Simulation of random variables

Jean-Michel Marin

University of Montpellier Faculty of Sciences

HAX918X / 2024-2025

	Jean-M	lichel	Marin ((IMAG)
--	--------	--------	---------	--------

< ロ > < 同 > < 回 > < 回 >

Jean-Mic	hel Marir	n (IMAG)
----------	-----------	----------

Proposition Let X be a real random variable $(X(\Omega) \subseteq \mathbb{R})$, with cumulative distribution function $F(x) = \mathbb{P}(X \leq x) = \int_{-\infty}^{x} f(u) d\mu(u)$

- If F(x) is continuous, then U = F(X) is distributed according to a uniform [0, 1] distribution
- ► Even if F(x) is not continuous, the inequality $\mathbb{P}(F(X) \leq t) \leq t$ is true for all $t \in [0, 1]$
- If F^[-1](y) = inf{x : F(x) ≥ y} (0 < y < 1) and if U is distributed from a uniform [0, 1] distribution, then F^[-1](U) is distributed according to F(x)

(日)

To perform probabilistic simulations on a computer, a pseudorandom number generator is used

Such a generator returns a sequence $(x_n)_{n\in \mathbb{N}}$ of real numbers between 0 and 1

These numbers are calculated by a deterministic algorithm but imitate a realization of a sequence of iid uniform [0, 1] random variables

The good behavior of the sequence is verified by means of statistical tests

(日)

A standard method to construct the sequence $(x_n)_{n\in\mathbb{N}}$ is the congruence $x_n = y_n/N$ where the y_n are integers such that

$$y_{n+1} = (ay_n + b) \mod (N)$$

The period of the congruence generator is always smallest than N-1

The choice of a, b et N is done such that

- the period of the generator is the largest as possible
- ► the sequence (x_n)_{n∈N} is as close as possible to an iid uniform [0, 1] sequence

5/11

イロト イポト イラト イラト

Proposition If $U \sim \mathscr{U}([0, 1])$ then $X = a + (b - a)U \sim \mathscr{U}([a, b])$

Proposition If $U \sim \mathscr{U}([0, 1])$ then $X = \mathbb{I}_{U \leq p} \sim \mathscr{B}(1, p)$

Proposition If U_1, \ldots, U_n are n iid uniform random variables on [0, 1], then $X = \sum_{i=1}^n \mathbb{I}_{U_i \leq p} \sim \mathscr{B}(n, p)$

It is always possible to obtain a simulation following a random variable which takes the values $(x_i)_{i\in\mathbb{N}^*}$ with respective probabilities $(p_i)_{i\in\mathbb{N}^*}$ (with $p_i\geqslant 0$ such as $\sum_{i\in\mathbb{N}^*}p_i=1$) using a single uniform variable on [0,1]

6/11

Proposition If $U \sim \mathscr{U}([0, 1])$, then

 $X = x_1 \mathbb{I}_{U \leqslant p_1} + x_2 \mathbb{I}_{p_1 < U \leqslant p_1 + p_2} + \ldots + x_i \mathbb{I}_{\sum_{j=1}^{i-1} p_j < U \leqslant \sum_{j=1}^{i} p_j} + \ldots$

is distributes as a random variable that takes values $(x_i)_{i\in\mathbb{N}^*}$ with associates probabilities $(p_i)_{i\in\mathbb{N}^*}$

Requires coding a loop on i with stopping rule $\sum_{j=1}^{i-1} p_j < U \leqslant \sum_{j=1}^{i} p_j \Longrightarrow$ it can take a while if the sequence $(p_i)_{i \in \mathbb{N}^*}$ converges slowly to 1.

Proposition If U_1 and U_2 are two $\mathscr{U}([0, 1])$ independent random variables, then

$$X_1 = \sqrt{-2\ln(U_1)}\cos(2\pi U_2)$$

and

$$X_2 = \sqrt{-2\ln(U_1)}\sin(2\pi U_2)$$

are two independent standard Gaussian random variables

Recall that if $X \sim \mathcal{N}(0, 1)$ then $\mu + \sigma X \sim \mathcal{N}(\mu, \sigma^2)$

イロト イヨト イヨト イヨト

The accept-reject algorithm

Target distribution with pdf p on \mathbb{R}^d

Instrumental distribution with pdf q on \mathbb{R}^d

There exists $k \ge 1$ such that

 $\forall x \in \mathbb{R}^d$, $p(x) \leq kq(x)$

4 E 6 4 E 6 1

The accept-reject algorithm

0) Set i=1 1) Generate Y_i from q 2) Calculate $M = \frac{p(Y_i)}{kq(Y_i)}$ 3) Generate U_i ~ $\mathscr{U}([0, 1])$

4) If
$$U_i > M$$
, then $i = i + 1$ and back 1)
If $U_i \leq M$, then $X = Y_i$

< 6 b

The accept-reject algorithm

Note $N=inf\{i\geqslant 1: kq(Y_i)U_i\leqslant p(Y_i)\}$ (N is a random variable), we have $X=Y_N$

Proposition N is distributed according to a geometric distribution with parameter 1/k, $\mathbb{E}(N) = k$

N is independent of $(Y_N, kq(Y_N) \boldsymbol{U}_N)$ which is uniformly distributed on

$$\{(\mathbf{x}, \mathbf{z}) \in \mathbb{R}^{d} \times \mathbb{R} : \mathbf{0} \leqslant \mathbf{z} \leqslant \mathbf{p}(\mathbf{x})\}$$

Typically, $X = Y_N$ is distributed from p

3