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Standard Monte Carlo method

General definition use of randomness to solve a problem cen-
tered on a calculation

There is no consensus to give a more precise definition

Methods that have been used for centuries: traces as far away
as in Babylon and the Old Testament!
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Standard Monte Carlo method

[1733, Buffon’s Needle] give an approximate value to π

Throw a l long needle on a floor of parallel slats that create d

widths with l ⩽ d

If the needle is thrown uniformly on the ground (to be specified!),
the probability that it intersects with one of the joins between the

slats is
2l
πd

If you make several independent rolls and you note p the pro-
portion of tests that hit one of the straight lines forming the sep-

arations between the slats, π can be estimated by
2l
pd
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Standard Monte Carlo method

[World War II, Los Alamos: Ulam, Metropolis and von Neu-
mann] preparation of the first atomic bomb

The Monte Carlo appellation is due to Metropolis, inspired by
Ulam’s interest in poker

Work at Los Alamos: directly simulate neutron dispersion and
absorption problems for fissile materials
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Standard Monte Carlo method

Theorem (strong law of large numbers) Let (Xn)n∈N be an
iid sequence of random variables with probability distribution f

If Ef(|Xi|) < ∞
X̄n =

1
n

n∑
i=1

Xi −→ps Ef(X1)
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Standard Monte Carlo method

Theorem (central limit theorem) Let (Xn)n∈N be an iid se-
quence of random variables with probability distribution f

If Ef(|Xi|
2) < ∞

√
n

(
X̄n − Ef(X1)√
Vf(X1)

)
−→L N(0, 1)
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Standard Monte Carlo method

Target

Ef(h(X)) =

∫
h(x)f(x)dµ(x) < ∞

(f is the density of X with respect to µ)

Standard Monte Carlo estimator of Ef(h(X))

1
n

n∑
i=1

h(Xi)

where X1, . . . ,Xn is an iid sample from f
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Standard Monte Carlo method

1
n

n∑
i=1

h(Xi) −→ps Ef(h(X))

Ef⊗n

(
1
n

n∑
i=1

h(Xi)

)
= Ef(h(X))
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Standard Monte Carlo method

Vf⊗n

[
1
n

n∑
i=1

h(Xi)

]
=

1
n
Vf(h(X))

1
n

 1
n− 1

n∑
i=1

h(Xi) −
1
n

n∑
j=1

h(Xj)

2


is an unbiased estimator of Vf(h(X))
/
n
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Standard Monte Carlo method

If Ef(|h(X)|
2) < ∞

√
n
( 1
n

∑n
i=1 h(Xi) − Ef(h(X))

)√
Vf(h(X))

−→L N(0, 1)
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Standard Monte Carlo method

Convergence speed for various quadrature rules and for the
Monte Carlo method in s dimension and using n points

▶ Trapezoidal rule: n−2/s

▶ Simpson rule: n−4/s

▶ Gauss rule with m points: n−(2m−1)/s

▶ Monte-Carlo method: n−1/2
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Importance Sampling methods

Target

Ef(h(X)) =

∫
h(x)f(x)dµ(x) < ∞

We consider the probability density g (with respect to µ) such
that: if g(x) = 0 then f(x)|h(x)| = 0
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Importance Sampling methods

Ef(h(X)) =

∫
h(x)f(x)dµ(x) =∫

h(x)
f(x)

g(x)
g(x)dµ(x) = Eg

[
h(X)

f(X)

g(X)

]

Importance sampling estimator of Ef(h(X))

1
n

n∑
i=1

h(Xi)
f(Xi)

g(Xi)

where X1, . . . ,Xn is an iid sample from g
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Importance Sampling methods

If f|h| is absolutely continuous with respect to g

1
n

n∑
i=1

h(Xi)
f(Xi)

g(Xi)
−→ps Ef(h(X))

is convergent

Eg⊗n

(
1
n

n∑
i=1

h(Xi)
f(Xi)

g(Xi)

)
= Ef(h(X))

is unbiased
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Importance Sampling methods

Vg⊗n

[
1
n

n∑
i=1

h(Xi)
f(Xi)

g(Xi)

