

Simulation of random variables

Jean-Michel Marin

University of Montpellier
Faculty of Sciences

HAX918X / 2025-2026

- 1 Methods involving the uniform distribution on $[0, 1]$
- 2 The fundamental Theorem of Simulation
- 3 Simulating on a restricted area
- 4 The accept-reject algorithm

Methods involving the uniform distribution on $[0, 1]$

Proposition Let X be a real random variable ($X(\Omega) \subseteq \mathbb{R}$), with cumulative distribution function $F(x) = \mathbb{P}(X \leq x) = \int_{-\infty}^x f(u) d\mu(u)$

- ▶ If $F(x)$ is continuous, then $U = F(X)$ is distributed according to a uniform $[0, 1]$ distribution
- ▶ Even if $F(x)$ is not continuous, the inequality $\mathbb{P}(F(X) \leq t) \leq t$ is true for all $t \in [0, 1]$
- ▶ If $F^{-1}(y) = \inf\{x : F(x) \geq y\}$ ($0 < y < 1$) and if U is distributed from a uniform $[0, 1]$ distribution, then $F^{-1}(U)$ is distributed according to $F(x)$

Methods involving the uniform distribution on $[0, 1]$

To perform probabilistic simulations on a computer, a pseudo-random number generator is used

Such a generator returns a sequence $(x_n)_{n \in \mathbb{N}}$ of real numbers between 0 and 1

These numbers are calculated by a deterministic algorithm but imitate a realization of a sequence of iid uniform $[0, 1]$ random variables

The good behavior of the sequence is verified by means of statistical tests

Methods involving the uniform distribution on $[0, 1]$

A standard method to construct the sequence $(x_n)_{n \in \mathbb{N}}$ is the congruence $x_n = y_n/N$ where the y_n are integers such that

$$y_{n+1} = (ay_n + b) \pmod{N}$$

The period of the congruence generator is always smallest than $N - 1$

The choice of a , b et N is done such that

- ▶ the period of the generator is the largest as possible
- ▶ the sequence $(x_n)_{n \in \mathbb{N}}$ is as close as possible to an iid uniform $[0, 1]$ sequence

Methods involving the uniform distribution on $[0, 1]$

Proposition If $U \sim \mathcal{U}([0, 1])$ then $X = a + (b - a)U \sim \mathcal{U}([a, b])$

Proposition If $U \sim \mathcal{U}([0, 1])$ then $X = \mathbb{I}_{U \leq p} \sim \mathcal{B}(1, p)$

Proposition If U_1, \dots, U_n are n iid uniform random variables on $[0, 1]$, then $X = \sum_{i=1}^n \mathbb{I}_{U_i \leq p} \sim \mathcal{B}(n, p)$

It is always possible to obtain a simulation following a random variable which takes the values $(x_i)_{i \in \mathbb{N}^*}$ with respective probabilities $(p_i)_{i \in \mathbb{N}^*}$ (with $p_i \geq 0$ such as $\sum_{i \in \mathbb{N}^*} p_i = 1$) using a single uniform variable on $[0, 1]$

Methods involving the uniform distribution on $[0, 1]$

Proposition If $U \sim \mathcal{U}([0, 1])$, then

$$X = x_1 \mathbb{I}_{U \leq p_1} + x_2 \mathbb{I}_{p_1 < U \leq p_1 + p_2} + \dots + x_i \mathbb{I}_{\sum_{j=1}^{i-1} p_j < U \leq \sum_{j=1}^i p_j} + \dots$$

is distributed as a random variable that takes values $(x_i)_{i \in \mathbb{N}^*}$ with associated probabilities $(p_i)_{i \in \mathbb{N}^*}$

Requires coding a loop on i with stopping rule

$\sum_{j=1}^{i-1} p_j < U \leq \sum_{j=1}^i p_j \implies$ it can take a while if the sequence $(p_i)_{i \in \mathbb{N}^*}$ converges slowly to 1.

Methods involving the uniform distribution on $[0, 1]$

Proposition If U_1 and U_2 are two $\mathcal{U}([0, 1])$ independent random variables, then

$$X_1 = \sqrt{-2 \ln(U_1)} \cos(2\pi U_2)$$

and

$$X_2 = \sqrt{-2 \ln(U_1)} \sin(2\pi U_2)$$

are two independent standard Gaussian random variables

Recall that if $X \sim \mathcal{N}(0, 1)$ then $\mu + \sigma X \sim \mathcal{N}(\mu, \sigma^2)$

The fundamental Theorem of Simulation

Let consider that the target distribution has a probability density function $f(x)$

Let $\mathcal{A} = \{(x, y) | 0 \leq y \leq f(x)\}$ the area upper 0 and under $f(x)$

The volume of \mathcal{A} is equal to 1

Theorem If (X, Y) is distributed uniformly on \mathcal{A} then X is distributed from the target with probability density function $f(x)$

Simulating on a restricted area

Let \mathcal{A} and \mathcal{B} two subsets of \mathbb{R}^d such that $\mathcal{B} \subset \mathcal{A}$

Algorithm

- 0) Set $i=1$
- 1) Generate Y_i uniformly on \mathcal{A}
- 2) If $Y_i \notin \mathcal{B}$, then $i = i + 1$ and back 1)
If $Y_i \in \mathcal{B}$, then $X = Y_i$

Theorem The random variable X generated by the algorithm above is uniformly distributed on \mathcal{B}

The accept-reject algorithm

Target distribution with pdf p on \mathbb{R}^d

Instrumental distribution with pdf q on \mathbb{R}^d

There exists $k \geq 1$ such that

$$\forall x \in \mathbb{R}^d, \quad p(x) \leq kq(x)$$

The accept-reject algorithm

The fundamental theorem of simulation, combined with the principle of simulating uniformly on a restricted area, leads directly to the accept-reject algorithm

- 0) Set $i=1$
- 1) Generate Y_i from q
- 2) Generate $U_i \sim \mathcal{U}([0, 1])$
- 3) If $kq(Y_i)U_i > p(Y_i)$, then $i = i + 1$ and back 1)
If $kq(Y_i)U_i \leq p(Y_i)$, then $X = Y_i$

The accept-reject algorithm

Note $N = \inf\{i \geq 1 : kq(Y_i)U_i \leq p(Y_i)\}$ (N is a random variable), we have $X = Y_N$

Theorem N is distributed according to a geometric distribution with parameter $1/k$, $\mathbb{E}(N) = k$

N is independent of $(Y_N, kq(Y_N)U_N)$ which is uniformly distributed on

$$\{(x, z) \in \mathbb{R}^d \times \mathbb{R} : 0 \leq z \leq p(x)\}$$

Typically, $X = Y_N$ is distributed from p