 R

Figure 3.5
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(1,0) {0,0)

(3.1) T | Le] (2,1)
NO
(0,1) W 4] {1,1)
L 2
L 1 R
(2,0} (3,0)

Figure 3.6

figure 3.6, Nature moves first and chooses a “type” or “privatc information™
for player 1. With probability 0.6 player 1 learns that his type is “tough”
(T). and with probability 0.4 he learns that his type is “weak™ (W). Player
I'then plays left (L) or right (R). Player 2 observes player 1’s action but not
his type, and chooscs between up (U) and down (D). Note that we have
allowed both players” payoffs to depend on the choice by Nature even
though this choice is initially observed only by player 1. (Player 2 will be
able to infer Nature’s move from his payoffs.) Figure 3.6 is an example of a
“signaling game,” as player 1’s action may reveal information about his
type to player 2. Signaling games, the simplest games of incomplete in-
formation. will be studicd in detail in chapters 8 and 11.

3.3.2 Multi-Stage Games with Observed Actions

Many of the applications of game theory to economics, political science,
and biology have used the special class of extensive forms that we discussed
in section 3.2: the class of “multi-stage games with observed actions.”® These
games have “stages” such that (1) in each stage k every player knows all
the actions, including those by Nature, that were taken at any previous
stage; (2) each player moves at most once within a given stage; and (3) no
information set contained in stage k provides any knowledge of play in that
stage. (Excreise 3.4 asks you to give a formal definition of these conditions
in terms of 4 game tree and information sets.)

In a multi-stage game, all past actions are common knowledge at the
beginning of stage &, so there is a well-defined “history™ A* at the start of
cach stage k. Here a pure strategy for player i is a function s, that specifics
an action a; € A,(h*) for cach k and each history h*; mixed strategics specify
probability mixtures over the actions in each stage.

Caution  Although the idea of a multi-stage game seems natural and
mtrinsic, it suffers from the following drawback: There may be two cxten-

6. Such games arc also often called “games of almost-perfect information.™
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Figure 3.7

sive forms that seem to represent the same real game, with onc of them a
multi-stage game and the other one not. Consider for cxample figure 3.7,
The extensive form on the left is not a multi-stage game: Plaver 2's informa-
tion set is not a singleton, and so it must belong to the first stage and not
to a second one. However, player 2 does have some information about
player 1's first move (if player 2's information set is rcached, then player
I did not play C}, so player 2's information set cannot belong to the first
stage either. However, the extensive form on the right is a4 two-stage game,
and the two extensive forms seem to depict the same situation: When player
2 moves, he knows that player 1 is choosing A or B but not C; player 1
chooses A or B without knowing player 2’s choice of L or R. The question
as to which extensive forms are “equivalent” is still a topic of research—-see
Elmes and Reny 1988. We will have morc to say about this topic when we
discuss recent work on equilibrium refincments in chapter 11.

Before proceeding to the next section, we should point out that in
applications the extensive form is usually described without using the
apparatus of the formal definition, and game trees are virtually never drawn
except for very simple “toy™ examples. The test of a good informal descrip-
tion 1s whether it provides enough information to construct the associated
extensive form; if the extensive form is not clear, the model has not been
well specified.

3.4 Strategies and Equilibria in Fxtensive-Form Games'

3.4.1 Bcehavior Strategies

This section defines strategies and equilibria in extensive-form games and
relates them to strategies and equilibria of the strategic-form modcl. Let H;
be the set of player i’s information sets, and let A, =\ J, .4, A1) be
the set of all actions for player i. A pure strategy for player i is a map
s;o H, — A, with sdh;) € A(h;) for all h; € H;. Player i’s space of pure strite-
gics, S;, 1s simply the space of all such s;. Since each pure strategy is
a map from information sets to actions, we can write §; as the Cartesian
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product of the action spaces at each h;:

S;= x  A(h).
hieH,

In the Stackelberg example of figure 3.3, player 1 has a single information
set and three actions, so that he has three pure strategies. Player 2 has three
information sets, corresponding to the thrce possible choices of player 1,
and player 2 has three possible actions at each information set, so player
2 has 27 pure strategies in all. More generally, the number of player i's pure
strategies, # S;, equals

[T #(Ah)).

heH,

Given a pure strategy for each player i and the probability distribution
over Nature’s moves, we can compute a probability distribution over
outcomes and thus assign expected payoffs u,(s) to each strategy profile s.
The information sets that are reached with positive probability under
profile s are called the path of s.

Now that we have defined the payoffs to each pure strategy, we can
proceed to define a pure-strategy Nash equilibrium for an extensive-form
game as a strategy profile s* such that each player i’s strategy s* maximizes
his expected payoff given the strategies s*; of his opponents. Note that since
the definition of Nash equilibrium holds the strategies of player i’s oppo-
nents fixed in testing whether player i wishes to deviate, it is as if the
players choose their strategies simultaneously. This does not mean that in
Nash equilibrium players necessarily choose their actions simultaneously.
For example, if player 2’s fixed strategy in the Stackelberg game of figure
3.3 is the Cournot reaction function §, = (4,4,3), then when player 1 treats
player 2's strategy as fixed he does not presume that player 2’s action is
unaffected by his own, but rather that player 2 will respond to player 1's
action in the way specified by §,.

To fill in the details missing from our discussion of the Stackelberg
game in the introduction: The “Stackelberg equilibrium” of this game is
the outcome ¢, = 6, q, = 3. This outcome corresponds to the Nash-
equilibrium strategy profile s, = 6, s, = §,. The Cournot outcome is (4,4);
this is the outcome of the Nash equilibrium s, = 4, s, = (4,4,4).

The next order of business is to define mixed strategies and mixed-
strategy equilibria for extensive-form games. Such strategies are called
hehavior strategies to distinguish them from the strategic-form mixed strat-
cgies we introduced in chapter 1. Let A(A(h;)) be the probability distribu-
tions on A(h;). A behavior strategy for player i, denoted b;, is an element of
the Cartesian product x, .4 A(A(h;)). That is, a behavior strategy specifies
a probability distribution over actions at each h;, and the probability
distributions at different information sets are independent. (Note that a
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pure strategy is a special kind of behavior strategy in which the distribution
at each information set is degenerate.) A profile b = (b,,..., b;) of bchavior
strategies generates a probability distribution over outcomes in the obvious
way, and hence gives rise to an expected payoff for each player. A Nash
equilibrium in behavior strategies is a profile such that no player can increase
his expected payoff by using a different behavior stratcgy.

3.4.2 The Strategic-Form Representation of Extensive-Form Games

Our next step is to relate extensive-form games and equilibria to the
strategic-form model. To define a strategic form from an extensive form, we
simply let the pure strategies s € § and the payoffs u;(s) be exactly those we
defined in the extensive form. A different way of saying this is that the same
pure strategies can be interpreted as either extensive-form or strategic-form
objects. With the extensive-form interpretation, player i “waits” until A; is
rcached before deciding how to play there; with the strategic-form inter-
pretation, he makes a complete contingent plan in advance.

Figure 3.8 illustrates this passage from the extensive form to the strategic
form in a simple example. We order player 2's information sets from
left to nght, so that, for example, the strategy s, = (L, R) means that he
plays L after U and R after D.

As another example, consider the Stackelberg game illustrated in figure
3.3, We will again order player 2’s information sets from left to right, so
that player 2's strategy §, = (4,4,3) means that he plays 4 in response to
¢, = 3, plays 4 in response to 4, and plays 3 in response to 6. (This strategy
happens to be player 2’s Cournot reaction function.) Since player 2 has
three information sets and three possible actions at each of these sets, he
has 27 pure strategies. We trust that the reader will forgive our not display-
ing the strategic form in a matrix diagram!

V] \\\D
2 2
L3 .
L R L R
(2,1) (0,0) (-1,1) (3,2}

a. Extensive Form

L (LR} (R.L) (RR)

: l
U 21 21 0,0 0,0
b -11, 3.2 -1 3,2

b. Strategic Form

Figure 3.8
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There can be several extensive forms with the same strategic form, as the
example of simultaneous moves shows: Figures 3.4a and 3.4b both corre-
spond to the same strategic form for the Cournot game.

At this point we should note that the strategy space as we have defined
1t may be unnecessarily large, as it may contain pairs of strategies that are
“equivalent” in the sense of having the same consequences regardless of
how the opponents play.

Definition 3.2 Two pure strategies s; and s/ are equivalent if they lead
to the same probability distribution over outcomes for all pure strategies
of the opponents.

Consider the example in figure 3.9. Here player 1 has four pure strategies:
(a,c),(a,d).(b,c), and (b,d). However, if player 1 plays b, his second informa-
tion set is never reached, and the strategies (b,c) and (b, d) are equivalent.

Definition 3.3 The reduced strategic form (or reduced normal form) of an
extensive-form game is obtained by identifying equivalent pure strategies
(i.c., climinating all but one member of each equivalence class).

Once we have derived the strategic form from the extensive form, we can
(as in chapter 1) define mixed strategies to be probability distributions over
pure strategies in the reduced strategic form. Although the extensive form
and the strategic form have cxactly the same pure strategies, the sets of
mixed and behavior strategies are different. With behavior strategies, player
i performs a different randomization at cach information set. Luce and
Raifla (1957) use the following analogy to explain the relationship between
mixed and behavior strategics: A purc strategy is a book of instructions,
where each page tells how to play at a particular information set. The
strategy space §; is like a library of these books, and a mixed strategy is a
probability measure over books—i.e., a random way of making a selection
from the library. A given behavior strategy, in contrast, is a single book, but
it prescribes a random choice of action on cach page.

The reader should suspect that these two kinds of strategies are closely
rclated. Indeed, they are equivalent in games of perfect recall, as was proved

Figure 3.9
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34.3
Recall

The

by Kuhn (1953). (Here we use “equivalence” as in our earlier definition:
Two strategies are equivalent if they give rise to the same distributions over
outcomes for all strategies of the opponents.)

Equivalence between Mixed and Behavior Strategics in Games of Perfect

The cquivalence between mixed and behavior strategies under perfect
recall is worth explaining in some detail, as it also helps to clarify the
workings of the extensive-form model. Any mixed strategy o; of the strategic
form (not of the reduced strategic form) generates a unique behavior
strategy b, as follows: Let R;(h;) be the set of player i's pure strategies
that do not preclude h;, so that for all s; € Ri(h;) there is a profile s_;
for player i’s opponents that reaches h;. If o; assigns positive probability
to some s; in R,(h;), define the probability that b; assigns to a; € A(h;) as

f

hi(alh;) = Z O'i(S()// Z a,ls;)

's; € Rith;)and s;(h;)=a;) | {sie Rihy)

If o, assigns probability O to all 5; € R;(h;), then set

bia;| h;) = Z oi(s;).”

Isi(hi)=a;,

In cither case, the b,(-|-) are nonnegative, and

z bia;lh;) =1,

a e Alh))
because each s, specifies an action for player i at h;.

Note that in the notation ha,|h;), the variable h; is redundant, as
u; € A(h;), but the conditioning helps emphasize that g, is an action that is
feasible at information set h;.

It is useful to work through some examples to illustrate the construction
of behavior strategies from mixed strategies. In figure 3.10, a single player
(player 1) moves twice. Consider the mixed strategy o, = (3(L,7), 3(R,?)).

Figure 3.10

7. Since h, cannot be reached under o;, the behavior strategies at h; are arbitrary in the same
sense that Bayes' rule does not determine posterior probabilities after probability-0 events.
Our formula is ane of many possible specifications.
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The strategy plays » with probability 1 at information set h, as only
(R,») € R, (h}).

Figure 3.11 gives another example. Playcr 2’s strategy o, assigns prob-
ability } each to s, = (L,L',R") and §, = (R,R’,L"). The equivalent be-
havior strategy is

by(L1hy) = by(Rihy) = 3

h,(L'[h}) = O and b,(R'| k) = 1,
and

(L7 [h3) = by(R"| h3) = |

Many different mixed strategies can generate the same behavior strategy.
This can be scen from figure 3.12, where player 2 has four pure strategies:
5; =(A,C), 55 = (A, D), s; = (B,C), and 5% = (B, D).

Now consider two mixed strategies: o, = (4, 1, 4), which assigns prob-
ability ; to each pure strategy, and ¢, = (3,0,0, 1), which assigns probability
2 10 5, and } to s3. Both of these mixed strategics generate the behav-
1or strategy h,, where b,(Alh) = b,(B|h) = } and b,(C|h') = b,(D|h') = 1.

Pure strategy s, Pure strategy §2

Figure 3.11

Figure 3.12
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Morcover, for any strategy o, of player 1, 0,. é,, and b, all lead to the same
probability distribution over terminal nodes; for example, the probability
of reaching node z, equals the probability of player 1's playing U times
h,(Alh).

The relationship between mixed and behavior strategies is different in
the game illustrated in figure 3.13, which is not a game of perfect recall.
{(Exercise 3.2 asks you to verify this using the formal definition.) Here, player
I has four strategies in the strategic form:

s, =(A.C), s, = (A, D), s{ = (B,C). s/ = (B,D).

Now consider the mixed strategy ¢, = (1,0,0,}). As in the last example,
this generates the behavior strategy b, = {(},1),(3,3)}, which says that
player 1 mixes }-1 at each information sct. But b, is not equivalent to the
o, that generated it. Consider the strategy s, = L for player 2. Then (¢, L)
generates a ) probability of the terminal node corresponding to (A, L, C),
and a } probability of (B, L, D). However, since behavior strategies describe
independent randomizations at each information set, (h,, L) assigns prob-
ability } to each of the four paths (A, L,C), (A, L,D),(B,L,C), and (B,L,D).
Since both A vs. B and C vs. D are choices made by player 1, the strategic-
form strategy ¢, can have the property that both A and B have positive
probability but C is played wherever A is. Put differently, the strategic-form
strategies, where player 1 makes all his decisions at once, allow the decisions
at different information sets to be correlated. Behavior strategies can’t
produce this correlation in the example, becausec when it comes time to
choose between C and D player | has forgotten whether he chose A or
B. This forgetfulness means that there is not perfect recall in this game. If
we change the extensive form so that therc is perfect recall (by partitioning
player 1's second information set into two, corresponding to his choice of
A or B). it is easy to see that every mixed strategy is indeed equivalent to
the behavior strategy 1t generates.

Theorem 3.1 (Kuhn 1953} In a gamc of perfect recall, mixed and behavior
strategies are equivalent. (More preciscly: Every mixed strategy is equiv-

Figure 3.13
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alent to the unique behavior strategy it generates, and cach behavior
strategy is equivalent to every mixed strategy that gencrates it.)

We will restrict our attention to games of perfect recall throughout this
book, and will use the terms “mixed strategy™ and *“Nash equilibrium™ to
refer to the mixed and behavior formulations interchangeably. This leads
us to the following important notational convention: In the rest of part 11
and in most of part IV (except in scctions 8.3 and 8.4), we will be studying
behavioral strategics. Thus, when we speak of a mixed strategy of an
cxtensive form, we will mean a behavior strategy unless we state otherwise.
Although the distinction between the mixed strategy o; and the bechavior
strategy h; was necessary to establish their equivalence, we will follow
stundard usage by denoting both objects by ¢; (thus, the notation b; 1s not
used in the rest of the book). In a multi-stage game with observed actions,
we will let a,(uf|h*) denote player i's probability of playing action a} €
A,(h*) given the history of play &* at stage k. In general extensive forms
(with perfect recall), we let o,(a;|h;} denote player i’s probability of playing
action g; at information set h;.

[terated Strict Dominance and Nash Equilibrium

If the extensive form is finite, so i1s the corresponding strategic form,
and the Nash existence theorem yields the existence of a mixed-strategy
cquilibrium. The notion of iterated strict dominance extends to extensive-
form games as well; however, as we mentioned above, this concept turns
out to have little force in most extensive forms. The point is that a player
cannot strictly prefer one action over another at an information set that is
not reached given his opponents’ play.

Consider figure 3.14. Here, player 2's strategy R is not strictly dominated,
as it is as good as L when player 1 plays U. Morcover, this fact is not
“pathological.™ It obtains for all strategic forms whose payoffs are derived
from an extensive form with the tree on the left-hand side of the figure. That
is, for any assignment of payoffs to the terminal nodes of the tree, the payoffs
to{U, L) and (U, R) must be the same, as both strategy profiles lead to the
same terminal node. This shows that the set of strategic-form payoffs of a
fixed game tree is of lower dimension than the set of all payoffs of the
corresponding strategic form, so theorems based on generic strategic-form
payoffs (see chapter 12) do not apply. In particular, there can be an even
number of Nash equilibria for an open set of extensive-form payoffs, The
game illustrated in figure 3.14 has two Nash equilibria, (U, R) and (D, L),
and this number is not changed if the extensive-form payoffs are slightly
perturbed. The one case where the odd-number theorem of chapter 12
applics is to a simultaneous-move game such as that of figure 3.4; in such a
game, cach terminal node corresponds to a4 unique strategy profile. Put
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(2,2)
(3,1) (0,0)
L R
U 2,2 2,2
D L 3.1 0,0
Figure 3.14

differently: In simultancous-move games, every strategy profile reaches
every information set, and so no player’s strategy can involve a choice that
is not implemented given his opponents’ play.

Recall that a game of perfect information has all its information sets as
singletons, as in the games illustrated in figures 3.3 and 3.14.

Theorem 3.2 (Zermelo 1913; Kuhn 1953) A finite game of perfect informa-
tion has a pure-strategy Nash equilibrium.

The proof of this theorem constructs the equilibrium strategies using “Zer-
melo’s algorithm,” which is a many-player generalization of backward
induction in dynamic programming. Since the game is finite, it has a sct of
penultimate nodes i.e., nodes whose immediate successors are tcrminal
nodes. Specify that the player who can move at each such node chooses
whichever strategy leads to the successive terminal node with the highest
payoff for him. (In case of a tic, make an arbitrary selection.) Now specify
that each player at nodes whose immediate successors are penultimate
nodes chooses the action that maximizes her payoff over the fecasible
successors, given that players at the penultimate nodes play as we have just
specified. We can now roll back through the tree, specifying actions at each
nodc. When we are done, we will have specified a strategy for cach player,
and it is casy to check that these strategies form a Nash equilibrium. {In
fact, the strategies satisfy the more restrictive concept of subgame perfec-
tion, which we will introduce in the next section.)

Zermelo's algorithm is not well defined if the hypothescs of the theorem
arc weakened. First consider infinite games. An infinite game necessarily
has cither a single node with an infinite number of successors (as do games
with a continuum of actions) or a path consisting of an infinite number of
nodes (as do multi-stage games with an infinite number of stages). In the
first casc, an optimal choice need not exist without further restrictions on
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the payoffl functions®; in the second, there need not be a penultimate node
on a given path from which to work backward. Finally, consider a game
of imperfect information in which some of the information sets arc not
singletons, as in figure 3.4a. Here there is no way to define an optimal
choice for player 2 at his information set without first specifying player 2's
belief about the previous choice of player 1; the algorithm fails because it
presumes that such an optimal choice exists at every information set given a
specification of play at its successors.

We will have much more to say about this issuc when we treat equi-
librium refinements in detail. We conclude this section with one caveat
about the assertion that the Nash equilibrium is a minimal requirement for
a "reasonable” point prediction: Although the Nash concept can be applied
to any game, the assumption that cach player correctly forecasts his oppo-
nents’ strategy may be less plausible when the strategies correspond to
choices of contingent plans than when the strategies are simply choices of
actions. The issue here is that when some information sets may not be
reached in the equilibrium, Nash equilibrium requires that players correctly
forecast their opponents’ play at information sets that have 0 probability
according to the equilibrium strategies. This may not be a problem if the
forecusts are derived from introspection, but if the forecasts are derived
from observations of previous play it is less obvious why forecasts should
be correct at the information scts that are not reached. This point is
examined i detail in Fudenberg and Kreps 1988 and in Fudenberg and
L.evine 1990,

35 Backward Induction and Subgame Perfection'"

As we have seen, the strategic form can be used to represent arbitrarily
complex cxtensive-form games, with the strategies of the strategic form
being complete contingent plans of action in the extensive form. Thus, the
concept of Nash equilibrium can be applied to all games, not only to games
where players choose their actions simultancously. However, many game
theorists doubt that Nash equilibrium is the right solution concept for

8. The existence of an optimal choice from a compact set of actions requires that payoils be
upper semi-continuous in the choice made. (A real-valued function f(x) is upper semi-
continuous if x” — x implies lim, .. f(x") < f(x).)

Assuming that payoffs u; are continuous in s does not guarantee that an optimal action
cxists at cach node. Although the last mover's payoff is continuous and therefore an optimum
exists if his action set is compact, the last mover’s optimal action need not be a continuous
function of the action chosen by the previous player. In this case, when we replace that last
mover by an arbitrary specification of an optimal action on each path, the next-to-last mover’s
derived payofT function need not be upper semi-continuous, even though that player’s payoff
is & continuous function of the actions chosen at each node. Thus, the simple backward-
induction algorithm defined above cannot be applied. However, subgame-perfect equilibria
do exist in infinite-action games of perfect information, as shown by Harris (1985) and by
Hellwig and Leininger (1987).
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general games. In this section we will present a first look at “equilibrium
refinements,” which are designed to separate the “reasonable™ Nash equi-
libria from the “unreasonable™ ones. In particular, we will discuss the ideas
of backward induction and “subgame perfection.” Chapters 4, 5 and 13
apply these ideas to some classes of games of interest to economists.

Selten {1965) was the first to argue that in general extensive games some
of the Nash equilibria are “more reasonable™ than others. He began with
the example illustrated here in figure 3.14. This i1s a finite game of perfect
mmformation, and the backward-induction solution (that is, the one ob-
tuined using Kuhn's algorithm) is that player 2 should play L if his informa-
tion set is reached, and so player 1 should play D. Inspection of the strategic
form corresponding to this game shows that there is another Nash cqui-
librium, where player 1 plays U and player 2 plays R. The profile (U, R) is
a Nash equilibrium because, given that player 1 plays U, playcer 2’s informa-
tion s¢t is not reached, and player 2 loses nothing by playing R. But Sclten
argued, and we agree, that this equilibrium is suspect. After all, if player 2°s
information set is reached, then, as long as player 2 is convinced that his
pavofls arc as specified in the figure, player 2 should play L. And if we were
player 2, this is how we would play. Moreover, if we were player 1, we would
expect player 2 to play L, and so we would play D.

In the now-familiar language, the equilibrium (U, R} is not “credible,”
because it relies on an “empty threat™ by player 2 to play R. The threat 1s
“empty” because player 2 would never wish to carry it out.

The idea that backward induction gives the right answer in simple
gamcs like that of figure 3.14 was implicit in the economics literature before
Selten’s paper. In particular, it is embodied in the idea of Stackelberg
cquilibrium: The requirement that player 2's strategy be the Cournot
reaction function is exactly the idea of backward induction, and all other
Nash equilibria of the game are inconsistent with backward induction. So
we sce that the expression “Stackelberg equilibrium™ does not simply refer
to the extensive form of the Stackelberg game, but instead is shorthand for
“the backward-induction solution to the sequential quantity-choice game.”
Just as with “Cournot equilibrium,” this shorthand terminology can be
conveniecnt when no confusion can arise. However, our experience suggests
that the terminology can indeed lead to confusion, so we advise the student
10 use the more precise language instead.

Consider the game illustrated in figure 3.15. Here neither of player 2's
choices 1s dominated at his last information set, and so backward induction
does not apply. However, given that one accepts the logic of backward
induction, the following argument seems compelling as well: “The game
beginning at player 1's second information set is a zero-sum simultaneous-
move game (‘matching pennies’) whose unique Nash equilibrium has ex-
pected payofls (0,0). Player 2 should choose R only if he expects that there is
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Figure 3.15

probability 3 or better that he will outguess player 1 in the simultaneous-
move subgame and end up with +2 instead of —2. Since player 2 assumes
that player 1 is as rational as he is, it would be very rash of player 2 to
expect to get the better of player 1, especially to such an extent. Thus, player
2 should go L, and so player 1 should go R.” This is the logic of subgame
perfection: Replace any “proper subgame™ of the tree with one of its
Nush-cquilibrium payoffs, and perform backward induction on the re-
duced tree. (If the subgame has multiple Nash equilibria, this requires that
all players agree on which of them would occur; we will come back to this
point in subsection 3.6.1.) Once the subgame starting at player I's second
information set is replaced by its Nash-equilibrium outcome, the games
described in figures 3.14 and 3.15 coincide.

To define subgame perfection formally we must first define the idea of a
proper subgame. Informally, a proper subgame is a portion of a game that
can be analyzed as a gamce in its own right, like the simultaneous-move
game embedded in figure 3.15. The formal definition is not much more
complicated:

Definition 3.4 A proper subgame G of an extensive-form game T consists
of a single node and all its successors in T, with the property that if x' € G
and x” € h(x') then x” € G. The information sets and payoffs of the subgame
are inherited from the original game. That is, x" and x” are in the same
information set in the subgame if and only if they arc in the same informa-
tion set in the original game, and the payoff function on the subgame is just
the restriction of the original payoff function to the terminal nodes of the
subgame.

Here the word “proper” here does not mean strict inclusion, as it does
in the term “proper subset.” Any gamc is always a proper subgame of
itsell. Proper subgames are particularly easy to identify in the class of
deterministic multi-stage games with observed actions. In these games, all
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previous actions arc known to all players at the start of each stage, so cach
stage begins a new proper subgame. (Checking this is part of exercise 3.4.)

The requirements that all the successors of x be in the subgame and that
the subgame not “chop up” any information set ensure that the subgame
corresponds to a situation that could arise in the original game. In figure
3.16, the game on the right isn’t a subgame of the game on the left, because
on the right player 2 knows that player 1 didn’t play L, which he did not
know in the original game.

Together, the requirements that the subgame begin with a single node x
and that the subgame respcct information sets imply that in the original
game x must be a singlcton information set, i.e., h(x) = {x}. This ensures
that the payoffs in the subgame, conditional on the subgame being reached,
are well defined. In figure 3.17, the “game” on the right has the problem that
player 2's optimal choice depends on the relative probabilities of nodes x
and x', but the specification of the game does not provide these probabili-
ties. In other words, the diagram on the right cannot be analyzed as an
independent game; it makes sense only as a component of the game on the
left, which is needed to provide the missing probabilities.

Since payoffs conditional on reaching a proper subgame are well defined,
we can test whether strategies yield a Nash equilibrium when restricted to
the subgame in the obvious way. Thal is, if o; is a behavior strategy for
player i in the original game, and H, is the collection of player i’s informa-
tion sets in the proper subgame, then the restriction of g; to the subgame
is the map 4, such that é,(-|h;) = a,(-|h;) for every h; € H.

We have now developed the machinery needed to define subgame
perfection.

Definition3.5 A behavior-strategy profile o of an extensive-form game is a
subgame-perfect equilibrium if the restriction of ¢ to G is a Nash equilibrium
of G for every proper subgame G.
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Because any game is a proper subgame of itself, a subgame-perfect
equilibrium profile is necessarily a Nash equilibrium. If the only proper
subgame Is the wholc game, the sets of Nash and subgame-perfect equilibria
coincide. If there arc other proper subgames, some Nash equilibria may
farl to be subgame perfect.

It is casy to see that subgame perfection coincides with backward
induction in finite games of perfect information. Consider the penultimate
nodes of the tree, where the last choices are made. Fach of these nodes
begins a trivial one-player proper subgame, and Nash equilibrium in these
subgames requircs that the player now make a choice that maximizes
his payoff; thus, any subgame-perfect equilibrium must coincide with a
backward-induction solution at every penultimate node, and we can
continue up the tree by induction. But subgame perfection is more general
than backward induction; for example, it gives the suggested answer in
the game of figure 3.15.

We remarked above that in multi-stage games with observed actions
every stage begins a new proper subgame. Thus, in these games, subgame
perfection is simply the requirement that the restrictions of the strategy
profile yield a Nash equilibrium from the start of each stage k for each
history h*. 1f the game has a fixed finite number of stages (K + 1), then we
can characterize the subgame-perfect equilibria using backward induction:
The strategies in the last stage must be a Nash equilibrium of the corre-
sponding one-shot simultaneous-move game, and for each history h* we
replace the last stage by onc of its Nash-equilibrium payoffs. For each
such assignment of Nash equilibria to the last stage, we then consider the
set of Nash equilibria beginning from each stage h*~'. (With the last
stage replaced by a payoff vector, the game from #* ! on is a one-shot
simultancous-move game.) The characterization proceeds to “roll back
the tree” in the manner of the Kuhn-Zermelo algorithm. Note that even
if two different stage-K histories lead to the “same game” in the last stage
(that is, if there is a way of identifying strategies in the two games that
preserves payoffs), the two histories still correspond to different subgames,
and subgame perfection allows us to specify a different Nash equilibrium

for cach history. This has important consequences, as we will sec in section
4.3 and 1n chapter 5.

3.6 Critiques of Backward Induction and Subgame Perfection'

This section discusses some of the limitations of the arguments for back-
wards induction and subgame perfection as necessary conditions for rea-
sonable play. Although these concepts seem compelling in simple two-stage
games of perfect information, such as the Stackclberg game we discussed
at the start of the chapter, things are more complicated if there are many
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players or if each player moves several times; in these games. equilibrium
refinements are less compelling.

3.6.1 Critiques of Backward Induction

Consider the I-player game illustrated in figure 3.18. where each player
i < I caneither end the game by playing “D” or play A" and give the move
to player i + 1. (To readers who skipped sections 3.3-3.5: Figure 3.18
depicts @ “game tree.” Though you have not scen a formal definition of
such trees, we trust that the particular trees we usc in this subsection will be
clear.) If player i plays D, each player gets 1/i; if all players play A, cach
gets 2. ‘

Since only onc player moves at a time, this is a game of perfect informa-
tion, and we can apply the backward-induction algorithm, which predicts
that all players should play A. If I is small, this seems like a reasonable
prediction. If {15 very large, then, as player 1, we ourselves would play DD
and not A on the basis of a “robustness™ argument similar to the one that
suggested the inefficient cquilibrium in the stag-hunt game of subsection
1.2.4.

First, the payofl 2 requires that all 1 — 1 other players play A. If the
probability that a given player plays A is p < 1, independent of the others.
the probability that all I — | other players play A is p’ !, which can
be quite small even if p is very large. Second, we would worry that player 2
might have these same concerns; that is, player 2 might play D to safeguard
agamst either “mustakes™ by future players or the possibility that player 3
might intentionally play D.

A related observation is that longer chains of backward induction pre-
sume longer chains of the hypothesis that “player | knows that player 2
knows that player 3 knows. .. the payoffs.” If I = 21in figure 3.18, backward
induction supposes that player 1 knows player 2’s payoff, or at Icast that
player I is fairly surc that player 2's optimal choice is A. If 1 = 3, not
only must players 1 and 2 know player 3's payoff, in addition, player 1
must know that player 2 knows player 3’s payoff. so that player 1 can
forecast player 2's forecast of player 3’s play. If player 1 thinks that player
2 will forecast player 3's play incorrectly, then player 1 may choose to play
D. Traditionally, equilibrium analysis is motivated by the assumption that

(2,2,.,2}

(1.1,

Figure 3.18
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payoffs are “common knowledge,” so that arbitrarily long chains of “i
knows that j knows that k knows” are valid, but conclusions that require
very long chains of this form are less compelling than conclusions that
require less of the power of the common-knowledge assumption. (In part
this is becausc longer chains of backward induction arc more sensitive to
small changes in the information structure of the game, as we will see in
chapter 9)

The example in figure 3.18 is most troubling if I is very large. A second
complication with backward induction arises whenever the same player
can move several times in succession. Consider the game illustrated in
figure 3.19. Here the backward-induction solution is that at every informa-
tion set the player who has the move plays D. Is this solution compeliing?
Imagine that it is, that you are player 2, and that, contrary to expectation,
playcr 1 plays A, at his first move. How should you play? Backward
induction says to play D, because player 1 will choose D, if given a chance,
but backward induction also says that player 1 should have played D,. In
this game, unlike the simple examples we started with, playcr 2’s best action
if player 1 deviates from the predicted play A, depends on how player 2
cxpects player 1 to play in the future: If player 2 thinks there is at least a
25 percent chance that player 1 will play A, then player 2 should play A,.
How should player 2 form these beliefs, and what beliefs are reasonable?
In particular, how should player 2 predict how player 1 will play if, contrary
to backward induction, player 1 dccides to play A;? In some contexts,
playing A, may seem like a good gambile.

Most analyses of dynamic games in the economics literature continue to
use backward induction and its refinements without reservations, but
recently the skeptics have become more numerous. The game depicted in
figure 3.19 is based on an example provided by Rosenthal (1981), who was
one of the first to question the logic of backward induction. Basu (1988,
1990), Bonanno (1988), Binmore (1987, 1988), and Reny (1986) have argued
that reasonable theories of play should not try to rule out any behavior
once an event to which the theory assigns probability 0 has occurred,
because the theory provides no way for players to form their predictions
conditional on these events. Chapter 11 discusses the work of Fudenberg,
Kreps, and Levine (1988), who propose that players interpret uncxpected
deviations as being due to the payoffs’ differing from those that were

(1,0} {0,1) (3,0) (2,4) (6,

Figure 3.19
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originally thought to be most likely. Since any observation of play can be
explained by some specification of the opponents’ payoffs, this approach
sidesteps the difficulty of forming beliefs conditional on probability-0
events, and it recasts the question of how to predict play after a “deviation™
asa question of which alternative payoffs are most likely given the observed
play. Fudenberg and Kreps (1988) extend this to a methodological princi-
ple: They argue that any theory of play should be “complete™ in the sense
of assigning positive probability to any possible scquence of play, so that,
using the theory. the players’ conditional forecasts of subsequent play are
always well defined.

Pavofl uncertainty is not the only way to obtain a complete theory.
A second family of complete theories is obtained by interpreting any
extensive-form game as implicitly including the fact that players sometimes
make small “mistakes” or “trembles” in the sense of Sclten 1975. If, as
Sclten assumes, the probabilities of “trembiing” at different information
sets are independent, then no matter how often past play has failed to
conform to the predictions of backward induction, a player is justified in
continuing to usc backward induction to predict play in the current sub-
game. Thus, interpreting “trembles™ as deviations is a way to defend back-
ward induction. The relevant question is how likely players view this
“trembles™ explanation of deviations as opposed to others. In figure 3.19,
if player 2 observes A |, should she (or will she} interpret this as a “trembile,”
or as a signal that player 1 is likely to play A;?

3.6.2 Critiques of Subgame Perfection

Since subgame perfection is an cxtension of backward induction, it is
vulnerable to the critiques just discussed. Moreover, subgame perfection
requires that players all agree on the play in a subgame even if that play
cannot be predicted from backward-induction arguments. This point is
emphasized by Rabin (1988), who proposcs alternative, weaker equilibrium
refinements that allow players to disagree about which Nash equilibrium
will occur in a subgame off the equilibrium path.

To see the difference this makes, consider the following three-playcr
game. In the first stage, player 1 can either play L, ending the game with
payoffs (6,0, 6), or play R, which gives the move to player 2. Player 2 can
then either play R, ending the game with payoffs (8, 6, 8), or play L, in which
case players 1 and 3 (but not player 2) play a simultaneous-move “coordina-
tion game™ in which they each choose F or G. If their choices differ, they
cach receive 7 and player 2 gets 10; if the choices match, all three players
receive 0. This game is depicted in figure 3.20.

The coordination game between players | and 3 at the third stage has
three Nash equilibria: two in pure strategics with payofls (7,10,7) and a
mixed-strategy equilibrium with payoffs (33,5,3}). If we specify an equi-
librium in which players 1 and 3 successfully coordinate, then player 2 plays
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Figure 3.20

L and so player 1 plays R, expecting a payoff of 7. If we specify the
inefficient mixed cquilibrium in the third stage, then player 2 will play R
and again player | plays R, this time expecting a payoff of 8. Thus, in all
subgame-perfect equilibria of this game, player 1 plays R.

As Rabin argues, it may nevertheless be reasonable for player 1 to play L.
He would do so if he saw no way to coordinate in the third stage, and hence
expected a payoff of 33 conditional on that stage being reached, but feared
that player 2 would believe that play in the third stage would result in
coordination on an efficient equilibrium.

The point 1s that subgame perfection supposes not only that the players
expect Nash equilibria in all subgames but also that all players expect the
same equilibria. Whether this is plausible depends on the reason one thinks
an equilibrium might arise in the first place.

Exercises

Exercise 3.1* Players 1 and 2 must decide whether or not to carry an
umbrella when leaving home. They know that there 1s a 50-50 chance of
rain. Each player’s payoffis — 5if he doesn’t carry an umbrella and it rains,
— 2 1f he carries an umbrella and it rains, — 1 if he carries an umbrella and
it is sunny, and 1 if he doesn’t carry an umbrella and it is sunny. Player 1
learns the weather before leaving home; player 2 does not, but he can
observe player 1’s action before choosing his own. Give the extensive and
strategic forms of the game. [s it dominance solvable?

Exercise 3.2.* Verify that the game in figure 3.13 does not meet the formal
definition of a game of perfect recall.

Exercise 3.3* Player 1, the “government,” wishes to influence the choice
of player 2. Player 2 chooses an action a, € A, = {0, 1} and receives a
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transfer r € T = {0, 1} from the government, which observes a,. Player 2's
objective is to maximize the expected value of his transfer, minus the cost
of his action, which is O for a, = 0 and 1 for «; = 1. Player 1's objective is
to minimize the sum 2(a, — 1)* + t. Before player 2 chooses his action, the
government can announce a transfer rule #(a;).

(a) Draw the extensive form for the case where the government’s an-
nouncement is not binding and has no effect on payoffs.

(b) Draw the extensive form for the case where the government is con-
strained to implement the transfer rule it announced.

(¢} Give the strategic forms for both games.

(d) Characterize the subgame-perfect equilibria of the two games.

Exercise 3.4** Define a deterministic multi-stage game with observed
actions using conditions on the information sets of an extensive form. Show
that in these games the start of each stage begins a proper subgame.

Exercise 3.5** Show that subgame-perfect equilibria exist in finite multi-
stage games.

Exercise 3.6* There are two players, a seller and a buyer, and two dates.
At date 1, the seller chooses his investment level I > 0 at cost {. At date 2,
the seller may sell one unit of a good and the seller has cost c¢(f) of
supplying it, where ¢’(0) = —¢, ¢’ < 0, ¢” > 0, and ¢(0} is less than the
buyer’s valuation. There is no discounting, so the socially optimal level of
investment, [*,is given by 1 + ¢'(I*) = 0.

(a) Supposc that at date 2 the buyer observes the investment I and makes
a takc-it-or-leave-it offer to the seller. What is this offer? What is the
perfect equilibrium of the game?

(b) Can you think of a contractual way of avoiding the inefficient out-
come of (a)? (Assume that contracts cannot be written on the level of 1.)

Exercise 3.7* Consider a voting game in which three players, 1, 2, and
3, are deciding among three alternatives, A, B, and C. Alternative B is
the “status quo™ and alternatives A and C are “challengers.” At the first
stage, players choose which of the two challengers should be considered by
casting votes for either A or C, with the majority choice being the winner
and abstentions not allowed. At the second stage, players vote between the
status quo B and whichever alternative was victorious in the first round,
with majority rule again determining the winner. Players vote simuita-
neously in each round. The players care only about the alternative that is
finally selected, and are indifferent as to the sequence of votes that leads to
a given selection. The payoff functions are u, (A) = 2, u,(B) = 0, u {C) = L.
u(A) = 1, u;(B) = 2, u,(C) = 0; u3(A) = 0, u3(B) = 1, u3(C) = 2.

(a) What would happen if at each stage the players voted for the alterna-
tive they would most prefer as the final outcome?
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(b) Find the subgame-perfect equilibrium outcome that satisfies the
additional condition that no strategy can be eliminated by iterated weak
dominance. Indicate what happens if dominated strategies are allowed.

(c) Discuss whether different “agendas” for arriving at a final decision by
voting between two alternatives at a time would lead to a different equi-
librium outcome.

(This exercise is based on Eckel and Holt 1989, in which the play of this
game in cxperiments is reported.)

Exercise 3.8* Subsection 3.2.3 discussed a player’s “strategic incentive”
to alter his first-period actions in order to change his own second-period
incentives and thus alter the second-period equilibrium. A player may also
have a strategic incentive to alter the second-period incentives of others.
One application of this idea is the literature on strategic trade policies
(e.g. Brander and Spencer 1985; Eaton and Grossman 1986—see Helpman
and Krugman 1989, chapters 5 and 6, for a clear review of the arguments).
Consider two countries, A and B, and a single good which is consumed
only in country B. The inverse demand function is p = P(Q), where Q is the
total output produced by firms in countries A and B. Let ¢ denote the
constant marginal cost of production and Q,, the monopoly output (Q,,
maximizes @(P(Q) — c)).

(a) Suppose that country B does not produce the good. The I (> 1) firms
in country A are Cournot competitors. Find conditions under which an
optimal policy for the government of country A is to levy a unit export tax
equal to —P(Q NI — 1)Q,./I. (The objective of country A’s government
1s to maximize the sum of its own receipts and the profit of its firm.) Give
an externality interpretation.

(b) Suppose now that there are two producers, one in each country.
The game has two periods. In period 1, the government of country A
chooses an export tax or subsidy (per unit of exports); in period 2, the
two firms, which have observed the government’s choice, simultaneously
choose quantities. Suppose that the Cournot reaction curves are downward
sloping and intersect only once, at a point at which country A’s firm’s
reaction curve is steeper than country B’s firm’s reaction curve in the
(9. 4qg) space. Show that an export subsidy is optimal.

(¢) What would happen in question (b) if there were more than one firm
in country A? If the strategic variables of period 2 gave rise to upward-
sloping reaction curves? Caution: The answer to the latter depends on a
“stability condition” of the kind discussed in subsection 1.2.5.

Exercise 3.9** Consider the three-player extensive-form game depicted
in figure 3.21.

(a) Show that (A, A) is not the outcome of a Nash equilibrium.

(b) Consider the nonequilibrium situation where player 1 expects player
3 to play R, player 2 expects player 3 to play L, and consequently players
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Figure 3.21

I and 2 both play A. When might this be a fixed point of a learning process
like those discussed in chapter 1? When might learning be expected to lead
players | and 2 to have the same beliefs about player 3’s action, as required
for Nash cquilibrium? (Give an informal answer.) For more on this question
see Fudenberg and Kreps 1988 and Fudenberg and Levine 1990.

Exercise 3.10%** In the class of zero-sum games, the sets of outcomes of
Nash and subgame-perfect equilibria arc the same. That is, for every
outcome (probability distribution over terminal nodes) of a Nash-
equilibrium strategy profile, there is a perfect equilibrium profile with the
same outcome. This result has limited interest, because most games in the
social sciences are not zero-sum; however, its proof, which we give in the
context ol a multi-stage game with observed actions, 1s a nice way to get
acquainted with the logic of perfect equilibrium. Consider a two-person
game and let u,(a,.,) denote player ’s expected payoff (by definition of
a zero-sum game, u, = —u,). Let u,(o,,0,|h") denote player I's expected
payofl conditional on history A’ having been reached at date r {for
simplicity, we identify “stages” with “dates”). Last, let o,/ denote player
i"s strategy a,, except that if A" is reached at date t, player i adopts strategy
" in the subgame associated with history k* (henceforth called “the
subgame™).

(a) Let (a,.0,) be a Nash equilibrium. If (5,.0,) is not perfect, there is a
date ¢, a history k', and a playcer (say player 1} such that this player does
not maximize his payoff conditional on history A being reached. (Of course,
this history h' must have probability 0 of being reached according to
strategies (g, a,); otherwise player 1 will not be maximizing his uncondi-
tional payoff u,(a,7,) given 7,.}

Let 6% denote the strategy that maximizes u, (o, /6%, 0,'h"). Last, let
(o ¥ a*¥")denote a Nash equilibrium of the subgame. Show that for any ¢,

o~ At ~ T . ]
u (G, 6" 0, h') = u 6,/ 0,/a " |h').

(Hint: Use the facts that 63" is a best response to o in subgame A'. that

the game is a zero-sum game, and that 4% is an optimal response to a, in

the subgame.)
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(0,0) 1.-1)

Figure 3.22

(b} Show that the strategy profile (o, /o ¥", ¢, /6%") is also a Nash cqui-
librium. (Hint: Use the fact that subgame h' is not reached under (6,.0,)
and the definition of Nash behavior in the subgame.) A

(¢} Conclude that the Nash-equilibrium outcome (the probability dis-
tribution on terminal nodes generated by ¢, and a,) is also a perfect-
equilibrium outcome.

Note that although outcomes coincide, the Nash-equilibrium strategies
need not be perfect-equilibrium strategies—as is demonstrated in figurc
3.22, where (R,,R,) is a Nash, but not a perfect, equilibrium.

Exercise 3.11* Consider the agenda-setter model of Romer and Ro-
scnthal (1978) (sec also Shepsle 1981). The object of the game is to make
a one-dimensional decision. There are two players. The “agenda-setter”
(player 1, who may stand for a committee in a closed-rule voting system})
offers a point s, € R. The “voter” (player 2, who may stand for the median
voter in the legislature) can then accept s, or refuse it; in the latter case, the
decision is the status quo or reversion point s,. Thus, S; € {80.5,}. The
adopted policy is thus s,. The voter has quadratic preferences —(s, — §,)?,
where §, is his bliss point.

(a) Suppose that the agenda setter’s objective is s, (she prefers higher
policy levels). Show that, in perfect equilibrium, the setter offers §, = 8§g if
So =Sy and s, = 2§, — s, if 5 < §,.

(b) Suppose that the agenda setter’s objective function is quadratic
as well: —(s; — $,)% Fixing $, and 3, (§, 2 §,), depict how the perfect-
equilibrium policy varies with the reversion s,.

Exercise 3.12**  Consider the twice-repeated version of the agenda-setter
model developed in the previous exercise. The new status quo in period 2
is whatever policy (agenda setter’s proposal or initial status quo) was
adopted in period 1. Suppose that the objective function of the agenda
sctter is the sum of the two periods’ policies, and that the voter's preferences
are —(s3 — 4) — (s3 — 12)2 (that is, his bliss point is 4 for the first-period
policy and 12 for the second-period one). The initial status quo is 2.

{4) Suppose first that the voter is myopic (acts as if his discount factor
were O instead of 1), but that the agenda setter is not. Show that the agenda
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setter offers 6 in period 1, and that the payoffs are —24 for the agenda
setter and - 40 for the voter. Assume in this exercise that the voter
chooses the higher acceptable policy when indifferent. If you are coura-
geous, show that this policy is uniquely optimal when the agenda setter’s
discount factor is slightly less than ! instead of 1.

(b) Suppose now that both players are rational. Show that the agenda
setter’s utility is higher and the voter's utility is lower than in question (a).
What point does this comparison illustrate? (See Ingberman 1985 and
Rasenthal 1990.)
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4 Applications of Multi-Stage Games with Observed Actions

4.1 Introduction’

In chapter 3 we introduced a class of extensive-form games that we called
“multi-stage games with observed actions,” where the players move simul-
taneously within each stage and know the actions that were chosen in
all past stages. Although these gamcs arc very special, they have been
used in many applications in economics, political scicnce, and biology.
The repeated games we study in chapter S belong to this class, as do
the games of resource cxtraction, preemptive investment, and stratcgic
bequests discussed in chapter 13. This chapter develops a basic fact about
dynamic optimization and presents a few interesting examples of multi-
stage games. The chapter concludes with discussions of what is meant by
“open-loop™ and “closed-loop” equilibria, of the notion of iterated condi-
tional dominance, and of the relationship between equilibria of finite-
horizon and infinite-horizon games.

Recall that in a multi-stage game with observed actions the history h'
at the beginning of stage 1 is simply the sequence of actions (a®,a',....a'™")
chosen in previous periods, and that a pure strategy s; for player i 1s
a sequence of maps s; from historics A to actions a; in the feasible scts
A,(h"). Player i’s payofl u; is a function of the terminal history h'™',
i.c., of the entire sequence of actions from the initial stage 0 through the
terminal stage T, where T is sometimes taken to be infinite. In some of the
examples of this section, payoffs take the special form of the discounted sum
Y o dtyita’) of per-period payoffs g{(a’).

Section 4.3 presents a first look at the subclass of repeated games,
where the payoffs are given by averages as above and where the sets of
feasible actions at cach stage and the per-period payoffs are independent of
previous play and time, so that the “physical environment” of the game is
memoryless. Nevertheless, the fact that the game is repeated means that
the players can condition their current play on the past play of their
opponents, and indeed there can be equilibria in strategies of this kind.
Section 4.3 considers only a few examples of repeated games, and docs not
try 1o characterize all the equilibria of the examples it examines; chapter 5
gives a more thorough treatment.

In this chapter we consider mostly games with an infinite horizon as
opposed to a horizon that is long but finite. Games with a long but finite
horizon represent a situation where the horizon is long but well foreseen;
infinite-horizon games describe a situation where players are fairly un-
certain as to which period will be the last. This latter assumption seems to
be a better model of many situations with a large number of stages; we will
suy more about this point when discussing some of the examples.

When the horizon is infinite, the set of subgame-perfect equilibria cannot
be determined by backward induction from the terminal date, as it can



be in the finitely repeated prisoner’s dilemma and in any finite game of
perfect information. As we will see, however, subgame perfection does Icad
to very strong predictions in some infinite-horizon games with a great many
Nash cquilibria, such as the bargaining model of Rubinstein (1982) and
Stahl (1972). A key feature of this model and of some of the others we will
discuss is that, although the horizon is not @ priori bounded, there are some
actions, such as accepting an offer or exiting from a market, that effectively
“end the game.” These games have been applied to the study of exit
from a declining industry, noncooperative bargaining, and the introduc-
tion of new technology, among other topics. Section 4.4 discusses the
Rubinstein-Stihi alternating-offer bargaining game, where there are many
ways the game can end, corresponding to the various possible agreements
the players can reach. Section 4.5 discusses the class of simple timing games,
where the players’ only decision is when to stop the game and not the “way”
to stop it. We have not tried to give a thorough survey of the many
applications of games with absorbing states; our purpose is to introduce
some of the flavor of the ideas involved.

Section 4.6 introduces the concept of “iterated conditional dominance,”
which cxtends the concept of backward induction to games with a poten-
tially infinite number of stages. As we will see, the unique subgame-perfect
cquilibria of several of the examples we discuss in this chapter can be
understood as the consequence of there being a single strategy profile that
survives the weaker condition of iterated conditional dominance. Section
4.7 discusscs the relationship between open-loop equilibria and closed-loop
equilibria, which are the equilibria of two different information structures
for the same “physical game.” Section 4.8 discusses the relationship between
the equilibria of finite- and infinite-horizon versions of the “same game.”

The last two sections are more technical than the rest of the chapter,
and could be skipped in a first course. Sections 4.3 4.6 are meant to be
examples of the uses of the theory we developed in chapter 3. Most courses
would want to cover at least one of these sections, but it is UNNECESSATY to
do all of them. Scction 4.2, though, is used in chapters 5 and 13; it devclops
a fact that is very useful in determining whether a strategy profile is
subgame perfect.

4.2 The Principle of Optimality and Subgame Perfection'

To verify that a strategy profile of a multi-stage game with observed actions
is subgame perfect, it suffices to check whether there are any historics i
where some player i can gain by deviating from the actions prescribed by
s; at h' and conforming to s, thereafter. Since this “one-stage-deviation
principle” is essentially the principle of optimality of dynamic program-
ming, which is based on backward induction, it helps illustrate how sub-



game perfection extends the idea of backward induction. We split the
observation into two parts, corresponding to finite- and infinite-horizon
games; some readers may prefer to read the first proof and take the second
once on faith, although both are quite simple. For notational simplicity, we
state the principle for pure strategies; the mixcd-stratcgy counterpart is
straightforward.

Theorem 4.1 (one-stage-deviation principle for finite-horizon games) Ina
finite multi-stage game with observed actions, strategy profile s is subgame
perfect if and only if 1t satisfies the one-stage-deviation condition that no
player i can gain by deviating from s in a single stage and conforming to s
thereafter. More precisely, profile s is subgame perfect if and only if there
is no player i and no strategy $; that agrees with s; except at a single t and
h', and such that $,1s a better response to s _; than s; conditional on history
h' being reached.!

Proof The necessity of the one-stage-deviation condition (“only if™)
follows from the definition of subgame perfection. (Note that the one-stage-
deviation condition is not necessary for Nash equilibrium, as a Nash-
equilibrium profile may prescribe suboptimal responses at histories that
do not occur when the profile is played.) To see that the one-stage-deviation
condition is sufficient, suppose to the contrary that profile s satisfies the
condition but is not subgame perfect. Then there 1s a stage ¢ and a history
h' such that some player i has a strategy §; that is a better response to s_;
than s, is in the subgame starting at h'. Let f be the largest ¢ such that, for
some h'. $.(h") # sdh"). The one-stage-deviation condition implies 7 > t,
and since the game is finite,  1s finite as well. Now consider an alternative
strategy §, that agrees with §, at all 1 < f and follows s, from stage f on. Since
$; agrees with s; from 1 + 1 on, the one-stage-deviation condition implies
that 3, is as good a response as §; in every subgame starting at 7, so §; is as
good a response as §; in the subgame starting at ¢ with history h'. If
t =1 + 1. then §, = s,, which contradicts the hypothesis that §; improves
ons, If f >t + 1, we construct a strategy that agrees with §; until { — 2,
and arguc that it is as good a response as §;, and so on: The alleged sequence
of improving deviations unravels from its endpoint. [ |

What if the horizon is infinite? The proof above leaves open the pos-
sibility that player i could gain by some infinite sequence of deviations,
even though he cannot gain by a single deviation in any subgame. Just as in
dynamic programming, this possibility can be excluded if the payoff func-
tions take the form of a discounted sum of per-period payoffs. More
generally, the key condition is that the payoffs be “continuous at infinity.”
To make this precise, let i denote an infinite-horizon history, i.e., an

b, Fven more precisely. there cannot be a history £’ such that the restriction of §; to the subgame
Gih") s a better response than the restriction of s, is.



outcome of the infinite-horizon game. For a fixed infinite-horizon history
h. let h' denote the restriction of h to the first ¢ periods.

Definition4.1 A game is continuous at infinity if for each player i the utility
function u; satisfics
sup  |uh) — u,() > 0ast - =.

hohs.t ht—Rt

This condition says that cvents in the distant future are relatively un-
important. It will be satisfied if the overall payoffs are a discounted sum of
per-period payofls gi(a’) and the per-period payoffs are uniformly bounded,
i.c, there 1s 4 B such that

max |gfa‘)l < B.

toaf

Theorem 4.2 (one-stage deviation principle for infinite-horizon games) 1In
an infinite-horizon multi-stage game with observed actions that is contin-
uous at infinity, profile s is subgame perfect if and only if there is no player
i and strategy §; that agrees with s; except at a single t and 4", and such that
$;1s a better response to s_; than s; conditional on history h' being reached.

Proof The proof of the last thcorem establishes necessity, and also shows
that if s satisfies the one-stage-deviation condition then it cannot be im-
proved by any finite sequence of deviations in any subgame. Suppose to
the contrary that s were not subgame perfect. Then there would be a stage
tand a history h' where some player i could improve on his utility by using a
different strategy §; in the subgame starting at #'. Let the amount of this
improvement be ¢ > 0. Continuity at infinity implies that there is a ¢’ such
that the strategy s; that agrees with §; at all stages before ¢ and agrees
with s; at all stages from " on must improve on s; by at least ¢/2 in the
subgame starting at 4’. But this contradicts the fact that no finite sequence
of deviations can make any improvement at all. [

This theorem and its proof are essentially the principle of optimality for
discounted dynamic programming.

4.3 A First Look at Repeated Games'

4.3.1 The Repeated Prisoner’s Dilemma

This section discusses the way in which repeated play introduces new
cquilibria by allowing players to condition their actions on the way their
opponents played in previous periods. We begin with what is probably the
best-known cxample of a repeated game: the celebrated “prisoner’s di-
lemma,” whose static version we discussed in chapter 1. Suppose that the
per-period payoffs depend only on current actions (g,(a’)} and are as shown
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in figurc 4.1, and suppose that the players discount future payoffs with a
common discount factor 8. We will wish to consider how the equilibrium
payoffs vary with the horizon T. To make the payoffs for different horizons
comparable, we normalize to express them all in the units used for the
per-period payoffs, so that the utility of a sequence {a°,....a"} is

1 — 9 T
o'yi(a').
[ aT* ‘ZO

This is called the “average discounted payoff.” Since the normalization is
simply a rescaling, the normalized and present-value formulations rep-
resent the same preferences. The normalized versions make it easier to see
what happens as the discount factor and the time horizon vary, by measur-
ing all payoffs in terms of per-period avcrages. For example, the prescnt
value of a flow of t per period from date 0 to date Tis(1 — 67 ")/(1 — J); the
average discounted value of this flow is simply 1.

We begin with the case in which the game is played only once. Then
cooperating is strongly dominated, and the unique equilibrium is for both
players to defect. If the game is repeated a finite number of times, subgame
perfection requires both players to defect in the last period, and backward
induction implies that the unique subgame-perfect equilibrium is for both
players to defect in every period.’

If the game is played infinitely often, then “both defect cvery period”
remains 4 subgame-perfect equilibrium. Moreover, it is the only equi-
librium with the property that the play at each stage does not vary with
the actions played at previous stages. However, if the horizon is infinite
and ¢ > 1, then the following strategy profile is a subgame-perfect equi-
librium as well: “Cooperate in the first period and continue to cooperate
so long as no player has ever defected. If any player has ever defected, then
defect for the rest of the game.” With these stratcgies, there are two classes of
subgames: class A, in which no player has defected, and class B, in which
defect i on has occurred. If a player conforms to the strategies in every
subgame in class A, his average discounted payoflis 1; if he deviates at time
¢ and conforms to the (class B) strategies thereafter, his (normalized) payoff

2. This conclusion can be strengthened (o hold for Nash equilibria as well. See section 5.2.
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which is less than 1 as 6 > }. For any h' in class B, the payofl from
conforming to the strategies from period ¢ on is 0; deviating once and then
conforming gives — 1 at period t and 0 in the future. Thus, in every subgame,
no player can gain by deviating a single time from the specified strategy
and then conforming, and so from the one-stage-deviation principle these
strategies form a subgame-perfect equilibrium.

Depending on the size of the discount factor, there can be many other
perfect equilibria. The next chapter presents the “folk theorem™ Any fea-
sible payoffs above the minmax levels (defined in chapter 3; in this example
the minmax levels are 0) can be supported for a discount factor close enough
to |.* Thus, repeated play with patient players not only makes “coopera-
tion™ - meaning efficient payoffs—possible, it also leads to a large set of
other cquilibrium outcomes. Several methods have been proposed to re-
duce this multiplicity of equilibria; however, nonc of them has yet been
widely accepted, and the problem remains a topic of research. We discuss
one of the methods— “renegotiation-proofness™ in chapter 5.

Besides emphasizing the way that repeated play expands the set of
equilibrium outcomes, the repeated prisoner’s dilemma shows that the
sets of equilibria of finite-horizon and infinite-horizon versions of the
“same game” can be quite different, and in particular that new equilibria
can arise when the horizon is allowed to be infinite. We return to this point
at the end of this chapter.

4.3.2 A Finitely Repeated Game with Several Static Equilibria

The finitely repeated prisoner’s dilemma has the same set of equilibria as
the static version, but this is not always the case. Consider the multi-stage
game corresponding to two repcetitions of the stage game in figure 4.2. In
the first stage of this game, players 1 and 2 simultancously choose among

L M R

u 0.0 3,4 6,0

M | 43 0,0 0.0

R S—
D 0,6 0.0 5,5

Figure 4.2

3. The reason this holds only for large discount factors is that for small discount factors
the short-term gain from deviating (for instance, devialing from cooperation in the pri-
soner’s dilemma) necessarily exceeds any long-term losses that this behavior might create. See
chapter 5.



U, M. D and L, M, R, respectively. At the end of the first stage the players
observe the actions that were chosen, and in the second stage the players
play the stage game again. As above, suppose that each player’s payoff
function in the multi-stage game is the discounted average of his or her
payoffs in the two periods.

If this game is played once, there are threc equilibria: (M,L), (U,M),
and a mixed equilibrium ((3/7 U, 4/7M), (3/7L, 4/7M)), with payoffs (4,3),
(3.4), and (12/7.12/7) respectively; the efficient payoff (5,5) is not attainable
by an equilibrium. However, in the two-stage game, the following strategy
profile is a subgame-perfect equilibrium if § > 7/9: “Play (D, R) in the first
stage. If the first-stage outcome is (D, R), then play (M, L} in the second
stage; if the first-stage outcome is not (D,R), then play ((3/7U, 4/7M),
(3/7 L, 4/7 M)} in the second stage.”

By construction, these strategies specify a Nash equilibrium in the second
stage. Deviating in the first stage increases the current payoff by 1, and
lowers the continuation payofls for players | and 2 respectively from 4
or 3 to 12/7. Thus, player 1 will not deviate if 1 < (4 — 12/7)d or 6 > 7/16,
and player 2 wili not deviate if t < (3 — 12/7)6 or é > 7/9.

4.4 The Rubinstein-Stahl Bargaining Model'

In the model of Rubinstein 1982, two players must agree on how to
share a pic of size 1. In periods 0, 2, 4, etc,, player 1 proposes a sharing
rule (x, | — x) that player 2 can accept or reject. If player 2 accepts any
offer, the game ends. If player 2 rejects player 1’s offer in period 2k,
then in period 2k + 1 player 2 can propose a sharing rule (x, 1 — x) that
player 1 can accept or reject. If player 1 accepts one of player 2’s offers, the
game ends; if he rejects, then he can make an offer in the subsequent period,
and so on. This is an infinite-horizon game of perfect information. Note that
the “stages” in our definition of a muiti-stage game are not the same as
“periods” —period 1 has two stages, corresponding to player 1's offer and
player 2's acceptance or refusal.

We will specify that the payoffs if (x, 1 — x) is accepted at date ¢ arc
(8!x,85(1 — x)), where x is players 1’s share of the pie, and &, and ¢, are the
two players” discount factors. (Rubinstein considered a somewhat larger
class of preferences that allowed for a fixed per-period cost of bargaining in
addition to the delay cost represented by the discount factors, and also
allowed for utility functions that are not linear in the player’s share of the

pie.)
4.4.1 A Subgame-Perfect Equilibrium

Note that there are a great many Nash equilibria in this game. In particular,
the strategy profile “player 1 always demands x = 1, and refuses all smaller



shares: player 2 always offers x = | and accepts any offer” is a Nash
equilibrium. However, this profile is not subgame perfect: If player 2
rejects player Us first offer, and offers player 1 a sharc x > §,. then player
I should accept, because the best possible outcome if he rejects is to
receive the entire pie tomorrow, which is worth only é,.

Here is a subgame-perfect equilibrium of this model: “Player i always
demands a share (1 - §,)/(1 — 3;0;) when it is his turn to make an offer. He
accepts any share equal to or greater than §,(1 — o;)/(1 — 9,0;) and refuscs
any smaller share.” Note that player i’s demand of

I -9 a1 - 6,)

] - (5[(5j ] - 51(51

is the highest share for player i that is accepted by player j. Player i cannot
gain by making a lower offer, for it too will be accepted. Making a higher
(and rejected) offer and waiting to accept plaver j’s offer next period hurts
player i, as

o;(l = =o‘f—'. p _,-‘S%.

\

Similarly, it is optimal for player i Lo accept any offer of at least 8,(1 — ;)
(I — 3,4} and to reject lower shares, since if he rejects he receives the share
(1 =)l 4;) next period.

Rubinstein’s paper extends the work of Stahl (1972), who considered
a finite-horizon version of the same game. With a finite horizon, the game
is easily solved by backward induction: The unique subgame-perfect equi-
hibrium in the last period is for the player who makes the offer (let’s assume
it is player 1) to demand the whole pie, and for his opponent to accept this
demand. In the period before, the last offerer (player 1) will refuse all
offers that give him less than &, for he can ensure 8, - 1 by refusing. And
SO On.

T'he finite-horizon model has two potential drawbacks relative to the
infinite-horizon model. First, the solution depends on the length of the
game, and on which player gets to make the last offer; however, this
dependence becomes small as the number of periods grows to infinity, as
is shown in exercise 4.5. Second, and more important, the assumption of a
last period means that if the last offer is rejected the players are not
allowed to conlinue to try to reach an agrecment. In situations in which
there is no outside opportunity and no per-period cost of bargaining, it is
natural to assume that the players keep on bargaining as long as they
haven't rcached an agreement. Thus the only way to dismiss the suspicion
that it matters whether one prohibits further bargaining after the exoge-
nous finite horizon is to prove uniqueness in the infinite-horizon game.



4.4.2 Uniqueness of the Infinite-Horizon Equilibrium

Let us now demonstrate that the infinite-horizon bargaining game has a
unique equilibrium. The following proof, by Shaked and Sutton (1984}, uses
the stationarity of the game to obtain an upper bound and a lower bound
on cach player’s equilibrium payoff and then shows that the upper and
lower bounds are equal. Section 4.6 gives an alternative proof of uniqueness
that, although slightly longer, clarifics the uniqueness result through a
generalization of the concept of iterative strict dominance.

To exploit the stationarity of the game, we define the continuation payoffs
of a strategy profile in a subgame starting at t to be the utility in time-
t units of the outcome induced by that profile. For ex»mple, the continua-
tion payoff of player 1 at period 2 of a profile that leads to player I's getting
the whole pic at date 3 is ,, whereas this outcome has utility 87 in time-0
units.

Now we define v, and v, to be player 1's lowest and highest continuation
payofls of player | in any perfect equilibrium of any subgame that begins
with player 1 making an offer. (More formally, v, 1s the infimum or greatest
lower bound of these payoffs, and &, is the supremum.) Similarly, let w, and
w, be player 1's lowest and highest perfect-equilibrium continuation pay-
ofls in subgames that begin with an offer by player 2. Also, let ¢, and ¢, be
player 2°s lowest and highest perfect-equilibrium continuation payoffs in
subgames beginning with an offer by player 2, and let w, and w, be player
2s lowest and highest perfect-equilibrium continuation payoffs in sub-
games beginning with an offer by player 1.

When player 1 makes an offer, player 2 will accept any x such that player
2's share (of 1 — x) exceeds d,v,, since player 2 cannot expect more than
r, in the continuation game following his refusal. Hence, ¢, > | — ,7,.
By the symmetric argument, player 1 accepts all shares above 6,v,, and
vy = 1 — ,6,.

Since player 2 will never offer player | a share greater than 6,v,, player
I's continuation payoff when player 2 makes an offer, w,, is at most
(‘5, Uy,

Since player 2 can obtain at least ¢, in the continuation game by rejecting
player I's offer, player 2 will reject any x such that 1 — x < §,v,. Therefore,
player I's highest equilibrium payoff when making an offer, ,, satisfies

vl S maX(l - 5222,51 Wl) S max(l - 6222,5%51).
Next, we claim that
max{l — 3,1,,8{5,) =1 — d,0v,:

If not, then we would have v, < §{7,,implying#, < 0,but thent — §,v, >
dfv . as neither d, nor ¢, can exceed 1. Thus, v, < 1 — 3, v,. By symmetry,
ry, <1 9,r,. Combining these inequalities, we have
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because vy < ¢, this implics v, = 7,. Similarly,

[ - 4,
'y = I'5 = e
i ) 1 — 61()2
W, = w, = - =,
1 - 4,6,
and
(52(] - '51)
W, = W, = 2
- - l - Ol(‘)z

This shows that the perfect-equilibrium continuation payoffs are unique.
To see that there is a unique perfect-equilibrium strategy profile, consider
asubgame that begins with an offcr by player 1. The argument above shows
that player 1 must offer exactly x = p,. Although player 2 is indifferent
between accepting and rejecting this offer, perfect equilibrium requires that
he accept with probability 1: If player 2's strategy is to accept all x < v,
with probability I, but to accept ¢, with probability less than 1, then no best
response for player | exists. Hence, this randomization by player 2 is
inconsistent with equilibrium. A similar argument applies in subgames that
begin with an offer by player 2.

4.4.3 Comparative Statics

Note that as 8, — 1 for fixed §,, v, —» 1 and player 1 gets the whole
pic, whereas player 2 gets the whole pie if 3, — 1 for fixed 8. Player 1 also
gets the whole pie if 6, = 0, since a myopic player 2 will accept any
positive amount today rather than wait one period. Note also that even if
d; = 0 player 2 does not get the whole pie if d, < 1: Due to his first-mover
advantage, cven a myopic player 1 receives a positive share. The first-mover
advantage also explains why player 1 does better than player 2 even if
the discount factors are cqual: If §, = 8, = 8, then
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As onc would expect, this first-mover advantage disappears if we take the
time periods to be arbitrarily short. To see this, let A denote the length of the
time period, and set 8, = exp(—r,A) and é, = exp(—r,A). Then, for A close
to 0, 3, is approximately | — r; A, and ¢, converges to ry/(r; + 7;), so the
relative patience of the players determines their shares. In particular, if
r, — r, the players have equal shares in the limit. (See Binmore 1981 for
a very thorough discussion of the Rubinstein-Stdhl model.)

4.5 Simple Timing Games''

4.5.1 Definition of Simple Timing Games

In a simple timing game, each player’s only choice is when to choose the
action “stop,” and once a player stops he has no effect on future play. That
is. if player i has not stopped at any t <, his action set at ¢ is

A;(1) = {stop, don’t stop}:

if player i has stopped at some 1 < {, then A(f) is the null action “don’t
move.” Few situations can be exactly described in this way, because players
typically have a wider range of choices. (For example, firms typically do
not simply choose a time to enter a market; they also decide on the scale
of entry, the quality level, ctc.) But economists often abstract away from
such details to study the timing question in isolation.

We will consider only two-player timing games, and restrict our atten-
tion to the subgame-perfect equilibria. Once one player has stopped. the
remaining player faces a maximization problem that is easily solved. Thus,
when considering subgame-perfect equilibria, we can first “fold back™
subgames where one player has stopped and then proceed to subgames
where neither player has yet stopped.* This allows us to express both
players’ payoffs as functions of the time

f= min{t|a; = stop for at least one i}

at which the first player stops (with the strategies we will consider, this
minimum is well defined); if no player ever stops, we set { = oo. We describe
these payoffs using the functions L,, F;, and B;: If only player i stops at
f, then player i is the “leader™; he receives L(f), and his opponent receives
“follower™ payoff F(f). If both players stop simultaneously at f, the payoffs
arc B, (f) and B,(f). We will assume that

4. Although the one-player maximization problem will typically have a unigue solution, this
need not be the case. If there are multiple solutions, then one must consider the implications
of each of them.



lim Ly(f) = lim F(i) = lim By(1),

ftx -+ i
which will be the case if payoffs are discounted.

The last step in describing these games is to specify the strategy spaces.
We begin with the technically simpler case where time is discrete, as it has
been in our development so far. Since the feasible actions at each date until
some player stops are simply {stop, don’t stopy, and since once a player
stops the game effectively ends (remember that we have folded back any
subsequent play), the history at date ¢ is simply the fact that the game
1$ still going on then. Thus, purc strategies s; are simply maps from the set
of dates ¢ to {stop, don’t stop}, behavior strategies h; specify a conditional
probability h{t) of stopping at 1 if no player has stopped before, and mixed
strategies a; are probability distributions over the pure strategies s;.

For some games, the set of equilibria is easier to compute in a model
where time is continuous. The purc strategies, as in discrete time, are
simply maps from times ¢ to {stop, don't stop}, but two complications arise
in dealing with mixed strategies. First, the formal notion of behavior
strategics becomes problematic when players have a continuum of informa-
tion scts. (This was first noted by Aumann (1964)) We will sidestep
the question of behavior strategies by working only with the mixed (i.e.,
strategic-form) strategies. The second problem is that, as we will see, the
set of continuous-time mixed strategies as they are usually defined is too
small to ensure that the continuous-time model will capture the limits of
discrete-time equilibria with short time intervals, although it does capture
the short-time-interval limits of some classes of games.

Putting these problems aside, we introduce the space of continuous-time
mixed stratcgies that we will use in most of this section. Given that pure
strategics are stopping times, it is natural to identify mixed strategies
as cumulative distribution functions G, on [0, ). In other words, Gi(t)
i1s the probability that player i stops at or before time ¢. (To be cumulative
distribution functions, the G, must take values in the interval [0.1] and be
nondecreasing and right-continuous.®) The functions G; need not be contin-
uous; let

2(1) = G{t) — lim G,(1)

T
be the size of the jump at t. When () is nonzero, player i stops with
probability x,(r) at exactly time ¢: this is called an “atom™ of the probability
distribution. Where G, is differentiable, its derivative dG; is the probability
density function; the probability that player i stops between times ¢ and

5. The function G{-} is right-continuous at ¢ if

lim G(r) = Gi1).
e

It s night-continuous if it is right-continuous at each ¢.



4.5.2

The

{ + & is approximatcly edG;(t). Player i’s payoll function is then
ulGy Gy) = J EL(s)(1 -- Gj(s))dci(s) + Fi(s)(1 — G.‘(s))de(S)]
0
+ Y ads)as)B(s).

That is, there is probability dG,(s) that player i stops at date s. If player j
hasn't stopped vet, which has probability 1 — Gy(s), player i is the leader
and obtains I.;(s). And similarly for the other terms.

We now develop two familiar games of timing: the war of attrition and
the preemption game.®

War of Attrition

A classic example of a timing game is the war of attrition, first analyzed by
Maynard Smith (1974).7

Stationary War of Attrition

In the discrete-time version of the stationary war of attrition, two animals
arc fighting for a prize whose current value at any timet = 0,1,...1s0v > ||
fighting costs 1 unit per period. If one animal stops fighting in period ¢, his
opponent wins the prize without incurring a fighting cost that period, and
the choice of the second stopping time is irrelevant. If we introduce a
per-period discount factor 4, the (symmetric) payoff functions are

{ 5 5E-1 t— &
Lity= —(l+d4+- 43" ")= ——

and
I(E} - ﬁ(l -+ (S + o+ (Si_l) + (3“0 = L(f) + (')'fv‘

If both animals stop simultaneously, we specify that neither wins the prize,
s0 that

B,(f) = B,{i) = L(i).

(Excrcise 4.1 asks you to check that other specifications with B(f) < F({)
yicld similar conclusions when the time periods are sufficiently short.) Fig-
ure 4.3 depicts L(+) and F(-) for the continuous-time version of this game.

This stationary game has scveral Nash equilibria. Here is one: Player 1's
strategy is “never stop” and player 2's is “always stop.” There is a unique

6. See Katz and Shapiro 1986 for hybrids of these two games.

7. Another name for the war of attrition is “chicken.” The classic game of chicken is played
in automabiles. In one version the cars head toward a cliff side by side, and the first driver
to stop loses: in the other version the cars head toward cach other, and the first driver to
swerve out of the way to avoid the collision loses. We do not recommend experimental studics
of either version of this game.
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symmetric equilibrium, which is stationary and involves mixcd strategies:
Forany p, let "always p” be the behavior strategy “if the other player has
not stopped before ¢, then stop at ¢ with probability p.” The equivalent
strategic-form mixed strategy assigns probability (1 — p)p to the purc
strategy “stop at ¢ if the other player hasn’t stopped before then.” For the
stationary symmetric profile (always p, always p) to be an equilibrium, it is
neeessary that, for any ¢, the payoff to stopping at r conditional on the
opponent’s not having stopped previously, which is 1{t), is equal to

p[F()] + (1 — pp Lt + 1)].

the payofl to staying in until ¢t + 1 and dropping out then unless the
apponent drops out today. (If the opponent does drop out before ¢, then the
strategies “stop at t” and “stop at ¢ + 17 yield the same payoff.) Equating
these terms gives p* = /(1 + v), which ranges from 1 to 0 as v ranges from
0 to infinity. Another way to arrive at this conclusion is to note that by
staying in for one more period, a player gains v with probability p and loscs
the fighting cost 1 during that period with probability 1 — p. For him to
be indifferent between staying in for one more period and stopping now, it
must be the case that pp = 1 - p, which yields the above expression for p*.

Thus, “always p*” is the only candidatc for a stationary symmetric
equilibrium. To check that it is indeed an cquilibrium, note that if playcr
I plays “always p*” the payoff to cach possible stopping time 7 for player
215 0.

At this stage, the reader may wonder whether the Nash equilibria are
subgame perfect. If the players are free to quit when they want and are not
commitied to abide by their date-0 choice of stopping time, do they want to
deviate? The answer is No: All stationary Nash equilibria (i.e. equilibria
with strategies that are independent of calendar time) are subgame perfect.



(To see this. note that the stationarity of the payoffs implies that all
subgames where both players are still active are isomorphic.)

The continuous-time formulation is very convenient for wars of attrition.
Consider the continuous-time version of the example considered above,
where the terms 8 are replaced by exp(—rt) and r is the rate of interest.
[.ct G,(t) denote the probability that player i stops at or before ¢ (that is,
G,(-) is a cumulative distribution function). As in the discrete-time version
of the game, there is a stationary symmetric equilibrium & with the property
that at cach date the players are indifferent between stopping at time ¢
and waiting a bit longer, until ¢ + ¢, to sec if the opponent stops first.
Conditional on not stopping before 1, to the first order in £° the marginal
cost of waiting ¢ longer is ¢ and the expected reward from doing so is
rdGil - G). Equating these terms yields dG/(1 — G) = 1/v, so that G is the
exponential distribution G*{t) = 1 — exp(—t/v). (As in the discrete-time
case. 1o verify that these are equilibrium strategies, note that if palyer [ uses
G* then player 2's expected payoff to any strategy is 0.)

Thus, the war of attrition does have a symmetric equilibrium in the kind
of continuous-time strategies we introduced above. Moreover, this equi-
librium is the limit of the symmetric equilibria of the discrete-time game as
the interval A between periods goes to 0, as we will now show. To make
the discrete- and continuous-time formulations comparable, we assume
that fighting costs 1 per unit of real time. Hence, if in discrete time the real
length of cach period is A (so that there are 1/A periods per unit of time), the
fighting cost is A per period. The value of the prize v does not need to be
adjusted when the period length changes, as v was taken to be a stock rather
than a flow in both formulations. The discrete-time equilibrium strategy is
now given by p*r = (1 — p*)A or p* = A/(A + v). Fix a real time ¢, and let
n = t/A be the number of (discrete-time) periods between O and t. The
probability that a player does not stop before ¢ in the discrete-time formula-
Lon is

| (“) B (] *)n_ I !,/'_‘\_ex { nf 1 +A
¥ - P - L’+.A - p A v
A
~ cxp(— : ) = exp (—I) for A small.
Av v

Thus, the symmetric discrete-time equilibrium converges to the symmetric
continuous-time cquilibrium when A tends to 0.

Nonstationary Wars of Attrition
More gencrally, games satisfying the following (discrete- or continuous-
time) conditions can be viewed as wars of attrition: For all players i and

®. We wall siy that a term fig) is not of order ¢ if lim, ..o f(e)/e = 0.



all dates 1,
() F(t)=F(t)fort>1,

() Fity= L,(t)fort >1t,

(i) Li{e) = Byt),

(1v)  L;(0) > L{+c0),

(v} Li(+w) = F{+x).

Condition 1 states that if player is opponent is going to stop first
in the subgame starting at ¢, then player i prefers that his opponent stop
immediately at . Condition ii says that each player i prefers his opponent
stopping first at any time ¢ to any outcome where player i stops first at some
T > 1. The motivation for this condition is that if player j stops at f,
player i can always stay in until T > ¢ and quit at ¢ and obtain L, {1:) plus
the economized fighting costs between r and 1.

Condition iii asserts that when a player stops, it does not matter if the
opponent stops or stays; this assumption simplifies the study of the discrete-
time formulation and is irrelevant under continuous time. Condition iv
states that fighting forever is costly—each player would rather quit im-
mediately than fight forever. Condition v is automatically satisfied if
players discount their payoffs and the payoffs are bounded.

Two nonstationary variants satisfying these conditions and stronger
assumplions have appeared frequently in the literature: “eventual con-
tinuation” and “eventual stopping.” (We state these further assumptions
for the discrete-time framework in order not to discuss continuous-time
stratcgies.) In either case, subgame perfection uniquely pins down equi-
librium behavior.

Eventual Continuation Make assumptions i—-v and the following addi-
tional assumptions:

(1) F(t + 1) > L;(¢) for all i and ¢.

(vi) For all i, there exists T; > O such that L,(t) > L,(+oc)fort < T, and
Lty < L{+x)fort>T.

(vii) For all i, there exists T; such that L,(-) is strictly decreasing before

T and increasing after 7.

Condition ii’, which states that fighting for one period is worthwhile
if successful, is a strengthening of condition ii. (To see that conditions i and
il" imply condition i1, note that for t > ¢, K(t) > F,(t + 1) > Ly(1).) Condi-
tion vi states that even though at the start of the game it is better to quit
than to fight forever, things get better later on so that, ignoring past
sunk costs, the player would rather continue fighting than quit. Condition
vii states that L,(-) has a single peak. Note that, necessarily, T; > 7;. In
an industrial-organization context, conditions vi and vii correspond to
the market growing or the technology improving over time (for exogenous
reasons or because of learning by doing).



Example of eventual continuation Fudenberg et al. (1983) study an exam-
ple of eventual continuation: Two firms are engaged in a patent race, and
“stopping” mecans abandoning the race. The expected productivity of re-
scarch is initially low, so that if both firms do R&D until one of them
makes a discovery then both firms have a negative expected value. How-
ever, the productivity of R&D incrcases over time, so that there are times
T, and T, such that, if both firms are still active at T;, then it 1s a dominant
strategy for firm i to never stop.

For simplicity, we give the continuous-time version of the patent-race
game. Suppose that the patent has value v. If firm i has not quit before
date 1, it pays ¢; df and makes a discovery with probability x;(t) dt between «
and 1 + dr. The instantaneous flow profit is thus [x,(f)v — ¢;]dt. (The
probability that firm j discovers between t and t + dr is infinitesimal.)
Suppose that dx;/dt > 0 {(due to learning).

In this game,

L) = J [x(0)e —¢] exp( —j [x,(s) + x(5)] ds) exp(—rv)dr,
0 o]
where r is the rate of interest. The probability that no one has discovered
at date t conditional on both players having stayed in the race is

cxp( : J! [x,(s) + xz(s)]ds).
(4]

We assume that an R&D monopoly is viable:

0 < f [x{t)v — ¢;] cxp(—J. xi(s)ds) exp(—rr)dr = F(0),
0 0

and that a duopoly is not viable at date 0: L;(c0)<0. (Recall that L;(oc)
is the date-0 payoff if neither firm ever stops.) Because x,(-) is increasing, if
a monopoly is viable at date 0 then it is viable from any date ¢ > 0 on.”
Therefore, it is optimal for each player to stay in until discovery once his
opponent has quit. The follower’s payoff is thus

ki) = J‘! [xi{e)o — ] CXP(—J-! [x,(s) + x,(5)] ds) exp(—rr)dt

0

- JD [x, ()t — ¢] exp[—(jz x;(s)ds + J‘r x;(5) ds)]
t 0 0

X exp({—rr)drt.

