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Regression and Variable Selection

You see, I always keep my sums.
—Ian Rankin, Strip Jack.—

Roadmap

Linear regression is one of the most widely used tools in statistics for analyzing the
(linear) influence of some variables or some factors on others and thus to uncover
explanatory and predictive patterns. This chapter details the Bayesian analysis
of the linear (or regression) model both in terms of prior specification (Zellner’s
G-prior) and in terms of variable selection, the next chapter appearing as a sequel
for nonlinear dependence structures. The reader should be warned that, given
that these models are the only conditional models where explicit computation
can be conducted, this chapter contains a fair amount of matrix calculus. The
photograph at the top of this page is a picture of processionary caterpillars, in
connection (for once!) with the benchmark dataset used in this chapter.
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in Statistics, DOI 10.1007/978-1-4614-8687-9 3,
© Springer Science+Business Media New York 2014

65



66 3 Regression and Variable Selection

3.1 Linear Models

A large proportion of statistical analyses deal with the representation of
dependences among several observed quantities. For instance, which social
factors influence unemployment duration and the probability of finding a
new job? Which economic indicators are best related to recession occur-
rences? Which physiological levels are most strongly correlated with aneurysm
strokes? From a statistical point of view, the ultimate goal of these analyses is
thus to find a proper representation of the conditional distribution, f(y|θ,x),
of an observable variable y given a vector of observables x, based on a sample
of x and y. While the overall estimation of the conditional density f is usually
beyond our ability, the estimation of θ and possibly of restricted features of f
is possible within the Bayesian framework, as shown in this chapter.

The variable of primary interest, y, is called the response or the out-
come variable; we assume here that this variable is continuous, but we
will completely relax this assumption in the next chapter. The variables
x = (x1, . . . , xp) are called explanatory variables and may be discrete, con-
tinuous, or both. One sometimes picks a single variable xj to be of primary
interest. We then call it the treatment variable, labeling the other compo-
nents of x as control variables, meaning that we want to address the (linear)
influence of xj on y once the linear influence of all the other variables has
been taken into account (as in medical studies). The distribution of y given
x is typically studied in the context of a set of units or experimental sub-
jects, i = 1, . . . , n, such as patients in a hospital ward, on which both yi and
xi1, . . . , xip are measured. The dataset is then made up of the reunion of the
vector of outcomes

y = (y1, . . . , yn)

and the n× p matrix of explanatory variables

X = [x1 . . . xp] =

⎡
⎢⎢⎢⎢⎢⎣

x11 x12 . . . x1p

x21 x22 . . . x2p

x31 x32 . . . x3p

...
...

...
...

xn1 xn2 . . . xnp

⎤
⎥⎥⎥⎥⎥⎦
.

The caterpillar dataset exploited in this chapter was extracted from a
1973 study on pine processionary1caterpillars: it assesses the influence of some
forest settlement characteristics on the development of caterpillar colonies.
This dataset was first published and studied in Tomassone et al. (1993). The
response variable is the logarithmic transform of the average number of nests
of caterpillars per tree (as the one in the picture at the beginning of this
chapter) in an area of 500m2 (which corresponds to the last column in cater-
pillar). There are p = 8 potential explanatory variables defined on n = 33
areas, as follows

1These caterpillars derive their name from their habit of moving over the ground
in incredibly long head-to-tail monk-like processions when leaving their nest to create
a new colony.
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x1 is the altitude (in meters),
x2 is the slope (in degrees),
x3 is the number of pine trees in the area,
x4 is the height (in meters) of the tree sampled at the center of the area,
x5 is the orientation of the area (from 1 if southbound to 2 otherwise),
x6 is the height (in meters) of the dominant tree,
x7 is the number of vegetation strata,
x8 is the mix settlement index (from 1 if not mixed to 2 if mixed).

The goal of the regression analysis is to decide which explanatory variables
have a strong influence on the number of nests and how these influences over-
lap with one another. As shown by Fig. 3.1, some of these variables clearly
have a restricting influence on the number of nests, as for instance with x5, x7

and x8. We use the following R code to produce Fig. 3.1 (the way we created
the objects y and X will be described later).

> par(mfrow=c(2,4),mar=c(4.2,2,2,1.2))

> for (j in 1:8) plot(X[,j],y,xlab=vnames[j],pch=19,

+ col="sienna4",xaxt="n",yaxt="n")

While many models and thus many dependence structures can be proposed
for dependent datasets like caterpillar, in this chapter we only focus on the
Gaussian linear regression model, namely the case when E[y|x, θ] is linear in
x and the noise is normal.

The ordinary normal linear regression model is such that, using a matrix
representation,

y|α,β, σ2 ∼ Nn

(
α1n +Xβ, σ2 In

)
,

where Nn denotes the normal distribution in dimension n, and thus the yi’s
are independent normal random variables with

E[yi|α,β, σ2] = α+ β1xi1 + . . .+ βpxip , V[yi|α,β, σ2] = σ2 .

Given that the models studied in this chapter are all conditional on the re-
gressors, we omit the conditioning on X to simplify the notations.

For caterpillar, where n = 33 and p = 8, we thus assume that the ex-
pected lognumber yi of caterpillar nests per tree over an area is modeled as a
linear combination of an intercept and eight predictor variables (i = 1, . . . , n),

E[yi|α,β, σ2] = α+

8∑
j=1

βjxij ,
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x1 x2 x3 x4

x5 x6 x7 x8

Fig. 3.1. Dataset caterpillar: Plot of the pairs (xj ,y) (1 ≤ j ≤ 8)

while the variation around this expectation is supposed to be normally
distributed. Note that it is also customary to assume that the yi’s are
conditionally independent.

The caterpillar dataset is called by the command data(caterpillar)

and is made of the following rows:

1200 22 1 4 1.1 5.9 1.4 1.4 2.37

1342 28 8 4.4 1.5 6.4 1.7 1.7 1.47

....

1229 21 11 5.8 1.8 10 2.3 2 0.21

1310 36 17 5.2 1.9 10.3 2.6 2 0.03

The first eight columns correspond to the explanatory variables and the last
column is the response variable, i.e. the lognumber of caterpillar nests. The
following R code is an example for starting with this caterpillar dataset:
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> y=log(caterpillar$y)

> X=as.matrix(caterpillar[,1:8])

There is a difference between using finite-valued regressors like x7 in cater-
pillar and using categorical variables (or factors), which also take a finite num-
ber of values but whose range has no numerical meaning. For instance, if
x denotes the socio-professional category of an employee, this variable may
range from 1 to 9 for a rough grid of socio-professional activities, or it may
range from 1 to 89 on a finer grid, and the numerical values are not compara-
ble. It thus makes little sense to involve x directly in the regression, and the
usual approach is to replace the single regressor x (taking values in {1, . . . ,m},
say) with m indicator (or dummy) variables x1 = I1(x), . . ., xm = Im(x). In
essence, a different constant (or intercept) βj is used in the regression for each
class of categorical variable: it is invoked in the linear regression under the
form

. . .+ β1I1(x) + . . .+ βmIm(x) + . . . .

Note that there is an identifiability issue related with this model since the sum
of the indicators is always equal to one. In a Bayesian perspective, identifia-
bility can be achieved via the prior distribution. However, we can also impose
an identifiability constraint on the parameters, for instance by omitting one
class (such as β1 = 0). We pursue this direction further in Sects. 4.5.1 and 6.2.

