Simulation of random variables

Jean-Michel Marin

University of Montpellier Faculty of Sciences

HAX918X / 2024-2025

Þ

 QQ

イロト イ押 トイラト イラト

Þ

 299

4 0 8

Proposition Let X be a real random variable $(X(\Omega) \subseteq \mathbb{R})$, with cumulative distribution function $F(x) = P(X \leq x) = \int_{-\infty}^{x} f(u) d\mu(u)$

- If $F(x)$ is continuous, then $U = F(X)$ is distributed according to a uniform [0, 1] distribution
- \blacktriangleright Even if $F(x)$ is not continuous, the inequality $P(F(X) \leq t) \leq t$ is true for all $t \in [0, 1]$
- ► If $F^{[-1]}(y) = inf\{x : F(x) \geq y\}$ (0 < y < 1) and if U is distributed from a uniform [0, 1] distribution, then ${\sf F}^{[-1]}({\sf U})$ is distributed according to $F(x)$

イロト イ押ト イヨト イヨトー

To perform probabilistic simulations on a computer, a pseudorandom number generator is used

Such a generator returns a sequence $(x_n)_{n\in\mathbb{N}}$ of real numbers between 0 and 1

These numbers are calculated by a deterministic algorithm but imitate a realization of a sequence of iid uniform [0, 1] random variables

The good behavior of the sequence is verified by means of statistical tests

 Ω

4 (D) 3 (F) 3 (F) 3 (F) 3

A standard method to construct the sequence $(x_n)_{n\in\mathbb{N}}$ is the congruence $x_n = y_n/N$ where the y_n are integers such that

$$
y_{n+1} = (ay_n + b) \mod (N)
$$

The period of the congruence generator is always smallest than $N - 1$

The choice of a, b et N is done such that

- \triangleright the period of the generator is the largest as possible
- ▶ the sequence $(x_n)_{n \in \mathbb{N}}$ is as close as possible to an iid uniform [0, 1] sequence

 Ω

イロト イ押 トイラト イラトー

Proposition If U ~ $\mathcal{U}([0, 1])$ then $X = a + (b - a)U \sim \mathcal{U}([a, b])$

Proposition If U ~ $\mathcal{U}([0, 1])$ then $X = \mathbb{I}_{\mathsf{U} \leq \mathsf{p}} \sim \mathcal{B}(1, \mathsf{p})$

Proposition If U_1, \ldots, U_n are n iid uniform random variables on [0, 1], then $X = \sum_{n=1}^{n} \mathbb{I}_{U_i \leqslant p} \sim \mathscr{B}(n, p)$ $i=1$

It is always possible to obtain a simulation following a random variable which takes the values $(x_i)_{i\in\mathbb{N}^*}$ with respective probabilities $(p_i)_{i\in\mathbb{N}^*}$ (with $p_i\geqslant 0$ such as $\sum_{i\in\mathbb{N}^*}p_i=1$) using a single uniform variable on [0, 1]

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Proposition If $U \sim \mathcal{U}([0, 1])$, then

 $X = x_1 \mathbb{I}_{U \leqslant p_1} + x_2 \mathbb{I}_{p_1 < U \leqslant p_1 + p_2} + \ldots + x_i \mathbb{I}_{\sum_{j=1}^{i-1} p_j < U \leqslant \sum_{j=1}^{i} p_j} + \ldots$

is distributes as a random variable that takes values $(x_i)_{i\in\mathbb{N}^*}$ with associates probabilities $(p_i)_{i\in\mathbb{N}^*}$

Requires coding a loop on i with stopping rule $\sum_{j=1}^{i-1} p_j < u \leqslant \sum_{j=1}^{i} p_j \Longrightarrow$ it can take a while if the sequence $(p_i)_{i \in \mathbb{N}^*}$ converges slowly to 1.

nar

Proposition If U_1 and U_2 are two $\mathcal{U}([0,1])$ independent random variables, then

$$
X_1 = \sqrt{-2\ln(u_1)}\cos(2\pi u_2)
$$

and

$$
X_2=\,\sqrt{-2\,ln(U_1)}\,sin(2\pi U_2)
$$

are two independent standard Gaussian random variables

Recall that if $X \sim \mathcal{N}(0, 1)$ then $\mu + \sigma X \sim \mathcal{N}(\mu, \sigma^2)$

в

 Ω

イロト イ押 トイラ トイラトー

Target distribution with pdf p on \mathbb{R}^d

Instrumental distribution with pdf q on \mathbb{R}^d

There exists $k \geq 1$ such that

 $\forall x \in \mathbb{R}^d$, $p(x) \leqslant kq(x)$

 Ω

[The accept-reject algorithm](#page-8-0)

 $0)$ Set i=1

1) Generate Y_i from q

2) Calculate
$$
M = \frac{p(Y_i)}{kq(Y_i)}
$$

- 3) Generate $U_i \sim \mathcal{U}([0,1])$
- 4) If $U_i > M$, then $i = i + 1$ and back 1) If $U_i \leq M$, then $X = Y_i$

4 0 8

 \leftarrow \Box

 Ω

[The accept-reject algorithm](#page-8-0)

Note $N = \inf\{i \geq 1 : \text{kg}(Y_i)U_i \leq p(Y_i)\}$ (N is a random variable), we have $X = Y_N$

Proposition N is distributed according to a geometric distribution with parameter $1/k$, $E(N) = k$

N is independent of $(Y_N, kq(Y_N)U_N)$ which is uniformly distributed on

$$
\{(x,z)\in\mathbb{R}^d\times\mathbb{R}:0\leqslant z\leqslant p(x)\}
$$

Typically, $X = Y_N$ is distributed from p

в

 Ω

イロト イ押ト イヨト イヨトー