9. Note also that F{0}) >0 and x,(-) increasing imply that there exists a time such that
(1)t > ¢, alter that time. Therefore L, is first decreasing and then increasing. The time 1;
defined in condition vii is given by the equation x,(T)i: = ¢;.



Figure 4.4

The leader’s and the follower’s payoffs in the continuous-time patent race
are depicted in figure 4.4. It is clear that assumptions i-v, ii’, vi, and vii are
satisfied mn the discrete-time version of the game as long as the interval
between the periods is small (i.e., when discrete time is close to continuous
time).

Uniqueness under eventual continuation Condition vi guarantees that
player i never quits after 7;: By quitting at date t > T; he obtains

Lty < L{+ ) = Fi(+ ) < F(1)

for all 7. Thus, he always gets more by never quitting. Thus, quitting is a
(conditionally) strictly dominated strategy at date t > 7,. Let us now as-
sume that the times (T}, T,) defined in condition vi satisfy T, + | < T,. If
the time interval between the periods is short and the players are not quite
the same (for instance, if ¢; # ¢, or x () # x,(-) in the patent race), this
condition (or the symmetric condition) is likely to be satisfied. We claim
that the war of attrition has a unique equilibrium, and that in this cqui-
librium player 2 quits at date 0 (there is no war).

Uniqueness is proved by backward induction. At date T, + 1, if both
players are still fighting, player 2 knows that player 1 will never quit.
Because Ty + 1 < T,

Ly(T, + 1) > L,(+ ).
Furthermore, because L,(-) has a single peak (condition vii),
L,(Ty + 1) > Ly(1)

for all t > T, + 1. Hence, it is optimal for player 2 to quit at T, + 1.
Consider now date T,. Because F, (T} + 1) > L,(T;) (condition ii’), player



I does not quit. And by the same reasoning as before, L (7)) > L,(t)
for all t > T,. Hence, player 2 quits at T, if both players are still around at
that date. The same reasoning shows that player 2 quits and player 1 stays
in at any date t < T,. There exists a unique subgame-perfect equilibrium.
One reason why T, + | might be less than T in the patent-race example
is that firm 1 entered the patent racc k > 2 periods before firm 2. Then, if
the two firms have the same technology (x,(f) = x,(t — k) and ¢, = ¢;},

T, =1, — k.

If periods are short, then the case T, = T, — 2 scems like a small advan-
tage for player 1, yet it is sufficient to make firm 1 the “winner” without a
fight. In the terminology of Dasgupta and Stiglitz (1980), this game exhibits
“¢-preemption,” as an & advantage proves decisive. Harris and Vickers
(1985) develop related s-preemption arguments. Hendricks and Wilson
(1989) characterize the equilibria of a large family of discrete-time wars of
attrition: Hendricks et al. (1988) do the same for the continuous-time
VErsion.

Eventual Stopping Make assumptions i—v and the following additional
assumptions:

(viil) There exists T, > Osuch thatVt < Ty, L,(f) < F5(),Vt > T, F,(1) <
Ly, and Ve < Ty, Fi (¢t + 1) > L(¢).

(ix) For all i, L,(-) has a single pcak. It increases strictly before some time
T, and decreases strictly after lime T.. Furthermore, T, < T,.

Assumption vili states that after some date Ty, player 2 is better off exiting
than staying cven if the other player has quit. The following example
illustrates these conditions. Note that necessarily Tz < T5.

Example of eventual stopping As with eventual continuation, we give
the example and draw the payoff functions in continuous time; the proof of
uniquencss is performed in the discrete-time framework. Two firms wage
duopoly competition in a market. If one quits, the other becomes a monop-
oly. Suppose that the firms differ only in their flow fixed cost, f; < f,. The
gross flow profits are TI™(1) for a monopolist and IT°(r) for a duopolist,
where 11™(¢) > M9(¢) for all r. Demand is declining, so I1™(-) and IT%(+)
are strictly decreasing. Suppose that therc cxist T, and T, such that 0 <
T, < T, < +=, I%T,) = £, (firm 2 stops making profit as a duopolist at
date T,), and [M™(T,) = f, (firm 2 is no longer viable as a monopolist after
date T,). The payoffs F,(-) and L,(-) are represented in figure 4.5 (firm 1’s
payoffs have similar shapes). After T, it is optimal for firm 2 to quit
immediately, so in continuous time F,(r) = L,(t) for 1 > T,. {In discrete
time and with short time periods, F,(t) is slightly lower than L,(1), since
firm 2, as a follower, stays one period longer than the leader and loses
money during that period.) In discrete time, this example satisfies assump-
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Figure 4.5

tions i-v, viii, and ix for sufficiently short time intervals between the
periods.

Uniqueness under Eventual Stopping First we claim that player 2 quits
at any date ¢ > T,. By stopping it gets L,(t). Because L,(1) > F,(¢) from
condition viii, and because L,(-) is strictly decreasing from condition ix,
L,(t) > L,(t) > F,(t)for > . Hence, it is a strictly dominant strategy for
player 2 to quit at any r > T,. Therefore, F,(T, + 1) > L (Ty) implies that
player 1 stays in at T,. Because L,(T;) > L,(T, + 1), player 2 quits at 7,.
The same holds by induction for any ¢ greater than T,. Before T,, neither
player quits since L,(-) is increasing. Hence, the unique equilibrium of the
game has player 2 quit first at T, and the two players’ payoffs are F,(T;)
and L,(T).

Ghemawat and Nalebuff (1985) and Fudenberg and Tirole (1986) give
examples of declining industries that fit the eventual-stopping example.
Ghemawat and Nalebuff argue that if exit is an all-or-nothing choice, as in
the simple model we have been considering, then a big firm will become
unprofitable before a smaller one will, and so the big firm will be forced to
exit first. Moreover, foreseeing this eventual exit, the small firm will stay
in, and backward induction implies that the big firm exits once the market
shrinks enough that staying in earns negative flow profits. (Whinston (1986)
shows that this conclusion necd not obtain if the big firm is allowed to shed
capacity in small units.)

4.5.3 Preemption Games

Preemption games are a rough opposite to the war of attrition, with
L(i) > F(f) for some range of times . Here the specification of the payoff
to simultaneous stopping, B(:), is more important than in the war of



attrition, as if L exceeds F we might expect both players to stop simulta-
neously. One example of a preemption game is the decision of whether
and when to build a new plant or adopt a new innovation when the market
is big enough to support only one such addition (Reinganum 1981a.,b;
Fudenberg and Tirole 1983). In this case B(t) is often less than F(t), as it
can be better to let an opponent have a monopoly than to incur duopoly
losses.

One very stylized preemption game is “grab the dollar.” In this stationary
game, time is discrete (t = 0, 1,...) and there is a dollar on the tablc, which
cither or both of the players can try to grab. If only one player grabs, that
player receives 1 and the other 0; if both try to grab at once, the dollar is
destroyed and both pay a fine of 1; if neither player grabs, the doilar remains
on the table. The players use the common discount factor d, so that
Lity = 0" F(t) =0, and B(r) = — 8" for all 1. Like the war of attrition, this
game has asymmctric cquilibria, where one player “wins” with probability
I, and also a symmetric mixed-strategy equilibrium, where each player
grabs the dollar with probability p* = ] in cach period. (It is easy to check
that this yields a symmetric equilibrium; to see that it is the only one, note
that cach player must be indifferent between stopping—i.c., grabbing—at
date t, which yields payoff 8'({1 — p*(2)) — p*(t)) if the other has not
stopped before date t and 0 otherwise, and never stopping, which yields
payoll 0, so that p*(¢) must equal } for all 2.) The payoffs in the symmetric
cquilibrium are (0,0), and the distribution over outcomes is that the
probability that player 1 alone stops first at ¢, the probability that player
2 alone stops first at ¢, and the probability that both players stop simulta-
ncously at ¢ are all equal to (})'''. Note that these probabilities are
independent of the per-period discount factor, 4, and thus of the period
length, A, in contrast to the war of attrition, where the probabilities were
proportional to the period length. This makes finding a continuous-time
representation of this game more difficult.

To understand the difficulties, let ¢ dcnote a fixed “real time” after
the initial time 0, define the number of periods between time O and time ¢
when the real time length of the period is A as n(t, A) = t/A, and consider
what happens as A — 0. The probability that at least one player has
stopped by 7 is 1 — (()™*, which converges to 1 as A — 0. The limit of
the equilibrium distribution over outcomes is probability § that player 1
wins the dollar at time O, probability 1 that player 2 wins at time 0,
probability } that both grab simultaneously at time 0, and probability 0
that the game continues beyond time 0. Fudenberg and Tirole (1985)
obscrved that this limiting distribution cannot be expressed as an equi-
librium in continuous-time strategies of the kind we have considered so far:
If the game ends with probability 1 at time 0, then, for at least one player
i, (+,(0) must equal I; but then there would be probability O that player i’s
opponent wins the dollar. The problem is that different sequences of



discrete-time strategy profiles converge to a limit in which the game ends
with probability 1 at the start, including “stop with probability 1 at time 0~
and “stop with conditional probability p > 0 at each period.” The usual
continuous-time strategies implicitly associate an atom of size 1 in con-
tinuous time with an atom of that size in discrete time, and this cannot
represent the limit of the discrete-time equilibria, where the atom at time 0
corresponds not to probability 1 of stopping at exactly time O but rather
to an “interval of atoms” at all times just after 0. We proposed an extended
version of the continuous-time strategies and payoff functions to capture
the limit of discrete-time equilibria in the particular preemption game we
were analyzing. Simon (1988) has developed a related, more general ap-
proach and applied it to a broader class of games.

As another example of a preemption game, suppose that L(z) = 14 —
(t —7)%, F(1)=0, and B(t) < 0. These payolfls are meant to describe a
situation where either of two firms can introduce a new product. The
product will have no effect on their existing business, which is why F(1) = 0,
and the combination of fixed costs and aggressive duopoly pricing implies
that both firms will lose money if both develop the product. Thus, once
one firm introduces the product the other firm never will, and the only case
in which both firms would introduce is if they did so simuitancously.

To avoid the need to consider the possibility of such mistakes and the
associated mixed strategies, let us follow Gilbert and Harris (1984) and
Harnis and Vickers (1985)and make the simplifying assumption that player
I can stop only in even-numbered periods (t = 0,2,...) and player 2 can
stop only in odd-numbered periods (r = 1,3,...), so that the game is one of
perfect information. There are three Pareto-efficient outcomes for the play-
ers—either player 1 stopsatz = 6 or ¢t = 8 or playcr 2 stops att = 7—with
two Pareto-efficient payoffs: (13,0) and (0, 14). In the unique subgame-
perfect equilibrium, firm 1 stops at ¢ = 4, which is the first r where L(t) >
F(1). This is an example of “rent dissipation”: Although there are possible
rents to be made from introducing the product later, in equilibrium the race
to be first forces the introduction of the product at the first time when rents
are nonnegative.

4.6 Iterated Conditional Dominance and the Rubinstein Bargaining Game '’

The last two sections presented several examples of infinite-horizon games
with unique equilibria. The uniqueness arguments there can be strength-
ened, in that these games have a unique profile that satisfies a weaker
concept than subgame perfection.

Definition 4.2 In a multi-stage game with observed actions, action a! is
conditionally dominated at stage t given history h'if, in the subgame begin-



ning at k', every strategy for playcr i that assigns positive probability
to a! is strictly dominated. Iterated conditional dominance is the process
that, at each round, deletes every conditionally dominated action in every
subgame, given the opponents’ strategies that have survived the previous
rounds.

It is casy to check that itcrated conditional dominance coincides with
subgame perfection in finite games of perfect information. In thesc games
it also coincides with Pearce’s (1984) extensive-form rationalizability. In
peneral multi-stage games, any action ruled out by iterated conditional
dominance is also ruled out by extensive-form rationalizability, but the
exact relationship between the two concepts has not been determined.

In a game of imperfect information, iterated conditional dominance can
be weaker than subgame perfection, as it does not assume that players
forecast that an equilibrium will occur in every subgame. To 1illustrate this
point, consider a one-stage, simultaneous-move game. Then iterated condi-
tional dominance coincides with iterated strict dominance, subgame perfec-
tion coincides with Nash equilibrium, and iterated strict dominance is in
general weaker than Nash equilibrium,

Theorem 4.3 In a finite- or infinite-horizon game of perfect information,
no subgame-perfect strategy profile is removed by iterated conditional
dominance.

Proof Proving this theorem is exercise 4.7.

lterated conditional dominance is quite weak 1n some games. For exam-
ple, in a repeated game with discount factor near 1, no action is condition-
ally dominated. (It is always worthwhile to play any fixed action today if
playing the action induces the opponents to play cooperatively in every
future period and if not playing the action causes the opponents to play
something you do not like.) However, in games that “end™ when certain
actions are played, iterated conditional dominance has more bite, since if a
player's current action ends the game then his opponents will not be able to
“punish™ him in the futurc. One such example is the infinite-horizon version
ol the bargaining model in section 4.4.

Let us see how iterated conditional dominance gives a unique solution.
Note first that a player never accepts an offer that gives him a negative
share (i.c., such that he loses money): Accepting such an offer 1s strictly
dominated by the strategy “reject any offer, including this one, and make
only offers that, if accepted, give a positive share.” Next, in any subgame
where player 2 has just made an offer, it is conditionally dominated for
player 1 to refuse if the offer has player 1’s share of the pie, x, exceeding J,;

similarly, player 2 must accept any x < 1 — d,. These are all the actions
that are removed at the first round of iteration. At the second round, we



conclude that
(1) player 2 will never offer player 1 more than §,,

(1) player 2 will reject any x > 1 — §,(1 — J,), because he can get
d,(1 — o4) by waiting one period,

(i) player 1 never offers x < 1 — &,, and

(1v) player | rejects all x < d,(1 — &,).

To continue on, imagine that, after k rounds of elimination of condition-
ally dominated strategics, we have concluded that player 1 accepts all
x > x* and player 2 accepts all x < y* with x* > y* Then, after one more
round, we conclude that

(i) player 2 never offers x > x*,

(i1) player 2 rejects all x > 1 — §,(1 — x*),

(1) player 1 never offers x < y* and

{iv} player | rejects all x < &, v*.

At the next round of iteration, we claim that player 1 must accept all
x> x** =3 (1 — 3,) + 8,8,x*, and that player 2 accepts all x < y*'' =
I 3, +9,0,y% where x**! > y**1 We will check this claim for player 1:
If player I refuses an offer of player 2 in some subgame, one of three things
can happen. Either (a) no agreement is ever reached, which has payoff 0, or
(b) player 2 accepts one of player 1's offers, which has a current value of at
most d,(1 - J,(1 — x*)) (since the soonest this can happen is next period,
and player 2 refuses x above (1 — J,(1 — x*))), or (c) player 1 accepts one of
player 2's offers, which has a current valuc of at most 87 x*. Simple algebra
shows that, for all discount factors §,,d,, the payofl in case b is largest,
so player | accepts all x > §,(1 — &,) + 6,8, x*.

The x* and y* are monotonic sequences, with limits x* = &,(1 — &,)/
(1 - 6,0,) and y* = (1 — 8,)/(1 — 4,8,). Iterated conditional dominance
shows that player 2 rcjects all x > 1 — 3,(1 — x*) = y° and accepts all
x < y*, so the unique equilibrium outcome is for player 1 to offer exactly
v’ and for player 2 to accept. (There is no equilibrium profile in which
player 2 rejects y* with positive probability, for then player 1 would want to
offer “just below” y*, so that no best response for player 1 exists.)

4.7 Open-Loop and Closed-Loop Equilibria‘"

4.7.1 Definitions

The terms closed-loop and open-loop are used to distinguish between two
different information structures in multi-stage games. Our definition of a
multi-stage game with observed actions corresponds to the closed-loop
information structure, where playcrs can condition their play at time 7 on
the history of play until that date. In the terminology of the literaturc on
optimal control, the corresponding strategies are called closed-loop strate-



gies or feedback strategies, while open-loop strategics arc functions of
calendar time alone.

Determining which are the appropriate strategies to consider is the
same as determining the information structure of the game. Suppose first
that the players never observe any history other than their own moves and
time, or that at the beginning of the game they must choose time paths of
actions that depend only on calendar time. (These two situations are
cquivalent from the extensive-form viewpoint, as the role of information
scts is to describe what information players can use in choosing their
actions.) In this case all strategies are open-loop, and ali Nash equilibria
(which in this case coincide with perfect equilibria) are in open-loop strate-
gies. An equilibrium in open-loop strategics is called an open-loop equi-
librium. (As with “Cournot” and “Stackelberg” equilibria, this is not really
a ncw equilibrium concept but rather a way of describing the equilibria of
a particular class of games.)

If the players can condition their strategies on other variables in addition
to calendar time, they may prefer not to use open-loop strategies in order
to react to exogenous moves by nature, to the realizations of mixed strate-
gies by their rivals, and to possible deviations by their rivals from the
cquilibrium strategies. That is, they may prefer to use closed-loop strategies.
When closed-loop strategies are feasible, subgame-perfect equilibria will
typically not be in open-loop strategics, as subgame perfection requires
players to respond optimally to the realizations of random variables as well
as 1o unexpected deviations; in particular, for open-loop strategies to meet
this condition requires that it be optimal to play the same actions whether
or not an opponent has deviated in the past. The term closed-loop equi-
librium usually means a subgame-perfect equilibrium of the game where
players can observe and respond to their opponents’ actions at the end of
each period. Of course, games with this information structure can have
Nash cquilibria that are not perfect. In particular, a pure-strategy open-
loop equilibrium is a Nash equilibrium in the closed-loop information
structure if the game is deterministic (admits no moves by nature) and the
players” action spaces depend only on time (cxercise 4.10); yet it will typi-
cally not be perfect.

It is typically much easier to characterize the open-loop equilibria of
a given situation than the closed-loop ones, in part because the closed-loop
strategy space is so much larger. This tractability is one explanation for
the use of open-loop equilibria in economic analyscs. A second reason for
interest 1n open-loop equilibria, discussed in the next subsection, is that
they serve as a useful benchmark for discussing the effects of strategic
incentives in the closed-loop information structure, 1.e., the incentives to
change current play so as to influence the future play of opponents. A third
reason, discussed in subsection 4.7.3, is that the open-loop equilibria may



be a good approximation to the closed-loop ones if there are VeTy many
“small” players. [ntuitively, if players are small, an unexpected deviation
by an opponent might have little influence on a player’s optimal play.

4.7.2 A Two-Period Example

The use of open-loop equilibria as benchmarks for measuring stratcgic
effects can be illustrated most easily in a game with continuous action
spaces. Consider a two-player two-stage game where in the first stage
players i = 1.2 simultaneously choose actions 4, € A4,, and in the second
stage they simultancously choose actions b, € B;, where each of these action
scts is an interval of real numbers. Suppose that the payoff functions u; arc
differentiable and that each player’s payoff is concave in his own actions.
An open-loop equilibrium is a time path (a*, b*) satisfying, for i = 1, 2,

a* maximizes u;((a;, a*;), b*)
and
h* maximizes u,(a*, (b, b¥,)).

Since payoffs are concave, an interior solution must satisfy the first-order
conditions

| al

o 4.1
‘aq, cb; (1)

Inaclosed-loop equilibrium (supposing that one exists), the second-stage
actions h*(a) after any first-period actions a are required to be a Nash
equilibrium of the second-stage game. That is, for each g = (@;,as), b¥(a)
maximizes u(a, b;, b*(a)). Moreover, the players recognize that the second-
period actions will depend on the first-period ones according to the
function b* when choosing the first-period actions. Thus, the first-order
condition for an optimal (interior) choice of q; (assuming that b*(-) is
differentiable} is now

Cup - Qu; Ob%

= Q. 4.2)

ca;  ob_; Qa;

Compared with the corresponding open-loop equation (4.1), there is now
an extra term corresponding to player i's “strategic incentive” to alter a; to
influence b_;. (The change in player i’s utility due to the induced change
in his own second-stage action is 0 by the “envelope theorem.”) For exam-
ple, if player i prefers decreases in b_,, and 9b*,/da; is negative at the
open-loop equilibrium a*, then player i’s “strategic incentive,” at least
locally, is to increase a; beyond a*.

To make these observations more concrete, suppose that the actions are
choices of outputs, as in Cournot competition, and there is “learning by



doing™ so that a firm's second-stage marginal cost is decreasing in its
first-stage output. Then the second-period equilibrium, b*(a), is simply the
Cournot equilibrium given the first-period costs. Since a irm’s Cournot-
equilibrium output level is increasing in its opponent’s marginal cost (at
least if the stability condition discussed in chapter 1 is satisfied), and since
increasing a; lowers firm i’s second-stage costs, 0b*;/Ca; is ncgative. Finally,
in Cournot competition each firm prefers its opponent’s output to be
low. Thus the strategic incentives in this example favor additional invest-
ment in learning beyond what a firm would choose in an open-loop
cquilibrium.

As a final gloss on this point, note that if the second-period equilibrium
actions are increasing in the first-period actions, and firms prefer their
opponents’ second-period actions to be low, then strategic incentives tend
to reduce first-period actions from the open-loop levels. And note that
by changing the sign of ¢u;/db_; we obtain two analogous cases.!®

473 Open-Loop and Closed-Loop Equilibria in Games with Many Players'™'

We remarked above that one defense of open-loop equilibria is that they
may approximate the closed-loop ones if there are many small players. We
now examine this intuition in a bit more detail. First consider the limit
case where players are infinitesimal. That is, suppose that the game has a
continuum of nonatomic individuals of each player type —a continuum of
player 1s, a continuum of player 2s, and so on. (For concreteness, let the
set of individuals be copies of the unit interval, endowed with Lebesgue
measure.) Suppose further that each player s payoff is independent of the
actions of any subset of opponents with measure 0. Then if one individual
player j deviates, and all players k # i.j ignore j's deviation, it is clearly
optimal for player i to ignore the deviation as well. Thus, the outcome of
an open-loop equilibrium is subgame perfect.’

However, even in this nonatomic model, there can be equilibria in which
all players do respond to a deviation by a single player, because the
deviation shifts play from one continuation equilibrium to another one.
This is easiest to see in a continuum-of-individuals version of the two-stage
game in figure 4.2. Supposc that each player 1’s payoff to strategy s, is the
average of his payoffs against the distribution of strategies played by the
continuum of player 2’s payoff:

ey, =3 plsyu, (s, ;).

10. Bulow. Geanakoplos, and Klemperer (1985) and Fudenberg and Tirole (1984, 1986)
develop taxonomies along these lines and apply them to various problems in industrial
organization.

11. The open-loop strategies are not perfect, as they ignore deviations by subsets of positive
measure.



where p(s,) is the proportion of player 2’s using strategy s,; define player
2's payoff analogously as the average against the population distribution of
s1's. If no player can observe the action of any individual opponent, then
each player’s second-stage payoff is independent of how he plays in the first
stage, and the efficient first-stage payoff (5, 5) cannot occur in equilibrium.
However, if players do observe the play of cach individual opponent, then
the first-stage payoff (5,5) can be enforced with the same strategies as in
the two-player version of the game.

The key to enforcing (5, 5) in this example is for all players to respond
to the deviation of a single opponent, even though this deviation does not
directly influence their payoffs. Economists fairly often rule out such
“atomic™ or “irregular” equilibria by requiring that players cannot observe
the actions of measure-zero subsets.'? However, thesc atomic equilibria are
not pathologies of the continuum-of-players model. Fudenberg and Levine
(1988) give an example of a sequence of two-period finite-player games,
cach of which has onc open-loop equilibrium and two closed-loop ones,
and such that cvery second-period subgame has a unique cquilibrium for
every finitc number of players. As the number of players grows to infinity,
one of the closed-loop equilibria has the same limiting path as the open-
loop cquilibrium, while the other closed-loop equilibrium converges to an
atomi¢ equilibrium of the limit game. To obtain the intuitive conclusion
that open-loop and closed-loop equilibria are close together in T-period
games with a large finite number of players rcquires (strong) conditions
on the first T + 1 partial derivatives of the payoff functions.

It may be that the intuition that the actions of small players should be
ignored corresponds to a continuum-of-players model that is the limit of
finite-players models with a noise term that is large enough to mask the
actions of any individual player, yet vanishes as the number of players
grows to infinity so that the limit game is deterministic. We have not seen
formal results along this line.

4.8 Finite-Horizon and Infinite-Horizon Equilibria (technical)'™

Since continuity at infinity (see section 4.2) implies that events after ¢
(for 1 large} have little effect, one would expect that under this condition
the scts of equilibria of finite-horizon and infinite-horizon versions of the
“same game” would be closely related. This is indeed the case, but it is not
true that all infinite-horizon equilibria are limits of equilibria of the corre-
sponding finite-horizon game. (That is, there is typically a failure of lower
hemi-continuity in passing to the infinite-horizon limit.) We have already
seen an example of this in the repeated prisoner’s dilemma of figure 4.1.

12. For a recent example see Gul, Sonnenschein, and Wilson 1986.



Radner (1980) observed that cooperation can be restored as an equi-
librium of the finite-horizon game (with time averaging, i€, é = 1) if one
relaxes the assumption that players cxactly maximize their payoffs.

Definition 4.3  Profilc o* is an e-Nash equilibrium if, [or all playcrs i and
strategies a;,

ulo*.o*) > ulo,c*) — ¢

The profile is an ¢-perfect equilibrium if no player can gain more than ¢ by
deviating in any subgame.

In our opinion, the concept of e-equilibrium is best viewed as a useful
device to relate the structures of large finite and infinite horizons. Though
it is sometimes proposed as a description of boundedly rational behavior,
its rationality requirements are very close to those of Nash equilibrium. For
instance, the players must have the correct beliefs about their opponents’
strategies and must correctly compute the expected payoff to each action;
for some unspecified reason, they may voluntarily sacrifice ¢ utils."* (How-
cver, e-optimality might be a necessary condition for certain boundedly
rational policies to “survive.”)

Radner's use of e-equilibria smoothes the finitc-to-infinite-horizon limit
when utilities are continuous at infinity. Fudenberg and Levine (1983)
showed this, beginning with an infinite-horizon game G*, which is then
“approximated” by a scquence of T-period “truncated” games G” that
arc created by choosing an arbitrary strategy §in G, and specifying that
play follows § after T. (In a rcpeated game, the most natural truncated
games to consider are those in which § specifies the same strategy in every
period. independent of the history; these truncations correspond to the
linitcly repeated version of the game. In more general multi-stage games.,
such constant strategies may not be feasible.) A strategy s* for the game
G specifies play in all periods up to and including T play follows strategy
$ in the subsequent periods. In an abuse of notation, we use the same
notation s’ to denote both the strategy of a truncated game G and the
corresponding strategy in G™; when we speak of truncated-game strategies
converging we will view them as clements of G*. Given this embedding, the
payoff functions of G* induce payoff functions in G” in the obvious way.

To characterize equilibria of G* in terms of limits of strategy profiles
in G'. one must specify a topology on the space of strategies of G™. Recall
that a behavior strategy o, for player i in G* is a sequence o,{* [h"), o,(- | h'),
cte. Fudenberg and Levine use a complicated metric to topologize these

13. Another difficulty with the concept as a descriptive model is that, although ¢ is small
relative to total utility, it may be large relative to a given period’s utility. Thus, for instance.
cooperating in the last period of a finitely repeated prisoner’s dilemma may cntail a substantial
cosl in that period even though the cost is negligible overall.



sequences.’* In games with a finite number of possible actions per period
(*finite-action games”), their topology reduces to the product topology
(also known as the topology of pointwise convergence), which is much
easier to work with.'®

Theorem 4.4 (Fudenberg and Levine 1983) Consider an infinite-horizon
finite-action game G* whose payoffs are continuous at infinity. Then

(1) o* is a subgame-perfect equilibrium of G* if and only if it is the limit
{in the product topology) of a scquence a” of g4-perfect equilibria of a
sequence of truncated games G 7 with er — 0. Moreover,

(i1) the set of subgame-perfect equilibria of G* is nonempty and compact.

Remark To gain some intuition for the theorem, consider approximating
the finite-horizon prisoner’s dilemma of figure 4.1, with § > }, by truncated
games in which players arc required to defect in all periods after T, Al-
though “always defect” is the only subgame-perfcct equilibrium of these
finite games, cooperation can occur in an e-perfect equilibrium: If the
opponent’s strategy is to cooperate until defecting occurs and to defect
thereafter, the best response is to cooperate until the last period 7, and then
to defect at T, which yields average utility

57(1 - 8)
+ ] — 6T+1' :

Cooperating in every period yields utility 1, and the difference between this
strategy and the optimum goes to 0 as T — o«c. More generally, continuity
at infinity implies that players lose very little (in ex ante payoff) by not
optimizing at a far-distant horizon.

Proof First note thatif 6® — ¢ in the product topology, then the continua-
tion payoffs u(¢"|h‘) under ¢” in the subgame starting with &’ converge to
the payoffs u(a|h’) under . To see this, recali that ¢” — ¢ implies that

a™a!|h') — o(al|h') forall t, B, a;.

Thus, conditional on h', the probability that a' is played in period ¢ and

14. Harris (1985) shows that the complicated metric used by Fudenberg and Levine can be
replaced by a simple one that sets the distance between two strategy profiles equal to 1/k,
where k is the largest number such that the two profiles prescribe exactly the same actions in
every period t < k for every history A'. This topology allows Harris to dispense with an
additional continuity requirement that Fudenberg and Levine required for these games. (They
required that payoffs as a function of the infinite history h* be continuous in the product
topology, which implies continuity in each period’s realized action.) Borgers (1989) shows that
the outcomes of infinite-horizon pure-strategy equilibria coincide with the limits (in the
product topology) of the outcomes of finite-horizon pure-strategy e-equilibria.

15. A sequence ¢" converges to o in the product topology (or topology of pointwise con-
vergence) if and only if, for all i, all #', and all af € A;(h"),

al(a/|h'} — ailai|h'),

which implies that o"(alh‘) = a{a|h").



a'''is played in period (t + 1} is
s |h)a"(a h at)y - a(a’|hYe(a' T R a)

and the distribution over outcomes at each date T > t converges pointwise
to that generated by o. Thus, for any & > 0 and T there is an N such that
for all n > N the distribution of actions from period ¢ through period
it + T) generated by o", conditional on k', is within ¢ of the distribution
gencrated by ¢. Since outcomes after (t + T) arc unimportant for large T.
continuation payolls under ¢ converge to those under 6."'°

To prove (i). note that continuity at infinity says that there is a sequence
n; — 0 such that events after period T matter no more than 7, for cach
player. If ¢ is a subgame-perfect equilibrium of G*, the projection ¢” of &
onto G' must be a 2n,-perfect equilibrium of G': For any i, h', and &..

ulo, o1 h') 2 uld, o | h'),
so from continuity at infinity
wtol o [h) + np = wi(@l e Lk — ny.

Hence, o is the limit of 2n,-equilibria of GT.

Conversely, suppose o — ¢ is a sequence of ep-perfect equilibria of G7
with ¢, — 0. Continuity at infinity implics that each 7 is an (¢7 + 77)-
perfect equilibrium of G*. If ¢ is not subgame perfect, there must be a time
t and a history k' where some player | can gain at least 2e > 0 by playing
some 4, instead of ¢, against a_,. But since o’ — ¢ and payoffs arc continu-
ous, for T sufficiently large player i could gain at least ¢ by playing d; instcad
of 6, against o7, which contradicts &, — 0.

To prove (i), note first that for fixed §each G is a finite multi-stage game
and hence has a subgame-perfect equilibrium ¢”. (Sce exercise 3.5 and
chapter 8.) Because the space of infinite-horizon strategies is compact (this
is Tychonov's theorem'”), the sequence ¢ 7 has an accumulation point; this
accumulation point is a perfect equilibrium of G* from (i). Because payolffs
are continuous, a standard argument shows that the set of subgame-perfect
equilibria is closed, and closed subsets of compact sets are compact. [ |

Radner considered the repeated prisoner’s dilemma with time aver-
aging, and observed that “both cooperate” is an ¢-perflect equilibrium out-
come of the finitely repeated game, with the required & — 0 as the number
of periods tends to infinity. That Radner obtained this result with time

16. With time averaging, payofls are not continuous in the product topology because they are
not continuous at infinity. Consider the one-player game where the feasible actions each
period are 0 and 1 and the player’s stage-game payoff equals his action. Then the sequence
of strategies ¢" given by o"(O[h) =1 for t < n and c"(11h") = 1 for r = n converges to
#(0lA') — 1 for all 7 and h* in the product topology. and the discounted payoffs converge
to 0 as well, but under time averaging the payoff of each a” is 1.

17. Sce, for example, Munkres 1975,



averaging is somewhat misleading, as, in general, games with time aver-
aging are not well behaved: There can be exact equilibrium payofls of a
finitely repeated stochastic game that are not cven e-equilibrium payoffs of
the infinitely repeated version.!8

Excrcises

Exercise 4.1

(a)** Consider the following modification of the stationary symmetric
war of attrition developed in subsection 4.5.2: L(f) = —(1 — 6%)(1 — 9),
F(i) = L({) + é'v,and B(7) = L(}) + 8'gv, with g < %, which corresponds to
the assumption that if both animals stop fighting simultaneously then
cach has probability ¢ of winning the prize. Characterize the symmetric
stationary equilibrium. Compute the limit as the time period shrinks and
show it is independent of g.

(b)*** Characterize the entire set of perfect-equilibrium outcomes.

Exercise 4.2** Consider the following modification of the perfect-
information preemption game developed in the text. Players now choose
two times: a time s to do a feasibility study and a time ¢ to build a plant.
In order to build a plant, the player must have done a feasibility study
in some s < ¢, with s and ¢ required to be odd for player 2 and even for
player 1. Doing a feasibility study costs ¢ in present value, where ¢ is small,

18. Here is a one-player game where the (unique) infinite-horizon equilibrium payoff is less
than the limit of the payoffs of finite-horizon equilibria: The player must decide when to chop
down a tree, which grows by one unit per period from an initial size of 0 at date 0. If the tree
is chopped down at the beginning of period t, the player receives a flow payoff of 0 each
period belore ¢, a flow of 1 in periods ¢ through 2¢ — 1, and O thereafter. I the player discounts
flows at ratc &, the player's strategy in the infinite-horizon game is to chop down the tree at
the time +* that maximizes
1 14
Ml +d4+ - +86 )= (j—(ll—;—)

s0 (* 1s such that 8" is as close as possible to 1. Note that ¢* is independent of the {finitc or
infinite) horizon as long as the horizon is large enough.

Howcver, il the player’s utility is the average payoff, the optimal strategy with finite horizon
T 1s to cut at the first time ¢ where t > 772, yielding an average payoff that converges to
1. yet o policy in the infinite-horizon problem yields a strictly positive payoff. Here the
problem is that the sequence of finite-horizon strategies “cut at T/2" converges (in the product
topology) to the limit strategy “never cul,” but the limit of the corresponding payoffs is not
equal to the payoff of the limit strategy, so that the payofl is not a continuous function of the
strategy. Sorin (1986) identifies a different way the finite-to-infinite-horizon limit can be badly
behaved. In his example, the finite-horizon equilibria involve one player using a behavior
strategy that assigns probability roughly /T to an action that sends the game to an absorbing
state, so that the state is reached with probability close to | with a long horizon T, These
slrategies once again have a limit that assigns probability 0 to stopping (reaching the absorb-
ing state) in each period, and indeed the equilibrium payoffs of the infinite-horizon game do
not include the finite-horizon limits. Lehrer and Sorin {(1989) provide conditions for the
finite-to-infinite-horizon limil to be well behaved in one-player games with time averaging.



but this cost is recouped except for lost interest payments if only that player
builds a plant. Thus, the payoffis —¢ if a player does a feasibility study and
never builds, — | — ¢ if a player does a [easibility study and both build, and
14 - (t —7)* —&(1 — 6"} if a player does a study, builds, and his oppo-
nent does not build. Show that the cquilibrium outcome that survives
iterated conditional dominance is for player 1 to pay for a study in period 2
and wait until period 6 to build. Explain why player 1 is now able to
postpone building, and why player 2 cannot preempt by doing a study at
s — 1. Relate this to “¢-preemption.” (This exercise was provided by R.
Wilson.)

Exercise 4.3* Consider a variant of Rubinstein’s infinitc-horizon bar-
gaining game where partitions are restricted to be integer multiples of 0.01,
that is. x can be 0, 0.01, 0.02, ..., 0.99, or 1. Characterizc the set of
subgame-perfect equilibria for & = } and for & very close to 1.

Exercise 4.4* Consider the [-player version of Rubinstein’s game, which
Moulin (1986) attributes to Dutta and Gevers. Atdates 1,1 + 1,21 + 1,...,
player | offers a division (x,, ..., x;) of the pie with x; > 0 for all i, and

! x, < 1. Atdates 2,1 + 2,21 + 2, ..., player 2 offers a division, and so
on. When player i offers a division, the other players simultaneously accept
or veto the division. If all accept, the pie is divided; if at least onc vetoes,
player i + 1 (player 1 if i = I) offers a division in the following period.
Assuming that the players have common discount factor é, show that, for
all i, player i offering division
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for players i,i + 1,...,i — 1 at each datc (k/ + i) and the other players’
accepting is a subgame-perfect equilibrium outcome.

Exercise 4.5% Solve Stahl’s finite-horizon bargaining problem for T even
and then for T odd, and show that the outcomes of the two cases converge
to a common limit as T — cc.

Exercise 4.6** Admati and Perry (1988) consider the following model of
infinite-horizon, perfect-information joint investment in a public good:
Players i = 1,2 take turns making investments x,(t) in the project, which 1s
“finished™ at the first date T at which

.

Y x(1) = K.

i=1,2 =0

Players receive no benefits from the project untl it is completed; 1if 1t
is completed at date T, player i receives bencfit 6,7 V. Players have a convex
cost of investment ¢,(x;), with ¢;(0) = 0; thus, player i's total payoff is



.
OV = Y dleix iy,
t=0

Use iterated conditional dominance to show that the game has a unique
subgame-perfect equilibrium. Hint: First show that there is an X, such that,
if the investment to date exceeds K — x, it is conditionally dominant for
the player on move to finish the project. Then argue that the second round
of conditional dominance implies that there is an X , such that, if investment
to date K(r} exceeds K — x, — X, but does not exceed K — X,, the player
on move should not invest less than K — K(f) — x,.

Exercise 4.7**  Prove that, in a game of perfect information, no subgame-
perfect strategy profile is removed by iterated conditional dominance.

Exercise 4.8**

(a) Consider the two-person Rubinstein-Stihl model of section 4.4. The
two players bargain to divide a pie of size 1 and take turns making offers.
The discount factor is d. Introduce “outside options” in the following way:
Ateach period, the playcr whose turn it is to make the offer makes the offer;
the other player then has the choice among (1) accepting the offer, (2)
exercising his outside option instcad, and (3) continuing bargaining (mak-
ing an offer the next period). Let x, denote the value of the outside
option. Show that, if x, < §/(1 + ), the outside option has no effect on the
equilibrium path. Comment. What happens if Xo > 0/(1 + )7

(b) Consider an alternative way of formalizing outside options in
bargaining. Suppose that there is an “exogenous risk of breakdown” of re-
ncgotiation (Binmore et al. 1986). At each period ¢, assuming that bargain-
ing has gonc on up to date ¢, there is probability (I — x) that bargaining
breaks down at the end of period ¢ if the period-t offer is turned down. The
players then get x, cach. Show that the “outside opportunity” x, matters
cven if it is small, and compute the subgame-perfect equilibrium.

(¢) In their study of supply assurance, Bolton and Whinston (1989)
consider a situation in which the outside option 1s endogenous. Suppose
that there are three players: two buyers (i = 1,2) and a seller (i = 3). The
seller has one indivisible unit of a good for sale. Each buyer has a unit
demand. The scller’s cost of departing from the unit is 0 (the unit is already
produced). The buyers have valuations v, and v,, respectively. Without loss
of generality, assume that v, > v,. Bolton and Whinston consider a gen-
eralization of the Rubinstein-Stihl process. At dates 0,2, ..., 2k, ..., the
seller makes offers; at dates 1, 3, ..., 2k + 1, ..., the buyers make offers.
Buyers’ offers are prices at which they are willing to buy and among which
the seller may choose. The seller can make an offer to only a single buyer, as
she has only one unit for sale (alternatively one could consider a situation
in which the scller organizes an auction in each even period). Consider a
stationary equilibrium and show that, if parties have the same discount



factor and as the time between offers tends to 0, the parties’ perfect-
equilibrium payoffs converge to v, /2 for both the seller and buyer I and to
0 for buyer 2 if v,/2 > v, and to v, for the seller, v, — v, for buyer 1,
and 0 for buyer 2 if ¢,/2 < v,. (For a uniqueness result see Bolton and
Whinston 1989.)

Exercise 4.9** As shown by Rubinstcin (see section 4.4 above), the
alternating-move bargaining process between two players has a unique
equilibrium. Shaked has pointed out that with I > 3 players there are
many {subgame-) perfect equilibria (see Herrero 1985 for more details).
Prove that with [ = 3 players, and for discount factor 4 > }, any partition
of the pie is the outcome of a perfect equilibrium.

The game is as follows: Three players bargain over the division of a
pic of size |. A division is a triple (x,,x,,x;) of shares for each player,
where x, 2 0, Y % x; = 1. At dates 3k + 1Lk =0, 1, ..., player 1 offers a
division; if players 2 and 3 both accept, the game is over. If one or both of
them veto, bargaining goes on. Similarly, at dates 3k + 2 (respectively, 3k),
playcer 2 (respectively, player 3) makes the offer. The game stops once an
offer by onc player has been accepted by the other two players.

Show that, if & >}, any partition can be supported as a (subgame-)
perfect equilibrium.

Exercise 4.10*

(a) Show that a pure-strategy open-loop Nash equilibrium of a determi-
nistic game in which action spaces depend only on time is a closed-loop
Nash equilibrium. Hint: Use the analogy with a control {single decision
maker) problem.

(b) Does this result hold when the open-loop Nash equilibrium is in
mixed strategies? When the players learn stochastic moves by nature?
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The best-understood class of dynamic games is that of repeated games, in
which players face the same “stage gamc” or “constituent game™ in every
period, and the player's overall payoff is a weighted average of the payofls
in cach stage. If the players’ actions are observed at the end of each period,
it becomes possible for players to condition their play on the past play of
their opponents, which can lcad to equilibrium outcomes that do not arise
when the game is played only once. One example of this in the repeated
prisoner’s dilemma of section 4.3 is the “unrelenting” strategy “cooperate
until the opponent defects; if ever the opponent defects, then delect in every
subsequent period.” The profile where both players use this unrelenting
strategy is a subgame-perfect equilibrium of the infinitely repeated game if
the discount factor is sufficiently closc to 1: even though each player could
do better in the short run by defecting instcad of cooperating. for a paticnt
player this short-run gain is outweighed by the prospect of unrelenting
future “punishment.” Section 4.3 considers this equilibrium as well as the
one where players defect each period; there are other equilibria as well. Our
goal in this chapter is to present a more systematic treatment of general
repeated games. (Surveys of the literature on repeated games have been
published by Aumann (1986, 1989), Mertens (1987), and Sorin (1988).
Mertens. Sorin. and Zamir (1990) give a detailed exposition of repeated
games, with emphasis on “large™ action spaces, and discuss the related topic
of stochastic games.)

Because repeated games do not allow for past play to influcnce the
feasible actions or payoff functions in the current period, they cannot
be used to model such important phenomena as investment in productive
machinery and learning about the physical environment. Nevertheless,
repeated games may be a good approximation of some long-term relation-
ships in economics and political science—particularly those where “trust”
and “social pressure” are important, such as when informal agreements
arc used to enforce mutually beneficial trades without legally enforced
contracts. There are many variations on this theme, including Chamberlin’s
(1929) informal argument that oligopolists may use repeated play to im-
plicitly collude on higher prices’ and Macaulay’s (1963) observation that
relations between a firm and its suppliers arc often based on “rcputation”
and the threat of the loss of future business.> Chapter 9 discusscs an
alternative way of modeling long-run relationships, where past actions
serve to signal a player's future intentions by providing information about
his payoffs.

1. Fisher (189%) gave an earlier critique of the static Cournot model that can be interpreted
as favoring a repeated-game model. He asserted that, contrary to the Cournot assumplion
that outputs are chosen once and for all, “no business man assumes ... that his opponents’
output or price will remain constant” (quoted in Scherer 1980).

2 Recent economic applications of repeated games to explain trust and cooperation include
Greifl 1989, Milgrom. North, and Weingast 1989, Porter 1983a, and Rotemberg and Saloner
1986. For same recent applications to political science, see the essays in Oye 1986.



The reason repeated play introduces new equilibrium outcomes is that
players can condition their play on the information they have received in
previous stages. Thus, one would expect that a key issue in analyzing
repeated games is just what form this information takes. In the prisoner’s-
dilemma example in chapter 4, the players perfectly obscrved the actions
that had been played. Sections 5.1— 5.4 discuss general repeated games with
this information structure, which we call repeated yames with observed
actions. (Note that this is a special case of the multi-stage games with
obscrved actions introduced in chapter 3.)

Section 5.1 analyzes the equilibria of infinite-horizon games, focusing on
the “folk theorems,” which describe the equilibria when players are cither
completely patient or almost so. Section 5.2 presents the parallel results for
finitely repeated games, and section 5.3 discusses various extensions to
models where not all the players play the game every period. Examples
include a long-run firm that faces a different short-run consumer each
period; in that case the firm must decide whether to produce high-quality
or low-quality goods (Dybvig and Spatt 1980; Shapiro 1982), and an
organization composed of overlapping gencrations of workers must decide
whether to exert effort on joint production (Crémer 1986).

Section 5.4 discusses the ideas of Parcto perfection and renegotiation-
proofness, which have been proposed as a way to restrict the large set of
repeated game cquilibria when players are patient.

Sections 5.5-5.7 consider repeated games in which the players observe
imperfect signals of their opponents’ play. One example of this sort of game
is the oligopoly model of Green and Porter (1984), wherein firms choose
quantities each period and observe the realized market price but not the
outputs of their opponents. Since the market price is stochastic, a low price
could be due cither to unexpectedly low demand or to some rival’s having
produced an unexpectedly high output. A second example is the repcated
partnership in which each player observes the realized level of production
but not the effort level of his partner (Radner 1986; Radner, Myerson, and
Maskin 1986).

5.1 Repeated Games with Observable Actions’*

5.1.1  The Meodcl

The building block of a repeated game, the game which is repeated, is
called the stage game. Assume that the stage game is a finite /-player
simultancous-move game with finite action spaces 4; and stage-gamc pay-
off functions g;: 4 —» R, where 4 = x,_, 4,. Let ./, be the space of prob-
ability distributions over A,.

To define the repeated game, we must specify the playcrs’ strategy spaces
and payoff functions. This section considers games in which the players



observe the realized actions at the end of each period. Thus, let a' =
(a¢'.....a}) be the actions that are played in period t. Suppose that the
game hegins in period 0, with the null history h° For ¢ > i, let h' =
(@, a',....a""") be the realized choices of actions at all periods before
r. and let H' = (AY be the space of all possible period-t histores.

Since all players observe h', a pure strategy s; for player i in the repeated
game is a sequence of maps si—one for each period t  that map possible
period-f histories A € H' to actions a; € A;. (Remember that a strategy must
specify play in all contingencies, even those that are not expected to occur.}
A mixed (behavior) strategy g, in the repeated game is a sequence of maps
o/ from I{' to mixed actions «; € .«/;. Note that a player’s strategy cannot
depend on the past values of his opponents’ randomizing probabilities o_;;
it can depend only on the past valucs of a ;. Note also that each period of
play begins a proper subgame. Moreover, since moves are simultaneous in
the stage game, these are the only proper subgames, a fact that we will use
in testing for subgame perfection.®

This section considers infinitely repeated games; section 5.2 considers
games with a fixed finite horizon. With a finite horizon, the set of subgame-
perfect equilibria is determined by backward-induction arguments that do
not apply to the infinite-horizon model. The infinite-horizon case is a better
description of situations where the players always think the game extends
one more period with high probability; the finite-horizon model describes
a situation where the terminal date is well and commonly foreseen.*

There are several alternative specifications of payoff functions for the
infinitely repeated game. We will focus on the case where players discount
future utilities using discount factor é < 1. In this game, denoted G(9),
player i's objective function is to maximize the normalized sum

w ~ Ey(1—8) Y. 8'g,(a"(h)),

=0

where the operator E, denotes the cxpectation with respect to the distribu-
tion over infinite histories that is generated by strategy profile ¢. The
normalization factor (1 — &) serves to measure the stage-game and
repeated-game payoffs in the same units: The normalized value of 1 util per
period 1s 1.

3 Although it seems that many of the results in this chapter should extend to stage games in
which the moves are not simultancous, as far as we know no onc has yet checked the details.

4 The importance of a common forecast of the terminal date 1s shown by Neyman (1989),
who considers a repeated prisoner’s dilemma where both players know the horizon is finite,
and where both players know the true length of the game to within + 1 period, but the length
of the game is not common knowledge between them (it is not even “almost common knowl-
edge.” as defined in chapter 14 below). He shows that this game has “cooperative” equilibria
of the sort that arise in the infinite-horizon model but that are ruled out by backward induction
with a known finite horizon.



To recapitulate the notation: As in the rest of the book, u;, s;, and o,
denotc the payoffs and the pure and mixed strategies of the overall game.
The payoffs and strategies of the stage game are denoted gi» a;, and 2;.

As in the games of chapter 4, the discount factor & can be thought of
as representing pure time preference: This interpretation corresponds to
"4, where r is the rate of time preference and A is the length of the
period. The discount factor can also represent the possibility that the game
may terminate at the end of each period: Suppose that the rate of time
preference is r, the period length is A, and there is probability u of continu-
ing from one period to the next. Then 1 util tomorrow. to be collected only
if the game lasts that long, is worth nothing with probability 1 - u and
worth & = ¢™™ utils with probability u. for an expected discounted value
of & = ud. Thus, the situation is the same as if & = land r' = r — In{)/A.
This shows that infinitely repeated games can represent games that termi-
nate in finite time with probability 1. The key 1s that the conditional
probability of continuing one more period should be bounded away from
0.°

Since each period begins a proper subgame, for any strategy profile ¢
and history h' we can compute the players’ expected payofls from period ¢
on. We will call these the “continuation payoffs,” and renormalize so that
the continuation payoffs from time ¢ are measured in time- units. Thus. the
continuation payoff from time ¢ on is

d=¢

(I — o) Z o 'glat(hY)).

With this renormalization, the continuation payolf of a player who will
receive | util per period from period ¢ on is 1 unit for any period t. This
renormalization will be convenient, as it exploits the stationary structure of
the game.

Although we will focus on the casc where players discount future payoffs,
we will also discuss the case where players are “completely patient,” corre-
sponding to the limit model 6 = 1. Several different specifications of the
payoffs have been proposed to model complete patience. The simplest is
the time-average criterion, where each player i’s objective is to maximize

-
lim inf E{1/T) > g/(a'(h)).
T =0
The liminf in this expression is in response to the fact that some infinite
sequences of utilities do not have well-defined average values.® (See Lehrer

5. In unpublished notes, B. D. Bernheim has shown that if the stage game has a continuum
ol actions, cooperative equilibria can arise even if the continuation probability does converge
to O over time, provided it does so sufficiently slowly.



1988 for a discussion of the difference between this notion of a time average
and the analogous one using the lim sup.)

Any form of time-average criterion implies that players are unconcerned
not only about the timing of payoffs but also about their payoff in any finite
number of periods, so that, for exampic, the sequences (1,0,0,...} and
(0,0,...), which both have average 0, are equally attractive. The overtaking
criterion is an alternative specification of “patience™ where improvement
in a single period matters. This criterion, which is not representable by a
utility functional, says that the sequence g = (g°.g',...) is preferred to

g = (g% g',...)if and only if there exists a time 77 such that for all T> T’

the partial sum ¥ /_ g strictly exceeds the partial sum } [, §". I ¢ is not
preferred to §, and § is not preferred to g, then the two sequences are judged
to be cqually attractive. Note that if ¢ has a higher time average than g,
then ¢ is necessarily preferred to § under the overtaking criterion.”

Now that we have specified stratcgy spaces and payoff functions for the
repcated game, our description of the model is complete. We conclude this

subsection with a simple but useful observation.

Observation 1f x* is a Nash equilibrium of the stage game (that 1s, a “static

equilibrium™), then the strategies “each player i plays ¥ from now on” are a

subgame-perfect equilibrium. Moreover, if the game has m static equilibria
1m

{2/}, then for any map j(r} from time periods to indices the strategies
“play 2/® in period " are a subgame-perfect equilibrium as well.

To see that this observation is correct, note that with these strategies the
future play of player i's opponents is independent of how he plays today,
so his optimal response is to play to maximize his current period’s payoff,
i.c.. to play a static best response to /'’ Note also that these are “open-
loop™ strategics of the type discussed in section 4.7.

The observation shows that repeated play of a game does not decrease
the set of equilibrium payoffs. Further, since the only reason not to play a
static best response is concern about the future, if the discount factor is
small enough, then the only Nash equilibria of the repeated game are
strategies that specify a static equilibrium at every history to which the
equilibrium gives positive probability. (Proving this is excrcise 5.2. Note
that the same static equilibrium nced not occur in every period. In games
with infinite strategy spaces the conclusion must be modified slightly, since

6. Recall that lim, . , inf x' — sup,inf,, , x' is the greatest lower bound on the scquence’s accu-
mulation points. Thus, if iminf, ., x* = x. then for all x > x and all T there isat>Twith
X

7. It is not obvious how to extend the overtaking criterion to probability distributions vver
sequences. One formulation requires that with probability 1 the realized sequence of utilities
under one distribution be preferred to that under the other, but with this formulation the
overtaking criterion is no longer a relinement of time averaging.



cven a small future punishment can induce players to forgo a sufficiently
small current gain.)

Another important fact about repcated games with observed actions is
that the sct of Nash-equilibrium continuation payoff vectors is the same in
every subgame. Proving this is exercise 5.3.

* Folk Theorem for Infinitely Repeated Games

The “folk thcorems” for repcated games assert that if the players arc
sufficiently patient then any feasible, individually rational payoffs can be
enforced by an equilibrium. Thus, in the limit of extreme patience, rcpeated
play allows virtually any payoff to be an equilibrium outcome.

To make this assertion precise, we must define “feasible™ and “individu-
ally rational.™ Define player i's reservation utility or minmax value to be

r, = min [max g,-(oz,-,oz_,-]]. (5.1)

T X

This is the lowest payoff plaver i°s opponents can hold him to by any choice
oflx ;, provided that player i correctly foresces x_; and plays a best response
toit. Letm'; be astrategy for player i’s opponents that attains the minimum
in cquation 5.1. We call m'; the minmax profile against player i. Let m/ be
a strategy for player i such that g,(m!,m’ ) = ov,.

To illustrate this definition, we compute the minmax valucs for the
game in figure 5.1. To compute player 1's minmax value, we first compute
his payoffs to U, M, and D as a function of the probability g that player 2
assigns to L: in the obvious notation, these payoffs are vylg) = —3g + 1,
rmlg) = 3¢ — 2. and v,(g) = 0. Since player 1 can always attain a payoff of
0 by playing D. his minmax payofl is at Icast this large: the question 1s
whether player 2 can hold player 1's maximized payoff to 0 by some choice
of 4. Since ¢ does not enter into vy, we can pick g to minimize the maximum
of ry. and ry, which occurs at the point where the two expressions are
equal.ic.g = 3. Since v,(3) = vy(3) = —1, player I's minmax value is the
zero payoff he can achieve by playing D. (Note that max (vy(@), om(g)) < 0
forany ¢ € [ }. 1], so we can take player 2's minmax stratcgy against player
l.mj. to be any g in this range.)

Simtlarly, to find player 2’s minmax value, we first express player 2's
payoff to L and R as a function of the probabilities py and py, that player 1
assigns to U and M:

L R
U -2,2 1,-2
M 1.-2 -2.2
D 01 01

Figure 5.1



rp=2(py — pud + (1 pyr — Py (5.2)
e = —2(py Pu) t+ (I —py— Pa)- (5.3)
Player 2's minmax payoff is then determined by

min max[2(pg — pu) + (L — py - Puds

PuaPy
— 2{p; — py) H (L —pu— Pm) ]

By inspection (or plotting equations 5.2 and 3.3) we see that player 2's
minmax payofl is 0, which is attained by the profile (3,3.0). Here, unlike
the minmax against player 1. the minmax profile is uniquely determined:
Il p. > pu. the payoff to L is positive, if py > py, the payoff to R 1s positive,
and if p, = py < 1, then both L and R have positive payoffs.

Note that if we restricted attention to pure strategies in equation 5.1,
player 1's and player 2’s minmax values will both be 1. Clearly, minimizing
over a smaller set in equation 5.1 cannot give a lower value; the figure shows
that the restriction can give values that are strictly higher.

At this point, the reader might question our identifying the minmax
pavolls as the reservation utilitics. This terminology is justified by the
following observation.

Observation Player i’s payoff is at least v; in any static equilibrium and
in any Nash equilibrium of the repeated game, regardless of the level of the
discount factor.

Proof In a static equilibrium %, &; is a best response to 4_;, and so
¢.(4,;,4_;)is no less than the minimum defined in equation 5.1. Now consider
a Nash cquilibrium 4 of the repeated game. One feasible, though not
necessarily optimal, strategy for player i is the myopic one that chooses each
period’s action ay(h') to maximize thc cxpected value of g(a;.d_;(h")).
(This may not be optimal, because it ignores the possibility that the future
play of i’s opponents may depend on how he plays today.) The key is that,
because all players have the same information at the start of each period ¢,
the probability distribution over the opponents’ period-f actions given
player s information corresponds to independent randomizations by
player i's opponents. (This is not necessarily true when actions are im-
perfectly observed, as we discuss in section 5.5.} Thus, the myopic strategy
for player i yiclds at least v, in each period, and so ; is a lower bound on
player i's equilibrium payoff in the repeated game. ]

Thus, we know on a priori grounds that no equilibrium of the repeated
game can give any player a payofl lower than his minmax value.

Next we introduce a definition of the feasible payoffs. Here we encounter
the following subtlety: The sets of feasible payoffs in the stage game, and
thus in the repeated game for small discount factors, need not be convex.



The problem is that “many” convex combinations of pure-strategy payoffs
correspond to correlated stratcgies, and cannot be obtained by indepen-
dent randomizations. For example, in the “battle of the sexes” game (figure
1.10a), the payoffs {3, 3) cannot be obtained by independent mixing.

As Sorin (1986) has shown, this nonconvexity does not occur when the
discount factor is near enough to 1, as any convex combination of pure-
strategy payoffs can be obtained by a time-varying deterministic path. This
s easiest to see in the time-averaging limit: The payoffs (3,3)in the battle
of the sexes can be obtained by playing (B, B) in even-numbered periods
and (F, F) in odd-numbered ones.

To avoid the need to use such time-varying paths, Fudenberg and
Maskin (1986a) convexify the feasible payoffs of the stage game by assum-
ing that all players observe the outcome of a public randomizing device at
the start of each period. Sorin’s result on its own suggests, but does not
imply, that these public randomizations are innocuous when the discount
factor is near ecnough to 1; Fudenberg and Maskin (1990a) subsequently
proved a stronger version of Sorin’s result and used it to extend their proof
of the perfect folk theorem to games without public randomizations.® To
avoid the complications this involves, we will use the assumption of public
randomizations in our proofs. Formally, let fw®...,w"...} be a sequence
of independent draws from a uniform distribution on [0, 1], and assume
that the players observe o' at the beginning of period r. The history is now

A pure strategy s; for player i is then a sequence of maps si from histories
h'into A,.
[n this case, the set of feasible payoffs for any discount factor is

V' = convex hull{v|da e A with g(a) = v}.

This set is illustrated in figure 5.2. The shaded region in the figurc is the
sct of all feasible payoffs that Pareto dominate the minmax payoffs, which
are 0 for both players. The set of feasible, strictly individually rational
payoffsis theset {v € V|v; > v; Vi}. Figure 5.2 depicts these sets for the game
of figure 5.1, in which the minmax payoffs are (0, 0).

Theorem 5.1 (folk theorem)® For cvery feasible payoff vector ¢ with
v; > v;forall playersi, thereexistsa d < 1 suchthatforallé e (0, I) thereisa
Nash equilibrium of G(8) with payolffs v.

8. For small discount factors public randomizations can allow equilibrium payoflls that are
not in the convex hull of the set of equilibrium payoffs without public randomization. See
Forges 1986, Myerson 1986, and our exercise 5.5.

9. This is called the “folk theorem™ because it was part of game theory's oral tradition or “folk
wisdom™ long before it was recorded in print.
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Remark The intuition for this theorem is simply that when the players are
patient, any finite one-period gain from deviation is outweighed by even a
small loss in utility in every future period. The strategies we construct in
the proof are “unrelenting™: A player who deviates will be minmaxed in
cvery subsequent period.

Proof Assume first that there is a pure action profile a such that g(a) = v,
and consider the following strategies for cach player i: “Play a; in period
0. and continuce to play «; so long as cither (i) the realized action in the
previous period was a or (i) the realized action in the previous period
differed from « in two or more components. If in some previous period
player i was the only one not to follow profile a, then each player j plays
m, for the rest of the game.”

Can player i gain by deviating from this strategy profile? In the period
in which he deviates he receives at most max, g;{a), and since his opponents
will minmax him forever afterward he can obtain at most v; in periods after
his first deviation. Thus, if player i’s first deviation is in period ¢, he
obtains at most

(1 — &%), + (1 — 6) max g(a) + 6" v, (5.4)

which is less than ¢, as long as ¢ exceeds the critical level ¢; defined by

(1 — o,) max g;(a) + o;v;, = v,. (5.5)

a

Since r; > v,, the solution &, for equation 5.5 is less than 1. Taking ¢ =
max, &, completes the argument. Note that, in deciding whether to deviate,



in period ¢, player i assigns probability 0 to an opponent deviating in the
same period. This is a consequence of the definition of Nash equilibrium:
Only unilateral deviations are considered.

Il payoffs » cannot be generated using pure actions, then we replace the
action profile ¢ with a public randomization a{w) yielding payoffs with
expected value v. The discount factor required to ensure that playericannot
gain by deviating may be somewhat larger in this case, as if player i
conforms he does not receive exactly v, in each period, and his temptation
to deviate may be greater in periods where g,(a(w)) is relatively low. It will
be sufficient to take 8, such that

(I — &;) max gi(a) + d,v; = (1 — §,) min gila) + 0,0, (5.6)

To see that equation 5.6 is sufficient, note that for any period-t realization
of w, player i's continuation payoff to conforming from t on is

(I — d)ga(w) + du,

which is at least as large as (1 — é)min, g,{(a) + dv;. By hypothesis, 8 is
large cnough that this latter expression exceeds the continuation payoff
from deviating, which is at most (1 — d)ymax, g;(a) + dv,. |

Under the strategies used in the proof of theorem 5.1, a single deviation
provokes unrelenting punishment. Now, such punishments may be very
costly for the punishers to carry out. For example, in a repeated quantity-
setting oligopoly, the minmax strategics require player i's opponents to
produce so much output that price falls below player i’s average cost,
which may be below their own costs as well. Since minmax punishments
can be costly, the question arises if player i ought to be deterred from a
profitable one-shot deviation by the fear that his opponents will respond
with the unrelenting punishment specified above. More formally, the point
is that the strategies we used to prove the Nash folk theorems are not
subgame perfect. This raises the question of whether the conclusion of the
folk theorem applies to the payoffs of perfect equilibrium.

The answer to this question is yes, as shown by the perfect folk theorem.
Friedman (1971) proved a weaker result, sometimes called a “Nash-threats”
folk theorem.

Theorem 5.2 (Friedman 1971) Let 2* be a static cquilibrium (an equi-
librium of the stage game) with payoffs e. Then for any ve V with ¢; > ¢,
for all players i, there is a é such that forall § > J there is a subgame-perfect
equilibrium of G(3) with payoffs v.

Proof Assume that there is an d with g{d) = v, and consider the following
strategy profile: In period 0 each player i plays 4,. Each player i continues
to play 4, so long as the realized actions were 4 in all previous periods. If at



least one player did not play according to 4, then each player i plays a for
the rest of the game.
This strategy profile is a Nash equilibrium for J large enough that

(1 — d)max g,(a) + de; < v,. (5.7)

This inequality is satisfied for a range of 3 less than 1 because it holds strictly
at the 8 = 1 limit. To check that the profile is subgame perfect, note that
in cvery subgame off the equilibrium path the strategies arc to play o*
forever. which is a Nash equilibrium for any static equilibrium o*.

If there is no @ with g(d) = v, we usc public randomizations as in the
previous theorem. n

Friedman's result shows that patient, identical Cournot duopolists can
“implicitly collude™ by cach producing half of the monopoly output, with
any deviation triggering a switch to the Cournot outcome forever after.
This equilibrium is “collusive™ in obtaining the monopoly price; the collu-
sion is “implicit” in that it can be enforced without the use of binding
contracts. Instead, each firm is deterred from breaking the agreement by the
(credible) fear of provoking Cournot competition.

There is ample cvidence that firms in some industrics have understood
the role of repeated play in allowing such collusive outcomes (although
other models than the repeated games considered here can be used to
capture the effects of repeated play). Some of the agents involved have even
recognized the key role of the interval between periods in determining
whether the discount factor is large enough to allow collusion to be an
equilibrium, and have suggested that the industry take steps to ensure
that any defectors from the collusive outcome will be detected quickly.
Scherer (1980) quotes the striking example of the American Hardwood
Manufacturer's Association, which proclaimed: “Knowledge regarding
prices actually made is all that is nccessary to keep prices at reasonably
stable and normal levels.... By keeping all members fully and quickly
informed of what others have done, the work of the Plan results in a
certain uniformity of trade practices. ... Cooperative competition, not cut-
throat competition.™

The conclusion of Friedman’s theorem is weaker than that of the folk
theorem, except in games with a static equilibrium that holds all the
players to their minmax values. (This is a fairly special condition, but it
does hold in the prisoner’s dilemma and in Bertrand competition with
perfect substitutes and constant returns to scale.) Thus. Friedman’s theo-
rem leaves open the question of whether the requirement of perfect equi-
librium restricts the limit set of equilibrium payoffs. The “perfect folk
theorems” of Aumann and Shapley (1976), Rubinstein (1979a), and Fuden-
berg and Maskin (1986a) show that this 1s not the case: For any feasible,



individually rational payoff vector, there is a range of discount factors for
which that payoff vector can be obtained in a subgame-perfect equilibrium.

As a first step toward understanding the strategies used in the folk
thcorems. note that to hold player i’s payoff very near to his minmax value
in an equilibrium, his opponents’ must specify that if plaver i deviates from
the cquilibrium path they will “punish™ him by playing the minmax strate-
gies m' (or a profile very close to it) for at least one period. (Otherwise, if
player i were to play a static best response to his opponents’ strategies in
every period, his payoff in every period would be bounded away from his
minmax value. and so his overall payoff would exceed his minmax value
as well) Thus, the perfect folk theorem requires that there be perfect-
cquilibrium strategies in which player i’s opponents play m‘ .. It is casy to
induce player i's opponents to play m’, for a finite number of periods when
intertemporal preferences are represented by the time-average criterion, as
then, even if punishment reduces the punishers’ per-period payofl, the
overall cost of the punishment is 0. This is the intuition for the following
theorem.

'Theorem 5.3 (Aumann and Shapley 1976) If players evaluate sequences
of stage-game utilities by the time-average criterion, then for any v € V with
r; > v;for all players i, there is a subgame-perfect equilibrium with payoffs v.

Proof Consider the foliowing strategies: “Begin in the ‘cooperative phase.”
In this phase, play a public randomization p with payvoff v, and remain in
this phase as long as there are no deviations. If player i deviates, play the
minmax strategy m' = (m!,m",) for N periods, where N is chosen so

max g (a) + Nv; < min g,(a) + Nr,,
for all players i After the N periods have elapsed, return to the cooperative
phase, regardless of whether there were any deviations from m'.”

Recall that the one-stage deviation principle docs not apply in infinite-
horizon games with time averaging. Hence, to verify that these strategics
arc a perfect equilibrium, we must explicitly verify that there is no strategy
that improves a player’s payoffin any subgame. The condition on N cnsures
that any gains from deviation in the cooperalive phase are removed at the
punishment phase, so no sequence of a finite or infinite number of devia-
tions can increasc player i's average payoflf above r,.. Moreover, even
though minmaxing a deviator is costly in terms of per-period payoff, any
finite number of such losses are costless with the time-average criterion.
Thus, player j's average payoff in a subgame where player i is being
punished is v;, and no player j can gain by deviating in any subgame.
Therelore the strategics are subgame perfect. [

The strategies in this last proof are not subgame perfect under the
overtaking criterion studied by Rubinstein (1979a), since with that criterion



players do care about the finite number of periods where they may incur
a loss by minmaxing an opponent. To prove the folk theorem for this case.
Rubinstein used strategics in which the punishment lengths grow expo-
nentially: The first deviator is punished for N periods, a player who deviates
lrom minmaxing the first deviator is punished for N2 periods, a player who
deviates from punishing a player who deviated from punishing the first
deviator is punished for N* periods, and so on. Here, N is chosen long
enough so that it is better for any player to minmax any opponent for one
period and then have play revert to payoffs © per period, than to be
minmaxed for N periods, and then have per-period payofls revert to t.

When the players discount their future payoffs, this kind of scheme will
not work: If player ’s payoff when minmaxing player j, g;(m”), is strictly
less than his own minmax value, v;, then for any 6 < 1 there is a k where
punishing player j for N* periods is not individually rational: The best
possible payoff from playing m/ for N* periods is

(1 — 0¥ yg,m?)y + 6 max g{a),

a
which converges to g;im’) < r; as k goes to infinity.

Thus. to obtain the folk theorem in the limit of discount factors tending
to 1, Fudenberg and Maskin {1986a) consider a different type of strat-
cgy onethatinduces playeri's opponcnts to minmax him not by threaten-
ing them with “punishments™ if they don’t minmax but rather by offering
them “rewards” if they do. Abreu (1986, 1988) makes the same observation
in his work on the structure of the equilibrium set for fixed discount factors;
we discuss his results below. Now, in designing strategy profiles that
provide such rewards for punishing a deviator, one must take care not to
reward the original deviator as well, for such a reward could undo the effect
of the punishments and make deviations attractive. The necd to be able to
provide rewards for punishing player i without rewarding player i himself
leads to the “full-dimension™ condition used in the following theorem.

Theorem 5.4 (Fudenberg and Maskin 1986a) Assume that the dimension
of the set V of feasible payoffs equals the number of players. Then, for any
v e V with v; > r; for all i, there is a discount factor ¢ < 1 such that for all
d € (0, 1) there is a subgame-perfect equilibrium of G{4) with payoffs .

Remarks

(1) Fudenberg and Maskin give an example of a three-player game with
dimV = 1 where the folk theorem [ails. Abreu and Dutta (1990) weaken the
full-dimension condition to dimV = I — 1; Smith (1990) shows that it
suffices that the projection of ¥* onto the coordinate space of any two
players’ payoffs is two-dimensional.

(2) Rubinstein’s version of the perfect folk theorem supposes that any
deviation from a minmax profile was certain to be detected, which requires



cither that the minmax profile be in pure actions or that the players’
choices of randomizing probabilities, and not just their realized actions, are
observed at the end of each period. As is noted above, the restriction to
purc minmax strategies can lead to higher minmax values. Indeed, the
purc-strategy minmax values can be above the payoffs in any static
cquilibrium.

Proof
(i) For simplicity, suppose that there is a pure action profile a with
gla) = v. The proof for the general case follows essentially the same lines.

Assume first that the minmax profile m_, against each player i is in pure
strategics, so that deviations from this profile are certain to be detected.
Casc 11 below sketches how to modify the proof for the case of mixed
minmax profiles.

Choose a ¢ in the interior of ¥ and an ¢ > 0 such that, for each i,

vy <l <y,
and the vector
eli) =0y + e vty 6.ty + 8)

1810 V. (The full-dimension assumption ensures that such ¢'(i) exist for some
cand ')

Again, to avoid the details of public randomizations, assume that for
cach i there is a pure action profile a(i ) with g(a(i)) = v’(i). Let w/ = g,(m”)
denote player i°s payoff when minmaxing player j. Choose N such that, for
all 4,

max y;(u} + Ny; < min g,(a) + Nv;. (5.8)

a a
This is the punishment length such that, for discount factors close to 1,
deviating once and then being minmaxed for N periods is worse than
getting the lowest payoff once and then N periods of v].

Now consider the following strategy profile:

Play begins in phase I. In phasc 1, play action profile a, where g(a) = v.
Play remains in phase I so long as in each period either the realized action
is u or the realized action differs from a in two or more components. If a
single player j deviates from a, then play moves to phase 11,

Phuase Il;  Play m’ each period. Continue in phase II; for N periods so
long as in each period either the realized action is m” or the realized action
differs from m’ in two or more components. Switch to phase IT1; after N
successive periods of phase 1. If during phase I1; a single player i’s action
differs from m/, begin phase II,. {Note that this construction makes sense
only if m”is a pure action profile; otherwise the “realized action” can’t be the
same as m’.)



Phase 111, Play a{j), and continue to do so uniess in some period a
single player i fails to play a,(j). If a player i does deviate, begin phase II;.

To show that these strategies are subgame perfect, it suffices to check
that in every subgame no player can gain by deviating once and then
conforming to the strategies thereafter.

In phase L, player i receives at least v; from conforming, and he receives
at most

(1 — &) max g,(a) + {1 — %), + 6¥*'y;

by deviating once. Since v is less than v;, the deviation will yield less
than ¢, for & sufficiently large. Similarly, if player i conforms in phase
ITL,, j # i, then player i receives v/ + & His payofl to deviating is at most

(1 — d) max g,(a) + 5(1 — ™)p; + 6" v},

which is less than v] + ¢ when 4 is sufficiently large.
In phase 111;, player i receives v; from conforming and at most

(1 — d)ymax g,(a) + 8(1 — 8%)y; + oV o]

from deviating once. Inequality 5.8 ensures that deviation is unprofitable
for ¢ sufficiently close to I.

If player i conforms in phase 11, j # i, when there are N' periods of
phase I1; remaining (including the current period), her payoff is

(1 — Yl + 8% (x] + e

If she deviates. she is minmaxed for the next N periods; the play in phase
[11; will then give her v; instead of the v] + £ she would get in phase 11, if
she conformed now. Once again, the e differential once phase I11 is reached
outweighs any short-term gains when & is close to 1. Finally, if player |
conforms in phase 11, (i.e., when she is being punished) then when there are
N’ < N periods of punishment remaining player i’s payoff is

gANY= (1 —oV) + Vel < ¢,

If she deviates once and then conforms, she receives at most p; in the period
in which she deviates {(because the opponents arc playing m‘;) and her
continuation payoff is then g,(N) < g{(N' — 1).

(ii) The above construction assumes that player : would be detected if she
failed to play m/ in phase I1,. This need not be the case if m/ is a mixed
stratcgy. In order to be induced to use a mixed minmax action, player i must
receive the same normalized payoff for each action in the action’s support.
Since these actions may yvield different payoffs in the stage game, inducing
playcr i to mix requires that her continuation payoff be lower after some of



the pure actions in the support than after others. Now, in the strategies of
part i the exact continuation payoffs for player i in phase [H;, j # i, were
irrelevant (the essential requirement was that player i's payoff be higher in
phase 111; than in phase III;). Thus, as Fudenberg and Maskin (1986a)
showed, players can be induced to use mixed actions as punishments by
specifying that each player i’s continuation payoff in phase I, j # i, vary
with the actions player i chose in phase I1; in such a way that each action
in the support of m/ gives player i the same overali payoff.

As an example of the construction involved, consider a two-player game
in which player 1's minmax strategy against player 2 is to randomize 33
between U and D and player 1's payoffs to U and D are 2 and 0, respec-
tively, regardless of how player 2 plays. If player 1 plays U for each of the N
periods in phase I1,, he receives an average value of 2(1 — 6%), as opposed
to an average value of O from playing D and (1 — 6"} of playing his minmax
strategy. So tnstead of switching to a fixed payoff vector

v'(2) = (01(2), v5(2))

at the end of phasc 11, as in the proof of case i, we specify that player 1’s
payoff be v(2) — 2(1 — %) if he played U each period, v;(2) — 26(1 — §¥71)
if he played D at the beginning of phase II, and U thereafter, and so on,
with the adjustment term chosen so that player 1’s average payoff from the
start of phase II, is 6" v{(2) for any sequence of phase-II actions that lie in
the support of mi. (If player 1 plays an action not in the support of
m3, then play switches to phase I1, as in the proof of i) [ |

Discussion  The various folk theorems show that standard cquilibrium
concepts do very litile to pin down play by patient players. In applying
repeated games, economists typically focus on one of the efficient equilibria,
usually a symmetric one. This is due in part to a general belief that players
may coordinate on efficient equilibria, and in part to the belief that coopera-
tion is particularly likely in repeated games. It is a troubling fact that at this
point there is no accepted theoretical justification for assuming efficiency
in this setting. The concept called “renegotiation proofness,” discussed in
section 5.4, has been used by a number of authors to reduce the set of
perfect-equilibrium outcomes; some versions of this concept imply that
behavior must be inefficient.

5.1.3  Characterization of the Equilibrium Set (technical)

The folk theorem describes the behavior of the equilibrium set as § — 1.
It is also of interest to determine the set of subgame-perfect equilibria for
a fixed 8. (The folk theorem suggests that there will be many such equilibria
for large discount factors.) Following Abreu (1986, 1988), we will consider
the construction of strategies such that any deviation by player i is “pun-
ished™ by play switching to the perfect equilibrium in which that player’s



payoff is lowest. In order for this construction to be well defined, we must
first verify that these worst equilibria indeed exist.

Theorem 5.5

(i} (Fudenberg and Levine 1983) If the stage game has a finite number
of pure actions, there exists a worst subgame-perfect equilibrium w(i}
for cach player i.

(ii) (Abreu 1988) If each player’s action space in the stage game 1s a
compact subset of a finite-dimensional Euclidean space, payoffs arc contin-
uous for each player i, and there exists a static pure-strategy equilibrium,
there is a worst subgame-perfect equilibrium w(i) for each player i.

Remarks From the stationarity of the set of equilibria, w(i) is also the
worst equilibrium in any subgame. The question of whether worst equi-
libria exist without the pure-strategy restriction in games with a continuum
of actions 1s still open.

Proof

(i) As in chapter 4, with a finite number of actions and payoffs that
are continuous at infinity, the set of subgame-perfect equilibria 1s compact
in the product topology on strategies, and payoffs to strategies are contin-
uous in this topology as well. Thus, there are worst (and best) equilibria for
ciach player.

(1) Let y(i) be the infimum of player i's payoff in any pure-strategy
subgame-perfect equilibrium, and let s** be a sequence of purc-strategy
subgame-perfect equilibria such that lim,_, g:(s"*) = y(i). Let a"* be the
equilibrium path corresponding to strategies s**, so that

@t = a0y a1, et e,

Since A is compact, so is the set of sequences of pure actions (this is
Tychonoff's theorem!®), and we let a”™ be an accumulation point. Note
that player i’s payoff to a* * is y(i).

Now fix a plaver i, and consider the following strategy profile: Begin
in phase I,.

Phase I, Play the sequence of actions

”i. - l(ai.l (0),'51‘1[]),}

s0 long as there are no unilateral deviations from this sequence. If player j
unilaterally deviates in period t, then begin phase I;in period t + 1. That s,
play ¢’ * (0) in period t + 1, a’ *(1) in period ¢ + 2, and so forth.

If all players follow these strategies, player i's payoff is y(i). To check that
the strategies are subgame-perfect, note that if they are not there must exist
players i and j, action 4;. ¢ > 0, and 7 such that

0. See. e.g. Munkres 1975,



(1 - S)glaat (1) + dy(j) > (1 — 6) Z d'gla" (t + 1) + 3e.

Since payoffs are continuous and a™* - ¢ =, for k large enough we
would have

(1 - gl a5 + 3 y(j) > (1 — &) Z d'glatt(t + 1) + . (5.9)
-0

Finally, since 5** is a subgame-perfect equilibrium, it prescribes some

subgame-perfect equilibrium if profile s** is [ollowed until period 7 and

then player j plays 4; instead of a)*(7). Let player j’s (normalized) continua-

tion payoflin this equilibrium be z,(t, 4;}. Since s“* is subgame perfect,

(1 O)gfd,a b ) + dz(r,d) < (1 — 8) S d'gyla*c + 1),

t=0

which contradicts inequality 5.9 since y(j) < z,(1,&;). a

Because the players’ actions are observed without error, their equi-
librium payoffs arc not directly affected by the continuation payoffs follow-
ing actions to which the equilibrium assigns probability .. Thus, when one
Is constructing equilibria the magnitudes of such continuation payoffs
matter only in that they determine whether or not players can gain by
deviating. For this reason, any strategy profile that is “enforced™ by some
subgame-perfect punishments can be enforced with the harshest punish-
ments available.'?

Theorem 5.6 (Abreu 1988)

(1) IT the stage game is finite, any distribution over infinite histories
that can be generated by some subgame-perfect cquilibrium ¢ can be
generated with a strategy profile o * that specifies that play switches to the
worst equilibrium w(i) for player i if player i is the first (o play an action to
which a assigns probability .

(11) IT the stage game has compact finite-dimensional action spaces and
continuous payofls, then any history 4 that is generated by a pure-strategy
subgame-perfect equilibrium s can be generated by a strategy profile §
that swilches to the worst pure-strategy cquilibrium w(i) for player i if
player i unilaterally deviates from the sequence h.

Proof

(1) Fix a perfect equilibrium o, and construct a new profile o* as follows:
The profile o* agrees with o (e, o*(h') = a(h')) so long as o gives the
history h' positive probability. If o gives positive probability to 4 for all

1. For readers familiar with the literature on agency, this is the same as the observation that
optimal contracts can “shoot the agent” if the observed signal could not have occurred unless
the agent chealed.



¢ < t. and player i is the only player to play an action outside the support
of a(h'y at period 1, then play switches to the the worst subgame-perfect
cquilibrium for player i, which is w(i). Morc formally,

a*(hh) = wii)(h),
a*((h' ! att ) = wiia),

and so on. (As usual, the strategies will ignore simultaneous deviations by
two or more players.) Let us verify that a* is subgame perfect. In subgames
where plaver i was the first to deviate {rom the support of o, o* specifies
that all players follow profile w(i), which is subgame perfect by definition.
In all other subgames ' the actions prescribed by o* arc the same as those
prescribed by o, and the continuation payoffs are the same as under o so
long as player i plays an action in the support of a(h’). It remains to check
that player i cannot gain by choosing an action a; ¢ support(g;(h')). If he
can, then

(1 - d)g,la,,a_;(h") + dudw(i)) > uda | h'). (5.10)
However, since ¢ is subgame perfect,
uila h'y = (1 - d)yla,o_(h')) + 6ul (| h'), {5.11)

where the last term on the right-hand side is player i’s continuation payoff
from period t + 1 on under o if he deviates from & at h' by playing
a.. Combining inequalities 5.10 and 5.11 yields the contradiction

w,(wii)) > ul{a, | h').
(11) The prool is analogous. [

Finding the worst possible equilibrium for cach player is fairly compli-
cated. However. finding the worst strongly symmetric pure-stralegy equi-
libria of a symmetric game is much simpler, particularly if there are strongly
symmetric strategies that generate arbitrarily low payoffs. By “strongly
symmetric” we mean that, for all histories h* and all players i and j,

sih') = s;(h"),

so that both players play the same way even after asymmctric histories.
For example, in the repeated prisoner’s dilemma, the profile where hoth
players use the strategy “tit for tat” (that is, play the action the opponent
played the previous period) is not strongly symmetric, since the (wo players’
actions arc not identical following the history h' = (C, D). Note that the
profile is symmetric in the weaker scnse that if b} = R, and b = i, then

'\'l [h[l ’ h;:) = Sl(ﬁi’ };IZJ'

so that permuting the past history permutes the current actions. We use



the terms “strongly symmetric” and “symmetric” to distinguish between
these two notions of symmetry.