3.2 Classical Least Squares Estimator

Before fully launching into the description of the Bayesian approach to the
linear model, we recall the basics of the classical processing of this model
(in particular, to relate the Bayesian perspective to the results provided by
standard software such as R lm output). For instance, the parameter β can
obviously be estimated via maximum likelihood estimation. In order to avoid
non-identifiability and uniqueness problems, we assume that [1n X] is of full
rank, that is, rank [1n X] = p+1. This also means that there is no redundant
structure among the explanatory variables.2 We suppose in addition that p+
1 < n in order to obtain well-defined estimates for all parameters. Notice that,
since the inferential process is conditioned on the design matrix X, we choose
to standardize the data, namely to center and to scale the columns of X so
that the estimated values of β are truly comparable. For this purpose, we use
the R function scale:

> X=scale(X)

2Hence, the exclusion of one of the classes for categorical variables.
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The likelihood �(α,β, σ2|y) of the standard normal linear model is pro-
vided by the following matrix representation:

1

(2πσ2)
n/2

exp

{
− 1

2σ2
(y − α1n −Xβ)

T
(y − α1n −Xβ)

}
. (3.1)

The maximum likelihood estimators of α and β are then the solution of the
(least squares) minimization problem

min
α,β

(y − α1n −Xβ)
T
(y − α1n −Xβ)

= min
α,β

n∑
i=1

(yi − α− β1xi1 − . . .− βpxip)
2
,

If we denote by ȳ =
1

n

n∑
i=1

yi the empirical mean of the yi’s and recall that,

1T
nX = 0T

n because of the standardization step, we have a Pythagorean dec-
omposition of the above norm as

(y−α1n−Xβ)
T
(y−α1n−Xβ)

= (y−ȳ1n−Xβ+(ȳ−α)1n)
T (y−ȳ1n−Xβ+(ȳ−α)1n)

= (y−ȳ1n−Xβ)
T
(y−ȳ1n−Xβ)+2(ȳ−α)1T

n (y−ȳ1n−Xβ)+n(ȳ−α)2

= (y−ȳ1n−Xβ)T (y−ȳ1n−Xβ)+n(ȳ−α)2 .

Indeed, 1T
n (y − ȳ1n −Xβ) = (nȳ − nȳ) = 0. Therefore, the likelihood

�(α,β, σ2|y) is given by

1

(2πσ2)
n/2

exp

(
− 1

2σ2
(y−ȳ1n−Xβ)

T
(y−ȳ1n−Xβ)

)
exp

{
− n

2σ2
(ȳ−α)2

}
.

We get from the above decomposition that

α̂ = ȳ , β̂ = (XTX)−1XT(y − ȳ) .

In geometrical terms, (α̂, β̂) is the orthogonal projection of y on the linear
subspace spanned by the columns of [1n X]. It is quite simple to check that

(α̂, β̂) is an unbiased estimator of (α, β). In fact, the Gauss–Markov theorem

(see, e.g., Christensen, 2002) states that (α̂, β̂) is the best linear unbiased
estimator of (α, β). This means that, for all a ∈ R

p+1, and with the abuse of

notation that, here, (α̂, β̂) represents a column vector,

V(aT(α̂, β̂)|α,β, σ2) ≤ V(aT(α̃, β̃)|α,β, σ2)

for any unbiased linear estimator (α̃, β̃) of (α, β). (Note that the property of
unbiasedness is not particularly appealing when considered on its own.)
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An unbiased estimator of σ2 is

σ̂2 =
1

n− p− 1
(y − α̂1n −Xβ̂)T(y − α̂1n −Xβ̂) =

s2

n− p− 1
,

and σ̂2(XTX)−1 approximates the covariance matrix of β̂. Note that the MLE
of σ2 is not σ̂2 but σ̃2 = s2/n.

The standard t-statistics are defined as (j = 1, . . . , p)

Tj =
β̂j − βj√
σ̂2ωjj

∼ T (n− p− 1, 0, 1) ,

where ωjj denotes the (j, j)-th element of the matrix (XTX)−1. These t-
statistic are used in classical tests, for instance for testing H0 : βj = 0 versus
H1 : βj �= 0, the former being accepted at level γ if

|β̂j |/σ̂√ωjj < F−1
n−p−1(1− γ/2)

the (1 − γ/2)th quantile of the Student’s t T (n− p− 1, 0, 1) distribution
(with location parameter 0 and scale parameter 1). The frequentist argument
in using this bound (see Casella and Berger, 2001) is that the so-called p-value
is smaller than γ,

pj = PH0(|Tj | > |tj |) < γ.

Note that these statistics Tj can also be used when constructing marginal
frequentist confidence intervals on the βj ’s like

{
βj ;

∣∣∣βj − β̂j

∣∣∣ ≤ σ̂
√
ωjj F

−1
n−p−1(1− γ/2)

}
=

{
βj ; |Tj | ≤ σ̂

√
ωjj F

−1
n−p−1(1− γ/2)

}
.

� From a Bayesian perspective, we far from advocate the use of p-values in

Bayesian settings or elsewhere since they suffer many defects (exposed for in-

stance in Robert, 2007, Chap. 5), one being that they are often wrongly inter-

preted as probabilities of the null hypotheses.

For caterpillar, the unbiased estimate of σ2 is equal to 0.7781 and the
maximum likelihood estimates of α and of the components βj produced by
the R command

> summary(lm(y~X))

are given in Fig. 3.2, along with the least squares estimates of their respective
standard deviations and p-values. According to the classical paradigm, the
coefficients β1, β2 and β7 are the only ones considered to be significant.
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We stress here that conditioning on X is valid only when X is exogenous,
that is, only when we can write the joint distribution of (y,X) as

f(y,X|α,β, σ2, δ) = f(y|α,β, σ2,X)f(X|δ) ,

where (α,β, σ2) and δ are fixed parameters. We can thus ignore f(X|δ) if the
parameter δ is only a nuisance parameter since this part is independent3 of
(α,β, σ2). The practical advantage of using a regression model as above is that
it is much easier to specify a realistic conditional distribution of one variable
given p others rather than a joint distribution on all p + 1 variables. Note
that if X is not exogenous, for instance when X involves past values of y (see
Chap. 7), the joint distribution must be used instead.

Residuals:

Min 1Q Median 3Q Max

-1.4710 -0.4474 -0.1769 0.6121 1.5602

lm(formula = y ˜ X)

Residuals:

Min 1Q Median 3Q Max

-1.4710 -0.4474 -0.1769 0.6121 1.5602

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.81328 0.15356 -5.296 1.97e-05 ***

Xx1 -0.52722 0.21186 -2.489 0.0202 *

Xx2 -0.39286 0.16974 -2.315 0.0295 *

Xx3 0.65133 0.38670 1.684 0.1051

Xx4 -0.29048 0.31551 -0.921 0.3664

Xx5 -0.21645 0.16865 -1.283 0.2116

Xx6 0.29361 0.53562 0.548 0.5886

Xx7 -1.09027 0.47020 -2.319 0.0292 *

Xx8 -0.02312 0.17225 -0.134 0.8944

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 0.8821 on 24 degrees of freedom

Multiple R-squared: 0.6234,Adjusted R-squared: 0.4979

Fig. 3.2. Dataset caterpillar: R output providing the least squares estimates of
the regression coefficients along with their standard significance analysis

3From a Bayesian point of view, note that we would also need to impose prior
independence between (α,β, σ2) and δ to achieve this separation.
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3.3 The Jeffreys Prior Analysis

Considering only the case of a complete lack of prior information on the pa-
rameters of the linear model, we first describe a noninformative solution based
on the Jeffreys prior. It is rather easy to show that the Jeffreys prior in this
case is

πJ (α,β, σ2) ∝ σ−2 ,

which is equivalent to a flat prior on (α,β, log σ2). We recall that

�(α,β, σ2|y) = 1

(2πσ2)
n/2

exp

{
− 1

2σ2
(y − ȳ1n −Xβ)T (y − ȳ1n −Xβ)

}
×

exp
{
− n

2σ2
(ȳ − α)2

}

=
1

(2πσ2)
n/2

exp

{
− 1

2σ2

(
y − α̂1n −Xβ̂

)T(
y − α̂1n −Xβ̂

)}
×

exp

{
− n

2σ2
(α̂− α)2 − 1

2σ2
(β − β̂)TXTX(β − β̂)

}
.

The corresponding posterior distribution is therefore

πJ(α,β, σ2|y) ∝ (σ−2
)−n/2

exp

{
− 1

2σ2
(y − α̂1n −Xβ̂)T(y − α̂1n −Xβ̂)

}
×

σ−2 exp

{
− n

2σ2
(α̂− α)2 − 1

2σ2
(β − β̂)TXTX(β − β̂)

}

∝ (σ−2
)−p/2

exp

{
− 1

2σ2
(β − β̂)TXTX(β − β̂)

}
×

(
σ−2

)−1/2
exp

{
− n

2σ2
(α̂− α)2

}

(
σ−2

)−(n−p−1)/2−1
exp

{
− 1

2σ2
s2
}

.

From this expression, we deduce the following (conditional and marginal)
posterior distributions

α|σ2,y ∼ N
(
α̂, σ2/n

)
,

β|σ2,y ∼ Np

(
β̂, σ2(XTX)−1

)
,

σ2|y ∼ I G ((n− p− 1)/2, s2/2) .