]
=

1
n
Vg

[
h(X)

f(X)

g(X)

]
where

Vg

[
h(X)

f(X)

g(X)

]
= Ef

[
h(X)2 f(X)

g(X)

]
− [Ef(h(X))]

2

1
n

 1
n− 1

n∑
i=1

h(Xi)
f(Xi)

g(Xi)
−

1
n

n∑
j=1

h(Xj)
f(Xj)

g(Xj)

2


is an unbiased estimator of Vg

[
h(X)

f(X)
g(X)

] /
n
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Importance Sampling methods

The importance function that minimise Vg

[
h(X)

f(X)

g(X)

]
is

g∗(x) =
f(x)|h(x)|∫

f(x)|h(x)|dµ(x)

f|h| is absolutely continuous with respect to g∗
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Importance Sampling methods

If Eg

[∣∣∣h(X) f(X)
g(X)

∣∣∣2] = Ef

[
|h(X)|2

f(X)
g(X)

]
< ∞

√
n
(

1
n

∑n
i=1 h(Xi)

f(Xi)
g(Xi)

− Ef(h(X))
)

√
Vg

[
h(X)f(X)

/
g(X)

] −→L N(0, 1)

If f(x)/g(x) < M and Vf(h(X)) < ∞
Ef

[
|h(X)|2

f(X)

g(X)

]
< ∞
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Importance Sampling methods

There are many cases where the normalization constant of f is
unknown (Bayesian statistic)

f(x) = f̃(x)

/∫
f̃(x)dµ(x) = f̃(x)/c

Self-normalized importance sampling estimator of Ef(h(X))

n∑
i=1

h(Xi)
f(Xi)

g(Xi)

/ n∑
i=1

f(Xi)

g(Xi)

where X1, . . . ,Xn is an iid sample from g
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Importance Sampling methods

If f is absolutely continuous with respect to g,

n∑
i=1

h(Xi)
f(Xi)

g(Xi)

/ n∑
i=1

f(Xi)

g(Xi)
−→ps Ef(h(X))

is convergent

Eg⊗n

(
n∑

i=1

h(Xi)
f(Xi)

g(Xi)

/ n∑
i=1

f(Xi)

g(Xi)

)
, Ef(h(X))
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Importance Sampling methods

If Ef

[
|h(X)|2

f(X)
g(X)

]
< ∞, Ef

[
f(X)
g(X)

]
< ∞,

√
n

(
n∑

i=1

h(Xi)
f(Xi)

g(Xi)

/ n∑
i=1

f(Xi)

g(Xi)
− Ef(h(X))

)
−→L

N
(

0,Ef

(
[h(X) − Ef(h(X))]

2f(X)
/
g(X)

))
The importance function that minimise
Ef

(
[h(X) − Ef(h(X))]

2f(X)
/
g(X)

)
is

g#(x) =
f(x)|h(x) − Ef(h(X))|∫

f(x)|h(x) − Ef(h(X))|dµ(x)
.
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Reminders and Additions on Markov Chains

Definition
A Markov chain is a random process (Xk)k∈N such that

P(Xk ∈ A|X0 = x0, . . . ,Xk−1 = xk−1) =

P(Xk ∈ A|Xk−1 = xk−1)

The Markov chain is homogenous if P(Xk ∈ A|Xk−1 = x) does
not depend on k

Jean-Michel Marin (IMAG) MC and MCMC HAX918X 22 / 41



Reminders and Additions on Markov Chains

Example: random walk

(Xk)k∈N such that
X0 ∼ ν

and
Xk = Xk−1 + εk, ∀k ∈N∗

where ε1, . . . is a random process with iid variables and proba-
bility distribution L
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Reminders and Additions on Markov Chains

Definition A (transition) kernel on (Ω, A ) is an application P :
(Ω, A ) −→ [0, 1] such that

1) ∀A ∈ A , P(·,A) is measurable
2) ∀x ∈ Ω, P(x, ·) is a probability distribution on (Ω, A )