Abreu (1986) shows that the worst strongly symmetric equilibrium is very
casy to characterize in symmetric games where the action spaces are
intervals of real numbers, payoffs are continuous and bounded above, (a)
the payoff to symmetric pure-strategy profiles a (i.e., profiles where each
player i plays a) is quasiconcave, and decreases without bound as a tends
to infinity, and (b) letting a_; denote the profile in which all of player i’s
opponents choose action a, the maximal payoff to deviating from pure-
strategy symmetric profile a,

max g(a;, a_),

4,

is weakly decreasing in a.

Condition b is natural in a symmetric quantity-setting game, where by
producing very large outputs firms drive the price to 0 and thus make the
best payoff to deviating very small.

We emphasize that in the definition of a strongly symmetric equilibrium,
symmetry is required off the equilibrium path as well as on the path, which
rules out many asymmetric punishments that could be used to enforce
symmetric equilibrium outcomes.

Theorem 5.7 (Abreu 1986) Consider a symmetric game satisfying condi-
tionsa and b. Let ¢* and e, denote the highest and lowest payoff per player
In a pure-strategy strongly symmetric equilibrium.

(1) The payoff ¢, can be attained in an equilibrium with strongly sym-
metric strategies of the following form: “Begin in phase A, where the players
play an action a, that satisfies

(I — d)gla,) + de* = e,. (5.12)

If there are any deviations, continue in phase A. Otherwise, switch to a
perfect equilibrium with payoffs e* (phase B).”

(1) The payoff ¢* can be attained with strategies that play a constant
action a* as long as there are no deviations, and switch to the worst strongly
symmetric equilibrium if there are any deviations. (Other feasible payoffs
can be attained in a similar way.)

Proof

(1} Fix some strongly symmetric equilibrium § with payoff e, and first-
period action a. Since the continuation payoffs under § cannot be more
than e*, the first-period payoffs g(a ) must be at least (— de* + e, /(1 = 9).
Thus, under condition 4 there is an a, > a with g(E*) =(—de* +¢,)/(1—9).
Let s, denote the strategies constructed in the statement of the theorem.
By definition, the strategies s, are subgame perfect in phase B. In phase A,



condition b and a, > a imply that the short-run gain to deviating is no
more than that in the first period of §. Since the punishment for deviating
in phase A is the worst possible punishment, the fact that no player
preferred to deviate in the first period of § implies that no player prefers to
deviate in phase A of s,.

(i) We leave the proof of part 11 to the reader. [

Remark  When this theorem applies, the problem of characterizing the
best strongly symmetric equilibrium reduces to finding two numbers, rep-
resenting the actions in the two phases. (One application is given by
Lambson (1987).) If the action space is bounded above by some &, payolls
cannot be made arbitrarily low, and the punishment phase A may have to
last for scveral periods. In this case it is not obvious precisely which actions
should be specified in phase A. The obvious extension of the theorem would
have the players using a for T periods and then, as before, switching to
phase B, where the continuation payoff is e*. The difficulty is that there
may not be a T such that the resulting payoffs in phase A, which are
(1 8")yta) + 67e*, exactly equal e,, as required by equation 5.12. How-
ever. if we assume that public randomizing devices are available, this integer
problem can be eliminated. (Remember that for small discount factors the
public-randomization assumption can change the set of equilibria.)

Abreu also shows that in general the highest symmetric pure-strategy
cquilibrium payoff requires “punishments™ with payoffs e, less than the
payoffs in any static equilibrium, unless the threat of switching to the static
cquilibrium forever  i.e., the strategies introduced by Friedman—supports
an ¢fficient outcome.

Finally, Abreu shows that under conditions a and b symmetric pure-
strutegy ¢quilibria support payoffs on the fronticr of the equilibrium set if
and only if there is a strongly symmetric equilibrium that gives players their
minmax values.

Fudenberg and Maskin (1990b) consider stage games with finitely many
actions. They observe that when for each player i there is a perfect equi-
librium in which player i’s payoff is ¢;, the sets of Nash-equilibrium and
perfect-cquilibrium payoffs coincide and provide conditions in the stage
game for which such perfect equilibria exist for all sufficiently large discount
factors. (See exercise 5.8.)

5.2 Finitely Repeated Games'"’

These games represent the case of a fixed known horizon T. The strategy
spaces at each t = 0, 1,..., T arc as defined above; the utilities are usually
taken to be the time average of the per-period payoffs. (Aliowing for a
discount factor & close to 1 will not change the conclusions we present.)



The set of equilibria of a finitely repeated game can be very differ-
ent from that of the corresponding infinitely repcated game, because the
scheme of self-reinforcing rewards and punishments used in the folk theo-
rem can unravel backward from the terminal date. The classic example of
this is the repeated prisoner’s dilemma. As observed in chapter 4, with a
fixed finite horizon “always defect™ is the only subgame-perfect-equilibrium
outcome. In fact, with a bit more work onc can show this is the only
Nash outcome:

Fix a Nash equilibrium o*. Both players must cheat in the last period, T,
for any history h" that has positive probability under o*, since doing so
increascs their period-T payoff and since there are no future periods in
which they might be punished. Next, we claim that both players must defect
in period T — 1 for any history h"~! with positive probability: We have
already established that both players will cheat in the last period along the
equilibrium path, so in particular if player i conforms to the equilibrium
strategy in period T — 1 his opponent will defect in the last period, and
hence player i has no incentive not to defect in period T — 1. An induction
argument completes the proof. This conclusion, though not pathological,
relies on the fact that the static equilibrium gives the players exactly their
minmax values, as the following theorem shows.

Theorem 5.8 (Benoit and Krishna 1987)  Assume that for each player i
there is a static equilibrium 2*(i) with g;(a*{i)) > v,. Then the set of Nash-
cquilibrium payoffs of the T-period game with time averaging converges
to the set of feasible, individually rational payoffs as T — «c.

Proof The key idea of the proof is to first construct a “terminal reward
phase™ in which each player receives strictly more than his minmax value
for many periods. To do this, let the “reward cycle” be the sequence of
mixed-action profiles a*(1),2*(2),...,a*(I), and let the R-cycle terminal
phase be the sequence of profiles of length R - I where the reward cycle is
repeated R times. Any R-cycle terminal phase is clearly a Nash-equilibrium
path in any subgame of length R-I. And since each x*( j) gives player i at
least his minmax valuc and 2*(i) by assumption gives him strictly more,
each player’s average payofl in this phase strictly exceeds his minmax level.

Next, fix a feasible, strictly individually rational payoff v, and set R
large enough so that each player i prefers payoff v; [ollowed by the R-cycle
terminal phase to getting the largest possible payoff, max,g,(a), in one
period and then being minmaxcd for R I periods. Then choose any ¢ > 0,
and choose T so that there is a determunistic cycle of pure actions {a(t)} of
length T — R -1 whose average payoffs are within ¢ of payolff .

Finally, we specify the following strategies: Play according to the de-
terministic cycle {a(t)} in cach period so long as past play accords with
ta(t); and there arc more than R- I periods left. If any player unilaterally



deviates from this path when there are more than R-[ periods left, then
minmax that player for the remainder of the game. If play agrees with {a(t)}
until there are R - I periods left, then follow the R-cycle terminal phase for
the remainder of the game regardless of the observed actions in this phase.
These strategies are a Nash equilibrium for any T> R-I. For T >
R I(max,g;(a) — v;)/s, the average payoffs are within 2¢ of ¢. |

Benoit and Krishna (1985) give a related result for subgame-perfect
equilibria under a stronger condition. (Friedman (1985) and Fraysse and
Moreaux (1985) give independent, less complete analyscs of special classes
of games) Recall from chapter 4 that if the stage game has a unique
equilibrium, backward induction shows that the unique perfect equilibrium
of the finitely repeated game is to play the static equilibrium in every period
of every subgame. Where there are several static equilibria, 1t 1s possible to
punish a player for deviating in the next-to-last period by specifying that
if he does not deviate the static equilibrium he prefers will occur in the last
period, and that deviations lead to the static equilibrium he likes less.

Theorem 5.9 {Benoit and Krishna 1985) Assume that for each player i
there are static cquilibria «*(i) and &(i) with g, (a*(i)) > ¢,(4(i}}, and that
the dimension of the feasible set equals the number of players. Then, for
every feasible payoff v € ¥V with ¢, strictly exceeding player i's pure-strategy
minmax level. and for every sufficiently small ¢ > 0, there is a T such that
for all finite horizons T’ > T there is a subgame-perfect equilibrium whose
payoffs are within ¢ of ¢.

Proof Omitted.

As in the infinite-horizon case, the full-dimension condition is needed
to allow strategies that reward one player without rewarding another. The
question of whether this result can be strengthened to obtain all payoffs
above the mixed-strategy minmax levels is still open.

Although the Benoit-Krishna results extend the Nash-equilibrium and
perfect-equilibrium folk theorems to a class of finitely repeated games, in
games like the prisoner’s dilemma the only Nash equilibrium with finite
repetitions is to always be “unfriendly.” Few “real-world” long-term re-
lationships correspond to the finite-horizon model; however, there have
been many experimental studies of games in which the participants are
indeed told that the horizon has been set at a fixed finite point, and there is a
unique stage-game equilibrium. In such experimental studies of the pri-
soner's dilemma, subjects do in fact tend to cooperate in many periods,
despite what the theory predicts.

One response is that players are known to derive some cxtra satisfaction
from “cooperating” above and beyond the rewards specified in the experi-
mental design. This explanation does not scem implausible, but it is a bit
too convenient, and seemingly much too powerful; once we admit the



posstbility that payoffs are known to be misspecified, it is hard to see how
any restrictions on the predicted outcome of the experiment could be
obtained.

A second response is to make a smaller change in the model and allow for
there to be a small probability that the players get extra satisfaction from
cooperating, so long as their opponent has cooperated with them in the
past. This is the basis of the Kreps-Milgrom-Roberts-Wilson (1982) idea of
“reputation effects,” which we discuss in detail in chapter 9. The ¢-
cquilibrium approach (Radner 1980; Fudenberg and Levine 1983), discussed
in scction 4.8, is another way of derailing backward induction in the
finitely repeated game, although this requires adopting ¢-equilibrium as
a descriptive model of bounded rationality rather than merely a convenient
technical device. '

tit

5.3 Repeated Games with Varying Opponents

Classic repeated games suppose that the same fixed set of players play onc
another every period. However, results similar to the folk theorem can be
obtained in some cases where not all of the players play one another
infinitely often. This section discusses several variants of this idea.

5.3.1 Repeated Games with Long-Run and Short-Run Players

The first variant we will consider supposes that some of the players are
long-run players, as in standard repeated games, while the roles corre-
sponding to other “players” are filled by a sequence of short-run players.
cach of whom plays only once.

Example 5.1

Suppose that a single long-run firm faces a sequence of short-run con-
sumers, each of whom plays only once but is informed of all previous play
when choosing his actions. Each period, the consumer moves first, and
chooses whether or not to purchase a good from the firm. If the consumer
docs not purchase, then both players reccive a payoff of 0. If the consumer
decides to purchase, then the firm must decide whether to produce high or
fow quality. If it produces high quality, both players have a payoff of I; if
it produces low quality, the firm’s payoff is 2 and the consumer’s payoff is
- 1. This game is a simplified version of thosc considered by Dybvig and
Spatt {1980), Klein and Lefller (1981}, and Shapiro {(1982).'? Simon (1951)

12 Dybvig and Spatt (1980) and Shapiro (1982) consider models where the place of the
“short-run player” described above is taken by a continuum of long-lived but “small™ con-
sumers. Since they assume that the play of any individual consumer cannot be observed, the
consumers always act to maximize their current payoff, and the models are equivalent to the
case of a sequence of individual, short-run consumers. (See our treatment of open- and
closed-loop equilibrium in chapter 3 for a discussion of the assumption that the play of “smali”
players cannot be observed )



and Kreps (1986) use a similar game to analyze the employment rclation-
ship. and to argue that one reason for the cxistence of “firms™ is precisely to
provide a long-run player who can be induced to be trustworthy by the
prospect of future rewards and punishments.

The following strategies are a subgame-perfect equilibrium of this game
when the firm is sufficiently patient: The firm starts out producing high
quality cvery time a consumer purchases, and continues to do so as long
as it has never produced low quality in the past. If cver the firm produces
low quality, it produces low quality at every subsequent opportunity. The
consumers start oul purchasing the good from the firm, and continue to
do so so long as the firm has never produced low quality. If ever the firm
produces low quality, then no consumer ever purchases again. The con-
sumer's strategies arc optimal because each consumer cares only about that
period's payoll, and thus should buy if and only if that period’s quality 1s
expected to be high. The firm does incur a short-run cost by producing
high quality, but when the firm is patient this cost is offset by the fear that
producing low quality will drive away futurc consumers. Note that this
equilibrium suggests why consumers may prelfer to deal with a firm that is
expected 1o remain in business for a while, as opposed to a “fly-by-night”
firm for whom long-run considerations arc unimportant.

Fxample 5.2

As a sccond example, consider repeated play of a sequential-move version
ol the prisoner’s dilemma with a single long-run player facing a sequence
of short-run opponents. Fach period, the short-run player's decision
whether to cooperate or to cheat is observed before the long-run player
makes his own decision. As in the previous cxample, if the long-run playcr’s
discount factor is close to 1, there is an equilibrium where players always
cooperate. One such equilibrium is: “The short-run players cooperate so
long as in cvery past period the long-run player has played the same action
as that period’s short-run player; if the long-run player has ever failed to
match the short-run players cheat. The long-run player matches the play
of that period’s opponent so long as he has never failed to match in the
past, and cheats otherwise.”

The key Lo the cooperative equilibrium in example 5.2 is that since the
short-run players move first, they can be provided with an inccntive to
cooperate without the use of rewards and punishments in future periods. If
instead the moves in the stage game are simultaneous, the short-run players
will cheat in every period, and so the only equilibrium outcome 1s for both
sides to always cheat. This suggests that the way to extend the folk theorem
to these games is to modify the definitions of the feasible payoffs and the
minmax values to incorporate the constraint that short-run players always
play short-run best responses.



To state this conjecture formally, label the players so that players i =
I,...,7 arelong-run players who maximize the normalized discounted sum
of their per-period payoffs as in ordinary repeated games, and let players
/=17 +1),...,1 rcpresent sequences of short-run players who act in each
period to maximize that period’s payoff. That is, the stage game has |
players, and in the repeated game the individuals playing the parts of
players / + | through I change each period. (Alternatively, players / + 1
to I could be long-run players whose discount factor is 0.) Let

Biofy x x>, XX X

be the correspondence that maps any action profile (2;,....a,) for the
long-run players to the corresponding Nash-equilibrium actions for the
short-run players. That is, for each x € graph(B)and i > # + 1, , is a best
response to a_ ;.

For each long-run player i, define the minmax value v, to be

min  max g,(a;, 2_;). (5.13)
xecgraph(B) a; = A4,

(The minimum is atlained becausc the graph of Bis compact, and the payoff

functions are continuous in the mixed strategies. Note that this definition

reduces to the usual one if all the players are long-run.) Let
U={r=(v,....,t;) € R|Ja € graph(B) with g;(x) = v;fori = ,....7)}
and sct
V' = convex hull (U).

This 1s the modified definition of the set of feasible payofTs.

As we remarked, one might suspect that the folk theorem would extend
with these modified definitions of feasibility and the minmax levels. How-
cver, as shown by Fudenberg, Kreps, and Maskin (1990) this extension
obtains only when each player’s choice of a mixed action in the stage game
is publicly observable. When players observe only their opponents’ realized
actions, the set of subgame-perfect equilibria can be strictly smaller. The
reason for this, as iltustrated in exercise 5.9, is that, in order to inducec a
short-run player to take a particular action along the equilibrium path,
some of the long-run players may nced to use mixed actions. When the
randomizing probabilities are not observable, inducing this randomization
will require that the continuation payoffs make the randomizing long-run
players indifferent between the pure actions they assign positive prob-
ability, which imposes a cost in terms of the efficiency of the possible
equilibrium payoffs.

The limit set of equilibria with unobserved randomizing probabilities is
the intersection of the feasible, individually rational payoffs with the con-
straints v; < r,, where 7, is defined as



r; = max min  g;(a;,x_;). (5.14)
2 graph(B) &, € support(z;)

For a fixed mixed-action profile «, cquation 5.14 computes player i’s
worst payoll among the actions x; requires him to play with positive
probability. Intuitively, if player i is asked to play %; along the equilibrium
path, he must be willing to use every action in a;.

Theorem 5.10 (Fudenberg, Kreps, and Maskin 1990; Fudenberg and Levinc
1990) Assume that the dimension of V is equal to /, the number of
long-run players. Then for every v € V with ¢; < ¢; < T foralli=1,...,7,
there 1s a ¢ such that for all & € (4, 1) there is a subgame-perfect equilibrium
with payoffs r.

Proof Omitted.
5.3.2 Games with Overlapping Generations of Players

Crémer (1986) considered a repeated game in which overlapping gen-
erations of players live for T periods, so that at each date ¢ there i1s one
player of age T who is playing his last round, one player of age T — | who
has two rounds still to play, and so on down lo the new player who
will play T times. Each period, the T players simultaneously choose
whether to work or to shirk, and their choices are revealed at the end of each
period; players share equally in the resulting output, which is an increasing
function of the number who chose to work."® The cost of effort exceeds a
1;T share of the increases in output, so shirking 1s a dominant strategy in
the stage game, which has the flavor of a T-player prisoner’s dilemma.
Payofls in the repeated game are the average of the per-period utilities.

Suppose that the efficient outcome is for all players to work. This
outcome cannot occur in any Nash equilibrium., since the age-T player will
always shirk. Nevertheless, there can be equilibria where most of the players
work. This will be easicst to scc if we further specialize the model. Let
T = 10. Suppose that if k players work the aggregate output is 2k, and that
the disutility of effort is 1. Then if preferences are lincar in output and
effort, the payoff to working when k opponents work 1s 2(k + 1)/10 — 1,
and the payoff to shirking is 2k/10. The efficient outcome is for all players
to work, with resulting utility of 1 per player.

Now consider the following stratcgy profile: “Age-10 players always
shirk. So long as no player has ever shirked when his age is less than 10,
all players of age less than 10 work. If a player has ever shirked when his
age s less than 10, then all players shirk.” If all players conform to this
prohle, each player reccives 18/10 — 1 = 4/5 in the periods he works and

13. It is, however, interesting to note that the “cooperative™ equilibrium we derive in the next
paragraph remains an equilibrium if we suppose that workers observe only the total number
of shirkers but not their identities.
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9/5 in the period he is of age 10. Clearly, no player can gain by deviating
when he is of age 10. If a player of age 9 deviates, he receives 8/5 the period
he deviates, and 0 the next period, which is less than 4/5 + 9/5; younger
players lose even more by deviating. Thus, these strategies are a subgame-
perfect equilibrium.

Kandori (1989b)and Smith (1989) have generalized this type of construc-
tion and provided conditions for the folk theorem to obtain.

Randomly Matched Opponents

Another variant of the repeated-games model supposes that there are a
many players, each of whom plays infinitely often but against a different
opponent each period. More precisely, lix a two-player stage game, and
suppose that there are two populations of players of equal size, N. Each
period, every player 1 is matched with a player 2. The probability of being
matched to a particular player 2 is I/N, and matching in each stage is
independent.'*

In the first analyses of this sort of random-matching model, Rosenthal
(1979) and Rosenthal and Landau (1979) assumed that when the players
in cach pair are matched, their information consists of the actions that the
two of them played in the previous period. Thus, if the stage game is the
prisoncr’s dilemma, where C is “cooperate” and D is “defect,” there are four
possible “histories™ a pair of players can have, namely (C, C), (D, C), (C, D),
and (D, D), and consequently each player has 24 = 16 pure strategies. (Note
that players do not have perfect recall!)

With this information structure, the strategy “cooperate if and only if
my opponent cooperated last period,” or “tit for tat,” is feasible. More
gencrally, the action a player chooses in period ¢ can have a direct effect on
his opponent’s play in period  + 1.

If the player expects to face the same opponent in period ¢ + | and in
period £ + 2, he may anticipate an additional indirect effect of his period-
action on his opponent’s play in periods aftcr ¢ + 1. For example, if the
opponent’s strategy is to cooperate only if the history is (C,C), defecting in
period ¢ will not only make the opponent defect in period t + 1; it will also
make the opponent defect in every period thereafter.

Rosenthal (1979) and Rosenthal and Landau (1979) restrict their atten-
tion to “*Markovian equilibria,” where this indirect effect is not present and
where each player believes that his action at date ¢ has no effect on the play
of his opponent at all dates from ¢t + 2 on.'® Although this belief is incorrect
with a single player of each type, it is correct in a model with a continuum

14. This kind of model can be used to explain why, e.g., traders may behave honestly even
though it 15 very unlikely that they will ever meet each other again in the future {Greif 1989;
Milgrom, North, and Weingast 1989).

15. The Markovian notion here differs from the one defined in chapter 13.



of cach kind of player, so that no player ever meets the same opponent
twice.'®

When is all players using “tit for tat” a Markovian equilibrium of the
prisoner’s dilemma? Each player must be willing to cooperate if the current
opponent cooperated last period, and must be willing to defect if the
opponent defected last period. Yet, the next period’s opponent will not
know the past play of the current opponent, and thus cannot distinguish
hetween a “defect” that occurred to punish the current opponent for a past
defection and a “defect™ that represents a deviation [rom the strategy “tit
for tat.” In particular, with the strategy “tit for tat,” any defection today
will make the next opponent defect. Thus, both players using “tit for
tat” is a Markovian equilibrium only if the discount factor is exactly such
that the short-run gain to cheating exactly equals the discounted cost of
being punished next period: If the discount factor is smaller, then the threat
of punishment will not enforce coopcration; if the discount factor is larger,
then a player whose opponent defected last period will not be willing to
punish him, as doing so will reduce the punisher’s future payoff. With payoff
as in figure 4.1, this critical value is § = 3. More generally, Rosenthal shows
that for all but onc value of the discount factor, the unique symmetric
Markovian equilibrium of the prisoner’s dilemma is for all players to cheat
in every period. (Exercise 5.7 asks you to check this.)

Kandor (1989b) observes that cooperation is an equilibrium outcome
for discount factors near 1 if each player observes the outcome in his
partner’s previous match, i.c., the play of both his partner and the partner’s
opponent. In this case cooperation can be enforced by the strategies “Co-
operale in the first period, and continuc to cooperate as long as the outcome
in cach of my matches has been (C, C), and the outcome in my opponent’s
last match was (C,C); otherwise defect.” With these strategies a player
whose partner cheated last period can do no better than carry out the
prescribed punishment, as the current partner will defect this period, and
50 the player will be punished next period regardless of how he plays today.
Also, a player who deviates will be punished forever, regardless of his future
play. Kandori notes that these strategies have the unappealing featurc that
a deviation by a single player causes the whole “society” to eventually
unravel to the all-defect equilibrium. He proposes that researchers should
look for equilibria that are “resilient” in the sensc that play will eventually
return 10 cooperation in any subgame (that is, after any finitc scquence of
deviations). Since the motivation for this kind of stability is the idea that
there may be some noise in the model that triggers the “punishment

16, To avoid techmcal complications, Rosenthal (1979) and Rosenthal and Landau (1979)
suppuose that each population of players is finite, o that there is a nonzcro chance that
a player | will be matched with the same player 2 in two successive periods. Thus, player I's
action today may in fact have some influence on the way his next apponent will play. but with
many players in each population this inflluence is small.



scheme,™ an alternative methodology would be to make the noise explicit.
This would transform the prisoner’s dilemma into a game with imperfectly
observed actions, a topic we discuss in sections 5.5- 5.7. Studying random-
matching equilibria in games with noise is an open problem in the literature
at this time.

Kandorn also suggests another type of equilibrium for games in which
players observe only the play in their own past contests. In this “contagion”
equilibrium, all players initially cooperate, and if a player ever encounters
an opponent who plays D, he plays D from then on. With an infinite
population of players, so that with probability 1 no player will ever meet
his current opponent again (nor will he even meet anyone who has played
his current opponent, etc.), players have no long-run loss from playing D,
and these strategies are not an equilibrium. However, with a finite popula-
tion and random matching, playing D today will eventually lead the entire
population to play D. Thus, there is the potential for the contagion strate-
gics to be an equilibrium; whether they are or not depends on how fast the
contagion spreads, which in turn depends on the number of players. If there
are only two players, the contagion strategies are clearly an equilibrium for
discount factors close to 1. For fixed stage-game payoffs, Kandori's con-
tagion strategies fail to be an equilibrium, but not because players are
tempted to defect in the cooperative phase. Rather, the problem is that
players prefer to continue playing C even after meeting an opponent who
plays ) in order to slow down the spread of the contagion process. Kandori
shows that, for any fixed number of players, the contagion strategies are
an cquilibrium for discount factors close to 1 provided that the payoffs in
the stage game are altcred to make the payofl to playing C against an
opponent who plays D sufficiently negative. In this case, even a very small
probability that the next opponent plays D is sufficient to make D the best
response.

Ellison (1991) shows that for any number of players and fixed stage-game
payoffs there is in fact an equilibrium where all players cooperate. More-
over, this equilibrium is partially resilicnt, in the sense that if a single player
cheats once the resulting steady state is for players to continue to cooperate
most of the time. (The equilibrium can be made entirely resilient if public
randomizing devices are introduced.) Ellison also constructs an approx-
imately efficient equilibrium of the random-matching model with noise.

5.4 Pareto Perfection and Renegotiation-Proofness in Repeated Games''"

5.4.1 Introduction

Recently many economists have studied the idea of the “renegotiation™ of
equilibria and, in particular, the consequences of such rencgotiation for
play in repeated games. The idea is that if equilibrium arises as the result of



negotiations between the players, and players have the opportunity to
negoliate anew at the beginning of each period, then equilibria that enforce
“pood™ outcomes by the threat that deviations will trigger a “punishment
equilibrium™ may be suspect, as a4 player might deviate and then propose
abandoning the punishment equilibrium for another equilibrium in which
all players are better off. This sort of equilibrium restriction is called
“Parcto perfection” because it extends the idea that players will not play a
Parcto-dominated equilibrium to dynamic settings by requiring that in any
subgame the equilibrium played must not be Pareto dominated given the
constraints on the equilibria at future dates.

The restriction is also called “renegotiation-proofness,” because the con-
straint of Pareto optimality in the subgames can be interpreted as the
result of the players’ “renegotiating™ the original agreement. This latter
terminology suggests a parallel with the literature on the renegotiation of
contracts, which has also developed a notion of “renegotiation-proofness,”
but the parallel is inexact: If two players agree on a contract, its terms are
legally binding unless both players agree to rcplace the contract with
another one; in contrast, the original “negotiations”™ on an cquilibrium are
not binding and serve only to coordinate expectations.

Since the process of selecting a Parcto-optimal outcome and the ideas
of Pareto perfection and renegotiation-proofness all take as their starting
point the premise that in a static game players will always play an equi-
librium on the Parcto frontier of the set of equilibrium payoffs, they are
subject to the various critiques of that assumption. In particular, consider
the game illustrated in figure 5.3, which we discussed in subsection 1.2.4.

We argued in subsection 1.2.4 that cven though equilibrium (U,L)
Parcto dominates the others, it is not clear that it is the most reasonable
prediction of how the game will be played, even if the players can communi-
cate before the game is played. As Aumann (1990) observes, regardless of
his own play, player 2 gains if player | plays U, and so regardless of how
player 2 intends to play he should tell player 1 that he intends to play L.
Thus. it is not clear that the players should expect that their opponent
belicves that their announcements are sincere.

The concepts developed in this section go further and suppose that cven
if players have deviated from the play prescribed by past “negotiations,”
future negotiations will have an efficient outcome. For example, in a twice-

L R
U 9.9 0,8
D 8.0 7.7

Figure 5.3



repeated version of the game illustrated in figure 5.3, Pareto perfection
requires that players play (U, L} in the first period, and that they play (U, L)
in the second period even if one or both of them deviated in the first
period thefirst-period deviation is trcated as a “bygone” that has no effect
on subsequent play. This is a strong assumption. It can, howcver, be
rationalized if we suppose that, as in subgame perfection, players treat
deviations as accidents that are unlikcly to be repeated. (Chapter 11 dis-
cusses the idea of forward induction, where deviations are interpreted as
strategic signals; this yields quite different conclusions about repeated
games.)

Despite our reservations about Pareto efficiency in static games. the
concept is sufficiently interesting that we want to discuss its dynamic
counterpart. There are currently several competing theories of what this
dynamic counterpart should be; the folk theorem obtains under some of
them but not others, as we explain below. We begin with the case of finitely
repeated games, where it is easier to see what the “right” definitions should
be.

5.4.2 Pareto Perfection in Finitely Repeated Games

The best-established formal definition of a renegotiation-proof equilibrium
concept is the Bernheim-Peleg-Whinston (1987) notion of a Parcto-perfect
equilibrium of a finitely repeated game. Pareto perfection combines the
ideas of the Pareto optimality of equilibrium with the logic of subgame
perfection, resulting in the recursive definition given below.!’

For any set C in R', let Eff(C) be the set of strongly efficient points
in C.i.c., thesetof x € Csuchthatthercisno y e Cwithy > xand y # x.

Dcfinition 5.1 (Bernheim, Peleg, and Whinston 1987) Fix a stage game
g, and let G' be the associated T-fold repetition. Let PT be the set of
payofls of pure-strategy subgame-perfect equilibria of G7. Set Q' = P! and
R! = Eff(P").

For T'> 1, let 97 = P be the set of pure-strategy perfect-equilibrium
payofls that can be enforced with continuation payoffs in R7™! in the
second period of the game, and sct R" = Eff(Q7).

A perfect equilibrium ¢ of G* is Pareto perfect if, for cvery time ¢ and
history h', the continuation payofls under ¢ are in R” %,

The restriction to purc-strategy equilibria is commonly used in this
literature. However, since some games have mixcd-strategy equilibria that
Pareto dominate all the pure-strategy cquilibria, this restriction is not
innocuous. Also, recall from subscction 1.2.4 that “negotiation™-type argu-

I7. Bernheim, Peleg, and Whinston (1987) give a definition for general multi-stage games with
observed actions. We specialize to repeated games for notational convenience but the general
definition should be clear. Qur formulation of the definition is taken from Benoit and Krishna
(19%8). who restrict their attention to pure-strategy equilibria.
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ments support Pareto-optimal equilibria only in two-player games. Though
Bernheim, Peleg, and Whinston extend their concept of coalition-proof
cquilibrium to that of perfectly coalition-proof equilibriom, most sub-
secquent work has focused on two-player games.

To see the force of renegotiation constraints, consider the example
illustrated in figure 5.4, which was used by Benoit and Krishna (1988) and
by Bergin and MacLeod (1989). In this game the set R’ of Pareto-optimal
pure-strategy equilibrium payoffs is {(4.2),(3.3)(2,4)}. Becausc there are
multiple elements in R', in the twice-repeated game G* we are free to vary
the last-period equilibrium with the first-period play. This allows the pay-
offs (5.5) to be enforced in the first period if the players are sufliciently
paticnt: Specify that the continuation will be (3, 3) if therc are no deviations,
and that a deviator will be punished with a continuation payoff of 2. In
particular, if (as Benoit and Krishna assume) the discount factor is exactly
1. then R? is the single point (8. 8). But now in G* there is no way to enforce
cooperation in the first period, as the continuation game G~ has a unique
Pareto-perfect payoff! Thus, Pareto perfection requires that one of the
static cquilibria occur in the first period of the thrice-repeatcd game, and
0 = R = {(12,10),(11,11),(10,12)}. Given the variation in the payoffs
allowed by Q32, profile (a4, b,) can be enforced in the first period of a
four-stage game, and so on. Benoit and Krishna show that the sets RT
alternate, having three clements if 7 is odd and a single element if 7' is
even. Moreover, as T — o, the average payoffs per period. R*/T, converge
to the point {4,4), even though from Benoit and Krishna 1985 the efficient
payoffs (5, 5) can be approximated in a subgame-perfect equilibrium when
T 1s large (see section 5.2). Thus, the Pareto-perfect equilibria need not be
Pareto efficient in the set of all perfect equilibria, as the restriction to
Parcto-perfect continuations reduces the frequency with which players can
he induced to play the efficient pair (a,, b, ).

Note an interesting way in which the set R” differs from the set P7 of all
perfect equitibria: Even with a very long horizon, the play in the first few
periods is very sensitive to the exact period length. Thus, the assumption
of a precisely known horizon is even more important herc than when the
rencgotiation constraint is not imposed, for then (under the conditions of



Benoit and Krishna (1985)), with a long horizon, play until the “last few
periods™ need not depend on the exact length of the game.

Benoit and Krishna prove that for general stage games the set of average
payoffs RT/T converges either to a single point, as in the example, or to a
subset of the efficient fronticr. More precisely, they prove that these prop-
ertics hold when the recursive definition of R7 is modified to consider at
cach stage T only the purc-strategy equilibria with continuations in RT !
(Recall that there is a sense in which this restriction to pure-strategy
equilibria conflicts with the criterion of Pareto optimality, as there arc
stage games in which all pure-strategy equilibria are Pareto dominated by
cquilibria in mixed strategies.)

Bergin and MacLeod (1989) offer an alternative to renegotiation-
proofness for finitely repeated games that they call recursive efficiency.
Recursive efficiency is defined recursively like Pareto perfection, with or
as the equilibrium payoffs enforceable with continuations in R'T™!: the
difference is that the set R'T of recursively efficient agreements is allowed
to be a proper subset of the efficient points of Q'7.'#

In the example above, recursive efficiency allows the set R'! to be the
singleton (3, 3), so that (5, 5) could not be enforced in the first period of
(:*. This, in turn, allows R to be the set !(5,7),(6,6),(7, 5)}, so that in
G* the outcome (a,, b,) with payofls (5,5) can be enforced in period 1 by
specifying that if there are no deviations the continuation payoffs are (6, 6}
while a deviator receives continuation payoff of 5. This contrasts with
Pareto perfection, which requires that the continuation payoffs from period
2 on be (8, 8), and thus precludes “cooperation” in the first period.

If the discount factors are exactly 1, this time shift does not affect
the players’ payoffs in G2, but if the discount factor is less than 1 the
players prefer to have the high payoffs (5, 5) occur in the first period. For
example, if 6 = ; the discounted Pareto-perfect payoffs in G2 are (25/4, 25/4)
and the recursively efficient payoffs arc (29/4, 29/4). (If the discount factor
is too small, the strategies described are not perfect.)

Bergin and MacLeod justify their alternative definition as follows. Sup-
pose that the players meet before period 1 and agree to play any fixed
static equilibrium in the last period, and that this continuation equilibrium
then becomes the “social norm.™ Moreover, all players believe that, regard-
less of the negotiations in period 2, the social norm for period 3 will be
played unless it is unacceptable once period 3 is reached. Then in period 2,
the suggestion to play the more efficient equilibrium “(as, bs) today, any
deviator gets 2 tomorrow™ is not credible, even though it is Pareto perfect,
as both players would feel free to deviate and then appeal to the “social

I8 Recursive elficiency also replaces efficiency with weak clliciency. (For any set C in &',
Wefl{C). the set of weakly efficient pointsin C is the set of x € C such that there is no ¥y e C,with
v > xiie, y dominates x in all its components.)
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norm” of (3, 3) in the last period. In other words, recursive efficiency gives
some weight to the original agreement, while under Parcto perfection the
set of original agreements 1s not considered when choosing agreements for
the continuation game. As Bergin and MacLeod put it, Pareto perfection is
“a theory for which history is not important,” while under recursive effi-
ciency “the agreement in period | acts as a default focal point.” From
another viewpoint, recursive efficiency supposes “less superrationality” at
the renegotiation stage, as players cannot renegotiate to the Parcto-perfect
cquilibrium of the last two periods.

The spirit of the Bergin-MacLeod interpretation can be used to justify a
less restrictive notion of recursive efficiency. Bergin and MacLeod allow
the set of agreements at time ¢ to be a subset of the cfficient agreements
relative to the recursively efficient continuations, but do not allow the
subsct Q' chosen to depend on the prior history h'. Consider a four-period
version of the game illustrated in figure 5.4, with discount factor 3. If the
players can agree to use an equilibrium in periods 2 and 3 that plays (a,, b,)
even though it is not Parcto perfect, they might be able to agree 1o use the
recursively efficient equilibrium in the last three periods if there are no
deviations in period 1, and to use the Pareto-efficient equilibrium other-
wise. thus enforcing outcome (a4, b, ) in both periods 1 and 2. (See DeMarzo
988 and Greenberg 1988 for other discussions of equilibrium refinements
as social norms.)

Renegotiation-Proofness in Infinitely Repeated Games

Parcto perfection and recursive efficiency for fimite-horizon games arc
both defined using backward recursion from the terminal date. Defining
renegotiation or Parcto perfection for infinite-horizon games has proved
to be much more difficult, and there are currently many competing defini-
tions. One of the earliest treatments is by Farrell and Maskin (1989), who
define “weak renegotiation-proofness”™ for infinitely repeated games. This
concept extends the “bygones are bygones™ flavor of Pareto perfection by
requiring that the set of renegotiation-proof equilibria at date ¢ be in-
dependent not only of the history h* but also of calendar time . Weak
rencgotiation-proofness begins with the point of view that there is an
exogenously chosen set of possible equilibrium payoffs Q that is conceiv-
able at any ¢ and &', and that each payoff in Q must require only continua-
tion payoffs corresponding to other equilibria in Q. Formally, let ¢(o;h')
be the continuation payoffs implied by ¢ given history A‘, and let C(a} =
| ). c{o:h') be the set of ali continuation payoffs for strategy profile o.
Then. if r € Q, there must be a perfect equilibrium & with payoffs v such that
C(a) € Q. The set Q is said 10 be weakly renegotiation-proof (WRP) if no
cquilibrium payoff in Q is Pareto dominated by the payoffs of another
¢quilibrium in Q.
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This definition assigns a great deal of weight to the exogenous sect of
“soctal norms™ Q. This allows, for example, any static equilibrium to be
weakly renegotiation-proof as a one-point set. However, in the prisoner’s
dilemma, the “grim” strategies of initial cooperation followed by the static
equilibrium forever if someone deviates are not weakly renegotiation-
proof, as the payoffs corresponding to the “cooperative phase” of the
strategies Pareto dominate those of the punishment phase. That is, once
the payoffs of “always cooperate” are inctuded in the set Q of possible
“agreements,” the players will always renegotiate from the unending pun-
ishment back to the cooperative phasc. Moreover, the strategies “perfect tit
for tat,” defined by “play C in the first period, and subsequently play C if
last period’s outcome was (C. C) or (D, D); play D if last period’s outcome
was (D,C) or (C,D),” are not WRP either, as in the period immediately
following a unilateral deviation it would be more efficient to ignore the
deviation and play (C, C). These stratcgies are, however, subgame perfect
for discount factors near 1 with the usual payoffs, i.e., those given in figure
5.5.

Nevertheless, Farrell and Maskin (1989) and van Damme (1989) have
shown that cooperation is a weakly rencgotiation-proof outcome in the
repeated prisoners’ dilemma if the discount factor is sufficiently near to 1,
and indeed the folk theorem in its renegotiation-proof version holds for this
game. In particular, the strategy profile where both players use the follow-
ing “penance” strategy is WRP and has efficient payoffs: “Begin in the
cooperative phase where both players play C. If a single player i deviates
to D, switch to the punishment phase for i. In this phase, player i plays C
and the other player plays D. Play remains in this phase until the first time
player i plays C, at which point play returns to the cooperative phase.”

The first step in verifying that this profile is WRP is to check that it is
subgame perfect. In the cooperative phase, any deviation triggers a period
of punishment, which is not desirable for discount factors near 1 with
payofls as in figure 5.5. When player | is being punished, his payoff if he
conforms is —(1 — &) + 28 > 0; if he deviates, he obtains 0 — §(1 — ) +
282, which is less. And when player 1 is being punished, player 2’s payoff
1s 3(1 — &) 4+ 28, which exceeds the payoff of 2 he receives by deviating once
and then conforming. So the strategy profile is subgame perfect. Moreover,
nonc of the three continuation payoff vectors involved is Pareto dominated
by the others, so the profile is WRP.



The key to obtaining efficient WRP payoffs in the repeated prisoner’s
dilemma is using the profile (C, D) to punish player 1, which minmaxes
player | while rewarding player 2. In other games, there can be a tradeoff
between rewarding player 2 and punishing player 1, and this can prevent
the full set of efficient individually rational payoffs from being WRP.
For example, in a repeated Cournot duopoly with costless production and
demand D(p) = 2 — p, any payofl vector of the form (x,1 — x), x € (0, 1),
is feasible and individually rational, but regardless of the discount factor
the anly efficient WRP payoffs give each firm a payoff of at least 5. (Sce
Farrell and Maskin 1989 for the argument.)

Pearce (1988)and Abreu, Pearce, and Stachetti(1989) develop an alterna-
tive definition of renegotiation-proofness, to which they unfortunately give
the same name. Unlike Farrell and Maskin, Pearce et al. allow some of the
cquilibria in C(0) to Pareto dominate others—they do not test for “inter-
nal® Parcto consistency; instead, they use an external test: They say that g is
renegotiation-proof unless there is a continuation payoff w in C(o) and
another subgame-perfect equilibrium ¢" such that all the continuation
payoffs in C(¢') Pareto dominate w. The idea is that the agents cannot
renegotiate away from w to an alternative equilibrium that would require
payoffs below w in some subgame, for fear that in that subgame the players
would renegotiate back to the equilibrium with payoffs w.’ ? Unlike WRP,
this definition typically rules out infinite repetition of a static cquilibrium.
For example, in the prisoner’s dilemma the infinite repetition of (D, D) 1s
ruled out by the profile where both players play perfect “tit for tat.”

Morcover, there can be nontrivial symmetric equilibria ¢ (equilibria
where the continuation payoffs depend nontrivially on the history) that are
renegotiation-proof in this sense, so that at some histories k' all players
would gain by “agreeing” to play the strategics o(h") corresponding to a
different history. For example, the profile where both players play perfect
tit for tat can be shown to be renegotiation-prool, even though it 1s not
WRP. Pearce (1988) shows that with this definition of renegotiation-
proofness, the folk theorem holds for general games. Abreu, Pearce, and
Stachetti (1989) obtain an exact characterization of the symmectric
rencgotiation-proof equilibria in a class of games that generalizes Cournot
competition.

The Farrell-Maskin definition of WRP tests only for “internal Pareto
consistency,” and the Abrcu-Pearce-Stachetti definition tests only for exter-
nal consistency; both definitions may seem weaker in some ways than
Parcto perfection for finitely repeated games. One alternative would be to
take a payoff that is Pareto efficient in the set of all payoifs of WRP theories

19. Pearce’s definition also covers the games with imperfecily observed actions discussed in
the next section. If there is a posilive probability of any (finite) sequence of observations even
il no player cheats, then the “subgames™ (observations) that required payoffs below w have
positive probability, and this definition seems better founded.



(assuming that the set of all WRP payoffs is closed). Farrell and Maskin
propose several alternative definitions. A sct of payoffs Q is “strongly
rencgotiation-proof " if it is weakly renegotiation-proof, and there is no
other WRP set with a payoff that strictly Pareto dominates any of the
payoffs of Q. The idea is roughly that at any time the players are able to
renegotiate to a different WRP set Q' and an initial cquilibrium from that
theory, so that all the payoffs in Q must be immune to this sort of recnegotia-
tion. Unfortunately, such strongly rencgotiation-proof payoffs need not
exist, as was also observed by Bernheim and Ray (1990). Farrell and Maskin
and Bernhcim and Ray go on to develop more complicated solution
concepts that relax sirong renegotiation-proofness enough to guarantee
existence.

5.5 Repeated Games with Imperfect Public Information’"

[n the repeated gamces considered in the last section, each player observed
the actions of the others at the end of each period. In many situations of
economic interest this assumption is not satisfied, because the information
that players receive is only an imperfect signal of the stage-game strategies
of their opponents. Although there are many ways in which the assumption
of observable actions can be relaxed, economists have focused on games of
public information: At the end of each period, all players observe a “public
outcome,” which is correlated with the vector of stage-game actions, and
each player’s realized payoff depends only on his own action and the public
outcome. Thus, the actions of a player’s opponents influence his payoff only
through their influence on the distribution of outcomes. Games with ob-
servable actions are the special case where the public outcome consists of
the realized actions themselves.

There arc many examples of games in which the public outcome provides
only imperfect information. Green and Porter (1984) published the first
formal study of these games in the economics literature. Their model, which
was intended to explain the occurrence of *price wars,” was motivated in
part by the work of Stigler (1964). In Stigler’s model, cach firm observes
its own sales but not the prices or quanlities of its opponents. The aggregate
level of consumer demand is stochastic. Thus, a fall in a firm’s sales might
be due either to a fall in demand or to an unobserved price cut by an
opponent. Since each firm’s only information about its opponents’ actions
15 its own level of realized sales, no firm knows what its opponents have
observed, and there is no public information about the actions played.?°
In contrast, the Green-Porter model does have public information, which

20. Lehrer (1989) and Fudenberg and Levine (1990) study repeated games with imperfect
private information.



makes it much easier to analyze. In that model, each firm’s payoff depends
on its own output and on the publicly observed market price. Firms do not
observe one another’s outputs, and the market price depends on an un-
observed shock to demand as well as on aggregate output. Hence, an
unexpectedly low market price could be due either to unexpectedly high
output by an opponent or to unexpectedly low demand.

Another example of repeated games with imperfect public information is
the partnership models considered by Radner (1986) and others. In these
models, cach player’s payoffs depend on his own effort and on the publicly
observed output, each player does not observe his partner’s effort, and
output is stochastic. Yet another example is a “noisy” prisoner’s dilemma
where playcrs sometimes inadvertently choose the “wrong” action, so that
the observed actions are only an imperfect signal of the intended ones.
(Equivalently, each player might sometimes misperceive his opponent’s
action, with the payoffs a function of the perceived actions and not the
intended ones.)

In the standard terminology, the above games are all examples of “re-
peated moral hazard.” The class of games with imperfect public informa-
tion can be extended to include games of “repeated adverse selection,”
where player i's stage-game actions g; are maps from some private informa-
tion (i.e. “types”) to a space of physical actions or announcements, and all
that is observed is the realized action. (The function from types to actions
is not observed.) An example is Green’s (1987) model of repeated insurance,
in which the players’ cndowments are random and independent over time
and between players and the stage-game strategies are maps from endow-
ments to “announced” endowment levels. Here the reported endowments
are obscrved, but not the maps from truc endowments to reports.

Model

In the stage game, each player i = 1,..., 1 simultaneously chooses a strategy
a, from a finite set 4,. Each action profile a € A = x; A; induces a prob-
ability distribution over the publicly observed outcomes y, which lie in a
finite sct Y. Let 7 (a) denote the probability of outcome y under g, and
let 7 (a) denote the probability distribution, which we will sometimes view
as a row vector. Player i’s realized payofl, r,(a;, y), is independent of the
actions of other players. (Otherwise, player i’s payoff could give him private
information about his opponents’ play.) Player i’s expected payoff under
strategy profile a 1s

gi(a) = Z n(a)r(a;, y).

The payoffs and distributions over outcomes corresponding to mixed
strategies x are defined in the obvious way.



In the repeated game, the public information at the beginning of period ¢ is
hl - (y(), _Vl, s Vl 1 )

Player i also has private information at time t—namely, his own past
choices of actions; denote this by z!. A strategy for player i is a scquence of
maps from player i’s time-t information to probability distributions over
A,. a/(h',z]) denotes the probability distribution chosen when player i's
information is (h', z}).

Here are some illustrations of the model:

« In a repcated game with observable actions, the set Y of outcomes is
isomorphic to the set 4 of action profiles: n,(a) =1 if y is equivalent
to a, and 7 (a) = 0 otherwise.

* Inthe Green-Porter model, a; € [0, Q] is firm i’s output, and the outcome
» 1s the market price. Green and Porter make the additional assumptions
that the probability distribution over outcomes depends only on the sum
of the firms’ outputs and that cvery price has positive probability under
cvery action profile.

» In the repeated partnership model, a; is player i’s effort level and ¥y
is the realized output. In the model of Radner (1986) and Radner et al.
(1986). A, is the set {work, shirk}. Closely related is the repeated principal-
agent model of Radner (1981, 1985), where the principal’s action is an
obscrved monetary transfer and the agent’s effort level is not observed. Here
the outcome is the pair (output, transfer).

- [n Green's (1987) model of repeated insurance, each period t each player
i learns his current endowment 6/, with the 8! distributed i.i.d. according
to a known distribution Py(-). Here @, is a map from the set Q; of all
possible types to reports 6; € ©,. (See chapter 7 for an introduction to static
mechanism design.) The public outcome y* is then the vector 8! of reports,
which reveals ncither the players” actual types nor the strategy that they
used. (There arc only [[i-, (# ©,) outcomes, but there arc [T} (#©,)*®:
strategy profiles.) In this case the private information of player i must be
cxtended to include the past values of his types in addition to his past
actions. We will not pursue this extension herc; see Fudenberg, Levine, and
Maskin 1990 for details.

* In a “noisy prisoner’s dilemma,” the set of outcomes Y is isomorphic to
the action space A4, but n,(a) > 0 even if y does not correspond to a. For
example, if both players played a; = C the distribution on outcomes might
be

T (G C) = (1 — ¢)%,
Tl G C) = 7 (€, C) = &(l — v),

and



Ty mlC.C) = 82

for some O < ¢ < 3. This describes a situation where cach player has prob-
ability ¢ of making a “mistake,” and mistakes are indepcndent. The key
assumption here is that the intended actions are not observed, only the
rcalized ones.

5.5.2 Trigger-Price Strategies

In the analysis of their oligopoly model, Green and Porter (1984) focus on
equilibria in “trigger-price strategies,” which generalize the trigger-strategy
cquilibria introduced by Friedman (1971). Suppose that the set of outcomes
Y are interpreted as prices, so that Y < R, and each firm’s output a; must
lic in the interval [0, Q]. Payofl functions are assumed to be symmetric
and attention is restricted to equilibria where all players choose the
same actions in every period—that is, a;(h*) = ¢;(h") for all t and h’. (Thus,
the equilibria are “strongly symmetric™ in the sense of subsection 5.1. 3)
Trlbbt.l’ price-strategy profiles are indexed by three parameters, 4, §, and
T. In these profiles, play can be in one of two possible “phases.” In the
“cooperative phase,” all firms produce the same output, d. Play remains
in the cooperative phase as long as cach period’s realized price y' 1s at
least the “lriggcr price” . If y* < 9, then play switches to a “punishment
phase” for T periods. In this phase, the players play a static Nash equlllb-
rium a* in each period, regardless of the realized outcomes; after the T
periods end, play returns to the cooperative phase.

If we simply tauke d = a*, the strategies prescribe that the static equi-
librium a* be played every period, which is clearly an equilibrium,
so trigger-price equilibria exist. More gencrally, we can charactcrize the
trigger-price equilibria as follows: For fixed § and 4, let

A(Q) = Prob(y" = y|a)

be the probability that the outcome is at least the trigger level when
players use profile @ For convenience, normalize the payolf of the static
cquilibrium a* to be 0. Then the (normalized) payoff if players conform to
the strategics is

=1 =)@ + dA@E + (1 - Aa)) OTA (5.15)
so that

A (I—o)gla) (5.16)
I —d i) — o771 — Aa)

Note that © = g(a)if A(4) = 1, so that the probability of punishment is 0
so long as all players conform, or if T = 0, so that “punishments” have
length 0. The latter case is possible only if 4 is a static equilibrium, so that
no punishment is needed to provide incentives. Even if 4 is not a static



cquilibrium. it might be that A(a) = 1, so that there is no punishment unless
someone deviates; this is possible, for example, if the actions are perfectly
observed. However, under the Green-Porter “full support” assumption that
ny(¢) > Oforall y € Y and all a € A, the only trigger-price strategies where
pumishment never occurs so long as no player deviates also have the
property that punishment never occurs after any sequence of outcomes.
Since such strategies give players no incentive to look beyond their short-
run interest, the only trigger-price equilibria where punishment never oc-
curs arc those in which there is repeated play of the static equilibria. Thus.
() will be less than 1 in equilibria that improve on the static equilibrium
payoffs, and so there is a cost to imposing strong punishments for deviation.
In particular, for fixed § and 4, the equilibrium payofls decrease in the
punishment length. ‘

However, very long and cven infinite punishments may be optimal, as by
increasing the punishment length it may be possible to decreasc the trigger
price or increase the payoffs in the cooperative phase. The optimal trigger-
pricc cquilibria will maximize ¢ given by equation 5.16 subject to the
Incentive constraint that no player gain by deviating in the cooperative
phase, which is displayed in equation 5.17:

(1= S)glana_;) + dila,a_)t + 6(1 — Aa,a_,)0Ts
< (1 = S)gld) + S Aa)6 + 5(1 -- 2(2))6T6  for all a,. (5.17)

(No playcer can gain by deviating in the punishment phase, since play there
is a fixed number of repetitions of a static equilibrium.)

Grouping terms together and substituting for ¢ from equation 5.16, we
get

(1 —o)ala,d_;) — gla)]

< o[l — 87 [,_(a}v— Ala;, d _»_1-“)__](1”_«_— b)g(a] (5.18)
I — 3 Ad) — 6711 — J(a))
for all u,.

The optimal trigger-price equilibrium (from the viewpoint of the firms)
is given by the 4, T, and j that maximize equation 5.16 subject to equation
5.18. Porter (1983b) characterizes the optimal trigger-price equilibria with
acontinuum of output levels and prices, and provides conditions for infinite
punishments to be optimal. With a continuum of actions, the best equi-
hibrium is better than the static one, because if the output in the cooperative
phase is just a small ¢ below the static equilibrium levels, payoffs in the
cooperative phase are greater than in the static equilibrium, while the
incentive to deviate—the left-hand side of equation 5.18—is 0 to first order
in e, so that preventing deviations requires only a probability of punishment
that is Q to first order as well.



In the trigger-price equilibria, there is probability 1 that play eventually
enters the punishment phase. This is loosely consistent with the idea of
“price wars.” but note that in equilibrium all players correctly forecast that
their opponents will never deviate. Thus, the “price war™ is not triggered
by the inference that some firm chose high output in the previous period.
Rather, all players correctly presume that their opponents chose the “co-
operative™ output last period, and that price was low because of a demand
shock, but the “punishment” occurs anyway as a self-enforcing reaction to
a low level of realized demand. (The solution concepts of section 5.4 were
introduced in response to the concern that such punishments might not
be carried out. Note that if the punishment did not occur when demand was
jow. players could not trust each other in the cooperative phases.)

The study of trigger-price equilibria leaves open the question of whether
there are other equilibria with higher payoffs. By analogy with games with
observable actions, one suspects that there may be “punishment equilibria™
with payoffs lower than those in the static equilibria, and that one might
in some cases be able to do better by using stronger punishments. However,
this analogy is inconclusive because the punishments may be carried out
even if there are no deviations. This question is one of the motivations of
the Abreu-Pearce-Stachetti papers we discuss below.

5.5.3 Public Strategies and Public Equilibria

Though all the players know the public history k' at date ¢, cach player i
also knows z/. the actions he has chosen in the past. We will restrict our
attention to equilibria in “public strategies,” where players ignore their
private information in choosing their actions.

Definition 5.2 Strategy o, is a public strategy if o (h", z{) = a{(h". Z}) for all
periods f, public histories ', and private histories z; and Z;.

Although not all pure strategics are public strategics, it is easy to se¢
that any payoff to a pure-strategy equilibrium is a payoff of an equilibrium
in public strategics. That is, given a pure-strategy equilibrium where play-
ers’ strategies may depend on their private information, we can find an
cquivalent equilibrium where the players’ strategies depend only on their
public information. The idea is that, in a pure-strategy equilibrium, each
player perfectly forecasts how each opponent will play in each period —
player 1 plays, say, af in the first period, and is supposed to play ol(a?, y°)
in the second period—but since player 1's first-period play was determin-
istic. the conditioning of his second-period play on his first action 1s
redundant —we could replace o} by the public strategy 61 (y°} = o,(af, y*).

When all players use public strategies, they agree about the subsequent
probability distribution of actions and outcomes given any public history
h'. Thus, we can define the continuation payoffs conditional on a public



history, and ask whether a profile of public strategies induces a Nash
equilibrium from date ¢ on.

Definition 5.3 A profile g, = {g,,...,0,} of repeated-game strategies is a
perfect public equilibrium if

(1) each o; is a public strategy, and

(i1) for each date ¢ and history k' the strategies yicld a Nash equilibrium
from that date on.

Note that subgame perfection would not be restrictive in these games,
since the only proper subgame is the game starting from date 0: At sub-
sequent dates, the players need not know each other’s past moves, and thus
the continuation games do not emanate from a single node. However, when
players use public strategies, their private information about their own past
actions is irrelevant, and so perfect public equilibrium is an obvious exten-
sion of the idea of subgame perfection.

A key fact about perfect public equilibria (PPE) is that the payoffs to such
equilibria are stationary—that is, the set of possible continuation payoffs of
PPE starting in period  with an arbitrary public and private history is same
as the set of PPE payofls starting in period 0. (Exercise: Check this formal-
ly.) However, the sets of Nash and scquential equilibria are not, in general,
stationary. (Another way of saying this is that the game lacks a “recursive
structure.”) Looscly speaking, the point is the following: If players 1 and 2
play a mixed strategy in the first period and their actions in the second
period depend on their realized first-period action, then the actions to be
played in the second period are not common knowledge. Since (in any Nash
cquilibrium) the first-period strategics are necessarily common knowledge,
the strategic possibilitics in the first and second periods are different.
Exercise 5.10 develops this point further, with an examplec of a game which
has an cquilibrium that holds a player to a payoff below his minmax levet.2!

5.54 Dynamic Programming and Self-Generation

A uscful tool for the analysis of perfect public equilibria is the concept of
self-generation, introduced in Abreu, Pearce, and Stachetti 1986 and devel-
oped further in Abreu, Pearce, and Stachetti 1990. Self-generation is a
sufficient condition for a set of payoffs to be supportable by perfect public
equilibria. 1t is the multi-player generalization of the principle of optimality
of discounted dynamic programming, which gives a sufficient condition for

21. The nonstationarity arises from the possibility that the players may come to have
imperfectly correlated forecasts of one another’s play. The same sort of imperfectly correlated
forecasts arise if players observe private, correlated signals at the start of period, as in the
“extensive-form correlated equilibrium” discussed in chapter 8. The set of cxtensive-form
correlated equilibria is stationary, because the imperfect correlation that arises in period 2
from observing the public outcome in period 1 can be reproduced in period 1 with the
appropriate distribution over private signals.



a vector of payoffs, one for each state, to be the maximal present values
obtainable when commencing play in the corresponding state.

The key difference between self-generation in repeated games and dy-
namic programming is that in the former the states and the state transition
function are exogenous. In repeated games, the physical environment is
memoryless-—the past has no physical influence on the present and the
future. However, each player's strategy can depend on the history— for
example, player 1's output today may depend on last period’s price, and
then the output that player 2 wishes to choose today might depend on last
period’s price as well. Thus, the control problem faced by each individual
player can depend on the history, even though the physical environment
does not.

Let us look at the Abreu-Pearce-Stachetti characterization of equi-
librium. Recall that Y is the space of publicly obscrvable outcomes, and let
w be a function from Y into RY. The function w is interpreted as being the
players’ (normalized) continuation payoffs as a function of the realized
outcome, but at this point no restrictions are made on the range of W.
(Abreu. Pearce, and Stachetti use a modcl with a continuum of pub-
licly observed outcomes y; we assume a finite number of outcomes for
simplicity.)

Definition 5.4 The pair (2, ) is enforceable with respect to d and W < R
if there exists a function w: Y — W such that, for each player i,

(i) v, =1 —8)gi(x) + ) n(0wly)
¥
and

(1) 2, solves max ((1 — Oyl + Y ny(az,f,a_‘-)w,-(y)).
x; ¥

Condition ii says that playing z; is an optimal choice if the continuation
payoffs are given by w(-); condition i says that when all players play «, the
resulting normalized payoffs are v. Clearly, in any period t of any PPE, the
actions a(#') are enforced by the equilibrium continuation payoffs: other-
wise, some player could gain by a one-period deviation.

If. for some ¢. (%, v) is enforceable with respect to & and W, we say that
x is enforceable on W. 1f, for some 2, (%,v) is enforceable with respect to
o and W, we say that ¢ is generated by (8, W). The set of all payoffs v
generated by (6, W) is denoted B(o, W)

1.et E(3) denote the sct of all PPE payoffs for a given discount factor. It
should be clear that E(8) = B(5, E(8)). Given any v € B{d, E(d)), it is easy
to construct a PPE with payoffs v: Choose an « and a w with range in E(d)
such that w enforces (2,¢), and specify that players use  in the first period
and a PPE with payoffs w(y} il outcome y occurs. Hence, B(, E{d)} = E(d).
Conversely, if v € E(3), then no player wishes to deviate from the first-



period action profile, and the continuation payoffs must (from the perfect-
ness requirement) be in E(8). Hence, E(8) = B(3, E(5)).

Definition 5.5 W is self-generating if W < B(5, W).

In words, W is self-generating if the set of payoffs that can be enforced
with continuation payoffs in W includes all of W. A trivial example of a
self-generating set is the payofls of a static equilibrium; static equilibria
are the only one-point self-generating sets. At the other extreme, the set
E(o) of all PPE payoffs is sclf-generating.

Theorem 5.10°? {Abreu, Pearce, and Stachetti 1986, 1990) If W is self-
generating, then W < E(8): All payoffs in W are PPE payofTs.

Proof Fix a v e W. We will exhibit strategies for the repeated game that
yicld payoff v, and check that the strategies are a PPE. Since W is self-
generating, v e B(3, W), so we have an action profile « and a map
w: Y — W that generate payoff ¢. Set the period-0 strategies to be 0° =
", und for each period-0 outcome y° set v! = w?(y°). Since vie W <
B(o, W), there is an action profile a(v') and a map w'(y!): Y - W that
generates payofl o'. Set 6*(y°) = 2! (w°()°)), and for each sequence y°, !
set v = w'(w®(y°))(»"), and so on: The constructed strategies yield payoff
v 1f there are no deviations, and they have been constructed so that there
is no history where a player can gain by deviating once and conforming
thereafter. Thus, the constructed strategies are a PPE. [ ]

As we remarked above, this argument is essentially that of dynamic
programming, applied to a game where the physical situation is memory-
less, but the past matters because it influences the opponents’ play. Here,
the “state™ is summarized by the current target payofl v—associated with
cach payoff vector v we have a first-period action for each player, and a
rule that specifies the continuation payoffs as a function of this period’s
realized outcome.

Example 5.3

To help fix ideas, here is an example of a self-generating set in a game where
actions are perfectly observed, namely the prisoner’s dilemma with payoffs
as in figure 5.5. With observed actions, there are four outcomes ¥, corre-
sponding to the four action profiles of the stage game, and the probability
distribution over outcomes assigns probability 1 to the action profile that
was played. Consider the two-point set W = {p, 6}, where

3535 1
'_{l+5’14}5] (5.19)

22. Abreu, Pearce, and Stachetti consider only pure-strategy equilibria, but the proof extends
immediately to all PPE.



and

¢ = [3" “has ‘?}. (5.20)
14+d 1 +0
We claim that this set is sell-generating for ¢ > .

Given the symmetry of W, it suffices to check that payoff vector v can be
enforced with continuation payoffs in W. Let the action profile a corre-
sponding to ¢ be (D,C), and let the continuation payoffs be w(D,C) =
w(C,C) = tand w(D, D) = w(C, D) = v. If both players follow «, the result-
ing payoffs are

31 — 33+ 352 — 5 2 s
(= 5)3 ~1y4+o6=|0 70 )43 -0 (1-0)+38-0
L+34 1+0

= [

Since player 1's current action does not influence the continuation pay-
offs, his average payoff is maximized by playing D. as this maximizes
his current payoll. If player 2 plays C as prescribed by «. his payoff is
ry = {36 — 1)/(1 + ). If he plays D, he receives payoff O today, and con-
tinuation payoff v,, so that C is better than D if 6 > 3.

Abrcu, Pearce, and Stachetti (1990) prove that the set of pure-strategy
cquilibria is compact. There are thus best and worst equilibria. Even though
those authors assume a finite number of output levels, this is not immediate,
because (in contrast with our finite model) they allow a continuum of prices,
so that the number of outcomes is uncountable. Furthermore, and re-
latedly, Abreu et al. (1986) show that any payoff to a symmetric PPE can be
cnforced with strategies that threaten to swilch to either best or worst
cquilibria. There is no nced for intermediate values. And, more generally,
Abreu et al. (1990) show that any pure-strategy PPE payoff can be achieved
with continuation values that are extremal points of the cquilibrium set.
Furthermore, under an additional mild condition, they show that an cxtre-
mal cquilibrium-—an equilibrium whose payoffs are on the boundary of
the feasible set - must have continuation payofls that are themselves extre-
mal equilibria.

Knowing that it is sufficient to use extremal equilibria as continuation
ecquilibria 1s particularly useful for characterizing “strongly symmetric”
cquilibria of symmetric games—that is, equilibria where for every public
history all players’ actions are identical. (Strong symmetry is discussed in
subsection 5.1.3: recall that the trigger-price strategies of subsection 5.5.2
are strongly symmetric.) To characterize strongly symmetric equilibria,
only two numbers nced be determined: the highest and the lowest strongly
symmetric equilibrium payoffs, ¢ and v.



5.6

The Folk Theorem with Imperfect Public Information''

Fudenberg, Levine, and Maskin (1990) develop the dynamic-programming
approach to equilibrium further and use it to prove a folk theorem for
games with imperfect public information.?? The key question in determin-
ing when the folk theorem obtains is: How much information must the
public outcome reveal about the players’ actions? If players receive no
information at all about one another’s play, the only equilibrium payofls
will be convex combinations of the pavoffs to static equilibria; when actions
themselves are observed, the folk theorem obtains under the mild “full-
dimensionality” condition.

To begin, consider an extremal payoff ¢ of the feasible set—that is, a
point that is not a convex combination of any two other points in V. If there
is an equilibrium whose payoff is close to ¢, it must be possible to enforce a
strategy profile a with g(a) close to ©. When will this be the case? That is,
when will there be some (not necessarily feasible) continuation payvoffs that
induce the players to play a? The answer is that a is enforceable unless for
some player / there is an action «4; such that

(1) gilag,a_;) > gla)
and
M) mlgj,a_;) = n(a)

Condition 1 1mplies that player i prefers a; to q; if the expected continuation
pavofls are the same, and condition ii cnsurcs that the two actions induce
the same distributions of outcomes and thus the same distributions of
continuation payofls. It should be clear that these conditions pre-
clude enforceability; it is also true that when the conditions fail then a is
enforceable.

A slightly stronger sufficient condition for enforceability is the following
individual full-rank condition, which implies that any two distinct mixed
strategies for player i lead to different distributions over outcomes.

Definition 5.6  The individual full-rank condition is satisfied at profile o if
for cach player i the vectors {m (a;,2_;)},. 4, are lincarly independent.

To see why this 1s called a “full-rank™ condition, fix a profile «, let
I[T(x ;) denote the matrix whose rows arc the vectors n.(a!,2_;) corre-
sponding to each a, and let G,(x_;) denote the column vector whose
clementsarc [ (1 — 8)/d]y;(a], x_;). Then player i has the same overall payoff

23. Their work extends an earlier result of Fudenberg and Maskin (1986b) on repeated
principal-agent games. Matsushima (1989) obtains a partial folk theorem in a model with a
continuum of actions on the hypothesis that for each k' the incentive constraint can be
replaced by the corresponding first-order condition.



to cach action «; under continuation payoffs w;(+) if and only if, for somc
constant vector k,

Hix Jow, = —Gfx_;} + k. (5.21)

The individual full-rank condition ensures that matrix [, (x_;) has full
row rank, so thal equation 5.21 can be solved for any k. (See subscction
7.6.1 for related ideas.) Note that this full-rank condition requires that therc
be at least as many publicly observed outcomes as there are actions for any
player.

However. enforceability of all the extremal actions is not sufficient for
a folk theorem in the limit of discount factors tending to 1.2* The first
counterexample was given by Radner, Myerson, and Maskin (1986) in a
repeated partnership game like the following.

Example 5.4
Each period, each of two players chooses whether to work or to shirk. Each
player's payoff depends on his own effort and on the publicly observed
output, which they share cqually. The output has only two levels, good and
bad, with the probability of good cqual to % if both players work, § if only
one of them does, and } if both shirk. Notc that even if both players choose
to work there is a positive probability of bad output. The payoffs arc as
follows: Working instead of shirking has a utility cost of 1: when output is
good. both players receive a payment worth 4 utils; the payment in the bad
output state is worth 0. (This will be the case if both players are risk neutral,
the output is either 8 or 0, and the players share the output equally.)

The individual full-rank condition is satisfied at the profile where both
players work. as the matrix

Q9 7
[T(work, work) = [l;’ 156]

8 8
is nonsingular. Thus, both players can be induced to work by the appropri-
ate choice of continuation payoffs. And the profile where both players work
yields (3. }), which is the highest feasible symmetric payoff. However, re-
gardless of 4, the sum of the equilibrium payoffs is bounded by 2. The
intuition for why efficiency cannot cven be approximated in this model is
that, in order to provide incentives for both players to work, both players’
continuation payoffs must be higher after high output than after low.
Loosely speaking, this means that both players must be “punished” when
a bad outcome is obscrved. As long as the bad outcome has positive

24 Rubinstein (1979a), Rubinstein and Yaari {1983), and Radner (1986) obtain Nash-threats
folk theorems using time-average payoffs in examples of games that do not meet the stronger
information conditions we develop below. The literature suggests that individual full rank
suffices far the full folk theorem with time-average payofls, but we are not aware of a formal
prool.



probability when both players work, there must be a positive probability
of this “mutual punishment,” and since mutual punishments are mefficient,
the set of equilibrium payoffs is bounded away from efficiency.

Although the bound holds for all Nash equilibria of the game, it is easiest
to obtain for the symmetric pure-strategy equilibria. Let ¢* be the highest
payofl in any pure-strategy symmetric equilibrium. Since the set of these
cquilibria is stationary, the payoff in the first period of an equilibrium
with payoffs v* must be at least v*; thus, if 20* is greater than 2, in any
cquilibrium with payoffs t* both players must work in the first period. If
ty 1s the (symmetric) continuation payoff after the good output and v, the
continuation payoff after bad, incentive compatibility requircs that

(=M% 4+ 50)— 1]+ [T, + stp)
2 (1 =9[4 +35-0]+6[3v, + i1,
or
v, -ty = [(1 — 8)/8]%,
Since v, < v*, we conclude that if v* is close to 3 then
e* < (1= 8)F + O %v* + feiv* — [(1 — 6)/01%)],

so(l —a)e* <(1 — §),%—a contradiction.

Hcre, even though the required difference between vy and v, goes to
as o goes to 1, the normalized present value of the efficiency loss remains
nonnegligible.

In other cases, though, it is possible to provide all players with incentives
to take the desired action while incurring a minimal loss of efficiency.
In this case one can show that the efficiency loss required to provide
incentives becomes negligible as 4 — 1. When can the continuation payoffs
be chosen in this way? A sufficient condition is that the distributions over
outcomes induced by different players’ deviations be distinct. This is made
precise in the following definition and lemma.

Definition 5.7 The pairwise full-rank condition is satisfied at action x for
players i and j if the [ A,| + |A;|} vectors

:J’[_((l;, a—f)a;E At ﬂ‘(d;, x—j)a}e AJ-}
admit only one linear dependency.

This condition implies that the matrix I1;(x) formed by stacking the
matrix [T;(x_;) on top of the matrix IT;(x_;) has maximal rank. This matrix
does not have full row rank, as it necessarily admits at least one linear
dependency. This is easiest to see in the case where all players use their first
pure strategy, so the first rows of H; and I1, are identical. More generally,



the rows of T1;; satisfy the following equality:

n(xy = Y ala)mla.x-)= 3, axla)n (a0 ;) (5.22)
e A; a;eAd;

If profile x satisfics pairwise full rank, not only can it be enforced, but
the continuation payoffs can be chosen to satisfy the additional lincar
identity i, w,(y) + B,w,(¥) = k for any nonzero fi; and §,. That is, player
i's continuation payoll can be exchanged for player j’s at rate —f,/8,, so it
is as if utility were transferable between the players. In this case, we can
arrange the continuation payoffs so that when player i is punished, player j
is rewarded, and conversely. Moreover, when profile « is efficient, the rate
of exchange can be taken to be cqual to the tangent to the efficient frontier
at profile x, which is the key to providing incentives in an efficient way.

Under pairwise full rank, a deviation by player i leads to a distribution
over outcomes that is different from that induced by any deviation by
player j.

Note that this condition requires that the number of outcomes be at least
{4;1 + |A4;] — 1. In example 5.4, there arc two actions per player, and
only two outcomes, so that pairwise full rank cannot be satisfied at any
action profile. This is why shirking by player ! could not be distinguished,
even stalistically, from shirking by player 2.

Even if the number of outcomes is large enough to permit pairwise full
rank to be satisfied, the condition can still fail at some profiles. In particular,
regardless of the number of outcomes, pairwise full rank fails at symmetric
profiles in games such as the Green-Porter oligopoly or the partnership
of example 5.4, where the distribution of outcomes depends only on the
sum of the individual player's actions. For example, regardless of the
number of outcomes in example 5.4, at a profile where both playcrs work
we see that

7 (work, work)
7 (shirk, work)
7 (work, wortk)
m (work, shirk)

1, ,{(work, work) =

and since 7 (shirk, work) = n (work, shirk) this matrix only has rank 2,
instead of the rank 3 that pairwisc full rank requires.

However, if there are more than two outcomes, the profile where player 1
works and player 2 shirks does satisfy pairwise full rank for generic prob-
ability distributions on outcomes. For example, suppose there are three
outcomes, y,. y,, and y;, and that

n (work, work) = (3.3, %),

)

-

n (work, shirk) = = (shirk, work) = (4, 3.



and
7 (shirk, shirk) = (&, 3, 1).
Then
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which has rank 3. Moreover, as observed by Legros (1988), any profile
where player 1 works and player 2 shirks with positive probability also
satisfies pairwise full rank, since the profile where player 1 shirks and player
2 uses his mixed strategy induces a different distribution than the profile
where player | works and player 2 shirks. Legros’ observation is gen-
eralized in the following lemma.

Lemma 5.1 If for each pair of players i # j there is an o™/ that satisfics
pairwise full rank for players i and j, then there is an open dense set of «’s
that satisfy pairwise full rank for all pairs of players.

Theorem 5.11 (Fudenberg, Levine, and Maskin 1990) If (i) the individual
full-rank condition is satisfied at every pure strategy a, (i1) for each pair i,
of players there is a profile that satisfies pairwise full rank for i and j, and (iii)
the feasible set V' has dimension equal to the number of players, then for

closed set W in the relative interior of V there is a 4 such that, for all § > §,
W < E(d).

Outline of Proof Approximate the set of feasible individually rational
payoffs by a smooth convex set W. Condition i implies that the minmax
profile against player i and the best profile for player i can both be enforced
on hyperplanes where player i’s payofl is constant. Condition ii implies that
almost all profiles can be enforced on hyperplanes where no player’s payoff
15 held constant. Combining these two observations, for any point w on the
boundary of Wthere is an action profile x with g(x) weakly separated from
W by the tangent plane H at w, and such that profile « can be enforced with
continuation payoffs on any lincar translate H + v of H. If we choose & to
be close to 1, the required variation in w(y) is small cnough that profile «
can be enforced with continuation payoffs contained in a translate of
H very close to the boundary of W. Intuitively, the “efficiency loss™ (relative
to W) required to provide incentives becomes negligible, since the smooth
set W is approximately (i.e., to first order) linear.

In a symmetric game, the theorem asserts that therc are equilibria with
payoffs arbitrarily close to the highest symmetric payoff. This is so even
though in such games the highest payofl in a symmetric equilibrium may be



bounded away from efficiency. The point is that the information revealed at
symmetric action profiles can be poor (ie., fail to satisfy pairwise full
rank) even though many nearby almost-symmetric strategy profiles do
generate “cnough” information.**

5.7 Changing the Information Structure with the Time Period""’

The folk theorem looks at a set of equilibrium payoffs as 6 — 1, holding
n,(a) constant. As we saw, whether the folk theorem holds depends on the
amount of information the public outcome y reveals. The interpretation of
the result is therefore that almost all feasible, individually rational payoffs
are equilibrium payoffs when & is large in comparison with the information
revealed by the outcome. Abreu, Pearce, and Milgrom (1990) show that the
folk theorem need not hold if one interprets § — 1 as the result of the
interval between periods converging to 0, and if the information revealed
by y dcteriorates as the time interval shrinks. Why might this be the case?
In games with observed actions, the public outcome is perfectly informa-
tive, and there is no reason to expect the information to change as the ime
period shrinks. In these games, then, we can interpret & — 1 as a situation
of cither very little time preference or very short time periods. However, if
players observe only imperfect signals of one another’s actions, it is plau-
sible that the quality of their information depends on the length of cach
observation period. Thus, one cannot interpret the case of d = 1, with
n,{a) fixed. as the study of what would occur if the timc period became
very short.

Abreu, Pearce, and Milgrom (APM) investigate the effects of changing
the time period and the associated information structure in two different
examples. We will focus on a variant of their first example, a model of a
repeated partnership game. We begin as usual by describing the stage game,
which in the APM model is a continuous-time game of length . The
interpretation is that players lock in their actions at the start of the stage,
and at the end of the stage the outcome and the payoffs are revealed. As in
example 5.4, each player has two choices: work and shirk. Payoffs are
chosen so that shirk is a dominant strategy in the stage game, and so that
shirk is the minmax strategy. As in the example, the stage game has the
structure of the prisoner’s dilemma: “Both shirk” is a Nash equilibrium in
dominant strategies, and this equilibrium gives the players their minmax
values. Payoffs arc normalized so that this minmax payoff is 0, the (ex-

25. Fudenberg, Levine, and Maskin go on to devclop a Nash-threats folk theorem for games
where there are too few outcomes for even the individual full-rank condition to hold bul
where the information revealed by the outcomes has a “product structure,” meaning that
V¥ — {¥,.....¥;) and cach player i's action influences only his “own” outcome ;. This is the
case in Green's (1987) model of repeated adverse selection, where the actions are reports of
the players' types.



pected) payofls if both players work are (¢, ¢), and the payoff to shirking
when the opponent works is ¢ + g. (These are the expected payoffs, where
the cxpectation is taken with respect to the corresponding distribution
of output.) The difference between the APM stage game and example 5.4
is that, instcad of therc being only two outcomes each period (namely high
and low output), the outcome is the number of “successes” in the period,
which is distributed as a Poisson variable whose intensity is 2 if both players
work and u if one of them shirks, with i > . Thus, if the time period is
short. it is unlikely that there will be more than one success. and the
probability of one success in a period of length dt is proportional to dr. This
might correspond to a situation where the workers are trying to invent
new products.?®

In the repeated game Gz, r), the discount factor & is exp(~rr), and the
public information is simply the number of “successes” cach period.

From our earlier discussion of repeated partnership games, we can sce
that the folk theorem does not apply to the symmetric equilibria of this
game, as deviations by the two players are indistinguishable when both use
the same strategy. Thus, both players must be punished simultaneously,
which causes efficiency losses, and so the set of symmetric equilibria is
bounded away from efficiency even as r — 0. However, when r is small, we
would expect there to be symmetric equilibria with higher payoffs than the
static equilibrium. Even this limited conclusion does not hold in the limit
v >0, as the information revealed by the outcomes may “deteriorate”
quickly cnough to outweigh the effects of a larger discount factor. APM
compute the highest symmetric-equilibrium payoffs of the game for small
r. and consider how the payoff of the best symmetric equilibrium varies
with 7. To do so they consider a Taylor-series approximation of the game,
neglecting terms smaller than 72,

This Taylor-series approach is necessary to discover if it is best to
increase or decrease t when t is small. We will content ourselves with
making the simpler point that sending 7 to 0, with the corresponding
changes in the information structure, has very different effects than sending
r to 0, holding the information structure fixed. To this end we simplify the
APM model by assuming that there are only two possible outcomes in each
period: For ) = 4, u, there is probability cxp(— Ot)that no events occur, and
probability | — exp(—61) that exactly one event occurs. This simplifies the
Poisson distribution by identifying all the events with one or more out-
comes; it is a good approximation to the Poisson distribution when periods
are short.

Let us consider when the best symmetric pure-strategy equilibrium can
have payoff v* that strictly exceeds 0. (APM show that this maximum is

26. Abreu, Pearce, and Milgrom also consider the case of “bad news.” where low output is a
Poisson event with intensity 2 if both players work and # il one shirks, with A < u. Here
the Poisson event corresponds to “accidents™ that are made less likely if both players work.



atlained; the following arguments would extend with the addition of a few
epsilons if v* were a supremum rather than a maximum.) Since APM allow
public randomizations, it is immediate that an equilibrium with payolls
(r*.r*) can be constructed using continuation payoffs which are lotteries
between the best continuation payoff of v* and the worst continuation
payoff of 0, as any continuation payoff between these values can be ob-
tained by a public randomization between them. Thus, fix an equilibrium
that attains v*, and let the continuation payofl for cach player be the
lottery [(1 — a(0))v*, 2(0)- 0] if the first-period outcome is 0, and the lottery
[(1 — 2(1)}o*, 2(1)- 0] if the first-period outcome is 1. One can show that if
#* is greater than O, the strategics that attain (or closely approximate) ¢*
must have both players working in the first period. Thus, in order for v*
to exceed 0 there must exist probabilities 2(0) and «(1) such that both agents
are induced to work, and such that if both players do work the resulting
normalized present values are v*.
Writing out these two equations, we have

(Il —e Mg <e ™ (e —e ") [a0) - a(1)]o* (5.24)
and
r*=(1—e e+ e "[(1 — x(0)e ) — a{){l — e ) e, (5.25}

Solving equation 5.25 for v* yields

{1 —é_")C
I — e {1 —a(l) — e “[af0) — ()]}’

v* =

(5.26)

Intuitively, one would expect that in the best equilibrium players would
not be “punished” if a success occurs, so that x(1) = 0. This can be checked
by inspecting the above equations: When A > g, setting «(1) = 0 makes
cquation 5.24 more likely to be satisficd, and increases the equilibrium
payofl by decrcasing the probability of switching to the punishment state.