� As in every analysis involving an improper prior, one needs to check that the

corresponding posterior distribution is proper. In this case, π(α,β, σ2|y) is

proper when both n > p+1 and rank [1n X] = p+1. The former constraint

requires that there be at least as many data points as there are parameters in

the model, and, as already explained above, the latter is obviously necessary

for identifiability reasons.
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The corresponding Bayesian estimates of α, β and σ2 are thus given by

E
π[α|y] = α̂ , E

π [β|y] = β̂ and E
π [σ2|y] = s2

n− p− 3
,

respectively. Unsurprisingly, the Jeffreys prior estimate of α is the empirical
mean. Further, the posterior expectation of β is the maximum likelihood
estimate. Note also that the Jeffreys prior estimate of σ2 is larger (and thus
more pessimistic) than both the maximum likelihood estimate s2/n and the
classical unbiased estimate s2/(n− p− 1).

The marginal posterior distribution of βj associated with the above joint
distribution is

T (n− p− 1, β̂j, ωjjs
2/(n− p− 1)) ,

(recall that ωjj = (XTX)−1
(j,j)). Hence, the similarity with a frequentist anal-

ysis of this model is very strong since the classical (1− γ) confidence interval
and the Bayesian HPD interval on βj coincide, even though they have different
interpretations. They are both equal to

{
βj ; |βj − β̂j | ≤ F−1

n−p−1(1− γ/2)
√
ωjjs2/(n− p− 1)

}
.

For caterpillar, the Bayes estimate of σ2 is equal to 0.8489. Figure 3.3
provides the corresponding (marginal) 95% HPD intervals for each component
of β. (It is obtained by the plotCI function, part of the gplots package.)
Note that while some of these credible intervals include the value βj = 0
(represented by the dashed line), they do not necessarily validate acceptance of
the null hypothesis H0 : βj = 0, which must be tested through a Bayes factor,
as described below. This distinction is a major difference from the classical
approach, where confidence intervals are dual sets of acceptance regions.

3.4 Zellner’s G-Prior Analysis

From this section onwards,4 we concentrate on a different noninformative
approach which was proposed by Arnold Zellner5 to handle linear regression
from a Bayesian perspective. This approach is a middle-ground perspective
where some prior information may be available on β and it is called Zellner’s
G-prior, the “G” being the symbol used by Zellner in the prior variance.

4In order to keep this coverage of G-priors simple and self-contained, we made
several choices in the presentation that the most mature readers will possibly find
arbitrary, but this cannot be avoided if we want to keep the chapter at a reasonable
length.

5Arnold Zellner was a famous Bayesian econometrician, who wrote two reference
books on Bayesian econometrics (Zellner, 1971, 1984)
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Fig. 3.3. Dataset caterpillar: Range of the credible 95% HPD intervals for α (top
row) and each component of β when using the Jeffreys prior

3.4.1 A Semi-noninformative Solution

When considering the likelihood (3.1) its shape is both Gaussian and Inver-
se Gamma, indeed, β given σ2 appears in a Gaussian-like expression, while
σ2 involves an Inverse Gamma expression. This structure leads to a natural
conjugate prior family, of the form

(α,β)|σ2 ∼ Np+1((α̃, β̃), σ
2M−1) ,

conditional on σ2, where M is a (p + 1, p + 1) positive definite symmetric
matrix, and for σ2,

σ2 ∼ I G (a, b), a, b > 0 .

(The conjugacy can be easily checked by the reader.) Even in the presence
of genuine information on the parameters, the hyperparameters M , a and b
are very difficult to specify. Moreover, the posterior distributions, notably the
posterior variances are sensitive to the specification of these hyper-parameters.
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Therefore, given that a natural conjugate prior for the linear regression
model has severe limitations, a more elaborate strategy is called for. The
idea at the core of Zellner’s G-prior modeling is to allow the experimenter
to introduce (possibly weak) information about the location parameter of the
regression but to bypass the most difficult aspects of the prior specification,
namely the derivation of the prior correlation structure. This structure is fixed
in Zellner’s proposal since the prior corresponds to

β|α, σ2 ∼ Np

(
β̃, gσ2(XTX)−1

)
, (3.2)

and a noninformative prior distribution is imposed on the pair (α, σ2),

π
(
α, σ2

) ∝ σ−2 . (3.3)

Zellner’s G-prior is thus decomposed as a (conditional) Gaussian prior for β
and an improper (Jeffreys) prior for (α, σ2). This modelling somehow appears
as a data-dependent prior through its dependence on X, but this is not a
genuine issue6 since the whole model is conditional on X. The experimenter
thus restricts prior determination to the choices of β̃ and of the constant g.
As we will see once the posterior distribution is constructed, the factor g can
be interpreted as being inversely proportional to the amount of information
available in the prior relative to the sample. For instance, setting g = n gives
the prior the same weight as one observation of the sample. We will use this
as our default value.

� Genuine data-dependent priors are not acceptable in a Bayesian analysis because

they use the data twice and fail to enjoy the basic convergence properties of

the Bayes estimators. (See Carlin and Louis, 1996, for a comparative study of

the corresponding so-called empirical Bayes estimators.)

Note that, in the initial proposition of Zellner (1984), the parameter α is
not modelled by a flat prior distribution. It was instead considered to be a
component of the vector β. (This was also the approach adopted in Marin and
Robert 2007.) However, endowing α with a flat prior ensures the location-scale
invariance of the analysis, which means that changes in location or scale on
y (like a switch from Celsius to Fahrenheit degrees for temperatures) do not
impact on the resulting inference.

We are now engaging into some algebra that will expose the properties of
the G-posterior. First, we assume p > 0, meaning that there is at least one ex-

planatory variable in the model. We define the matrix P = X
{
XTX

}−1
XT.

The prior π
(
α,β, σ2

)
can then be decomposed as

6This choice is more problematic when conditioning on X is no longer possible,
as for instance when X contains lagged dependent variables (Chap. 7) or endogenous
variables.
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π
(
α,β, σ2

) ∝ (σ2)−p/2 exp

[
− 1

2gσ2

{
βTXTXβ − 2βTXTPXβ̃

}]
×

σ−2 exp

(
− 1

2gσ2
β̃
T
XTPXβ̃

)
,

since XTPX = XTX. Therefore,

π
(
α,β, σ2|y) ∝ (σ2)−n/2−p/2−1

exp

{
− 1

2σ2
(y − ȳ1n −Xβ)

T
(y − ȳ1n −Xβ)

}
×

exp
{
− n

2σ2
(ȳ − α)2

}
× exp

{
− 1

2gσ2
β̃
T
XTPXβ̃

}
×

exp

{
− 1

2gσ2

[
βTXTXβ − 2βTXTPXβ̃

]}
.

Since 1T
nX = 0p, we deduce that

π
(
α,β, σ2|y) ∝ (σ2)−n/2−p/2−1 exp

{
− 1

2σ2

[
βTXTXβ − 2yTXβ

]}
×

exp

{
− 1

2σ2
(y − ȳ1n)

T (y − ȳ1n)

}
×

exp
{
− n

2σ2
(ȳ − α)2

}
× exp

{
− 1

2gσ2
β̃
T
XTPXβ̃

}
×

exp

{
− 1

2gσ2

[
βTXTXβ − 2βTXTPXβ̃

]}
.

Since PX = X, we deduce that, conditionally on y, X and σ2, the parameters
α and β are independent and such that

α|σ2,y ∼ N1

(
ȳ, σ2/n

)
,

β|y, σ2 ∼ Np

(
g

g + 1

(
β̂ +Xβ̃/g

)
,
σ2g

g + 1

{
XTX

}−1
)

,

where β̂ =
{
XTX

}−1
XTy is the maximum likelihood (and least squares)

estimator of β. The posterior independence between α and β is due to the
fact that X is centered and that α and β are a priori independent.

Moreover, the posterior distribution of σ2 is given by

σ2|y ∼ IG
[
(n− 1)/2, s2 + (β̃ − β̂)TXTX(β̃ − β̂)

/
(g + 1)

]

where IG (a, b) is an inverse Gamma distribution with mean b/(a − 1) and

where s2 = (y − ȳ1n −Xβ̂)T(y − ȳ1n −Xβ̂) corresponds to the (classical)
residual sum of squares.
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� The previous derivation assumes that p > 0. In the special case p = 0, which
will later be used as a null model in hypothesis testing, similar arguments lead
to

α|y, σ2 ∼ N
(
ȳ, σ2/n

)
,

σ2|y ∼ IG
[
(n− 1)/2, (y − ȳ1n)

T(y − ȳ1n)
/
2
]
.