(Xk)k∈N is an homogenous Markov chain with kernel P if

P(Xk ∈ A|Xk−1 = x) = P(x,A), ∀x ∈ Ω, ∀A ∈ A .
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Reminders and Additions on Markov Chains

For the random walk if L = N(0,σ2), (Xk)k∈N is an homoge-
nous Markov chain with kernel

P(x,A) =

∫
A

1√
2πσ2

exp
(
−

1
2σ2 (y− x)2

)
dy
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Reminders and Additions on Markov Chains

Let (Xk)k∈N be an homogenous Markov chain with kernel P and
initial distribution X0 ∼ ν, we note

▶ Pν the distribution of the chain (Xk)k∈N
▶ νPk the distribution of Xk : ∀A ∈ A ,

νPk(A) = P(Xk ∈ A)

▶ Pk(x,A) = P(Xk ∈ A|X0 = x)
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Reminders and Additions on Markov Chains

Let Π be a probability distribution on (Ω, A )

We can simulate Π in an approximate way using a homogeneous
Markov chain

To do this, one must be able to build a P kernel such that for any
initial ν, νPk −→VT Π

Total variation convergence

||νPk − π||VT = sup
A∈A

|νPk(A) − Π(A)|

Typically
lim

k−→∞νPk(A) = Π(A)
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Reminders and Additions on Markov Chains

Definition
▶ P is Π-irreducible if ∀x ∈ Ω and ∀A ∈ A such that

Π(A) > 0, ∃k(= k(x,A) tel que Pk(x,A) > 0

▶ P is Π-invariant iff ΠP = Π

ΠP(A) =

∫
Π(dx0)P(x0,A) =

∫
A

Π(dx)

▶ P is Π-reversible iff ∀A,B ∈ A ,∫
A

P(x,B)Π(dx) =
∫
B

P(x,A)Π(dx)
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Reminders and Additions on Markov Chains

If P is Π-reversible then P is Π-invariant

Indeed if P is Π-reversible, ∀B ∈ A ,∫
Ω

P(x,B)Π(dx) =
∫
B

P(x,Ω)Π(dx) =

∫
B

Π(dx)
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Reminders and Additions on Markov Chains

Definition

▶ P is periodic with period d ⩾ 2 if there exists a partition
Ω1, . . . ,Ωd de Ω such that ∀x ∈ Ωi, P(x,Ωi+1) = 1, ∀i
with the convention d+ 1 = 1

▶ A chain Π-irreducible and Π-invariant is recurrent
if ∀A ∈ A such that π(A) > 0

1) ∀x ∈ Ω, P(Xk ∈ A infinitely often|X0 = x) > 0
2) ∃x ∈ Ω, P(Xk ∈ A infinitely often|X0 = x) = 1

▶ The chain is Harris-recurrent is 2) is verified for all x ∈ Ω

▶ The chain is ergodic if it is Harris-recurrent and aperiodic
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Convergence of Markov chains

If P is Π-irreducible and Π-invariant then P is recurrent

In that case, the invariant measure is unique (up to a multiplica-
tive constant)

The chain is said to be positive recurrent if the invariant measure
is a probability distribution

Jean-Michel Marin (IMAG) MC and MCMC HAX918X 31 / 41



Convergence of Markov chains

Theorem Suppose that P is Π-irreducible et Π-invariant, then P

is positive recurrent and Π is the unique invariant distribution of
P. If P is Harris-recurrent and aperiodic (ergodic) then

νPk −→VT Π

The Harris-recurrence condition is difficult to obtain

It is satisfied for two main families of simulators: the Gibbs sam-
pler and the Metropolis-Hastings algorithm
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Convergence of Markov chains

Theorem If the Markov chain (Xk)k∈N is ergodic with stationary
distribution Π and if h is a real function such thatEΠ(|h(X)|) < ∞,
then, whatever the initial distribution ν,

1
n

n∑
i=1

h(Xi) −→ps EΠ(h(X))

Convergence speed?
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Convergence of Markov chains