Now we ask when the above system has a solution with (1) = 0 and
2(0) < 1. Algebraic manipulation shows that this is possible only if

cle * —e ] >gle™ =1+ e "] =ge ™ (5.27)

Thus, a necessary condition for ¢* > 0, regardless of the rate of interest,
15 that

At

=N (5.28)

< :

¢ e
which says that the likelihood ratio L(r) = e”*~*" associated with the
cvent “no successes” should be sufficiently large. However, as t converges
to 0, the likelihood ratio L(t) converges to 1: Since it is almost certain that
there will be no successes, the information provided by the publicly ob-



served outcome is too poor for there to be an equilibrium that improves
on the minmax values.

On the topic of changing the information structure, we should also
mention Kandori (1989a), who studies how the set of equilibrium payoffs
changes when the public outcome becomes a less informative signal of the
players’ actions. One probability distribution is a “garbling” of another
(Blackwell and Girshik 1954) if it can be obtained from the first one by
adding noise. Kandori shows that if the information becomes worse in the
sense of garbling, the set of equilibrium payoffs becomes strictly smaller.
That the set cannot grow larger is fairly clear, and is obvious in the presence
ol public randomizations, as the public randomizing device can be used to
create a garbling of the original signal; the interesting conclusion is that
the sct must become strictly smaller. '

Exercises

Exercise 5.1* Compute the set of feasible payoffs in the “battle of the
sexes” stage game as shown in figure 1.10a. What is the highest feasible
symmetric payoff? Let § = 3, and find a deterministic strategy profile for
the repeated game with payoffs (3, 3).

Exercise 5.2*  Consider the infinitely repeated play of a finite stage game
(#.A.g). Given ¢ > 0, show that there exists a § > 0 such that for all
d € [0,0] every Nash equilibrium « has the property that, at all histories
h' with positive probability under o, o{h') must be within ¢ of one of the
Nash equilibria of the stage game. Give an example to show that the
conclusion need not hold for all subgames. Can the equilibrium to be
played in period t vary with the history h"? Why or why not?

Exercise 5.3**  Prove that the set of continuation payoff vectors corre-
sponding to all Nash equilibria is the same in every proper subgame of a
repeated game. The idea of the proof is to show more strongly that every
proper subgame is strategically isomorphic, i.e., there is a one-to-one corre-
spondence between the strategy spaces that preserves the pavoffs. The
simplest example is the map between the whole game and a subgame: To
map a strategy s for the whole game to its equivalent in the subgame
starting at h', sct $(h') = s(h®), 3(h',a") = s(a"), $(h',a’,a'*!) = s(a',a'*ty,
and so on, so that § treats period 1 + t just as s treats period 1. Conversely,
given a strategy profile s and a subgamc A'. the equivalent strategy for
the whole game is §(h°) = s(h*), $(a®) = s(h',a°), and so on. Use these maps
between the subgames to argue that if a profile for the whole game is a
Nash equilibrium it must be a Nash equilibrium in the subgame, and
conversely.



Exercise 54* Consider a finite symmetric repeated game, and assume
there is 4 symmetric mutual minmax profile m* in pure strategics, i.e., a
pure-strategy profile m such that max, g(a;, m*;) < v. Show that, if publc
randomizations are available, for sufficiently large discount factors the
worst strongly symmetric equilibrivm payoff e, can be attained with strate-
gics that have two phases: In phase A, players play m*. If players conform
in phase A, play switches to phase B with a probability specified by the
cquilibrium strategies; if therc arc any deviations, play remains in phase A
with probabilily 1. In phase B, play follows strategies that yield the highest
equilibrium payoff.

Exercise 5.5 Consider the two-player game illustrated in figure 5.6. In
the first period, players 1 and 2 simultaneously choose Ul or D1 (player
1yand L1 or R (player 2); these choices are revealed at the end of period
I with payoffs as in the left-hand matrix. In period 2, players choosc U2 or
32 and L2 or D2, with payoff as in the matrix on the right. Each player’s
objective is to maximize the average of his per-period payoll.

(a) Find the subgame-perfect equilibria of this game, and compute the
convex hull of the associated payoffs.

(b) Now suppose that the players can jointly observe the outcome y; of a
public randomizing device before choosing their first-period actions, where
y, has a uniform distribution on the unit interval. Find the set of subgame-
perfect equilibria, and compare the resulting payoffs against the answer to
part a of this excrcise.

(c) Suppose that the players jointly observe y, at the beginning of
period 1 and y, at the beginning of period 2. with y, and y, being in-
dependent draws from a uniform distribution on the unit interval. Again,
find the subgame-perfect equilibrium payoffs.

(d) Relate your answers to parts a—c to the role of public randomizations
in the proof of the Folk Theorem.

Exercise 5.6*** Under the assumptions used by Benoit and Krishna
(1985) for pure-strategy equilibria, try to characterize the limit as the
horizon T — x of the set of payoffs of all subgame-perfect equilibria of a
T-period finitely repeated game.

L1 R1 L2 R2
ulr 22  -1.3 uz - 6,4 | 3,3
D1 3,-1 0,0 D2 33 | 4,6
S

First=period payofts Second-period payoffs

Figure 5.6



Exercise 5.7** Consider a sequence of randomly matched players, with
the information structure of Rosenthal (1979), who play the prisoner’s
dilemma with payoffs as in figure 5.5. Show that unless the discount factor
equals §, the only Markovian equilibrium where all players use the same
pure strategy is for all players to always cheat.

Exercise 5.8**

(a) In a repeated game, show that if for each player there is a subgame-
perfect equilibrium where that player’s payoff is his minmax value, then
any payoff of a Nash equilibrium is also the payoff of a subgame-perfect
cquilibrium.

(b} Suppose that, for each player i and each j # i, gi(m') > v;. Show that
the sets of Nash-equilibrium and perfect-equilibrium payoffs are identical
for sufficiently large discount factors. Give an economic example where the
condition 1s plausible, and an example where it is not. Show that the sets
can differ for small discount factors.

(¢) Suppose that the minmax profile is in pure strategies, that the vector
where all players simultaneously receive their minmax payoff 1s in the
interior of the feasible set, and that for each player i there is an &, such
that gi(d;,m’;) < v;. Show that the sets of Nash-equilibrium and perfect-
equilibrium payoffs are identical for large enough discount factors. Give an
example of a game where the feasible set has full dimension yet the in-
feriority condition used here does not apply. (Answers are given in Fuden-
berg and Maskin 1990b.)

Exercise 5.9* Consider infinitely repeated play of the stage game of figure
5.7.

(a) What is the highest perfect equilibrium for player 1 if both sides are
tong-run players?

(b) If player 1 could publicly commit to always play the same mixed
stratcgy x,, what o, would he choose? What would his payoff be?

(c) Show that when the player 2’s are an infinite sequence of short-run
players, the highest payoff for player 1 in any Nash equilibrium is 2. To do
this, proceed as follows.

- Let ©*(8) be the supremum of player I’s payoff in any Nash equilib-
rium when his discount factor is 8, and suppose v¥(0) > 2. Let ¢ =
(1 — 8)(e*(8) — 2)/2, and choose an equilibrium ¢ where player 1's equi-
librium payoff v(8) is at least v*(3) — &. Show that under profile o player 1’s

L M R
T T T
U 6.0 1-1,-100 01
D 22 0.3 1.1 J

Figure 8.7



expected payoff in the first period must be greater than 2. (Hint: Player
I's continuation payoff from the second period on cannot exceed v*(3).)

« Show that under o player 2 must play L with positive probability in the
first period, and thus that player I must play D with positive probability in
the first period.

-« Conclude that t*(d) — & < v(8) < 2(1 — §) + dv*(J), so that v*(d) < 2.

Exercise 5.10%* Consider the following three-person stage game: Players
I and 2 choose pairs, the first element being Up (U) or Down (D) and the
second being Heads (H) or Tails (T). Player 3 chooses Right or Left.
Players | and 2 receive 0 regardless of what happens. Player 3's payoff is

1 if 1 and 2 both chose Up and he went Right, or if 1 and 2 both chose
Down and he went Left; otherwise he gets 0. Notice that the choice of H
or T is irrelevant to the payoffs.

Suppose player 3’s choices are observable, that whether 1 and 2 play Up
or Down is observable, but that the public information y* about their choice
of H or T is only the total number of H chosen by both players. Thus, if y*
is 2 or 0, it reveals the actions of players 1 and 2. If y* = 1, then the actions
of players 1 and 2 are common knowledge for players 1 and 2 (since it is
common knowledge that they each know their own action), but player 3
does not know which player played H.

(a) Show that player 3's minmax payoff is —}.

(b) Now consider the repcated version of this game. Construct a Nash
cquilibrium where players | and 2 usc the following strategies, ¢.g., for
player 1: “Randomize 3- between H and T in every period. If y' ™' = 1 and
player 2 played H, play D;if y'~! = | and player 2 played T, then play U. If
' =0 or 2, randomize 3-5 between U and D.” Show that player 3’s
equilibrium payoff is below his minmax value. Explain.
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6.1 Incomplete Information’

When some players do not know the payoffs of the others, the game is said
to have incomplete information. Many games of interest have incomplete
information to at least some extent; the case of perfect knowledge of payofls
is a simplifying assumption that may be a good approximation in some
CAses.

As a particularly simplec example of a game in which incomplete informa-
tion matters, consider an industry with two firms: an incumbent (player 1}
and a potential entrant (player 2). Player 1 decides whether to build a new
plant, and simultaneously player 2 decides whether to enter. Imagine that
player 2 is uncertain whether player 1’s cost of building is 3 or 0, while
player 1 knows her own cost. The payolfs are depicted in figure 6.1. Player
2's payofl depends on whether player 1 builds, but is not directly influenced
by player I's cost. Entering is profitable for player 2 if and only if player 1
does not build. Note also that player ! has a dominant strategy: “build™ if
her cost is low and “don’t build” if her cost is high.

Let p, denote the prior probability player 2 assigns to player I's cost
being high. Because player | builds if and only if her cost 1s low, player 2
enters whenever p, > } and stays out if p, < }. Thus, we can solve the
game in figure 6.1 by the iterated deletion of strictly dominated strategies.
Section 6.6 gives a careful analysis of iterated dominance arguments in
games of incomplete information.

The analysis of the game becomes more complex when the low cost is
only 1.5 instead of 0, as in figure 6.2. In this new game, “don’t build” is still
a dominant strategy for player 1 when her cost is high. However, when her
cost is low, player 1's optimal strategy depends on her prediction of y, the
probability that player 2 enters: Building is better than not building if

1.5y + 3.5(1 — v)> 2y 4 3{1 — y),
or

Vo< S

Thus, player | must try to predict player 2’s behavior to choose her own
action, and player 2 cannot infer player 1’s action from his knowledge of
player 1's payoffs alone.

Harsanyi (1967-68) proposcd that the way to model and understand this
situation is to introduce a prior move by nature that determines player 1's
“type” (here, her cost). In the transformed game, player 2’s incomplete
information about player 1’s cost becomes imperfect information about
nature’s moves, so the transformed game can be analyzed with standard
techniques.
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The transformation of incomplete information into imperfect informa-
tion is illustrated in figure 6.3, which depicts Harsanyi’s rendering of the
game of figure 6.2. N denotes “nature,” who chooses player 1’s type. (In the
figure, numbers in brackets arc probabilities of nature’s moves.) The figure
incorporates the standard assumption that all players have the same prior
belicfs about the probability distribution on nature’s moves, (Although this
is a standard assumption, it may be more plausible when nature’s moves
represent public events, such as the weather, than when nature’s moves
maodel the determination of the players’ payoffs and other private character-
1stics.) Once this common-prior assumption is imposed, we have a standard
game, to which Nash cquilibrium can be applied. Harsanyi’s Bayesian
cqutlibrium (or Bayesian Nash equilibrium) is precisely the Nash equi-
librium of the imperfect-information representation of the game.

For instance, in the game of figure 6.2 (or figure 6.3), let x denote player
I's probability of building when her cost is low (player 1 never builds
when her cost is high), and let y denote player 2's probability of entry. The
optimal strategy for player 2 is y = | {enter) if x < 1/[2(1 — p) ], y=0if
x> 21 = py)], and ye [0,17if x = 1/[2(1 - p,)]. Similarly, the best
response for the low-cost player 1 is x = 1 (build) if y<ix=0ify>1i
and x € [0, 1]il y = ;. The search for a Bayesian equilibrium boils down to
finding a pair (x, v) such that x is optimal for player 1 with low cost against
player 2 and y is optimal for player 2 against player 1 given beliefs p, and
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player 1's strategy. For instance, {(x = 0,y = 1} (player 1 does not build,
player 2 enters) is an equilibrium for any p,, and (x = 1,y = 0) (player |
builds if her cost is low, and player 2 does not enter) is an equilibrium if
and only if p, < 3.

The remainder of the chapter is organized as follows. Section 6.2 gives
a sccond example of Bayesian equilibrium in a game of incomplete informa-
tion. Section 6.3 discusses the notion of type, and section 6.4 gives a formal
definition of Bayesian equilibrium. Section 6.5 returns to illustrations but
cmphasizes the details of the characterization of Bayesian equilibria rather
than motivation. The details of the analysis are somewhat involved, and
many of the examples could be skipped on a first rcading. Section 6.6
discusses the iterated delction of dominated strategics in games of in-
complete information. Here the issuc arises of whether different “types” of
a single player should be vicwed as separate individuals, with potentially
different beliefs about the strategies of their opponents, or as a single indi-
vidual with fixed beliefs. Section 6.7 develops an incomplete-information
justification of mixed strategies in games of complete information. Section
6.8 presents more technical material on games in which players have a
continuum of types.

6.2 Example 6.1: Providing a Public Good under Incomplete Information’

The supply of a public good gives rise to the celebrated free-rider problem.
Cach player benefits when the public good is provided, but cach would
prefer the other players to incur the cost of supplying it. There are numerous
variants of the public-good paradigm; we consider one studied experimen-
tally by Palfrey and Rosenthal (1989). There are two players, i = 1.2,
Players decide simuitaneously whether to contribute to the public good,
and contributing is a 0-1 decision. Each player derives a benefit of 1 if at

1. In this case. there is also a mixed-strategy equilibrium: (x = 1/,{2(1 — p;)1.¥ = }).
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Icast one of them provides the public good and 0 if none does; player i’s cost
of contributing is ¢;. The payoffs are depicted in figure 6.4.2

The benefits of the public good—1 each—are common knowledge, but
cach player’s cost is known only to that player. However, both players
believe it is common knowledge that the ¢; are drawn independently from
the same continuous and strictly increasing cumulative distribution func-
tion, P(-), on [¢,¢], where ¢ < 1 < ¢ (so P(¢) = 0 and P(¢) = 1). The cost
c; 1s player i’s “type.”

A pure strategy in this game is a function s,(c;) from [¢,7] into {0, 1},
where 1 means “contribute” and 0 means “don’t contribute.” Player i’s
payoff is

w88, ¢} = max(s,,s,) — ¢;s

(Note that player i's payoff does not depend c;j #1L)

A Bayesian cquilibrium is a pair of strategies (s¥(-),s%(-)) such that,
for each player i and every possible value of c,, strategy s¥*(c;) maximizes
E. ui(s; sf(c)),c;). Let z; = Prob(s}(c;) = 1) be the cquilibrium probability
that player j contributes. To maximize his expected payoff, player i will
contribute if his cost ¢; is less than 1-(1 — z;), which is his benefit from the
public good times the probability that player j does not contribute. Thus,
stle;) = Tif¢e; < 1 — z;, and conversely, s}(¢,) = 0if¢; > 1 — z,.® This shows
that the types of player i who contribute lic in an interval [c,c}]: Player i
contributes only if his cost is sufficiently low. (We adopt the convention that
[c.c¥] is empty if ¢} < ¢.) Similarly, player j contributes if and only if
c;€ [c.cf] for some ¢}, Such “monotonicity” propertics are frequent in
economic applications; they will be useful in characterizing Bayesian equi-
libria in section 6.5, and they will be developed in more detail in chapter 7.

Since z; = Prob(c < ¢; < ¢¥) = P(ct), the equilibrium cutoff levels ¢*
must satisfy ¢ = | — P(c}). Thus, ¢¥ and ¢% must both satisfy the equation

2. The important feature of this game as a model of the provision of public goads is that if
both players choose to contribute they both pay the full cost, as opposed to sharing the cost
equally. One in interpretation of this model is that the two players belong to a committee. If
cither player attends the committee’s meeting, the outcome is the one both prefer; if neither
attends, the outcome is bad for both. The time to attend the meeting costs ¢, utils.

3 Typec; = 1 z;isindifferent between contributing and not contributing, but since P(-}is
continuous the prabability of this (or any) particular type is 0.



¢*¥ = 1 — P(1 — P(c*)). If there is a unique c* that solves this equation, then
necessarily ¢¥ = ¢* = 1 — P(c*). For instance, if P is uniform on [0,2]
(P{c) = ¢/2), then c* is unique and is equal to 5. (As a check on the analysis,
note that if a player does not contribute his expected payoff is P(c*) = §,
and if a player with cost ¢* contributes his payoff is 1 — c¢* = 1.) A player
does not contribute if his cost belongs to (4, 1) even though his cost of
providing the good is less than his benefit, and even though there is
probability 1 — P(c*) = 3 that the good will not be supplied by the other
player.

If, instead of ¢ = 0, we suppose that ¢ > 1 — P(1), the game has two
asymmetric Nash equilibria. In these equilibria, one player never con-
tributes and the other player contributes for all ¢ < 1. For instance, the
equilibrium where player 1 never contributes i1s ¢¥ =1 — P(1) < ¢, and
¢¥ = |. The player who never contributes prefers not to, as his minimum
cost of ¢ exceeds the gain of 1-(1 — P(1)) from increased supply of the good;
the player who contributes for all ¢ < 1 is playing optimally in view of
the fact that if he does not contribute there is probability 0 of obtaining
the public good.

6.3 The Notions of Type and Strategy’

In the examples of sections 6.1 and 6.2, a player’s “type”—his private
information  was simply his cost. More generally, the “type” of a player
embodies any private information (more precisely, any information that is
not common knowledge to all players) that is relevant to the player's
decision making. This may include, in addition to the player’s payoff
function, his beliefs about other players’ payolf functions, his belicfs about
what other players believe his beliefs are, and so on.

We have already seen examples where the players’ types are identified
with their payoff functions. For an example where the type includes more
than this, consider disarmament talks between two negotiators. Player 2's
objective function is public information; player ! is uncertain whether
player 2 knows player 1's objectives. To model this, suppose that player 1
has two possible types a “tough™ type, who prefers no agreement to
making substantial concessions, and a “weak” type, who prefers any agree-
ment to none at all—and that the probability that player 1 is tough is p,.
Furthermore, suppose that player 2 has two types —“informed,” who ob-
serves player 1's type, and “uninformed,” who does not observe player I's
type. The probability that player 2 is informed is p,, and player 1 does not
observe player 2’s type.

It is easy to construct more complicated versions of this game where,
say, player 1's prior beliefs about player 2 can be either p, or p3, and



player 2 docs not know which. In practice, though, these sorts of complica-
tions make the models difficult to work with, and in most applications
a player’s beliefs about his opponent are assumed to be completely de-
termined by his own payoff function.

More generally, Harsanyi assumed that the players’ types {6,}]., arc
drawn from some objective distribution p(0,,...,6,), where 6, belongs to
some space ©;. For simplicity, let us assume that ®, has a finite number
# 0, of clements. 6, is observed by player i only. p(6_,|9,) denotes player
i’s conditional probability about his opponent’s types 6_;, = (0,,...,0,_,,
:41,...,6y) given his type 6;. Wc assume that the marginal p,(6;) on each
type t; € ©, 1s strictly positive.

To complete the description of a Bayesian game, we must specify a
pure-strategy space S; (with elements s;, and mixed strategies g, € £,) and
a payoff function u,(s,...,s;, 8,,....0;) foreach player i.* Asin the previous
chapters, the usual interpretation is that all the exogenous data of the
gamc  —the strategy spaces, payoff functions, possible types, and prior
distributions —are “common knowledge” in an informal sense (i.c., every
player knows them, knows that everybody knows them, and so on). In other
words, any initial private information that a playcr may have is included
in the description of his type.®

As usual, these strategy spaces are abstract objects which may be con-
tingent plans in some extensive-form game, but for the time being it may
be easiest to think of the strategy spaces S; as representing choices of
(uncontingent) actions. Paralleling our development of concepts in parts |
and [I, we will begin by discussing the solution concepts of Nash equi-
librium and iterated strict dominance, which are often strong enough for
reasonable predictions in static games but which are typically too weak
for strong predictions in dynamic games. Chapters 8 and 11 develop
“equilibrium refinements” for dynamic games of incomplete information.

Since each player’s choice of strategy can depend on his type, we let ,(6,)
denote the (possibly mixed) strategy player i chooses when his type is 8,. If
player i knew the strategies {o,(-)},,; of the other playcrs as a function of
their type, player i could usc his beliefs p(9_;|0,) to compute the expected
utility to each choice and thus find his optimal response ¢,(8,). (Aumann
(1964) pointed out that there are technical (measurability) problems with
this way of modeling strategies when there is a continuum of types. We will
say more about this at the end of this chapter when we discuss the work of
Milgrom and Weber (1986}.)

4. Asin carlicr chapters, we allow the payoff functions 1o be expectations over moves by nature
{random variables) not known by any player when the players pick their stratcgaes.

5. For more on this, see Mertens and Zamir 1985 and chapter 3 of Mertens, Sorin, and Zamir
1990,



6.4 Bayesian Equilibrium’

Dcfinition 6.1 A Bayesian equilibrium in a game of incomplete information
with a finite number of types 6, for ecach player i, prior distribution p, and
pure-strategy spaces S; is a Nash equilibrium of the “expanded game” in
which cach player i's space of pure strategies is the sct SO of maps from
0,10 8,.°

Ciiven a strategy profile s(-), and an s{(-) € 1, let (s{(*),s () denote
the profile where player i plays s;(-) and the other players follow s(-), and let

(51005 0-0) = (5,008 ((0,11,5100), 54181 -, 5:(04))

denote the value of this profile at & = (6;,6_;). Then, profile s(-) is a (pure-
strategy) Bayesian equilibrium if, for each player i,
s.(+) € arg max y Z P8, 0 Ju(si(0;),s_,(0_),(6,,8_,)).
st e S i

Because cach type has positive probability, this ex ante formulation is
equivalent to player i maximizing his expected utility conditional on 6, for
cach 0;:

s(t}) € arg max Z pl0 10)u(s!,s_(6_;),(6;,6_)).
s, e8;

The existence of a Bayesian equilibrium is an immediate consequence of
the Nash existence theorem. (Since Bayesian equilibrium, like Nash equi-
librium, is essentially a consistency check, players’ beliefs about others’
beliefs do not enter the definition —ail that matters is each player's own
beliefs about the distribution of types and his opponents’ type-contingent
strategics. Beliefs about beliefs, and so on, become relevant when one is
considering the likelihood that play resembles a Bayesian equilibrium, and
when one is considering equilibrium refinements.)

6.5 Further Examples of Bayesian Equilibria™

This section sketches the analyses of several Bayesian games. Although the
first cxample is straightforward, the details of the other examples become
somewhat involved, and many rcaders may wish to skip them. However,
we refer to several of them in section 6.7.

Example 6.2: Cournot Competition with Incomplete Information
Consider a duopoly playing Cournot (quantity) competition. Let firm i's
profit be quadratic: u; = g,(6; — ¢; — ¢;), where 6, is the difference between

6. The “expanded game™ here closely parallels the expanded game used in describing corre-
lated equilibrium in section 2.2.



the intercept of the linear demand curve and firm i's constant unit cost
(i — 1.2)and where g, is the quantity chosen by firm i (s; = g,). It is common
knowledge that, for firm 1. ¢, = 1 (“firm 2 has complete information about
firm 1" or “firm 1 has only onc potential type”). Firm 2, however. has
private information about its unit cost. Firm 1 belicves that ¢, = 2 with
probability ; and #, =} with probability !, and this belief is common
knowledge. Thus, firm 2 has two potential types, which we will call the
“low-cost type™ {0, = 3) and the “high-cost type” (0, = 3). The two firms
choosc their outputs simultaneously.

I.et us look for a pure-strategy equilibrium of this game. We denote firm
I's output by g,, firm 2's output when 0, = J by g%, and firm 2’s output
when 1, — 3 by ¢%. Firm 2's equilibrium choice ¢,(6,) must satisfy

q2(0y) € argmax {q,(0, — q, - q,)} = 4,(0,) = (8, — ¢,)/2.

LBl
Firm | does not know which type of firm 2 it faces, so its payoff is the
cxpected value over firm 2's types:

(f; Cdargmax '{541“ -4y — q?) + é‘h“ — 4y - ‘[Ii)}

41
IO e
! 4

Plugging in for ¢,(0,), we obtain (q, = 1/3,q% = 11/24,9¥ = 5/24) as a
Bayesian equilibrium. (In fact, this is the unique equilibrium.)

Example 6.3: War of Attrition

Consider an incomplete-information version of the war of attrition dis-
cussed in chapter 4. Player i chooses a number s; in [0, + «). Both players
choose simultaneously. The payolls are

8, ifs; > s,

u, = ,
' {H[ —s; ifs; <,

Player i’s type, {;, is private information, and takes values in [0, + c0) with
cumulative distribution P and density p. Types arc independent between
the players. 0, 1s the prize received by the winner (i.e., the player whose s
is highest). The game resembles a second-bid auction in that the winner
pays the second bid. However, it differs from the second-bid auction in that
the loser also pays the second bid.

Letus look for a (pure-strategy) Bayesian equilibrium (s, (-). 5,(-)) of this
game. For each @, 5,(6,) must satisfy

Sy

s;(0;) € arg max {—si Prob(s;(t),) > s;)

+ [ (6 — Sj(gj))pj(gj)dej}» (6.1)
Bsd0)<st

v o



We will loak for profiles in which each player’s strategy is a strictly
increasing and continuous function of his type. In fact, it can be shown that
every equilibrium profile satisfies these properties. To see that equilibrium
stratcgies must be nondecreasing, notice that equilibrium requires that type
(0 prefer s; = s,(0)) to s7 = s{8/") and that type " prefer s/ to s;. Thus,

0! Probis;(0h) < s;) — s; Prob(s{(0)) = s;) - J s;(6,)p6,) db;
8l 08,0 <s;)

> Probis,if) < s7) s/ Prob(s;(6)) > s7) — J 5,(0,)p;(0;) d6,,

10 ls (0 <)

and

07 Prob(s;(t)) < s7) — s; Prob{s;(6;) = s;") — j s;(6)p;(6,) db;
{8,1s;18,)<s; |

> (1" Probis;(th) < s7) — s; Prob(s;((}) > s) f s;(6;}p;(6;) db;.
{01500 ) <5}

Subtracting the right-hand side of the second incquality from the left-hand
side of the first, and subtracting the left-hand side of the second incquality
from the right-hand side of the first, yields

(07 — 6))[Prob(s;(t) = s;) — Prob(s;(0;) = s;')] = 0,

so s/ > 5 if #7 > .. (This is the monotonicity property mentioned in
cxample 6.1))

The argument that strategics must be strictly increasing and continuous
is more involved, and we will only give the intuition. First, if strategies were
not strictly increasing, there would be an “atom™ at somec s > 0, i.e, an s
such that Prob(s;(0;,) = s) > 0. In this case, player would assign probability
0 to the interval (s — &, s) for £ small, as she does better playing just above s
(this argument is a bit loose, but can be made rigorous). Thus, the types of
player j that play s would be better off playing s — ¢, because this would not
reduce the probability of winning and would lead to reduced cost, so there
cannot be an atom at s after all. A similar intuition underlies the argument
that strategies must be continuous. If they were discontinuous, then there
would bean's’ > 0 and an 5” > s* such that Prob(s;{#) € [s",s"]) = 0 while
s;(0) = s + ¢ for some small ¢ < 0 for some 6;. In this case, player i strictly
prefers s; = s’ to any s; € (s, 5”), as the probability of winning is the same
and the expected cost is reduced. But then quitting “at or just beyond” 5"
is not optimal for player j with type éj.



Let us look for a strictly increasing, continuous function s; with inverse
®; that is, ®,(s;) is the type that plays s;. Transforming the variable of
integration from ¢; to s; in equation 6.1 {using the formula for the transfor-
mation of the densities’) gives

s;(f)) € arg max {—Se(l — B(@y(s))

Sy

+ .[ 0, — sj)p,(cbj(sj})m;(s,.)dsj}. (6.2)
0

The corresponding first-order conditions are that type §; cannot increase
its payoff by playing s; + ds; instcad of 5; where s; = 5,(0;). This change costs
ds;if player j playsabove s; + ds;, which has probability 1 — P(®y(s; + ds,));
thus, the expected incremental cost is (1 — P(®;(s;))) ds; to the first order
in ds;. The change yields a gain of 0, = ®,(s;) if player j plays in the interval
[5: 8 + ds;). which occurs if 8, is the intcrval [®(s;), D;(s; + ds;)): this has
probability p;(®,(s,))®;(s;) ds;. Equating the costs and benefits, we obtain
the first-order conditions®

D5 )p(Ris,NDi(s;) = 1 — PADs,)). (6.3}

7. If random variable x has density p(x) and f: X - Y is one-10-one, then y = f(x) has density
y gtven by

_optf

= pUf T NS ().

gi{y)
¥. Let us show that the global second-order conditions arc satisfied if the first-order conditions
are. Let Uiis;, 0)) denote the maximand in equation 6.2. Note that

4"‘)(f,

a0,

= P D, (5))D(s,) > 0.

Suppose that there exist a type 8, and a strategy s/ such that
Uis ) > Uids, (),

where s, —= s,(0),). This implies that

" LH (s.6)ds > 0.

-
o
v 5

Or. using the first-order condition {¢U,/és){s, ®,(s)) = O for all s,

s, .!U ‘:va
(r‘ ‘s, 0y — (-;-"IS.Q),»LS‘)))(I.S =0
J ey ’s
or
\' o, ’~_2 (}»
j J . {5, dbds > 0.
v Ja OSC

If. for instance, 5; > 5;. then ®y(s) > & for all s e (s;,5;], and the last inequality cannot hold.
And simtlarly for 5] < 5. So s; is globally optimal for type 6,.



Next, we suppose that P, = P, = P, and look for a symmetric equi-
librium. Substituting 0 = ®(s) in equation 6.3, and using the fact that
& = 1/5"." we have

0 p(0)
S0y = - .
s'(0) | _ PO (6.4a)
or
~ o .
(o) :J ( xp (i",.)dx, (6.4b)
o A\ — Pix)

where the constant of integration is determined by s(0) = 0: Types with O
value for the good are unwilling to fight for it.

We leave it to the reader to check that, for a symmetric exponen-
tial distribution P(8) = | — exp(— 60), there exists a symmetric equilibrium:
Md(s) = \,/23-., which corresponds to s(6) = #%/2. (Riley (1980) shows that
there also exists a continuum of asymmetric equilibria: @, (s,) = K\,-’/s1 and
®,(s;) = (2/K) /s, for K > 0

Aside We can give this war of attrition the following industriai-
organization interpretation: Suppose that there are two firms in the market.
Each firm loses 1 per unit of time when they compete. They make a
monopoly profit when their opponents have left the market, the present
discounted value of which is 6,. (More realistically, we could allow the
duopoly and monopoly profit to be correlated, but this would not change
the results very much.) Then, s, is the length of time firm i intends to stay
in the market, if firm j has not exited before.'® 1"

Example 6.4: Double Auction

In a double auction, potential sellers and buyers of a single good move
simultancously, with the sellers submitting asking prices and the buyers
submitting bids. An auctioneer then chooses a price p that clears the
market: All the sellers who ask less than p sell, all the buyers who bid more

9. This is the inverse-function theorem.

10, Sce chapter 4 for an introduction to the symmetric-information war of attrition. The
incamplete-information war of attrition was introduced in the theoretical biology literature
by Bishop, Cannings, and Maynard Smith {1978), and extended by Riley (1980), Kreps and
Wilson (1982), Nalebuff (1982), Nalebufl and Riley (1983), and Bliss and Nalebuff (1984). For
a characterization of the sel of equilibria and a uniqueness result with non stationary flow
payolls and/or large uncertainty over types, sec Fudenberg and Tirole 1986.

11. Some readers may wonder whether the concept of Nash equilibrium is sufficiently strong
for this dynamic interpretation of the game and whether a stronger equilibrium concept might
reduce this multiplicity. In our study of the stationary complete-information war of attrition
in chapter 4, we saw that all the Nash equilibria are subgame perfect. Simitarly, the multiple
cquilibria just described satisfy the concept of perfect Bayesian equilibrium we intraduce in
chapter 8. (They trivially satisfy the concept of subgame perfection introduced in chapter 3,
as the only proper subgame is the game itself.)



than p buy, and the total number of units supplied at pricc p equals the
number demanded. (Any buycrs or sellers who named exactly p are in-
different, and thetr allocations are chosen so that the quantity demanded
equals the quantity supplied.)

Chatterjee and Samuelson (1983) consider the simplest example of a
double auction, in which a single scller and a single buyer may trade 0 or
Funit of a good. The seller (player 1) has cost ¢, and the buyer (player 2)
has valuation v, where v and ¢ belong to the interval [0, 1]. The seller
and the buyer simultancously choose bids b, b, € [0,1]. If b, < h,, the
two parties trade at price t = (b, + b,)/2.'2 If b, > b,, the parties do not
trade the good and do not transfer money. The seller’s utility is thus
u, = (b + b,)/2 —c if by < b,, and 0 if b, > b,; the buyer’s utlhty is
u; =0 — (b, + b,)21f b, <b,,and 0if b, > b,.

Under symmetric information (that is, with v and ¢ common knowledge
when the two parties bid), this is known as the Nash (1953) demand game.
If we assume v > ¢ to make things interesting, the symmetric-information
game has a continuum of pure-strategy, efficient equilibria in which the two
partics bid the same amount: by = b, = t € [¢,v]. In such equilibria the two
traders realize positive surplus. If either tries to be more greedy (the seller
asks for more than ¢ or the buyer bids less than t), trade does not occur.
There are also inefficient equilibria, in which the partics make nonserious
offers: The seller asks for more than v and the buyer bids less than ¢.!3

Now consider asymmetric information, where the seller’s cost is distrib-
uted according to distribution P, in [0, 1] and the buyer's valuation has
distribution P, on the same interval. These distributions are common
knowledge. Chatterjee and Samuelson look for a pure-strategy equilibrium
(s((- ) s2{)) where s, and s, map [0, 1]into [0, |]. Let F,(-)and F,(-)denote
the equilibrium cumulative distributions of the seller’s and the buyer’s bids,
respectively. That is, F,(b) is the probability that the seller has a cost that
induces him to bid less than b:

F,(h) = Prob(s,(c) < b).

And similarly for the buyer.

For types who trade with positive probability, cquilibrium bids are
necessarily increasing in type. Consider for instance two costs, ¢’ and ¢”,
for the scller, and let b = s,(c¢") and b; = s,(c"). Then optimization by the
sclier requires that

1 p
J (”1 +by _ )dF (b2}>f (h *+ b, c’)sz(bz)
", 2 b 2

12. Chatterjee and Samuelson thus assume that the pdrtles split the gains from the trade. More
generally, the price in 4 two-player double auction is set at kb, + (1 — k)b,, wherc k € [0,1].
13. See exercise 1.3 for Nash’s suggestion on how to sclect dmong equilibria.




and

Vb4t b+ b
J‘ ( | i’ ] (yf) sz(bz) > j (1___’; 2_' _ C”) sz(bz}
by b, <

Combining these inequalities gives
(" = ¢ )LFa(h]) — Fy(b))] = 0,

so that by = b; if ¢” > ¢’.** And similarly for the buyer.

Chatterjee and Samuelson require further that each player’s strategy as
a lunction of his type be strictly increasing and continuously differentiable.
The maximization problem of the type-c seller is then

™ b
Max ' (h]: 2—~(‘)sz(}72),

by v by

which implies that either

(y [ = Fylse)] — (se) — O fofsi(€)) = 0
or

iy L[ — Fals ()] — (510¢) = Ofa(s()y > O and 5, (¢) = |
or

(i) 11— Falsi(e)] — (51(¢) — O)fals, () < 0 and 5,(c) = 0.

Since F,{1) = 1 and F,(0) = 0, the boundary constraints s, € [0, 1] do not
bind and the relevant condition is i. Note that for cost ¢ above the highest
buyer bid s, the seller’s optimal bid is any s, > §,, and all such bids satisfy
the seller’s first-order condition, since for these bids both f,(s,(c)) and
I - F,(s,(c)) equal 0. (Similar remarks apply to the buyer's first-order
condition below.) Note that this first-order condition yields the same for-
mula as for a monopoly seller, except that when the seller raises his price
by ! the trading price increases by } instead of 1. We have an analogous
formula for the buyer:

bz bl b7 . . . \
Max f (l‘ - ; -')dh(bl):’[v ~ 5,(0)111(52(0)) = 5 F, (52(0)).

b 0

Suppose now, following Chatterjee and Samuelson, that P, and P, are
uniform distributions on [0, 1], and look for linear strategics, so that

siey =2, + fByc

(4. To make this conclusion rigorous, we observe that F,{by) = F,(b}) < | isimpossible: Type
¢ of the seller would be better off asking the higher price because this would not affect the
probability of trade, and trade would take place at a higher price when 1t does.



and
Sy(0) =25 + fi50.
Then
Filb) = Pis; (b)) = s, '(b) = (b — w)/f;
and
filhy = 1/B;.
Plugging this into the first-order conditions yields
2[ay + (fy = Del/By = [, — (2y + Byo) + a,1/B
and
2[00 = fo)v — 2, )/, = (2z + Bov — /B,

Since these equations must hold for all ¢ and v, we can identify the constant
terms and coeflicients of ¢ and v on the two sides of these, obtaining

208, — )= —B,.
2(1 — ;) = B,

20, = fi, —a, + a5,
— 20, =, —ay.

Solving this system, we have

ﬁl = ﬁz = %
1

Ay = 4.

% =i

With these strategies, player 1’s bid of 1 + 3¢ is less than his cost if ¢ > 2.
However, for costs in this range, s,(c) also exceeds 3, which is player 2’s
maximum bid, so player 1’s strategy never leads him to sell at a price below
his cost. Similarly, player 2’s bid exceeds his valuation when v < , but
again for such bids trade never takes place.

I[n equilibrium the parties trade if and only if o, + B,v > «, + f,c, or
v > ¢ + ;. Comparing with the ex post efficient trading pattern (trade if and
only if v > ¢), we conclude that there is too little trading in equilibrium.

As one would expect from the symmetric-information case, there are
other equilibria in this double auction. In particular, both parties making
nonserious offers (b, = 1 and b, = 0) is an equilibrium. There also exists a
continuum of “single-price” equilibria at b € [0, 1]. The seller asks bif ¢ < b
and ! if ¢ > b, and the buyer offers b if v > b and 0 if v < b. Because



the price is “fixed™ at b if trade takes place, no player has any incentive
to deviate. More interestingly, Leininger, Linhart, and Radner (1989) show
that there exists a one-parameter continuum of differentiable and sym-
metric (but nonlinear) equilibrium strategies. (There exists a two-parameter
continuum of differentiable, asymmetric equilibrium strategies; see Sat-
terthwaite and Williams 1989.) Leininger et al. also show existence of other,
discontinuous equilibria.

Example 6.5: First-Price Auction with a Continuum of Types (technical)
In a first-price auction, the bidder who offers the highest price gets the good
and pays his bid (in contrast with the second-price auction analyzed in
subsection 1.1.3, in which the highest bidder pays the second highest bid);
the other bidders do not pay anything. In this example, we study the
equilibria of two-bidder. symmetric-uncertainty first-price auctions when
the valuations belong to an interval; the next example considers the same
game when each valuation belongs to a two-point set. The point of going
through two examples of first-price auctions is to illustrate the different
techniques used to solve the continuous and discrete cases. (The analysis
of the first example is fairly complicated.) There are two bidders, i = 1.2,
and one unit of a good for sale. Player i’s valuation is ¢; and belongs to
L, 17], where 0 > 0. Each player knows his own valuation and has beliefs
P with positive density p on [#,6] about his rival’s valuation. The valua-
tions are independent. The seller imposes a reservation price s, > ., mean-
ing that bids below s, are rejected. Player i’s bid is s,. The utility of player
. s il s; > s;and s, = sgnitis w; = 0if s, < 5, 01 8; < 8. If both
players bid the same amount, we assume that cach gets the good with
probability : If 5, = 5, > 5o, u; = (6; — 5,)/2. Let 5,(*) denote the (pure)
cyuilibrium strategy of player i. (We leave it to the reader to show that s;
is increasing in 6, by following the steps of the monotonicity proofs in
examples 6.3 and 6.4

Bayesian equilibrium strategies can be characterized intuitively as fol-
lows.!S First, note that a player with valuation less than s, does not bid
(or, rather, bids less than s,). Second, as in the war of attrition, show that
the strategics have no atoms at bids greater than s,. Next, argue that the
stralegies have no “gaps.” Suppose that player i, whatever his type, does
not bid in the interval | s; , s ], where s; > s,, but there are types of player
i who bid s/ or arbitrarily close to s; . Then player j, whatever his type,
ought not to bid s, € (s; ,s;): Starting from any such s;, if player j reduces
his bid slightly, he does not affect his probability of winning, and he reduces
the price he pays when he wins. But then a type of player i who bids s or

isu, -0

15. The {rigorous) characterization is given in Maskin and Riley 1986a. The styke of proof that
the distribution of bids has no atoms and that the strategies are strictly incrcasing is also
common in search theory (e.g., Butters 1977) and in wars of attrition (e.g., Fudenberg and
Tirole 1986).



arbitrarily close to s would be better off bidding just above s, as he would
reduce his probability of winning by an infinitesimal amount (recall that
player i has no atom at s} and would substantially reduce his payment
when winning.

In this manner one can show that the strategics are continuous and
strictly increasing beyond s,. It is easy to sec that s(0) = sj(é) =5 (If
5(61) > 5,(0), then type & of player i could lower his bid slightly and still win
the auction with probability 1.) Let 6, = ®,(s) denote the inversc function
of 5;(-) on (sq, s]. That is, player i bids s when his valuation is ®,(s). The
function ®(-)is differentiable almost everywhere because it is monotonic.

Type #; maximizes (6, — s)P(®,(s)) over s. This yields

P;(s)) = [®y(5) — s1p(®,() V() (6.5)

Equation (6.5) and the symmetric equation obtained by switching i and j
yield two first-order differential equations in the functions @, () and ®,(-).
L.et G;(-) denote the cumulative distribution of bids, G(s) = P(D(s)), with
density g,(s) = p(D,(s))D;(s). Equation 6.5 can then be rewritten as

Gyis) = [®(s) — 5]g(s) (6.6)

Note the analogy with monopoly pricing: A unit increase in price raises
revenue by the expected probability of winning, Gy(s), but the bidder’s
surplus (®,(s) — s) is lost with probability g,(s).

We now investigate the boundary conditions for equation 6.5. Recall
that ®(s) = 6 for all i. Further, lim,,, ®,(s) = s, for at least some i. (Sup-
posc both players have atoms at sy, i.e., that types 8, € (5,5, + a;], 4, > 0,
bid s, for i = 1, 2. Then type sy + a; of player i could bid slightly more than
sy and increase its probability of winning by a nonnegligible amount.) So
these two boundary conditions might seem to pin down a unique solution
to equation 6.5.

Although the solution is indeed unique, the reasoning is a bit more
complex than this, because @; in equation 6.5 is not Lipschitz continuous
at sq if @,(sy) = 5,.'® Integrating equation 6.5 yields

Int (P20 _ J (—»-l S 1-—) dx. (6.7)
P(D,(s)) s \WDy(x)—x D (x)—x
Equation 6.5 shows that if ®,(s) = ®,(s) for some s e (s,,5], then the
solution is symmetric: @, (s) = ®,(s) for all s € (5,,5] (and, by continuity,
for s = s as well). Can there exist an asymmetric solution? By the previous
reasoning, ®,(s) # ®,(s) for all s in (s4,5]. Suppose that, without loss of

16. That is, the slope of ®, goes 10 infinity. Standard results on the uniqueness of solutions to
differential equations require Lipschitz continuity. The war of attrition of example 6.3 is not
Lipschitzcontinuous at s — 0, which is why it is possible for the system represented in equation
6.3 to have multiple solutions.



generality, ®,(s) > @, (s) for all s in (sy, s]. Then equation 6.7 implies that
P(M,(s))/P(d,(s)})is greater than 1 and increases from s to’s. Henee 1t cannot
converge to 1 at s, a contradiction.
We conclude that any cquilibrium is symmetric, which implies that there
is no atom at s,. From equation 6.5, @, = ®, = ® satisfies
S dx

In(P(P(s))) = — [ O(x) — x (6.8)

[y

T'o show that there exists a unique equilibrium it suffices to note that there
exists a unique 5 such that, if ®(-) is given by equation 6.8, then ®(s,) =
S0

We thus conclude that as long as s, > @ there is a unique solution; it is
symmelric and satisfics P(®(s)) = [D(s) — s]p(P(s))P'(s) and D(sy) = 5.

The equilibrium strategy s(-) is the inverse of the function ®(-).

Example 6.6: First-Price Auction with Two Types

As a last example, we analyze cquilibrium in the first-price auction (sce
cxample 6.5) when each of two bidders has one of two possible valuations,
¢ and @ (with 0 < 0). The valuations are independent; let p and p denote
the probability that 6, equals @ and ¢, respectively (with p + 7=1). To
make things interesting, assume that the seller’s reservation price or mini-
mum bid is lower than . The new technical twist when the support of the
distribution of types is discrete rather than continuous is that players must
play a4 mixed strategy in equilibrium.

We look for an equilibrium where, for each player, type 8 bids ¢ and type
¢ randomizes according to the continuous distribution F(s) on [s,s]. (It
can be shown that the equilibrium is unique.) Clearly, s = #: If s > 8, then
a player with valuation 8 would be better off bidding just above 8 rather
than bidding s (or close to s), as this would not reduce his probability of
winning and would reduce his payment when he wins. In order for player
i with type @ to play a mixed strategy with support [s,s], it must be the
case that

Vse[s,s], (0 — s)[ p + pF(s)] = constant. (6.9)

(Type s expected payoll is not affected by bids he makes with probability
0. Thus, cven though playing s with positive probability will result 1n a
lower expected payoff because it risks tying with type 6, bid s can sull
belong to the support of type 8’s equilibrium strategy.'*) Because F() = 0,
the constant is equal to (f — ) p. Thus, F(-) is defined by

17. The proof is similar to that proving that there cannot be asymmetric equilibria: Consider
two highest bids, §' > 52, and let ®' and ®? denote the corresponding solutions. Then
P2(s?) - 0 > D'(52). For any s < 52, P(®*(s))/P(®'(s)) is greater than 1 and is decreasing.
Hence, P(D2(5))/P(D!(s)) cannot converge to 1 when s converges to s,.

1%. Recall that the support of a probability distribution is the smallest closed set that has
probability .



(0 —s)[p+PpFisI=(8 — 0)p. (6.10)

Letting G(s) = P + PF(s) denote the cumulative distribution of bids for
s > 0, we can rewrite cquation 6.10 as

() — $)G(s) = (0 — 8) p. (6.11)
Last, F(s) = | implies that
() —3)=(0 - 0)p,ors = pb + po. (6.12)

Since the seller’s reservation price is below 8, trade always takes place,
and the scller’s expected profit is equal to the expected social surplus minus
the expected utility of the bidders. Expected social surplus is equal to
p*0l + (1 - p?)0. Each bidder’s net utility is O when he has type 0 and
plf)  0) when he has type 8. (Because type 8 is indifferent among bids in
(€, 5], his utility can be computed by assuming he bids just above 8, in which
case he wins with probability p.)

Itisinteresting to note that both expected social surplus and the bidders’
utility (and therefore the seller’s expected profit) are the same as in the
second-price auction studied in chapter 1. This fact, known as the revenue-
equivalence theorem, would also hold in the continuous case of example 6.5.
(We will see in chapter 7 that the first-price and second-price auctions do
not maximize the seller’s expected revenue in the two-type case; they do
maximize revenue under some conditions in the continuum case.)

6.6 Deletion of Strictly Dominated Strategies'"

6.6.1 Interim vs. Ex Ante Dominance

If player i, instead of knowing the type-contingent strategies of his oppo-
nents, must try to predict them, then player i must be concerned with how
player j # i thinks player i would play for each possible type player i might
have. And player i must also try to estimate player j's beliefs about player
I's type, in order to predict the distribution of strategies that player i expects
to face.

This brings us to the question of how the players predict their opponents’
strategies, which in turn raises the following question: Should different
types fl, and 8; of player 1 be viewed simply as a way of describing different
information sets of a single player 1, who makes a type-contingent decision
at the ex ante stage (that is, before he learns his type)? This interpretation
seems natural in the Harsanyi formulation, which introduces a move by
naturc that determines the “type” of a single player 1. Alternatively, should
we think of 8, and ] as denoting two different “individuals,” one of whom
is selected by nature to “appear” when the game is played? In the first
interpretation, the single ex ante player 1 should be thought of as predicting



his opponents’ play at the ex anre stage, so all types of player 1 would make
the same prediction about the play of the other players. Under the second
interpretation, the “different individuals” corresponding to different 6,’s
would cach make their predictions at the “interim” stage (i.e., after learning
their type), and the different types could make different predictions. (This
second interpretation may become more plausible if we imagine that the
“types” correspond to aspects of preferences that are genetically deter-
mined, for here the “ex ante” stage is difficult to interpret literally.)

[t is inleresting to sec that iterated strict dominance is at least as strong
in the ex ante interpretation as in the interim interpretation and that the
ex ante interpretation yields strictly stronger predictions in some games.
To illustrate this, let us return to the public-good game of example 6.1.
Using the interim approach to dominance, we ask which strategies are
strictly dominated for player i when his cost is ¢;. Not contributing is not
dominated for any positive cost level, as it is always better not to contribute
if you expect that the opponent will contribute. However, if ¢; is greater
than the private benefit of the good, which is 1, then contributing is strictly
dominated for player i.

If the lowest possible cost, ¢, is greater than | — P(1), the deletion process
stops after only one round: For all types in [ ¢. 1], neither “contribute™ nor
“don’t contribute” is dominated. In particular, interim dominance docs not
preclude the situation where, for some ¢’ between ¢ and 1, all types in an
interval [¢,¢'] don’t contribute and all types in (c’, 1] do contribute-—the
types in [¢,¢’] will not contribute if they expect that their opponent will
contribute whenever his cost is less than 1, while the types in (¢’, 1] should
contribute if they expect that no type of their opponent wili contribute.

This situation could not arise in a Bayesian equilibrium, because, as we
saw. in any Bayesian equilibrium each player’s strategy must be a cutoff
rule of the form “contribute if and only if ¢; < ¢’ for some ¢".” That is, in
Bayesian equilibrium, if the type of player i with a given cost level con-
tributes, all player i’s types with lower costs must contribute as well.

The conclusion that players’ stratcgies must take the form of cutoff rules
also follows from applying strict dominance at the ex ante stage. To see
this. note that any strategy s,(-) for player i that has player i contribute with
probability z > 0 and is not a cutoff rule is strictly dominated ex ante by
the strategy that has player i contribute if and only if ¢; < ¢', where ¢’ 1s
defined by P(c’) = z. With this cutoff rule, for any strategy s;(-) of the
opponent, player i receives the public good with the same probability as
when using s;, and player i's expected cost of contributing is strictly lower.
The point is that if player i is a single individual optimizing against the play
of player j, then any belicfs about j’s strategy that make it attractive 1o
contribute with cost ¢’ also make it attractive to contribute for all lower
costs.



More generally, the reason that more strategies are dominated ex ante
than ex post is that, for a given type-contingent strategy é,(-) of player I,
it 1s easier to find a g, (") satisfying the ex ante dominance condition

Zplml) GZ Pf9—1|01)ul(Ulwl].vO'ﬂ(O—J,B)
>azpl[()1) HZ P(9—1|9|]“1(&1(91)a0—1(9-1)~ 0)

forallo_ (-)thanitistofindas, and a 8, that satisfy the interim constraints

,,Z pO_10)u,(s,,0 (6_,),0) > BZ p(0. 18, u,(6,(6,),a ,(6_,),6)

forall o_,(-). (One way of putting this is that the ex ante approach *“pools
the domination constraints™ and allows the use of “wasted slack” on some
constraints.) This difference does not arise when the Nash concept 1s used,
as Nash equilibrium supposes that all players make the same predictions
about the strategies that will be played, whereas dominance arguments
allow two players to make different predictions about the play of a third.

6.6.2 Examples of Iterated Strict Dominance

Now we present two examples of incomplete-information games where
itcrated dominance does lead to a unique prediction.

The first is the public-good game of example 6.1 when ¢ < 1 — P(1)and
there cxists a unique c* such that¢* = 1 — P(1 — P(c*)). Herc even interim
iterated dominance gives a unique prediction.

Recall that at the first round of iteration we concluded that no type with
cost over |1 would contribute. (Contributing is strictly dominated for all
¢;€(c',¢], where ¢! = 1.) At the second round, not contributing is strictly
dominatedforallc; € {c,c?), wherec? = 1 — P(1) = 1 — P(c'). In contrast,
the optimal strategy for types c; € [c?, ¢! ] depends on what types ¢;€[c?ce!]
do; hence, no strategy for these types can be eliminated in the second round.
In the third round, types close to 1 should not contribute, as the cost of con-
tributing is close to the private value of the public good, and there is a
probability of at least P(c?) that the other player contributes. Thus, 1if
¢; > ¢ =1 — P(c?), contributing is a strictly dominated strategy for player
i.and so on. [terating the process of deletion of strictly dominated strategies
yields, at stage 2k + 1 (k = 0,1,...), that contributing is a strictly dom-
inated strategy for types greater than ¢™*' =1 — P(¢?). And at stage
2k (k=1,2,..), not contributing is a strictly dominated stratcgy for
types lower than ¢?* =1 — P(c*™!). The sequences ey o1 and
1)<y 5. are strictly decreasing and strictly increasing, respectively.
Because they are bounded, they converge to two numbers ¢* and ¢~.
Because P is continuous, ¢ =1 — P(¢7) and ¢™ =1 — P(c*). If there is
a unique ¢* such that ¢* = 1 — P(1 — P(c*)), which is the condition for a
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unique Nash equilibrium, then ¢* = ¢~ = ¢* and the game is solvable by
{interim) iterated deletion of strictly dominated strategies.

In our second example, ex ante iterated dominance gives a unique predic-
tion. but interim iterated dominance does not.

Consider the game illustrated in figure 6.5. Player ! has two possible
types. /) and 0;, each of which has prior probability ;. Figure 6.5a displays
the payoff matrices corresponding to player 1’s two types; figure 6.5b shows
the strategic form for the imperfect-information game where player |
chooses type-contingent strategies. Here the first component of player 1’s
strategy is his play when he is of type 8}, and the second component is his
play when he is of type 8;; payoffs are obtained by taking the expected
value with respect to the prior distribution.

Using interim dominance, neither U nor D can be eliminated for either
type of player | —both types prefer U if player 2 plays L, and both prefer
D if player 2 plays R. And interim iterated dominance stops at this
point. However, when the two types of player 1 are equally likely, as 1s
assumed in figure 6.5b, the type-contingent strategy DU is strictly dom-
inated by UD in figure 6.5b. And once DU is dcleted for player I, L
dominates R for player 2. At the next round, UU dominates UD and
DD, and the unique outcome surviving ex ante iterated dominance is
(UU, L). (If the prior probability of 8] is 0.9, DU is not dominated by
UD.)



6.7 Using Bayesian Equilibria to Justify Mixed Equilibria’

6.7.1

Examples

[n chapter 1 we saw that simultaneous-move games of complete informa-
tion often admit mixed-strategy equilibria. Some researchers are unhappy
with this notion because, they argue, “real-world decision makers do not
flip coins.” However, as Harsanyi (1973) has shown, mixed-strategy equi-
libria of complete-information games can usually be interpreted as the
limits of pure-strategy equilibria of slightly perturbed games of incomplete
information. Indeed, we have already noticed that in a Bayesian game, once
the players’ type-contingent stratcgies have been computed, each player
bchaves as if he were facing mixed strategies by his opponents. (The
uncertainty arises through the distribution of types rather than through
“coin flips.”)

Example 6.7: “Grab the Dollar”

Toillustrate the mechanics of this construction, let us consider a one-period
variant of the “grab the dollar” game introduced in chapter 4. Each player
has two possible actions: invest (“grab”) and don’t invest. In the complete-
information version of the game, a firm gains 1 if it is the only one to invest,
loses 1 1f both invest, and breaks even if it does not invest. (We can view
this game as an extremely crude representation of entry into a natural-
monopoly market) The only symmetric equilibrium is that each firm
invests with probability 5. This clearly is an equilibrium, as cach firm makes
(0 if it does not invest and 3(1) + 4(—1) = 0 if it does. Now consider the
same game with the following type of incomplete information: Each firm
has the same payoff structure, except that when it wins it gets (1 + 6,), where
#; is uniformly distributed on [ —¢,¢]. Each firm knows its type, 0,, but
not that of the other firm. Now, it is easily seen that the symmetric pure
strategies “s;(6; < 0) = do not invest, s,(6; > 0) = invest” form a Bayesian
equitibrium. From the point of view of each firm, the other firm invests
with probability }. Thus, the firm should invest if and only if
31+ 6,) + 5(—1) = 0; that is, 6§, > 0. Last, note that, when ¢ converges to
0, the pure-strategy Bayesian equilibrium converges to the mixed-strategy
Nash equilibrium of the complete-information game.

Example 6.8: War of Attrition®’
As another example, consider the symmetric war of attrition. Suppose that,
in example 6.3, it is common knowledge that the payoffs are

s ifs; > s;
(s, 5;) = b
—s; s <,

This game has asymmetric equilibria (for instance, firm 1 always stays in,



and firm 2 always exits in the natural-monopoly interpretation). But there
is a single symmetric equilibrium, which is in mixed strategies. Each player
uses the distribution function F(s) = 1 — exp(—s/é), with corresponding
density f(s) = (l,"é)exp(ws/’é); the hazard rate for this density—i.e., the
probability that a player stops between s and s + ds conditional on not
stopping before s -is ds/f. That this profile is an equilibrium results from
the fact that the expected gain of staying in ds more is 8- (ds/f), which
equals the cost of ds. At each instant, conditional on both players stili
fighting, each player’s valuation from that date on (which does not include
the sunk cost of having fought to that date) is equal to 0, so the player is
indifferent between fighting and quitting.

Can this mixed-strategy equilibrium be purified? That is, does there exist
a sequence of continuous distributions of types that weakly converge toa
point mass at 8, and such that each type plays a pure strategy and the
equilibrium distributions of actions converge to the one associated with
the mixed-strategy equilibrium of the complete-information game?

Consider a sequence of symmetric densities p"(+) on [0, oc), with cumu-
lative distribution functions P*(-) such that P"(0) = 0 and such that, for ali
e >0,

im [P0 +¢) — P — )] = L
Let s"(-) be the symmetric-equilibrium strategy corresponding to p", and
let ®" be the inverse of s”.

Integrating equation 6.3 (the first-order condition for maximization)
shows that

PH{DNs) =1 — exp(—j db/'(I)"(b)). (6.13)
0

Since P"(0 - ¢) converges to 0, and P — ¢ = P"(d)"(s"((} — &), equa-
tion 6.13 implies that s"(H — ¢) converges to 0 for all ¢ > 0. Similarly, one
can show that s"(f + &) converges to infinity. Hence, for any s > 0 and
Le (0.9),

Y

"0 —g) < s < s"(é + &)

for n sufficiently large. Rewrite equation 6.13 as

Pr®™(s)) = | — ex (-Flh) db )cx <_j‘ ﬁ_)
e P\T) o)) P\ e @)

. s db
=1 — PO — - — 1. 6.14
U ( 8)] exp( J‘s“(O—z) (D"(b)) ( )

Since P"(6 — ¢) and s"(§ — &) converge to 0, for n sufficiently large, ®"(b)e
helf — e, 0 + e]forall b e [s"(0 — ¢),s], so that any accumulation point of
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PT(d"(s)) is between | -~ exp[ — s/ + ¢)]and 1 — exp[—s/((; — ¢&)]. Since
this is true for all ¢ > 0, we conclude that

P"{®"(s)) > P(D(s)) = | — exp(—s/d).

Thus, once again, a sequence of pure-stratcgy equilibria for an incomplete-
information game “converges” to a mixed-strategy equilibrium of the
complete-information version of the game. Our analysis focused on the
convergence of the probability distributions over actions. Figure 6.6 tllus-
trates the convergence in the space of strategies.

Example 6.9: First-Price Auction

As alast example, consider the first-price auction with a continuum of types
and with two types (examples 6.5 and 6.6). Differentiating equation 6.11
(corresponding to the two-type case) for s > @ yields

Gis) = (0 — s)g(s). (6.15)

To compare equation 6.15 with equation 6.6 (which corresponds to the
continuum casc),'? consider a sequence of continuous distributions P"(-)
converging to spikes at 0 and 8 (lim,_, P"(8) =0 for 0 < 0, = p for
0e[0.0), =1 for 0= 0). If ®(-) denotes the equilibrium strategy for
distribution P"(-), then ®"(s) must converge to 6 for s > 0, and thus (loosely
speaking) equation 6.6 converges to equation 6.15.

19. In the continuous example, we imposed a reservation price. Take the reservation price to
be equal to 6 in the discrete example to make the two games compatible.



6.7.2 Purification Theorem (tcchnical)"”

Harsanyi (1973) shows that any mixed-strategy equilibrium can “almost
always” be obtained as the limit of a purc-strategy equilibrium in a given
sequence of slightly perturbed games. Consider a strategic-form game with
finite strategy sets S, and payoff functions u;. Harsanyi perturbs the payofls
in the following way: Let 6; denote a random variable with range a closed
interval ([ —1.1], say) and let ¢ > 0 denote a positive constant (which
will later converge to 0). Player i’s perturbed payoff function #; depends on
player i's “type” #; = {6;},.s and on the “scalc of perturbation™ ¢:

(s, 0;) = u(s) + &by

Harsanyi assumes that the players’ types are statistically independent.
Let P(-) denote the probability distribution for 0. Tt is assumed that P,
has a density function pi{-) that is continuously differentiable for all 6,
Harsanyi first shows that the best reply of any player i is an essentially
unique pure strategy. That is, two best replies for player i, g;(*) and &6,(-),
must coincide for almost all 6, and furthermore they must be pure strategies
for almost all 0,. This is quite intuitive, since for given strategies of player
i’s opponents the coincidence of player i's payolls for two pure strategies
must be a rare event if ; is continuously distributed. As a consequence,
in any equilibrium of a perturbed game, a,(6;) is a pure strategy for all i and
for almost all @ = (,,...,0,). Harsanyi shows that an equilibrium exists.
He then proves the following resulit.

Theorem 6.1 (Harsanyi 1973) Fix a set of I players and strategy spaces 5;.
For a set of payoffs {us)};c s sc s of Lebesgue measure 1, for all indepen-
dent. twice-differentiable distributions p, on ©; = [ —1,1]*%, any equi-
librium of the payofTs u; is the limit as ¢ — 0 of a sequence of pure-strategy
cquilibria of the perturbed payoffs &, More precisely. the probability
distributions over strategics induced by the pure-strategy equilibria of the
perturbed game converge to the distribution of the equilibrium of the
unperturbed game.

Note the order of quantifiers in the statement of the theorem: A single
sequence of perturbed games can be used to “purify” all the mixed equilibria
of the limit game.

Note also the restriction to a set of payofls of full measure. There are two
possible problems that occur for “pathological” payoffs. First, it may be
that a given equilibrium can only be approximated by pure-strategy equi-
libria of a small subset of all perturbed games, and different perturbed
games pick out different equilibria. Exercise 6.10 gives an example of this.
Sccond, equilibria in weakly dominated strategies arc not limits of equi-
libria of any perturbed game. In figure 6.7 (taken from Harsanyi 1973), the
pure-strategy equilibrium (D, R) is not approachable by any equilibrium



Figure 6.7

once the game is perturbed. For instance, suppose that the random vari-
ables 0™ and 0P are symmetrically (e.g., uniformly) distributed on [ — 1, 1].
Then, for any probability that player 2 plays R, the probability that player
I strictly prefers to play U is at least 3. Hence, player 1's strategy in the
perturbed game cannot converge to probability 1 on D. But games like that
depicted in figure 6.7 are extraordinary. In the (D, R) equilibrium, players
are indifferent between their cquilibrium strategy and a dominating strat-
cgy a situation that is unlikely to occur if the entries in figure 6.7 are
drawn “randomly.”?°

Our view is that games of complete information are an idealization, as
players typically have at least a slight amount of incomplete information
about the others’ objectives. One consequence of that view, as Harsanyi’s
argument shows, is that the distinction between pure and mixed strategies
may be artificial.

6.8 The Distributional Approach (technical)''’

Modcling mixed strategies as maps from types to mixtures over purc
strategies has the drawback that it is not well defined in gamcs with a
continuum of types, as Aumann (1964) pointed out. Aumann proposed that
amixed strategy be a function s, from [0, 1] x @, into §,. The interpretation
i1s Lhat type 0, chooses among actions s, on the basis of the outcome x;of a
lottery. Assuming without loss of generality that x; is drawn from the
uniform distribution on [0, 1].2* the probability that type 6, of playeriplays
s; 1s equal to the mcasure of the set of x; such that s,(x,,6;) = s,. There are,
of course, an infinity of mixed strategics that describe a given behavior. For
instance, the following mixed stratcgies are “equivalent™

J,".‘(i,()‘-) = Sl‘ if Xi' < %, .‘Ji(x,-,()i} - 3; if .x" > ;,

and

20. Recall from chapter 3 that the set of all strategic-form payoffs arising from a4 given extensive
form can have measure 0 in the space of all payoffs for that strategic form.

21. To sce that we can assume a uniform distribution without loss of generality, consider a
mixed strategy a,(y,.0,) where y, is distributed on [0, 1] according to the increasing cumula-
tive distribution function F(y,){F{0) = 0, F(1) = 1). Define the new strategy &6,(x,,0,) =
7{#dx;). 8} This mixed strategy is a function of the random variable x;. which is uniformly
distributed on [0, 1] {as Prob(x; < x] = Prob(F, '(x,) < FHx) = F(F7Y(x)) = x).



In other words, the “Aumann fix” is not parsimonious.

In response, Milgrom and Weber {1986) introduced the concept of a
“distributional strategy,” which refers to the equivalence class of the mixed
strategies that yield the same behavior, From the point of view of the other
players, what matters is the joint distribution of player i’s type and actions.
This leads to the definition of a distributional strategy as a joint distribution
on O, x S, for which the marginal distribution on @, is the one specified
by the prior beliefs.

The cquivalence between mixed strategies and distributional strategies
is clear. A mixed strategy induces a joint distribution across types and
actions. Conversely, a joint distribution can be generated by many mixed
strategies. |

The reader familiar with the notion of correlated equilibrium introduced
in chapter 2 will note the analogy between definitions A and B of correlated
equilibrium and the distinction between mixed and distributional strate-
gies. In chapter 2, we noted that we could determine the set of correlated
cquilibria without considering all possible correlating devices, but instead
could restrict attention to joint distributions over strategies. Similarly, we
do not need to list all the possible relationships between the randomizing
device and the strategy; instcad we can focus on the joint distribution of
the player’s type and action.

Since pure-strategy equilibria need not exist in games of complete in-
formation, it is interesting to note that, under certain regularity conditions,
pure-strategy equilibria do exist in games with an atomless distribution
over types. (Mixed strategies are nceded for existence in general incomplete-
information games.)

The idea is that the effects of mixing can be duplicated by having each
type play a pure strategy. If each player’s payoff does not depend on the
types of the others, then players care only about the distribution of their
opponents’ actions, and their payoffs are not affected by the replacement
of an opponent’s mixed strategy by a pure one that induces the same
distribution.

To illustrate this, suppose that type 8; is uniformly distributed on the
interval [0, 1] and that, given the strategies of player i's rivals, all types 6,
in [0, }] are indifferent between actions s; and s;. These types randomize in
such a way that the probability that s, (respectively, s;) is chosen given that
0, belongs to [0,4] is o (respectively, 1 — «). Consider the following pure
strategy: Types 6,in [0, a/2] play s; with probability 1, and types 6; in (¢/2, 1]
play s; with probability 1. Because types in [0,3] are indifferent between
the two actions, the pure strategy is an equilibrium behavior as long as the
rivals do not change their behavior. The rivals’ expected payoff function is



not affected by the substitution if two conditions hold. The first condition
15 that €, should not enter player j’s utility function or, more generally,
should be separable from s; in an appropriate way: Even though the
marginal distributions of s; and 6; are not affected by the substitution, the
distributional strategy is affected, and this matters if there are cross-effects
between s; and 6, in u;. The second condition is that the distributions of
types should be independent among players. (If this is not the case, the
distribution of s,, conditional on 6, may be changed by the substitution.)

Along these lines, we can state a “purification theorem” due to Milgrom
and Weber's (1986) extension of a similar result for the single-decision-
maker setting of Dvoretzky, Wald, and Wolfowitz (1951). For this purpose
(and for the rest of this section), we will assume that the structure of
information takes the special form of a commonly observed variable 8,
(common value) and some picce of private information @, for each player i
(private values) such that, conditional on the realization of 6, the 6, are
independent. Let 6, = (8,,6,); because 8, is commonly observed, 8; will be
called “player i's type” by abuse of terminology. We assume that 0y € B
and 0. € O,.

Definition 6.2 Preferences are conditionally independent if each player i's
payoll can be written in the form u; = uy(s, 6,, 8,), where s = (sy5....8;), and
if, conditional on the realization of §,, the players’ types 8; are independent.

Theorem 6.2 (Milgrom and Weber 1986) Assume that preferences are
“conditionally independent,” that @, is finite, that the marginal distribu-
tions of types arc atomless, that the game has continuous payoffs, and that
cach §; is compact. Then every equilibrium point (we will later show that
one cxists) has a purification.

Remark 1 The assumption of conditionally independent preferences is
obviously very strong. One may be able to purify mixed strategies even
when it does not hold. When preferences are dependent, one must be able
to replicate by a pure strategy not only the distribution on S;, but the whole
distributional strategy on S; x @,. That is, the reshuffling of weight we
performed carlier must be “local” rather than “global.” Unfortunately, we
do not quite know what regularity conditions are required to this effect.?2
The issuc is that the set of distributional strategies obtained from pure
stratcgics is smaller than the set of distributional strategies obtained from
mixed strategies. (Those two sets, however, are close to each other: The
former is dense in the latter for the topology of weak convergence of

22. Aumann et al. (1982} allow dependence, but obtain only an approximate purification resuit,
They show that with conditionally atomless distributions, any mixed strategy of a player can
be «-purified (ie., replaced by a pure strategy that yields all players a payoff within ¢ of the
payofl for the original mixed strategy). no matter what strategies the other players use, for
any ¢ » 0,



probability measures. Hence, for any mixed-strategy equilibrium, therc
exists a set of nearly pure strategies that form an e-equilibrium of the game.)

Remark 2 In subsection 6.7.2 we used the term “purification” in a differ-
ent, although related, sense. We asked to what extent a mixed-strategy
cquilibrium of a game with complete information {or, more generally, with
atoms of types) could be viewed as an approximation of pure-strategy
cquilibria of nearby games of incomplete information in which each player
has a continuum of types.

With a continuum of types and/or a continuum of actions, some reg-
ularity conditions must be imposed in order to apply Glicksberg’s exis-
tence theorem (scc subsection 1.3.3). Let # and n,; (i = 0,..., [} denote,
respectively, the probability measure over the set © = ©¢ x O, x - x0,
and the marginal distribution over ®,. The following existence result (a
slightly stronger version of which can be found in Milgrom and Weber
1986) generalizes one obtained for independent types by Ambruster and
Boge (1979).

Theorem 6.3 (Milgrom and Weber 1986) Assume that all §; are compact;
that (continuous information) the measure 7() is absolutely continuous
relative to the measure #(-} = 7o(*) x -+ x n,(*):** and that (continuous
payoffs) cither all §; are finite or, for all i, the function is uniformly

continuous on ® x S. Then an equilibrium exists.

Fxercises

Fxercise 6.1** Consider the public-good game of section 6.2. Suppose
that there are I > 2 players and that the public good is supplied (with
benefit 1 for all players) only if at least K € {1,...,I} players contribute.
The players' costs of contributing, 8, ..., ), are independently drawn from
the distribution P(-) on [0, 6] where # < | < 8.

(a) Generalize the Bayesian equilibrium of section 6.2 when K = 1.

(b) Suppose K > 2. Show that there always cxists a trivial equilibrium
in which nobody contributes. (Assume 0 > 0.) Derive a more interesting
Bayesian equilibrium.

(c) ShowofTs: Apply the two concepts of iterated strict dominance to this
game.

Exercise 6.2** Two firms simultaneously decide whether to enter a mar-
ket. Firm i's entry costis 8, € [0, + o). The two firms’ entry costs are private

73 That is. a null-measure set for 4 is also a null-measure sct for n. The Radon-Nikodym
theorem (Royden 1968) implies that there exists a density f such that, for any subset § of 8,
iS) — (¢ £t di(#). The continuous-information assumption holds for instance when the type

spaces are finite or when the types are independently distributed.



information and are independently drawn from the distribution P(-) with
strictly positive density p(-). Firm i’s payoff is [I™ — f; if it is the only one
to enter, T1? — 0, if both enter, and 0 if it does not enter. IT™ and TI° are the
monopoly and duopoly profits gross of entry costs and are common
knowledge. 1T™ > [1° > 0.

(2) Point out the analogies and differences with the public-good game of
section 6.2.

(b) Compute a Bayesian equilibrium. Show that it is unique.

(¢) Apply ex ante and interim strict dominance.

(d) Instead of assuming simultaneous entry, suppose that the two firms
are “around” at date 0. They incur cost 6, per unit of time of being in the
market, where r is the rate of interest and 6, is the value of firm i’s assets in
an alternative use. (Alternatively, f; = r#, is the fixed cost of production per
unit of time.) rTI™ and rI° are the flow monopoly and duopoly payoffs
gross of the opportunity or fixed cost. Follow the analysis of example 6.3
to derive the symmetric equilibrium of the war of attrition. (Watch out:
There exists some time T after which firms don’t drop out.) Show that there
is no other equilibrium. For answers, see Fudenberg and Tirole 1986.
Compare with the answer to question b.

Exercise 6.3* Consider the first-price auction of example 6.5. There are
two bidders with valuations uniformly distributed on [0, 1]. The seller’s
reservation price (or minimum bid) is 0. Find an equilibrium in linear
strategics, i.e., where s,(6;) = a + cd,.

Exercise 6.4**  This exercise analyzes the first- and second-price auctions
with risk-averse bidders and two types per bidder. A bidder with valuation
f} has utility u(f — ¢) if he wins and pays transfer ¢, and utility u(—1) if he
loses and pays transfer ¢; u is increasing and concave. The bidders’ valua-
tions are independently drawn from the two-type distribution {8 with
probability p. 0 with probability p}.

(a) Show that in the second-price auction (in which the highest bidder
wins but pays the second bid) each player bids his true valuation and so
the seller’s expected revenue is the same as with risk-neutral bidders.

{b) Now consider the first-price auction. Derive the analogue of equation
6.10 for the case of risk aversion. Show that type 8’s distribution of bids,
F, first-order stochastically dominates the distribution F given by equation
6.10 (ie., F(s) < F (s) for all s). Use the revenue-equivalence theorem under
risk neutrality (see example 6.6) to conclude that under risk aversion the
scller prefers the first-price to the second-price auction. (The answer is in
Maskin and Riley 1985.)

Exercise 6.5** Generalize the analysis of the first- and second-price auc-
tions with two types and risk-neutral bidders to (a) asymmetric distri-
butions (letting p; = Prob(f, = 8), 5, # p,) and (b) correlated valuations,



Compare the seller’s revenues in the two auctions {(do parts a and b
separately). (The answers arc in Maskin and Riley 1985, 1986b.)

Exercise 6.6** In the examples in the chapter, equilibrium strategies are
monotonic in type. Find and informally discuss examples in which such a
monotonicity would not necessarily hold. (Hint: Consider the Chatterjee-
Samuelson double auction with negatively correlated types. Find other
examples. Discuss generally what goes wrong with the usual proof of
monotonicity when types are correlated.)

Exercise 6.7* The (present discounted) value of a public good is 1 for all
players i = 1, ..., I. Time is continuous, and the rate of interest is r. Each
player’s cost ¢ of supplying the public good is distributed according to the
cumulative distribution function P on [0, 1]. Players’ types are indepen-
dent. The public good is supplied if at least one agent supplies it. The good
is supplied at the first time at which at least one player chooses to contrib-
ute. Thus, the game is a kind of war of attrition. Look for a symmetric,
pure-strategy equilibrium using the following outline:

(a) Argue formally or informally that the date at which a player with
cost ¢ supplies the public good, s(c), is increasing in c.

(b) Show that s(-) satisfies

(I —Teple)
r(l —¢)[1 — P(C)]‘

s'(e) =

Find a boundary condition. Infer that a player’s waiting time to supply the
good when there are I — 1 other players is I — 1 times his waiting time
when there are two players. Show that each player’s expected utility grows
with 1.

(Answers can be found in Bliss and Nalebuff 1984.)

Exercise 6.8** Kreps and Wilson (1982) consider the following war of
attrition. There are two players, i = 1, 2. Time is continuous from 0 to 1.
When onc player concedes, the game ends. Each player can be either
“strong” (with probability p for player 1 and ¢ for player 2) or “weak” {with
probabilities 1 - pand | — q). A strong player enjoys fighting and therefore
never concedes. A weak player 1 (respectively, a weak player 2} loses 1 per
unit of time while fighting and makes a > 0 (respectively, b>>0) per unit of time
when his rival has conceded. Thus, a weak player 1 has payoff a(l1 —t)—1
when it wins at t and payoff —t when it concedes at ¢. There is no discounting.

(a) Show that from time 0* on, the posterior beliefs p, and g, of each
player about the other must belong to the curve ¢ = p*.

(b) Show that one of the weak types exits with positive probability at
date 0 exactly (that is, a player’s cumulative probability distribution of exit
times exhibits an atom at ¢ = 0). How are the weak types’ payofls affected

by a, b, p, and q?



Figure 6.8

Exercise 6.9**  Purify the mixed-strategy equilibrium in the inspection
game of examplc 1.7.

Exercise 6.10** Consider the game illustrated in figure 6.8 (due to Har-
sanyi). Fix a continuous distribution over perturbations as in Harsanyi’s
construction (see section 6.7). Is any mixed-strategy equilibrium of the game
in figure 6.8 a limit of pure-strategy equilibria of the perturbed games as &
tends to 07 Conclude that this game is “not generic.”

Exercise 6.11***  Consider symmetric first-bid and second-bid auctions
with correlated information and valuations. There arc I bidders. Each
bidder i has (unknown) valuation »; and signal or information 6; let
ci=(.v)andz = (z,,...,z,). Player i knows only 8;. The random variable
= 1s distributed according to distribution F(z) on a rectangular cell, with
density f(z). F is invariant under permutations of the bidders (symmetry).
Correlation is described by the affiliation property: 1If z v z" and z A 2’ are
the component-wise maximum and minimum of z and z’, then

fev )z A z2')> f(2)f(2') for all (z,z2")

[et' > 02> > @ denotea reordering in nonincreasing order of the
signals. The conditional distribution of 62 given #' = =y is denoted F(-|y)
with density f(-]v). Affiliation implies that, for all y, f(u| 7)/F(uly) is non-
decreasing in y (monotone likelihood-ratio property). Let

vly.p) = E(v;|6; = 0' = y and 6% = p).
Look for symmetric, differentiable, and strictly increasing cquilibrium
bids s(4,).

Note that in the second-price auction s(6) = (6, f). Show that in the
first-price auction
o dv /
sty =v(0.0)— | K(w, (0! K(©O),
) du /

where

’\Ul _cxp(J\ f(f’/) )

and 0 is the lowest possible signal. (Hint: In the first-price auction, a bidder



with type () maximizes over his bid b:

s bt
_[ (o6, u) — b dF(p)0).
f

For the answer, look in Milgrom and Weber 1982 or Wilson 1990.)
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This chapter presents a thorough trcatment of a special class of games of
incomplete information known as games of (static) mechanism design.
Examples of these games include monopolistic price discrimination, opti-
mal taxation, the design of auctions, and mechanisms for the provision of
public goods. [n all of these cases, there is a “principal” who would like to
condition her actions on some information that is privately known by the
other players, called “agents.” The principal could simply ask the agents
for thcir information, but they will not report it truthfully unless the
principal gives them an incentive to do so, either by monetary payments
or with some other instrument that she controls. Since providing these
incentives is costly, the principal faces a tradeoff that often results in an
incfficient allocation.

The distinguishing characteristic of the mechanism-design approach is
that the principal is assumed to choosc the mechanism that maximizes her
expected utility, as opposed to using a particular mechanism for historical
or institutional reasons. This distinction can be illustrated using the topic
of auctions: In chapters 1 and 6 we solved for the equilibrium bidding
strategics of buyers in two particular mechanisms, the first-price and
second-price auctions. When we study auctions in this chapter, we ask
which form of auction maximizes the seller’s expected revenue. Because of
the pervasiveness of the first-price auction, it is very intercsting to see that it
(and the second-price auction) turns out to be optimal in some situations.
Similarly, when we consider modcls where the principal is the government,
we suppose that the government chooses a mechanism that maximizes its
utility, which we take to be the total surplus in the economy. Thus, the
applications to (c.g.) tax policy may be interpreted as normative as opposed
to descriptive models.

Many applications of mechanism design consider games with a single
agent. { These single-agent models also apply to situations with a continuum
of infinitesimal agents, each of whom intcracts with the principal but
not with the other agents.) In second-degree price discrimination by a
monopolist, the monopolist has incomplete information about the con-
sumer’s (the agent’s) willingness to pay for her good. The monopolist
designs a price schedule that determines the price to be paid by the con-
sumer as a function of the quantity purchased. In the regulation of a natural
monopoly under asymmetric information, the government has incomplete
information about the regulated firm’s (the agent’s) cost structure. It designs
an incentive scheme that determines the transfer received by the regulated
firm as a function of its cost or its price (or both). In the study of optimal
taxation, the government would like to raisc tax revenue from a consumer
(an agent) to finance public goods. The optimal level of tax depends on the
consumer’s ability to carn money. If the government knew this ability, it
could levy an ability-dependent lump-sum tax that would not distort the



consumer’s labor supply. In the presence of incomplete information about
ability, the government can only basc the income tax on realized income,
The income-tax schedule can be seen as an incentive scheme eliciting
information about the consumer’s ability.