(There is no β when p = 0, as this corresponds to the constant mean model.)

Recalling the double expectation formulas

E [E [X |Y ]] = E [X ] and V(X) = V[E(X |Y )] + E[V(X |Y )]

for V(X |Y ) = E[(X − E(X |Y ))2
∣∣Y ], we can derive from the previous deriva-

tions that
E
π [α|y] = E

π
[
E
π
(
α|σ2,y

) |y] = E
π [ȳ|y] = ȳ

and that

V
π(α|y) = V(ȳ|y) + E

[
σ2

n

∣∣∣∣y
]
= κ

/
n(n− 3) ,

where

κ = (y − ȳ1n)
T(y − ȳ1n) +

1

g + 1

{
−gyTPy + β̃

T
XTPXβ̃ − 2yTPXβ̃

}

= s2 + (β̃ − β̂)TXTX(β̃ − β̂)
/
(g + 1) .

With a bit of extra algebra, we can recover the whole distribution of α from

π(α, σ2|y) ∝ (σ−2)(n−1)/2+1+1/2 exp
{
− n

2σ2
(α− ȳ)2

}
exp

{
− κ

2σ2
κ
}
,

namely

π(α|y) ∝
[
1 +

n(α− ȳ)2

κ

]−n/2

.

This means that the marginal posterior distribution of α—the distribution
of α given only y and X—is a Student’s t distribution with n − 1 degrees
of freedom, a location parameter equal to ȳ and a scale parameter equal to
κ
/
n(n− 1).
If we now turn to the parameter β, by the same double expectation for-

mula, we derive that

E
π [β|y] = E

π
[
E
π
(
β|σ2,y

) ∣∣y]

= E
π

[
g

g + 1
(β̂ + β̃/g)

∣∣y
]

=
g

g + 1
(β̂ + β̃/g) .
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This result gives its meaning to the above point relating g with the amount
of information contained in the dataset. For instance, when g = 1, the prior
information has the same weight as this amount. In this case, the Bayesian
estimate of β is the average between the least square estimator and the prior
expectation. The larger g is, the weaker the prior information and the closer
the Bayesian estimator is to the least squares estimator. For instance, when
g goes to infinity, the posterior mean converges to β̂.

Based on similar derivations, we can compute the posterior variance of β.
Indeed,

V
π(β|y) = V

[
g

g + 1
(β̂ + β̃/g)|y

]
+ E

[
gσ2

g + 1
(XTX)−1

]

=
κg

(g + 1)(n− 3)
(XTX)−1 .

Once more, it is possible to integrate out σ2 in

π(β, σ2|y) ∝ (σ2)−p/2 exp

(
−g + 1

2gσ2

{
β − E

π [β|y] }TXTX
{
β − E

π [β|y] }
)

×(σ2)−(n−1)/2−1 exp

(
− 1

2σ2
κ

)
,

leading to

π(β|y) ∝
[
1 +

g + 1

gκ

{
β − E

π [β|y]}TXTX
{
β − E

π [β|y]}
]
.

Therefore, the marginal posterior distribution of β is also a multivariate Stu-
dent’s t distribution with n− 1 degrees of freedom, location parameter equal

to
g

g + 1
(β̂ + β̃/g) and scale parameter equal to

gκ

(g + 1)(n− 1)
(XTX)−1.

The standard Bayes estimator of σ2 for this model is the posterior expec-
tation

E
π
[
σ2|y] = κ

n− 3
=

s2 + (β̃ − β̂)TXTX(β̃ − β̂)
/
(g + 1)

n− 3
.

� In the special case p = 0, by using similar arguments, we get

E
π [

σ2
∣∣y] = (y − ȳ1n)

T(y − ȳ1n)

n− 3
=

s2

n− 3
,

which is the same expectation as with the Jeffreys prior.

HPD regions on subvectors of the parameter β can be derived in a straight-
forward manner from this marginal posterior distribution of β. For a single
parameter, we have for instance
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βj |y ∼ T

(
n− 1,

g

g + 1

(
β̃j

g
+ β̂j

)
,

gκ

(n− 1)(g + 1)
ωjj

)
,

where ωjj is the (j, j)-th element of the matrix (XTX)−1. If we set

ζ = (β̃ + gβ̂)
/
(g + 1)

the transform

βj − ζj

/√ gκ

(n− 1)(g + 1)
ωjj

is (marginally) distributed as a standard t distribution with n− 1 degrees of
freedom. A (1− γ) HPD interval on βj has therefore

ζj ±
√

gκ

(n− 1)(g + 1)
ωjjF

−1
n−1(1− γ/2)

as bounds, where F−1
n−1 denotes the quantile function of the T (n − 1, 0, 1)

distribution.

3.4.2 The BayesReg R Function

We have created in bayess an R function called BayesReg to implement Zell-
ner’s G-prior analysis within R. The purpose is dual: first, this R function
shows how easily automated this approach can be. Second, it also illustrates
how it is possible to get exactly the same type of output as the standard R
function summary(lm(y~X)).

The following R code is extracted from this function BayesReg and used
to calculate the Bayes estimates. As an aside, notice that we use the function
stop in order to end the calculations if the matrix XTX is not invertible.

if (det(t(X)%*%X)<=1e-7)

stop("Design matrix has too low a rank!",call.=FALSE)

We also stress the use of scale below to standardize the explanatory variables.

X=as.matrix(X)

n=length(y)

p=dim(X)[2]

X=scale(X)

U=solve(t(X)%*%X)%*%t(X)

# MLE

alphaml=mean(y)

betaml=U%*%y

s2=t(y-alphaml-X%*%betaml)%*%(y-alphaml-X%*%betaml)

kappa=as.numeric(s2+t(betatilde-betaml)%*%t(X)%*%X%*%

(betatilde-betaml)/(g+1))
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malphabayes=alphaml

mbetabayes=g/(g+1)*(betaml+betatilde/g)

msigma2bayes=kappa/(n-3)

valphabayes=kappa/(n*(n-3))

vbetabayes=diag(kappa*g/((g+1)*(n-3))*solve(t(X)%*%X))

vsigma2bayes=2*kappa^2/((n-3)*(n-4))

postmean=c(malphabayes,mbetabayes)

postsd=sqrt(c(valphabayes,vbetabayes))

# evidence of the model

intlike=(g+1)^(-p/2)*kappa^(-(n-1)/2)

We will see further aspects of BayesReg in the following sections.

3.4.3 Bayes Factors and Model Comparison

One important inferential issue pertaining to linear models is to test whether
or not a specific explanatory variable is truly explanatory or, in other words,
to decide which explanatory variables should be kept within the model. This
leads to tests on the nullity of some elements of the parameter β. Following
the general testing methodology presented in Chap. 2, these tests can be con-
ducted using Bayes factors. In the case of linear models and under Zellner’s
G-priors, those Bayes factors are actually available in closed form.

When considering the marginal likelihood (or evidence) at the core of the
Bayes factors, we have, if p �= 0,

f(y) =

∫ (∫ ∫
f(y|α,β, σ2)π(β|α, σ2)π(σ2, α)dαdβ

)
dσ2 ,

with

f(y|α,β, σ2)π(β|α, σ2) =

∣∣XTX
∣∣1/2

(2πσ2)(n+p)/2gp/2
exp

{
− n

2σ2
(α− ȳ)2

}
×

exp

{
− 1

2σ2
(y − ȳ1n −Xβ)T(y − ȳ1n −Xβ)

}
×

exp

{
− 1

2gσ2
(β − β̃)TXTX(β − β̃)

}
,

and π(α, σ2) = δσ−2 (where δ is an arbitrary constant). Thus

f(y) = δn−1/2(g + 1)−p/2(2π)−(n−1)/2
∫

(σ2)−(n−1)/2−1 exp
(
− 1

2σ2
κ
)
dσ2

=
δΓ ((n− 1)/2)

π(n−1)/2n1/2
(g + 1)−p/2

[
s2 + (β̃ − β̂)TXTX(β̃ − β̂)

/
(g + 1)

]−(n−1)/2
,

=
δΓ ((n− 1)/2)

π(n−1)/2n1/2
(g + 1)−p/2κ−(n−1)/2 . (3.4)
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� If p = 0, a similar expression emerges:

f(y) =

∫ (∫
f(y|α, σ2)π(α,σ2)dα

)
dσ2 ,

with

f(y|α, σ2)π(α, σ2) =
δ(σ2)−1

(2πσ2)n/2
exp

{
− 1

2σ2
(y − ȳ1n)

T(y − ȳ1n)

}

=
δ(σ2)−n/2−1

(2π)n/2
exp

(
− 1

2σ2
(y − ȳ1n)

T(y− ȳ1n)

}
×

exp
{
− n

2σ2
(α− ȳ)2

}
.