Definition The Markov chain (Xk)k∈N with kernel P is said to be
uniformly ergodic if there is M > 0 and 0 < r < 1 such that

sup
x∈Ω

sup
A∈A

|Pn(x,A) − Π(A)| ⩽ Mrn

Theorem If the Markov chain (Xk)k∈N is uniformly ergodic with
stationary distribution Π and if h such that EΠ(|h(X)|) < ∞ then,
whatever the initial distribution ν, there is σ(h) > 0 such that

√
n

(
1
n

n∑
i=1

h(Xi) − EΠ(h(X))

)
−→L N(0, (σ(h))2)
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The Metropolis-Hastings algorithm

Target distribution

Π(dx) = π(x)µ(dx)

Kernel Q for x such that π(x) > 0

Q(x,dy) = q(x,y)µ(dy)
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The Metropolis-Hastings algorithm

Choose x(0) such that π
(
x(0)

)
> 0 and set t = 1

(∗) Generate x̃ ∼ Q(x(t−1), ·)
If π(x̃) = 0 then set x(t) = x(t−1), t = t+1 and return to (∗)
If π(x̃) > 0 calculate

ρ(x(t−1), x̃) =
π(x̃)

/
q(x(t−1), x̃)

π(x(t−1))
/
q(x̃, x(t−1))

Generate u ∼ U ([0, 1])
If u ⩽ ρ(x(t−1), x̃) then x(t) = x̃ else x(t) = x(t−1)

set t = t+ 1 and return to (∗)
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The Metropolis-Hastings algorithm

Starting from x (π(x) > 0), the acceptance probability of y
(π(y) > 0) is given by

α(x,y) = min

[
1,

π(y)
/
q(x,y)

π(x)
/
q(y, x)

]

Whatever the value of x such as π(x) > 0, the kernel associated
with the Metropolis-Hastings algorithm is given by

K(x,dy) = q(x,y)µ(dy)α(x,y)+
[
1 −

∫
q(x, z)α(x, z)µ(dz)

]
δx(dy)

where δx(·) is the Dirac mass at point x
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The Metropolis-Hastings algorithm

We can easily show that K is Π-reversible

Indeed

Π(dx)K(x,dy) = min [π(y)q(y, x),π(x)q(x,y)]µ(dy)µ(dx)

+

{
π(x)µ(dx) −

∫
min [π(z)q(z, x),π(x)q(x, z)]µ(dz)

}
δx(dy)

and

Π(dy)K(y,dx) = min [π(x)q(x,y),π(y)q(y, x)]µ(dx)µ(dy)

+

{
π(y)µ(dy) −

∫
min [π(x)q(x, z),π(z)q(z, x)]µ(dz)

}
δy(dx)
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The Metropolis-Hastings algorithm

Theorem If the kernel Q is π-irreducible, the Markov chain
generated with the Metropolis-Hastings algorithm is π-irreducible,
π-invariant, Harris-recurrent and aperiodic

Two particular cases

▶ Q is a random walk kernel: q(x,y) = qRW(x− y) and
qRW(x) = qRW(−x)

▶ Q is an independent kernel: q(x,y) = q(y)
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The Gibbs sampler

Goal: generate simulations from multivariate distributions

Let X = (X1,X2, . . . ,Xd) with probability distribution Π

Note Πi the conditional distribution of Xi given
X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xd) = x−i

Πi is called the full conditional distribution of Xi
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The Gibbs sampler

Choose x(0) and set t = 1
(∗) Generate x

(t)
1 ∼ Π1(·|x

(t−1)
2 , . . . , x(t−1)

d )

Generate x
(t)
2 ∼ Π2(·|x

(t)
1 , x(t−1)

3 , . . . , x(t−1)
d )

Generate x
(t)
3 ∼ Π3(·|x

(t)
1 , x(t)2 , x(t−1)

4 . . . , x(t−1)
d )

. . .
Generate x

(t)
d ∼ Πd(·|x

(t)
1 , . . . , x(t)d−1)

Set t = t+ 1 and return to (∗)

Theorem The Markov chain generated using the Gibbs sampler
is Π-irreducible, Π-invariant, Harris-recurrent and aperiodic
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