Mechanism design can also be applied to games with several agents. In
the public-good problem, a government must decide whether to supply a
public good. but it has incomplete information about how much the good
18 valued by consumers. The government can then design a scheme de-
termining the provision of the public good as well as transfers to be paid
by the consumers as functions of their announced willingnesses to pay for
the public good. In the design of auctions, a seller organizes an auction
among the buyers for the purchase of a good. The seller, not knowing how
much the buyers are willing to pay for the good, set up a mechanism that
detcrmines who purchases the good and the sale price. Finally, in problems
of bilateral exchange, a mediator designs a trading mechanism between a
seller who has private information about the production cost and a buyer
who has private information about his willingness to pay for the good.

Mechanism design is typically studied as a three-step game of incomplcte
information, where the agents’ types—e.g., willingness to pay—are private
information. In step 1, the principal designs a “mechanism.” or “contract,”
or “incentive scheme.” A mechanism is a game in which the agents send
costless messages, and an “allocation” that depends on the realized mes-
sages. The message game can have simultaneous announcements or a4 more
complex communication process. The allocation is a decision about the
level of some observable variable, e.g., the quantity consumed or the
amount of public good provided, and a vector of transfers from the princi-
pal to the agents (which can be positive or negative). In step 2, the agents
simultaneously accept or reject the mechanism. An agent who rejects the
mechanism gets some exogenously specified “reservation utility” (usually,
but not necessarily, a type-independent number). In step 3. the agents who
accept the mechanism play the game specified by the mechanism.

Because a game of mechanism design can have many stages, the distinc-
tion between Nash and subgame-perfect equilibria in multi-stage games
with complete information (see chapter 3) may suggest that the concept of
Bayesian cquilibrium is too weak to be useful here. Fortunately, a simple
but fundamental resuit called the “revelation principle” (developed in sec-
tion 7.2) shows that, to obtain her highest expected payoff, the principal
can restrict attention to mechanisms that are accepted by all agents at step
2and in which at step 3 all agents simultaneously and truthfully reveal their
types. This implies in particular that the principal can obtain her highest
expected payoll through a static Bayesian game among the agents. This is
why we treat mechanism design in part 11l rather than in part IV of
the book. (However, we invoke a mild perfection requirement: We do not



allow agents to threaten to reject the principal’s mechanism—or to mis-
report their types—if it is in their interest in steps 2 and 3 to accept the
mechanism and to announce truthfully.)

In some situations (mainly situations in which the principal is the govern-
ment), the “individual-rationality” or “participation” constraints -that the
agents must be willing to participate in the principal’s mechanism  are not
imposed. That is, step 2 of the mechanism-design game is omitted. For
instance, a government with coercive powers can choose an income tax that
applics to ail consumers (unless the possibility of emigration makes the
participation constraints binding). Similarly, in some public-good prob-
lems. the government may impose decisions that the agents cannot veto.
In contrast. the literature has assumed that consumers can refrain from
buying from a firm, that bidders are frce not to participate in an auction,
and that regulated firms (or at least their managers) can refusc to produce
(or to work). Whether an individual-rationality constraint should be in-
cluded in the model depends on the extent of the coercive power of the
principal, or, equivalently, on the distribution of property rights.!

An important focus of the mechanism-design literature is how the com-
bination of incomplete information and binding individual-rationality con-
straints can prevent efficient outcomes.? Coasec {1960) argued that, in the
absence of transaction costs and with symmetric information, bargaining
among parties concerned by a decision leads to an efficient decision, L.¢., to
the realization of gains [rom trade. With some exceptions (see the “efficiency
results” in subsection 7.4.3), this is not so under asymmetric information. A
constant theme of the mechanism-design literature is that the private
information of the agents leads to inefficiency when individual-rationality
constraints are binding.

The chapter is organized as follows. Section 7.1 illustrates individual
rationality, truthful revelation, and optimal mechanism design in two sim-
ple examples. Section 7.2 develops the general framework and derives the
revelation principle. Section 7.3 considers the casc of a single agent. Besides
being of considerable practical interest, this case offers a useful introduction
to the more general multi-agent situation. Most of the steps involved in
characterizing “implementable™ or “incentive-compatible™ allocations and
in deriving the optimal mechanism for the principal are borrowed from
the single-agent framework. Section 7.4 tackles the multi-agent case and
characterizes implementable allocations. Subsections 7.4.3-7.4.6 apply this
characterization to obtain some cfficiency and inefficiency results in public-

1. The hterature has made reasonable assumptions about the actual distribution of property
rights, but little attention has been paid to what determines it in most of the contexts described
above.

2. If the principal is a government that does not have a balanced-budget constraint, so that
it can give all agents large positive transfers, the individual-rationality constraints will not
bind.



and private-goods contexts. Scction 7.5 builds on section 7.4 by analyzing
the principal’s optimal mechanism in two different contexts: auctions, in
which a seller tries to extract the maximum expected revenue from buyers,
and bilateral exchange, in which a mediator designs a mechanism so as
to maximize expected gains from trade between a seller and a buyer. Section
7.6 mentions some additional topics and concludes.

The ficld of mechanism design is important cnough to merit a book of
its own.” We have not tried to provide a complete review of the field,
choosing instead to develop a few main themes. Nevertheless, the material
in this chapter could easily take a month to cover. Readers with little
interest in mechanism design might choose to skip the chapter entirely,
relying on the examples in chapter 6 to illustrate the application of Bayesian
equilibrium. Those who are interested in mechanism design but are pressed
for time might read through section 7.3, which completes the analysis of
mechanism design with a single agent.

7.1 Examples of Mechanism Design’

This section contains two examples of mechanism design. To facilitate
the exposition, they both involve a seller selling a good —to a single buyer
insubsection 7.1.1 and to one of two buyers in subsection 7.1.2. This section
1s meant to provide motivation for the chapter; it should be skipped by any
reader who has already seen some examples.

7.1.1  Nonlinear Pricing

A monopolist produces a good at constant marginal cost ¢ and sells an
amount g > 0 of this good to a consumer. (As is easily checked, nothing
would be affected if she sold the good to several consumers who were ex
ante identical.) The consumer receives utility

ulg. TH=0V(g — T,

where 8V (g) is his gross surplus, V(0) =0, V' >0, V" < 0, and T is the
transfer from the consumer to the seller. V(-) is common knowledge, but
f/ is private information to the consumer. The seller knows only that
f# = @ with probability p and @ = 8 with probability f, where 6 > 6 > 0
and p + p = 1. The game proceeds as follows: The seller offers a (possibly
nonlinear) tariff T(q) specifying how much the consumer pays if he chooses
consumption g. The consumer then either accepts the mechanism, chooses
4 consumption g, and pays T(qg), or else rejects the mechanism. Note that,
without loss of generality, we can constrain the seller to offer a tariff such
that T(0) = 0 and assume that the consumer always accepts the mechanism.

3. See. c.p., Green and Laffont 1979 and Laffont 1979,



If the seller knew the true value of #, she would offer a fixed ¢ and
charge T = @) V{q). Her profit would then be 6 V(g) — ¢g, and it would be
maximized at g given by 0 V'(q) = ¢. Because the consumer may have one
of two types, the seller will want to offer two different bundles if she does
not know ). Let (¢. T) denote the bundlc intended for the type-f} consumer.
andict (g, T) be the bundle intended for the tvpe-A consumer.* The seller’s
expected profit is thus

Eu, = p(T — ¢q) + p(T — ¢§).

The seller faces two kinds of constraints. The first kind requires that the
consumer be willing to purchase. (As we noted above, this is without loss
of gencrality, because the seller can always offer the bundle (g, T) = (0,0)
which corresponds to not purchasing  in her “menu™ of bundles.) Such a
constraint is called an individual-rationality (IR) or participation constraint.
The “reservation utility” is the level of net utility obtained by the consumer
by not purchasing, which is equal to () here. Thus, we require that

(IR,) ()V(q}—IEO
and
{IR,) V(G —T=>0.

The second kind of constraint requires that the consumer consume the
bundle intended for his type. These are known as incentive-compatibility
(1C) constraints. Thus, we require that

(C) Vg —T>0V(g)—T
and
(1Cy) OV —T=20V(gp—T

The scller’s problem is to choose {(¢, T).(g, T)} so as to maximize her
expected profit subject to the two IR and the two IC constraints.
A first step in solving this problem is to show that only IR, and IC; are

binding. First, note that if IR, and IC, are satisfied, then
OV(g)—T=(8 —8)V(g) =0,

which reflects the fact that type € receives more surplus from consumption
than type ). Hence, IR, is satisfied as well. Furthermore, IR, will not be
binding unless ¢ = 0, i.e., unless the seller does not sell to the low-type
consumer. [n contrast, 1R, must be binding, i.e., T = 8 V(g): If the two IR
constraints were not binding, the seller could increase T and T by the same

4. The results of section 7.2 imply that the seller will not wish to offer several bundles intended
for the same consumer.
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small positive amount, which would keep the incentive constraints satisfied,
would not violate individual rationality, and would increase revenue.,
Next, IC, must be binding; that is,

T=T+0V(@)—-0V(g=0V@) —© - 0)Vig.

If 1C, were not binding, the seller could increase T slightly and keep all
constraints satisfied. This is illustrated in figure 7.1. Let 4 denote the
low-type consumer’s allocation (g, T), and let B denote the high-type con-
sumer’s allocation (g, T). Draw the indifference curves of the low type and
the high type through A. Note that, because the slope of the indifference
curve of type 6 is 8 V'(g), the high-type consumer’s indifference curve is
always steeper than that of the low-type consumer at any allocation. The
allocation B must belong to the shaded area in figure 7.1, because it must
be (weakly) preferred by type 6 to A4, and A4 must be (weakly) preferred by
type ) to B. (Note that this shows that § > g, 1.¢., a high-demand consumer
must consume more than a low-demand one. We will analyze this “mono-
tonicity property” at length in this chapter.) The figurc also illustrates the
fact that A4 for type 0 and C for type f cannot be optimal for the seller, who
could increase her profit by increasing 7 and replacing C by B for type 0.
Thus, 1C, must bind.

Knowing that IR, and IC, are binding, we ignore IC, in the derivation
of the seller’s optimal nonlinear tariff, and solve the subconstrained pro-
gram with IR} and IC, only. If the solution to this subconstrained program
turns out to satisfy IC, as well (as the previous diagrammatic discussion
indicates will be the case), then it is a solution to the overall program.

Maximizing Eu, subject to IR, and IC, binding is equivalent to
maximizing



plI — cq) + p(T —cg) = [(p0 — p(0 — 0N V(g) — peq]
+ P8 V(q) — cq).

The first-order conditions are (assuming pf < § and V'(0) = 0)

p(O — 6
OV(g) = ¢! l_p( —0)
! b

and
OVig) = c

The quantity purchased by the high-demand consumer 1s socially optimal
(the marginal utility of consumption of the good is equal to the marginal
cost). If this were not so, the seller could increase or decrease g a little and
increase or decrease T accordingly so as to keep the utility of the A-type
constant. The profit from this type would increase because efficicncy would
increase, and the new tariff would remain incentive compatible because
1C', was not binding.

In contrast, the quantity purchased by the low-demand consumer is
socially suboptimal (recall that ¥ < 0). This can be easily understood: The
scller lowers the consumption of the low-demand consumer to make it less
altractive to the high-demand consumer to “cheat” and consume g. This
allows the seller to increase T or, equivalently, to reduce the rent of the
high-demand consumer, (0 — @)V(q). Thus, it is optimal for the seller to
sacrifice some efficiency for the purpose of rent extraction. Note also that
¢ > q: furthermore, if IR, and [C, are satisfied with equality, transfers T
and T are determined by g and q.

Last, we check that IC, is satisfied by the solution to the subconstrained
program: that is,

OVigg— T=0=0V(G) T
We [ind that
0Vigy T=—(-6)[V(g - Vig]<0.

Since we saw previously that IR, will always be satisfied if IR, is, we
conclude that the solution to the subconstrained program is a solution to
the overall program.

This inefficiency associated with incomplete information will be a con-
stant theme of this chapter. The reader may note the resemblance to
the analysis of (nondiscriminatory) monopoly pricing, which corresponds
to the special case of our model where all consumers have 0-1 demand, i.e.,
Vig) =0 for g < 1 and V(q) = | for ¢ > . The two-type case we have
considered corresponds to a market where demand d as a function of the
transfer Tisd(1) = 1for T < 0,d(T) = p for T € (#,8], and d(T) = O for



T > 8. (If we supposed a continuum of types, we could have a smooth
demand function.) With this step-function demand curve, the seller’s opti-
mal tariff is cither T > 6, with profit 0, or T = 8, with profit p(8 — ¢), or
T = 0. with profit equal to § - c. If p(d — ¢) > max (0,8 — ¢), then it is
optimal to set T = f, which “separates™ the two types. Type 6 consumes
one unit at price # and does not enjoy a rent from private information, and
type # consumes 0. If @ — ¢ > max(0, p(8 — c)), it is optimal to “bunch™ the
two types, i.e., have both of them consume one unit and let type 6 enjoy
rent ! — 8. In section 7.3 and in the appendix to this chapter we will derive
conditions under which separation or bunching is optimal in mechanism-
design problems.®

Looking ahead to section 7.2, we can illustrate the revelation principle
in this example. The seller indirectly elicits the consumer’s information by
having him consume a quantity that varies with his type. Alternatively, the
scller could maximize her expected profit by asking the consumer to report
his type directly. Let

HG*(0), T*(0)) } e 14,0,

denote the solution obtained above. The seller can offer the following direct
mechanism to the consumer: “Announce your type. If 8 is your announce-
ment, you will consume ¢*(8) and pay T*(#).” The incentive constraints
IC, and IC, guarantee that it is optimal for the consumer to announce his
type truthfully. Thus, the allocation is the same as under the indirect
mechanism.

7.1.2  Auctions

A seller has one unit of a good for sale. There are two potential buyers
(£ = 1,2) with unit demands, and they are ex ante identical. Their valua-
tions, 6, and 6, take value § with probability p and # with probability p,
where p+ p =1 and 0, and 6, are independent. Each buyer knows his
own vaiuation, but the seller and the other buyer do not.

One option for the seller is to use the first-price or second-price auctions
considered in chapters 1 and 6. But do such auctions maximize the seller’s
profit? To provide an answer, we solve for the seller’s optimal mechanism.
As we will see, the familiar auction forms are in fact optimal in some
situations.

Suppose that the seller sets up some “message game” —rules for sending
and receiving messages— between the buyers, and specifies how the alloca-

5. Section 7.3 solves the more general case of a continuum of types. Approximating the
two-type distribution by distributions with a continuum of types, the reader will check that
the case of two types does not satisly the monotone-hazard-rate condition (assumption A10
below), which plays a prominent role throughout the chupter. Bunching (not necessarily of
the two “likely types”) then occurs.



tion of the good and the transfers will depend on the messages chosen. Let
s, and s, denote the realizations of the two buyers’ stratcgics, g, and a,,
in this game. The mechanism spccifies the probability x;(s;,s,) that the
good is transferred to buyer i and the transfer Ti(s,, s, ) that is paid by buyer
i to the seller. For instance, first-price and second-price auctions are mecha-
nisms in which the messages s, are bids, and bids arc made simultaneously.
(In both auctions, x;(s,.5,) = 1 and T(s,,s,) = Oif s; > 5;. But when s, > s,
T, = s; in a first-price auction, and T; = s; in a second-price auction.)

Let fa (), o¥(-)} denote Bayesian cquilibrium strategies in the game or
mechanism. Because a buyer is free not to participate in the auction, buyer
1’s individual-rationality constraint is that, for each ; and for each s,
belonging to the support of o (6, ),

(IR) EﬂzEn\;w,)[{)lxl(sl»Sz) — Ii(s).8;)] = 0.

Similarly, the Bayesian equilibrium or incentive-compatibility condition is
that, for each 6, each s, in the support of ¢¥(#,), and each s},

(1C) EﬁzEa;(BJ)[le’(ﬂSuSz) — Ti{s1,82)]
> Eg, Egu, [0 X157, 52) — T1(s1,52) ]

There are similar IR and [C constraints for buyer 2.

The optimal auction for the seller would be hard to define, lct alone
characterize, if one had to consider all possible message spaces. For-
tunately. one can restrict one’s attention to “direct-revelation games,” in
which the two buyers simultaneously make (possibly untruthful) announce-
ments of their types (0, ). To see this, define probabilities of consumption
and payments by

-’zf(()u,ﬁz) = E}c‘fl’é,),a;léz)f}[xi{sl552)]
and
'ﬁ-(f}uf}z) = E{aﬁé,:.a;(éz)}[Ti(sl»sz)]-

IR and IC ensure that the buyers arc willing to participate in the direct-
revelation game and that a Bayesian cquilibrium of this game is for both
buyers to announce the truth 0, = 01,92 = 0,).

We will now solve for the optimal symmetric auction. (As we will see in
section 7.5, the optimal auction is indeed symmetric.) Note that IR and IC
involve only each buyer’s expected probability of getting the good and
expected payment to the seller, wherc the expectations are taken with
respect 1o the ather buyer’s type. So let X, X, T, and T denote the expected
probabilities of getting the good and the expected payments when the buyer
has type 0 and 6, respectively. The individual-rationality and incentive-
compatibility constraints can be written as follows:



(IR)) X —-T2=>0
(IR,}) 6X —T=>0
(IC,) 60X -T=>0Xx

-T
(IC,) X —T>0Xx—-T

The seller’s expected profit per buyer, if his opportunity cost of selling the
good 15 0, is

Euo = (pT + pT).

We build on the intuition developed in subsection 7.1.1 for the single-
buyer case. That is, we guess that the only binding constraints are that the
low-valuation type be willing to participate in the mechanism (IR,) and
that the high-valuation type not be tempted to claim a low valuation (IC,).
As in the single-buyer case, the reader can check that the other two
constraints do not bind. IR, and IC, detcrmine the expected payments:
T=0Xand T=0(X —X) + 0X. Substituting into the scller’s expected
profit yields

Euo = (0 — pO)X + pOX.

Until now, we have not imposed constraints on the probabilities X and X .
If there were a single buyer, the constraints would obviously be 0 < X,
X < 1. With two buyers we must take account of the fact that, if one buyer
gets the good, the other buyer does not. At the very least, it must be the
case that ex ante probability of a player's getting the good (i.e., before
knowing one's type) does not exceed 1 (by symmetry):

pX + pX <1 (%)

As we will see shortly, this constraint does not fully describe the cross-buyer
restrictions on probabilities.

First, suppose that § < p6. Then Eu, is decreasing in X and increasing
in X. The seller thus wants to set X = 0 and X “as large as possible.” By
symmetry, X cannot exceed p + P/2 because, when both buyers have
valuation 6, each receives the good with probability 1 (if any receives it).
Hence, X = p + p/2. The optimal mechanism is then to not sell if both
buyers announce 0, to sell to the high type if only one buyer announces 6,
and to sell with probability } to each buyer if both buyers announce 8.
Notice the strong analogy with the one-buyer case where, if ¢ = 0 and
p0 > 0. the buyer buys if and only if # = 8, and enjoys no informational
rent.

Second, suppose that 6 > pf. Then Eu, is strictly increasing in both X
and X, and (*) must be binding. Substituting X using (*) in Eu,, yields



Eu, =

: (f)—ﬁ§)+8(§—ﬁ)f.
2p p

Hence, again, X = p + p/2. And, from (%), X = p/2. If only one buyer
announces the high valuation, he receives the good; if both buyers an-
nounce the high valuation or both announce the low one, each buyer
receives the good with probability 3. This completes the derivation of the
optimal mechanism.

A famous result in auction theory (Vickrey 1961) is that, under some
assumptions, the first- and second-price auctions yield the seller the optimal
expected revenue. We will show in section 7.5 that this is the case if the
buyers are symmetric, have independent valuations, and have a continuum
of potential valuations (instead of two), and if a technical condition is
satisfied.® An auction is optimal if it has a (symmetric) equilibrium that
yiclds the same expected transfers, T and 7, and the same expected proba-
hilitics, X and X, that were obtained above. The symmetric equilibrium of
a first-price auction (see chapter 6) and the cquilibrium of a second-price
auction indeed yield the same X and X as above if 8 > po, as the good is
sold to the highest-valuation buyer. If § < p0, then the same X (i.c., 0) is
obtained by adding a “reservation price”—@, say—under which all bids
are rejected. However, expected transfers need not be the same as in the
optimal mechanism.” For instance, in the second-price auction, buyers bid
their valuations, and the type-0 buyer obtains rent p(6 — 6), instead of
p( — )/2, the rent that is optimal when 0 > p6. The optimal revenue
can be attained in this casc by modifying the second-price auction so that,
if one buyer bids ¢ and the other bids 8, the high bidder receives the good
at price 8 + (0 — 0)/2. Note that it is still an equilibrium for buyers to bid
their valuations: If a high-value buyer bids 8, his expected profit is

pl0 (0 + (& —0)2) = pd — 0)2,

which equals his expected profit from bidding &.

7.2 Mechanism Design and the Revelation Principle’

This section develops the gencral version of the mechanism-design problem
and shows how it can be simplified using the revelation principle.

We suppose that there are I + 1 players: a principal (player 0) with no
private information, and I agents (i = 1,...,I) with types 8 = (6,,....6,) In

6. The technical condition to be satisfied is that the distribution of buyers’ types has a
monotone hazard rate {sec assumption A10). The continuous approximations Lo a discrete,
two-point distribution do not have a monotone hazard rate.

7. This contrasts with the case of a continuum of types. There, incentive compatibility requires
DX T — Oisee section 7.5) for all #. Together with the equilibrium condition that the
Jowest type, 0, gets O utility, this implies that if X () 1s optimal, so is T(-).



some set ©. For the time being, we can allow the probability distribution
on © to be quite general, requiring only that expectations and conditional
expectations of the utility functions be well defined.

The object of the mechanism built by the principal is to determine an
allocation y = {x,t}. An allocation consists of a vector x, called a decision,
belonging to a compact, convex, nonempty Z < R", and a vector of mone-
tary transfers t = {t,,...,t;) from the principal to each agent (which can
be positive or negative).® In most applications 4 is taken large enough that
we are ensured an interior solution; one exception is the auction example
mentioned above,

Playeri(i = 0,1,..., /) has a von Neumann-Morgenstern utility u,(y, ).
We will assume that u; (i = 1,..., 1) is strictly increasing in f;, that u, is
decreasing in each ¢;, and that these functions are twice continuously
differentiable.

Given a (type-contingent) allocation { y(8)},. o. agenti(i = 1,. ... Iy with
type ¢; has expected or “interim” utility

L’!:'(Ui) = F‘G ,v[ui(y({)i" 9—:')? His B~i}| 01]
and the principal has expected utility
Lguol y(8), 0).

In all applications developed in this chapter, agent i’s utility depends on
his own transfer ¢; and type 6, but not on r_; or 8_,. (One situation where
u, depends on @ ; is the common-value auction in which each bidder has
private information about the quality of the good for sale.)

The interpretation of x and 8 (up to sign adjustments) in the examples
mentioned in the introduction is as follows:

Price discrimination  x is the consumer’s purchase, and ¢ is the price paid
to the monopolist: 0 indexcs the consumer’s surplus from consumption.

Regulation  x is the firm’s cost or price or vector of cost and price, and ¢
is the firm’s income; 0 is a technological parameter indexing the cost
function.

Income tax  x is the agent’s income, and t is the amount of tax paid by the
agent; & is the agent’s ability to earn money.

Public good  x is the amount of public good supplied, and ¢,is consumer i’s
monetary contribution to its financing; #, indexes consumer i’s surplus from
the public good.

R. In the price-discrimination and auction examples of section 7.1, the agents transferred
maoney (o the principal (1, = — T)).

{



Auctions 4 isthe I-dimensional simplex, i.e., x; > Oforalli,and Y [_; x; <
1. Here. x; is the probability that consumer i buys the good, and ¢; is
the amount paid by consumer i; €, indexes consumer i’s willingness to pay
for the good that is auctioned ofl.

Bargaining  x is the quantity sold by a seller to a buyer; t, is the transfer
to the scller and ¢, is the (negative) transfer to the buyer, such thatt, + ¢, =
(0: 8, = ¢ indexes the seller’s cost of producing the good, and #, = v indexes
the buyer's willingness to purchase the good.

A mechanism or contract m defines a message space .#; for each agent i,
and a game form (“step 3" in the introduction) to announce the messages,
where 1 = (u,...., ;) is the vector of all messages sent by the agents in
the game form. Because types are private information, y can depend on ¢
only through the agents’ messages; denote this function by y,,: # - Y =
4 x R

We can now derive the revelation principle, which states that the principal
can conlent herself with “direct”™ mechanisms, in which the message spaces
arc the type spaces, all agents accept the mechanism in step 2 regardless of
their types, and the agents simultaneously and truthfully announce their
types in step 3. This principle has been enunciated by many researchers,
including Gibbard (1973), Green and Laffont (1977), Dasgupta et al. (1979),
and Myerson (1979).

Note that the game form associated with a mechanism in step 3, together
with the acceptance decisions of step 2, defines a larger game among the
agents. Without loss of generality, we can include the acceptance decision
of the agents into their message u,(-). Consider a Bayesian equilibrium of
this larger game. Assume for notational simplicity that this is a pure-
strategy equilibrium, which we can thus write p*(6;).

Consider the new message space O, for each agent i, so that each agent
announces a type 6, (which may differ from the true value ;). Letting
0=@0,..... 0,). define the new allocation rule y: @ — Y by

(= v (X)),

where

X0y = (). uFO)).

Iy

It is immediate that truthtelling, {6, = 8.}, is a Bayesian equilibrium of the
new game, given that { u*} is a Bayesian equilibrium of the original game®:
Forall i and 0,

9. We discuss the revelation principle in a Bayesian context, but the same reasoning holds
for cquilibria in dominant strategies. (See subsection 7.4.2 for the definition ol implementation
in dominant strategies.)



By [udy(6),0,,6_,)10.]
- By [u v (u*(0)),0.0 )18,]

= sup E, [u;y, (uF(0, b 1 (0)), 0,86,
o H;

= sup Ey [ud50,...,0,,....0,),0,,6_,0.],
et

where the first equality results from the definition of the direct-revelation
mcchanism y., the second equality is the condition for Bayesian equilibrium
in the original mechanism m, and the weak inequality cxpresses the fact that
in the direct-revelation mechanism everything is as if agent i picked an
announcement in the subsct of messages { u*(6,) f4,e @, Of .#; (the agent thus
has, at most, as many possibilities for deviating as in the original game).
When the 6,* are random, the same reasoning holds with ¥(-) defined as
the appropriate random function of .

Observation (revelation principle) Suppose that a mechanism with mes-
sage spaces . #; and allocation function y,(-) has a Bayesian equilibrium

ARG = Oy
Then there exists a direct-revelation mechanism (namely, y = y,, o u*)such
that the message spaces are the type spaces (.#; = ©;) and such that there
exists a Bayesian equilibrium in which all agents accept the mechanism
in step 2 and announce their types truthfully in step 3.

Caveat The dircct-revelation game associated with v(+) has onc cqui-
librium that yields the same allocation as the original equilibrium. This
cquilibrium need not be unique. Ma et al. (1988), Mookherjee and Rei-
chelstein (1988), Postlewaite and Schmeidier (1986), and Paifrey and Srivas-
tava (1989) have derived conditions under which a Bayesian allocation can
be implemented by a game in the sense of either being achieved by all
cquilibria of the game or (more strongly) being achieved by the unique
cquilibrium of the game.'® The idea, as in Maskin 1977 and in Moore and
Repuilo 1989, 1s to use, instead of a direct mechanism, a mechanism where
players report information in addition to their type. These additional
“nontype™ messages turn out to be superfluous in the equilibrium to be
implemented, but serve to eliminate other equilibria of the reduced game
in which players can only announce their types. The standard methodology
is first to derive the principal’s optimum, and then, if one is worried about
multiple cquilibria in the dircct-revelation game, to see if the optimal
allocation satisfies the sufficicnt conditions for unique implementation.

10. See also the work of Demski and Sappington (1984) and Ma, Moore, and Turnbull (1988)
in more structured environments.



Remark We will be fairly casual about the distinction between a mecha-
nism and an allocation. In a sense, the revelation principle, which we invoke
systematically from now on, allows us to merge the two concepts.

7.3 Mechanism Design with a Single Agent'’

The following methodology, first developed by Mirrlees (1971), was ex-
tended and applied to various contexts by Mussa and Rosen (1978), Baron
and Myerson (1982), and Maskin and Riley (1984a), among others. The
presentation, including the propositions, follows the general analysis of
Guesnerie and Laffont (1984).'!

Because there is a single agent, we omit the subscripts on transfer {¢) and
type (1) in this section. We assume that the agent’s type lies in an interval
[0, 0]. The agent knows f, and the principal has the prior cumulative
distribution function P (P(8) = 0, P(8) = 1), with differentiable density p({))
such that p(#) > 0 for all @ in [, 8]. (Differentiability of the density is not
nccessary, but is assumed for convenience.) The type space is single dimen-
sional,’? but the decision space may be multidimensional. {Although we
consider a multidimensional decision for completeness, the reader can
grasp the main ideas from the case of a single-dimensional decision.) A
(type-contingent) allocation is a function from the agent’s type into an
allocation:

0 = w(0) = (x(0), t()).
7.3.1 Implementable Decisions and Allocations

Definition 7.1 A decision function x: 8 — 7 is implementable if there exists
a transfer function (-} such that the allocation y(8) = (x(6),1(0)) for €
[ 0, #] satisfics the incentive-compatibility constraint

(1) uy (y(8),0) = u,(y(0),0) for all (0,0) e [0,0] x [6.6].

We will then say that the allocation y(-) is implementable.

Note that we ignore the individual-rationality constraint (that the agent
be willing to participate in step 2) in this definition. Such a constraint, if
any, must be reintroduced at the optimization stage.

Remark If x(°) 1s implementable through transfer ¢(-), therc cxists an
“indirect” or “fiscal” mechanism ¢t = T(x), in which the agent chooses a
decision x, rather than an announcement of his type, that implements the
same allocation. Consider the following scheme:

11. See also Laflont 1989, chapter 10.
12. The case of a multi-dimensional type space is considerably harder. Sce Rochet 1985,
Laffont, Maskin, and Rochet 1987, and McAlee and McMitlan 1988,



t if 36 such that t = t(ﬁ) and x = x(f)
Tix) = (if there exist several such 0, pick one})

— % otherwise.
Choosing an x is de facto equivalent to announcing a f.

We restrict our attention to decision profiles x(-) that are piecewisc
continuously differentiable (“piecewise C'”).1* We now derive a neccssary
condition for x(-) to be implementable.

Theorem 7.1 (necessity) A piecewise C! decision function x(-) 1s imple-
mentable only 1f

"¢ Cu /] dx :

Yoo N 7.1

P INR?, ( du /ot J AR T (7.1
whenever x = x(0), t = t(0), and x is differentiable at 6.

Proof Type () chooses an announcement § so as to maximize »(4, &) =
w, (x(0), 1(0), 0). Because u, is C? and x is pieccwise C, any transfer function
¢ that implements x must be piccewise C* as well.!* Maximizing at a point
of differcntiability yields a first-order condition and a local second-order
condition at the optimum 0 = 9:

7({)
(~,', (t),0) = 0 (truth telling or IC) (7.2)
p

and
‘.Z(D
‘ﬂ{.j (0.0) < 0. (7.3)
P

(To cheek that the second derivative in equation 7.3 exists except at a finite
number of points, note that 62®/0006 exists except at a finite number of
pomnts, because dx/d0 and dt/d0 do, and use identity 7.2))

Differentiating equation 7.2 shows that (except perhaps at a finite num-
ber of points)

("‘,Z(D "42(1)

(
L0y + L (0,0) = 0. 7.4
of? J r?ﬂ[.’()[ : .

Therefore, the local sccond-order condition can be rewritten as

I3 A piccewise-C' function admits a derivative except at a finite number of points. And when
a denvative does not exist, the function still admits a left and a right derivative. Standard
optimal control technigues (Hadley and Kemp 1971) require that functions be piecewise C',
That the “piecewise™ qualifier is needed becomes clear in our analysis of bunching in the
appendix to the present chapter. . i

14. Perform a Taylor expansion of u, (x(8},1(0).6) to the left and totheright of 0 =fata d
at which dv dff exists and is continuous, and use the fact that 0 = 0 is optimal for type
{1,
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. 0,0 =0, 7.5
ﬂUﬁO[ ) (7-3)
or
no¢ (fu\dx, ¢ [cuy\dt
= =0 7.6
L o (f‘xk) a ao( o ) ae = (7.6)

Rewriting cquation 7.2 yields

noQuy dx, Cuy di

= 7.7
W Ox, dt @t do (7.7

Using equation 7.7 to eliminate d/d8 in equation 7.6 yields

i ¢ {Cu\uy, @ [Guy\ Cuy | [ouy dxk>0 (78)
Slleo\ex,) & T\ o Jox )/ o Jao T ’

which is equivalent to equation 7.1. u

The interpretation of the necessary condition is particularly simpie if we
make the following assumption:

Al Forallke {l,... n}, either

sty ¢ (‘?““"?’"D >0

CON Cuyjct
or
e O fluyfix,
(CS™y . N a < 0.
cO\ Cu, /it

This is known as the sorting (or “constant sign” (CS), or “single crossing,”
or “Spence-Mirrlees™) condition.

Note that by changing x, into — x, if necessary, one can restrict attention
1o the case in which all the derivatives are positive if Al holds. From now
on we will assume that CS* holds for all k. A1 is very standard and is made
in almost all applications of the theory. Note that

My /OX,

Cuy

is the agent's marginal rate of substitution between decision k and transfer
¢. The condition asserts that the agent’s type affects this marginal rate of
substitution in a systematic way.

Suppose for instance that the decision is single dimensional (n = 1), and
that Qu, /fx < 0, as is the case if x is an output supplied by the agent to the
principal. In this case, under the sorting condition, inequality 7.1 is equiv-
alent to the monotonicity of the decision in the agent’s type. CS* means
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(x(8,).4(8,))
(x(8,),t(8,))

Figure 7.2

that the slope of the agent’s indifference curve in the (x, £) space,

i /0x

4

Cu /ot

decreases with the agent’s type, (. That is, a high-type (0,) agent must be
compensated less than a low-type agent (6,) for a given increase in the
decision x. This situation is depicted in figure 7.2.

[n this case the interpretation of inequality CS* is straightforward. Let
¥ ) = (x(0,), 1(0,)) and ¥(6,) = (x(6,), 1(0,)) denote the allocations of types
)y and f};. For the allocation to be incentive compatible, it must be the
case that y(f,) lics below type 6,'s indifference curve through ¥(6,) and
above type 6,’s indifference curve through y(f,). Hence, y(6,) must belong
to the shaded region in figure 7.2. (We put y(f,) on the boundary of the
shaded region in the figure because, as we show below, type 6,’s incentive-
compatibility constraint is binding in the optimal mechanism.)

Throughout this chapter, we will make substantial use of the following
thcorem.

Theorem 7.2 (monotonicity) Assume that the decision space is single di-
mensional and that CS* holds. A necessary condition for x(+) to be imple-
mentable is that it be nondecreasing: 8, > 0, = x(6,) > x(6,).

Of course, if CS™ held, the necessary condition would be that x(-) be
nonincreasing. Note that, whereas theorem 7.1 implies monotonicity at
points of differentiability, the proof of thcorem 7.2 relies on the simple
revealed-preference argument outlined in the discussion of figure 7.2 and
has nothing to do with differentiability.

To obtain sufficient conditions for implementability, Guesnerie and
Laffont (1984) make the sorting assumption Al and add the following



technical assumption, which guarantees the existence of a solution to a
differential equation.

A2 The marginal rates of substitution between decisions and transfer do
not increase too fast when the transfer goes to infinity: For all &, there exist
K, and K such that

U, /Cx _
' Hl < Ko + K, |t] uniformly over x, t, and 0.

RTIN

Assumption A2 is satisfied, for instance, in the casc of quasi-linear pref-
erences (for which du, /dr = 1).
it turns out that monotonicity is also sufficient for implementability®*:

Theorem 7.3 Under assumptions Al (CS*) and A2, any piecewise C*
decision function x(-) satisfying dx, /d6 > O for all k is implementable. That
is. there exists £(+) such that (x(-), t{-}) 1s incentive compatible.

Proof From the agent’s first-order condition (equation 7.7), #(-) must
salisfy

- (( u, /0 x,‘) dx, (7.9)
do u, ot ) de

Assumption A2 guarantces the existence of a solution to equation 7.9.'°
We arce left with showing that (x(-),¢(-}) 1s incentive compatible. (By con-
struction, the first-order condition of the agent’s maximization with respect
to 0 is satisfied; so is the local second-order condition in inequality 7.1,
from CS* and dx,/d( > 0. But this is not sufficient, as we must still prove
that the global second-order condition for maximization is satisfied.) Sup-

pose that truth telling is not optimal for type 8. That is, there exists § such
that ®(0,0) — ®(0,0) > 0 (recall that ®(8, 8) = u,(x(d), (), §)). Then

# o~
P
J ‘ (u,da > 0,

-~

‘a {‘a

or

15. Thus, the incentive constraints are satisfied globally if they are satisfied locally and if each
component of the decision is monotonic. Under some conditions on the utility functions and
the distribution of types, the optimal mechanism subject only to the local incentive constraints
i monotonic, and thus is optimal subject to the giobal incentive constraints. We develop this
approach below for the case of a one-dimensional decision.

Alternatively, weaker assumptions on the utility functions can be madc that, coupled
with the hypothesis that all the “downward” incentive constraints are satisfied (that is,
u, (010 = u, (p(0), 1) for all §" < 6), guarantee that the neglected upward incentive con-
straints are satisfied and therefore that global incentive compatibility holds. Moreover, one
cun obtain some properties of the optimal mechanism (without solving explicitly for the
optimal mechanism) using the fact that only the downward constraints must be satisfied. This
“nonlocal™ approach is developed by Moore (1984, 1985, 1988) and by Matthews and Moore
(1987).

16. As |dridi)] < {sup, , |dx,/d0)) (K, + K, |t]). See Hurcwicz 1958.
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If @ > 0, from the sorting condition CS*,' equation 7.10 implies that

M i) )
L. (x(a). a), dx

8 ] n ), - dr

J U (a). ta). 0) y gy 4

# Ot P Ja Ja
'3_ Xf(a T((l], )

(@) |da > 0.

\

(7.11)

But equation 7.9 implies that the integrand in equation 7.11 is equal to 0
for all u, which 1s a contradiction.

If § < 0. the same reasoning shows that equation 7.11 cannot hold
cither. .

An important corollary of theorem 7.3 is that in the case of a single-
dimensional decision, under the sorting conditions CS* or CS™, a decision
function is implementable if and only if it is monotone (nondecreasing
under CS™, nonincreasing under CS™).

7.3.2 Optimal Mechanisms

Now that we have characterized the set of implementable allocations, we
can determine the optimal one for the principal. To do so, we must re-
introduce the individual-rationality constraint for the agent. An imple-
mentable allocation that satisfies the individual-rationality constraint is
called feasible; the principal’s problem is to choose the feasible allocation
with the highest expected payoff. For simplicity, we assume that the agent’s
rescrvation utility (i.e., his expected utility when he rejects the principal’s
mechanism) is independent of his type.

A3 The reservation utility u is independent of type; i.e., the participation
constraint is

(IR)  u, (x(6), t(0), 6) > u for all 6.

Under this assumption, if u, increases with the type (fu, /20 > 0), then IR
can bind only at # = §: Any type 8 > 6 can always announce 6 = 0, which

17. That is,

u, u,
o0y ()
Cu <% frosa

u, T {luy
(e ) {x,1,4a)
' ar



gives him more than type €'s utility, which is at least u.'® For notational
simplicity, we normalize u = 0.
We will also make the following assumptions.

A4 Quasi-linear utilitics??:
uo(x, 6, = Vy(x,0) — ¢,
u{x.t.0) = V(x,0) + 1,
where V, and V, are thrice differentiable and concave in x.

A5 n = 1: Thedecision is single dimensional, and CS' holds; that s, ikl
Oxctd > 0.

A6 ¢V, a0 > 0.

A7 (*V,/0xé0 > 0 (which is satisfied if ¥, does not depend on ).
A8 MV /0xd0? < 0and %V, /ex?o0 = 0.

A9 4 is the interval [0, X ], where X > arg max(¥(x, 8) + Vi(x, ).

We have little information about whether assumption A8 is likely to be
satisficd, as it contains third derivatives. This assumption is a sufficient
condition (together with the monotone-hazard-rate condition introduced
below) for the optimal decision obtained by ignoring the monotonicity
constraint to satisfy monotonicity. As can be seen from equation 7.13
below, assumption A8 is not necessary if “uncertainty about 6 is small,
i.c., if the hazard rate is large.?°

The principal maximizes her expected utility subject to the agent’s IR
and IC constraints:

max  Egug(x(8),t(0), 0)

rx)t(-y]

18. There are no general results on mechanism design when the reservation utility 1s increasing
with 0. The issuc is that the participation constraint may be binding at points other than
¢ — 0, For economic examples in which it is binding at 0, see Champsaur and Rochet
1989, Laffont and Tirole 1990a, and Lewis and Sappington 1989a; for examples in which it
is binding in the middle of the interval, see Lewis and Sappington 1989b. For instance.
Champsaur and Rochet (1989) and Laffont and Tirole (1990a) study price discrimination by
a firm when the high-demand consumers can purchase an alternative (bypass} product (sec
also exercise 7.8). Similarly, in a labor market, a high-ability worker might have better outside
opportunitics, and therefore a higher reservation utility, than a low-ability one. Another
common cause of type-dependent reservation utilities and of IR constraints that are binding
for a good type is the existence of a prior contract between the principal and the agent
{Laffont and Tirole 1990b; Caillaud, Jullien and Picard 1990). Even if, ex ante, all types have
the same reservation utility before signing a contract with the principal, this contract, once
signed, defines a status quo allocation in any luture contract renegotiation. The status quo
allocation is then type dependent.

19. Although quasi-linearity is a strong assumption, given quasi-linearity the fact that the
coclficients of r are — 1 and + 1 is not an additional restriction, as one can always normalize ¥,
and V, so that the payofT functions can be written as in assumption A4.

20. The intuition is that, if the uncertainty is small, allocations are close to the symmetric-
information allocation, and the study of the symmetric-information case requires only as-



subject to x € # and
(1C) uy (x(0),140), 0) = u,(x(6),1(0),0) for all (8, 0)
(IR) 2, (x(0),2(0),0) > u = 0 for all 6.

For the moment, we ignore the constraint x € 2. We will return to it at the
cnd of the analysis: in most applications this constraint does not bind. We
noted that assumptions A3 and A6 imply that IR need be satisfied only at
(# = {). Furthermore, because transfers are costly to the principal, it 1s clear
that IR 1s binding at # = 0:

(TR") at, (x(0)(8),8) = u = 0.

A useful trick, due to Mirrlees (1971), is to use the indirect utility function.
This allows us to eliminate transfers in the above program. Let

Uy(0) = max u, (x(),t(d), ) = u, (x(6), 1(8), ).
6

The envelope theorem implies that
dU,  Cuy 2V,
do /0 807
which implies that
_ ] A
Uiith = u + < (x(0), B)db.
2] (F)()

Furthermore, ug = ¥, + V; — U, thal is, the principal’s utility is equal to
the social surplus minus the agent’s utility. The principal’s objective func-
tion is thus

a7} 0 P o )
J [Vo(x(m, 0) + V,(x(6),0) — f ‘—;;1 (x (D) 0)d0]p<9)d9
fl Q R
:f [Vo(xw), o)+ v, x(0,0— ' L0V e a)] p(6)d0
) SO

after an integration by parts.

Next, we argue that 1C is equivalent to the conjunction of the condition
that dU, /dft = 'V, /@6 and the condition that x(-) be nondecreasing. Theo-
rem 8.2 shows that IC implies these two conditions, and theorem 8.3 shows
that the converse holds.

The principal’s optimization program is thus

max

txi),

. - POV,
Jﬂ [l’u(xs f) + Vi(x, 9} —— p(()) ?‘E

s.t. (monotonicity) x(-) is nondecreasing;

(x, 6)]p(B)at



we call this program . Once the solution x (-} to program I is obtained, we
can compute the agent’s indirect utility,

)
Uriy = |t (x(). 8y,

o O
and the transfer,
tiy = U0y — Vi(x(0), 0)).

For the moment, let us ignore the monotonicity constraint in program
l. The relaxed program is called program IL. If the solution to program II
turns out to be nondccreasing, then it s also a solution to the full program.
Otherwise, one must introduce the monotonicity constraint.

The solution to the relaxed program is given by

NV, V1= PO) &y,

U= @ L (7.12)

R Cx plt) Ixcd
Lel x*(+) denote a solution to equation 7.12. (From A4 and A8, the relaxed
program is concave in x, so the second-order condition is satisfied.)

Interpretation of Equation 7.12 The principal faces a tradeoff between
maximizing total surplus (¥, + V,)and appropriating the agent’s informa-
tional rent (U,). Consider a type 0. By increasing x over the interval
[0, + d8] by ox, the total surplus is increased by

(n”/“ + )

X

6x> p(@)ydo.

However, the rent of type 6 + d) is increased by

c OV
- . Jox db,
cx A\

as is the rent of types in [ + d6,0] (which have weight 1 — P(6)). At the
optimum, the increase in total surplus must be equal to the expected
increase in the agent’s rent. Note that at 6 = 6 rent extraction is not a
concern, and so V¥, + V, is maximized; this result is known as “no distortion
at the top.”

As a trivial illustration, consider monopoly pricing. Let x € [0, 1] denote
the quantity purchased by a buyer with 0-1 demand. Let V{x,0) = —cx
(where ¢ is marginal cost), and V,(x, ) = 0x {so 0 is the buyer’s valuation
lor the good). The maximand in the principal’s optimization program is
lincar in x. and the “bang-bang” solution is x = 1iff# > 6% > ¢, where 8* =
¢+ [1 P(O*)]/p(0*), and x = 0 otherwise. This is the same solution that
is obtained when the monopolist charges a price 7 and knows that a
fraction 1 — P(m) of consumers have valuation exceeding n: The program



max.(r — c)(1 — P(n)) has solution = = §*. This is perhaps the simplest
cxample of gains from trade not being realized because the principal trades
off cfficiency against extraction of the agent’s rent.

More generally, a simple revealed-preference argument shows that x*(6)
is smaller than the level £(8) that maximizes total surplus (¥, + V,), which
is the level that would prevail if the principal knew the agent’s type. To see
this, note that, by definition,

VolX,0) + VI(X,0) = Vo(x*,0) + Vi(x*0)
and

1 — V
Volx®.0) + V,x0) — L= Vien
p 08

1 — P&V
Z%mm+nmw——?_4mm

Adding up these two inequalities and using the sorting condition
A2V, /oxa0 > 0 yields

x*(0) < X(6).

Inspection of program I suggests the following definition, due to Myerson
(1981):

Definition 7.2 The agent’s virtual surplus is

1 — P(B) &V,

Vi, ) — —— L, ).

(X, 0) o0 a0 (x,0)
Thus, everything is as if the principal maximized total surplus, where the
agent’s surplus is replaced by his virtual surplus. Note that the principal’s
virtual surplus is equal to her surplus in the computation of the total virtual
surplus. This is due to the fact that the principal has full information about

herself.

When is it legitimate to focus on the relaxed program? One can ignore the
monotonicity constraint if and only if the x*(-) defined by equation 7.12
is nondccreasing. Let us assume for simplicity that the objective function
in the relaxed program is strictly concave in x. Totally differentiating
equation 7.12 yields

(ﬂZVO N ¢V, 1 — PO 3V, \dx*
ox? - ox? pl6) éx*o8) do

2V, [ d (1= PO é*Vo L — P(8) &V,
= P I - - J— 1 —_— + - . .
oxéd [ do\  p(9) 0x00 p(0) 0xi6?

Thus, under assumptions AS, A7, and A8, and using the second-order

(7.13)



condition, dx*/dfl is positive if

d (1 — P((})) <0
dil p(()

Thus, one can legitimately focus on the relaxed program if the following
assumption 1s satisfied:

d f
AN (monotone hazard rate) — _p_( )-- .| > 0.
dé\1 — P(9)
To see why this is called the monotonc-hazard-rate condition, interpret
t) as the lifetime of a machine, and let Q(8) = 1 — P(6) be the reliability
function, which gives the probability that the machine lasts at least until
time #). The conditional probability that the machine fails over the interval
[£). ¢ + di7], given that it lasts until time 0, is the “hazard rate”
pley — po)

QW) 1 — P

The monotone hazard rate thus indicatcs that the rate of failure increases
as the machine grows older.

Since 1 — P(f) 1s decreasing 1n 8, a sufficient condition for the hazard
rate to increase 1s that the density p 1s increasing. More generally, the
monotone-hazard-rate condition is equivalent to the reliability function Q
being log-concave (a function Q is log-concave 1f InQ 1s concave). One can
show that if p is log-concave on [#,8], then the reliability function Q
is log-concave on [0, 0] (Bagnoli and Berstrom 1989, theorem 2).2' Apply-
ing these results shows that A10 holds (and thus that one can ignore the
monotonicity constraint) if P is uniform, normal, logistic, chi-squared,
cxponential, Laplace, and, undcr somc restrictions on the parameters,
Weibull, gamma, or beta. {See Bagnoli and Bergstrom 1989 for a more
complete hist of distributions whose reliability function 1s log-concave.)

Finally, we reintroduce the constraint x € 4, which we have ignored to
this point. Because

x*{fl) = argmax [ V,(x, a) + Vilx, 0],

which is less than x by assumption A9, and x*(0) < x*(8), the constraint
x(0) < x does not bind. If x*{#) < 0 for some 6, the optimal allocation will
have x*(0) = 0 for a range of ¢’s. In monopoly pricing, for example, the
monopolist will choose not to sell to all consumers whose willingness to
pay is less than the monopoly price.

21. Note that if ¢ 1s the density of @, then ¢'/g = p’/p. But a sufficient condition for a strictly
monotonic function on an interval [ 8, 0] taking value 0 at either 8 or ¢ to be log-concave on
this interval is that its derivative is log-concave (Prekova 1973; Bagnoli and Bergstrom 1989,
theorem 1}). Hence, if (p"/p)" = (q'/q) < 0,(g/Q) <.



Theorem 7.4  Under assumptions A1-A10, the optimal decision x*(#) is
given by equation 7.12.

In the appendix to this chapter we analyze what to do if the monotonicity
constraint is binding. We also study whether it might be desirable to use
stochastic schemes.

74  Mechanisms with Several Agents: Feasible Allocations, Budget Balance, and
Efficiency'’

Now we turn to the case of mechanisms with several agents. We will
distinguish between the case of a self-interested principal and that of a
“benevolent™ principal who maximizes the sum of the agents’ welfare. Of
course, the distinction is relevant only when the principal optimizes over
feasible allocations (section 7.5). We will make the following assumptions
in the rest of the chapter:

Bl Types are single dimensional. They are drawn from independent
distributions P, on [6;,0,] with strictly positive and differentiable den-
sities p;. The distributions are common knowledge.

B2 (private values) Apgent i’s preferences depend only on the decision, his
own type, and his own transfer: u,(x, t;, 6,).

B3 Prefercnces are quasi-linear:

uilx, b, 0) = Vilx,0) + 1, ie{l,....1}
and either

uolx, 1, 8) = Vyi(x,0) — Z t; (self-interested principal)
or

i

uo(x,1,8) = Z ((x,0) (benevolent principal),
where Fy(x.0) = By(x,0) — Cy(x), Cy(x) is the principal’s monetary cost
from decision x (for example, for supplying a public good), and B,(x, 8) is

nonmonetary (representing, for example, side-benefits of the decision in
other markets).

We will say that an allocation y(-) is (ex post) efficient if x(6) e 2 for
each ¢ and

I
(E)  x(0) maximizes Y V(x,6) over ¥, for all 6.
i=0



The rest of this section proceeds as follows. Subsection 7.4.1 dcfines
budget balance and explains that it may imply that no efficient allocation
is implementable. Subsection 7.4.2 discusses the difference between Baye-
sian implementation and implementation in dominant strategies. Subsec-
tion 7.4.3 discusses the case where the reservation utilities of the agents are
so low that efficient allocations can be implemented even when budget
balance is imposed. Subscction 7.4.4 derives conditions that imply that any
allocation that can be implemented under budget balance must be in-
eMicient. Subsection 7.4.5 shows how this inefficiency can disappear with
many agents in an exchange economy. Subsection 7.4.6 shows how the
inefliciency actually becomes more severe with more agents when the
decision is whether to produce a public good.

We should mention that there arc other notions of individual rationality,
incentive compatibility, budget balance, and efficiency than the ones de-
fined here (sec, e.g., Holmstrom and Myerson 1983). These concepts can be
defined ex ante (when the agents have not yet received their information),
interim (after the agents have received their private information, but before
they report), and ex post (after announcements are observed, so all types
are publicly known). In order not to confuse the readcr, we have defined
only the notions that we will use.

7.4.1 Feasibility under Budget Balance

In many mechanism problems with several agents, the “principal” is not
allowed to be a net source of funds to the agents. Moreover, the principal
must raise enough revenue from the transfers to cover her cost. (In some
applications, this cost is identicatly 0.) This leads us to consider mechanisms
that meet the additional constraint of budget balance:
!
(BB) ¥ #,(0) < — Co(x(6)) for all 6.2
i=1

As in subsection 7.3.2, we say that an allocation y = (x, t) is feasible if x
is implementable through  and y is individually rational; y is feasible under
budget balance if it satisfies BB as well.

One theme of this section will be that efficient allocations are typically
not feasible under budget balance when there is incomplete information
uniess the individual-rationality constraints are very weak. (If budget bal-
ance is not required, individual-rationality constraints are irrelevant, as the
principal can induce the agents to participate by giving them all very large
positive transfers, and efficient allocations are usually feasible.) This kind of
inefficiency is different from that in the monopoly-pricing example of

22. Either the principal is endowed with limiled powers (for instance, a regulator is con-
stitutionally allowed to set up a mechanism, but not to make transfers to the agents), or there
is no principal and the analysis aims at characterizing potential outcomes of bargaining
among the agents under asymmetric information (see subsections 7.4.4 and 7.5.2).



section 7.1. There, the competitive outcome where price cquals the monop-
olist’s cost is both feasible and efficient; the monopolist’s optimal mecha-
nism is inefficient because it is designed to maximize the monopolist’s profit
and not social welfare. In contrast, the inefficiency results of this section
pertain to all the allocations that are feasible under the budget-balance
constraint.

74.2 Dominant Strategy vs. Bayesian Mechanisms

This chapter emphasizes Bayesian mechanisms. Another popular concept
15 that of “dominant-strategy mechanisms,” which are mechanisms where
each agent’s optimal announcement is independent of the announcements
of the other agents. (Note that the two solution concepts are equivalent in
the single-agent case.) Since the optimal announcement can be taken to be
the truth from the revelation principle, the formal definition of a dominant-
strategy mechanism is a function y(0) such that, for each agenti =1, ..., I
and for each 6, 8, and 6_,,

(DIC)  u,(y(6,6_,),6,) > u(y(0,,0_,),8,).

That is, each agent is induced to tell the truth whatever the other agents’
reports (or types- this is equivalent). The incentive-compatibility con-
straint (DIC) for dominant-strategy implementation is much more strin-
gent than the incentive constraint under Bayesian implementation. In the
latter, incentive compatibility is required to hold only on average over types
¢... where the expectation is taken over agent i’s beliefs about 8_; condi-
tional on his type 6, Bayesian incentive compaltibility thus pools the
incentive constraints of dominant-strategy incentive compatibility. Also,
the Bayesian conditions for cach player suppose that all other players
report truthfully. Thus, the Bayesian incentive-compatibility constraint is

(IC} E, uly(6,0_,),0)>E, ,-“i(_v(éisg—i)s 6,).

When possible, a principal might prefer dominant-strategy implementa-
tion of her mechanism, because it is not sensitive to beliefs that players have
about each other and it does not require players to compute Bayesian
equilibrium strategies. However, focusing on dominant-strategy mecha-
nisms restricts the set of mechanisms considerably. Thus, implementation
in dominant strategies is a nice property to have if feasible, but it is not clear
how much utility loss a principal should be willing to tolerate in order to
have dominant strategies for the agents.

Mookherjee and Reichelstein (1989) identify a class of models in which
dominant-strategy implementation involves no welfare loss relative to
Bayesian implementation.?* Suppose that the agents have quasi-linear

23. Therr result generalizes a similar observation made by Laffont and Tirole {1987a) in the
context of auctions of an incentive contract among firms.



preferences, and that. fori=1,..., 1,
w(x, 0,0y = Vix,0;) + 1,

where 1, is the principal’s transfer to agent i. Mookherjee and Reichelstein
allow x to be multi-dimensional, but require that V; depend on x only
through a one-dimensional statistic A;{x}:

u(x,t,0) = Vihix), o) + t,.

They further assume that types are drawn independently, that the distnbu-
tion Py{-) of player i's type satisfies the monotone-hazard-rate condition
(p;/(1 - P) nondecrcasing) for cach i, and that preferences satisfy the sort-
ing assumption &V;/é0,ch; > 0 and the condition that &%V/¢ch;06; is de-
creasing in .. Under these assumptions, they show that an allocation that
maximizes the principal’s expected utility,

1
E, ( Volx, 0y — 5 r,.(())),

i=1

subject to the constraints of Bayesian incentive compatibility (IC) and
individual rationality,

(IR) Eg up(0,,0 ).0,) = 0forall 8,

can be implemented in dominant strategies. That is, one can choose the
transfer function in the above program such that DIC, and not only IC, 1s
satisfied.

Though we will mention results about dominant-strategy implementation,
we will take the incentive-compatibility and individual-rationality con-
straints facing the principal to be the Bayesian ones, IC and IR, unless we
specify otherwise.

7.4.3 Efficiency Theorems

There are two basic results about the implementability of efficient alloca-
tions, both of which suppose that thc agents’ reservation utilities are
arbitranly low.

The Groves Mechanism
An carly implementability result was the discovery by Groves (1973) and
Clarke (1971) that any efficient provision of public goods can be imple-
mented as long as budget balance is not required. Even more striking is
the fact that efficient provision can be implemented in dominant strategies.
The idea is straightforward: Choose agent i’s transfer so that agent i's
payoff is the same as the total surplus of all parties up to a constant.
Because agent i already internalizes his own surplus, it suffices to set the
transfer equal to the total surplus minus his surplus. The transfers are thus
“externality payments.”



) = (z;wxﬂaﬂﬂ)m)
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denote the “cxpected externality” for agent i when he announces f,. &(,)

is the first part of the transfer to agent i; because 7,(-) is supposed not to

depend on 0., &(0,) must be paid by the other agents. One can, for instance,

have them share the payment, i.c., allocate éﬁ-(@i)/(l — 1)toeach 1(*),j # i.

Thus, the following functions ensurc budget balance?®

(0 ) = —zx (1~1)

= >, Es (Z%x( ,»&) (7.18)
1_] V] k#j

Now suppose that the principal incurs a cost Cy(x) from any decision
x # 0, so that budget balance requires

-

Z ti(0) < — Co(x(B)).

To implement the efficient decision under this constraint, we consider the
“fictional problem” where the agents’ utility functions are

Vilx,0;) = Vi(x,0) — Colx)/I

and the principal’s cost is Cy(x) = 0. We then compute the transfers 7;(*)
for this fictional problem, and set

L) = 100) — Co(x* (I

Wec claim that these transfers implement the efficient decision with bud-
get balance in the onginal problem. Budget balance is trivial: Since
! 148) = 0 for all 0,

I A
Y (B = — Co(x*(0)).
i=1
As for incentive compatibility, note that
V(x*(0),8) + 10) = Vi(x*(0).0) + t.(0)

26. Cremer and Riordan (1985) show that one can strengthen the AGV result by having
a dominant strategy for I — | agents. The first mover maximizes his expected payoff by
announcing his true type, and it is a dominant strategy for the I — 1 “Stackelberg followers™
to announce truthfully also.
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for every § and 6,; thus, if reporting truthfully is an equilibrium in the
fictional problem under transfers £, it is an equilibrium in the original
problem under transfers t.

An implication of the AGYV result is the following: Suppose that I agents
meet and agree on a mechanism (x{-), () ex ante, i.e., before they receive
their private information. The timing is then as shown in figure 7.3. We
claim that if x*(-) is the efficient-decision rule, the contract signed among
the I agents ex ante will yicld x*(8) for each realization of 6, even if the
agents can refuse to sign the contract (i.c., ¥ is not unboundedly low}.
Clearly, if x*(+) is implementable, any mechanism (x*(-), ()} that imple-
ments it is optimal, as it maximizes the “pie” to be divided among the
agents. and agents have an incentive to maximize the pie and distribute it
among themselves, possibly with ex ante compensatory transfers (recall
that the contract is signed under symmetric information, so one expects ex
ante gains from trade to be realized). But to implement x*(+), it suffices to
give ex post transfers t,() specified by the AGV formulas 7.17 and 7.18.

7.4.4 Inefficiency Theorems

We saw in subsection 7.4.3 that, with quasi-linear preferences, efficiency is
attainable if budget balance is not required or agents can be forced to
participate. [n contrast, inefficiency “tends to occur” when the principal
must provide the agents with an exogenous reservation utility level and
budget balance is required. There are two basic inefficiency results, one due
to Laffont and Maskin (1979) and the other to Myerson and Satterthwaite
(1983).27 In this subsection, we first develop the Myerson-Satterthwaite
analysis and then sketch that of Laffont and Maskin.

Myerson and Satterthwaite consider a two-agent trading game. The
seller can supply one unit of a good at cost ¢ drawn from distribution P, (")
with differentiable, strictly positive density p,(-) on [¢,¢]. The buyer has
unit demand and valuation ¢ drawn from distribution P,(-) on [z,7] with

27. As Eric Maskin pointed out to us, the incfficiency result can with hindsight be seen in
Mirrlees’ (1971) treatment of the optimal-taxation problem. Suppose that the social planner’s
objective is, as proposed by Rawls, to maximize the minimum utility in sociely. One can
consider the minimum utility as a reservation utility and look for incentive-compatible,
halanced-budget allocations. Mirrlees shows that there exists no such allocation that is
efficient.



differentiable, strictly positive density p,(-). Let x(c,v) € [0, 1] denote the
probability of trade and t(c,v) denote the transfer from the buyer to the
seller(sot, =t,1, = —t,and t, + t, = 0). We do not specify how the two
players end up with the type-contingent allocation {x(-),(-)}. Forinstance,
they might bargain as in the Chatterjee-Samuelson model described in
chapter 6, or they could use a more complex sequential-bargaining process
such as the ones described in chapter 10, or they might respond 1o a mecha-
nism designed by a principal (see subsection 7.5.2 for more on this). Rather,
the question is whether efficiency is consistent with equilibrium strategies
(i.c., IC), individual rationality, and budget balance in gencral games.
Let

X, (c} = E [x(c,v)]
and
X,(v) = E [x(c,v)]

denote, respectively, the seller’s and the buyer’s probabilities of trading as
a function of their type; let

T(c) = E [r(c,v)]
and

T{v) = —E{t(c,v)]
denote their expected transfers; and let

Uyley = Ti{e) — ¢ X ()
and

Us(r) = v X,(v) + Th{p)
denote their expected utilities when they have types ¢ and v, respectively.
Because the sorting condition (see subsection 7.3.1) is satisfied, we conclude
from theorem 7.2 that X, and X, must be monotonic if incentive compati-

bility obtains: X, is nonincreasing and X, is nondecreasing. Also, from
section 7.3, we have

<

Uile) = Uy (@) + J X (0 dy (7.19)

<

and

Us(t) = Uy(e) + f X, (vdv. (7.20)

1

Substituting for U, (c) and U,(r) and adding up equations 7.19 and 7.20
yiclds



T+ Th(v) = ¢ X (e} — v X5(v) + Ui{e) + Uy(v)
+ J- X, ndy + J X,(v)dv. (7.21)

But budget balance (f,(c,v) + f,(c,v} = 0) in particular implies that
Er T] ((‘) + El,! Tz(v) = 0

Or. using equation 7.21,

0= f “ (c‘Xl(f)+ j Xl(-,:)dw)pl{c)dc + U(¢)

+ J‘" (J.l X,(vydv —v Xz(v)) pa(v)ydv + Us(v). (7.22)

Integrating by parts in equation 7.22 yields

Uy(c) + Usle) = —fc ( s —E D X, (@ps (O de
¢ 1

+ JD (v e Pl(ﬂv—))Xz(v)pz(v}dv, {7.23)
v Pz(b‘]

50 that, by replacing X, and X, by their definitions, we get

Ui(c)+ Us(v)

J f Kv— 1 —’3(”})‘("*}91'( )ﬂ x(e, 0Py (c)p (o) de dv. (7.24)
e p,(v) pi(c)

Since individual rationality is equivalent to U,(¢) > 0 and U,(r) = 0, 1
necessary condition for x(-) to be implementable is that the right-hand side
of cquation 7.24 be nonnegative.

Now, efficiency requires that x(-) = x*(-), where x*{c,v)=1if 6 > ¢
and = 0 otherwise. One can check that equation 7.24 is not satisfied for
x(-) = x*()if ¢ > v and ¢ < v, which establishes the following result.

Theorem 7.5 (Myerson and Satterthwaite 1983) Suppose that the seller’s
cost and the buyer’s valuation have differentiable, strictly positive densities
on [¢,¢]and [o,v], that there is a positive probability of gains from trade
(¢ < r). and that therc is a positive probability of no gains from trade
(¢ > v). Then there is no efficient trading outcome that satisfics individual
rationality, incentive compatibility, and budget balance.?®

28%. The hypothesis that the distributions are represented by strictly positive densities is
important. To sec this, consider the following discrete example: v = ¢ with probability p
and = v with probability p; ¢ = ¢ with probability ¢ and = ¢ with probability g, where
prp-qg+q= l.c<r<¢<7?and v —¢>p{U— c) And consider the following bar-
gaining scheme, in which the seller makes a “take it or leave it” offer, which the buyer accepts



Equation 7.24 exhibits the now familiar virtual surpluses:

( I — Pz(l’))
r— X
pa(v)

for the buyer and

, P(c)
-(( * Pl[('))x

for the seller.?®*Y Furthermore, as in section 7.3, incentive costs must be
taken into account when evaluating gains from trade. This explains the
incfficiency result. For example, take two types ¢ and v such thatv = ¢ + ¢
where ¢ i1s “small” (two such types exist as long as v > ¢ > v). While the
buyer’s valuation exceeds the seller’s cost, the buyer’s virtual valuation is
lower than the scller’s virtual cost, so that there arc no “implementable
gains from trade.”

Note that the inefficiency resuit is as tight as possible. When it is common
knowledge that therc are gains from trade (» > ¢), there exist efficient
mechanisms that satisfy IR, IC, and BB: “x(¢,8) = 1 and (¢, ) = ¢ for all
((.0)wherec <t <p.”

Cramton, Gibbons, and Klemperer (1987) extend the work of Myerson
and Satterthwaite (1983) by allowing arbitrary ownership patterns and
more than two agents. In the scller-buyer example, the initial owner-
ship pattern is (x; = 1,%, = 0), where 2, is player i's sharc of the good;
the bargaining is about transforming the ownership structure to (x| = 0,
x5 = |). More generally. suppose that there are I agents who initially hold
shares («,....,%;) of a good, with } [_, a; = 1. Suppose that the final sharcs
arc(xy,....a) with ) [_, af = 1, and that agent i’s surplus is Vi(«,, 8;) = «;),
where the 6, are independently drawn [rom some symmetric distribution
P(-)on [0,0] Cramton et al. show that if the initial shares are fairly evenly
distributed (close to (1/1,...,1/I)), there cxist efficient mechanisms that
satisfy IC, IR, and BB.

Laffont and Maskin (1979, section 6) obtain an inefficiency result in a
framework more gencral than that of Myerson and Satterthwaite: The
decision variable x need not be binary but can take values in R”. Agents
have quasi-linear utilities u; = V,(x,6,) + r,. Laffont and Maskin assume (i)
that the cfficient solution x *(#) that maximizes » |, V;(x, 6;) is continuously
differentiable in 0 and (ii) that the optimal expected transfers t,(8,) are
differentiable. Assumption i, although it does not allow for the discontin-

or rejects. Clearly, the ¢-seller offers price » and sells if and only if ¢ = 7. The c¢-seller offers
price ¢ as r — ¢ > p(t — ¢), and always sells. The bargaining outcome, which satisfies IR,
BB, and IC. is efficient.

29.¢ (I - Py)/pyandc + P /p, can be called virtual valuation and virtual cost, respectively.
30. The relevant hazard rate for the scller is £, /p, rather than (I - P,)/p,. This comes from
the fact that the seller dislikes, rather than likes, higher decisions.



uous x* considered by Myerson and Satterthwaite (which can only be
approximated by continuously differentiable x), is natural and of little
concern. Assumption ii, which involves endogenous variables, seems more
controversial. However, in most applications, incentive compatibility re-
quires that 1, be monotonic: Decisions concerning the agents—e.g., the
expected probability of trade, X,(6;,)—can be shown to be monotonic, and
1, must be monotonic if X; is (for instance, purchasing more at a lower
price would not be incentive compatible). But a monotonic function is
differentiable aimost everywhere, and continuouly differentiable functions
can be approximated by almost-everywhere-differentiable ones. Hence,
Laffont and Maskin’s assumption on differentiable transfers is satisfied n
many applications of interest.>’

7.4.5 Efficiency Limit Theorems™ "

The Myerson-Satterthwaite result shows that a buyer and a seller are
unable to exhaust gains from trade if they have incomplete information
about each other and therc is positive probability that there are no gains
rom trade. This strengthens our earlier observation that the Coase theo-
rem may not cxtend to asymmetric-information bargaining. One would
want to know whether inefficiency remains substantial when there are
many buyers and many scllers. In particular, onc would expect that, with
a large number of traders, any one trader would be unable to have much
influence on his terms of trade by misrepresenting his preferences, and
therefore allocations that approximate Walrasian equilibria or Pareto
optima could be implemented despite asymmetric information.
Confirming this intuition with a continuum of buyers and sellers is
straightforward. Suppose for instance that each seller has one unit of the
good for sale and has opportunity or production cost ¢ drawn (independent
from those of the other sellers and buyers) from the distribution P, on
[¢.c]; similarly, suppose that the buyers have unit demands and their
valuations are drawn independently from the distribution P, on [v.%].

31. There have been ather extensions of the incfficiency result. Spier {1989) considers bargain-
ing between a plaintifl and a defendant where both have private information about the
outcome of the case if they go to court (so, unlike Myerson and Satterthwaite’s model, this is
a model of “common values”; that is, each agent cares directly about the other agent’s
information). Going to court involves a judicial cost for both parties. Settling out of court is the
Pareto-superior outcome, as it avoids the judicial costs. Thus, it 1s common knowledge that
there are gains from trade (i.e., gains from agreeing). Yet, Spier shows that if the judicial costs
arc small (but positive), efficiency is inconsistent with IR, IC, and BB. (The intuition 1s that
efficiency requires that the probability of going to court be equal to 0 and, therefore, that
all types of defendants pay and all types of plaintiffs receive the same monetary transfer. But
if the judicial costs are small, it pays the plaintiff or the defendant to go to court when they
have information that is very favorable to them.} Ledyard and Palirey (1989) consider the
case of a public-good mechanism which is designed by the principal. They show that the
principal may choose a mechanism that does not maximize the sum of the agents’ willingness
to pay for the public good cven if she faces no IR constraint, as long as the agents’ private
information is the marginal utility of income (y; = x — 1/8,) and the principal cares about
income distribution (ie., about ¥ /-, u).



With ¢ > r (not cveryone ought to trade), the market-clearing price =« is
given by Py (n) = | — Py({n) (if sellers and buyers are in equal numbers). Let
X, € [0.1] and x, € [0,1] denote a seller’s probability of selling and a
buyer’s probability of purchasing, respectively. A social planner can obtain
the efficient outcome by offering the Walrasian mechanism: “x,(¢) = 1 and
t(¢) = mifé < m,and x (&) = 1,(¢) = 0 otherwisc; x,(#) = 1 and t,(8y= —m
if # > 7. and x,(f) = 1,(f) = 0 otherwise.”

With a large but finite number of traders, on¢ cannot generally obtain
cfficient outcomes under IR. Indeed, Hurwicz (1972) shows that, in general
cconomics, any mechanism that asks the traders to announce their prefer-
ence orderings, that is efficient, and that satisfies the individual-rationality
constraint that the traders prefer their assigned consumption bundle to
their initial endowment vector must violale incentive compatibility for
some preference orderings. Hurwicz's informational assumption is that
traders know one another’s preferences (this is called a “Nash environment”
in the literature, to distinguish it from “Bayesian environments,” where
preferences are private information). Roberts and Postlewaite (1976) pursued
this line of rescarch and showed that, under some regularity conditions, a
trader’s gain in utility from distorting his announcement of preferences is
bounded above by a number that tends to zcro as the number of traders
tends to infinity.

Wilson (1985) and Gresik and Satterthwaite (1989) (se¢ also Cramton et
al. 1987) perform a similar analysis in a Bayesian context, Suppose with
Wilson that there are I, sellers, i =1, ..., 1, and I, buyers, i = 1, ..., I,;
that the sellers’ costs and the buyers’ valuations are drawn independently
from distributions on [¢,c] and [2,7]; and that ¢c<p <€ <y, so that
r > ¢ and v < ¢ have positive probability.

Wilson studies “doublc auctions,” in which the sellers and the buyers
make bids {¢;ji-y _,, and {6,},_, _,, respectively (bids are similar to
announcements of costs or valuations). Without loss of generality, we can
reorder the bids so that

(.I’ 2 (‘]l—[ > . s 2 (.1

and

- A~

Uy 2ty 2210

~
.

Then the number of units traded in a double auction is the largest k such
that f, > ¢é,, and those who trade are sellers 1 through k and buyers 1
through k. The transfer price 7 is an arbitrary price in [é, 6] (for instance,
(f, + é)/2). The other sellers and buyers do not trade and do not give or
receive transfers. Note that if each player’s bid equals his type, a double
auction maximizes social surplus. Of course, traders have an incentive to
misrepresent their preferences, and the equilibrium need not be efficient.
Yet Wilson shows that, under some assumptions (existence of an equi-



librium in symmetric strategies that are differentiable functions of private
information and have uniformly bounded dcrivatives), a double auction
(a very simple mechanism indeed) yields efficiency in the limit when I, and
I, tend to infinity. Gresik and Satterthwaite (1989) provide results on the
rate of convergence to Walrasian equilibria.

7.4.6 Strong Inefficiency Limit Theorems'""

The efficiency limit theorems for private goods mentioned in the previous
subsection are in stark contrast with limit results by Rob (1989) and
Muailath and Postlewaite (1990) for public goods when each agent has veto
power. In the private-good case with a large number of traders, a trader
has little influence on the price at which he trades, so he has little incentive
to manipulate the announcement of his preferences to trade oflf more
favorable prices against a lower probability of trading. The reverse holds
for public goods with a large number of traders. A trader has a low
probability of being pivotal, i.e., of influencing the decision of whether to
produce the public good. Hence, the probability of “trade™—the prob-
ability of the public good being supplied—cannot be affected, but under
some conditions (to be described) each agent can manipulate his “terms of
trade™ the amount of his contribution toward the provision of the public
good.

Consider a fixed-sized public-good project with I agents. Agent i (i =
..... 1) has utility u; = 6,x + t; where x = 1 if the public good is supplied
and x = 0 otherwise (¢; is likely to be ncgative). Let the parameters ¢; be
independently drawn from distributions P; with positive density p; on
[0.,0.]. Assume further that the cost of realizing the project is a function
C'(1) of the number of agents.

Let us look for mechanisms m = {x,t} that satisfy the following
properties:

x(0) e [0, 1] for all 6,
(IC) Fq [x(6,8 )0, + t:0.0_)]1 = Ey_ [x(B,,0_)0; + 1:(6,0_)]

for all (i, 8, 8,),
(IR) E, [x(0,0_)0; + t(6,6_,)] = 0 for all (i, 8,),

1
(BB) Y 1(8) + x(0)C(I) < O for ali 8.
i=1

The Rob-Mailath-Postlewaite result is that, in the limit with a large
number of traders, IC, IR, and BB imply that no gains from trade are
realized if C(I) is proportional to I and C(I)/] > 8, for all i.

Actually, an apparently stronger result will be proved, by replacing BB
(which is an ex post concept) by ex ante budget balance:



(EABB) EB(ZI; t(0) + x(H)C(I)) <0
Of course, BB implics EABB. 32
Let
Uilt) = E, [x(6,0_)6 + t40,,0.))]
denote agent i’s expected utility when he has type ¢,, and let
X0y = Eq [x(6,6_)]

denote the probability that the good is supplied. The analysis of section 7.3
implies that

. .
Uilo) = Ui8,) + J Xi(gi) dé.’- (7.25)

2/

1

The cxpected total surplus, W, which is equal to the expectation of the sum
of the budget surplus and the agents’ utilities, is then

w:t:*,,(Z[ 1,(8)] — C)x 9)+ZU(0)

=E6<Z[ (0] = C(1x(6) +ZU(6)

0,
+Z,Ee.[( (2() )) ,v(f*.-)], (7.26)

0, o, L
f [ X8, df,p.(0)d6,
8

i oWt

where

has been integrated by parts. Now,

R(Z[—MMJ—Cmﬂm)EO

by ex ante budget balance, and U(8;) > 0 for all i by individual rationality.
Because

0<FE, [Z U‘.(o,,)] = E, [Z (£(0) + 6;x(0) ] {Z . x(6 C[I)x(ﬁ)}

(using the budget constraint), an integration by parts vields

32, But Mailath and Postlewaite show that if EABB, IC, and IR are satisfied. one can choose
the transfers ¢,(-) such that BB, IC, and IR are satisfied as well.



] _ I — Pi(gi) C(I)
Ly {LZ (Hz ey 1—)] x(ﬂ)} > 0. (1.27)

We will use the following lemma:

Lemma 7.1 The cxpectation of the virtual valuation is equal to the lower
bound of the interval.

Proof Integrating by parts,

b 1 — Pl(gi)>
f), — AN T R
.L. ( : 2. (6) p0;) db;

= J ‘ O,p.68,1d0; — {{1 — P;(G.-)]Hs}gi - J.

?, |}

aa
6;p;(6;) d0;

=0, n

We next assume that the per-capita cost of supplying the public good is
constant, C({)/I = ¢, and that ¢ > 0, for all i. Let us further assume (for
simplicity) that all 0, are drawn from the same distribution P(-) on [ 8,07,
so that ¢ > 0.

Note that the left-hand side of equation 7.27 is maximized by x(0) = 1if

Z (U; - - P(Gl) - C) >0

i p(6;)
and by x(0) = 0 othcrwise.

With a continuum of agents, the realized distribution of types in the pop-
ulation of agents coincides with the prior distribution. As 6 < c, and (from
the lemma) the expected total virtual surplus is equal to E,{(8 — c)x(6)],
in order for expected surplus to be nonnegative, x must be equal to 0 with
probability 1. With a large but finite number of agents, the law of large
numbers suggests that the same result holds approximately. Technical
work is needed to make this intuition precise, but Rob (1989) and Mailath
and Postlewaite (1990) show that, as I tends to oo, the probability that the
public project is implemented tends to 0 if ¢ > 8, and IR, IC, and BB are
required.’?

Thus, with a large number of agents it becomes very hard to reach
agreement. The inefficiency involved can be large. For, suppose that P(c)
is very small, so that, with probability close to 1, each agent’s valuation for
the public good exceeds the per-capita cost of supplying the public good.

33. A simular result is obtained by Roberts (1976} for dominant-strategy mechanisms rather
than Bayesian ones. In contrast, Green and Laflont (1979) show that, in the absence of
Lhe IR constraint, efficiency can be obtained in the limit when the number of agents becomes
large. with dominant strategies and budget balance.



Then there are gains from trade with probability close to 1, yet gains from
trade are realized with probability close to 0.

The intuition for this result is straightforward. The probability of being
pivotal (changing x through a change in 6,) is very small with many agents,
and is 0 with a continuum of them.** Thus, agent i’s objective 1s simply to
maximize his expected transfer, i.e., minimize his expected contribution to
the public good. This expected contribution cannot exceed €, because that
would violate individual rationality for type 6, and agent i can always report
type 0. But, if the expected contribution is at most 8, the cost of realizing
the project cannot be covered, contradicting budget balance.

To avoid inefficiencies, one nceds subsidies from an external source (such
as a “povernment”). Mailath and Postlewaite show that the per-capita
subsidy to implement the efficient provision of the public good (i.e., x =1
if and only if Y, 0, > cI) is asymptotically equal to ¢ — 8, as one would
suspect.

7.5 Mechanism Design with Several Agents: Optimization®"

In section 7.4 we looked at general properties of the implementable alloca-
tions. We now look at the optimal choice of a mechanism for two allocation
problems. In the first, the auction example, a self-interestcd principal sells
a good to one of several buyers with private information about their
willingness to pay for the good. In the second, the bilateral-trade example,
a seller and a buyer with private information about their cost and valuation
may trade an object. In both cases we will assume that the mechanism is
designed by an uninformed party to maximize her objective function, which
will allow us to abstract from issues arising from information leakages
through contract design (see subscction 7.6.3). In the auction example this
corresponds to the assumption that the seller has no private information
and maximizes her expected revenue. In the bilateral-trade example the
interpretation is more difficult. There, it will be assumed that a benevolent
third party maximizes the expected gains from trade between the buyer and
the seller; as we will discuss, the existence of this third party is mysterious
and the main point of the analysis is to supply an upper bound on the
cfliciency of bilateral exchange under asymmetric information.

7.5.1 Auctions

Suppose that a scller (the principal) has % units of a good for sale. There
are [ potential buyers (agents): i = 1, ..., I. All parties have quasi-linear
preferences:

34. A similar 1dea underlies the “paradox of voting”—with a large number of voters, the
probability of affecting the outcome of an election is infinitesimal. Palfrey and Rosenthal 1985
Is & recent paper on this topic.



u, = V;(tl.()"] + fl- fori= 0, l, ....I

where x; € [0, %] is the amount consumed by party i and ¢; is his (or her)
income {in this section, 1, = — 3 1, t;). We assume that V] is increasing in
x;. and that the sorting condition holds:

2V
>0

- 7 My
cx, o,

that is, the marginal utility of the good increases in 8;.

The seller’s parameter 8, is common knowledge. In contrast, the buyers’
types ¢, are independently drawn from cumulative distributions F,(-) with
strictly positive densities p;(*) on [ 6,6].