The integration in both α and σ2 can then be conducted in closed form and
we obtain

f(y) =
δΓ ((n− 1)/2)

π(n−1)/2n1/2

[
(y− ȳ1n)

T(y − ȳ1n)
]−(n−1)/2

as the evidence associated with this “null” model. The evidence corresponds to

intlike0 in the BayesReg code.

As pointed out in Chap. 2, the computation of Bayes factors is plagued by
the inability to include generic improper prior distributions. In order to bypass
this difficulty, we will assume that all the linear models under comparison do
include the parameter α, which means that each regression model includes
an intercept. This assumption allows us to take the same improper prior
(and hence the same arbitrary constant δ) on (α, σ2) for all of those models.
Otherwise, the Bayes factors simply cannot be correctly defined.

When we compare two sets of regressors, we have to handle two regres-
sion matrices, X1 and X2, with respective dimensions (n, p1) and (n, p2),
extracted from the original matrix X by removing some columns. From a
Bayesian perspective, using Zellner’s G-prior modelling in both cases, we are
thus comparing model M1

y|α,β1, σ2 ∼ Nn

(
α1n +X1β1, σ2 In

)
,

β1|α, σ2 ∼ Np1

(
β̃
1
, g1σ

2((X1)TX1)−1
)
, p1 �= 0

π
(
α, σ2

) ∝ σ−2 ,

with model M2:

y|α,β2, σ2 ∼ Nn

(
α1n +X2β2, σ2 In

)
,

β2|α, σ2 ∼ Np2

(
β̃
2
, g2σ

2((X2)TX2)−1
)
, p2 �= 0

π
(
α, σ2

) ∝ σ−2 .

Using the above derivations, the Bayes factor between model M1 and model
M2 is then given by



3.4 Zellner’s G-Prior Analysis 83

B12(y) =
(g1 + 1)−p1/2

[
s21 + (β̃

1 − β̂
1
)T(X1)TX1(β̃

1 − β̂
1
)
/
(g1 + 1)

]−(n−1)/2

(g2 + 1)−p2/2
[
s22 + (β̃

2 − β̂
2
)T(X2)TX2(β̃

2 − β̂
2
)
/
(g2 + 1)

]−(n−1)/2
.

For caterpillar, if we have to test the null hypothesis H0 : β8 = β9 = 0,
using β̃1 = 08, β̃

2 = 06, and an arbitrary7g1 = g2 = 100, in Zellner’s G-priors,
we obtain Bπ

12 = 0.0165 when model M2 corresponds to H0. Using Jeffreys’
scale of evidence (provided in Chap. 2), this implies that log12(B

π
12) = −1.78,

hence that the posterior distribution appears to strongly favor H0.
More generally, using β̃ = 08 and g = 100, we can produce a Bayesian

regression output, programmed in R, which mimics a standard software re-
gression output like lm: besides the estimation of the βj ’s via their posterior

expectation, we include the Bayes factors Bj
12, in the log scale log10

(
Bj

12

)
,

corresponding to testing the null hypotheses H0 : βj = 0. (The stars are
related to Jeffreys’ scale of evidence.)

The R code corresponding to this “standard” output is also part of the R
function BayesReg:

bayesfactor=rep(0,p)

p0=p-1 # remove one variate

X0=X[,-j]

U0=solve(t(X0)%*%X0)%*%t(X0)

betatilde0=U0%*%X%*%betatilde

betaml0=U0%*%y

s20=t(y-alphaml-X0%*%betaml0)%*%(y-alphaml-X0%*%betaml0)

kappa0=as.numeric(s20+t(betatilde0-betaml0)%*%t(X0)%*%

X0%*%(betatilde0-betaml0)/(g+1))

intlike0=(g+1)^(-p0/2)*kappa0^(-(n-1)/2)

bayesfactor[j]=intlike/intlike0

where intlike is the marginal likelihood for the full model. (The way this
computation is repeated and used to mimic the output of the lm function can
be found by reading the function BayesReg.)

For the caterpillar dataset, β̃ = 08 and g = n = 33, the G-prior estimate
of σ2 is equal to 0.653, while the posterior means and standard variations of
the βj ’s are given below. We can immediately spot that the (most) significant
explanatory variables are the same ones as those selected by lm, x1, x2, and
x7. Note, however, that this output does not rigorously validate the selection
of the submodel with the covariates x1, x2, and x7, as it does not produce the
Bayes factor associated with this (sub)model and the full model.

7Arbitrary means here that this choice is no more justified than any other. We will
see later that gj = n is the recommended or default value for non-informative
settings.
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> res1=BayesReg(y,X)

PostMean PostStError Log10bf EvidAgaH0

Intercept -0.8133 0.1407

x1 -0.5039 0.1883 0.7224 (**)

x2 -0.3755 0.1508 0.5392 (**)

x3 0.6225 0.3436 -0.0443

x4 -0.2776 0.2804 -0.5422

x5 -0.2069 0.1499 -0.3378

x6 0.2806 0.4760 -0.6857

x7 -1.0420 0.4178 0.5435 (**)

x8 -0.0221 0.1531 -0.7609

Posterior Mean of Sigma2: 0.6528

Posterior StError of Sigma2: 0.939

3.4.4 Prediction

The prediction of m ≥ 1 future observations from units for which the explana-
tory variables X̃—but not the outcome variable ỹ—have been observed or set
is also based on the posterior distribution. Logically enough, were α, β and
σ2 known quantities, the m-vector ỹ would then have a Gaussian distribution
with mean α1m + X̃β and variance σ2Im. The predictive distribution on ỹ is
defined as the marginal in y of the joint posterior distribution on (ỹ, α,β, σ2).

Conditional on σ2, the vector ỹ of future observations has a Gaussian dis-
tribution and we can derive its expectation—used as our Bayesian estimator—
by averaging over α and β,

E
π [ỹ|σ2,y] = E

π [Eπ(ỹ|α,β, σ2,y)|σ2,y]

= E
π [α1m + X̃β|σ2,y]

= α̂1m + X̃
β̃ + gβ̂

g + 1
,

which is independent from σ2. This representation is quite intuitive, being the
product of the matrix of explanatory variables X̃ by the Bayesian estimator
of β. Similarly, we can compute

V
π(ỹ|σ2,y) = E

π[Vπ(ỹ|α,β, σ2,y)|σ2,y]

+V
π(Eπ(ỹ|α,β, σ2)|σ2,y)

= E
π[σ2Im|σ2,y] + V

π(α1m + X̃β|σ2,y)

= σ2

(
Im +

g

g + 1
X̃(XTX)−1X̃T

)
.
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Due to this factorization, and the fact that the conditional expectation does
not depend on σ2, we thus obtain

V
π(ỹ|y) = σ̂2

(
Im +

g

g + 1
X̃(XTX)−1X̃T

)
.

This decomposition of the variance makes perfect sense: Conditionally
on σ2, the posterior predictive variance has two terms, the first term be-
ing σ2Im, which corresponds to the sampling variation, and the second one
being σ2 g

g+1 X̃(XTX)−1X̃T, which corresponds to the uncertainty about β.
HPD credible regions and tests can then be conducted based on this con-

ditional predictive distribution

ỹ|σ2,y, σ2 ∼ N
(
E
π [ỹ],Vπ(ỹ|y, σ2)

)
.

Integrating σ2 out to produce the marginal distribution of ỹ leads to a mul-
tivariate Student’s t distribution

ỹ|y ∼ Tm

(
n, α̂1m + gβ̃/(g + 1),

s2 + β̂
T
XTXβ̂

n

{
Im + X̃(XTX)−1X̃T

})
.

(following a straightforward but lengthy derivation that is very similar to the
one we conducted at the end of Chap. 2, see (2.11)).

