Practical Acceptance-Rejection algorithm

Jean-Michel Marin

We are interested in the random variable X defined on \mathbb{R} with density p such that

```
p(x) \propto \tilde{p}(x)\tilde{p}(x) = \left[0.7 \exp(-x^2/2) + 0.3 \exp(-x^2/2 + 7(x - 7/2))\right].
```

Let $c = \int_{\mathbb{R}} \tilde{f}(x) dx$ and then

$$p(x) = \frac{\tilde{p}(x)}{c} \,.$$

We want to generate a sample from f by acceptance-rejection using the instrumental distribution q. We have

$$\frac{\tilde{p}(x)}{q(x)} \le \tilde{k} \,.$$

- 1 Which of the following couple (q, \tilde{k}) are valid?
 - 1. $\mathcal{N}(2.1, 3^2)$ and $\tilde{k} = 11$;
 - 2. St(3) and $\tilde{k} = 300$;
 - 3. Cau(0,1) and $\tilde{k} = 40$.
- 2 Which of the following (q, \tilde{k}) is the most efficient in terms of simulation numbers?
 - 1. $\mathcal{N}(2.1, 3^2)$ and $\tilde{k} = 11$;
 - 2. St(3) and $\tilde{k} = 300$;
 - 3. Cau(0,1) and $\tilde{k} = 40$.

3 We finally choose to use for $q \sim \mathcal{N}(2.1, 3^2)$ and $\tilde{k} = 11$. Using this couple, simulate an 100,000-sample from p. Evaluate the acceptance rate.