The seller attempts to maximize her expected utility. From the revela-
tion principle, she can restrict attention to direct rcvelation mechanisms
fx(-),1(-)}. Thus, she maximizes her expected (net) revenue:

R = E,,[V‘,(i — ;Z::x x;(6), 90> — .-Z t,-(B):I
subject to
(1IC)  Eq [Vi(xd6;,0-,),6) + 140;,0_))]
> Ey_ [Vilxil0;,0_).8) + t,(6,,6-,)]
for all (i, 6;, él-),
{(IR) E, [Vixi(6,,0_;),6) + 1,(6,,0_;)] = 0 for all (i, 6,),

and
i
x;(0) = 0and Z x;(f) < % for all 6.
i=1

Let
U0) = Ey [Vilxy(8,0_,).6) + 1:(6,0_))]

denote buyer i’s expected utility when he has type 6. The seller’s objcctive
function can be rewritten as a function of the buyers’ expected utilities by
substituting for the transfers:

i=1

J 1 I
R = Ee[Vo (x - Y xd{0), 90) + 2 Vi(xi(6), Gf)] — Y B, Udb).  (7.28)
i=1 i=1
But, from the envelope theorem,

dU. oV
P (6000, 7.29
a6, = 5o ‘(ae.- (406, 00, 9‘)) 7

or



8,
Uit = U8y + [ E, i( “(x;(0,,6_,),0 ))d() (7.30)

v 8

At the optimum, U;(f) = 0, as the seller does not want to leave unnecessary
rents to the buyers. Substituting equation 7.30 into equation 7.28 and
integrating by parts yields

R = Eﬂlil/o(" i (0), b‘o)
+3 (m o)~ o0 )} (7.31)

The optimal auction defines an allocation x,(-) of the good so as to
maximize R subject to the agents’ incentive compatibility. Rather than give
a comprehensive study of incentive compatibility, we content ourselves
with a [ull treatment of a special case. Assume that

Vilx,, 0 = 0ix;, i=0,1,...,1

X=1

We know from theorem 7.2 that incentive compatibility for agent i is
cquivalent to equation 7.30 plus the condition that X:0) = Ey x,(6,0_))
be nondecreasing.

Hence, the optimal auction solves

— P.(0. i
i1 pi(6;) i=1

subject Lo

!

Y o) < 1, x(0) > 0 for all 0 (7.33)
i 1

and
X;(-) nondecreasing. (7.34)

The expected transfers associated with the optimal auction are obtained

by computing U(f;) and using the definition of U

8; N R

4
Note that maximizing equation 7.35 determines only expected transfers
T:(-). so there is a lot of leeway in defining the ex post transfers t{). We
will see that this leeway translates into a multiplicity of ways of implement-
ing the optimal auction.



Let
L — Pi0)
pi6)
denote the virtual valuation of buyer i, and let J,(8,) = 8, denote the sel-

ler's valuation. We first maximize expression 7.32, ignoring the incentive-
compatibility constraint 7.34. This yields

Jy=10, —

w(0) = LiffJ(6) = max J(6).
,

(We ignore the cases in which the maximum is reached for at least two
players. Such cases have probability 0.)

If J(-) is nondecreasing for all i (which is true in particular if the
monotone-hazard-rate condition holds- see section 7.3), then, if
x(0.,0_) =1,

x(0:,0_.,)=1forall 8 > 8.

Hence, X;(°) is nondecreasing, and the ignored incentive-compatibility
constraint is automatically satisficd. If J,(-) decreases over some interval,
one must proceed along the lines of the analysis of bunching in the appendix
to this chapter. (See Myerson 1981 for details.) In the following, we will
assume that J,(-) 1s nondecreasing.

We now examine the implications of this analysis.

First, note that the relevant comparison concerns the parties’ virtual
valuations, and not their valuations. The seller’s virtual valuation is equal
to her true valuation @,, because the seller has full information about
herself and therefore needs not introduce the incentive cost of revelation
of information.

Second, all auctions that yield the same decision x;(-} and give zero
surplus to type 6 of each buyer yield the same revenue. We will shortly give
an implication of this fact, known as the revenue equivalence theorem.

Third, the analysis yields a number of standard results in the symmetric
case(P,(-) = P(-)). In this case, the good goes to the highest-valuation buyer
if it is sold at all. The good is sold if and only if

max @, > 0%,
it Ll

where 0* > 8, is defined by

R il
p0*y —

()* 35

35. Again, this result generalizes the monopely-pricing paradigm. Note that if
), < max 11 0. < 0* gains from trade are not realized. The seller distorls the auction in
her favor.



Furthermore, all auctions that give the good to the highest bidder (i.e.,
Xi(0) = [P(t)]" " if 0, = 0*, = 0 otherwise) and yield zero surplus to a
bidder with valuation 6* (or, equivalently, to valuation ¢ from equation
7.30) yicld the same revenue to the seller.

[n particular, a first-price auction (see chapter 6) and a second-price
auction (sce chapter 1), each with minimum or reservation price 6*, yield
the same revenue and are optimal (Vickrey 1961; Myerson 1981; Riley and
Samuelson 1981). Although the first- and second-price auctions yicld the
same x; and T;, they yield different ¢;; When bidder i wins, his payment
depends only on his bid and therefore only on ¢; in a [irst-price auction,
and depends only on the second bid (Max;,; ;.. 1 %) in a second-price
auction. This illustrates the leeway one has in building the ex post transfers
{, lo implement an optimal auction. Notc also that the two-type example
in section 7.1 shows that neither the first- nor the second-price auction is
optimal when the distribution of types is discrete. The problem with both
of these auctions is that the high-valuation type receives an unneccssarily
high rent. Starting from the second-price auction, for example, the seller
can increase her revenue while still inducing buyers to bid their valuations
if she specifies that when one buyer bids 8 and the other bids 0 the high
bidder receives the good at price 6 + (6 — 8)/2.

In the asymmetric case, the auction does not necessarily allocate the good
to the bidder with the highest willingness to pay (Myerson 1981; McAfee
and McMillan 1987b). In particular, suppose that there are two bidders
(i = 1, 2) and that, for all @,

1 — P () . | — P,(0)

Py Pz(gﬁ ‘
That is, bidder 1 is “on average” morc eager to buy than bidder 2. Then
the auction should be biased in favor of bidder 2. There exist 0, and 8, such
that #, > (), but x,(6),,0,) = 1, while there exist no 0; and 8, such that
)y > 0, and x,(6,,0,) = 1.

7.5.2 Efficient Bargaining Processes'!

Consider now a single buyer and a single seller. The seller has one unit for
sale and has private information about his cost ¢ of supplying the unit. The
buyer has unit demand and has private information about his willingness
to pay or valuation ¢ for the unit. Thus, #, = ¢, 8, = v, and 6 = (¢, ). c and
¢ are indcpendently drawn from cumulative distributions P,(-) and P,(")
on [ c,c]and [ », 0], with strictly positive densitics pi(-)and p,(-). The two
parties are risk neutral.

A balanced-budget mechanism is a probability x(c,v) e [0, 1] that the
traders exchange the good given that their types are ¢ and v and a payment
w(c,r) (or, equivalently, given that the parties are risk ncutral, an expected



payment w(c,v)} from the buyer to the seller (in our previous notation,
1,10y — wic,v) = —t,(th). Let

X, (c) = E, x(c,v); X,(x) = E x{c,v);
W,(c) = E . wic,v); W,(v) = E w(c,v);
Uiy = —c X (e) + Wile), Us(e) = v X,(0) — Wile)

The mechanism is individually rational if U,(¢) = O for all c and U, (¢} = 0
for all r. Tt is incentive compatibie if

Ule) > —c X, (&) + W, (¢) for all (¢, &)
and
Us(v) = v X, {0y — W, (8) for all (z, D).

Consider a benevolent principal trying to maximize expected social
surplus E.. .. [(t — ¢)x(c,v)], and supposc that she is able to design a
(balanced-budget) mechanism to which the sclicr and the buyer must
comply as long as it is individually rational and incentive compatible. The
role of the principal here is difficult to interpret. She might stand for a
government, but then it is not clear why the mechanism must satisfy the
individual-rationality constraints, since governments have coercive pow-
ers. Another potential interpretation is that the parties appeal to a mediator
(the principal) to design an efficient mechanism. This interpretation also is
often questionable. If the parties appeal to the mediator once they have
received their private information (at the “interim stage™), the bargaining
over whether 1o have a mediator and over which objective function to give
to the mediator is likely to reveal information about the cost and the
valuation: the IR and 1C constraints are then misspecified 1n that the
mechanism is played under posterior beliefs that differ from the prior beliefs
P,(-) and P,(-). If the two parties decide to use a mediator before they
receive their private information (at the “ex ante” stage), they may be able
to commit themselves to use the mechanism once they learn their valua-
tions, and so the interim IR constraint may not be relevant. Such commit-
ments can sometimes be accomplished by contractually specified damages
for “opting oul™ or “breach of contract.”® If parties can commit to use the
mechanism, they typically prefer to do so, as binding interim IR constraints
generally create inefficiency, whereas in the absence of these constraints
AGYV mechanisms can be built that implement the ex post efficient outcome
fe.x=1life=c, =0ifv <)

36. However, these commitment options may be limited: If we interpret the “seller™ as a worker
who is providing labor to a firm, workers arc not allowed to agree to fines for quitting:
however, firm might still be able to commit. This suggests a hybrid model with only one player
subject to an individual-rationality constraint.



Because of these reservations about interpretations where a principal
designs the mechanism, the best interpretation of the model may be as a
characterization of utilities that can be achieved by equilibria of non-
cooperative bargaining games. Suppose that the seller and the buyer bar-
gain over whether to trade and over the price. The bargaining process can
be a simultancous sealed-bid auction (a la Chatterjee and Samuelson—see
chapter 6) or a more complex, sequential bargaining game (see chapter 10).
[t has been known for a while as part of the profession’s folklore that any
(Bayesian) equilibrium of a bargaining process gives rise to an allocation
that can be interpreted as a mechanism that satisfies [C and IR, as long as
the two traders have identical time preferences.®” This is a straightforward
application of the revelation principle: Suppose that bargaining starts at
date O and that both traders discount the future at interest rate r > 0 (we
allow for either discrete-time bargaining—at dates t = 0, 1, 2, ...—or
continuous-time bargaining). Let agreement to trade between the seller
with cost ¢ and the buyer with valuation v be reached at time t(c, v) at price
={e,r) (we assume that 7 and z are deterministic: the reasoning cxtends
straightforwardly to stochastic rand z). t = + o corresponds to the case
in which agreement is never reached. One can then define

feory = e ™" e 0,17,

—ric,r)

wie, )y =e (e, ),

Uiy = E [wlc,r) — e x(c¢,v)],
Ustv) = E_ v x(e, v) — wlc, v)].

Note that delay in reaching agreement (z > 0) amounts to a probabil-
ity that exchange does not take place (x < 1) in the mechanism reinter-
pretation.

Observe that the mechanism {x(, ) w(-,-}} satisfies IR, IC, and BB. It
is individually rational because cach trader can always refuse to trade (by
making outragcous demands, and rejecting all offers), and thus get 0. By
definition of a Bayesian equilibrium, it satisfies incentive compatibility: A
type O of player i cannot adopt the strategy of type é,- of the same player
and obtain a higher expected payoff. Budget balance follows from the
absence of a third party.

Viewed from this perspective, the program of computing the highest
expected social surplus that can be obtained through individually ra-
tional, incentive-compatible, balanced-budget mechanisms can be inter-
preted as deriving an upper bound on the efficiency of unmediated bilateral
bargaining.

371l the traders have different rates of time preference, then having the more paticnt trader
make loans to the less patient onc allows the attainment of utility levels that are not
feasible 1n the static problem.



Remark In the same spirit, one can derive the set of allocations that can
be implemented by a mediator. The question is then whether any element
in this set may arise as an equilibrium of some unmediated bargaining game.
This linc of research will be discussed in chapter 10.

Let us now derive the mechanism that maximizes expected gains from
trade,

E [ — c)xle, )], (7.36)

subject to IR, IC, and BB. We saw in subscction 7.4.4 that IR, IC, and BB
imply

E ([(0) = Jy()]x(c )} >0, (7.37)
where ‘
P N
Joy=c¢ + '(.(]
pc)
and
t — Py(v
Ji(r) v Palv)
p,(1)

Conversely, if the function x(-,-) maximizes expression 7.36 subject to
incquality 7.37, there exists a transfer function ¢(-,-) that satisfies BB (by
definition), satisfies IR, and satisfies IC as long as X,(c} = E, x(c,v) 1s
nonincreasing and X,(v) = F_x(c, v) is nondecreasing. With u > 0 denoting
the multiplier of equation 7.37, the Lagrangian for the above program is

¥ =L (v o+ ulh@—J(0)]];xcv). (7.38)

The first-order condition is thus

‘e 1) = {l ife + uJy(v)y = ¢+ pJc) (7.39)

0 otherwise.

Thus, trade occurs if and only if

g\ 1= Piv) u \ P
- EAPNPE A it 7.40
| (1 3 #) par) = ° (l +u)m(c) (749

Equation 7.40 does not quite yet define the solution, as the coefficient
x = 1/(1 + p) € [0, 1) must still be specified. To this purpose, it suffices to
note that equation 7.37 must be satisfied with cquality if ¢ > ©.*® (Ideally,
onec would want the trading rule to come as close as possible to the first-best

3% I the inequality is strict in cquation 7.37, u =0 and equation 7.40 is the first-best
rule. But we know from subsection 7.4.4 that. as long as © > v, cfficient trade is inconsistent
with IR, IC, and BB.



trading rule (tradc if and only if » > ¢); i.c., one would want p{or o) to be
as small as possible. Equation 7.37 has been relaxed as much as is consistent
with IR, IC, and BB by imposing U, (¢) = U,(v) = 0

Note again that if the monotone-hazard-rate conditions hold {(p, /(1 — P,)
nondecreasing, p, /P, nonincreasing), equation 7.40 yields monotonic X, (-}
and X,(-), so the optimal trading rule has indeed been obtained.

Myerson and Satterthwaite apply equation 7.40 to the case of uniform
densities on [0, 17 (P(c) = ¢ and Py(¢) = v for (c,0) e [0,17%). Equation
7.40) then yields

%

voez (7.41)

Substituting into equation 7.37 yiclds

I (=142 1
f (J [(2e — 1) — 2¢] dv) de =0, (7.42)
Jo cHai(L+a))

which has solution 2/(1 + ) = }. In the optimal trading rule, trade oc-
curs if and only if the buyer's valuation cxceeds the scller’s cost by at
least one-fourth. Thus, in the uniform case, the linear equilibrium of the
Chatterjee-Samuelson double auction exhibited in chapter 6 yields the
optimal amount of trade constrained by IR, IC, and BB!*°

7.6  Further Topics in Mechanism Design'**

The bare-bones analysis of this chapter has ignored many of the recent
cxtensions of the mechanism-design paradigm. In this concluding section,
we give the flavor of a few of these extensions.

7.6.1 Correlated Types

Section 7.5 assumed that the agents’ types were independent. Maskin and
Riley (1980), Crémer and McLean (1985, 1988), McAfee, McMillan, and
Reny (1989), Johnson, Pratt, and Zeckhauser (1990), and d’Aspremont,
Crémer, and Gérard-Varet (1990a,b) have shown in various environments
that, when preferences are quasi-linear (risk neutrality) and the agents’
types are correlated, the principal can implement the same allocation she
would implement if she knew the agents’ types.*° Thus, IC is not binding
under risk neutrality and correlated types.

39. This result is not robust. Satterthwaite and Williams (1989) show that optimal trading
allocations cannot be implemented by double auctions for “generic” pairs of prior distribu-
tions,

40. Recall from subsection 7.4.3 that correlation is not needed when the principal wants to
maximize the sum of the agents utilities. The result here is intercsting when there is a conflict
between the objectives of the principal and the agents.



To get some intuition about why this is so, supposc that the agents’ types
are perfectly correlated. Then cach knows the others’ types. Let the princi-
pal organize a “shoot them all” mechanism: The principal asks the agents
to announce the vector of the I types simultaneously. If all announcements
coincide, the principal implements the optimal full-information allocation
corresponding to the announced types (which may or may not satisfy IR
constraints, depending on the case); if they do not coincide, the principal
“shoots all agents™: t, = — o for all i. Clearly, if all other agents announce
the true vector of types, it is in the interest of the remaining agent to
announce the true vector of types as well. Hence, the principal can costlessly
obtain the agents’ information and de facto has full information.*!

This idea generalizes to the case of (even small) imperfect correlation of
the agents’ types. One can use the fact that an agent’s information yields
the best predictor of the other agents’ information*? to “shoot the agent
stochastically™ if he misreports his type. Because the agents and the princi-
pal are risk neutral, using transfers that depcnd not only on the agent’s
type but also on the other agents’ types and therefore impose risk on the
agenl creates no social loss in terms of risk bearing.

The papers in the literature make a full-rank assumption. Assume that
there are a finite number of types per agent. Let p(f ;|0,) denote the
probability of types ) ; for players other than i conditional on player i's
having type f}. Let p- denote the vector of

:p[ﬂ ,IUr)}B i€ ®

The full-rank condition is satisfied if, for each i, the vectors

{0
P50, 0,

are lincarly independent. That is, there do not exist an agent i, a type 8,

41. Note that there are many other equilibria in the “shoot them all” mechanism. For instance.
all agents could announce the same incorrect vector of types. This multiplicity is precisely
whal gave rise to a large literature on uniguc Nash implementation, starting with Maskin
1977 isee Moore 1990 for a survey and a list of references). Some authors, including Maskin
and Riley (1980). have also looked at cquilibrium uniqueness in the imperfect-correlation
case (see also the more general literature mentioned in section 7.2). Crémer and McLean (1985,
19%8) obtain results on dominant-strategy as well as Baycsian implementation.

42, One formalization of the notion that “an agent’s information yields the best predictor of
the other agents’ information™ is obtained by considering the “proper scoring rules™ familiar
in the statistics literature: Suppose that agent i is asked to reveal his type .. and is given
transfer 7,(0) = Inp(0_,16;) when the other agents announce {)_;. Suppose in a first step that
no decision x is at stake, so that agent i aims at maximizing his expected transfer. It is easily
checked that. if the other agents announce truthfully, it is in the 1nterest of agent i to announce
his type truthlully, and strictly so if the vectors of conditional probabilities differ.

When there is a pavoff-relevant decision x, such as allocating a good among bidders or
supplying a4 public good, agent i 's payoff function depends on the decision as well as his report,
and the above proper scoring rule t; may no longer induce truthful revelation. However, one
can “scale up” 7, by multiplying by a large positive constant K. Then, any misreport of type
implics substantial losses in the transfer Kt,, which swamps any effect on V, of misreporting
the type. Johnson et al. (1990) usc such inflated proper scoring rules (to which they add further
terms to meet other constraints such as budget balance).



and a vector of positive numbers p,(6)) such that

pii= Y pdb)ph.
8 #£6;

In words, the full-rank condition means that the vectors of agent I's condi-
tional probabilities about the other agents’ types can be told apart.

Crémer and McLean (1985) show that the principal can implement any
decision rule x*(-) and agents’ utilities U*(-) under risk neutrality and full
rank, even if the principal does not know 8. We illustrate their construction
in the case of two agents and two types per agent. Agent i can have type 6, or
0;. Let g,y and q,, denote the conditional probabilities that #, = #, and
0, = 6, when 0, = 6,; the conditional probabilitics when 0, = 6, are 42,
and ¢,,. The full-rank condition for player 1 is 411922 # 421913 Let 1y,
and ¢, denote the transfers to agent 1 when he announces f, and agent 2
announces 8, and 8,, respectively. And similarly for t,, and ¢,,. The deci-
sions and utilities are indexed in the same way. To vield the desired utilities,
the transfers must satisfy, for some constants A, and A, determined by the
data of the problem,*?

gty + 42t = A, (7.43)
and
a1ty T qa3t5, = A, (7.44)

The transfers must also ensure incentive compatibility for player 1 with
type 0, or #,. That is,

ity —t31) + g5t — 15,) > Ay (7.45)
and
G211 — 8} + Gaaltsy — t,) > Ay, (7.46)

where 45 and A, are constants determined by the data.**
Substituting equations 7.43 and 7.44 into equations 7.45 and 7.46 yields

(411622 — 42.1412)t,, > As = Argz2 + (A — A3)q4, (7.47)

43 Where
Av= 90U = Vix?,0)) + 4,008 — Vi(x1.0,))
and
Ay = Uy — Viix$,.6) + 422U — Vilx$y, 0))).
44, The reader will check that
Ay = g NixEL00) — Vi3, 00) + q02(0 (035, 8,) — Vi(xy.0,)),
and

Ay = qzl(lﬁf-"?:.ﬁd - Vl(xz*h{_)ﬂ) ‘-“‘hz”’,lfxfz'al] = Vilx3;.00)).



and
(11922 — 4a1912) 21 < Ag = —Azq,, —(A; — A)q;>. (7.48)

Transfers satisfying equations 7.47, 7.48, 7.43, and 7.44 yield the desired
allocation for the principal, and such transfers always exist under the
full-rank condition. Note, however, that, as types become less corrclated,
4y, — g27) and (¢, — g,,) both converge 10 0, S0 41,422 — 421412 CON-
verges to 0, and so the transfers required to satisfy inequalities 7.47 and 7.48
become very large. Transfers for agent 2 can be constructed 1n a similar
manner (given the full-rank condition for player 2). More generally. with
an arbitrary number of types (and players), Farkas’s lemma (which gives
conditions for a system of linear incqualities and equalities to have a
solution  see. ¢.g.. section 22 of Rockafellar 1970) and the full-rank condi-
tion can be used to prove the existence of appropriate transfers.**

Of course. the result that the principal can use any arbitrarily small
amount of correlation to achicve the full-information outcome while she
usually suffers from the asymmetry of information under indcpendent dis-
tributions of types is extreme. The point is that the credibility of risk ncu-
trality is stretched by the very large transfers required for small correlations.

7.6.2 Risk Aversion

Most of the literature on mechanism design has focused on the case of
quasi-linear preferences. We saw in sections 7.4 and 7.5 that in this case
optimal mechanism design with several agents is a simple extension of
mechanism design with a single agent. With risk-averse agents, one stll
makes heavy use of the single-agent framework and its optimal-control
techniques, but things become harder.

To illustrate the issues, consider the problem of designing an optimal
auction for one unit of a good when the buyers are risk averse, have the
same preferences, and have types that are independently drawn from the
same distribution P(-) on [ 8, @] {the theory was developed by Maskin and
Riley (1984) and Matthews (1983)). To allow for the case in which the agents
have utility functions that arc not separable in income and consumption,
one must consider two transfers, t,-(é) and fi((j), according to whether the
agent wins or loses in the auction (for simplicity, assume that these transfers
arc deterministic). Let u(t,-((}), 6#,) and w(?,-(())} denote the utilities of agent i
when he wins and when he loses the auction. Let

0) = Ey 1,060,.0_)
and
45 With a continuum of types, an agent can approximate the true conditional probability

distribution arbitrarily closcly by lying. One must then solve “Fredholm equations” {see
MuAfee et al. 1989, Caillaud et al. 1986, and Mclumad and Reichelstein 198Y9).



Eliminating the dependence of transfers on the other agents’ announce-
ments reduces the agent’s risk and raises his utility. Doing s0,* assuming
a symmetric auction and eliminating subscripts under t;and 7,, yields utility
function for an agent of type 6;:

U(6) = max {X(8)u(t(0,),6) + [1 — X(@)1w(i(0)}, (7.49)
where X(6;) = E, x(6,,6_,) is the probability that the agent wins the auc-
tion. Let

Ut0) = X (6)u(t(0,),0,) + [1 — X (6)]w(i(8))). (7.50)
The envelope theorem implies that

dU e}
v =X(6;) X

4t 2 (£(8;), 6,). (7.51)

The principal maximizes her expected revenue per buyer,
é

Max [ 1X(0)06) + [1 — X(8)]i(8,)} p(8,) db,, (7.52)
]

subject Lo equation 7.50, equation 7.51, (IR) U(f) = 0, and “consistency.”

The “consistency” constraint arises from the fact that, if equation 7.52 is
maximized subject to only equation 7.50, equation 7.51, and IR, nothing
guarantces that, given X(-), one can find a decision function x()e[0,1]
such that

X(0;) = Ey [x(8,6_,)] for all (i, 8,). (7.53)

In other words, analyzing isolated single-buyer problems ignores the
constraint that there is a single unit of the good to be distributed among
all buyers. The consistency constraint means that onc must restrict atten-
tion to probabilities X (-) such that there exist a function x(-) satisfying
cquation 7.53.

[n the case of an auction, there is fortunately a characterization of
consistent X(-) that preserves the simple structure of an optimal-control
problem. (This characterization is due to Maskin and Riley (1984) and
Matthews (1983) and finds its most general formulation in Matthews 1984.)
Namely, if X(-}is nondecreasing and satisfies

46. Further analysis is needed to prove that it is indecd optimal to climinate this dependence.
Assumptions on preferences must be made so that the agent’s incentive-compatibility con-
straint 1s not relaxed through the use of a random scheme. (FEven if these conditions on
preferences are not met and optimal auctions involve random transfers, the optimal random-
ness has in general little to do with that created by the uncertainty about _,.)



1
J [Py~ — X(0)]p()dd > O forall 0 e [0.0], (7.54)
t
then it is consistent.

[t is casy to see that equation 7.54 is a necessary condition for con-
sistencey: The probability that a buyer with a valuation in [6, 8] wins,

o]
/ J X () p(6ydo,
@i

cannot exceed the total probability that at least one buyer has valuation
in [0, 0],

1 - Py
As

| — Py oo -
":j P(OY " p(B) dé.
f o

this yields equation 7.54. The difficult part of the characterization 1s to
prove that equation 7.54 1s sufficient for consistency.

7.6.3 Informed Principal

In this chapter we have assumed that the agents perfectly know the princi-
pal’s preferences. It may be that the principal (the mechanism designer) also
has private information. For instance. she may have information about the
cost of supplying a public good, about her private cost of departing with
the object in an auction, or about her willingness to pay for.a good
purchased from the agent.

Once the principal has private information, it must be recognized that
the very proposal of a mechanism by the principal will reveal information
about her type, as Myerson (1983) pointed out. Whereas Myerson analyzes
this situation from a cooperative-game viewpoint, Maskin and Tirole
(1989, 1990) keep the three-stage structure described in the introduction
and uscd throughout the chapter and apply noncooperative game theory.
(They use perfect Bayesian equilibrium rather than Bayesian equilibrium—
sec the next chapter. The concept mainly adds the extra requirement that,
after observing the principal’s contract offer, the agents update thetr beliefs
about her type using Bayes’ rule.)

One must distinguish between two situations. In the “private values™
case, the principal’s type does not enter the agents’ preferences (but the
agents’ types arc allowed to enter the principal’s preferences). With y
denoting the allocation and #, the principal’s type, the principal’s utility is
uo(yv, 8.8,) and agent i’s utility 15 »,(y,0). In contrast, if 8, affects some
agents utility, we have “common values.” The difference between private



and common values is that in the former case the agents care about the
principal’s type only to the extent that it affects the principal’s behavior in
the implementation of the mechanism, whereas in the latter case the agents
care about her type per se. The three examples given at the beginning of
this subsection cxhibit private values. In contrast, if, in an auction, the
seller’s cost of departing with the good is correlated with an unknown-to-
the-buyers quality of the good, we have common values,

A simple observation is that under private values the principal can
guarantee herself the expected payoff she would obtain if the agents knew
her type: It suffices that the principal offer the mechanism that is optimal
for her when the agents know her type. Because the principal is not a player
in the third stage (implementation of the mechanism), nothing is altered by
the asymmetry of information about #,. The issue is then whether the
principal can do better when her type is unknown to the agents than when
itiscommon knowledge. Clearly, to do better the principal must participate
in the third stage—for instance, by announcing her private information at
the same time that the agents announce theirs. By delaying revelation of
her information until after the proposal of the contract, the principal may
be able to pool the agents’ (IR or IC) constraints across her types. Indeed,
Maskin and Tirole (1990) show that any equilibrium of the mechanism-
design game can be computed as a Walrasian equilibrium of a fictitious
cconomy. In this economy, the traders are the different types of principals,
in proportions equal to those of the prior beliefs about 6. the goods traded
are the slack variables on the agents’ (IC and IR) constraints, and the
traders have zero initial endowments of the goods.*’

When preferences are quasi-linear, it turns out that the multipliers asso-
ciated with the agents’ IR and IC constraints do not depend on f, when
the agents know €,. Hence, the different types of principal do not gain by
pooling when they offer a mechanism, as they do not gain by pooling
constraints and trading slack. This implies that the unique equilibrium is
the same as when the agents know 6,. Thus, the single-agent theory of
section 7.3 and the multi-agent theory of section 7.5 remain valid when the
principal has private information, values are private, and preferences are
quasi-linear.

[n contrast, the analysis of this chapter must be amended when pref-
erences are not quasi-linear. Generically, the multipliers of the agents’
constraints do not coincide for different types of principal, and thesc types
gain by trading slack on the constraints. In equilibrium, the principal does
not reveal any of her information in the first step (contract proposal) and
waits until the third step (contract implementation) to do so. And she does
strictly better than when the agents know her type.

47. The paper considers a single agent, but the ideas extend to multiple agents, as this chapter
would suggest.



The case of common values is more complex. For one thing, the principal
may no longer be able to guarantee herself the same payoff as when agents
know #,. The point is that the optimal mechanism when the agents know
0, need no longer be accepted by the agents if they draw thc wrong inference
about ), as their utilities are dircctly affected by 0,. Maskin and Tirole
{1989) consider the restrictive case in which there is a single agent and this
agent has no private information (and generalize their results to bilateral
asymmetric information only in the case of quasi-linear prefercnces). The
mechanism-design game is then similar to the standard signaling gamc we
describe in section 8.2, except that the “sender” (the principal) has a large
strategy space (the space of all contracts). The sct of equilibria can be fully
characterized, has a unique element for a subset of thc agents’ prior beliefs
about 0,. and has a continuum of elements for thc complementary subset
of behefs.

7.6.4 Dynamic Mechanism Design

The static analysis of this chapter can be used to characterize repeated
mechanism design as long as the principal and the agents can commit
intertemporally (see, e.g., Baron and Besanko 1984a). Consider a multi-
period problem, with periods T = 0, 1,..., 7. Suppose for instance that there
is a single agent, with preferences

,
> Uiy 0)
-0
where y, = (x,,¢,) is the allocation at date 7 and 6 is the discount factor.
The principal has preferences

¥

Z Ouglv,, 0.

t O

Note that we assume that the agent’s type is invariant.*®

Let y*(0) denote the optimal allocation for the principal subject to the
agent’s IR and IC constraints in a one-period context (see section 7.3). We
claim that the allocation y (8) = y*(8) for all 7 is optimal (i.e., the optimal
allocation is the (T + 1) replica of the static one). To see this, suppose that
the principal could do better than replicate the optimal static allocation.
That is, assume that there exists an allocation {y.(*)},—o o that satisfies
the agent's multi-period 1R and IC constraints,

T T
(multi-period [R) Y &% (y,(6),0) = ¥ 6u,(0)for all §
=0 =0
(where u, () is the invariant per-period reservation utility of type ), and

4%. See Raron and Besanko 1984a for the case of a type that changes over time.



T T
(multi-period IC) Y 87u, (y(0),0) = Y. 6"u, ({0, 8) for all (6, ),
t=0 =0

and that yields more expected utility to the principal than y* repeated
T + | times:

Ea(i O uo(y.(0), 9)) > {1+ 06+ + 8T)(Eg[ug(y*(8), 6))). (7.55)

Now consider the random static mechanism that, for an announcement f),
gives the agent allocation y, () with probability 1/(1 + -+ + 87), yl(é) with
probability 8/(1 + -+ + 87), ..., yr(6) with probability 7/(1 + -+ + 7).
Dividing (multiperiod IR), (multiperiod IC), and equation 7.55 by
(I +---+ 67"), this random allocation satisfies the (static) IR and IC con-
straints and yields more expected utility than y*(-), a contradiction.
Hence, the optimal static allocation remains optimal in a dynamic context
with commitment.*®

To implement the dynamic optimum, the principal asks the agent to
reveal his type § at date 0, and then implements allocation y*(f) repeatedly
until the end of the horizon. Note that it is important that the principal
can commit. Otherwisc we face the time-consistency problem studied in
chapter 3. We saw in section 7.3 that (if u,(f) = u and u, is increasing in 6),
cxcept “at the bottom™ (¢ = 8), the agent enjoys a rent associated with his
private information (u, (y*(0), 8) > u). At the end of period 0, the principal
has learncd the agent’s type and would want to put the agent at his IR level
at dates t = 1, ..., T. That is, the principal would want to renege on her
commitment to keep the same allocation over time once she had learned
the agent’s type.

Actually, the ability to commit to a long-term contract that any of the
partics (principal or agent) can have enforced by a court if she or he wants
to 1s not sufficient for the optimal static mechanism repeated T + ! times
to be feasible, as was demonstrated by Dewatripont (1989). To see this, recall
from section 7.3 that y*(-) involves (under the assumptions made there) a
distortion except “at the top” (at # = 8). The principal trades off efficiency
and rent extraction. Now, if at the end of period 0 the principal knows the
agent’s type to be 0, it is common knowlcdge that the two parties can
improve upon y*(-)atdates 1,..., T to their mutual benefit. They will then
rencgotiate the initial contract. Thus, the commitment assumption under-
lying the result that the dynamic allocation is the replicated static one must
be taken to mean that the partics not only sign an enforceable long-term
contract at date 0 but also can commit never to renegotiate the contract in
the future, even if it is in their interest to do so. When the parties cannot

49. The above notation implicitly assumes that p*(-) is deterministic, but the same reasoning
clearly holds when the optimal static allocation is random.



commit not to renegotiate, dynamic mechanism design does not boil down
to a static one, and the dynamic equilibrium notions developed in chapter
8 must be employed. Hart and Tirole (1988) and Laffont and Tirole (1990b)
show that, in the quasi-linear case, the dynamics of the equilibrium alloca-
tion y{-) coincides with the Coasian dynamics of the durable-good models
analyzed in chapter 10.5°

Besides these two paradigms, “full commitment” and “commitment and
renegoliation,” economists have considered a third one, called “noncom-
mitment.” Suppose that the parties are unable to sign long-term contracts,
cither for transactional reasons or for legal ones (as is sometimes the case
when the principal is a government). One can then consider the repeated
version of the three-step game of section 7.3. In each period t, the principal
offers 4 mechanism y () that applies only to that period.’! A main issue
in such a situation is the “ratchet effect.” Suppose for instance that the agent
reveals his type in period 0. The continuation game from date | on is then
a symmetric-information one, and, in the unique subgame equilibrium of
this continuation game, the principal offers in each period an allocation
that puts the agent at his IR level. Thus, revealing one’s type is very costly
in a dynamic setting without commitment, and the different types of agent
will have a tendency to “pool.” We will not give an analysis of the ratchet
problem, which requires the tools of dynamic games of incomplete informa-
tion developed in chapter 8.

7.6.5 Common Agency

In some situations an agent may serve several principals. For example, a
distributor may carry the products of several manufacturers, a firm may
be regulated by scveral government agencics, and a consumer may buy
from several producers. Martimort (1990) and Stole (1990a) have developed
a theory of common agency.*?

Suppose that there are two principals, 4 and B. Principal i, i = A4, B, is
interested in decision x; € R, and has utility

W, = ;/i‘.xi?()) - Ii'
The agent has utility

u] - l’"l (\.A,.YB,H) + IA + tB.

50. The issue of contract renegotiation under asymmetric information also arises in moral-
hazard models of the principal-agent relationship. Once the agent has chosen his effort, this
cffort, if private information, becomes a type for the agent. (See Fudenberg and Tirole 1990.)

51. See Freixas et al. 1985 and Laffont and Tirole 1987b, 1988. See Baron and Besanko 1987
for an approach using a different solution concept.

52. An early example of common agency is found in Baron 1985. Other examples are found in
Gal-Or 1989, where the two principals’ decisions do not interact in the agent’s utility function
("2¥, /0% &y = O), and in Laffont and Tirole 1990c¢, where the decisions are perfect comple-
ments (C2F, 8, 0x, = +a).



A Nash cquilibrium in contracts is a pair
:1.4(-‘(,4 )1 [B(IB} }’

ar

{ (fA((}A ), X 4 ((}A IR (IB(OB)' -’CB(OAB))J

where , is the agent’s announcement of type to principal i, such that each
principal, given the other principal’s contract and the agent’s optimal
reaction to contract offers, maximizes her expected payoll. Note that princi-
pal i observes only the report 8 (or equivalently, the decision x,) meant for
her.

A natural generalization of equation 7.12 to a common-agency differenti-
able equilibrium (if onc exists -see below) is, for all i = A, B, '

oV, av,
- + -
Ox; o 0x;
/ EZ Vl A
L — Py v, &y, | ixdx
= e 6 e S _ 7.56
plh ix;c0 ., Ex a0 %0 ) v, 6’21/ (9) (7.56)
X;
\ oxjéﬂ X, 0X;

Equation 7.56 coincides with equation 7.12 except for the second (interac-
tion) term on the right-hand side. When principal i induces an increase dx;
in x;(f}). she changes the marginal utility of decision x;. The resulting change
in decision x; is

o AT 3V,
dx; = dx;x( ())h ! ,(‘_4 + ! x,-'{é))).

ex0x;l \éx;00  ax,;0x;

(To obtain this, differentiate the first-order condition for x; totally with
respect to x; and 0 to get an expression for 6’0 /0x; and note that dx; =

X ()(E0,/0x,) dx,.) The change dx; thus has both a direct ((22V, /0x,00) dx )
and an mdlru,t ((c2V, /ex, ;00) dx;) effect on the rate of growth of the agent’s
rent, which yields equation 7.56.

Contract complements (??V, /ox; :0x; > 0) lead to a double rent extrac-
tion. with the reduction in x; by prmupal I making a reduction in x; more
desirable by principal j. The distortion in the decisions thus exceeds that
under cooperative contracting by the principals (i.c., that of the single-
principal case). In contrast, in a symmetric equilibrium, the decisions lie
between the cooperative-contracting decisions and the full-information (or
first-best) ones for contract substitutes (62V, /0x, dx; < 0).

The analysis focuses on finding sufficient condmom for implementa-
bility. In the single-principal case, and under the sorting condition, mono-
tonicity is sufficient for local- and global-second-order conditions to be



satisfied (theorem 7.3). With two principals, if the agent does not announce
his type truthfully to principal i, he may also lie to principal j, and perhaps
in a different way. That is, misreporting of 8 occurs in a two-dimensional
space instead of a single-dimensional one. Martimort and Stole derive
sufficient conditions for implementation, and are thus able to prove the
existence of a differentiable equilibrium. There is a unique symmetric
differentiable equilibrium for contract substitutes and quadratic payofl
functions. There is a continuum of symmetric equilibria for contract com-
plements, but the one involving the smallest distortions Pareto dominates
the others for the principals and the agent.®?

N

Appendix’
What to Do if the Monotonicity Constraint Is Binding

When x*(-) given by equation 7.12 is not nondecreasing everywhere, one
musl analyze the full program. There are then two subsets of [ 6, 6], both
composed of a set of disconnected intervals. In the first subset, the mono-
tonicity constraint is not binding and thus x(f) = x*(0). Note that this
subset is never empty, because for 0 close to 6, p/(1 — P) is necessarily
increasing.®® In particular, the “no distortion at the top” resuit is a general
result and does not depend on the monotone-hazard-rate assumption.

In the second subset, the monotonicity constraint is binding and there-
fore x(+) is constant on each interval in this subset.

We first derive a characterization of the bunching levels, i.e., of decisions
¥ that are chosen by more than one 6. We then sketch an algorithm to
obtain the bunching regions. Consider an interval [, #,] over which there
is “bunching™ so that x(8) = % for all 0 € [0,,(,], but such that the mono-
tonicity constraint is not binding just outside the interval.

Maximize the principal’s expected payoff, and replace the monotonicity
constraint by

1x

im — () (7.57)
and

{0y > 0. (7.58)

If v(f) and A(f) denote the shadow prices of equations 7.57 and 7.58, the

51 Another difference with the single-principal case is the treatment of the agent’s IR
constraint. This treatment depends on whether the agent can accepl zero, one, or two contracts
(s is the case for 4 consumer), or whether he can accept zero or two contracts only {as is the
case for a regulated firm). For instance, in the second case, the individual transfers for the
lowest type. 1 (1) and t,4(f), are not uniquely defined (but their sum 1s).

S4. Recall that we assumed that p is continuous and strictly positive on the whole interval.



Hamiltonian for program I is then

1—Peav,

) p+vy+ Ay,

where x is taken as a state variable and y as a control variable. The
Pontryagin conditions are

=0=v+ ~ (7.59)

— _— + —_ p
cx ox p  Oxcl

(7.60)

Now we exploit the assumption that the monotonicity constraint is not
binding at the two boundaries of the interval. Thus, (B} = v(#,) = 0, and
equation 7.60 can be rewritien as

“raV, v, 1- P oty
f (’°+(‘—1 pe qu=o. (7.61)

e, \OX  Ox p Oxéd

That is, the average distortion of the total virtual surplus is equal to 0 over
the mterval. Together, equation 7.61 and the condition x*{8,) = x*(0,)
(which results from the boundary conditions x{0,) = x*(6,) and x(0,) =
x*(t);) and the fact that x(8,) = x(8,)) yield two equations with two un-
knowns. Figure 7.4 depicts the case in which A10 is not satisfied.

Using this characterization of the bunching regions, we now determine
where such regions are located. From our assumptions, x* is contin-
uously differentiable. Let us assume that the curve x* has a finite number
of interior peaks on [6, 0].

XA

x"18,) ~
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2| . :

©x) | \_‘/ |
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Figure 7.4



[f there is no interior peak, x* 1s nondecreasing (recall that x*(0) = x*(0)
for all ) and is therefore the solution to program 1. If there is a single
interior peak 0,, then there is also a single interior trough 6, (see figure
7.4). The inverse image of the interval [x*(6,), x*(0,)] 1s composed of two
intervals, [0,,0,] and [6,,0,], over which x*(-) is increasing (if there
is no #, < 8, such that x*(6,) = x*(8,), let 8, = 8), and one interval,
[0,.0,], over which x*(-) is decreasing. Let ¢°(x) and ¢'(x) denote the
inverse functions of x over the intervals [8,,0,] and [6,,8,]. Last, for each
x e [x*(0,), x*(0,)]. define

Alx) = J‘"’l"" (BVO oV, 1 — P(®) (JZVl

i (x,0) + g(x, 8) — =) ax-éa(x, 0)) do.

¢"(I]

Note that at x = x*(8,), @°(x) = 6, and ¢'(x) = 6, and A(x) < 0 as x >
x*(8) for all 0 € (0,, 0;) and the objective function

1 — PV,

Vo + V) — -
v : p ¢xol

is strictly concave in x. Similarly, at x = x*(,), 9°(x) = 8, and ¢'(x) = 6,,
and if 6, > @, A(x) > 0 as x < x*(0) for all 6 € (6,,0,). Furthermore, with
x optimal at ¢°(x) and ¢'(x),

M A & I — P(O) &V,
A(x) = i Mgy ——— DN g <0,
() Lom (8)(2 (.8 + ax? (x.6) p® ox2d0 =

If 6, > 0, then the intermediate-value theorem shows that there exists a
(unique) £ € [x*(8,), x*(A,)] such that A(x) = 0. From our previous char-
acterization, the bunching interval is [¢%(%), ¢ (%)], so the solution is x*(6)
for 6 ¢ [°(%), ¢'(%)] (see the bold curve in figure 7.4).%>

Now suppose there are two interior peaks. Intuitively, if we can in-
dependently design two bunching levels £, and £, as in figure 7.5a, such
that £, < %, and %,, X, and the associated boundaries of the two bunching
intervals satisfy the property that the average distortion over each bunch-
ing interval is equal to 0, we have the solution (represented by the bold
curve in figure 7.5a). If treating the two bunching regions separately yields
%, > %,, the resulting decision schedule is not monotonic and therefore not
incentive compatible (se¢ the broken segments in figure 7.5b). We must then
merge the two into a single bunching interval at some level £; such that
the average distortion over the interval [6s,0,] in figure 7.5b is equal to 0.

55.1f#, — ¢, there may or may not exist such an 2. More precisely, if A(x* (2)) > 0. there exists
such an 2 and the answer is as above. If A(x* (8)) < 0, then the bunching interval is [ 0,6, ],
where 4 € [6,,0,] and where

“lav, v, 1- PPV,
Lo 1o h a0 = 0.
o \Ox  Ox p xd8
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We leave it to the reader to construct an algorithm to obtain the solution
with more than two peaks.

Assumption A9 implies that the constraint x(0) < ¥ is never binding.
First, monotonicity implies that x(#) < x(8) for all f. Second, we saw that
there is no distortion at the top, so that x(8) = x*(8). But x*(6) < x from
A9,

Legitimate to Focus on Deterministic Mechanisms?

We restricted our attention to mechanisms in which the decision x and the
transfer  are deterministic functions of the announced type 6. More gener-
ally. one can allow x and ¢ to have random values .%(9) and f(é). It is clear
that with quasi-lincar utilities there is no gain to be had from introducing
random transfers, as the principal and the agent care only about the
expectation () = 5?{9). (In this discussion, the expectations are with
respect to the random variable underlying the stochastic allocation, and
not with respect to type. To distinguish between the two, we denote the
new expectations by &(-).) Thus, only random decisions need be considered.

In many applications, the functions ¥, and V, are concave in x, which
we assume in the following discussion. Then, ¥V, and V| can be increased



by replacing the random variable X by its expectation x(6) = & %(0). In-
creasing V, bencfits the principal directly; increasing ¥, helps her indirectly
by allowing her to reduce the agent’s income. Thus, if there is any benefit
to introducing randomness in the decision, it must be the case that the
randomness relaxes the incentive constraint. Recall that the incentive con-
straint can be expressed by the speed at which the agent’s rent or utility
increases with his type (together with the condition that the decision be
monotonic in the agent’s type, if the sorting condition holds). For a random
scheme, the envelope theorem yields

. v
U,(0) = & [" HR(0), 9)]‘
0

Suppose. for instance, that u, increases with . Then, to minimize the slope
of the U,{-) function, the principal wants to minimize &[0V, /06]. If ¢V, /08
is convex in x (3V,/d#dx? > 0, which is part of assumption AB), Jensen’s
incyquality implies that

-

oV, vy v,
& <(0 (X)), 0) = —  (x(8), ).
[m mf),m]z o (BEO).0) = 5 (x(0),0)
That s, C"(()) can be reduced by using the deterministic decision x(0)

instead of the random decision %(8). Because random schemes rcduce
and V,. and raise U, they yield less utility to the principal:

@ ‘1V v
E, I:A Vo(X(0). ) + & Vi (X(0).8) — j & '(a"}l‘ (-’%(’?),W}d’?jl

e
N . oAV,
< E,| V(& (R(0)).0) + V(E(X(0)),0) — Fﬁ—(éf(xm)),n)dﬂ -

Turning things around, transforming a deterministic decision x(¢) into a
random one ¥(#) with the same mean for each 6 reduces the principal’s
welfare. We thus conclude that if the agent’s incentive-compatibility con-
straint for the deterministic allocation is fully characterized by the equation
U, (0) = CV,(x(0),0)/0, as it is under the assumptions of theorem 7.4, the
principal cannot gain by using a random mechanism.

In contrast, if ¢V, /00 is strictly concave in x (that is, 8*V,/66¢x* < 0),
the principal can reduce the agent’s rent by using stochastic decisions. The
principal must then trade off the costs (the reduction in efficiency, ie., in
V, + V,) and the benefits (the reduction in the agent’s rent U,) of random
schemes. For more on random mechanisms, see Maskin 1981.%°

56. Maskin and Riley (1984b) give a sufficient condition for random incentive schemes not to
be optimal in the case of non-quasi-linear utilities.



Fxercises

Exercise 7.1**  Maskin and Riley (1984b) and Matthews (1983) show that
with risk-averse bidders an optimal auction may requirc payments from
the bidders even when they lose. The idea is that the sciler can exploit the
difference in the marginal utilities of income when a bidder wins or loses.
Suppose that there are two bidders, i = 1, 2. Each bidder can have one of
two valuations: ¢ (with probability p) or 0 (with probability p), where
0 <@ < 0. Let W and L denote the transfers 10 the seller when the buyer
wins or loses and the bidder has announced ¢ (define W and L similarly
for type ). A bidder has utility u(6 — W) when winning and paying W, and
u( — L) when losing and paying L. Solve for the optimal symmetric auction
and show that, at the optimum, L < 0 (and the § type 1s perfectly insured),
and L > 0. (Hint: Proceed as in section 7.1 in your selection of IR and IC
constraints. Letting X and X denote the probabilities of getting the good
when # and 0. note that { > pX + pX and X < p + p/2. Solve and check
that the ignored constraints are satisfied.)

Exercise 7.2**  Consider the problem of inducing firms to reveal informa-
tion about their cost of reducing their pollution.

(a) Take the case of a single firm. The damage created by an amount of
pollution x is D(x). The production cost for the firm is C(x.0), where @ is a
private-information parameter and C is decrecasing in x. Assume that
Gy >0, Cy<0,C,, >0. D" >0, and C,,, > 0. Show that if the govern-
ment has coercive power, it can obtain the socially optimal amount of
pollution x*(¢) by giving the firm a transfer equal to a constant minus the
damage cost D(x). How does this scheme link with the Groves scheme in
scction 7.3?

(b) Sull in the single-firm context, supposc that the firm can refuse to
participate (it has property rights and is free (0 poliute if it wants to). Can
the first-best outcome still be implemented if the government cares about
the sum of consumer surplus and producer profit? Next, suppose that the
government faces a shadow cost of public funds 4 > 0, so that its objective
function is

W= D(x)~(1 + 1+t — Clx.0)

(up to a constant). Derive the optimal incentive scheme (Note: The IR level
may be type dependent. Perform the analysis as if it were type independent
and check ex post that everything is fine.)

(¢) Assume there are I firms, with production costs Ci(x;, 6;), and that
total damage is Dix,,...,x,). Coming back to question a’s assumption
that the government faces no individual rationality constraint, derive a
d’Aspremont Gérard-Varet scheme for this model,



Exercise 7.3** Prove theorem 7.2 (monotonicity in the single-
dimensional case under CS* or CS™) without making the differentiability
assumptions on y(-). (Hint: Use the methodology introduced in chapter 13
to prove that reaction curves are monotonic in scparable sequential games.)

Excrcise 7.4** A buyer and a seller sign a contract for the delivery of one
unit of a good. The buyer has valuation v and designs the contract (is the
principal). The seller will reccive an outside offer equal to 8 + ¢ for the single
unit he produces. A contract specifies an unconditional payment ¢ by the
buyer to the seller, and a liquidated damage ¢ to be paid by the seiler to
the buver if the seller breaches the contract and accepts the outside offer
instead. The seller knows @ when signing the contract and learns ¢ after
signing the contract and before deciding whom to serve. The independent
random variables # and ¢ arc drawn from distributions P(-) and P(),
respectively. The expectation of ¢ is equal to 0, and both parties are risk
neutral. The buyer screens the seller’s type € by offering a menu of contracts
((0).7 (0} ).

(a) What are the analogues of the variables ¢ and x in the text for this
model?

(b) Show that the seller’s net utility (given that he will accept the outside
offer if he does not sign the contract), U, (6), satisfies U, = — P(£(8) — 6).

(c) Show that the buyer scts liquidated damages under the real damage v:

P(t)
iy =1v —
=1 p(&)

(where p(0) = P'(8)). Interpret. (For answers, sce Stole 1990b.)

Exercise 7.5*  Consider the following insurance model with adverse selec-
tion. The insuree can have a low probability of accident (/) or a high one
() > ), with probabilities p and p, respectively. The insurec knows his
probability of accident, but the insurance company (which is a monopolist
and which offers a menu of contracts) does not. The insuree has objective
function

u, (W, W, 0) = (I — )UW,) + 0 U(W,),

where W, and W, are his net incomes in states of nature 1 (no accident)
and 2 (accident) and U is his von Neumann-Morgenstern utility function
(U >0, U" < 0). With W, denoting the insuree’s initial wealth and D the
(monetary) damage in case of accident, the (risk-neutral) insurer’s expected
utility is

u (W, Wa, ) = (1 — 0} (W, — W) + H(W, — D — W),

(a) Give a diagrammatic description of the optimal (two-contract) menu
for the insurance monopolist. In particular, draw the status-quo (no con-



tract) point in the (W, W,) space, and indifference curves corresponding
to the two types for both the insuree and the insurer. Show that the
binding IC constraint is that the high-risk insuree would not want to mimic
the low-risk insuree, and that the high-risk insuree gets full insurance
(W, = W, ). Argue informally that the high-risk insuree may or may not
get a rent {depending on the probability p), and that he gets a rent if some
insurance is given to the low-risk insuree.

(b) Perform the same analysis as in question a, but use algebra. Hints:
Use question a to guess which constraints are binding (ignore the others
and check them later); let I denote the inverse function of the insuree’s von
Neumann-Morgenstern utility function U. Describe a menu as ,, U,),
(U,, U;), where U, is the low type’s number of utils in state 1, ete. Notice
that the monopoly’s objective is concave in these utility levels and the
constraints are linear. Solve the monopoly’s program. (For the answer. see
Stiglitz 1977))

Exercise 7.6** A labor-managed firm under contract with the government
makes profit n = ¢ f(x}) — K + t, where 6 f(x) is output (/' > 0, 1" < 0),
K is a known fixed cost, 7 is a subsidy (possibly negative) from the govern-
ment, and x is the number of workers. The goverment observes x and t,
but not ¢ and = (which are private information to the firm). The firm’s
objective function is profit per worker: u, = 7/x.

(a) Show that an increasing function x(0) is implementable if and only
if the marginal productivity of labor exceeds its average productivity
(f' > fix).

(b) Suppose that the government has objective function ug = 0 f(x} —
K — wx, where wis the opportunity wage of workers, and has prior density
p(8) over [8,07]. Using question a, show that if /" < f/x, the optimal policy
for the government is to “bunch™ all types at a single contract (r, x). (This
exercise is from Guesnerie and Laffont 1984.)

Exercise 7.7**  An entreprencur has a project that yields revenue R with
probability ¢ and 0 with probability 1 — §. A debt contract specifies a
reimburscment ¢ to the lender if the projecct is successful, and an amount
of collateral C > 0 to be paid to the lender if the project fails. The value of
the collateral is BC for the lender, where 0 < § < 1. The project involves a
fixed nonmonetary cost b for the entrepreneur (the opportunity cost of his
time). The entrepreneur’s expected utility, u,, is 0 if he does not borrow (the
project is not realized) and (R — t) — (1 — 6)C — b il he borrows. The
amount borrowed is fixed and is equal to 1. Assume 8R > b + 1 for
any 0. The lender’s utility is u, = 0t + (1 — O)BC — 1 if he lends, and 0
otherwise.

The entreprencur has private information about 6, which takes value )
with probability p and @ with probability 5 (p + p = 1). Suppose first that
there is a single creditor, who offers a debt contract to the entrepreneur.



(a) Show that if the lender knew 8 he would not require any collateral.

(b) Suppose that the lender does not know 8. Proceeding by analogy with
the price-discrimination example of section 7.1, what do you think are the
binding IR and IC constraints? Assuming that the creditor wants to lend
whatever 0, show that choosing C > 0 tightens the 1C constraint and that
the lender offers the pooling contract {t = R — b/0, C = 0}. Explain intui-
tively the difference with the price-discrimination example. (Hint: Think of
the sorting condition and of which type’s allocation ought to be distorted.)

(¢) Suppose now that there is a competitive credit market (many lenders).
Argue that the relevant IC constraint is not the same as in question b. Show
that il a zero-profit, separating equilibrium exists, the levels of collateral
for types ¢ and 0 are

C =0

and

¢ - 0—0
01— ) — Bl — D)0

(assuming that the entrepreneur’s initial wealth is at lcast C: otherwise
credil rationing may occur). {This exercise is from Besanko and Thakor
1987. See also Bester 1985.)

Exercise 7.8% A monopolist faces a single consumer. The consumer has
utility u, = 0g — t, where g is consumption and t is the transfer to the
monopolist. The monopolist has cost cg®/2 and offers a sales contract to
the consumer. The consumer has reservation utility O.

(a) Compute the transfer and the consumption under full information
about 7.

(b) Suppose from now on that the monopolist has incomplete informa-
tion about 0, which takes the value (@ with probability p and 6 with
probability p. Assume that § > p@. The monopolist’s utility is

g2 g g2
p(r—('z)%—p(t—(tz).

Compute the optimal nonlinear tariff. Show that the equilibrium utility of
type 0 is § = (8 — 6)(8 — pO)cp.

(c) Suppose now that the consumer can purchase at the fixed cost f an
alternative (bypass) technology that allows him to produce any amount g
of the same good at cost &g2/2. Suppose for simplicity that the consumer
can consume only the monopolist’s good or the alternative good (but not
a mix of both), and that
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Is the tanff derived in question b still optimal for the monopolist? Discuss
what may be optimal for the monopolist- in particular, why it may be
optimal to have ¢q > 0. For example, consider what happens when f
decreases from §2/2¢ — §.

Exercise 7.9%* A regulated firm has cost € = (# — elg + f. where g is
output, ¢ 1s effort, and f is a known fixed cost. The regulator observes C
and 4. The firm’s utility is w, = t — (e}, where ¢ is a net transfer from the
regulator (Y (0) = 04" > 04" > 0). The firm has reservation utility 0. The
technology parameter 0 takes values 6 with probability p and 6 with
probability p. The social welfare function is B

g = Stg) — Rig) — (1 + Mt + C — R{g)) + u,.

where S(g) is gross consumer surplus, R(g) = P(g)q = S'(g)q 1s the firm’s
revenue from selling quanity g, and 2 > 0is the shadow cost of public funds.

(a) Determine optimal quantitics and effort when the regulator has
perfect information. Show that price is determined by a Ramsey-type
formula. (The Lerner index— price minus marginal cost over price—is
cqual to a fraction of the inverse of the elasticity of demand.)

(b) Supposc the regulator does not observe the components of C. Argue
intuittvely that the regulator will base the allocation on marginal cost
¢ = (C — f)/q. Infer from this that (for a given marginal cost) the price is
given by the same Ramsey formula as in question a, but that the marginal
cost changes. Show that the firm chooses effect ¢ when 8 = 8§ and ¢ when
) = ). where

W(e) = g,
AP _
) — _ (Df = .
Yie) =y p(l + 4) {e),
and

D(e) = Yrie) — e — (B - 0)).

{This part of the exercisc is from Laffont and Tirole 1986.)

{c) A regulator is responsible for two public utilities (f = 1,2) located in
separate geographic areas. Each utility produces a fixed amount of output
(normalized at ¢ = 1) and has a cost function C;, = o + f — e;, where a can
be interpreted as some shock common to both firms, and B is an idiosyn-
cratic shock with f3; independent of B (so 6, = a + ;). Social welfare is

2
o= 3 LS — (1 + A(C + 1) + u,],
i-1
where 7, is the net transfer paid by the regulator to firm i, u, = t, — Yle:) is

firm /s rent and § is the social surplus associated with a firm”s production.
Suppose first that ff; = 0is common knowledge, but « is known only to the



firms (common shock). Show that by offering the contract
= —(C; — G} + yle*),

where y'(e*) = 1, to each firm, the regulator does as well as under full
information. Explain. Suppose, second, that both « and f; are random
(common and idiosyncratic shock). Show that the regulator’s lack of in-
formation about x has no welfare consequence as long as the two firms do
not collude.

F.xercise 7.10

(4)* A seller owns one unit of a good, which she values at c. {The value ¢
can be thought of as the quality of the good.) A buyer may buy the unit
from the seller. The seller’s valuation is equal to ¢ or ¢ with equal probabili-
ties (where ¢ < ¢) and is private information to the seller. The buyer’s
valuation for the goodisv if c =c and v if ¢ = ¢, where 7 > ¢ and v > ¢.
The buyer thus has no private information. Assume that (v + v)/2 <c¢
(which implies that ¢ > v). Show that efficiency is inconsistent with the
scller’s and the buyer’s individual rationality and incentive compatibility.
Give two reasons why the Myerson-Satterthwaite incfficiency result (theo-
rem 7.5) cannot be applied here. With the quality interpretation in mind,
suppose there are a continuum of sellers and a continuum of buyers. Buyers
are homogencous and have the same valuation for the good (which is either
» or v, depending on the quality of the seller’s good). Each seller has
probability } of having a high-quality item (and therefore valuation 7).
Qualities are “independent™ across sellers. (Ignore technical subtleties con-
cerning a continuum of independent variables.) Show that the inefficiency
result carries over. (This is Akerlof’s (1970) “lemons problem.”)

(b)** Replicate the exchange economy of question a, but in such a way
that each seller has private information that is relevant to a single buyer
instead of to alt buyers. Supposc that there are many duplexes (a continuum
of them). In cach duplex, there is one inhabitant on the first floor, who owns
a smoke alarm, and one inhabitant on the second floor, who owns none.
Second-floor residents have higher valuations (v) than first-floor residents
(¢) for the smoke alarm, but both valuations depend on whether the
first-floor resident smokes (¢ and ¢) or not (v and ¢). Half of the first-floor
residents smoke and half do not. Construct an efficient, individually ratio-
nal, and incentive-compatible trading mechanism. (Hint: Construct a
mechanism in which trade, if it occurs, occurs at a fixed price.) (Gul and
Postlewaite (1988) give general limit efficiency results when an agent’s
private information is relevant only to a fixed number—one, in the above
example - of agents, independent of the total number of agents in the
cconomy.)

Exercise 7.11** A firm’s profit is x = # + e, where e is the (single) man-
ager’s effort and 6 is a productivity parameter known only to the manager.



ff takes value @ with probability pand 8 with probability p. The manager’s
objective is u; =t — g(e), and the shareholders’ utility function is u, =
x —t — Kg, where ¢ is the probability of audit and K the cost of auditing.
The shareholders offer a contract {x(é),t(é),q(é)}, where 8 is the firm’s
announcement of its productivity parameter. If it announces 8, the firm is
required to attain profit level, x(8). After production takes place, the share-
holders audit with probability g(). The audit yields a signal d € {6, 8}. The
probability that the signal is truthful (§ = 6) is re[$,1]. If § = &, the
manager receives t(f). If § # 0, the manager, who is protected by limited
liability, receives O (if you have time, show that this “maximal punishment”
is indeed optimal).

Show that q(f) = 0. Show that (for “K not too big”) auditing always
occurs for r close to 1 and 8 = 6, and that when K varies there are three
regimes (including one in which the first-best effort is attained). Indicate
how x(@) changes with r and K. Explain. (For more on auditing, see Baron
and Besanko 1984b and Kofman and Lawarrée 1989.)
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8.1

Introduction’

The concept of subgame perfection, introduced in chapter 3, has no bite in
games of incomplete information, even if the players observe one another’s
actions at the end of each period: Since the players do not know the others’
tvpes, the start of a period docs not form a well-defined subgame until the
players’ posterior behefs are specified, and so we cannot test whether the
continuation strategies are a Nash equilibrium.’

The complications that incomplete information causes are easiest to see
in “signaling games”—leader-follower games in which only the leader has
private information. The leader moves first; the follower observes the
lcader’s action, but not the leader’s type, beforc choosing his own action.
One example is Spence’s (1974) famous model of the job market. In that
model, the leader 1s a worker who knows her productivity and must choose
a level of education; the follower, a firm (or a number of firms), observes
the worker’s education level but not her productivity and then decides what
wage to offer her. The spirit of subgame perfection in this model is that, for
any education level the worker chooses, the continuation play—that is, the
offered wage -—should be “reasonable” in the sense of being consistent with
equilibrium play in the continuation game. Now, the reasonable wage
to offer will typically depend on the firm’s beliefs about the worker’s
productivity, which in turn can depend on the worker’s observed level of
cducation. If this level is one to which the equilibrium assigns positive
probability, the posterior distribution of the worker’s productivity can be
computed using Bayes’ rule. However, Bayes’ rule does not determine
the posterior distribution over productivity after the observation of an
cducation level to which the equilibrium assigns probability 0, and the
reasonable wage will depend on which posterior distribution is specified.
Thus, in order to extend subgame perfection to these games, we will
need to specify how players update their beliefs about their opponents’
types after an observation that has prior probability O.

This chapter starts by developing two solution concepts that extend
subgame perfection to games of incomplete information: “perfect Bayesian
equilibrium” and Kreps and Wilson's (1982a) “sequential equilibrium.”
Perfect Bayesian equilibrium results from combining the ideas of subgame
perfection, Bayesian equilibrium, and Bayesian inference: Strategies are
required to yield a Bayesian equilibrium in every “continuation game™
given the posterior beliefs of the players, and the beliefs are required
to be updated in accordance with Bayes’ law whenever it is applicable.
Sequential equilibrium is similar, but it imposes more restrictions on the
way players update their beliefs. In the signaling games described above,

t. Formally the only proper subgame of a game of incomplete information 1s the whole game,
so any Nash cquilibrium is subgame perfect.
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these two concepts are identical, and they place very weak restrictions on
beliefs following probability-0 events: Any posterior beliefs that assign
probability 1 to the support of the prior distribution of types are allowed.
In more complex games, the two concepts can impose more restrictions on
the allowed beliefs, and thus more restrictions on which equilibria are
reasonable.

Since incomplete information is modeled as a kind of imperfect informa-
tion (Harsanyi 1967-68), it should not be surprising that similar issues
concerning out-of-equilibrium beliefs arise in games where the information
1s complete but imperfect. What matters is that a player’s actions can con-
vey information to the other players; this information can be anything that
onc player has observed and the others have not, including the player’s own
past actions. The simple example illustrated in figure 8.1 is due to Selten
(1975). In this game, player 1 has three actions: L, M, and R. If he plays L,
the game ends, with payoffs (2, 2). If he plays M or R, then player 2 must
choose between A and B, and when making this choice player 2 does not
know whether player 1 chose M or R. (This is why the dashed lines connect
the nodes following M and R—in the terminology of section 3.3, they
belong to the same information set for player 2.) If player 1 chooses M and
player 2 chooses A, the payoffs are (0, 0); the payoffs to (M, B) are (0, 1), the
payofls to (R, A) are (1,0), and the payoffs to (R, B) are (3, 1).

This game has two pure-strategy Nash equilibria, (L, A) and (R, B), both
of which are subgame perfect. (To see that (L, A) is subgame perfect, note
that since player 2 does not know player 1's action when choosing between
A and B, we cannot test whether playing A is part of a “Nash equilibrium”
from that point on. Any mixed-strategy profile where player 1 plays L and
player 2 plays A with probability at least { is a Nash equilibrium as well.)
Note, though, that for any specification of player 2’s “beliefs” about the
relative probability of M and R when player 1 deviates and does not play
L. player 2's optimal action is to play B, so that playing A in this game is



analogous to offering the worker a wage that is not reasonable for any
posterior beliefs about her productivity.

The simplc version of perfect Bayesian equilibrium we develop in this
chapter is limited to multi-stage games with observed actions and in-
complete information, which we will simply call “multi-stage games” in this
chapter. In contrast, sequential equilibrium is defined for general games
and does rule out the equilibrium (L, A) in figure 8.1. This equilibrium is
also ruled out by Selten’s (1975) concept of “trembling-hand perfection,”
which historically preceded Kreps and Wilson’s scquential equilibrium,
and is quite closely related to it, as both papers develop refinements by
considering perturbed games in which players “tremble” and play sub-
optimal actions with vanishingly small probability.

We reverse the historical order and discuss sequential equilibrium before
trembling-hand perfection, because sequential equilibrium emphasizes the
formation of the players’ beliefs, and we find this approach easier to
explain. Another way our development may be idiosyncratic 1s that, while
most of the litecrature on refinements considers general extensive forms, we
will begin by studying multi-stage games with observed actions, where the
only relevant private information is each player’s knowledge of his own
type. This is the kind of private information most frequently encountered
in the economics literature, and it is prominent in the applications of
chapters 9 and 10.%-3

Section 8.2 introduces the concept of perfect Bayesian equilibrium (PBE).
Subsection 8.2.1 begins with the special case of PBE in signaling games.
Subscction 8.2.2 gives applications to a game of predatory pricing (inspired
by Kreps and Wilson (1982b) and Milgrom and Roberts (1982b}) and to
Spence’s model of job-market signaling; readers familiar with these or with
similar examples will want to skip this subsection. Subsection 8.2.3 extends
PBE to multi-stage games, and applies it to a repeated version of the
public-good game of example 6.1.

PBEL imposes more restrictions on beliefs than Bayes’ ruie alone, as it
imposes some restrictions on beliefs after probability-0 events. Specifically,
when initial beliefs are that types are independent, PBE requires that the
posterior beliefs be that types are independent, that any two players have
the same belicfs about the type of a third, and that if player i deviates and
player j does not then beliefs about player j are updated in accordance with
Bayes' rule.

2 This is not to say that no other games are cconomically relevant. For example, situations
of moral hazard do not correspond to multi-stage games with observed actions.

3. Many eurly models of uncertainty and information were dynamic in nature and made some
mmplicit use of perfect Bayesian equilibrium. Examples include the disarmament game of
Aumann and Machler (1966), the market games of Akerlof (1970} and Spence (1974), and
Ortega-Reichert’s (1967) analysis of repeated first-bid auctions. The first formal application
of the idea was that of Milgrom and Roberts (1982a), which was [ollowed by those of Kreps
and Wilson (1982b} and Milgrom and Roberts (1982b).



Section 8.3 develops the concept of sequential equilibrium, which is
defined for general extensive-form games and which places even more
restrictions on beliefs after probability-0 events than PBE does. In a se-
quential equilibrium, players’ beliefs are as if there were a small probability
of a “tremble” or mistake at each information set, with the trembles at each
information sct being statistically indcpendent of trembles at the others and
with the probability of each tremble depending only on the information
available at that information set. We discuss the desiderata that Kreps and
Wilson used to motivate their concept, and compare it with PBE in the
special case of multi-stage games. As we explain, sequential equilibrium is
stronger than PBE unless the game has at most two periods or each player
has at most two types. To illustrate the sequential-equilibrium definition,
we then develop an “extended” version of PBE that is equivalent to se-
quential equilibrium in general multi-stage games with observed actions.

Section 8.4 describes related (and historically prior) refinements based
on the strategic form. The focus on the strategic form does not imply a
neglect of extensive-form considerations such as perfection. Selten’s orig-
matl (1975) idea was to introduce small trembles so that all pure strategies
have positive probability, and to require that players optimize (subject to
the constraint that they tremble with small probability) against their oppo-
nents’ garbled strategies. Because alt outcomes have positive probability,
the issue of perfection- that in a Nash equilibrium a player can costlessly
play a crazy strategy in some unreached subgame—does not arise. A
“trembling-hand perfect equilibrium™ is a limit of Nash equilibria with
trembiles as the trembles tend to 0. The sets of trembling-hand perfect and
sequential equilibria coincide for almost all games. Section 8.4 then de-
scribes a refinement of trembling-hand perfect equilibrium due to Myerson
(1978). A “proper equilibrium” requires that a player tremble less on
strategies that are worse responses. Chapter 11 discusses stronger refine-
ments related to the idea of “forward induction.”

Finally, before introducing more equilibrium refinements, we should
note that, since the concepts of this chapter strengthen subgame perfection,
they are subject to the reservations we expressed in chapter 3, as well as to
other reservations we will develop along the way. In particular, all these
refincments suppose that all players expect an opponent to continue to play
according to the equilibrium strategies even after that opponent deviates
from the equilibrium path.

8.2 Perfect Bayesian Equilibrium in Multi-Stage Games of Incomplete Information’

8.2.1 The Basic Signaling Game

Signaling games are the simplest kind of game in which the issues of
updating and perfection both arise. In these games, there are two players.



Player 1 is the leader (also called the sender, because he sends a signal), and
player 2 is the follower (or receiver). Player 1 has private information about
his type 0 in @ and chooses action a, in A,. (We delete the subscript on
player U's type, as this will not lead to confusion.) Player 2, whose type is
common knowledge for simplicity, observes a, and chooses a, in A,. The
spaces of mixed actions are o/, and 7, with elements «, and 2,. Player i’s
payolfis denoted u,(x,, x,, #). Before the game begins, it is common knowl-
cdge that player 2 has prior beliefs p about player 1’s type. A strategy for
player 1 prescribes a probability distribution a,(-|0) over actions a, for
cach type #. A strategy for player 2 prescribes a probability distribution
,(-}a,) over actions a, for each action a,. Type 8’s payofl to strategy
a,(-10) when player 2 plays a,(-|a,) 1s
u(o,,0,,0)= Z Z o,(a,|0)ay(ay|a,)u(a,,a,,0).

a, a,

Players 2's (ex ante) payoff to strategy o, (- |a,) when player 1 plays o, (-|6}is

% p(0) (Z Y o,(a,|0)o,(a, |al)u2(a1’02!9))-

Player 2, who obscrves player 1's move before choosing her own action,
should update her beliefs about # and base her choice of a, on the posterior
distribution u(-la,) over ®. How is this posterior formed? In a Bayesian
cquilibrium, player 1’s action can depend on his type. Let o7 (+|¢) denote
this strategy. Knowing 0¥ and observing a,, player 2 can use Bayes’ rule
to update p(-) into u(-|a,). The natural extension of the subgame-perfect
equilibrium to the signaling game is the perfect Bayesian equilibrium,
which requires that player 2 maximize her payoff conditional on a, for
cach a,, where the conditional payoff to strategy o,(-|a; )} is

20:H(ola1)“2(a1-02('la1)sg) = 29: z#(ma1]02(92|al)“2(a1s“2~9)~

Definition 8.1 A perfect Bayesian equilibrium (PBE) of a signaling game
is a strategy profile o* and posterior beliefs u(-|a,) such that:

(Pl) VG? JT(.IG)eargmaX ul(al)a;so)a

zy

(P,) Va,,o6¥(|a;)eargmax ) u@la,lu,la,,x,,0),

a3 a
and

(B u(la,) = p@ot(a,|0)] > p@)ota,ld)

!
{
{
{
| 8¢e@

il 3 pl0)ofa,[6) >0,

0'e®



and u(-|a,) is any probability distribution on ©
if Y p(0)o(a,]6) = 0.

0'ec®

P, and P, are the perfection conditions. P, says that player 1 takes into
account the effect of a, on player 2’s action®; P, states that player 2 reacts
optimally to player 1I’s action given her posterior beliefs about 8. B corre-
sponds to the application of Bayes’ rule. Note that if a, is not part of player
I's optimal strategy for some type, observing a, is a probability-0 event,
and Bayes’ rule does not pin down posterior beliefs. Any posterior beliefs
#(-1a;) are then admissible, and so any action a, can be played that is a
best response for some beliefs. (This means that the only actions excluded
arc those which are dominated given that a, is played.) Indeed, the purpose
of the refinements of the perfect Bayesian equilibrium concept is to put
some restrictions on these posterior beliefs. As we will see in section 8.3,
the concept of PBE defined here is equivalent to sequential equilibrium
for the class of signaling games.

Thus, a PBE is simply a set of strategies and beliefs such that, at any
stage of the game, strategies are optimal given the beliefs, and the beliefs
are obtained from equilibrium strategies and observed actions using Bayes’
rule.

Note the link between strategies and beliefs: The beliefs are consistent
with the strategies, which are optimal given the beliefs. Because of this
circularity, PBE cannot be determined by backward induction when there
is incomplete information, even if players move one at a time. (Recall that,
with perfect information, perfect equilibria can be determined by back-
ward induction.)

8.2.2 Examples of Signaling Games

To help build intuition, we will analyze two examples of signaling games
in a fair bit of detail. Readers already familiar with the ideas of separating
and pooling equilibrium in, say, the Milgrom-Roberts limit-pricing model
should probably skip to subsection 8.2.3.

Example 8.1: Two-Period Reputation Game

The following is a much-simplified version of the Kreps-Wilson (1982b)—
Milgrom-Roberts (1982b) reputation model. There are two firms (i = 1, 2).
In period 1. both firms are in the market. Only firm 1 (the “incumbent”)
lakes an action a, . The action space has two elements: “prey” and “accom-
modate.” Firm 2 (the “entrant”) has profit D, if firm 1 accommodates and

4. Recall that a mixed strategy is a best response if all actions in its support maximize the
player’s payolf, so condition P, is equivalent to

a, € supporl ¢ ({0} e>a, € arg max u(d,,0¥(-4,),0).

a



P, if firm 1 preys, with D, > 0 > P,. Firm 1 has one of two potential types:
“sane” and “crazy.” A sane firm | makes D, when it accommodates and P,
when it preys, where D, > P,. Thus, a sane firm prefers to accommodate
rather than to prey. However, it would prefer to be a monopoly, in which
case it would make M, > D, per period. When crazy, firm 1 enjoys preda-
tion and thus preys (its utility function is such that it is always worth
preying). Let p (respectively, ! — p) denote the prior probability that firm
1 is sane (respectively, crazy).

In period 2. only firm 2 chooses an action a,. This action can take two
values: “stay” and “exit.” If firm 2 stays, it obtains payoff D, if firm 1 is
actually sane and P, if it is crazy; if firm 2 exits, it obtains payoff 0. The
idea is that, unless it is crazy, firm 1 will not prey in the second period,
because there is no point to building or keeping a reputation at the end.
(This assumption can be derived more formally from the description of the
second-period competition.) The sane firm gets D, if firm 2 stays and M, if
firm 2 exits. We let 8 denote the discount factor between the two periods.

We presumed that the crazy type always preys. The interesting thing to
study is thus the sane type’s behavior. From a static point of view, it would
want to accommodate in the first period; however, by preying it might
convince firm 2 that it is of the crazy type, and thus induce exit (as P, < 0)
and increasc its second-period profit.

Let us first start with a taxonomy of potential perfect Bayesian equilibria.
A separating equilibrium is an equilibrium in which the two types of firm 1
choose two different actions in the first period. Here, this means that the
sane type chooses to accommodate. Note that in a separating equilibrium
firm 2 has complete information in the second period:

u(f) = sane|a, = accommodate) = 1
and
) = crazy|a, = prey) = 1.

A pooling equilibrium is an equilibrium in which firm I's two types choose
the same action in the first period. Here, this means that the sane type preys.
In a pooling equilibrium firm 2 does not update its beliefs when observing
the equilibrium action:

w(f) = sane|ua, = prey) = p.

There can also be hybrid or semi-separating equilibria. In the reputation
game, the sane type may randomize between preying and accommodating,
i.c.. between pooling and separating. The posterior beliefs are then

i(f) = sane|a, = prey) € (0, p)

and



u(tl = sane|a, = accommodate) = 1.

When do separating cquilibria exist? In these equilibria, the sane type
accommodates, thus revealing its type, and its payoff is D, (1 + ). (Firm 2
stays In because it expects D, > 0 in the second period.) If the sane type
preyed, it would convince firm 2 that it was crazy and would obtain
Py + 3M,. Thus, a necessary condition for the existence of a separating
equilibrium is

(M, — D,) < (D, — P,). (8.1)

Conversely, suppose that equation 8.1 is satisfied, and consider the
following strategies and beliefs: The sane incumbent accommodates, and
the entrant (correctly) infers that the incumbent is sane when observing
accommodation and therefore stays; the crazy incumbent preys and the
entrant (correctly) infers that the incumbent is crazy when observing preda-
tion and therefore exits. Clearly, these strategies and beliefs form a PBE, so
cquation 8.1 is sufficient as well as necessary for the existence of a separating
equilibrium.

In a pooling equilibrium, both types of incumbent prey, so the entrant’s
posterior beliefs are the same as its prior when predation is observed. Since
predation 1s costly for the sane incumbent, it will prey only if doing so
induces a positive probability of exit. Thus, a necessary condition for a
pooling equilibrium is that the entrant’s expected second-period payoff if
It stays in is negative; that is,

pD, + (1 — p)P, < 0. (8.2)

Conversely, assume that equation 8.2 holds, and consider the following
strategies and beliefs: Both types prey; the entrant has posterior beliefs
u(0) = sancla, = prey) = p and (@ = sane|a, = accommodate) = 1, and
stays in if and only if accommodation is observed. The sane type’s equilib-
rium profit1s Py + dM | ; it would receive D, (1 + 8) from accommodation.
Thus, if equation 8.1 is violated, the proposed strategies and beliefs form a
pooling PBE. {Note that if equation 8.2 is satisfied with equality, there
exists a continuum of such equilibria.®)

We leave it to the reader to check that if both equation 8.1 and equation
8.2 are violated, the unique equilibrium is a hybrid PBE (with the entrant
randomizing when observing predation and the sane incumbent randomiz-
ing between preying and accommodating®),

5. When pD, + (1 — p)P, =0, any probability x > ¥ that the entrant exits induces the sane
incumbent to prey, where §x(M, — D,)=D, — P,,s00< x < 1,

6. In this equilibrium, the entrant exits with the probability % defined in the previous footnote,
and the sane incumbent preys with probability 7 such that j = pyApy + 1 — p), where
D, + (L — p)P, = 0.



Remark The (generic) uniquencss of the PBE in this model is due to the
fact that the “strong” type (the crazy incumbent) is assumed to always prey.
Thus, predation is not a probability-0 event and, furthermore, 1f the sane
type accommodates with positive probability, then accommodation reveals
that player | is sane. The next example illustrates a more complex and a
more common structure, for which refinements of the PBE concept are
required if one insists on uniqueness of cquilibrium.

F.xample 8.2: Spence’s Education Game

Spence (1974) developed the following model of the choice of education
level: Player 1 (a worker) chooses a level of education a; > 0. His private
cost of investing a, units in education is a,/6, where 0 is his type or
“ability.” The worker’s productivity in a firm is equal to 0 (to simplify, it
is not affected by education). Player 2’s (the firm’s) objective is to minimize
the quadratic difference of the wage a, offered to player 1 and player I's
productivity, so player 2 offers the expected productivity a,(a;) = E(6q,)
in equilibrium. (Alternatively, we could suppose that there are several
firms who make simultancous wage offers.) Player 1’s objective function is
i, — al/’().

Player | has two possible types, 6 and 6", with 0 < 6" < 8”; the probabil-
ities of these types are p’ and p”, respectively. Player 1 knows 8, but player
2 does not.

Let ¢! and ¢ denote the equilibrium strategies of types §” and 6. Note
that if a; € support o, and a € support g, then aj < aj.” For, from
equilibrium behavior,

a,(ay) —a, /0" = aylay) — aj /0 (8.3)
and
a(af) — ay/0" = ay(ay) — a} /0" (8.4)

Adding up these two inequalities yields (1/6" — 1/68")a] — a}) =0,0ra; <
ay.

As in the reputation game of example 8.1, we can distinguish among
separating, pooling, and hybrid equilibria.