3.5 Markov Chain Monte Carlo Methods

Given the complexity of most models encountered in Bayesian modeling, stan-
dard simulation methods are not a sufficiently versatile solution. We now
present the rudiments of a technique that emerged in the late 1980s as the
core of Bayesian computing and that has since then revolutionized the field.

This technique is based on Markov chains, but we will not make many
incursions into the theory of Markov chains (see Meyn and Tweedie, 1993),
focusing rather on the practical implementation of these algorithms and trust-
ing that the underlying theory is sound enough to validate them (Robert and
Casella, 2004). At this point, it is sufficient to recall that a Markov chain
(xt)t∈N is a sequence of dependent random vectors whose dependence on the
past values x0, . . . ,xt−1 stops at the value immediately before, xt−1, and that
is entirely defined by its kernel—that is, the conditional distribution of xt

given xt−1.
The central idea behind these new methods, called Markov chain Monte

Carlo (MCMC) algorithms, is that, to simulate from a distribution π (for in-
stance, the posterior distribution), it is actually sufficient to produce a Markov
chain (xt)t∈N whose stationary distribution is π: when xt is marginally dis-
tributed according to π, then xt+1 is also marginally distributed according to
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π. If an algorithm that generates such a chain can be constructed, the ergodic
theorem guarantees that, in almost all settings, the average

1

T

T∑
t=1

g(xt)

converges to E[g(x)], no matter what the starting value.8

More informally, this property means that, for large enough t, xt is ap-
proximately distributed from π and can thus be used like the output from a
more standard simulation algorithm (even though one must take care of the
correlation between the xt’s created by the Markovian structure). For integral
approximation purposes, the difference from regular Monte Carlo approxima-
tions is that the variance structure of the estimator is more complex because of
the Markovian dependence. These methods being central to the cases studied
from this stage onward, we hope that the reader will become sufficiently profi-
cient with them by the end of the book! In this chapter, we detail a particular
type of MCMC algorithm, the Gibbs sampler, that is currently sufficient for
our needs. The next chapter will introduce a more universal type of algorithm.

3.5.1 Conditionals

A first remark that motivates the use of the Gibbs sampler9 is that, within
structures such as

π(x1) =

∫
π1(x1|x2)π̃(x2) dx2 , (3.5)

to simulate from the joint distribution

π(x1, x1) = π1(x1|x2)π̃(x2) (3.6)

automatically produces (marginal) simulation from π(x1). Therefore, in set-
tings where (3.5) holds, it is not necessary to simulate from π(x1) when one
can jointly simulate (x1, x2) from (3.6).

For example, consider (x1, x2) ∈ N×[0, 1] distributed from the joint density

π(x1, x2) ∝
(
n

x1

)
xx1+α−1
2 (1− x2)

n−x1+β−1 .

This is a joint distribution where

x1|x2 ∼ B(n, x2) and x2|α, β ∼ Be(α, β) .

8In probabilistic terms, if the Markov chains produced by these algorithms are
irreducible, then these chains are both positive recurrent with stationary distribution
π and ergodic, that is, asymptotically independent of the starting value x0.

9In the literature, both the denominations Gibbs sampler and Gibbs sampling
can be found. In this book, we will use Gibbs sampling for the simulation technique
and Gibbs sampler for the simulation algorithm.
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Therefore, although

π(x1) =

(
n

x1

)
B(α+ x1, β + n− x1)

B(α, β)

is available in closed form as the beta-binomial distribution, it is unnecessary

to work with this marginal when one can simulate an iid sample (x
(i)
1 , x

(i)
2 )

(t = 1, . . . , N) as

x
(t)
2 ∼ Be(α, β) and x

(t)
1 ∼ B(n, x

(t)
2 ) .

Integrals such as E[x1/(x1 + 1)] can then be approximated by

1

N

N∑
i=1

x
(t)
1

x
(t)
1 + 1

,

using a regular Monte Carlo approach.

Unfortunately, even when one works with a representation such as (3.6)
that is naturally associated with the original model, it is often the case that
the mixing density π̃(x2) itself is neither available in closed form nor amenable
to simulation. However, both conditional posterior distributions,

π1(x1|x2) and π2(x2|x1) ,

can often be simulated, and the following method takes full advantage of this
feature.

3.5.2 Two-Stage Gibbs Sampler

The availability of both conditionals of (3.6) in terms of simulation can be
exploited to build a transition kernel and a correspondingMarkov chain, some-
what analogous to the derivation of the maximum of a multivariate function
via an iterative device that successively maximizes the function in each of its
arguments until a fixed point is reached.

The corresponding Markov kernel is built by simulating successively from
each conditional distribution, with the conditioning variable being updated
on the run. It is called the two-stage Gibbs sampler or sometimes the data
augmentation algorithm, although both terms are rather misleading.10

10Gibbs sampling got its name from Gibbs fields, used in image analysis, when Ge-
man and Geman (1984) proposed an early version of this algorithm, while data
augmentation refers to Tanner’s (1996) special use of this algorithm in missing-data
settings, as seen in Chap. 6.
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Algorithm 3.3 Two-Stage Gibbs Sampler

Initialization: Start with an arbitrary value x
(0)
2 .

Iteration t: Given x
(t−1)
2 , generate

1. x
(t)
1 according to π1(x1|x(t−1)

2 ) ,

2. x
(t)
2 according to π2(x2|x(t)

1 ) .

Note that, in the second step of the algorithm, x
(t)
2 is generated conditional

on x1 = x
(t)
1 , not x

(t−1)
1 . The validation of this algorithm is that, for both

generations, π is a stationary distribution. Therefore, the limiting distribution

of the chain (x
(t)
1 , x

(t)
2 )t is π if the chain is irreducible; that is, if it can reach

any region in the support of π in a finite number of steps. (Note that there is
a difference between the stationary distribution and the limiting distribution
only in cases when the chain is not ergodic, as shown in Exercise 3.9.)

The practical implementation of Gibbs sampling involves solving two types
of difficulties: the first type corresponds to deriving an efficient decomposition
of the joint distribution in easily-simulated conditionals and the second one to
deciding when to stop the algorithm. Evaluating the efficiency of the decom-
position includes assessing the ease of simulating from both conditionals and
the level of correlation between the x(t)’s, as well as the mixing behavior of
the chain, that is, its ability to explore the support of π sufficiently fast. While
deciding whether or not a given conditional can be simulated is easy enough,
it is not always possible to find a manageable conditional, and more robust
alternatives such as the Metropolis–Hastings algorithm will be described in
the following chapters (see Sect. 4.2).

Choosing a stopping rule also relates to the mixing performances of the
algorithm, as well as to its ability to approximate posterior expectations un-
der π. Many indicators have been proposed in the literature (see Robert and
Casella, 2004, Chap. 12) to signify convergence, or lack thereof, although none
of these is foolproof. In the easiest cases, the lack of convergence is blatant and
can be spotted on the raw plot of the sequence of the x(t)’s, while, in other
cases, the Gibbs sampler explores very satisfactorily one mode of the posterior
distribution but fails altogether to visit the other modes of the posterior: we
will encounter such cases in Chap. 6 with mixtures of distributions. Through-
out this chapter and the following ones, we give hints on how to implement
these recommendations in practice.

Consider the posterior distribution derived in Exercise 2.11, for n = 2
observations,

π(μ|D2) ∝ e−μ2/20

{1 + (x1 − μ)2)(1 + (x2 − μ)2} .

Even though this is a univariate distribution, it can still be processed by a
Gibbs sampler through a data augmentation step, thus illustrating the idea
behind (3.5). In fact, since (j = 1, 2)
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1

1 + (xj − μ)2
=

∫ ∞

0

e−ωj[1+(xj−μ)2] dωj ,

we can define ω = (ω1, ω2) and envision π(μ|D2) as the marginal distribu-
tion of

π(μ,ω|D2) ∝ e−μ2/20 ×
2∏

j=1

e−ωj[1+(xj−μ)2] .

