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Standard Monte Carlo method

General definition use of randomness to solve a problem cen-
tered on a calculation

There is no consensus to give a more precise definition

Methods that have been used for centuries: traces as far away
as in Babylon and the Old Testament!
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Standard Monte Carlo method

[1733, Buffon’s Needle] give an approximate value to 7

Throw a 1 long needle on a floor of parallel slats that create d
widths with 1 < d

If the needle is thrown uniformly on the ground (to be specified!),
the probability that it intersects with one of the joins between the

slats is ﬂ
md

If you make several independent rolls and you note p the pro-

portion of tests that hit one of the straight lines forming the sep-
, . 21

arations between the slats, 7t can be estimated by pd
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Standard Monte Carlo method

[World War I, Los Alamos: Ulam, Metropolis and von Neu-
mann] preparation of the first atomic bomb

The Monte Carlo appellation is due to Metropolis, inspired by
Ulam’s interest in poker

Work at Los Alamos: directly simulate neutron dispersion and
absorption problems for fissile materials
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Standard Monte Carlo method

Theorem (strong law of large numbers) Let (X;,).cn be an
iid sequence of random variables with probability distribution f
If E¢(IXi]) < o0

. 1 &
Xn =2 D Xi —ps E¢(Xq)

i=1
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Standard Monte Carlo method

Theorem (central limit theorem) Let (X, ),cn be an iid se-
quence of random variables with probability distribution f
If E¢(IXil2) < 0o

>-<n _IEf(X1)
vn (W) — 2 N(0,1)

Jean-Michel Marin (IMAG) MC and MCMC HAX918X 7/41



Standard Monte Carlo method

Target
E¢(h(X)) = J h(x)F(x)dp(x) < oo

(f is the density of X with respect to )

Standard Monte Carlo estimator of [E;(h(X))

where X4,..., X, is an iid sample from f
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Standard Monte Carlo method
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Standard Monte Carlo method

2
o nj; (h(Xi) - T_Lj;h(xj))

is an unbiased estimator of V¢(h(X))/n
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Standard Monte Carlo method

If E(R(X)P) < o0

V(LS h(X) — B (h(X)))

N(O, 1
V:(h(X)) e N
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Standard Monte Carlo method

Convergence speed for various quadrature rules and for the
Monte Carlo method in s dimension and using n points

» Trapezoidal rule: n—2/s

» Simpson rule: n—4/s

» Gauss rule with m points: n—(2m=1)/s
» Monte-Carlo method: n—1/2
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Importance Sampling methods

Target
E;(R(X)) = J h()f(x)du(x) < oo

We consider the probability density g (with respect to ) such
that: if g(x) = 0 then f(x)[h(x)| =0
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Importance Sampling methods

E¢(h(X)) = Jh(X)f(X)du(X) —

f
[ na 2 gbiautn) = g oo S

Importance sampling estimator of E;(h(X))

where X4, ..., X, is an iid sample from g
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Importance Sampling methods

If f|h| is absolutely continuous with respect to g

2 XS5 s Er(h(X)

is convergent

is unbiased
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Importance Sampling methods

1 & (X)) | 1 £(X)
Vgen [E;h(xi)g(xi) =V [h(X)m}
where
£(X) 2 f(X) 2
V, [h(x)ﬁ] _E, [h(X) g(—x] B (h(X))]
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Importance Sampling methods

The importance function that minimise V4 [h(X)—

f(x)Ih(x)|
JFE)Ih(x)ldp(x)

g (x) =

flh| is absolutely continuous with respect to g*
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Importance Sampling methods

2
If B “h(X)%‘ ] = Es [Ih(x)|2 %] < 00

Jn (% S (X £ — lEf(h(X))>
V/ Vo [ROOF(X) /g(X)]

— 2 N(0,1)

If f(x)/g(x) < M and V¢ (h(X)) < oo

2 f(X)
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Importance Sampling methods

There are many cases where the normalization constant of f is
unknown (Bayesian statistic)

f(x) = Fx) / J Fx)duix) = flx)/c

Self-normalized importance sampling estimator of [E;(h(X))
- f(Xi)/ = f(Xq)

h(X;
; ( )Q(Xi) ég(xi)

where X4,...,X,, is an iid sample from g
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Importance Sampling methods