In a separating equilibrium, the low-productivity worker reveals his type
and therefore receives a wage equal to 6. He therefore must choose a; = 0.
if he did not, he would strictly gain by choosing a; = 0, because he would
save on the education cost and would receive a wage which is necessarily
a convex combination of 0’ and ¢” and therefore is at least equal to €', Let
¢ > 0 denote the equilibrium action of type 8” (note that in a separating
equilibrium type " cannot play a mixed strategy, because all his equi-

librium actions yield the same wage 8" and therefore type 8" prefers the

7. This monotonicity property is a special case of the general result in theorem 7.2,



one with the lowest education level). In order for (a; = 0,a}) to be part of
a separating cquilibrium, it must be the case that type 8 does not prefer aj
to daj:

0> 0" — aj /8
or

ay > 0’0" — 6). (8.5)
Similarly, type 6" cannot prefer a; to a!:

ay < 0"(0" — ). (8.6)

Hence, 0°(0" — 0') < af < 87(0" — &) _
Conversely, suppose that a; belongs to this interval. Consider the beliefs

@ ia) = tifa, #af, u(@ay) =0}

Clearly, the two types prefer a; = 0 to any a, ¢ {0,a}}, because any such
a, yields the low wage ¢’ anyway. Because 6’ prefers 0 to a} (equation 8.5)
and 0" prefers aj to 0 (equation 8.6), we have a continuum of separating
equilibria. This continuum itlustrates how the leeway in specifying off-the-
equilibrium-path beliefs leads to a multiplicity of equilibria. We used the
“pessimistic” beliefs under which any action other than a/ convinces player
2 that player 1 is the low type 0'. However, the separating equilibria can
be supported by less extreme posterior beliefs. In particular, we can specify
that u(0"}a,) = Oforall a, > af, so that the posterior beliefs are monotonic
in a, and we can use beliefs (8’ |a,) that are continuous in a, .’

[na pooling equilibrium, both types choose the same action: 4, = ¢ = a/.
The wage is then a,(d,) = p'6’ + p”8”. The easiest way to support 4, as a
pooling outcome is to assign pessimistic beliefs 4(8'{a,) = 1 to any action
@, # d,, as this minimizes both types’ temptation to deviate. Therefore, a,
is a pooling-equilibrium education level if and only if, for each 6,

0 <p0 +p"0” — a,/b.

Since 8" < 8", type 0" is the most tempted to deviate to @, = 0, to minimize
education costs, and the binding constraint is

8. [t is interesting to note that, of this continuum of separating equilibria, all but the
“least-cost” one, where ay = 6'(8#” - ') = a}, can be eliminaled by the following argument:
No malter what education level player ! chooses, player 2 should never choose any wage
outside the interval {0, 0], If player | realizes this, then type & will never choose anya, > a¥f.
If player 2 realizes that this is so, then she should respond to a, > at with wage 8”; in thal
case, type #° will never choose a, > a¥. (This argument can be viewed either as an extension
of the concept of iterated conditional dominance defined in chapter 4 or as an implication of
iterated weak dominance.) However, with three types, 6, 0", and 6", 0 < 0" < f” « o,
this argument has little force. If as before we let a* denote the education level where type & is
indifferent between (0.8') and (a¥.0"), then cven when the out-of-equilibrium wages are
restricted to the interval [6”,0"] type " may still be willing to choose a, > at.



a, < p 0O — 0, (8.7)

so there 1s also a continuum of pooling equilibria. We leave it to the reader
to derive the set of hybrid equilibria.

8.2.3 Multi-Stage Games with Observed Actions and Incomplete Information”’

We now consider a more gencral class of games we call “multi-stage games
with observed actions and incomplete information.” Each player i has a
type 0, in a finite set ©,. Letting 0 = (6,,...,6,), we assumc for the time
being that types are independent, so that the prior distribution p is the
product of marginals; that 1s,

I
pli)y = n pit0;).
i—1

where p;(#)) is the probability that player i’s type is 8;. At the beginning of
the game, each player learns his type but is given no information about his
opponents’ types.

As in the multi-stage games of chapters 4, 5, and 13, these games are
played in periods t = 0,1,2, ..., T, with the property that, at each period t,
all players simultancously choose an action that is revealed at the end of
the period. (Recall that the set of feasible actions can be dependent on time
and history, so that games with sequential moves such as the signaling game
arc included.) Players never receive additional observations of 0. For
notational simplicity, we assume that each player’s action set at each
date is type-independent. Let af € A,(h*) denote player i’s date-t action,
a' =(a',...,at) the vector of date-t actions, and let h' = (a°,...,a" ') de-
note history at the beginning of date z. A behavior strategy o; maps the set
of possible histories and types into the action spaces: g;(a;|h',8;) 1s the
probability of a; given h* and 8,. Player i’s payofl is u;(hT*1, ).

To extend the spirit of subgame perfection to these games, we would like
to require that the strategies yield a Bayesian Nash equilibrium, not only
for the whole game, but also for the “continuation games” starting in each
period 1 after every possible history h'. Of course, these continuation games
arc not “proper subgames” because they do not stem from a singleton
information sct. Thus, to make the continuation games into true games we
must specify the players’ beliefs at the start of each continuation game. We
denote player i's conditional probability that his opponents’ types are 8_;
by u,(t) ;|60 h"), and assume that it is defined for all players i, dates i,
historics A', and types &,.

What restrictions should be imposed on player i’s beliefs? Economic
applications of incompiete-information games with independent types have
typically made the following assumptions either explicitly or implicitly:

B(i} Posterior beliefs are independent, and all types of player i have the
same beliefs: For all 0, r, and k',



uil0 (10, k") = rl ui(0; [ h").
Hz
B(1) requires that even unexpected observations do not make player i
believe that his opponents’ types are correlated.

B(i1) Bayes’ rule is used to update beliefs from pi(6; 1By to p(6;1h'*1)
whencver possible: For all i, j, ', and a; € Ay(h"), if there exists 9J with
u‘(()jl h') > 0 and o,(a] | h’, Qj) > 0 (that is, playcr i assigns af positive prob-
ability given h‘), then, for all 0,

w1 aty) = SOOI 6G)

Z pb:th')o,(aj | B, 6)

5,

B(1) is stronger than simply using Bayes’ rule in the usual fashion, as it
applies to updating from period ¢ to period ¢ + 1 when the history #" at
period  has probability 0, and to beliefs about player j when h' has positive
probability and some player k # j chooses a probability-0 action at date t.
The motivation for this requirement is that if y,(-| k') represents player i’s
beliefs given k', and nothing “surprising” occurs at ¢, then player i should
use Bayes’ rule to form his beliefs in period 1 + 1.

Note that B(i1) does not restrict the way beliefs about player j are updated
if player j°s period-t action had conditional probability 0.

The next condition says that even if player j does deviate at period ¢, the
updating process should not be influcnced by the actions of other players.

B(ii) Forall #', i,/ 6, a', and &',

w0y (@) = p(Gy1(h', ")) if af = 4.
This condition might be called “no signaling what you don’t know,” since
players k # j have no information about j’s type not already known to
player i.

Finally, most applications assume further that when types are inde-
pendent players i and j should have the same beliefs about the type of a
third player k. This restriction is defended as being in the spirit of equi-

librium analysis, since equilibrium supposes that players have the same
beliefs about each other’s strategies.

B(iv) Forall k', 6, andi#j #k,
pilth [ h') = #;(Uklh'l = p(O | h*).

This condition implies that the posterior beliefs are consistent with a
common joint distribution on © given A' with

(O_ R )0 h') = (0] h').

Section 8.3 gives an example in which this restriction reduces the set of



cquilibrium outcomes. Although it is a standard assumption, we find it the
icast compelling of the four.

With a strategy o and beliefs u satisfying B(1)- B(iv), the natural way to
extend subgame-perfect equilibrium is to require that for any ¢ and h' the
strategics [rom h' on are a Bayesian equilibrium of the continuation game.
Formally, given probability distribution g and history i, let u(a|h', (. q)
be type s expected payofl under profile o conditional on reaching h*. The
relevant condition is then as follows:

(P) For each player i, type 60, player i's alternative strategy o/, and
history h',

ula |h' 0, p(-1R")) 2> wills! ,a_)| A", 0, u(-| A")).

Definition 8.2 A perfect Bayesian equilibrium is a (o, ) that satisfies P and
B(i) Bliv).

We now give an example of an application of the PBE concept. Other
simple examples can be found in sections 9.1 and 10.1.

F:xample 8.3: The Repeated Public-Good Game

To illustrate the concept of PBE, we analyze the twice-repeated version of
the public-good game studied in section 6.2. There are two players, i =
1,2. Incach period, t = 0, I, players decide simultaneously whether to con-
tribute to the period-t public good, and contnbuting 1s a 0-1 decision. In
a given period, each player derives a benefit of 1 if at least one of them
provides the public good and 0 if none does; player i's cost of contributing
in a period is ¢; and is the same in both periods. Per-period payoffs are
depicted in figure 6.4. We assume that payoffs are discounted so that a
player's objective function is the sum of his first-period payofl plus ¢
times his second-period payoff, where 0 < & < 1. Though the benefits of
the public good —1 each—are common knowledge, cach player’s cost 1s
known only to that player. However, both players belicve that the ¢; are
drawn independently from the same continuous and strictly increasing
cumulative distribution function P(-) on [0,¢], where ¢ > 1.

From chapter 6, we know that if there is a unique solution to the equation
¢* =1 — P(1 — P(c*)) then the single-period version of the game has a
unique Bayesian equilibrium, and ¢* is (also) given by the equation ¢* =
I — P(c*) (the cost of contributing is equal to the probability that one’s
opponent won't contribute). Types ¢; < ¢* contribute and the other types
do not contribute,

In the repeated version of the game, the action space for each player is
0. 1! in cach period. A strategy for player i is a pair consisting of a2(1¢;)
(player i's probability of contributing in the first period when his cost is ¢,)
and o] (1|h'.¢;) (the probability that player i contributes in the sccond
period when his cost is ¢; and when the history is h' € {00,01, 10, 11}).



Exercisc 8.1 asks you to show that, in any PBE, there exists a cutoff cost
¢; for cach player i such that player i contributes in the first periad if and
only il ¢; < ¢, and also to show that 0 < ¢; < 1. We now look for a
symmetric PBE, where ¢, = ¢, = ¢ We start by solving the second-period
Bayesian equilibrium given the posterior beliefs, which are determined by
the equilibrium strategies and the first-period outcome.

Neither player contributed. Both players have learned that their oppo-
nent's cost exceeds é. Posterior cumulative beliefs are thus the truncated
heliefs

Plc;) — P(¢)
Pic. - .
wlooy= "0
for ¢;e [¢.c]. and
Plc,|]00) =0

for ¢; < ¢ In a symmetric second-period equilibrium, cach player i con-
tributes if and only if ¢ < ¢; < ¢ (from section 6.2, we know that a Bayesian
equilibrium in period 2 involves a cutoff rule for cach player). The cutoff
cost ¢ 1s equal to the probability,

I — P()
I — P{¢)
that the opponent does not contribute. Note that ¢ < ¢ < 1. We will later

use the result that, because type ¢ contributes in period 2 if no one has
contributed in period 1, his second-period utility is 2°°(¢8) = 1 — ¢&.

Both players contributed. The posterior cumulative distribution is then

Pic;)

(¢)

Plei 11) =

for ¢; e [0,¢], and
Ple 1) =1

for ¢;e[¢,¢]. In a symmetric second-period equilibrium, each player i
contributes if and only if ¢; < & where 0 < & < & Each player’s cutoff
cost is equal to the conditional probability that his opponent does not
contribute:

. PO - PE)
o

(8.8)

Note in particular that type ¢ does not contribute, so that his second-period
utility is ¢''(¢) = P(¢)/P(&).



Only one player contributed. Supposc player i contributed in period 0 and
player j did not. Hence, ¢; < ¢ and ¢; > ¢ One cquilibrium in period 1 has
player i contribute (recall that ¢ < 1) and player j not contribute, and this
is the equilibrium we specify. (For some distributions—e.g., P(*} uniform
on [0,2]—this equilibrium is unique.”) The second-period utilities of type
¢ are thus 1%(¢) = 1 — éand v°1(¢) = L.

Let us now derive the first-period equilibrium. Type ¢ must be indifferent
between contributing and not contributing, or

| — ¢+ 8{PEW () + [1 — PO}
_ PC) + S{P(E°N@) + [1 — P@)]°°@)]}. (8.9)

Using the formulas of the second-period utilities and equation 8.8, we
obtain

1 P(&)=¢+ OP(&)E (8.10)

Equations 8.8 and 8.10 define ¢. Equation 8.10 has a straightforward
interpretation: By contributing in period 1, type ¢ spends ¢ but provides
the public good when it would not have been provided otherwisc (which
has probability 1 — P(¢)). Moreover, he reveals that his type is at most ¢
instead of signaling a type above ¢ by not contributing. This makes no
difference when the opponent’s type is above ¢, because type ¢ will contrib-
ute in the second period whether or not he contributes today. Contributing
docs change type ¢’s second-period payoff when the opponent has type
under ¢: Whereas not contributing in the first period would induce the
opponent to contribute in the second period, contributing makes the
opponent more reluctant to contribute in that he will contribute in the
second period only if his cost is lower than ¢. Because a player’s second-
period payoff when not contributing is independent of his cost, and because
type ¢ is indiffcrent between contributing and not contributing if both have
contributed in the first period, type ¢ gains 1 — (1 — &) = ¢ by signaling a
high cost in the first period when the opponent’s cost is less than (.

9. Note that it is a dominant strategy for type ¢; > 1 not to contribute. It is therefore optimal
for type ¢; = & (very small) to contribute. Recalling that strategies in the second period are
necessarily cutoff rules, let &, < ¢ denote the cutoff cost for player i in period 1, and & > ¢
that for player j. They are given by
I — P(&)
(f — . N
1 — P(()

and
. P - P
. =
! P(S)

For P uniform on [0, 2], & would thus be given by & = —&/1 — ¢)2, which is impossible
because ¢; must be a positive number.



Because this occurs with probability P(¢), the expected second-period gain
from not contributing in the first period is P(¢)é.

Equation 8.10 implies that ¢ < ¢*: In this equilibrium (which is the
umque symmetric equilibrium under some assumptions), there is less con-
tribution in the first period of the two-period game than in the one-period
game. This follows from the fact that each player gains by developing a
reputation for not being willing to supply the public good.

8.3 Extensive-Form Refinements''

8.3.1 Review of Game Trees

We defined extensive-form games in chapter 3. In the next two subsections
and 1n section 8.4, we will consider games of perfect recall with a finite
number of players (i = 1,...,1) and a finite number of decision nodes
(x € X). Let h(x) denote the information set containing node x. (We follow
standard notation; we hope that this will not create any confusion with the
related notion of history.) The player playing at node x is denoted i(x);
terminal nodes are denoted by z. The mixed or behavior strategy of player
i = i(x) at node x is g,(*|x) or a,(-|h(x)). (We will sometimes delete the
conditioning of o; on the information set if player i moves at a single
information set, as therc cannot be any ambiguity.) Let £ denote the set of

Pox =1

PO(x,}=Py, u.5

Po(xa)-.‘l; Poiys)-PO(wsi-.d; Po(N1=.9 where h={x53,y3,Wa}
Pz )mPT(zg)=.1; PO(zg)=PT(z)=P (z4)=0;
Poz,4)=pizg)m.q

Hlxq)l=179, Plyg)=plws}=4/9

Figure 8.2



all strategy profiles ¢ = (a,,...,a;), and let p denote the exogenous prob-
ability distribution over naturc’s moves. For example, in a game of in-
complete information, nature’s move is a choice of type for each player. As
in our development so far, nature’s moves are not considered to be given
by a “strategy”; thus, when we perturb the game with “trembles™ nature’s
moves will not be affected.

With ¢ given, P7(x) and P?(h) denote the respective probabilitics that
node x and information set h are reached. (These probabilities depend on
the prior p. but we omit the superscript p because in a given extensive form
the prior is fixed.) A system of beliefs u specifies beliefs at each information
set h: p(x) denotes the probability player i(x) assigns to node x conditional
on recaching information set h(x). In figure 8.2, which illustrates these
concepts, the strategy prolile o 1s depicted on the tree.

Payoffs are determined by the terminal node of the game, and player i’s
payoflif = is reached is denoted u;(z). (Recall that z is a complete description
of everything that happens before the terminal node is reached, including
nature’s choice of the players’ private information.) Let w,(c|h, u(h)) be
the expected utility of player i(h) given that information set h is reached,
that the player’s belicfs are given by p(h), and that the strategies arc o.

An assessment (a, y) specifies a strategy profile o and a system of beliefs
1. The set of all possible assessments is denoted by 'P.

8.3.2 Sequential Equilibrium

We now describe how Kreps and Wilson (1982a) extend condition P into
condition S (S for sequential rationality) and extend and refinc condition
B into condition C (C for consistency) for general finite games of perfect
recall.

We noted in section 8.1 that the requirement that the players’ strategies
form a Nash equilibrium in each (proper) subgame is too weak, as there
arc few (proper) subgames in games of incomplete or imperfect information.
We saw that in the imperfect-information game of figure 8.1 the only
subgame is the whole game, and the Nash equilibrium (L, A) is subgame
perfect. This equilibrium is ncvertheless implausible, because whatever
beliefs player 2 forms about which of M and R was player 1's move, he
ought to play B if given the opportunity to move.

The appropriate generalization of condition P is that, given the system
of beliefs, no player can gain by deviating at any information set:

(S} An assessment (o, u) is sequentially rational if, for any information set
h and alternative strategy gy,

Uil o | B, (1)) = Ui (674, O i) | b, u(h)).

Note that players believe that their opponents will adhere to the equi-
librium profile o at every information set (including ones that should not be



reached if all players adhere to o). Condition S is equivalent to condition
P for multi-stage games.

What conditions one should put on beliefs at an information set off the
equilibrium path is a more difficult and controversial question. Kreps and
Wilson introduce the notion of consistency. We first define consistency, and
then discuss the desiderata that led Kreps and Wilson to offer this defini-
tion; we later explore what consistency implies for multi-stage games.

Let X° denote the set of all completely mixed (behavioral) strategies, i.e.,
profiles o such that a(a;|h) > 0 for all h and a;€ A(h). If o € £°, then
P?(x) > O for all nodes x, so that Bayes’ rule pins down beliefs at each
information set: u(x} = P7(x)/P°(h(x)). Let ¥° denote the set of all assess-
ments (o, i1} such that o € Z°% and p is (uniquely) defined from & by Bayes’
rule. :

(C)  An assessment (o, p) is consistent if

(o, 1) = lim (a" u")

n—~+r
for some sequence (6", ") in ¥°.

Note that the strategies o need not be totally mixed; however, they and
the beliefs can be regarded as limits of totally mixed strategies and asso-
ciated beliefs. Note also that condition C implies condition B for multi-
stage games.

Since the probability distribution over nature’s moves is not represented
by a strategy, the definition of consistency does not apply “trembles” to
nature’s moves. Subsection 8.3.3 explains how allowing trembles by nature
would change the properties of the equilibrium concept.

Definition 8.3 A sequential equilibrium is an assessment (a, 1) that satisfies
conditions S and C.

We now discuss the considerations that led Kreps and Wilson to propose
the definition of consistency. Consider figure 8.3 (taken from their paper).
Player | assigns probabilities } and 2 to nodes x and x’ € h(x), respectively.
His strategy is to play U. What should player 2 believe if player 1 deviates
and plays D? Since player 1 cannot distinguish x and x’, it seems natural
to require that player 1 be “as likely” to deviate at both nodes. This idea
leads to the requirement that player 2 put weights  and { on nodes y and
V', respectively. However, any u(y) is compatible with Bayes’ rule, because
cvent D has probability 0 in the equilibrium. Consistency yields the “right
beliefs™ in this game. Consider an arbitrary sequence &” converging to {,
and interpret ¢" as the probability that player 1 “trembles” and plays down.
For this sequence,

H(x)e”

1"(y) = B
l }] ﬂN(x)gn +ﬂ"(x,)8" 3
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Thus, trembles ensure that the players’ beliefs respect the information
structure. This example also motivates Kreps and Wilson's definition of
“structural consistency.” (In subsection 8.3.4 we will exploit this example
in a different way.)

An assessment (o, ) is structurally consistent if, for cach information set
h, there exists a strategy profile o, € £ such that P°#(h) > 0 and pu(x) =
P7a(x)/P°»(h) for all x in h. That is, for each information set, the player on
the move at the information set can find a strategy profile (not necessarily
the same as o) that would yield exactly the specified beliefs at the informa-
tion set. The significance of structural consistency is the following: Suppose
a player unexpectedly finds himself on the move at some information set
h. What beliefs should he hold concerning the nodes 1n 4? If he can find an
alternative strategy profile g, that would reach h with positive probability,
he could use this g, as a conjecture of the way the game had been played
and then use Bayes’ rule to form his beliefs at A. If the original equilibrium
assessment (g, u) 1§ structurally consistent, every player can, for every one
of his off-the-equilibrium-path information sets, find such an alternative
hypothesis to guide the formation of his beliefs.

Kreps and Wilson assert without proof that consistency implies struc-
tural consistency. Kreps and Ramey (1987) use figure 8.4 to show that this
is incorrect. In figure 8.4, any assessment

101 (Ry) = a,3(Ry) =1, 03(R3)} € (0, 1); pulx,} = 0, uly,) = 1, pulx3) = 0,
plyy) = plws) = 3}

is consistent, because it is the limit of the assessment derived from the totally
mixed assessments
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1o7(R,) = 0}(R,) = | — 1/n, 63(Ry) = a5(R,); u"(x,) = 1/n,
EHY2) = (n = 1)/n, p"(xy) = 1/2n = 1),
H'(y¥3) = p(ws) = (n — 1)/(2n — 1)}

This assessment is not structurally consistent, as no strategy giving positive
weight to reaching nodes y, and w, gives weight 0 to reaching node x .12+
Figure 8.5 shows how consistency reduces the set of equilibria by impos-
ing common beliefs after deviations from equilibrium behavior. In this
game, player | gets 2 by playing either L, or R, as long as at least one of

10.1f vy 1s ever reached. then L, is sometimes played: if w, is cver reached, then L, 1s sometimes
played. Therefore, the combination L, and L, is sometimes played, and Lherefore x; is reached
with positive probability.

1. In response to this example, one might be (empted to add structural comnsistency to the
definition of sequential equilibrium. However, Kreps and Ramey provide an example in which
the unique sequential equilibrium does not satisly structural consistency. They also show that
any consistent assessment is the convex combination of structurally consistent assessments.
In the cxample, the consistent beliefs are the convex combination of the structurally consistent
beliefs (v, ) = piwy) = 1 and p(x,) = ply,) = 1.



the other players “cooperates” by playing right, so plaver | should play A
only if both players 2 and 3 are likely to play left. Player 2's action docs not
affect player 3's payoff, and vice-versa. Consider the assessment (o, ), de-
picted in the figure, where o,(A) = 1, g,(L,) = 1, a5(L;) = 1 for each of
player 3's two information sets, and u(x’) = u(y) = p(w) = 1. This assess-
ment is sequentially rational: If players 2 and 3 play left, player 1 should
play A; if u(x’) = 1, then player 2 gets 3 from L, and 2 from R,; and if
(#(y) = p(w) = 1, then player 3 gets payoff 3 from L, and 2 from R;. The
assessment (o, ) is structurally consistent and obeys Bayes’ rule where
possible, but it is not consistent, as players 2 and 3 have different beliefs
about the relative likelihood of player 1 playing L, and R, and this is not
possible if the beliefs of player 2 and player 3 both are the limit of 4" derived
from the same sequence of totally mixed o".

Moreover, there is no consistent assessment where player | plays A, since
when players 2 and 3 have the same beliefs about player I's move then at
least one of them will play right: If u(x) > 3 player 2 plays R, and if u(y) < %
player 3 plays R;.

Although (@, ) is not consistent, it satisfics the weaker condition that for
cach player i there is a sequence o"(i) — o of totally mixed strategy profiles
such that, at each information set h, u(x) is the limit of the becliefs u"(i)
computed using Bayes’ rule from ¢”(i). Why should all players have the
same theory to explain deviations that, after all, are either probability-0
events or very unlikely, depending on one’s mcthodological point of view?
The standard defense is that this requirement is in the spirit of equilibrium
analysis, since equilibrium supposes that all players have common beliefs
about the others’ strategies. Although this restriction is usually imposed,
we are not sure that we find it convincing.

8.3.3 Properties of Sequential Equilibrium (technical)

Existence

For any finite extensive-form game there exists at least one sequen-
tial equilibrium. Existence will be proved indirectly in section 8.4: Any
trembling-hand perfect equilibrium is sequential, and because trembling-
hand perfect equilibria exist in finite games, so do sequential equilibria.

Upper Hemi-Continuity
Like the Nash-equilibrium correspondence, the sequential-equilibrium
correspondence is upper hemi-continuous with respect to payoffs. More
precisely, fix an extensive form and prior beliefs p. For any sequence of
utility functions u" (defining a game) converging to some u, if the assessment
(", 1"} is a sequential equilibrium of game v” for all n and converges to an
assessment (o, 1), then (a, 1) is a sequential equilibrium of game u.

The proof of this is simple. We must show that (o, u) satisfies conditions
S and C. The proof that it satisfies S follows the same lines as the proof that



the Nash correspondence is upper hemi-continuous. That it satisfies C
results from the fact that for each n there exists a sequence of assessments
(™", u™")in WO converging as m tends to infinity to (¢", "), which in turn
converges to (g, ¢t). This upper-hemi-continuity property distinguishes se-
guential equilibrium from trembling-hand perfect equilibrium (see section
8.4).

What about upper hemi-continuity with respect to prior beliefs p? Con-
sider 4 sequence p" on a fixed set of initial nodes that converges to a
distnibution p. It is straightforward to check that the proof of upper hemi-
continuity in the previous paragraph carries over as long as p assigns
strictly positive probability to ali of nature’s moves.'? However, if p assigns
probability 0 to some of nature’s moves, upper hemi-continuity with respect
to beliefs may not hold. This lack of upper hemi-continuity can be illus-
trated in Spence’s signaling model (example 8.2). In the (least-cost) separat-
ing equilibrium the high-productivity worker invests (8" — 8') in educa-
tion even if the probability of a low-productivity worker is very small.
But when the latter probability is equal to 0, the high-productivity worker
does not tnvest in education in the unique (subgame-) perfect cquilibrium.

Note that if we modify the definition of consistency by requiring nature
to tremble as well as the players, the separating equilibrium is still a
sequential equilibrium when the prior probability of a low-productivity
type is 0. More generally, with this definition the set of sequential equilibria
is upper hemi-continuous with respect to prior beliefs on a fixed set of
nature’s moves. However, with the modified definition, the set of sequential
equilibria can change when a probability-0 move by nature is added. That
is, the set of sequential equilibria would depend not only on the prior beliefs
but also on the set of nature’s moves that are “conceivable.” (A similar
observation applies to the set of perfect Bayesian equilibria.)

Structure of Equilibria

Theorem 8.1 (Kreps and Wilson 1982a)  For generic (i.e., generic end-point
payoffs of ) finite extensive-form games of perfect recall, the set of sequential-
equilibrium probability distributions on terminal nodes is finite.

That is, for a fixed extensive form and fixed prior beliefs, the closure of
the set of payofls u such that the associated game has an infinite number
of sequential-equilibrium outcomes has Lebesgue measure 0. The set of
scquential-equilibrium assessments is in general infinite because of the
leeway in specifying beliefs off the equilibrium path.

The sct of sequential equilibrium strategies is in general infinitc as
well, because, when a player is indifferent between two actions at an off-path

12. To exlend the proof, note that, although the sequence of beliefs ™" is Bayes consistent
with p” and ¢™", it need not be consistent with p and ™" Thus, one replaces ™" by
fa™" which is Bayes consistent with p and ¢™",
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information set, many different randomizing probabilities at that informa-
tion set can be specified. This point is developed in detail in the appendix
to the present chapter.

Addition of “Irrelevant Moves or Strategies™

Several authors have shown that the set of sequential equilibria can change
when an apparently irrelevant move or strategy is added. We will return
Lo this in more detail in chapter 11; we content ourselves with an example
here.

Scquential equilibrium and the related concepts defined in section 8.4
have been criticized by Kohlberg and Mertens (1986) for allowing “strate-
gically neutral” changes in the game tree to affect the equilibrium. Com-
pare, for instance, figures §.6a and 8.6b. Figure 8.6b 15 the same as figure
8.6a cxcept that an apparently irrelevant move NA (“not across™) has
been added. Whereas A is a sequential-equilibrium outcome in figure
8.64."* A is not a sequential-equilibrium outcome in figure 8.6b. In the
“simultaneous-move” subgame following NA, the only Nash equilibrium

(0.1} (0.0} (1,0) (4,1)

a b

13 Consider the assessment (o (A) — 1, a,{L,) = I; p(w) = 1% This assessment satisfies
condition 8. To see that it satisfies condition C, consider the trembles
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Clearly, j"(w) converges to 1.



1s (R, R;), as L, is strictly dominated by R, for player 1. Hence, the only
sequential-equilibrium payoffs are (4, 1). This example also illustrates that
the deletion of a strictly dominated strategy affects the set of sequential-
cquilibrium payoffs: If L, is deleted in figure 8.6a, the unique sequential-
equilibrium payoffs are (4, 1).

Chapter 11 has more discussion of when two similar trees should be
cxpected to have the same solution. For now, let us note that if we take
seriously the idea that players make “mistakes™ at each information set, as
the definition of sequential equilibrium might suggest, then it is not clear
that the two figures are equivalent. In figure 8.6b, if player 1 makes the
“mistake” of not playing A, he is still able to ensure that R, is more likely
than L,: in figure 8.6a he might play either action by “mistake” when
intending to play A. '

Correlated Sequential Equilibrium

Just as Nash equilibrium can be generalized to allow preplay observation
of correlated signals, sequential equilibrium can be generalized to allow
corrclated strategies. There are three ways of doing so in multi-stage games
(Forges 1986; Myerson 1986). First, one can allow players to receive in-
formation in the preplay phase (“at date —17) only. Second, one can allow
the players to receive information slowly over time (“at each date™). Third,
one can have players send private messages (inputs) at the beginning of
cach period to a “mediator” or a “machine,” which then conveys private
(but possibly corrclated) messages (outputs) to the players. What differ-
cntiates the third possibility from the second is that the messages sent to
the players can be contingent on their information. To show that each
possibility allows more equilibria than the previous one (it clearly allows
at least as many), consider the two examples shown in figures 8.7 and 8.8.
Figure 8.7 illustrates the possibility that delaying the obscrvation of “sun-
spots” may increase the equilibrium set. Payoffs (3, 3) can be obtained by
having the players coordinate on (L, L,) or (R}, R,) with equal probabili-
ties after the occurrence of a sunspot at the beginning of period 1. If the
realization of the sunspot leading to the coordination on (R,,R,) were
known at date 0, player 1 would play , and payoffs (3, 3) could no longer
be obtained.

In figure 8.8, player 2 would like to predict the state of nature. Suppose
that player 1, a dummy player in figure 8.8, learns the state of nature and
can communicate it before player 2 picks an action. Payoffs (0, 1) are now
attainable, and thus communication increases the equilibrium payoff set.

These examples raise the question of the interpretation of an “extensive
form.” Should the complete rules of the game, including the “observation of
sunspots” and “cheap talk,” be explicitly described in the extensive form, or
should any equilibrium concept allow for correlated moves and communi-
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cation even if those possibilities are not explicitly described in the extensive
form?

In the spirit of the revelation principle (see also sections 2.2 and 7.2),
Forges and Myerson show that the sct of equilibrium payoffs has a canoni-
cal representation. Any sequential equilibrium can be obtained by having,
at cach period, each player announce his information privately and truth-
fully to a mediator, who, having observed all messages, privately sends
a reccommended action or mixed strategy to each player, who then obeys the
recommendation. For finite games, the scts of equilibrium strategies with
ex ante correlation, correlation at each period, and correlation and com-
munication at each period are convex polyhedrons, because in each case
the equilibrium strategies are defined by a set of linear inequalities (the
incentive-compatibility conditions).

8.3.4 Sequential Equilibrium Compared with Perfect Bayesian Equilibrium

The trembles underlying the definition of consistency give all paths positive
probability so Bayes’ rule pins down beliefs everywhere. There arc two
types of objections that can be made to the use of trembles. First, checking
that an assessment in a finite game is consistent is a tedious process that is
rarely carried out in applications. Furthermore, many applications involve
an infinite number of actions or types; extending the formal definition of



consistency to infinite games does not seem to require a conceptual innova-
tion, but would face some technical difficulties. Second, and more impor-
tant, one would like to know more about what consistency implies for
behavior. In order to explain what the sequential-equilibrium restriction
cntails, we will compare it in some detail with the PBE concept of subsec-
tion 8.2.3.

Theorem 8.2 (Fudenberg and Tirole 1991) Consider a multi-stage game of
incomplete information with independent types. If either each player has
at most two possible types (# ©, < 2 for each i) or there arc two periods,
condition B is equivalent to condition C and therefore the sets of PBE and
sequential equilibria coincide.

With more than two types per player and/or more than two periods,
condition B is no longer sufficient to guarantee consistency, as figure 8.9
shows. This figure depicts a situation where player 1 has three possible
types, . 07, and 0%, but where at time ¢t Bayesian inference from the
previous play has led to the conclusion that player | must be type 8%. The
cquilibrium strategies at this point, which are given in parentheses in the
figure, arc for type 0; to play ay, type 8/ to play a}, and type 0% to play a¥.
(Forclarity, we do not depict type 0¥’s probability-0 actions.) Since the first
twa types have probability 0, player 2 expects to see player | play a¥. What
should he belicve if he sees one of the other two actions? The beliefs in
higure 8.9 (given in braces) are that if player 2 sees a; he concludes that he
15 facing type 07, while af is taken as a signal that player 1 is of type ;.
Since the definition of PBE places no constraints on the beliefs about a
player who has just deviated (except that these beliels are common to
all players and that they do not depend on actions chosen by players
other than the deviating one), the situation in figure 8.9 is compatible with
PBE.

However, the situation of figure 89 cannot be part of a sequential
equilibrium. To sec this, imagine that there were trembles o” that converged
to the given stratcgies ¢ and such that the associated beliefs p” converged
to the given beliefs y. Let the probability that 1" assigns to type 0, at period
t be £, and let the probability of type 0] be . Since u” converges to p,

Date t

Date (t+1)

Figure 8.9



both ¢ and ¢”" converge to 0, and ¢"(a}|0}) and ¢"(a{|0}) converge to 0
as well. Since

OO ) = prt)a"ay |07)
! o ;Z u"(0,)o"(a; |61)’

my;. mun

in order to have u"(0%1a}) converge to 1 it must be that ¢/ converges
to 0: In order for the beliefs following a; to be concentrated on type 67
when 0] plays the action with probability ! while 6] assigns it probability
0, the prior beliefs must be that 07 is infinitely more likely than ;. On its
own, this requirement is compatible with sequential equilibrium. However,
considering the beliefs that follow a} leads to the conclusion that £""/&™
converges to 0, i.e., that 8] is infinitely more likely than 8], and these two
conditions are jointly incompatible with the beliefs being consistent. This
restriction, though implied by sequential equilibrium, is stronger and dif-
ferent in spirit than the restrictions described by Kreps and Wilson to
motivate the consistency requirement.

For PBE to imply consistency, the definition of beliefs must be extended
to capture the relative probabilitics of probability-0 types, and restrictions
must be imposed on the way these relative probabilities are updated.
Requiring that players assess relative probabilitics of probability-0 states
of nature is strong, but easy to formalize. Formally, onc wants the poste-
rior beliefs about each player to form a “system of relative beliefs,” or a
“conditional probability system.”** That is, the playcrs have beliefs
(X (0,10, 6.), k") that player i is of type ; conditional on playcer i's being
type 0, or ) and on history k', ¢ven if being type 0; or 0/ has probability O
conditional on k'. Note that a system of relative beliefs generates a system
of absolute beliefs by the formula p(6;|h') = u*(6,10;,h').'> A pair (o.p*)
is called a yeneralized assessment.

We now extend Bayesian conditions B(i)-B(1v) to require that Bayes’
rule and the no-signaling condition hold for relative beliefs and not only for
absolute beliefs (1o simplify the statements, we assume right away that
helicfs arc common):

14. A conditional probability system {Myerson 1986) on a finite space §2 is a collection of
functions vi-|) from 2% x 29 to |0.1] such that for cach A €29 v{(:|A} is a probability
distribution on 4. and such that for 4 € B = C € 22 with B # J, v{A4|BW{B|() = v(4]C).
15. Mare precisely.

. . d I \
e k=1 L ( e — ])_,_ 11,
C e e, X0 {0, 00, 1) )

5 =0,

if, for all 8 5 6, 16,0, ). 2" > (.

= () otherwise.



(B*) A generalized assessment (o, 1*) satisfics condition B* if

(1} Bayes' rule is used to update relative beliefs w*(6,1(0.,68,), k") into
1*(0;1(0,0,),(h', a')) whenever possible: If ¢! has positive probability condi-
tional on (0, 0;) and A,

___(f)_\_(() 0;), h) ai{a;|h', 6)

X010, 0. (ha'yy = - Y
Z u @100, 0). 'y (al | ", 6
=a;,

(if) the posterior beliefs are independent:
u @R = [T p(0:1 by,

(ni) the relative beliefs about player i at date ¢ + 1 depend only on A’ and
on player i’s period-t action:

(0100, 0)).(h', a")) = p*(0:(6,. 0! ), (h',a")) if a} = a'.

Note that these conditions are the same as B(i) Biii) except that they
apply to relative probabilities. Indeed, conditions B and B* coincide when
(-] A"y has full support for all A*. In particular, in a two-period game (such
as the signaling game) all types have positive probability in period 0, so
condition B* does not refine condition B (it does refine condition B for
belicfs formed at the end of period 1, but thosc beliefs are irrelevant, as the
game is over). In the case of at most two types per player, at most one type
has probability O after any history and the issue of relative beliefs does not
arise (absolute beliefs are also rclative beliefs), so again condition B*
coincides with condition B.

Condition B*(i) implies that if 8, is infinitcly more likely than B, given k',
and ay(a{1h',6;) > 0, then after observing a! in period ¢, 8, is still infinitely
more likely than ;. Similarly, if two types arc “as likely” (in the sense that
none is infinitely more likely than the other) given A, and both play action
a; with positive probability, the two types remain “as likely.” Combined,
these two implications rule out the beliefs in figure 8.9.

Definition 8.4 A perfect extended Bayesian equilibrium (PEBE) of a multi-
stage gamc of incomplete information with independent types is a gener-
alized assessment satisfying conditions P and B*,

Theorem 8.3 (Fudenberg and Tirole 1991) For multi-stage games of in-
complete information with independent types, condition B* implies condi-
tion C, and any assessment satisfying C can be extended to a generalized
asscssment satisfying B*. Therefore, the sets of PEBE and sequential equi-
libria coincide.

The idea of the proof of these two results (that condition B for two types
or two periods, or more generally that condition B* implics condition



(') is as follows: Suppose one has built trembles up to date t that yield
strictly positive belicfs at the beginning of date t and converge to u(-1h').
One then constructs trembles on probability-0 actions so as to obtain the
posterior beliefs (| (A", a")) in the limit. The no-signaling condition guar-
antces that these trembles can be built independently among players,
and, with more than two types, condition B* guarantees that appropriate
trembles exist that vindicate the relative beliefs. One then subtracts trembies
on probability-0 actions from the (strictly positive) probabilities on equi-
librium actions to ensure that, along the sequence of trembles, the proba-
bilitics of cach player’s actions add up to 1.

Correlated Types''”

When types are correlated, it is convenicnt to transform the game into one
with independent types and then map the rcsulting equilibrium strategies
and belicfs to strategies and beliefs in the original game. Myerson (1985)
shows that any Bayesian game can be transformed into one with in-
dependent types. Suppose that the prior distribution p(8) = p(6,,...,0;)
has full support on @. And let p be the product of independent uniform
marginal distributions p; on ©;:

i i
py =1 .*"{ (I | (#@,-)) for all 8 in O.

=1
Define the fictitious von Neumann-Morgenstern payoff functions
(T 0,,0_) = p(0-;10)u,(h™ 1, 8,0_;) for alt (h7*1,6,,60_)).

et (by the familiar abuse of notation) ;(a, 0) and ii;(s, ) denote the utilities
for strategy profile @ and types §. With E, and E; denoting the expectation
operators with respect to distributions p and 4, E (4;16;,) and E;(%;]6;)
represent the same preferences for player i with type 6. The Bayesian
equilibria of the game (u, p) with correlated types and the game (i, ) with
independent types are thereforc the same.

More generally, in a multi-stage game with incomplete information, it is
straightforward to check that an assessment (4, 4) is a sequential equi-
librium of the transformed game (d, p) if and only if the assessment (g, u)
defined by ¢ = 6 and

w0 10, py = P00 7
BZ p(82;18) (8| h')
is a sequential equilibrium of the original game (u, p).

Imposing condition B or B* on the transformed game yields restrictions
on beliefs for the original game. In particular, in a game with correlated
types. a player’s action conveys information about other players’ types only
to the extent that it conveys information about his own type. The date-



(t + 1) beliefs about _; conditional on #; depend on the history A', the
actions a' ;, and the conditional beliefs u(6_;|0., h') at date ¢, but not on
player i’s action a].

General Extensive-Form Games' '

Necessary conditions for sequential equilibrium in general extensive-form
games can be given in terms of “no signaling what you don’t know.” The
trembles associated with sequential equilibrium give rise to a conditional
probability system on all terminal nodes. Conversely, assume that there is
a conditional probability system on all terminal nodes that is compatible
with the strategy profile a. Let u(x]x, y) denote the relative beliefs generated
by the conditional probability system when nodes x and y belong to the
same information set (u(x|x, y) is the probability of terminal nodes that are
successors of x conditional on the terminal node’s being a successor of
cither x or y); similarly, let u(s(x, )| x) denote the probability of the direct
suceessor (x,a) of node x through action a € A(h{x)). The no-signaling
conditions are simply (1) for any information set # and any node x e h and
action a € A(h),

pli(x,a)| x) = ailalh)
and (2) for any information set A, nodes x and y in h and action aq,
nla(x apla(x,a), sy, a)) = u(x|x, y).

That s, the player on move at h cannot distinguish among the nodes in 4
and therefore cannot signal information he does not have. Fudenberg and
Tirole {1991) claimed that these conditions implied consistency, but
Battigalli (1991) shows that this claim is false. The no-signaling conditions
Iand 2 are very weak, but the existence of a conditional probability system
on all terminal nodes is quite strong: Tt allows the (common across players)
comparison of probabilities of nodes at any two information sets. In con-
trast, for multi-stage games with incomplete information it suffices to be
able to compare the likelihoods of types of a player in any given period.

8.4 Strategic-Form Refinements'!

This section reviews two strategic-form refinements of Nash equilibrium.
The concept of sequential equilibrium is closely related to that of trembling-
hand perfect cquilibrium (henceforth “perfect equilibrium”) of Selten (1975).
Perfect equilibrium requires that the strategies be the limit of totally mixed
strategies and that, subject to the requirement that it must put at least a
minimum weight (must tremble) on each pure strategy on the converging
sequence, cach player's strategy is (constrained) optimal against his oppo-
nents” (which include trembles themselves). The distinction with sequential



cquilibrium is thus that stratcgics must be in equilibrium along the converg-
ing subsequence and not only in the limit. This distinction turns out to
make only a minor difference, as the sets of sequential and perfect equilibria
coincide “for almost all games.” We will also review Myerson’s (1978)
concept of proper equilibrium, which refines perfect equilibrium by requir-
ing that, along the converging sequence of perturbed strategies, players are
less likely to make “mistakes” that arc more costly.

8.4.1 Trembling-Hand Perfect Equilibrium

Now we consider the concept of trembling-hand perfection in the strategic
form and in the agent-strategic form. (Selten called the latter the “agent
normal form.”) As we will see, perfection in the strategic form does not
imply subgame perfection. Selten introduced the agent-strategic form in
order to rule out subgame-imperfect equilibria.

There are three equivalent definitions of trembling-hand perfection in
the strategic form:

Definition 8.5A An “z-constrained equilibrium” of a strategic-form game
is a totally mixed strategy profile 6° such that, for each player i, af solves
max, 1;(6;.0%,) subject to gy(s;) > e(s;) for all s;, for some {e(s:}}s,e5,.ic 5
where 0 < (s;) < &. A perfect equilibrium is any limit of e-constrained
cyquilibria ¢* as ¢ tends to O.

According to definition 8.5A, a perfect equilibrium is a limit of Nash
cquilibria of some sequence of constrained games. The standard sort of
closed-graph argument shows that any perfect equilibrium is a Nash equi-
librium of the game without the constraints.

For given {&(s,)}, a constrained equilibrium exists for the usual reasons.
{The only difference with the proof of existence of a Nash equilibrium in
mixed strategies (see section 1.3) is that each mixed strategy must belong
to a subset of a simplex, as opposed to the simplex itself, but this difference
is irrclevant because the subset is compact, convex and, for & small, non-
empty.} Thus, for any sequence of constraints {&(s;)} there is a correspond-
ing sequence of constrained equilibria. Because strategy spaces are com-
pact, this sequence has a convergent subsequence, so a perfect equilibrium
CXIStS.

To sec how trembles help refine the set of Nash equilibria, consider the
game illustrated in figure 8.10, which Sclten used to motivate subgame
perfection. The Nash equilibrium {R,,L,} is not the limit of constrained
equilibria: [f player | plays L, with positive probability, player 2 puts as
much weight as possible on R,.

The idea behind definition 8.5A is that players may tremble (make
mistakes) and that their constrained strategies should be optimal when the
trembles of their rivals are taken into account. Selten’s second definition
does not explicitly introduce minimum trembles, but requires that the
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Figure 8.10

profile a be a limit of a sequence of totally mixed profiles ¢” and that o; be
a best response to the opponents’ perturbed strategies o

Definition 8.5B Strategy profile o of a strategic form is a perfect equi-
librium if there exists a sequence of totally mixed strategy profiles ¢" — o
such that, for all i, u,(g;, 6%} = u(s;, o) for all 5, € S,.

Let us emphasize that in definition 8.5B strategy o, is a best response to
some sequence ¢, and not necessarily to all sequences converging to o_,.
Likewise, in definition 8.5A, it suffices that o is the limit of e-constrained
equilibria for some sequence of constraints, as opposed to all such se-
quences. The uniform versions of these definitions—requiring in definition
8.5B that o, be a best response to any sequence 6", — o_,—yield the concept
of “truly perfect equilibrium,” which is much more demanding. For some
games, truly perfect equilibria do not exist (see chapter 11).

The third definition of perfect equilibrium, due to Myerson (1978), does
not quite refer to a conventional optimization:

Definition 8.5C Strategy profile o® of a strategic form is an e-perfect
equilibrium'® if it is completely mixed, and, for all i and any s,, if there
exists s; with w(s;, 62,) < u,(s], ¢}, then af(s;) < . A perfect equilibrium o 1s
any limit of e-perfect strategy profiles o* for some sequence ¢ of positive
numbers that converges to 0.

That is, player i is not required to optimize against his rivals’ strategies
subject to an explicit constraint on minimum weights, but must put less
than ¢ weight on strategies that are not best responses.

Theorem 8.4 Thc three definitions of perfect equilibrium (8.5A 8.5C) are
cquivalent.

Proof We show that definition A implies definition C, which implics
definition B, which in turn implies definition A. First, by construction, the

16. Here the « does not refer to s-optimization, as in the e-perfect equilibrium discussed in
section 4.8,
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sequence g defined in definition A is an e-perfect equilibrium, so that ¢°
satisfics definition C if it satisfies definition A. Sccond, suppose that g
satisfics definition C. Then there is a sequence ¢° — ¢ and a constantd > 0
with a/(s;) > d for cvery s; in the support of ;. Thus, every s; in the support
of o, must be a best response to of,, so that definition B is satisfied. Third,
supposc that o satisfies definition B, and let 6” — ¢ be the hypothesized
totally mixed stratecgy profiles. For s; not in the support of o; define
£"(s;) = al'(s,). and for s; in the support of o; let £"(s;) = 1/n. Then consider
the program {Max, u(o;,0%,) subject to gy(s;) = e"(s;) for all s; € S;}. Be-
causc a, is 4 best response to ¢”; by assumption, onc of the corresponding
s-constrained equilibria, ¢ has af(s;} = ¢"(s;) for s; ¢ support (g;), and
a/(s;) = o,{s;) for 5; € support (g;)."” &" = max{e"(s;)} tends to O as » tends
to «. Hence, definition A is satisficd. [

As Selten noted, perfection in the strategic form is not totally satisfactory.
Consider figure 8.11. The only subgame-perfect equilibriumis {L,,L,, L} }.
But the subgame-imperfect Nash equilibrium {R,R,,R}} is the limit of
cquilibria with trembles. To see why, consider the corresponding (reduced)
strategic form (displayed in figure 8.11b), and let player 1 play (L, L}) with

17. There can be other e-constrained equilibria, because some s; ¢ support (a;) could also be
best responses to o,



probability ¢* and (L,, R) with probability «. Then player 2 should put as
much weight as possible on R, because player 1's probability of “playing”
R conditional on having “played” L, is ¢/(e + £*) ~ 1 for ¢ small. The point
is that strategic-form trembles allow corrclation between a player’s tremble
and his play at subsequent information sets. In the above example, if a
player “trembles” onto L, he is very likely to play R} and not L.

One possible response to this is that since a player’s trembles may indeed
be correlated, subgame perfection is too strong. Recall that subgame perfee-
tion’s premise is that rcasonable play in a subgame depends only on that
subgame, regardiess of whether that subgame is in fact the whole trec or
instead can be reached only if some player i deviates from the (perfect)
cquilibrium strategies in a longer game. If we take the trembles story
hiterally this premise may or may not be compelling, depending on how-and
why mistakes occur, and subgame perfection loses some of its persuasive-
ness. (At this point the reader might want to reread the examples in section
3.6.)

Sclten’s view in his 1975 paper was rather that the trembles are a
technical device, and that they are not intended to model actual “mistakes.™
In that spirit, he modified his trembling-hand concept to rule out correla-
ton and thus rule out subgamc-imperfect equilibria. The modification
uses the concept of the agent-strategic form, which treats the two choices
of player 1 in figure .11 as made by two different players whose trembles
are independent.

More precisely, in the agent-strategic form each information sct is
“played™ by a different “agent.” and the agent on move at information h
has the same payoffs over terminal nodcs as the player i(h) on move at h
in the original game. A trembling-hand perfect equilibrium in the agent-
strategic form of an extensive-form game is the trembling-hand perfect
cquilibrium of the corresponding extensive form.

It should be clear that the equivalence betwcen the various definitions
of perfect equilibrium carries over to perfection in the agent-strategic form,
as does the proof of existence. From now on, by “perfect equilibrium™ we
will mean “trembling-hand perfect equilibrium in the agent-strategic form”
(as opposed to “strategic-form perfect equilibrium.” which allows corre-
lated trembles across information sets of the same player). Figure 8.12
displays the agent strategic form associated with the extensive form in figure
8.11a. The “first incarnation™ of player 1 chooses matrices and the “second
incarnation” chooses columns. Because the two incarnations have the same
payoffs, we merge these payoffs in the entries of the matrices.

Definition 8.5B makes it clear why a perfect equilibrium is a scquential
cquilibrium. The strategies ¢ are, by construction, limits of totally mixed
strategies ¢, To obtain a sequential equilibrium, onc must construct belicfs
gesuch that (o, p)is consistent and o is sequentially rational given u. Because
a" arc totally mixed, associated beliefs " at information sets of any cxten-
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sive form with this strategic form are uniquely defined by Bayes™ rule.
It then suffices to take the limit ¢ of a convergent subsequence u”. By
construction, (o, y) is a consistent assessment. By the one-stage-deviation
principle, g; 1s a best response for a “single player i” to ¢, and since payofls
are continuous, (g, u) 1s sequentially rational.

A scquential equilibrium, however, need not be perfect, as is demon-
strated in figure 8.13. In the simultaneous-move game with strategic form
represented in this figure, the imperfect Nash equilibrium (D, R) 15 se-
gquential. However, if one requires that strategies be optimal against some
trembies, D and R cannot be chosen, because they are weakly dominated.

However, this game is nongeneric, because it relies on a player’s (in this
example, both players’) being indifferent between an equilibrium strategy
and a noncquilibrium strategy. Once indifference is broken by a small
perturbation of payoffs, the sets of sequential and perfect equilibria coin-
cide, as Kreps and Wilson (1982a) showed. The notion of genericity is the
following: Fix an extensive form and prior beliefs and consider the family
of games indexed by payoffs u at the /# terminal nodes. “Game u” is, by
abuse of terminology, the game defined by the payoff vector u in R 1.
A property is generic (satisfied for “almost all games™) if the closure of the sct
of games that do not satisfy this property has Lebesgue measure 0 in R” ™/,
We collect the results in theorem 8.5.

Theorem 8.5 In finite games, at least one perfect equilibrium exists (Selten
[975). A perfect equilibrium is sequential, but the converse is not true:
however, for generic games the two concepts coincide (Kreps and Wilson
1982a).

The perfect-equilibrium correspondence need not be upper hemi-
continuous in the payoffs. Figure 8.14 depicts a small perturbation of the



Figurc 8.14

game defined by figure 8.13. In figure 8.14, (D, R) is a perfect equilibrium:
[ is a best response to a ¢ that assigns probability 1 — 1/n? to R, and R
1s a best response to a o that assigns probability 1 — t/n? to D. However,
the unique perfect equilibrium of the limit game is (U, L).

We have two final notes on the idea of trembles. First, observe that
trembles can be interpreted as perturbations of the players’ payoff func-
tions. In the constrained game of definition 8.5A, player i must place
probability at least «(s;} on each s; € S;; thus, strategy s, is effectively
replaced by the mixed strategy, which assigns probability | — Zﬁ.;#si g(s;}to
s, und e(s)) to each s/, Equivalently, we could leave the strategies exactly as
they were originally, and define new payoff functions

ils; o) = (1 - Z 3(-“;]) uils;,a;) + Z e(s)u(s, o).t
. N A S S{#ES;

Scecond, we should mention the work of Blume, Brandenburger, and Dekel

(1990), which gives a characterization of perfect equilibrium in the strategic

form in terms of “lexicographic beliefs” instcad of trembles. This work

stands in roughly the same relation to strategic-form perfect equilibrium

as PBE does to sequential equilibrium.

8.4.2 Proper Equilibrium

Myerson (1978) considers perturbed games in which a player’s second-best
actions are assigned at most ¢ times the probability of the first-best actions,
the third-best actions are assigned at most ¢ times the probability of the
second-best actions, etc. The idea is that a player is “more likely to tremble”
on an action that is not too detrimental to him, so that the probability of
deviations from equilibrium behavior is inversely related to their costs.

Because a smaller set of trembiles is considered, a proper equilibrium is
clearly perfect in the strategic form. As we will see, proper equilibria are
perfect in the agent-strategic form as well.'®

I8 We will see in chapter 12 that for generic strategic-form payofls, any Nash equilibrium has
a nearby Nash cquilibrium in any game with nearby payoffs. so in generic strategic forms any
Niush equilibriom is truly perfect. However, generic extensive-form payofls do not generate
generic strategic-form ones.

19, Although properness in the strategic form ensures backward induction, properness in the
strategic form and properness in the agent-strategic form differ because two incarnations of
the siume player in the agent strategic form (associated with two different information sets)
need not compare the payoffs of their probability-0 actions.
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Tao tllustrate the notion of proper equilibrium, consider the game illustra-
ted in figure 8.15 (due 1o Myerson), which adds weakly dominated strate-
gics to the game defined in figure 8.12. This game has three pure-strategy
Nash equilibria: (U, L), (M, M), and (D, R). D and R are weakly dominated
strategies and therefore cannot be optimal when the other player trembles,
so (D.R) is not perfect. (M, M} is perfect. To see this, consider the totally
mixed strategy profile where each player plays M with probability 1 — 2¢
and plays each of the other two strategies with probability e. Deviating to
U for player | (or to L for player 2) increases this player’s payoff by
(t 9¢) —(—T7¢) = —e < 0. However, (M, M) is not a proper equilibrium,
Each player should put much more weight (tremble more) on his second-
best strategy than on his third-best, which yields a lower payoff. But if
player 1, say, puts weight ¢ on U and &? on D, player 2 does better by
playing L than by playing M, as (¢ — 9¢?) — (—7¢*) > O for ¢ small. The
only proper equilibrium in this game is (U, L).

Decfinition 8.6 An &-proper equilibrium is a totally mixed strategy profile

£

a’ such that, if u(s, 0%,) < u,(s;,a",), then gi(s;) < eaf(s!). A proper equi-
librium o 1s any limit of s-proper equilibria ¢° as ¢ tends to 0.

Theorem 8.6 (Myerson 1978)  All finite strategic-form games have proper
cquilibria,

Proof Wec first prove the existence of e-proper equilibria. Let
= &m .
m
where m = max,(#S5;) and 0 <¢ < 1. Consider the constrained best-
response correspondence of player i to strategies ¢_;:
Flo ;) = lo;€ iilif usi.o_;) < uylsi, o
then o,(s;) < £0,(s;) V(s;, 51} € (Si)* ).

Because 7, is defined by a finite collection of lincar weak inequalities, it is
convex- and compact-valued; upper hemi-continuity of 7 is straight-
forward. To prove that #(c_;) is nonempty, let p(s;) be the number of



strategies s; such that u,(s;,0_;) < u(s{,6_;). Then, if p(s,) > 0, o; = {0,(s;)},
where

! m
o,(s;) = 7% /( Z [;P(S;)) > & ,

; \5i€8; m
belongs to Flo ;). One then applies Kakutani’s fixed-point theorem in
the usual way to prove the existence of an ¢-proper equilibrium in x; ..
Letting £, tend to X, and taking a convergent subsequence of the associated
e-proper equilibria completes the proof. (]

Let us conclude with two propertics of proper equilibrium.2°

First, proper equilibrium yields backward induction without the use of
the agent strategic form, because the requirement on relative trembles
ensures that the players play optimally off the equilibrium path. This is
illustrated in figure 8.11. The strategy (L,, R}) is dominated by the strategy
(L{,L}) as long as player 2 trembles. Hence, player 1 must put almost all
the weight on L if his second information sct is reached.

Second, Kohlberg and Mertens (1986) have shown that every proper
equilibrium of a strategic-form game is sequential in every extensive form
with the given strategic form. Refer back to figure 8.6, which gave two
allegedly equivalent descriptions of the “same game.” Player 1 playing A is a
scquential equilibrium outcome in figure 8.6a, but not in figure 8.6b. How-
cver, in either game, the only proper equilibrium is (R, R,). In particular,
(A, L,}is nota proper equilibrium in figure 8.6a, since player 1 must give R,
more weight than L, in any s-proper cquilibrium. Kohlberg and Mertens
also observe that a proper equilibrium of a strategic form nced not be a
trembling-hand perfect equilibrium in (the agent strategic form of) every
extensive form associated with this strategic form. Figure 8.16 considers a
single-decision-maker problem with three purc strategies. (L, r} is proper in

BN g
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{L,»)

1
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{Lt) n

0 1
Extensive Form Strategic Form

Figure 8.16

20. See van Damme 1987 for a more extensive and very clear discussion of proper equibibrium
and several of its variants. [n particular, proper equilibria do not correspond to the limits of
equilibria of games in which playcrs optimize their error probabilities in the presence of
“control costs.” Intuitively, if strategy s, is almost as good a response as strategy s; but neither
Is it best response. then when error probabilities are optimized we would expect trembles on
%, 10 be almost as likcly as trembles on s;.



the strategic form, but not (agent-strategic-form) perfect in the tree: If the
player's second incarnation trembles, his first incarnation prefers playing R.

Appendix: The Structure of Sequential Equilibria™”

Weremarked in subsection 8.3.3 that, although the set of sequential equilib-
rium outcomes is finite for generic extensive-form payoffs, the set of sequen-
tial cquilibrium assessments is, in general, infinite. This appendix develops
that remark in more detail.

Consider the game illustrated in figure 8.17, taken from Kreps and
Wilson 19824, This game has two sequential equilibrium outcomes: (L, /)
and A. There is a unique equilibrium assessment with outcome (L.7),
namely ¢,(L) = | = a,(¢), and pu(x) = L. In contrast, there are two one-
parameter families of equilibrium assessments with outcome A. In the first
lamily, a,(A) = 1,4,(¢/) = 0,and u(x) < 5;in the second, 0,(A) = 1,0,(/) €
[0.2], and u(x) = 3. Projecting the equilibrium assessments onto the pairs
(pix).0,{7)) gives the picture in figure 8.18.

As this example illustrates, for generic payoffs the sct of sequential
cquilibrium assessments is the union of manifolds of varying dimensions;

(1.1)

(3,1) (-2‘0) (2|0) (_111'

Figure 8.17
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the dimensions of these manifolds is related to the number of “degrees of
[reedom™ available in specifying the off-path strategies and beliefs. Since
there are no off-path information sets in the equilibrium with outcome
(1..7). there are zero degrees of freedom, and the manifold associated
with this outcome has dimension zero. (For the same reason, one-shot
simultaneous-move games have 4 finite number of equilibria for generic
payoffs, as we discuss in section 12.1.) In the equilibria with outcome A,
player 2°s information set is not reached. The horizontal segment of figure
K.18 reflects the one degree of freedom in specifying beliefs u(x) that make
» a better choice for player 2 than #; the vertical segment corresponds to
the degree of freedom in specifying mixed strategies for player 2 that make
player | prefer A to L. Since player 2 must be indifferent between / and
to randomize, the one degree of freedom in specifying beliefs must be lost
to obtain the one degree of freedom in specifying mixed strategies.

Kreps and Wilson generalize these observations as follows. Let the basis
b of an equilibrium assessment {g, i) be the collection of nodes and actions
the assessment gives positive probability (ie. ¢ in A(h) belongs to b iff
damlalh) > 0 and x e b ff p(x) > 0). Kreps and Wilson show that, for
generic payoffs, the set of equilibria with a given basis is either empty, or
15 @ manifold whose dimension is independent of the particular extensive-
form payoftfs specified.

Exercises

Exercise 8.1*  Consider the public-good game of example 8.3.

(a) Show that in any PBE there exists ¢; such that player i contributes if
and only if ¢; < ¢;. (Hint: Let z; and z7* denote player j's first-period
probability of contributing and second-period probability of contributing
conditional on whether player i contributed (x = 1 or 0} and player j
contributed (y = 10r0)in the first period. Writc the intertemporal expected
payoffs for player i with type ¢; from contributing and not contributing in
the first period. Note that these payoffs involve second-period maximiza-
tions. What are their derivatives with respect to ¢;?)

(b} Use question a to show that ¢; < 1 for each i. (Hint: Suppose. without
loss of generality, that ¢, = max{¢,,¢,} > 1. Argue that player 1's not
contributing in the first period induces “maximal contribution™ by player
2 in the second period.)

(c) Use question b to show that &, > 0 for all i.

Exercise 8.2**  In final-offer arbitration, the arbitrator is forced to choose
one of the parties’ offers as a settlement. Consider the lollowing model of
lcarning in final-offer arbitration, which is due to Gibbons (1988). In the
first stage, an employer and a union simultaneously make wage offers a,



and a, in R. The arbitrator then chooses a, € {4..q, }. The objective func-
tions arc — Ea, for the emplover, + Ea, for the union, and E[ — (a; — 0)*]
for the arbitrator, where w, the state of nature, is the arbitrator’s bliss point.
The information about w is as follows: The employer and the union receive
the same signal, 2, = o + ¢,. The arbitrator reccives signal z, = w + &,.
The variables w, £, and ¢, are independent and normally distributed with
means m. 0, and 0 and precisions A, h,, and h,. (Recall that the precision
1s the inverse of the variance, and that the expectation of a variable given
independent normally distributed signals—including the prior—is the
weighted average of the signals, where the weights are the precisions.) Show
that there exists an equilibrium in which a, + g, perfectly reveals z; to
the arbitrator, and in which each party i = e,u offers ¢; = (hm + hyz,)/
(h + h,) + k,, wherc k; is a constant.

Exercise 8.3*  Gilligan and Krehbiel (1988) depict the open rule in Congress
as a cheap-talk game, that is, as a signaling game in which signals are
costless. As a rough approximation, the committee proposes a policy, but
the floor can introduce amendments and choose the policy it likes. The
apen rule is depicted as a two-player game, with a single member in the
committece and a single representative on the floor (who stands for the
median voter). The object of the decision is a policy a, in R. The outcome
given policy a, 1s X = 4, + w, where w is a random variable uniformly
distributed between 0 and 1. The committee knows w; the floor does not.
The committec moves first and suggests a policy @, to the floor. The
preferences of both are quadratic with bliss points x = 0 for the floor and
x = x, € (0.1} for the committee: u,(x) = — (x — x,)* and u,(x) = —-x?,

(2) Show that there always exists a “babbling™ equilibrium in which ¢, 1s
uninformative and a, = — }.

(b) Look for informative perfect Bayesian equilibria. In particular, find
an equilibrium in which the committee “reports low™ when w € [0, w*] and
“reports high” when o € (w*, 1].

(c)** Analyze the closed rule, in which the committee proposes a policy
a, and the floor chooses between ¢, and a reversion or status quo policy
. (Note that this is no longer a cheap-talk game.)

Sce Crawford and Sobel 1982 for the first example of a cheap-talk game.

Exercise 8.4** Consider the Chatterjee-Samuelson simultancous-offer
burgaining game developed in chapter 6. Assume that the buyer’s valuation
¢ and the seller’s cost ¢ are independently and uniformly distributed on
[0, 1]. They make simultaneous offers. They trade if the scller’s bid b, is less
than the buyer’s bid b, at a price p = (b, + b,)/2. Add a preplay communi-
cation stage to this Chatterjec-Samuelson model. That is, before choosing
their bids. the traders simultaneously send a message to each other. These
messages are costless (are cheap talk). Show that the cquilibria discussed



in chapter 6 are still equilibria (the messages are simply ignored). But there
exist other equilibria as well. For instance, show that the following is a
perfect Bayesian equilibrium: Each trader announces either “keen” or “not
keen™ in the preplay communication stage. The buyer announces “keen”
fand only ifp > ¢* = (22 + 12\/’2)/’49. The seller says “keen” if and only if
¢ <¢*=1—v* If they both say “not keen,” they “stop bargaining” (i.e.,
they play the continuation equilibrium in which they make nonserious
offers, such as 0 for the buyer and 1 for the seller). If one of them says “kecn”
and the other “not keen,” they play a Chatterjee-Samuelson linear equi-
librium given posterior beliefs. If they both say “keen,” both bids are cqual
to ). (See Farrell and Gibbons 1989 for the answer.)

Exercise 8.5*** Exercises 8.3 and 8.4 involve a player’s transmission of
information that is not verifiabic by the other players. This exercise invalves
a4 two-stage game of transmission of verifiable information. There are /
players,i = L..... 1. Player i’s types, 0,, belong to some finitc ordered set ©
(for instance, of elements of the real line) Types are drawn independently
from the prior distribution p(?) = ], p:(6). In period 2, the players play
some simultaneous-move game that results in (reduced-form) payoffs
e, ;). 6) for player i, where g, is the posterior beliefs about 6. and
where p_, = [L,muzJ 1s the posterior beliefs about 0 ;. (Are we allowed to
write posterior beliefs as a product if we look for sequcntial equilibrium?)

Beliefs g, (lirst-order) stochastically dominate belicfs u; if for all 6,

Z p(B)y< 3 b,

U <8

with a strict inequality for at least some 6,. Assume that each player prefers
his opponents 10 belicve he has “high types™ For any u_; and 6, if g
stochastically dominates /),

P, g ), 0;) > v, pi), 0y).

In the first period, players simuitaneously announce messages a;' €
A; ((;). Messages do not enter the players’ payoff function v;. However, they
aﬂ"u,l beliefs for the second-stage game. Suppose that, for all i and 8,

41(0;) contains a message that certifies that player i’s type is at least
L.qu] to . Show that in a sequential equilibrium posterior beliefs are
degencrate; that is, the first-period messages are fully revealing. (See Gross-
man 1980, Grossman and Hart 1980, and Milgrom 1981 for this result
with one informed player; see Okuno-Fujiwara et al. 1990 for the many-
informed-players version.)

Exercise 8.6* Introduce asymmetric information in the stag-hunt game
of chapter 1. There are two players who must decide whether to hunt the
stag or the rabbit. With probability p, cach player has preferences that
always make him hunt the stag (he does not like rabbit, or he is able to



catch the stag by himself although he would prefer to hunt with the
other player); with probability ¢, cach player always hunts the rabbit (he
docs not like stag); with probability | — p — g, the player has the pref-
crences described in chapter 1: He gets 1 if he hunts the rabbit, 2 if both
hunt the stag, and 0 if he hunts the stag alone. Suppose that 2p > 1 — g and
2g > 1 — p.

(1) Show that in the one-period version of the game there is a multiplicity
of cquilibria similar to the one in chapter 1 if max(p,q) < }. Show that
the cquilibrium is unique if p > } or ¢ > }.

{b) Consider the two-period version of the above stag-hunt game with
incomplete information. Show that for any first-period bchavior the
second-period behavior is uniquely determined.

(c) Assume that the discount factor between the periods is equal to 1, and
that x = (1 + 2p)/d4 e (p, | — g) {which implies thal p < }). Show the exis-
tenee of a symmetric equilibrium, in which each player hunts the stag with
probability x in the first period. Note that the type who does not have a
dominant strategy sacrifices short-run utility to build a “rcputation.” (Rep-
utational phenomena are studied in much detail in chapter 9.) Show that
there are exactly two other cquilibria.

Excreise 8.7**  Consider the following two-player three-stage game with
incomplele information. In each period, player 1 has three possible actions:
S (hunt the stag), R (hunt the rabbit), and H (stay home), and player 2 has
two possible actions: S (hunt the stag) and R (hunt the rabbit). Player 1 has
one of three equally likely types: s, 1, and h. In any given period, if player
[ has type s he gets 1 if both players play S, and 0 otherwise. Similarly,
type r gets 1 if both players play R and 0 otherwise, and type h gets | if
he plays H and 0 otherwise. Player 2 has no private information. In a
given period, he gets 1 if both play S or both play R and 0 otherwise. Is
there a sequential cquilibrium in which the following observation has
posilive probability: player 1 plays H in period 0, both players play S in
period 1, and player 2 plays R in period 2?

Exercise 88*** Consider a three-player two-stage game with incomplete
information. Only players 1 and 2 have private information: Player i’s type,
.. is equal to 0] or 6 with equal probabilities, for i = 1, 2. Furthermore,
the prior beliefs satisfy Prob(d, = 610, = 05) = Prob(8, = 0718, = 6) =
1. Suppose that in a sequential equilibrium player i plays a¥ in the first
period whatever his type. Determine the set of player 3’s joint probability
distributions over (f,,6,) at the beginning of the second period that are
compatible with sequential equilibrium when player 1 plays a¥ but player
2 deviates in the first period.

Exercisc 8.9*
(a) Show that (U,.L,) 1s the unique perfect equilibrium of the game
illustrated in figure 8.19a.
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a b
Figure 8.19

(b) Use figure 8.19b to argue that adding dominated stralegies may
enlarge the sct of perfect equilibria. (This exercise is from van Damme 1987.)

Exercise 8.10% Consider the following signaling game. There are two
players, a plaintiff and a defendant in a civil suit. The plaintiff knows
whether or not he will win the case if it gocs to trial, but the defendant does
not have this information. The defendant knows that the plaintiff knows
who would win, and the defendant has prior beliefs that there is probability
j that the plaintiff will win; these prior beliefs are common knowledge. If the
plaintiff wins, his payoll's 3 and the defendant’s payoflis —4; if the plaintiff
loscs, his payolf is —1 and the defendant’s is 0. (This corresponds to the
defendant paying cash damages of 3 if the plaintiff wins, and the loser of
the case paying court costs of 1.}

The plaintiff has two possible actions: He can ask for either a low
settlement of m = | or a high settlement of m = 2. [f the defendant accepts a
scttlement offer of m, the plaintiff’s payoff is m and the defendant’s is —m.
[T the defendant rejects the settlement offer, the case goes to court. List all
the pure-strategy perfect Bayesian cquilibria (PBE) strategy profiles. For
cach such profile, specify the posterior beliefs of the defendant as a function
of m, and verify that thc combination of these beliefs and the profile is in
fact a PBE. Explain why the other profiles are not PBE,
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9.1 Introduction''

This chapter investigates the notion that a player who plays the same game
repeatedly may try to develop a reputation for certain kinds of play. The
idea 1s that if the player always plays in the same way, his opponents will
come to expect him to play that way in the future and will adjust their own
play accordingly. The question then is when and whether a player will be
able to develop or maintain the reputation he desires. For example, if a
central bank always implements the monetary policy it announces, will
traders come to believe that it will do so in the future? That is, will
reputation effects allow the central bank to effectively commit itselfl to
implementing its announcements?

To model the possibility that players are concerned about their reputa-
tions, we suppose that there is incomplete information about cach player’s
type, with different types expected to play in different ways. Each player’s
reputation is then summarized by his opponents’ current beliefs about his
type. For example, to model 4 central bank’s reputation for sticking to its
announced monetary policy, we assign positive prior probability to a type
that always implements its announcements." Morc generally, we may
suppose that each player has several different types, each of which is
associated with a different kind of play, and that no player’s type enters
directly as an argument into any other player’s utility function.?

Intuitively, since reputations are like asscts, a player 1s most likely to be
wilitng to incur short-run costs to build up his reputation when he is patient
and his planning horizon is long. A player with a short horizon will be
less willing to make investments, so we should expect that investments in
reputation will be more likely in long relationships than in short ones,
and more likely at the beginning of a game than at its end. For this rea-
son we will follow the literature and focus on reputations in long-run
relationships, although reputations can also play an important role in
short-run rclationships.

I. An alternative approach is to identify reputations with equilibrium strategies in a repeated
game of complete information. For example, in the repeated prisoner's dilemma the equi-
librium in the “grim™ strategies “cooperale until an opponent defects, and then defect there-
after” cun be interpreted as describing a situation where cach player has a “reputation™ for
cooperation that vanishes the first time he defects, and in a repeated quality-choice game the
strategies “expect high quality until the firm produces low quality” can be interpreted as saying
that the firm begins with a reputation for high quality that it can only maintain by making
high-guality output. Of course, this reinterpretation does not change the set of equilibria, and
so this versian of reputation does not have predictive power. Also, modeling reputations as
complete-information strategies cannot capture the idea that a player’s reputation corre-
sponds ta something that his opponents have learned about him.

2. This is a narrower meaning of reputation than that suggested by common usage. For
cxample, one might speak of a worker having a “reputation” for high productivity in the
Spence signaling model, and of high-productivity workers investing in this reputation by
choosing high levels of education.



Our main concern, then, is when and whether a long-lived player can
take advantage of a small prior probability of a certain type or reputation
to effectively commit himself to playing as if he were that type. For examplc,
what prior distributions on types imply that in cquilibrium a central bank’s
announcements will be credible?

A related question is whether models of reputation effects provide a way
to pick and choose among the many equilibria of an infinitely repeated
game, and in particular whether reputation effects can provide support for
the intuitions that certain of these equilibria are particularly reasonable.
For example, although many papers have used the “cooperative™ equi-
librium of the repeated prisoner’s dilemma (chapter 4) to explain trust and
cooperation in long-run relationships, there is also an cquilibrium where
players do not cooperate. Similarly, though a rough analog of the folk
theorem holds in games where a single, long-run, patient player faces a
sequence of short-run opponents (see subsection 5.3.1), economic applica-
tions typically examine only the equilibrium the long-run player most
prefers. For example, a long-run firm that faces a sequence of short-run
consumers may choose to produce high-quality output, even though doing
$0 15 more cxpensive in the short run, because switching to low quality
would cost it sales in the future (Dybvig and Spatt 1980; Shapiro 1982).
However, there is another equilibrium where the firm’s quality is always
low.

This casc of a single long-run player is the one in which reputation effects
have the strongest and most general implications. We discuss this case
in scction 9.2, beginning with the work on the chain-store paradox. Since
there is only one player who has an incentive to maintain a recputation,
it may not be surprising that reputation effects are quite powerful: In a
simultaneous-move stage game, a weak full-support distribution on the
prior distribution implies that a single patient player can use reputation
effects to obtain the payoff he would obtain if he could publicly commit
himself to whatever strategy he most prefers.

Another case where reputation effects might be thought to allow one
player to commit himself is that of a single “large” player facing a great
many long-lived but “small” opponents, since the large player has much
more to gain from a successful commitment than his opponents. (One
reason this case of small opponents is interesting is that it may be a better
description of the situation facing a government entity such as the Internal
Revenue Scrvice or the Federal Reserve than the model in which the
government entily is a long-run player facing a sequence of short-run
private individuals.) Whether reputation effects allow the large player to
commil himself turns out to depend on the fine structure of the game, as
we discuss in section 9.4.

When all players are long-run, as in the repeated prisoner’s dilemma,
there is no single player whose interests might be expected to dominate



play, and so it would seem unlikely that reputation effects could lead to
strong general conclusions. It is true that strong results can be obtained
lor speceific prior distributions over types. For example, in the repeated
prisoner’s dilemma, if player 2's payoffs are known to be as in the usual
complcte-information case, while player | is either a type who always plays
the strategy “tit for tat” or a type with the usual payoffs, then with suffi-
ciently patient players and a long finite horizon every sequential equilib-
rium has both players cooperate in almost every period. However, other
outcomes can be obtained by varying the prior distribution; in fact, any fea-
sible, individually rational payoffs of the compilete-information game can be
obtained as sequential equilibrium payoffs of an incomplcte-information
version of the game where the payolls are the complete-information ones
with probability close to 1. This confirms the intuition that reputation
elfects on their own have little power when all players are long-run. Reputa-
tion effects do pick out the unique Parcto-optimal payoffs in games of pure
coordination when the prior distribution on types is restricted in a particu-
lar way. Section 9.3 presents these results.

9.2 Games with a Single Long-Run Player™

9.2.1

The Chain-Store Game

We begin with a discussion of the work by Kreps and Wilson (1982) and
Milgrom and Roberts (1982) on reputation cffects in Selten’s (1978) chain-
storec game. To set the stage for their work, we will first review a shght
variant of Seiten’s model. A single long-run incumbent firm faces potential
entry by a series of short-run firms, each of which plays only once but
observes all previous play. Each period, a potential entrant decides whether
to enter or stay out of a particular market. {Each entrant can enter only a
single market, and the entrants’ markets arc distinct.) If the entrant stays
out, the incumbent enjoys a monopoly in that market; if the entrant enters,
the incumbent must choose whether to fight or to accommodate. The
incumbent’s payoffs are @ > 0 if the entrant stays oul, O if the entrant enters
and the incumbent accommodates. and — 1 if the entrant enters and the
incumbent fights. The incumbent’s objective is to maximize the discounted
sum of its per-period payvoffs; é denotes the incumbent’s discount factor.
Each entrant has two possible types: tough and weak. Tough entrants
always enter. A weak entrant has payoffl 0 if it stays out, — 1 if it enters
and s fought, and & > 01fitenters and the incumbent accommeodates. Each
entrant’s type is private information, and each is tough with probability
4" independent of the others. Thus, the incumbent has a short-run incentive
to accommodate, whereas a weak entrant will enter only if it expects the
probability of fighting to be less than b/{(b + 1).



If the game has a finite horizon, there is a unique sequential equilibrium,
as Selten (1978) observed: The incumbent accommodates in the last period,
so the last entrant enters whatever his type and the history of the game:;
thus, the incumbent accommodates in the next-to-last period, and by
backward induction the incumbent always accommodates and every en-
trant enters. Selten called this a “paradox™ because when there are a large
number of cntrants the equilibrium seems counterintuitive: One suspects
that the incumbent would be tempted to fight to try to deter entry. Of
course, no matter how often the incumbent fights, he cannot deter the
“tough” entrants, so a commitment to always fight is valuable only if the
resulting per-period expected payoff of a(l — 4°) — g° exceeds the zero
payoff from always accommodating. When this is the case, and when the
incumbent’s discount factor is close enough to 1, the infinite-horizon ver-
sion of the model has an equilibrium where entry is deterred.?

Since there is also an infinite-horizon equilibrium where every entrant
enters, this is only partial support for the intuition that entry deterrence
is the reasonable outcome, and we are left with the puzzle of explaining why
the entry-deterrence equilibrium is most plausible. In addition, we might
belicve that the outcome would be entry deterrence even with a fixed finite
horizon. As we will see, allowing for reputation effccts by introducing
incomplete information responds to both of these points, and it does so in
an intuitively appealing way: The incumbent fights to maintain its reputa-
tion for being a “tough” type that is likely to fight. After all, if the incumbent
were to have fought in each of the preceding 100 periods, then it seems (Lo
us) quite plausible that the next cntrant should expect that it is likely to
be fought!

To introduce reputation effects into the modecl, suppose that all players’
payofls are private information. With probability p°, the incumbent is
“tough.” meaning that its payoffs are such that it will fight in every market
along any equilibrium path.* The incumbent is “weak ™ (i.e., has the payoffs
described above) with probability 1 — p°. And each entrant is “tough™ with
probability ¢°, independent of the others; tough entrants enter regardiess of
how they expect the incumbent to respond.®

3. This was observed by Milgrom and Roberts (1982). One such equilibrium is for the
incumbent to fight all entrants so long as it has never accommodated and to accommodate
entrants if it has accommodated at least once in the past, and for the entrants to stay out if
the incumbent has never accommodated and enter if it ever does accommodate. This profile
15 un equilibrium il a(l — ¢°) — ¢° > (1 — §)/6.

4. To construct such payofls, it suffices that the tough type’s payofl be equal to — 1 times Lhe
number of times it {uils to fight (or, more generally. the number of times it fails to follow the
prescribed behavior). Alternatively, one can suppose that tough incumbents are simply unable
to accommodate. Note also that the incumbent’s type is chosen once and for all at the start
of the game: The incumbent is either tough in all markets or tough in none of them.

5. Qur presentation of the chain-store game is based on the summary by Fudenberg and Kreps
{1987). Kreps and Wilson consider only the casc ¢° = 0; Milgrom and Roberts consider a
richer specification of payoffs.



To solve for the sequential equilibrium of the finite-horizon version of
this game, we will first solve for the sequential equilibrium of the one-period
game, then that of the two-period game, and proceed by induction to solve
for the game with N periods. It is casy to determine the sequential equilib-
rium of a single play of this game: If there is entry, the incumbent accommo-
dates if and only if it is weak, so that 4 weak entrant nets (1 — p®)b — p°
from entry. Thus, a weak entrant enters if p° < b/(b + 1) = p and stays out
if the inequality is reversed. (We ignore the knife-edge case of equality.)

Now imaginc that there are two periods remaining in the game the
incumbent will play two different entrants in succession, in two different
markets. Entrant 2 is faced first, and entrant 1 observes the outcome in
market 2 before making its own entry decision.® The nature of the equi-
librium depends on the prior probabilities and the parameters of the payoff
functions:

(M If1 > ad(l — g% org® > g = (ad — 1)/ad, the maximum long-run bene-
fit of fighting (da(l — q°)) is less than its cost (which is 1), so a weak
incumbent will not fight in market 2. Since the tough incumbent will fight,
a weak entrant 2 enters if p® < p and stays out if p° > p. A weak entrant
| enters if the incumbent accommodates in market 2 and stays out if the
incumbent fights.