For this multivariate distribution, a corresponding Gibbs sampler is associated
with the following two steps:

1. Generate μ(t) ∼ π(μ|ω(t−1),D2) .
2. Generate ω(t) ∼ π(ω|μ(t),D2) .

The second step is straightforward: the ωi’s are conditionally independent
and distributed as E xp(1 + (xi − μ(t))2). The first step is also well-defined
since π(μ|ω,D2) is a normal distribution with mean

∑
i ωixi/(

∑
i ωi + 1/20)

and variance 1/(2
∑

i ωi+1/10). The corresponding R program then simplifies
into two lines

Fig. 3.4. (Top) Last 100 iterations of the chain (μ(t)); (bottom) histogram of the
chain (μ(t)) and comparison with the target density for 10,000 iterations
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> mu = rnorm(1,sum(x*omega)/sum(omega+.05),

+ sqrt(1/(.1+2*sum(omega))))

> omega = rexp(2,1+(x-mu)^2)

and the output of the simulation is represented in Fig. 3.4, with a very sat-
isfying fit between the histogram of the simulated values and the target. A
detailed zoom on the last 100 iterations shows how the chain (μ(t)) moves
around, alternatively visiting each mode of the target.

�When running a Gibbs sampler, the number of iterations should never be fixed

in advance: it is usually impossible to predict the performance of a given sampler

before producing a corresponding chain. Deciding on the length of an MCMC

run is therefore a sequential process where output behaviors are examined after

pilot runs and new simulations (or new samplers) are chosen on the basis of

these pilot runs.

3.5.3 The General Gibbs Sampler

For a joint distribution π(x1, . . . , xp) with full conditionals π1, . . . , πp where πj

is the distribution of xj conditional on (x1, . . . , xj−1, xj+1, . . . , xp), the Gibbs
sampler simulates successively from all conditionals, modifying one compo-
nent of x at a time. The corresponding algorithmic representation is given in
Algorithm 3.4.

Algorithm 3.4 Gibbs Sampler

Initialization: Start with an arbitrary value x(0) = (x
(0)
1 , . . . , x

(0)
p ) .

Iteration t: Given (x
(t−1)
1 , . . . , x

(t−1)
p ), generate

1. x
(t)
1 according to π1(x1|x(t−1)

2 , . . . , x
(t−1)
p ) ,

2. x
(t)
2 according to π2(x2|x(t)

1 , x
(t−1)
3 , . . . , x

(t−1)
p ) ,

...
p. x

(t)
p according to πp(xp|x(t)

1 , . . . , x
(t)
p−1) .

Quite logically, the validation of this generalization of Algorithm 3.3 is
identical: for each of the p steps of the t-th iteration, the joint distribution
π(x) is stationary. Under the same restriction on the irreducibility of the
chain, it also converges to π for every possible starting value. Note that the
order in which the components of x are simulated can be modified at each
iteration, either deterministically or randomly, without putting the validity of
the algorithm in jeopardy.
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The two-stage Gibbs sampler naturally appears as a special case of Algo-
rithm 3.4 for p = 2. It is, however, endowed with higher theoretical properties,
as detailed in Robert and Casella (2004, Chap. 9) and Robert and Casella
(2009, Chap. 7).

To conclude this section, let us stress that the impact of MCMC on
Bayesian statistics has been considerable. Since the 1990s, which saw the
emergence of MCMC methods in the statistical community, the occurrence of
Bayesian methods in applied statistics has greatly increased, and the frontier
between Bayesian and “classical” statistics is now so fuzzy that in some fields,
it has completely disappeared. From a Bayesian point of view, the access to
far more advanced computational means has induced a radical modification
of the way people work with models and prior assumptions. In particular,
it has opened the way to process much more complex structures, such as
graphical models and latent variable models (see Chap. 6). It has also freed
inference by opening for good the possibility of Bayesian model choice (see,
e.g., Robert, 2007, Chap. 7). This expansion is much more visible among
academics than among applied statisticians, though, given that the use of
the MCMC technology requires some “hard” thinking to process every new
problem. The availability of specific software such as BUGS has nonetheless
given access to MCMC techniques to a wider community, starting with the
medical field. New modules in R and other languages like Python are also
helping to bridge the gap.

3.6 Variable Selection

3.6.1 Deciding on Explanatory Variables

In an ideal world, when building a regression model, we should include all rele-
vant pieces of information, which in the regression context means including all
predictor variables that might possibly help in explaining y. However, there
are obvious drawbacks to the advice of increasing the number of explanatory
variables. For one thing, in noninformative settings, this eventually clashes
with the constraint p < n. For another, using a huge number of explana-
tory variables leaves little information available to obtain precise estimators.
In other words, when we increase the explanatory scope of the regression
model, we do not necessarily increase its explanatory power because it gets
harder and harder to estimate the coefficients.11 It is thus important to be

11This phenomenon is related to the principle of parsimony, also called Occam’s
razor, which states that, among two models with similar explanatory powers, the
simplest one should always be preferred. It is also connected with the learning curve
effect found in information theory and neural networks, where the performance of
a model increases on the learning dataset but decreases on a testing dataset as its
complexity increases.
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able to decide which variables—within a large pool of potential explanatory
variables—should be kept in a model that balances good explanatory power
with good estimation performance.

This is truly a decision problem in that all potential models have to be con-
sidered in parallel against a criterion that ranks them. This variable-selection
problem can be formalized as follows. We consider a dependent random vari-
able y and a set of p potential explanatory variables. At this stage, we assume
that every subset of q explanatory variables could make a proper set of ex-
planatory variables for the regression of y. The only restriction we impose is
that the intercept (that is, the constant variable) is included in every model.
There are thus 2p models in competition and we are looking for a procedure
that selects the “best” model, that is, the “most relevant” explanatory vari-
ables. Note that this variable-selection procedure can alternatively be seen
as a two-stage estimation setting where we first estimate the indicator of the
model (within the collection of models), which also amounts to estimating
variable indicators, as detailed below, and we then estimate the parameters
corresponding to this very model.

Each of the 2p models under comparison is in fact associated with a binary
indicator vector γ ∈ Γ = {0, 1}p, where γj = 1 means that the variable xj

is included in the model, denoted by Mγ . This notation is quite handy since
γ=(1,0,1,0,0,. . . ,1,0) clearly indicates which explanatory variables are in and
which are not. We also use the notation

qγ = 1T
pγ

for computing the number of variables included in the model Mγ . We de-
fine βγ as a sub-vector of β containing only the components such that xj is
included in the model Mγ and Xγ as the sub-matrix of X where only the
columns such that xj is included in the model Mγ have been left. The model
Mγ is thus defined as

y|α,βγ , σ2,γ ∼ Nn

(
α1n + βγXγβγ , σ2In

)
.

� Once again, and apparently in contradiction to our basic tenet that different

models should enjoy completely different parameters, we are compelled to de-

note by σ2 and α the variance and intercept terms common to all models,

respectively. Although this is more of a mathematical trick than a true model-

ing reason, the prior independence of (α, σ2) and γ allows for the simultaneous

use of Bayes factors and an improper prior. Despite the possibly confusing nota-

tion, βγ and β are completely unrelated in that they are parameters of different

models.
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3.6.2 G-Prior Distributions for Model Choice

Because so many models are in competition and thus considered in the global
model all at once, we cannot expect a practitioner to specify one’s own prior
on every model Mγ in a completely subjective and autonomous manner. We
thus now proceed to derive all priors from a single global prior associated with
the so-called full model that corresponds to γ = (1, . . . , 1). The argument goes
as follows:

(1) For the full model, we use Zellner’s G-prior as defined in Sect. 3.4,

β|σ2 ∼ Np(β̃, gσ
2(XTX)−1) and π(α, σ2) ∝ σ−2 .

(2) For each (sub-)model Mγ , the prior distribution of βγ conditional on σ2

is fixed as

βγ |σ2,γ ∼ Nqγ

(
β̃
γ
, gσ2

(
XγTXγ

)−1
)

,

where β̃
γ
=
(
XγTXγ

)−1

XγT X̃β̃ and we use the same prior on (α, σ2).

� This distribution is conditional on γ; in particular, this implies that, while the

variance notation σ2 is common to all models, its distribution varies with γ.

Although there are many possible ways of defining the prior on the model
index12 γ, we opt for the uniform prior

π(γ) = 2−p .

The posterior distribution of γ (that is, the distribution of γ given y) is central
to the variable-selection methodology since it is proportional to the marginal
density of y in Mγ . In addition, for prediction purposes, the prediction dis-
tribution can be obtained by averaging over all models, the weights being the
model probabilities (this is called model averaging).