If f is absolutely continuous with respect to g,

/ > S5 —ps Ealh(X))
i=1 '

n

L FIX4)
2 )

i=1

is convergent
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Importance Sampling methods

The importance functlon that minimise

Er (Ih(X) — Es(n(X))%F(X) /g(X) ) is

f(x)Ih(x) — E¢(h(X))]
JEIM() —Ee(h(X))dp(x) -

x) =
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Reminders and Additions on Markov Chains

Definition
A Markov chain is a random process (Xy)xen such that

P(Xx € AlXg = X0, -+, Xk—1 =Xk 1) =

P(Xx € AXy—1 =x1—1)

The Markov chain is homogenous if IP(Xy € A[Xx_1 = x) does
not depend on k
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Reminders and Additions on Markov Chains

Example: random walk

(Xk)kG]N such that

Xo ~V
and
X = Xy_1+¢x, VkeN*
where ¢, ... is a random process with iid variables and proba-

bility distribution .
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Reminders and Additions on Markov Chains

Definition A (transition) kernel on (Q, .<7) is an application P :
(Q, &) — [0, 1] such that

1) VA € &, P(-,A) is measurable
2) ¥x € Q, P(x, ) is a probability distribution on (Q, <)

(Xx)ken is an homogenous Markov chain with kernel P if

P(Xx € AXyx_1 =x) =P(x,A), Vxe€Q, VAe.
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Reminders and Additions on Markov Chains

For the random walk if . = N(0, 0®), (Xx)ken IS an homoge-
nous Markov chain with kernel

P(x,A) =J

A V2mo2

1
exp (—F(U —X)z) dy
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Reminders and Additions on Markov Chains

Let (Xk)ken be an homogenous Markov chain with kernel P and
initial distribution Xy ~ v, we note

» P, the distribution of the chain (Xy)xen
» vPX the distribution of Xy : VA € &,

VPY(A) = P(Xy € A)

> P¥(x,A) = P(Xx € AlXg = x)
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Reminders and Additions on Markov Chains

Let TT be a probability distribution on (Q, <)

We can simulate TT in an approximate way using a homogeneous
Markov chain

To do this, one must be able to build a P kernel such that for any
initial v, vPk —vr I

Total variation convergence

[vP* — 7llyt = sup [vP¥(A) —TT(A)|
A€o

Typically
lim vP¥(A) =TI(A)

k——00
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Reminders and Additions on Markov Chains

Definition
> P is IT-irreducible if ¥x € Q and VA ¢ & such that
M(A) > 0, k(= k(x, A) tel que P¥(x,A) >0
> P is TT-invariant iff TTP =TT

MP(A) = Jﬂ(dxo)P(xo,A) = JA TT(dx)

> P is TT-reversible iff YA, B € &7,

J P(X,B)ﬂ(dx):J P(x, A)TT(dx)
A B
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Reminders and Additions on Markov Chains

If P is TT-reversible then P is TT-invariant

Indeed if P is TT-reversible, VB € &7,

L) P(x, B)TT(dx) = J

P(x, Q)TT(dx) :J TT(dx)
B

B
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Reminders and Additions on Markov Chains

Definition

» P is periodic with period d > 2 if there exists a partition
Q4,...,Q4de Qsuchthat Vx € Q4, P(x, Q1) =1, Vi
with the convention d +1 =1

> A chain Tl-irreducible and TT-invariant is recurrent
if VA € & such that m(A) >0
1) Vx € Q, P(Xx € Ainfinitely often|Xg =x) > 0
2) Ix € Q, P(Xy € Ainfinitely often|Xy; =x) = 1

» The chain is Harris-recurrent is 2) is verified for all x € Q

» The chain is ergodic if it is Harris-recurrent and aperiodic
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Convergence of Markov chains

If P is TT-irreducible and TT-invariant then P is recurrent

In that case, the invariant measure is unique (up to a multiplica-
tive constant)

The chain is said to be positive recurrent if the invariant measure
is a probability distribution
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Convergence of Markov chains

Theorem Suppose that P is TT-irreducible et TT-invariant, then P
is positive recurrent and TT is the unique invariant distribution of
P. If P is Harris-recurrent and aperiodic (ergodic) then