(i) If 4" < g, the weak incumbent is willing to fight in market 2 if doing
so deters entry, since accommodating reveals that the incumbent is weak
and causes entry to occur. In this case, if entrant 2 enters, the weak
incumbent must fight with positive probability: It cannot be a sequential
equilibrium for the weak incumbent to accommodate with probability 1 1n
market 2, as then if the incumbent fights the entrants believe he is tough,
and so fighting deters entry ncxt period.

The exact nature of the cquilibrium again depends on the prior p° that
the incumbent is tough.

(iia) If p > p, then, since the tough incumbent always fights, the posterior
probability that the incumbent is tough given that he fights in market 2 1s
at least p°, and so lighting in market 2 deters a weak cntrant in market 1.
Thus, the weak incumbent fights with probability | in market 2, the
weak entrant stays out of market 2, and the weak incumbent’s expected
payoffis [{1 — ¢")a — q°] + &(1 — ¢%)a.

6. Example ¥.1 considered a simplified version of this game in which entrant 2 has already
entered. entrant 1is assumed to always be “weak,” the incumbent’s decision in the final market
as a function of its type has been solved out, and the discount factor é equals 1. There we saw
that if the cost of fighting today exceeds the gain from monopoly tomorrow—that is,
ifa << 1 --then in the unique equilibrium the weak incumbent accommodates, whereas if a > 1
then in the unique equilibrium the weak incumbent fights with positive probability.



(iib) If p” < p, it is not an equilibrium for the weak incumbent to fight
with probubility 1, as then the posterior probability of toughness after
fighting would not deter entry, and the weak incumbent would prefer not to
fight. Nor can it be an equilibrium for the weak incumbent to accommodate
with probability 1, for then fighting would deter entry and the weak
incumbent would prefer to fight. Thus, in equilibrium the weak incumbent
must randomize, which requires that when thc incumbent fights in market
2 the weak entrant 1 randomizes in a way that makes the weak incumbent
indifferent in market 2. This, in turn, requires that the posterior probability
that the incumbent is tough, conditional on fighting, be exactly the critical
level p = b/(b + 1). If we let f§ be the conditional probability that a weak
incumbent fights entry in market 2, and recall that the tough 1ncumbent
fights with probability 1, Bayes’ rule gives

Prob(tough|fight) = p°/[p° + B(1 — p®)],

and for this to equal p, # must equal p°/(1 — p®)b. The total probability
that entry in market 2 is fought is

P’ 1+ (1= p°) [p°A1 — p®)b] = p°(b + L)/,

s0 the weak entrant will stay out of market 2 if p° > [h/(h + 1)]? = pl.
In this case the weak incumbent’s expected average payofT is posmve
whcrcas its payoff was 0 for the same parameters in the onc-entrant game. If
P’ < [hj(b + 1)]%, the weak entrant enters in market 2, and the weak
incumbent’s payoff is 0.

Now we can sce what happens with three periods remaining: If p° >
[h/(b + 1}]% the weak incumbent is certain to fight in market 3, and
the weak entrant stays out. If p® is between [b/(b + 1)]° and [b/(h + 1)]2,
the weak incumbent randomizes and the weak entrant stays out; if p° <
[h/(b + 1)]?, the weak incumbent randomizes and the weak entrant enters.
More generally, for a fixed p® and N entrants, the weak entrant stays out
until the first period k where p® < [b/(b + 1)]*, so that for the first N — k
periods the weak incumbent has expected payofl a(1 — 4% — ¢° per
period.

The main point of the Kreps-Wilson and Milgrom-Roberts papers is that
the size of the prior p° required to deter entry (when g° is sufficiently small)
shrinks as the number of periods grows; indeed, it shrinks geometrically at
the rate b/(b + 1). Thus, even a small amount of incomplete information
can have a very large effect in long games. When § = 1, the unique equi-
librium has the following form:

(a) If ¢° > af(a + 1), then the weak incumbent accommodates at the first
entry, which occurs (at the latest) the first time the entrant is tough.
Hence, as the number of markets N tends to infinity, the incumbent’s
average payoff per period goes to 0.



(b) If g < a/(a + 1), then for every p° there is a number n(p°) so that if
there are more than n(p®) markets remaining, the weak incumbent’s strat-
cgy is to fight with probability 1. Thus, weak entrants stay out when there
arc more than n(p®) markets remaining, and the incumbent’s average payoff
approaches (I — g°)a — g° as N - oc.”

It is easy to explain the role played by the expression a(l — ¢°) — 4% in
thc above. Imagine that the incumbent is given a choice at time 0 of making
an observed and enforceable commitment either to always fight or to
always accommodate. If the incumbent always fights, its expected payofl is
a(l — g% — ¢°, as it must fight the tough entrants to deter the weak ones.
The asymptotic nature of the equilibrium turns cxactly on whether a
commitment to always fight is better than a commitment to always accom-
modate, which yields payoff 0. Thus, one interpretation of the results is that
reputation effects allow the incumbent to credibly make whichever of the
two commitments it prefers.

Note, however, that neither of these commitments need be the one the
incumbent would like most. If a(1 — ¢°) > ¢°, the incumbent is willing to
fight the tough entrants to deter the weak ones, but it would do even better
if it could commit itself to fight with the smallest probability that deters
weak entrants, which is b/(b + 1). This yiclds it an average payofl of
a(l — g°) — ¢°b/(b + 1), which is greater than the payoff a(l — ¢°) — ¢°
from fighting with probability 1. Of course, when the prior distribution
over the incumbent’s types assigns positive probability only to the weak
type and to a type that fights with probability 1, the incumbent cannot
develop a reputation for fighting with a positive probability less than 1, as
the first time that the incumbent accommodates it is revealed to be weak
and its reputation is ruined. The next subsection discusses whether it 1s
rcasonable for the incumbent to be able to maintain a reputation for
playing a mixed strategy, and shows how to change the model to make
mixed-strategy reputations possible.

Although the commitment interpretation of reputation suggests that
reputation effects are a “good thing” for the incumbent, this depends on the
cxact comparison that one has in mind. It is clear that the weak incumbent
cannot lose from the fact that the entrants fear that it might be tough. An
alternative comparison is to hold fixed the prior probabilities at p°® and q"
and to compare the game described above, where each entrant observes
play in all previous markets, with the situation where each stage game is
played in “informational isolation,” meaning that the timing of play and
the payoffs are as above but entrants do not observe play in other markets.

7. Note that we fix p® and take the limit as N = +oc. For fixed N and sufficiently small p°,
the weak incumbent must accommodate in each market in any sequential equilibrium.
Exercise 9.1 asks you to extend this characterization to discount factors less than but close to 1.



Under informational isolation, the weak incumbent has no chance to
build a reputation, and will accommodate in each market. Yet the weak
incumbent’s equilibrium payoff can be higher under informational isola-
tion than in the “informational linkage” case where each entrant observes
all past play. The reason is that informational linkage imposes a cost
that Fudenberg and Kreps (1987) call a loss of “strategic flexability™: Under
informational linkage the weak incumbent loses the ability to deter weak
entrants while accommodating tough ones. Put differently, under linkage
the incumbent must fight the tough entrants to deter the weak ones. When
the cost of doing so is too high, the weak incumbent may choose not to
develop a reputation for toughness (and hence get payofl 0).

Even when the weak incumbent does develop a reputation for toughness
his payofT can be lower under informational linkage than under informa-
tional isolation. In the simple chain-store model, this is the case when
p" > p, so that under informational isolation weak entrants do not enter
and the weak incumbent has payoff a(1 — ¢°) per market. Under informa-
tional linkage, the weak incumbent does worse: His average payoff per
market is max {0,a(l — ¢°) — q°}. Thus, although thc incumbent may
choose to develop a reputation given that markets are informationally
linked. he might have been better off in a regime of informational isolation,
where reputation building is not possible. More generally, informational
linkage has both costs and benefits, and it is not obvious @ priori when the
bencfits outweigh the costs.

9.2.2 Reputation Effects with a Single Long-Run Player: The General Case

If we view reputation effects as a way of supporting the intuition that
the long-run player should be able to commit himself to any strategy he
desires, the chain-store example raises scveral questions: Docs the strong
conclusion derived above depend on the fixed finite horizon, or do reputa-
tion cffects have a similar impact in the infinitcly repeated version of the
game? Can the long-run player maintain a reputation for playing a mixed
strategy when such a reputation would be desirable? How robust are the
strong conclusions in the chain-store game to changes in the prior distribu-
tion to allow more possible types? And how does the commitment result
extend to games with different payoffs and/or different extensive forms?
What if the incumbent’s action is not directly abserved, as in a model of
moral hazard?

To answer the first question—the role of the finite horizon- consider
the infinite-horizon version of the game of the preceding subsection with
o > 1/(1 — g°)(1 + a), so that even if the incumbent is known to be weak
there is still an equilibrium where entry is deterred. If there is a prior
probability p® > 0 that the incumbent is tough, entry deterrence is still an
equilibrium. In this equilibrium, the weak incumbent fights all entrants,
because the first time it fails to do so it is revealed to be weak and then all



subsequent cntrants enter and the weak incumbent accommodates from
then on. However, this is not the only perfect Bayesian equilibrium of
the infinite-horizon model. Here is another one: “The tough incumbent
always fights. The weak incumbent accommodates the first entry, and then
fights all subsequent entry if it has not accommodated two or more times
in the past. Once the incumbent has accommodated twice, 1t accommodates
all subsequent entry. Tough entrants always enter; weak entrants enter if
there has been no previous entry or if the incumbent has already accommo-
dated at least twice; weak entrants stay out otherwise.” In this cquilibrium,
the weak incumbent reveals its type by accommodating in the first period;
the incumbent is willing to do so because subsequent entrants stay out even
after the incumbent’s type is revealed.

These two equilibria (there are many more) show that reputation effects
need not determine a unique equilibrium in an infinite-horizon model. At
the same time, note that if the incumbent is patient it does almost as well
here as in the equilibrium where all entry is deterred, so the second equilib-
rium does not show that reputation effects have no force. Finally, the multi-
plicity of equilibria suggests that it might be more convenient to try to
characterize the set of equilibria without determining all of them explicitly.

This is the approach uscd by Fudenberg and Levine (1989, 1991). They
extend the intuition developed in the chain-store example to general games
where a single long-run player faces a sequence of short-run opponcents. To
gencralize the introduction of a “tough type” in the chain-store game, they
suppose that the short-run players assign positive prior probability to the
long-run player’s being one of several different “commitment types,” each
of which plays a particular fixed stage-game strategy in every period. The
set of commitment types thus corresponds to the set of possibic “rep-
utations” that the long-run player might maintain. Instead of explicitly
determining the set of equilibrium strategies, they obtain upper and lower
bounds on the long-run player’s payoll that hold in any Nash equilibrium
of the game. (The 1991 paper allows the long-run player’s actions to be
imperfectly observed, as in the Cukierman-Meltzer (1986) model of the
reputation of a central bank when the other players observe the realized
inflation rate but not the bank’s action.®)

The upper bound on the long-run player's Nash-equilibrium payoff
converges, as the number of periods grows and the discount factor goes to 1,
to the long-run player’s Stackelberg payoff, which is the most he couid
obtain by publicly committing himscif to any of his stage-game strategies.
If the short-run players’ actions do not influence the information that is
revealed about the long-run player's choice of stage-game strategy (as in a
simultaneous-move game with observed actions), the lower bound on

. Other models of reputation with imperfectly observed actions include those of Bénabou
and Larogque (1989) and Diamond (1989).



payofls converges to the most the long-run player could get by committing
himself to any of the strategies for which the corresponding commitment
type has positive prior probability. If moves in the stage game are not
simultancous, the lower bound must be modificd, as we explain in subsec-
tion 9.2.3.

Consider a single long-run player 1 facing an infinite sequence of short-
run player 2sin a “stage game” where players choose stage-game strategies
a; from finite sets A4,. Subsection 9.2.3 will allow the stage game to be
a general, finite extensive form. This subsection treats the case where the
stage game has simultaneous moves and the players’ actions are revealed
at the end of cach period. Also, for the rest of this section, we con-
sider infinite-horizon models; however, theorem 9.1 extends directly to
the finite-horizon case. The history h* at time ¢ consists of past choices
(di.d3)e—o.. -1 - (Note that we now revert to counting time forward, instead
of the backward counting we used in discussing the finite-horizon chain-
store game. Note also that if the stage game has sequential moves it is not
natural to suppose that the observed outcome at the end of period <
reveals the stage-game strategies a® the players used, as in a scquential-
move game the a® prescribe play at information sets that may not be
reached.) The long-run player’s type, 6 € @, is private information: 0 influ-
ences player I's payoff but has no direct influence on player 2's payoff; # has
prior distribution p, which is common knowledge. Player I's strategy is a
sequence of maps o from the set of possible histories H' and the set of types
@ to the space of mixed stage-game actions .7, a strategy for the period-t
player 21s a5: H — of,.

Since the short-run players are unconcerned about future payoffs, in
any equilibrium each period’s choice of mixed strategy «, will be a best
response to the anticipated marginal distribution over player 1’s actions.
Let r:w/( 33 .7, be the short-run player’s best-response correspondence.

Two subsets of the set @ of player 1's types are of particular interest.
Types 8, € @ are “sanc types” whose preferences correspond to the ex-
pected discounted value of per-period payoffs ¢, (a,, a,. 6,). All sane types
are assumed to usc the same discount factor, 8, and to maximize their
expected present discounted payoffs. (The chain-store papers had a single
“sane type” whose probability was close to 1.) The “commitment types™ are
thase who play the same stage-game strategy in every period; 6(x,) is the
commitment type corresponding to x,. The set of commitment strategies
Cy(p) are those for which the corresponding commitment strategies have
positive prior probability under distribution p. We will present the case
where © and thus C, are finite.

Define the Stackelberg payoff for 0, € ®, to be

g1(0,) = max [ max gl(al,az,ﬂo)}

) 237 r(a))



and lct the Stackelberg stralegy be one that attains this maximum. This is
the highest payoff type f, could obtain if he could commit himself to always
play any of his stage-game actions (including mixed actions). Note that
the Stackelberg strategy need not be pure, as we saw in the chain-store
game.

Note also that, since the long-run player’s opponents are myopic, the
long-run player could not do better than the Stackelberg payoff by commit-
ting himself to a strategy that varies over time with his opponents’ past
actions. If the opponents were themselves long-run players, player 1 might
be able to do better than the Stackelberg payoff by using a strategy that
induces the opponents not to play static best responses to avoid future
punishment, as in the prisoner’s-dilemma example we consider below.
The support of p is allowed to include types who play such history-
dependent strategies.

Given the set of possible (static) “reputations” C,(p), we ask which
reputation from this set type (}, would most prefer, given that the short-run
playcrs may choose the best response that the long-run player likes least.
This results in payoff

g¥ip, )= max [ min gl(al,acz,()(,)].
a e Cy(p) |zzerla,)

The formal model allows for commitment types who play mixed strate-
gies. Is this reasonable? Suppose that the incumbent has fought in 50 of the
100 periods to date where entry has occurred, and moreover that the
distribution of “fight” versus “accommodate” iooks consistent with the
hypothesis of independent 50-50 randomization (i.e., tests based on run
length do not reject independence). How then should the entrants predict
that the incumbent will play? One can argue that at this point the entrants
should assign a probability of about } to the incumbent’s fighting the
next entrant, as opposed 1o their being certain that the incumbent will
accommodate.’

Let N (3, p.8,) and N (8, p, 0,) be the lowest and highest payofls of type tl,
in any Nash equilibrium of the game with discount factor é and prior p.

Theorem 9.1 (Fudenberg and Levine 1991) Suppose that the long-run
player’s choice of a, is revealed at the end of each period. Then for all 8, with
p(0,) > 0, and all 2 > 0, there is a § < 1 such that, for all 6 € (d, 1),

9. For those who are uncomfortable with the idea of types who “like™ to play mixed strategies,
an cquivalent model identifies a countable set of types with each mixed strategy of the
incumbent. Thus, one Lype always plays fight, the next accommodates in the first period and
fights in all others, another fights at cvery other opportunity, and so on—onec type for every
sequence of fight and accommodate. Thus, every type plays a deterministic strategy, and by
suitably choosing the relative probabilities of the types the aggregate distribution induced by
all of the types will be the same as that of the given mixed strategy.



(1 = Ag¥(p.0s) + 4 min g, (2,, 25, 6) < N(3, p,0p) (9.1a)

and

N{o.p.Oy) < (1 — 2)g1(0) + 2 max g, (2,.2,.8,). (9.1b)

Remarks

- The theorem says that if type 6, is patient he can obtain about his
commitment payolff relative to the prior distribution, and that regardiess
of the prior probability distribution a patient type cannot obtain much
more than his Stackelberg payoff. Note that the lower bound depends only
on which feasible reputation type 8, wants to maintain, and is independent
of the other types to which p assigns positive probability and of the relative
likelihood of different types.

+ Of course, the lower bound depends on the set of possible commitment
types: If no commitment types have positive probability, reputation effects
have no force! For a less trivial illustration, consider a modified version
of the chain-store game presented in subscction 9.2.1, where each period’s
entrant, in addition to being tough or weak, is one of three “sizes™ (large,
medium, and small), and the entrant’s size is public information. It is easy to
specify payoffs so that the incumbent’s best pure-strategy commitment is to
fight the small and medium entrants and accommodate the large ones.
The theorem shows that the sane incumbent can achieve the payoff asso-
ciated with this strategy if the entrants assign it positive prior probability.
However, if the entrants assign positive probability to only two types, one
which is “weak” and another which fights all entrants regardless of size,
then the incumbent cannot maintain a reputation for fighting only the small
and medium entrants, for the first time it accommodates a large entrant it
reveals that it is weak.

* For a fixed prior distribution p. the upper and lower bounds can
have different limits as 6 — 1 even if the Stackelberg type belongs to the
prior distribution. Fudenberg and Levine (1991) show that in generic!'®
simultaneous-move games, g¥(p,f,) = ¢5(6,) when the prior assigns a
positive density to every commitment strategy.

* The Stackelberg payoff supposes that the short-run players correctly
forecast the long-run player’s stage-game action. The long-run playecr can
obtain a higher payoff if his opponents mispredict his action. For this
reason, for a fixed discount factor less than 1, some types of the long-run
player can have an equilibrium payoff that strictly exceeds their Stackelberg
level. as the short-run players may play a best response to the equilibrium
actions of other types.

10. Genericity is needed to ensure that. by changing o, a bit, player 1 can always “break tics™
in the right direction in the definition of g¥(p, 0,), so that g*(p.6,) = a3(0).



For example, suppose that in the finite-horizon chain-store game
all - ¢q") < q°/(b + 1),

so that the weak incumbent’s Stackelberg payofl is 0, and suppose that
the prior probability of the “tough” type is greater than b/(b + 1). Then the
equilibrium is for the weak incumbent to always accommodate, and the
weak entrants stay out until they have seen a tough cntrant enter and
the incumbent accommodate. Then the weak incumbent’s equilibrium
normalized payoff 1s

all = d)(1 — ¢%
=81 —¢% ~

For & = 0. the weak incumbent’s payoff is a(] — ¢°®) (which is higher than
the Stackelberg payoff for any value of ¢°): If the first entrant is weak it
stays out, and if the first entrant is tough it enters and the incumbent
accommodates. However, as 6 — | the weak incumbent’s payoll converges
to its Stackelberg payoff of 0. Intuitively, the “supernormal” payoffs of the
wcak type are informational rents that come from the short-run players’
not knowing its type. In the long run, the short-run players cannot be
repeatedly “fooled” about the long-run player’s play (unless g° =0, in
which case the long-run player’s weakness is never tested), and the long-run
player will have to bear the cost of fighting to maintain its reputation. This
is why a patient long-run player cannot do better than its Stackelberg
payoff. Reputation effects can serve to make commitments credible, but in
the long run this is all they do.

« Although the theorem is stated for the limit & — 1 in an infinite-horizon
game, the same result covers the limit, as the horizon grows to infinity, of
finite-horizon games with time-average payoffs.

« The key property of short-run players for the proof of theorem 9.1
is that they always play short-run best responses to the anticipated play of
their opponents. Consider a single long-run “big™ player facing a con-
tinuum of long-run “small” opponents in a repeated game. Suppose further
that the various small players are anonymous, and that each player ob-
serves only the play of the big player and the play of subsets of small
players of positive measure (see section 4.7 for a discussion of these assump-
tions). In this case the small players will play myopically, so the situation is
equivalent to the case of short-run players and theorem 9.1 should be
expected to apply. (At this writing no one has worked out a careful version
of the argument, attending to the niceties of a continuum-of-players model.)
It would be interesting to know if this observation extends to a limit result
as the number of players grows. Section 9.4 discusses a game in which the
small players are not anonymous and can try to maintain their own
reputations; here the conclusions are much less sharp.



Sketch of Proof We will give an overview of the general argument and a
detailed sketch for the case of commitment to a pure strategy. Fix a Nash
cquilibrium (4, , 6,) (Recall that o denotes overall strategies.) This generates
a joint probability distribution = over ® and histories A’ for each r. The
short-run players will use 7 to compute their posterior belicfs about 6 at
every history that n assigns positive probability. Now consider a type 0 with
p() > 0, and imagine that player | chooses to play type 8’s equilibrium
strategy, which we denote by ,. This generates a sequence of actions with
positive probability under =.

Since the short-run players are myopic, and best-response correspon-
dences are upper hemi-continuous, Nash equilibrium requires that the
short-run players’ action be close to a best response to g, in any period
where the observed history has positive probability and they expect the
distribution over outcomes to be close to that generated by o,. Because the
short-run players have a finitc number of actions in the stage game, this
conclusion can be sharpencd: If the expected distribution over outcomes is
close to that generated by o,, the short-run players must play a best
response to g

More precisely, for any k' with n(h') > 0,let p(h*) = nlay = &;(-|h")h'].

Claim For any 6, there is a 7 < | such that 83 € r(oi(-|h")) whenever
pth') > p. (Proving this is excrcise 9.2.)

Conversely, in any period in which the short-run players do not play a
best response to &,, when player 1’s aclion is observed there is a non-
negligible probuability that they will be “surprised™ and will increase the
postcrior probability that player 1 is type 6 by a nonnegligible amount.
After sufficiently many of these surprises, the short-run players will attach
a very high probability to player 1's playing ¢, for the remainder of the
game. In fact, one can show that for any ¢ there is a K(¢) such that with
probability I — ¢ the short-run players play best responses to , in all but
K{z) periods, and that this K(¢) holds uniformly over all equilibria, all
discount factors, and all priors p with the same prior probability of 0.

Once onc obtains a K{z) that holds uniformly, one derives the lower
bound on payoffs by considering # to be a commitment type that has
positive prior probability and observing that type 6, gets at lecast the
corresponding commitment payoff whenever the short-run players play
4 best response to 7;. To obtain the upper bound, let § = #,, so that type
fl, plays his own equilibrium strategy. Whenever the short-run players are
approximately correct in their expectations about the marginal distribution
over actions, type 6, cannot obtain much more than his Stackelberg payoff.

In general, the stage-game strategies prescribed by @, may be mixed.
Obtaining the bound K(¢) on the number of “surprises” is particularly
simple when &, prescribes the same pure strategy @, in every period for
every history. Fix an @, such that the corresponding commitment type 8



has positive prior probability, and consider the strategy for player 1 of
always plaving «,. By upper hemi-continuity, there is a ¢ such that, in any
period where the player 2s do not play a best response to @, p(h') < p.
We show that when player | plays @, in every period there can be at most
In(p(0))/In(47) periods where this inequality obtains. To see this, note that
p(h'y = ulilh'), because 0 always plays a,. Along any history with positive
probability, Baves’ rule implies that

01h'*Y) = p(0](h'.a* T : 9.2
plt [ R0) = pl0[(h'.a')) i@ h) (9.2)
Then, since player 2's play is independent of f, and the choices of the
two plavers at time ¢ arc independent conditional on k',

mla'|h') = n(ai | h'}y n(as | h')

and
m(a' | 0. h"y = n(a! |0, h") - n(al | h').

If we now consider histories where a| = a, for all 1,
mlay|0.h") = 1,

and equation 9.2 simplifies to

w(f | h)

(i h*"y = i
uoH= miay [h')

(9.3)

Consequently u(f/|h"™") is nondecreasing, and increases by at least 1/p
whenever a best response to @, is not played, as then n(a}ih’) < p. Thus,
there can be at most In{p(#))/In(p) periods where n{a}|h’} < p, and the
lower bound on pavoffs follows. (The additional complication posed by
types €/ that play mixed strategies 1s that u(#1h') need not evolve determi-
nistically when player | uses type f's strategy.) [

Notc that the proof docs not assert that u(f|h') converges to | when
player 1 uses type 0's strategy. This stronger assertion is not truc. For
example, in a pooling equilibrium where all types play the same strategy,
ui0|h'y is equal to the prior probability in every period. Rather, the proof
shows that if player 1 always plays like type 8, eventually the short-run
players become convinced that he will play like ¢ in the future.

9.2.3 Extensive-Form Stage Games'"’

Theorem 9.1 assumes that the long-run player’s choice of stage-game
strategy is revealed at the end of each period, as in a simultaneous-move
game. The following example shows that the long-run player may do much
lcss well than is predicted by theorem 9.1 if moves in the stage game are
sequential. This may secem surprising, because the chain-store game con-



(0,0)

(1,1 (2,-1)

Figure 9.1

sidered by Kreps and Wilson (1982) and Milgrom and Roberts (1982) has
sequential moves. Indeed, it has the same game tree as our cxample, but
with different payoffs.

In figure 9.1, player 2 begins by choosing whether or not to purchase a
good from player 1. If he does not buy, both players receive 0. If he buys,
player 1 must decide whether to produce low or high quality. High quality
gives each player a payoff of 1; low quality gives player 1 a payoff of
2and gives - 1 to player 2. If player 2 does not buy, player s (contingent)
choice of quality is not revealed.

If player 1 could commit to high quality, all player 2s would purchase.
Thus, if theorem 9.1 extended to this game it would say that if there is
positive probability p* that player 1 is a type who always produces high
quality, then the Nash-equilibrium payoffs of a sane type 8, of player 1
{whose payoffs are as in figure 9.1) are bounded below by an amount that
converges to 1 as the discount factor § goes to 1.'!

This extension is false, as the following infinite-horizon cxample shows.
Tuke p(t,) = 0.99 and p* = 0.01, and consider the following strategies: The
high-quality type always produces high quality. The “sane” type, 6,, pro-
duces low quality if no more than one short-run player has ever made a
purchase. Beginning with the second time a short-run player buys, type &,
produces high quality, and it continues o do so as long as its own past
actions conform to this rule. If type 6, deviates and produces low quality
more than once, it produces low quality forever afterward. The short-run
players do not buy unless a previous short-run player has already bought,
in which case they buy so long as all short-run purchasers but the first have
received high quality. These strategies give type 6, a payoff of 0; exercise
9.3 asks you to verify not only that these strategies are a Nash equilibrium
but also that they can be combined with consistent beliefs to form a
sequential equilibrium. '

I'l. The Stackelberg stralegy here is not “always H” but “H with probability 3.”

12. These strategies are not a sequential equilibrium if the horizon is finite. They thus do not
form a counterexample to the sequential-equilibrium version of theorem 9.1 for finite-horizon
games. (Theorem 9.1 is stated for an infinite horizon, but it holds equally well for large, finite
honizons as long as d is close to 1.) Kim {1990) has shown that, when this game is played with



The reason that reputation effects fail in this example is that when the
short-run players do not buy, player 1 does not have an opportunity to
signal his type. This problem did not arise in the chain-store game, for
there the onc action the entrant could take that “hid” the incumbent’s
action  to stay out—was precisely the action the incumbent wished to be
played. One response to the problem posed by the example is to assume
that some consumers always purchase, so that there are no probability-0
information sets.

A second response is to weaken the theorem. Let the stage game be a
finite extensive form of perfect recall without moves by naturc. As in the
example, the play of the stage game nced not reveal player 1’s choice of
stage-game strategy a, (since the stage game nced not be a simultaneous-
move game, ¢, may be a contingent plan rather than an action). However,
when both players use pure strategies the information revealed about
player 1's play is deterministic. Let 0{a,, a,} be the subset of 4, correspond-
ing to strategies a} of player { such that (a},a,) leads to the same terminal
node as (a,,a,). We will say that these strategies are observationally equiv-
alent. For each a, let wia,) satisfy

wia,} = {a,| for some x| with support in O(a,,a,), a; € r(27)}. (9.4)

In words, w(a,) is the set of pure-strategy best responses for player 2 to
beliefs about player I's strategy that are consistent with the true strategy
being a, and with the information revealed when player 2’s response is
played. Then, if & is near 1, player 1's equilibrium payoff should not be
much less than

g¥(0y) = max min g,(a,,a;,0y). (9.5)
a, azewla)

This is verified in Fudenberg and Levine 1989.

This result, though not as strong as the assertion in theorem 9.1 that player
I can pick out his preferred payoff in the graph of r, does suffice to prove
that player | can develop a reputation for “toughness™ in the sequential-
move version of the chain-store game described in subsection 9.2.1, even if
¢° = 0 so that there arc no “tough” entrants. In this game, r(fight) =
‘stayout! and r(accommodate) = {enter}. Also, O(fight,stayout) =
({accommodate, stay out) = {accommodate, fight},  whereas  O(fight,
enter) = {fight} and O(accommodate, enter) = {accommodate}. First, we
argue that w(fight) = r(fight). To see this, observe that w(fight} 1s at least
as large as r(fight) = {stay out}. Moreover, “enter” is not a best response to
“fight,” and “accommodate™ is not observationally equivalent to “fight”

a long but finite horizon, there is a unique sequential equilibrium, in which the firm does
maintain a repulation for high quality. Kim is currently working on the question of the best
lower bound for sequential-equilibrium payoffs in finite repetitions ol general stage games
with reputation effects.




when player 2 plays “enter.” Consequently, no strategy placing positive
weight on “enter” is in w(fight). Since player 1's Stackelberg action with ob-
servable strategies is fight, and w(fight) = r(fight), the generalized Stackel-
berg payolf and the usual one coincide in this game.

9.3 Games with Many Long-Run Players'

9.3.1

General Stage Games and General Reputations

Section 9.2 showed how reputation effects can allow a single, “long-run,”
or patient player to commit himself to his preferred strategy. Of course,
there arc also incentives to maintain reputations when all players are
equally patient. but here it is difficult to draw general conclusions about
how reputation effects influence play.

Kreps et al. (1982) analyze reputation effects in the finitely repeated
prisoner’s dilemma. They consider a game in which cach player, if “sane,”
has payofls corresponding to the expected average value of the per-period
payofls shown in figure 9.2. If both types are sane with probability 1, then
the unique Nash cquilibrium of the game is for both players to defect in
every period, but intuition and cxperimental cvidence suggest that cven
with a fixed finite horizon players may tend to cooperate. To cxplain this
intuition, Kreps et al. introduced incompicte information about player
s type. with player | either “sane” or a type who plays the strategy
“tit for tat,” which is “I play today whichever action you played yesterday.”
They showed that, for any fixed prior probability ¢ that player 1 1s “tit for
tat.” there is a number K independent of the horizon length T such that,
in any scquential equilibrium, both players must cooperate in almost all
periods before date T — K, so that if T is sufficiently large the equilibrium
payoffs will be close to those if the playcrs always cooperated. The point is
that a sanc player 1 has an incentive to maintain a reputation for being
“tit for tat,” because if player 2 were convinced that player 1 plays “tit for
tat” player 2 would cooperate until the last period of the game.

Just as in the chain-store game, adding a small amount of the right sort
of incomplete information vields the “intuitive” outcome as the essentially
unique prediction of the model with a long finite horizon. However, in
contrast with games having a single long-run player, the resulting equi-

Cooperate Defect
SRR
Cooperate 2.2 L -1,3
Detect 3,-1 0,0

Figure 9.2



librium is very sensitive to the exact nature of the incomplete information
specificd (Fudenberg and Maskin 1986).

Fix a two-player stage game g. and let V* be the sct of fcasible, individu-
ally rational payoffs. Now consider repeated play of ¢ with a fixed finite
horizon T. Call player i “sane” if his payoff is the expected value of the sum
of y,. (Without loss of generality, we take = 1 instead of “é close to 17
because we consider a large but finite horizon.)

Theorem 9.2 (Fudenberg and Maskin 1986) For any » = (v,.t;)e V*
and any ¢ > 0, there exists a T such that, for all T > T. there exists a
T-period game such that cach player i has probability 1 — & of being sane,
independent of the other, and there cxists a sequential equilibrium of the
game where player i's expected average payoff if sane is within ¢ of v;.

Remark This theorem asserts the existence of a game and of an equi-
librium; it does not say that all cquilibria of the game have payoffs close
to r. Note also that no restrictions are placed on the form of the payofts
that players have when they are not sane, ie., on the support of the
distribution of types: No possible types are excluded, and there is no
requirement that certain types have positive prior probability. However,
the theorem can be strengthened to assert the cxistence of a game with a
strict equilibrium (subscction 1.2.1) where the sanc types’ payofls are close
Lo v; and a strict cquilibrium of a game remains strict when additional types
are added whose prior probability is sufficiently small. (Chapter 11 dis-
cusses this kind of robustness question.)

Partial Proof We will prove only the weaker theorem that any payolls
that Pareto dominate those of a static equilibrium can be approximated.
Lct ¢ be a static-equilibrium profile with payoffs y = (y,.,), and Ict v be
a payolff vector that Pareto dominates y. To avoid a discussion of public
randomizations, assume that payoffs v can be attained with a pure-action
profile g, Le., gla) = v.

Now consider a T-period game in which each player i has two possible
types, “sane” and “crazy,” and crazy types have payoffs that make the
following strategy weakly dominant: “Play a; as long as no deviations from
a have occurred in the past; otherwise play e;.”

Let ¢, = max, g;(a) be player i’s highest feasible stage-game payofl, and
let ¢, = min, g,(a) be player i's lowest feasible stage-game payoff. Set

(1 — g — e,
I > max (g, | : £)4, byl). (9.6)
' e{v; — yi)

t

Consider the cxtensive-form game corresponding to T = T. This game
has at least one sequential equilibrium for any specification of beliefs; pick
one and call it the “endgame equilibrium.”



Now consider T > T. It will be convenient to number periods back-
wards, with period T the first one played and period 1 the last. Consider
strategies that specify that profile a is played for all t > T and that if a
deviation does occur at some t > T (i.e., “beforc T7) then e is played for the
rest of the game, whereas if a is played in every period until T play follows
the endgame equilibrium corresponding to prior beliefs. Let the beliefs
prescribe that if any player deviates before T that player is believed to be
sanc with probability 1, and that if there are no such deviations before T
then the beliefs are the same as the prior until Tis reached.

We claim that these stratcgies form a scquential equilibrium. First, the
beliefs are clearly consistent in the Kreps-Wilson scnse.’® They are se-
quentially rational by construction in the endgamc equilibrium, and are
also sequentially rational in all periods following a deviation before T,
where both types of both players play the static-equilibrium strategies.

It remains only to check that the strategies are sequentially rational
along the path of play before T. Pick a period t > T in which there have
been no deviations to date. If player i plays anything but a;, he reccives at
most g, today and at most y, thereafter, for a continuation payoff of

gi + (1= Ny, (9.7}

If instead he follows the (not necessarily optimal) strategy of playing «,
cach period until his opponent deviates and playing ¢, thereafter, his
expected payoff will be at least

ctey + (U —e)[g; + (1 = Dy,], (9.8)

as this strategy yields rv; if his opponent is crazy and at least g; + (1 — 1)y,
if his opponent is sane. The definition of T has been chosen so that quantity
9.8 exceeds quantity 9.7 for t > T, which shows that player i’s best response
to player j's strategy must involve playing g; until T (A best response exists
by standard arguments.) The key in the construction is that when players
respond to deviations as we have specified, any deviation before 7T gives
only a one-period gain (relative to y,), whereas playing a; until T gives
probability e of a gain (v; — y;) that grows linearly in the time remaining,
and risks only a one-period loss. This is why even a very small ¢ makes a
difference when the horizon is sufficiently long.1* .

9-3.2  Common-Interest Games and Bounded-Recall Reputations' "’

Aumann and Sorin (1989) consider reputation effects in the repeated play of
two-player stage games of “common interests,” which they define as stage

13. This 1s a two-types-per-player game ofincomplete information. From chapter 8. we know
that beliels that are updated from one period to the next using Bayes™ rule such that the
updating about a player's type does not depend on the other plaver’s action are consistent.
14. Note once again that as & tends to 0 the T of the theorem tends to o, and that for a fixed
horizon 7" a suffictently small & has no effect.
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games in which there is a payoff vector that strongly Parcto dominates all
other fcasible payoffs. In these games the Pareto-dominant payoff vector
corresponds to a static Nash equilibrium; however, there can be other
cquilibria, as in the game illustrated in figure 9.3. This is the game we used
in chapter | to show that even a unique Pareto-optimal payoff need not
be the inevitable result of preplay negotiation: Player 1 should play D if he
belicves the probability that player 2 will play R is more than §. Also, player
| would like player 2 to play L regardless of how player 1 intends to play.
Thus, when the players meet, each will try 1o convince the other that he
will play his first strategy, but these statements need not be compelling.

Aumann and Sorin show that when the possible reputations (i.e., crazy
types) are all “pure strategies with bounded recall” (to be defined shortly)
then reputation cffects pick out the Pareto-dominant outcome so long as
only pure-strategy equilibria are considered. A pure strategy for player i has
recall k if it depends only on the last k choices of his opponent, that is, if
all histories where i’s opponent has played the same actions in the last k
periods induce the same action by player i. (Note that when player i plays
a pure strategy and does not contemplate deviations, conditioning on his
own past moves is redundant.) When k is large this condition may seem
innocuous, but it does rule out “grim” or “unrelenting” strategies that
prescribe, e.g., reversion to the worst static Nash equilibrium for player iif
player i ever deviates.

Aumann and Sorin consider perturbed games with independent types,
where cach player’s type is private information, cach player's payoff func-
tion depends only on his own type, and types are independently distributed.
The prior p, about player i’s type i1s that player i 1s either the “sane” type 6,,
with the same payoffs as in the original game, or a type that plays a pure
strategy with recall less than some bound /. Morcover, p; 1s required to
assign positive probability to the types corresponding to each pure strategy
of recall . These types play the same action in every period regardless
of the history, just like the commitment types of Fudenberg and Levine.
Such priors correspond to “admissible perturbations of recall /" or
*/-perturbations™ for short. Say that a sequence p™ of /-perturbations
supports a game G if p™ (65) — 1 for all players i as m — co and if the
conditional distribution p™(8'|0° # 0;) is constant.



Theorem 9.3 (Aumann and Sorin 1989) Let the Stage game ¢ be a game
of common interests, and let z be its unique Pareto-optimal payoff vector.
Fix a recall length 7, and let p™ be a sequence of /-perturbations that
support the associated discounted repeated game G(J). Then the set of
pure-strategy Nash cquilibria of the games G(d, p™) is not cmpty, and the
purc-strategy equilibrium payoffs converge to z for any sequence (3, m)
converging to (1, ).

Idea of Proof We give a partial intuition for the convergence of equilib-
rium payoffs for the case in which & goes to 1 much faster than m goes to
7. (the theorem holds uniformly over sequences (8, m)). Suppose more
strongly that the game is symmetric and that a symmetric pure-strategy
equilibrium exists. Fix ¢ > 0 and suppose further that, even when the
probability of a sanc type is very close to 1, a sane type's payoff is less than
(z &) where z is now the symmetric Pareto-optimal payofl. Since the
cquilibrium is pure, then, conditional on both types being sane, therec must
be some period in which the players fail to play the symmetric action a(z)
with payoff =. Then if player 1, say, adopts the strategy of always playing
the action u(z) corresponding to z, he will reveal that he is not sane. Suppose
a pure-strategy equilibrium cxists, and supposc its payoff is less than z.
Consider the strategy for player 1 of always playing the action a,(z) corre-
sponding (o =. Since the equilibrium is pure, this strategy is certain to
eventually reveal that player 1 is not of type §,. The commitment type 0,(2)
corresponding to a,(z) has positive probability by assumption, so if # = 0
player 2 will infer that player 1 is 8,(z) and will play a,(z) from then on
(because crazy types play constant strategies when # = 0). However. player
| could be some other type with memory longer than 0, and to learn player
I's type will require player 2 to “experiment” to see how player 1 responds
to different actions. Such experiments could be very costly if they provoked
an unrelenting punishment by player 1: however, since player I's crazy
types all have recall at most /, player 2's potential loss (in normalized
payoff} from experimentation goes to 0 as & goes to 1. Thus. if § is
sufficiently large we expect player 2 to eventually learn that playver 1 has
adopted the strategy “always play a,(z).” and so when & is close to | player
| can obtain approximately z by always playing a,(z).

Remark Aumann and Sorin give counterexamples to show that the as-
sumptions of bounded recall and full support on recall O are necessary,
and 10 also show that there can be mixed-strategy equilibria whose payoffs
are bounded away from z. They interpret the necessity of the bounded recall
assumption with the remark that “in a culture in which irrational people
have long memories, rational people are less likely to cooperate.” Note that
the theorem concerns the case where 6 is large in comparison with the
recall length 7, though one might expect that a more patient player would



tend to have a longer memory. This is important for the proof: It is not
clear that if 7/ grew with 6 player 2 would try to learn player 1's strategy.

9.4 A Single “Big” Player against Many Simultaneous Long-Lived Opponents'""

Section 9.2 showed how reputation effects ailow a single long-lived player
to commit himself when facing a scquence of short-run opponents. An
obvious question is whether a similar result obtains for a single “big” player
who faces 4 large number of small but long-lived opponents. For exampie,
one might ask if a large “government” or “employer” could maintain its
desired reputation against small agents whose lifetimes are of the same
order as the large player’s. We will give an informal sketch of some of the
issues involved based on the formal trcatment of Fudenberg and Kreps
(1987), who consider a special case where the large player plays each of the
small ones in separate versions of the two-sided concession game studicd by
Kreps and Wilson (1982), which is essentially a continuous-time version of
the chain-store game presented above.!®

In the concession game, time is counted backward as in section 9.2. Thus,
if t € [0, 1], time O is the final date. At each instant t, both players decide
whether to “fight” or to “concede.” The “tough” types always fight; the
“weak” ones find fighting costly but are willing to fight to induce their
opponent to concede in the future. More specifically, both weak types have
acost of 1 per unit time of fighting. If the entrant concedes first at ¢, the weak
incumbent receives a flow of a per unit time until the end of the game, so
the weak incumbent’s payoff is at — (1 — ) and the weak cntrant’s payoff
is —(1 — t}). If the weak incumbent concedes first at ¢, the weak incumbent’s
payoff is —(1 — ¢) and the weak entrant’s payoff 1s br — (1 — 1), where
his the entrant’s flow payoff once the incumbent concedes. Thus, each weak
player would like its opponent to concede. and each weak player will
concede if 1t thinks 1ts opponent is likely to fight until the end. The unique
equilibrium involves the weak type of one player conceding with positive
probability at date 0 (so the corresponding distribution of stopping times
has an “atom™ at Q); if there is no concession at date 0, both players
concede according to smooth density functions thereafter.

Now suppose that a “large” incumbent is simultaneously involved in N
such concession games against N different opponents, each of which plays
only against the incumbent. The incumbent’s type is perfectly correlated
across games, in that the incumbent is tough in all the games with prior
probability p® and weak in all of them with complementary probability
1 — p”. Each entrant is tough with probability ¢, independent of the

15. The concession game is also a variant of the incomplete-information war of attrition.
studied in chapter 6.



others. Since the entrants are long-run, each has its own reputation to
worry about.

The nature of the equilibrium depends on whether an entrant is allowed
to reenter its market and resume fighting after it has dropped out. In
the “captured contests” version of the game, if an entrant has ever conceded,
it must concede from then on; the “reentry” version allows the entrant
to revert to lighting after it has conceded. Note that when there is only one
entrant, the “captured contests™ and “reentry” versions have the same
sequential cquilibrium, as once the entrant chooses to concede it receives
no subsequent information about the incumbent’s type and thus will choose
to concede from then on.'®

One might guess that if there are cnough entrants, the large incumbent
can deter entry in either version of the game. This turns out not to be the
case. Specifically, under captured contests, when each entrant has the same
prior probability of being tough, no matter how many entrants the in-
cumbent faces, equilibrium play in each market is exactly as if the in-
cumbent played against only that entrant. To see why, suppose that there
arc N entrants, and that N — k of them have conceded at time t, so that
there are k entrants still fighting. If the equilibrium is symmetric (one can
show that it must be), the incumbent then has the same posterior beliefs
q' about the type of each active entrant. Further, if the incumbent is
randomizing at datc ¢, it must be indifferent between conceding now (in
which case it reccives a continuation payoff of 0 in the remaining markets)
and fighting on for a small interval df and then conceding. The key is that,
whatever happens in the active markets, the captured markets remain
captured, so the incumbent does not consider them in making its current
plans. If we denote the probability that each entrant concedes between
tand t — dt by ¢', we have

0= —k+ k(1 — g*)c"ar. (9.9)

Note that the number of active entrants, k, factors out of this equation, so
that it is the same equation we have for the one-entrant case. This is why
adding more cntrants has no effect on equilibrium play.

In contrast, when reentry is allowed and there are many entrants, reputa-
tion effects can be shown to enable the incumbent to obtain approximately
its commitment payoff. We say “can,” rather than “will,” because here the
equilibrium is not unique; in one of the cquilibria the incumbent can
commit itself, but in another it cannot. The multiplicity comes from the fact

16. 1f there are several entrants and the incumbent plays them in succession, so that r € [0, 1]
is against the first entrant, ¢ € [1, 2} against the second, and so on, the first entrant might regret
having conceded if it sees the incumbent concede to a subsequent entrant, but at that point
the first entrant’s contest is over, and once again the captured contests and reentry versions
have the same equilibrium.



Exercises

that in subgames where the weak incumbent has conceded and is thus
revealed to be weak, the symmetric-information wars of attrition between
the weak incumbent and the weak entrants who have previously conceded
have multiple equilibria.

Fudenberg and Kreps focus on the equilibrium where, once the in-
cumbent has conceded in any market, it concedes in all markets and all
entrants who had previously conceded reenter. (This is the unique scquen-
tial equilibrium in the finite-horizon, discrete-time version of the game.) In
this casc, when the incumbent has captured a number of markets it has a
great deal to lose by conceding. Here the incumbent’s myopic incentive is
(o concede to entrants who have fought a long time and thus are likely to
be tough, but the incumbent lacks the flexibility to concede to these active
entrants without also conceding to the entrants who have already been
revealed to be weak, and this lack of flexibility enables the incumbent to
commilt itself to tough play.

In contrast, if we specify that even if it is revealcd to be weak the
incumbent keeps control of any market in which an entrant has conceded,
then, as in the case of captured contests, play in each market is cxactly as
if there were only one entrant, so that facing more entrants does not make
the incumbent tougher. The reason is that since the incumbent keeps the
flexibility to concede to the active entrants while threatening to fight the
inactive ones, the presence of more entrants does not “stiffen the incum-
bent’s backbone.”

The moral of these observations is that the workings of reputation
cffects with one big player facing many small long-run opponents can
depend on aspects of the game’s structure that would be irrelevant if the
small opponents were played sequentially. Thus, in applications of game
theory one should be wary of blanket assertions that reputation effects will
allow a large player to make its commitments credible.

An open question in this field is what happens when the incumbent’s type
nced not be the same in each contest, so that the incumbent can be tough in
some contests and weak in others.

Exercise 9.1* Characterize the equilibria of the chain-storc game of sub-
section 9.2.1 in the limit N - ¢ for discount factors 6 closc to 1.

Exercise 9.2** Prove the claim in the proof of theorem 9.1.

Exercise 9.3** In subsection 9.2.3, check that the strategies yielding no
purchase in the repeated quality game of figure 9.1 form a scquential
equilibrium.
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Exercise 9.4* Consider the chain-store game as described in subsection
9.2.1. Suppose that there is a single potential entrant, two markets (4 and
B), and two periods. The entrant can enter each market at most once and
can enter at most one market per period, but he can choose which market
to enter first. The incumbent is either tough in both markets or weak in
both; the entrant is weak with probability 1. The tough incumbent always
fights. Payoffs for the weak players in market 4 are as in subsection
9.2.1: The incumbent gets a if no entry, 0 if accommodate, — 1 if fight; the
entrant gets b if accommodate, 0 if no entry, —1 if fight. In market B,
which is “big,” all these payoffs are multiplied by 2. Which market should
the entrant enter first? (Hint: Why might entering both markets at once, if
fcasible, be better than sequential entry?)

Exercise 9.5* Consider the following model of international debt repay-
ment: A bank (representing the coalition of creditors) faces two countries
scquentially. At date ¢ € {1,2}, country ¢ decides whether to pay its debt,
D', or to threaten default. If it threatens default, the bank can either lend (or
reschedule the debt) or not lend; the latter results in default. The stage game
is illustrated in figure 9.4, where the first payoff is the bank’s and the
second 1s the country’s. (See Armendariz de Aghion 1990 for more motiva-
tion.) Assume | > x > 0, x > f3, and k > 0. The bank can be “soft” (have
payofls as in figure 9.4) or “tough” (never lend, because of pessimism about
future repayment, or becausc of costly acquisition of cash reserves). Only
the bank knows whether it is soft or tough. Assume that the bank’s discount
factor is equal to 1, and that (1 — p)(1 — a)D* — pk > Ofort = 1,2, where
p is the prior probability that the bank is tough.

Solve for the equilibrium of this two-period game. If the bank had the
choice between facing the low-debt country or the high-debt country first,
which one would it choose? (Compare your answer to that of exercise 94)

Exercise 9.6**  Consider the following two-period repeated game between
asupervisor and an agent. In period ¢ = 1,2, the agent has type ' = 1 with
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probability x,and 0 = O with probability 1 — a. §"islearned by the agent at
the beginning of the period, and 0 and 02 are independent. At cost j > 0
(for “jamming”), the agent can prevent the supervisor from observing 6. If
the agent does not jam, the supervisor observes 8 and chooses whether or
not to report the agent’s type to the manager. If the supervisor reports the
agent’s type, the manager adjusts the agent’s contract to cxtract his rent,
and the agent then gets payoff 0. If the supervisor does not report, the
agent receives rent 0°. (Think of 0 as the agent’s productivity.) The super-
visor 1s sane (has payoffs as indicated in figure 9.5) with probability r,
and “pro-agent” (never reports) with probability | — r. Assume that r > j,
so that the agent jams when he is of type 1 in the one-period version of the
game. The discount factor is equal to 1.

(a) Assume that w' > aw?. Show that the agent “experiments” (i.e., does
not jam) in period 1 when 8! = 1t if and only if r < j 4+ a(1 — r)j. Interprct
this condition.

(b) Assume that 0 < w' < aw®. Show that the agent experiments in
period 1 if and only if 1 - j < (1 - r)/{l j), and that the sane super-
visor builds a reputation for trust with positive probability.

(Aghion and Caillaud (1988) develop a richer model of reputation and draw
some inferences for organizational design.)

Fxercise 9.7**  This exercise (which concerns commitment in monetary
policy} considers a central bank which chooses the level of the money
supply as in the discussion of “time consistency” in chapter 3. The new
wrinkles here are that the bank’s preferences are private information and
that the link between the money supply and inflation is stochastic. Specifi-
cally, supposc that the central bank’s payoff in each period is 6N — n%/2,
where N s the level of employment, = is the rate of inflation, and 6 is a taste
parameter.

The payoff functions of the “public” generate a link between employment
and inflation given by a “Phillips curve,”

N = xr — n*),

where 7 1s the rate of inflation the public expects to occur. Thus, the



Phillips curve corresponds to the short-run reaction correspondcence of the
unmodelied economic agents.

The realized level of inflation depends on the central bank’s action ¢ and
a random disturbance ¢:

n=a-+e¢,

where £ has a normal distribution with mean 0 and variance Uy

(a) Show that if the game is played only once and 6 is public information,
the unique equilibrium is @ = xf). What is the central bank’s equilibrium
payoff?

(b) What is the Stackelberg action for the bank? What is the Stackelberg
payoff? _

(¢} Still in the one-shot game, suppose that 4 is private information for
the bank, and that the prior distribution on 6 is normal with mean 8 and
variance vg. Show that the bank’s equilibrium payoff as a function of € is

[0°2% — ©,]/2 — 2208.

Why do types with 6 > 0 prefer  to be very negative?

(d) Now consider a two-period version of this gamc, with prior beliefs as
In question c. At the end of the first period, the public observes the
realized inflation 7' but not the bank’s action a!. Suppose the bank maxi-
mizes the discounted sum of its per-period payoffs with discount factor
d. Look for an equilibrium where the bank’s first-period action a is a linear
function of #: a' = K0. Show that K is defined implicitly by

=21 = 0Kug/(K?vy + 1) ].

Hint: If the bank uscs a linear first-period strategy, the public’s second-
period beliefs about ¢ have a normal distribution, with a variance in-
dependent of first-period inflation ! and a mean equal to

0 + [K*ry /(K20 + v,)](K6 - 7')/K.

How does K depend on é, ¢, and v,? Explain. Is any type's equilibrium
payoll above its Stackelberg level? Why?

(¢) Suppose that the game is repeated infinitely often with discount factor
ncar 1, and that  has a finite support including 8 = 0. Suppose that type
0 always sets @ = 0. Characterizc each type’s cquilibrium payoff. (This
exercise is based on Cukierman and Meltzer 1986. See Cukierman 1990 for
more on central banks’ reputations.)
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10.1 Introduction’’

A bargaining situation involves players who must reach an agreement in
order to realize gains [rom trade. The standard example is the problem of
sharing a pie. No player can have any pie until they all agree about the
shares each will receive. Negotiating about the shares is costly, and the pie
may decay or disappear if the negotiations go on for very long.

At least since Edgeworth (1881} bargaining has been perceived as an
important question in economics and political science. The first efforts to
predict bargaining outcomes used the framework of “cooperative games.”
In this framework, axioms are developed on the result of the bargaining
process, and in particular on how the result should vary with changes in
the set of feasible utilities; these axioms are typically defended on normative
grounds as well as positive ones. Cooperative game theory’s use of axioms
on outcomes distinguishes it from the noncooperative approach developed
in this book, where outcomes depend explicitly on behavior and behavior
1s assumed to correspond to equilibrium play in exogenously determined
games.

Nash (1950, 1953) used both the cooperative or axiomatic approach and
the noncooperative one in his work on bargaining; he first characterized the
unique outcome satisfying a set of axioms, and then proposed a non-
cooperative game whose equilibrium was precisely this outcome.! How-
ever, Nash’s noncooperative model assumed that players had only one
chance to reach an agreement, and that if they failed to do so they were
unablc to continue negotiating (see exercise 1.6). This game seemed too
simple to capture the richness of bargaining, and (perhaps as a result) the
noncooperative approach to bargaining received little attention until the
1970s.

The model of Stdhl (1972) and Rubinstein (1982), described in chapter 4,
was the first bargaining model to reflect the fact that bargaining is a
typically dynamic process involving offers and counteroffers. Stahl and
Rubinstein considered bargaining under complete information and found
that sequential bargaining yiclds a unique, Pareto-efficient outcome in
which the bargainers reach an efficient agreement without haggling. Stahl
and Rubinstein also gave some useful intuitions about what determines
bargaining power; for instance, players who are more patient do better.

It is worth explaining the importance of the uniqueness and efficiency
results. First, the interest of the uniqueness result derives in part from its
contradicting the conventional wisdom that bargaining outcomes are arbi-
trary and that an outside observer is unable to predict which point of the

I. Actually, he considered a sequence of games whose equilibrium outcomes converged to this
point in the limit.



Parceto frontier (if any) will prevail. Second, the Coase (1960) theorem makes
efficiency a central issue. This theorem asserts that the distribution of
ownership in an economy has no relevance for efficiency as long as the
“transaction costs” are negligible, in the sense that bargaining results in
cfficient outcomes. Although neither cfficiency nor equilibrium uniqueness
obtains in all sequential-bargaining games with complete information (see
for instance exercises 4.3 and 4.9), Stdhl and Rubinstein defined a class of
games for which these obtain.

Since the early 1980s, a number of authors have developed models of
sequential bargaining with incomplete information. It was clear from the
start that the introduction of incomplete information would tend to in-’
troduce inefficiencies. As is noted in chapter 7, the simplest example of a
bargaining process is monopoly pricing, in which a seller makes a “take it
or leave it” offer to a buyer (or several buyers) who then decides whether to
purchase the good. If the seiler does not know the buyer's valuation for the
good, suboptimal trade results. Because the seller charges a price above
the marginal cost, trade does not take place when the buyer's valuation
cxceeds the marginal cost but is lower than the monopoly price, even
though such trade would be efficient. Similar inefficiencies seem likely in
more complex bargaining games where the buyer may have an incentive
to reject a price that is below his valuation in the hope of obtaining a better
price later on. Indeed, Myerson and Satterthwaite (1983) (discussed in
subscction 7.4.4) give general sufficient conditions for all equilibria of a
bargaining game to be inefficient when ncither player knows the valuation
of the other.? When bargaining can be inefficient, the choice of economic
institutions—that is, the rules of the game -can influence the efficiency of
the outcome. For instance, labor disputes may be explained as resulting
from incomplete information about the firm’s profitability, and arbitration
clauses and labor law can influence the likelihood of strikes and lockouts.3
Similarly, the distribution of ownership, by determining residual rights of
control and therefore the status quo allocation in bargaining, has an effect
on the efficiency of bargaining between two units.

Though we favor the noncooperative approach over the axiomatic ap-
proach, we should point out that the noncooperative approach has so
far been unsuccessful in “solving the bargaining problem.” There are two
unresolved difficulties. The first is that, in both complete-information and
incomplete-information models, the equilibrium outcomes are Very sensi-
tive to the choice of the extensive form. Even with complete information,
any split of the pie can be obtained by changing the extensive form for

2. When only the buyer's valuation is private information, the game in which the buyer makes a
“take it or leave it” offer to the seller leads to efficient trade.

3. Fudenberg, Levine, and Ruud (1985), Kennan and Wilson {1989, 1990), and Cramton and
Tracy (1990 offer cmpirical analyses of strikes based on models of bargaining with incomplete
mnformition.



bargaining. This is worrisome because we, as outside observers of a bar-
gaining process, usually have little information about which extensive form
is being played, and furthermore the extensive form is likely to vary from
one situation to the next. Of course, in any application of game theory the
conclusions can vary with the extensive form chosen, but the issue seems
more serious here than in other contexts, in which we may be able to limit
attention to a smaller set of extensive forms.

The sccond difTiculty with the noncooperative approach to bargaining is
more specilic to incomplete information. It was soon realized (Fudenberg
and Tirole 1983: Cramton 1984; Rubinstein 1985) that games in which a
bargainer with private information can propose agreements can have a
great many perfect Bayesian equilibria. (This will not surprise the rcader
of the section on signaling games in chapter 8.) Thus, bargaining theory
scems unlikely to offer unique predictions even if one knows the extensive
form. Several authors have tried to select particular equilibria either on a
priori grounds or by using stronger equilibrium refinements. (Chapter 11
discusses some, but far from all, of the refinements that have been used.)
The theory of bargaining under incomplete information is currently more
a series of examples than a coherent sct of results. This is unfortunate be-
cause bargaining derives much of its interest from incomplete information.

Though many incomplete-information bargaining models do have many
cquilibria, strong results can be obtained in the special class of “one-sided-
offer” bargaining games (section 10.2). A scller, who has one unit of a good
and whose cost is common knowledge, makes scquential offers to a buyer,
who has private information about his willingness to pay for the unit.
Bargaining stops after the buyer has accepted an offer. With the buyer’s
strategy space restricted to “yes” and “no” at each stage, the issuc of
updating of beliefs about the buyer’s valuation off the equilibrium path
does not arise. Because this model avoids the multiplicity of equilibria
associated with updating of beliefs, and because it illustrates most of the
insights that have been obtained in bargaining theory, we devote a dispro-
portionate amount of attention to it, but this extensive form is very special.

This “single-sale™ model assumes that the seller sells the good once and
for all to the buyer. (This does not mean that the good is consumed
instantancously by the buyer.) Section 10.3 takes up the case of repeated
bargaining for a perishable good which the buyer must purchase anew cach
period. One interpretation of this model is that the perishable good is the
current period’s flow of service from a durable asset that belongs to the
seller, so that each period’s bargaining is over the current rental price.

Section 10.4 returns to the single-sale model and takes up the case of
more complex bargaining processes, such as alternating-offer bargaining.
It illustrates the difficulty in making predictions when an informed player
makes offers. 1t also draws the link between static mechanism design
(studied in chapter 7) and sequential bargaining. In particular, it discusses



which incentive-compatible and individually rational outcomes can arise
as some equilibrium of some sequential-bargaining game.

10.2 Intertemporal Price Discrimination: The Single-Sale Model''

10.2.1 The Framework

A seller and a buyer bargain over the trade of one unit of a good. The
seller has known production (or opportunity) cost ¢ incurred when transfer
takes place. The buyer has valuation v for the good. In the single-sale model,
¢ and ¢ are stock variables; in particular, if the good is durable, v is the
present discounted value of the buyer’s per-period benefit from the date of
purchase. '

The seller makes offers at dates t = 0,1,..., T, where T < +. In each
period, the buyer says yes or no. In the single-sale model, an offer at date
1 is a purchase price m‘. A strategy for the seller is thus a sequence of prices
m' that are charged at date ¢ conditional on the rejection of all previous
offers. A strategy for the buyer is a choice of “accept™ or “reject” 1n each
period, and is conditional on the sequence of past and current offers.
If 5 €(0,1) denotes the (common) discount factor, the payoffs are u, =
o'fm" - ¢) for the seller and u, = (v — m') for the buyer if agreement is
reached at date ¢ at price m".

Two formulations of the asymmetry of information have been considered
in the literature:

[n the two-type case, v takes value ¢ with probability p and value v with
probability p (such that 7 + p = 1), where t > v > .

In the fon't“fnuum-qf—types case, v takes a value in some interval [ v,v]with
cumulative distribution function P(-} and continuous density p(-) > 0 for
all v, and © > ¢. This case is divided into two subcases: the gap case, v > c
(gains from trade bounded away from 0), and thec no-gap case, v < ¢ (there
may not cxist gains from trade).*

With any specification of the distribution of types, the model can be
interpreted either as having a single buyer whose type is unknown (the
“bargaining model”) or as having a continuum of infinitesimal consumers,
with the distribution of their willingness to pay given by P(+)(the “durablec-
good monopoly™). In the latter case, we suppose that the seller cannot tell
the consumers apart, and that the seller observes only the measures of the
sets who accept and reject.

In keeping with our focus on bargaining, we will assume in most of the
chapter that there is a single buyer. However, because of the importance of

4. The assumption of a posilive continuous densily at © = ¢ is important. For instance, if there
ts no ¢ in [¢ — £,¢ + €], the no-gap case is equivalent to the gap case, becausc the seller never
sells to u buyer with valuation under ¢.



the durable-good interpretation, we show how to switch from one inter-
pretation to the other in our discussion of the example in subsection 10.2.3.

Whether the gap case or the no-gap case i1s more descriptive may depend
on the context under consideration. Neither case is completely satisfactory,
as both ignore the possibility that one party or the other may break off
negotiations to bargain with a third party (in the single-buyer interpreta-
non} and the possibility that there may be a steady influx of new potential
buyers {in the continuum-of-buyers interpretation). We say more about
these extensions, and about the relative merits of the gap and no-gap
assumptions, in subsection 10.2.7.

From now on, we will simplify notation by assuming ¢ = 0.

Our focus 1s on whether the equilibria display various properties implic-
itly and;or explicitly discussed in Coase’s (1972) analysis of pricing by a
durable-good monopolist.

The first set of propertics relates to the dynamics of equilibrium behavior.

Coasian Dynamics

Skimming Property In a perfect Bayesian equilibrium, higher-valuation
types of buyer buy earlier because they are more impatient to consume. (As
we will see later, this property is a straightforward consequence of the
sorting condition defined in chapter 7.)

Monotonicity of Prices  The equilibrium path exhibits a weakly decreas-
ing scquence of prices until one price 1s accepted. (As we will see, this
property requires a stationarity assumption on strategies in the no-gap
case).”

The second set of properties concerns the limit of the equilibrium out-
comes as the time period between offers shrinks to 0, so that the per-period
discount factor o tends to 1. These properties were conjectured by Coase
(1972).

Coase Conjecture
When offers take place very quickly (3 — 1),

Zero Profit - The seller’s profit tends to () and

Efficiency All potential gains from trade arc realized almost instanta-
ncously.

To study the Coase conjecture, we let r denote the rate of interest per
unit of time and A be the length of time between offers. Hence, § = ¢ "2,

5. It may be useful here to distinguish between “offers™ and “serious offers™ (which are prices
offered and accepted with positive probability). It can be seen that in any pure-strategy PBE
the equilibrium sequence of serious offers is strictly decreasing even if t < ¢ and no stationarity
assumption is made (a buyer who rejects offer m* at date + and accepts m*'* > m" at date
t + 1. where t > 0, would be better ofT accepling m'). The stationarity assumption implies that
sales have a positive probability in every period (sec note 19).



The focus of the Coase-conjecturc analysis is thus the equilibrium behavior
as A converges to Q.

We start with a two-period example that illustrates Coasian dynamics
and an infinite-horizon example that satisfies the Coase conjecture. These
cxamples may be skipped by a reader who has some familiarity with the
topic. We then tackle the Coase conjecture in the two-type case, and more
generally the gap case. We do the same in the no-gap casc, and we conclude
the section with some extensions of the sale model.

10.2.2 A Two-Period Introduction to Coasian Dynamics

Let T = 1, and let v = v with probability p and v with probability p. Let
m" denote a first-period price, let 7(m®) denote the posterior beliefs that
v = conditional on the rejection of offer m® in period 0, and define
m®y =1 — g(m°).

Because period 1 is the last period, the seller with beliefs i that ¢ = 7
makes a “take it or leave it” offer m* so as to maximize that period’s profil.
‘The buyer will accept if and only if his valuation is at least m*.® It is clear
that the optimal offer is either T or v. By charging m' = v, the seller sells
for sure and obtains v; by charging m' = 7, the seller sells with probability
# and has second-period profit 4iv. Therefore, the seller’s optimal strategy
atdater = 1is

vifiu < a
m' = < ovifg >«
any randomization between vand v if 7 = o,

where x = p/i. We can rewrite this optimal strategy by introducing the
probability x that the seller charges v in the second period:

ifjt < x
X 0ifg>a
e[0,1]ifig = a

Nole that type » never obtains a surplus in the second period and, therefore,
will behave myopically in the first period. Type v obtains a surplus only if
the selier is sufficiently convinced that the type 1s v. Consider now the
buyer's behavior at 1 = 0 when offered price m® € [ 1, 7] (it is straightfor-
ward to check that prices outside this interval are irrelevant). Price m® = ¢
Is accepled by both types, as they will not face a more favorable price at

6. Fach type is actually indifferent between accepting and rejecting a price m' that cxactly
cquals the type's valuation. However, if the supremum of the seller's payofl is attained in the
limit of prices m' = v — |¢] as ¢ — 0, then exisience of an equilibrium given the seller’s belicfs
requires that type ¢ accept m! = v, and whether the other type accepts a price equal to its
valuation is irrelevant.



t = 1.7 Now consider m® > p. The low-valuation type rejects this offer
because buying would give him a negative surplus. The interesting part is
type v's behavior.

Suppose, first, that rejection of m® generates “optimistic beliefs,” meaning
1(m”) > « Then the seller charges m' = v, and type v has no second-period
surplus. Therefore, type v is better off accepting m®. And since m° is rejected
by type . Bayes' rule yields u(m°) = 0, a contradiction.

Suppose. second, that rejection of m® generates “pessimistic beliefs™
uim®) < 2. The seller then charges m' = v at date 1. Therefore, type ©
should accept m" only if

r—m" > — v)
or
m’ <&=(1-9)r + ou

Ifm® > ©, rejecting m® is optimal for type @ (as it is for type v), and therefore
Bayes’ rule yields ji(m®) = p (the posterior beliefs coincide with the prior
beliefs).

We are thus led to consider two cases:

p <a Inthiscase, forany m® > v, g(m®) < p < «, and therefore the seller
always charges m' = v at date 1. Type © accepts m® if and only if m® < &.
The seller’s optimal first-period strategy is either to charge m® = pand have
payoff U, = v or to charge m® =& and have payoff U, = pi + dpr. If
v > pr + dpr, no “price discrimination” occurs and agreement is reached
instantaneously. On the other hand, v < p& + dpu is ruled out by p < a,
since

pit + dpv = pv + &(v — pv) < v.

p >a Then, when m® € (8,77, in equilibrium type ¢ cannot reject m® with
probability 1, because in that case we would have i(m°®) = p > x and the
seller charging m' = , so type ¢ would be better off accepting m®. But we
already saw that type v cannot accept such an m® with probability 1 either.
Hence, in equilibrium type v must randomize and the posterior probability
must satisfy i1(m°) = a«. Let y(m®) denote the probability that type v accepts

m?; u(m°) = a is equivalent to
p(l — y(m°)) _
p(l — y(m®) + p

£

which defines a unique y(m°) = y in [0, 1]. Note that y(m°) is independent
of m, a fact we will comment on later.

7. As in note 6, type b is actually indifferent between accepting and rejecting m® = p, but our
assumption involves no loss of generality.



Furthermore, in order for type 7 to be indifferent between accepting and
rejecting m, it must be the case that v — m® = 8x{m°)(v — v), which defines
a unique probability x(m°) for m® e (3, ].

Thus, when p > «, the seller’s optimal price in the first period is one of
the following:

m” = v, which generates payoff U, = v,

O

m" = T, which gencrates payoff U, = pi + dpu,

m" = v, which generates payoff U, = pyv + 8(p(1 — y) + pv,
where the third payoff is computed using the fact that, for posterior beliefs
x.m' = vis an optimal price in period 1 for the seller. Any of these payoffs
can be highest, depending on the parameters. Note that if the third payoff
is highest, the seller never sells to the low-valuation type (as x(v) = 0).

We thus conclude that for generic values of the parameters there exists
a unique perfect Bayesian equilibrium, and that this equilibrium exhibits
Coasian dynamics—that is, z(m°) < p for all m° so the seller becomes
morc pessimistic over time, and m' < m", so the seller’s pricc decreases over
time.

Fudenberg and Tirole (1983) characterize the set of equilibria of two-
period bargaining games when the seller and the buyer each have two
potential types (two-sided incomplete information), when the seller makes
the two offers, and when the players alternate making offers. As is men-
tioned above, the fact that a player’s offer can then signal his private
information leads to a continuum of perfect Bayesian equilibria, as in the
similar examples of chapter 8.

In contrast, when an uninformed seller makes offers to an informed
buyer, the buyer has comparatively little scope to signal his type (he can
do so only through his acceptance decision), and thus the leeway in specify-
ing the beliefs after a probability-0 action has much less impact on the set
of equilibria.

The two-period model raises the question of why the parties stop bar-
gaining at the end of the sccond period if both offers have been rejected.
The existence of unrealized gains from trade suggests that the parties would
be better off if they continued to bargain. Thus, it would seem that a
natural model of bargaining should have an infinite horizon uniess one of
the parties must quit for some reason. In practice, however, the players are
likely to stop bargaining after some time even if they have not exhausted
the gains from trade. [t may be that they face a deadline for agreement
(imposed by production constraints, for instance). Alternatively, the good
may become obsolete at date 2 because of the introduction of a superior
product at that date. The two-period model developed above applies
dircctly to these two exogenous-horizon stituations, with the minor modifi-
cation that if the good becomes obsolete the buyer’s willingness to pay is



lower in period 1 than in period 0, as the good is enjoyed only for one
period instead of two. (This modification introduces a quantitative differ-
ence, but not a qualitative one.)

A more complex explanation for a finite horizon is that the players have
a fixed bargaining cost per period or have outside opportunities, so that
they may decide to stop bargaining or to bargain with someone else if they
become sufficiently pessimistic about the gains from trade with their
current partner. The bargaining horizon is then endogenously finite.
The endogenous-horizon model is more complex than the model with an
exogenously finite horizon. In particular, the endogenous-horizon model
tends to have multiple equilibria, whereas equilibrium is unique in the
exogenous-horizon model. To sce this, note that if the seller expects the
buyer to concede (buy) quickly, he becomes very pessimistic, so that if sev-
cral offers are rejected he will break negotiation with the buyer and exercise
his outside opportunity {(which might be to scll to an alternative buyer).
Also. if the seller is “switch-happy,” the buver is in a weak position and con-
cedes quickly. Thus, fast coneessions and fast switching are sclf-fulfilling: so
are slow concessions and slow switching, which is why there are multiple
cquilibria (Fudenberg, Levine, and Tirole 1987).

10.2.3  An Infinite-Horizon Example of the Coase Conjecture

In this subsection we adopt the interpretation that a single seller faces a
continuum of infinitesimal buyers. As is mentioned above, under this
interpretation we suppose that the seller cannot distinguish between the
buyers, and only observes thec mcasurcs of the sets who accept and reject.
We also explain how to interpret the model as having a single buyer.

Sobel and Takahashi (1983) study the following “linear demand curve”
model.® The seller and the buyers are infinitely-lived, and the bargaining
process has T = + ». The buyers™ valuations are uniformly distributed
on [0.17]. (Sobel and Takahashi consider the more general distribution
Pr)y = (r'r)’, where f§ > Q: the uniform distribution is f = 1)

We look for an equilibrium with the following properties:

(i I price m" is offered at date ¢, types v = w(m'} = ~m', where 4 > 1, buy
(il they have not purchased before) and types v < wim') do not.

(1) I at some date ¢ types greater than x have purchased before and types
less than x have not (so that the seller’s posterior beliefs are represented by
the truncated uniform distribution on [0, x]), the seller charges m'(x) = 7.
where 0 < < L

As mentioned above, the skimming property, which is proved in lemma
10.1 below. ensures that the buyers always use a cutoff rule of the form
“accept the current offer if and only if the valuation exceeds some (possibly
history-dependent) number.” Hence, the rcal force of condition 1 is to

8. For carly work on the Coase conjecture. see Bulow 1982 and Stokey 1981,



require that the cutoff valuation be stationary (it depends only on the
current price and not on previous price offers) and linear (4 is independent
of m‘). Condition ii requires that the scller’s strategy also be stationary and
lincar. Note that because all players use a stationary strategy, each player
loses nothing by using a stationary strategy himself.”

Let U(kx) denote the scller’s present discounted value of profits when the
posterior beliefs are uniform on [0, ]. From dynamic programming, UJ")
must satisfy

=

Udw) = max {(k — im)m + U (Am)}. (10.1)
With a continuum of buyers, the term (x — Am) in cquation 10.1 is inter-
preted as the fraction of the population that will accept offer m < w//, and
U4m}is the continuation present discounted value of profits. With a single
buyer, equation 10.1 still holds as long as U,(x) is interpreted as the product
of the probability x that the buyer has type below k and the continuation
cxpected present discounted value of profits. The term (x — Am) in equation
10.1 is the probability that offer m is accepted by the buyer. Equations 10.5
and 10.6 are also valid in the single-buyer case.

If U, is assumed to be differentiable, the maximization with respect to m
yiclds

K — 2im + 0AU(Am) = 0. (10.2)
On the other hand, the envelope theorem can be applied to equation 10.1;

Ulr) = m(k) = yx. (10.3)
Substituting equation 10.3 into cquation 10.2 and eliminating x yields

| — 24y + 8i%?2 =0, (10.4)

We now look at the buyer’s optimization. For type Am to be indifferent
between accepting m and waiting one period and buying at price 7Am, it
must be the case that

Mo —m = 6(im - yim), (10.5)
or

i 1= SA(1 — )00 (10.6)

9. Condition i1 is used only for convenience, as it is implied by condition i. To see this, note
that, given condition i, an optimal policy for the seller is to use a stationary and linear strategy,
as we show below. Furthermore, the valuation function U (- }is the quadratic function derived
below {applying Blackwell's theorem—see, ¢.g., Stokey and Lucas 1989—to equation 10.1
shows (hat this valuation function is unique). The maximization in cquation 10.1 then
yiclds a unique optimal price, which therefore is a stationary and linear function of the cutoff
type.

1. We can now check the second-order condition in the maximization in equation 10.1:

2/ + 84% < 0. which is implied by equation 10.6.



Equations 10.4 and 10.6 yield

_J1=6-(1-9)

5

’

This perfect Bayesian equilibrium exhibits Coasian dynamics. Further-
more, it satisfies the Coase conjecture. When offers take place very quickly,
- tends to 0. Hence, even the first offer m°, which is the highest offer,
converges to (), and so does the seller’s expected profit Uy(1). To see that all
potential gains from trade are realized almost instantaneously, consider a
valuation r. By purchasing at or after real time v > 0, this type has a utility
of at most ¢ ""v, where r is the rate of interest. By buying in the first period,
he gets v — mY(d), where m“(8) = 7(8) — 0. Hence, for any given 7, any type
v buys before real time 7 if d 1s sufficiently close to 1.

ttt

10.2.4 The Skimming Property

We now return to the single-buyer intcrpretation, and give a characteriza-
tion of equilibrium.

The following lemma'! considerably simplifies the study of buyer
behavior:

Lemma 10.1 (skimming or cutoff-rule property) Suppose that the buyer
accepts price m' at date t when he has valuation v. Then he accepts price
m' with probability 1 when he has valuation »" > v.

Proof Let h' = (m",...,m" ') denote the history at date ¢ (where the fact
that the buyer has rejected all offers is implicit). Type ¢ accepts m’ only if

t—m > (SUh(lT,(ht, m!))

Qr
-t
r—m' > E Z [5'(8 . mz+:(hr+r))lr+r(hz+r’ ’,nt+r, li}l(h‘,m']],
t=1

where Uy(v,(h',m")) is the continuation valuation of type v and where
I'f(h' 5, m**7, v) is an indicator function indicating whether type ¢ buys
(I = l)ornot (I = 0)at price m' "*(h***) at date t + 1. The random variables
m T ht ) and FR(RPTS, m T, v) are determined by the history (h', m') at the
end of the period if m' is rejected and by the subsequent equilibrium strat-
cgics. Because the expected discounted volume of trade is always less than |
and becausc type v’ can mimic type s bargaining strategy (and conversely),

I1. Fudenberg et al. 1985,



Un(t/ ARk, mY)) — Uy (e, (W, m")| < |v — v
Therefore, for v’ > v,
v m' dU(v, (h',m"))
> (" —v) — U, (W, m")) — Uylo, (', m))) > 0. m

L.emma 10.1 shows that because higher-valuation types are more cager
to buy, they buy earlier. In particular, if v is drawn from a continuous
distribution, the buyer’s behavior is fully described by the cutoff rule (- ):
At date ¢, the buyer buys if v > x(h', m") and does not buy il v < k(k', m").
(‘The type v = w(h',m"} has probability 0, and the resolution of his in-
difference is irrelevant. Of course, with atoms in the distribution of types,
as i the example of subsection 10.2.2, the cutoff rule still halds but the
mixing behavior of the cutoff type becomes important.)

10.2.5  The Gap Case’™’

We now make the following assumptions on the distribution of types:

(G) v>0

(R} Either P{r) > 0 or P admits a strictly positive and continuous
density at o
Condition G asserts that there is a gap between the lowest valuation and
the seller’s cost. The regularity condition R allows cither an atom or a
strictly positive density at the lowest valuation.

Under assumption G, the Coase conjecture takes the following form:
When o — 1,

(c) the seller’s profit tends to v and

(d) all gains from trade are realized almost instantaneously.

Next, we introduce a condition on the buyer’s equilibrium strategy. This
condition 1s satisfied by any cquilibrium in the gap case; it will be imposed
as an assumption in the no-gap case.

(S) The buyer's strategy satisfies property S if k(h', m’) = x(h'.m') when
m' is lower than any price offered in histories k' and k'. That is, if the price
is lower than in the past, the buyer’s behavior is independcent of previous
prices.

Property S, which can be called “stationarity” or “the strong cutoff rule
property,” has a Markov flavor.!?

‘Theorem 10.1 (Fudenberg, Levine, and Tirole 1985; Gul, Sonnenschein, and
Wilson 1986) Suppose that the distribution of the buyer’s type satisfies

12 In contrast with the Markov concept (sec chapter 13 for the definition of Markov perfect
equilibrium in games of complete information; sec Maskin and Tirole 1989 for a definition
of Markov perfect Bayesian equilibrium), property S cannot be required in states that are not
reached in equilibrium.



conditions G and R. Then

(i) 4 perfect Bayesian equilibrium exists and is generically unique,

(ii) the equilibrium satisfics the Coase conjecture as & — 1,

(i11) the equilibrium satisfies condition S, and

(iv) when v — 0, the equilibrium converges to a perfect Bayesian equi-
librium of the no-gap case (that satisfies the Coase conjecture).!?

Instead of proving this theorem, we give the flavor of the argument by
analyzing the two-type case.'* Suppose that v = ¥ with probability p, and
r with probability p. Let 7' denote the date-t postcrior probability of v,
conditional on the history k' of rejected prices. The first step in the proof
is to show that the seller necver makes an offer less than v. Let m denote the
infimum of equilibrium offers made by the seiler for any period and history,
and suppose that m < v.'® Then we claim that m or any offer close to it is
accepted with probability 1 by both types. as the most favorable offer made
by the seller in the future is at best m (i.c., v — m > (v — m) for all v). Hence,
the seller can raisc his price by a discrete amount above m and still have
his offer accepted with probability 1, which means that prices arbitrarily
close to m cannot be optimal after all. So m > v. This implies that type
v accepts all prices below v.so that for any history k'’ the seller can guarantee
himsclf present payoff v by offering .

With these preliminary observations in hand, we turn to the heart of the
proof, which uses an “upward induction on beliefs™:

« If ' < a = v/v, the seller’s maximum profit from date t on is his “monop-
oly profit” v. To see this, note that if the seller could commit himself to a
single price, he would either choose v and get v or choose v and get 1’7,
and because j1't < v, the optimal “commitment price” is p. We saw in
section 7.3 that commitment to a single price is an optimal mechanism for
the seller; in particular, it weakly dominates the direct-revelation mecha-
nism associated with the perfect Bayesian equilibrium of the bargaining
game. Hence, v is an upper bound on the selier’s profit from ¢ on, and,
furthermore, the seller can guarantee himself this upper bound by charging
r.

« Suppose now that ;" > . Will the seller make an offer m' > v? If this
offer results in posterior belief 7'*'(h',m'} < o (which implies that it is

t3. Fudenberg et al. (1985) prove theorem 10.1 under assumption G and the following stronger
assumption (R} The distribution of types is smooth and has a density that is bounded and
bounded away from zero (0 < p;. < p(6) < Puac for alte € { v, 7]). Gulet al. (1986, theorem 1)
generalize parts i -iii of their result by showing that a slightly weaker version of assumption
R suffices; they also show that the seller docs not randomize on the equilibnum path
{although he does randomize off the path). Ausubel and Deneckere (1989a, Lheorem 4.2) obtain
iv without assumptions on the distribution of types.

14. Hart 1989 provides more details of the two-type case.

15. That m is not — - results from the fact that the buyer could guarantee himsell a surplus
cluse to + « when such offers are made. Because aggre