Complements on Monte Carlo methods

HAX918X Jean-Michel Marin

Exercise 1 We want to estimate

$$I = \int_0^1 (1+x)^{-1/2} \exp(-x) \mathrm{d}x \,.$$

- **1** Propose two estimators of *I* using different Monte Carlo methods:
 - the first strategy will be based on a uniform distribution and the corresponding estimator will be denoted \hat{I}_N^1 where N is the number of simulations;
 - the second method will be based on an exponential distribution and the associated estimator will be denoted \hat{I}_N^2 with N the number of simulations.
- **2** Compare \hat{I}_N^1 and \hat{I}_N^2 .

3 Give an asymptotic confidence interval of level 95% for the parameter I. Hint: use the central limit theorem associated with I_N^1 .

4 Using the Bienaymé-Chebyshev inequality, determine the number of simulations simulation necessary for the relative absolute error of \hat{I}_N^1 to be less than 1% with a probability greater than or equal to 99%.

Exercise 2 We want to estimate

$$I = \int_2^{+\infty} \exp\left(x - \frac{x^2}{2}\right) \mathrm{d}x \,.$$

- **1** Propose an estimator \hat{I}_1^N of I based on the simulation of N random variables from a $\mathcal{N}(0,1)$.
- **2** Propose an estimator \hat{I}_2^N of I based on the simulation of N random variables from a $\mathcal{N}(1,1)$.
- **3** Compare the variances of \hat{I}_1^N and \hat{I}_2^N .

Exercise 3 We want to estimate

$$I_l = \mathbb{P}_{Exp(1)} \left(X \in [l, l+1] \right)$$

- 1 Propose an estimator \hat{I}_l^1 of I_l based on a Monte-Carlo method using the exponential distribution.
- **2** Propose an estimator \hat{I}_l^2 of I_l based on a Monte-Carlo method using the uniform distribution.
- ${\bf 3} \quad {\rm Compare} \; \hat{I}^1_l \; {\rm and} \; \hat{I}^2_l \; {\rm according \; to \; the \; values \; of \; l}.$

Exercise 4 Let g be a bounded integrable function $(0 \le g \le 1)$ on [0, 1]. We want to estimate

$$m = \int_0^1 g(x) dx \,.$$

Let X and Y be two independent uniformly distributed variables on [0, 1]. Let

$$U = \mathbf{1}_{Y \le g(X)}, \qquad V = g(X) \quad \text{and} \quad W = \frac{g(X) + g(1 - X)}{2}.$$

- 1 Calculate the mean and variance of U, V and W. Compare the variances.
- **2** Suggest three Monte-Carlo methods for estimating m.
- **3** In what follows, assume that g is monotone. Check that $\mathbb{E}(g(X)g(1-X)) \leq m^2$.
- **4** Consider $(X_i)_{i\geq 1}$ a sequence iid of variables with a uniform distribution on [0, 1].

Let
$$A_n = \frac{1}{2n} \sum_{i=1}^{2n} g(X_i)$$
 and $B_n = \frac{1}{2n} \sum_{i=1}^{n} (g(X_i) + g(1 - X_i))$, which is the better estimator of m ?