‘VPk —>VT T

The Harris-recurrence condition is difficult to obtain

It is satisfied for two main families of simulators: the Gibbs sam-
pler and the Metropolis-Hastings algorithm
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Convergence of Markov chains

Theorem If the Markov chain (Xy)xen is ergodic with stationary
distribution TT and if h is a real function such thatEr (Jh(X)]) < oo,
then, whatever the initial distribution v,

1 n

— Y h(X;) —ps En(h(X))

n
i=1

Convergence speed?
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Convergence of Markov chains

Definition The Markov chain (Xy)xen With kernel P is said to be
uniformly ergodic if there is M > 0 and 0 < r < 1 such that

sup sup [P™(x,A) —TI(A)] < Mr™
xEQ AE

Theorem If the Markov chain (Xy)ken is uniformly ergodic with
stationary distribution TT and if h such that E;(|h(X)]) < oo then,
whatever the initial distribution v, there is o(h) > 0 such that

vn (l D (X~ lEn(h(X))> — .2 N(0, (a(h))?)
i=1
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The Metropolis-Hastings algorithm

Target distribution

TT(dx) = mt(x)u(dx)

Kernel Q for x such that 7t(x) > 0

Q(x, dy) = q(x,y)u(dy)
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The Metropolis-Hastings algorithm

Choose x?) such that 7t (x{?)) > 0 and set t = 1

(%) Generate % ~ Q(x(*=1),.)
If 7(X) = 0 then set x(Y) =x(t*=") t = t+1 and return to (%)
If t(X) > 0 calculate

(1) ) - TR/a %)

)= ) Jq % x(E1)

Generate u~ % ([0, 1])
Ifu < p(x(t=1),%) then x(V) =% else x(t) = x(t=1)
sett =t+ 1 and returnto (%)
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The Metropolis-Hastings algorithm

Starting from x (nt(x) > 0), the acceptance probability of y
(t(y) > 0) is given by

a(x,y) = min [1,

Whatever the value of x such as 7t(x) > 0, the kernel associated
with the Metropolis-Hastings algorithm is given by

K(x,dy) = q(x,y)u(dy)a(x,y)+[1 —Jq(x, z)a(x, Z)u(dZ)] Sx(dy)

where 6, (-) is the Dirac mass at point x
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The Metropolis-Hastings algorithm

We can easily show that K is TT-reversible
Indeed

M(dx)K(x, dy) = min [7t(y)q(y, x), (x)q(x, y)] nldy)p(dx)

N {n(x)u(dx) - J min [r(z)q (2, x), 7 q (. 2)] u(dZ)} 5. (dy)
and

M(dy)K(y, dx) = min[r(x)q(x,y), m(y)qy, x)] u(dx)u(dy)

; {n(y)u(dy) _ J min [re(x) g (x, 2), m(z)q (2, X)] u(dZ)} 5, (dx)
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The Metropolis-Hastings algorithm

Theorem If the kernel Q is mt-irreducible, the Markov chain
generated with the Metropolis-Hastings algorithm is 7t-irreducible,
m-invariant, Harris-recurrent and aperiodic

Two particular cases
» Qis arandom walk kernel: q(x,y) = qrw(x —y) and

qrw (x) = qrw (—x)
> Q is an independent kernel: q(x,y) = q(y)
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The Gibbs sampler

Goal: generate simulations from multivariate distributions
Let X = (X4, Xo,..., Xq) with probability distribution TT

Note TT; the conditional distribution of X; given
X_i = (X1,...,Xi_1,Xi+1,...,Xd) = X_i

IT; is called the full conditional distribution of X;
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The Gibbs sampler

Choose x(%) and set t = 1

(+) Generate x\* ~ T, (xo ", X1
Generate x;" ~ TTa (-, x5 ', xg ™)
1 1
Generate xg'! ~ Tl (hei*!, x5/, L x ()
Generate x| ~ TTa(x{", ..., x{" )

Sett =t+ 1 and return to (x)

Theorem The Markov chain generated using the Gibbs sampler
is TT-irreducible, TT-invariant, Harris-recurrent and aperiodic
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