The posterior distribution of γ is

π(γ|y) ∝ f(y|γ)π(γ) ∝ f(y|γ)
∝ (g + 1)−(qγ+1)/2

[
yTy − g

g + 1
yTXγ

(
XγTXγ

)−1

XγTy

− 1

g + 1
β̃γT

XγTXγ β̃
γ
]−(n−1)/2

. (3.7)

When the number of explanatory variables is less than 15, say, the exact
derivation of the posterior probabilities for all submodels can be undertaken.

12For instance, one could instead use a uniform prior on the number qγ of ex-
planatory variables or a more parsimonious prior such as π(γ) = 1/qγ .
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Indeed, 215 = 32768 means that the problem remains tractable. The following
R code (part of the function ModChoBayesReg) is used to calculate those pos-
terior probabilities and returns the top most probable models. The integrated
likelihood for the null model is computed as intlike0.

intlike=rep(intlike0,2^p)

for (j in 2:2^p){

gam=as.integer(intToBits(i-1)[1:p]==1)

pgam=sum(gam)

Xgam=X[,which(gam==1)]

Ugam=solve(t(Xgam)%*%Xgam)%*%t(Xgam)

betatildegam=b1=Ugam%*%X%*%betatilde

betamlgam=b2=Ugam%*%y

s2gam=t(y-alphaml-Xgam%*%b2)%*%(y-alphaml-Xgam%*%b2)

kappagam=as.numeric(s2gam+t(b1-b2)%*%t(Xgam)%*%

Xgam%*%(b1-b2)/(g+1))

intlike[j]=(g+1)^(-pgam/2)*kappagam^(-(n-1)/2)

}

intlike=intlike/sum(intlike)

modcho=order(intlike)[2^p:(2^p-9)]

probtop10=intlike[modcho]

The above R code uses the generic function intToBits to turn an integer i
into the indicator vector gam. The remainder of the code is quite similar to
the model choice code when computing the Bayes factors.

For the caterpillar data, we set β̃ = 08 and g = 1. The models corre-
sponding to the top 10 posterior probabilities are then given by

> ModChoBayesReg(y,X,g=1)

Number of variables less than 15

Model posterior probabilities are calculated exactly

Top10Models PostProb

1 1 2 3 7 0.0142

2 1 2 3 5 7 0.0138

3 1 2 7 0.0117

4 1 2 3 4 7 0.0112

5 1 2 3 4 5 7 0.0110

6 1 2 5 7 0.0108

7 1 2 3 7 8 0.0104

8 1 2 3 6 7 0.0102

9 1 2 3 5 6 7 0.0100

10 1 2 3 5 7 8 0.0098
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In a basic 0 − 1 decision setup, we would choose the model Mγ with the
highest posterior probability—that is, the model with explanatory variables
x1, x2, x3 and x7—which corresponds to the variables

– altitude,
– slope,
– the number of pine trees in the area, and
– the number of vegetation strata.

The model selected by the procedure thus fails to correspond to the three
variables identified in the R output at the end of Sect. 3.4. But interestingly,
even under this strong shrinkage prior g = 1 (where the prior has the same
weight as the data), all top ten models contain the explanatory variables x1,
x2 and x7, which have the most stars in this R analysis.

Now, the default or noninformative calibration of the G-prior corresponds
to the choice β̃ = 0p and g = n, which reduces the prior input to the equivalent
of a single observation. Pushing g to a smaller value results in a paradoxical
behaviour of the procedure which then usually picks the simpler model: this
is another illustration of the Jeffreys-Lindley paradox, mentioned in Chap. 2.

For β̃ = 0p and g = n, the ten most likely models and their posterior
probabilities are:

> ModChoBayesReg(y,X)

Number of variables less than 15

Models’s posterior probabilities are calculated exactly

Top10Models PostProb

1 1 2 7 0.0767

2 1 7 0.0689

3 1 2 3 7 0.0686

4 1 3 7 0.0376

5 1 2 6 0.0369

6 1 2 3 5 7 0.0326

7 1 2 5 7 0.0294

8 1 6 0.0205

9 1 2 4 7 0.0201

10 7 0.0198

For this different prior modelling, we chose the same model as the lm clas-
sical procedure, rather than when g = 1; however, the posterior probabilities
of the most likely models are much lower for g = 1, which is logical given
that the current prior is less informative. Therefore, the top model is not as
strongly supported as in the informative case. Once again, we stress that the
choice g = 1 is rather arbitrary and that it is used here merely for illustrative
purposes. The default value we recommend is g = n.
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3.6.3 A Stochastic Search for the Most Likely Model

When the number p of variables is large, it becomes impossible to compute
the posterior probabilities for the whole series of 2p models. We then need a
tailored algorithm that samples from π(γ|y) and thus selects the most likely
models, without computing first all the values of π(γ|y). This can be done
rather naturally by Gibbs sampling, given the availability of the full condi-
tional posterior probabilities of the γj’s.

Indeed, if γ−j (1 ≤ j ≤ p) is the vector (γ1, . . . , γj−1, γj+1, . . . , γp), the
full conditional distribution π(γj |y,γ−j) of γj is proportional to π(γ|y) and
can be computed in both γj = 0 and γj = 1 at no cost (since these are the
only possible values of γj).

Algorithm 3.5 Gibbs Sampler for Variable Selection

Initialization: Draw γ0 from the uniform distribution on Γ .

Iteration t: Given (γ
(t−1)
1 , . . . , γ

(t−1)
p ), generate

1. γ
(t)
1 according to π(γ1|y, γ(t−1)

2 , . . . , γ
(t−1)
p ) ,

2. γ
(t)
2 according to π(γ2|y, γ(t)

1 , γ
(t−1)
3 , . . . , γ

(t−1)
p ) ,

...
p. γ

(t)
p according to π(γp|y, γ(t)

1 , . . . , γ
(t)
p−1) .

After a large number of iterations of this algorithm (that is, when the
sampler is supposed to have converged or, more accurately, when the sampler
has sufficiently explored the support of the target distribution), its output
can be used to approximate the posterior probabilities π(γ|y, X) by empirical
averages based on the Gibbs output,

P̂
π(γ = γ∗|y) =

(
1

T − T0 + 1

) T∑
t=T0

Iγ(t)=γ∗ ,

where the T0 first values are eliminated as burn-in. (The number T0 is therefore
the number of iterations roughly needed to “reach” convergence.) The Gibbs
output can also be used to approximate the inclusion of a given variable,
P π(γj = 1|y, X), as

P̂
π(γj = 1|y) =

(
1

T − T0 + 1

) T∑
t=T0

I
γ
(t)
j =1

,

with the same asymptotic validation.
The following R code (again part of the function ModChoBayesReg) de-

scribes our implementation of the above variable-selection Gibbs sampler.
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The code uses the null model with only the intercept α as a reference, based
on the integrated likelihood intlike0 as above. It then starts at random in
the collection of models:

gamma=rep(0,niter)

mcur=sample(c(0,1),p,replace=TRUE)

gamma[1]=sum(2^(0:(p-1))*mcur)+1

pcur=sum(mcur)

and computes the corresponding integrated likelihood intlikecur

if (pcur==0) intlikecur=intlike0 else{ #integrated likelihood

Xcur=X[,which(mcur==1)]

Ucur=solve(t(Xcur)%*%Xcur)%*%t(Xcur)

betatildecur=b1=Ucur%*%X%*%betatilde

betamlcur=b2=Ucur%*%y

s2cur=t(y-alphaml-Xcur%*%b2)%*%(y-alphaml-Xcur%*%b2)

kappacur=as.numeric(s2cur+t(b1-b2)%*%t(Xcur)%*%

Xcur%*%(b1-b2)/(g+1))

intlikecur=(g+1)^(-pcur/2)*kappacur^(-(n-1)/2)

}

It then proceeds according to Algorithm 3.5, proposing to change one variable
indicator γj and accepting this move with a Metropolis–Hastings (defined and
justified in Chap. 4) probability:

if (runif(1)<=(intlikeprop/intlikecur))

This modification is more efficient than directly simulating from the condi-
tional as it avoids proposing the same value for γj twice.

for (t in 1:(niter-1)){ #iteration index

mprop=mcur

j=sample(1:p,1)

mprop[j]=abs(mcur[j]-1)

pprop=sum(mprop)

if (pprop==0) intlikeprop=intlike0 else{ #integrated

likelihood Xprop=X[,which(mprop==1)]

Uprop=solve(t(Xprop)%*%Xprop)%*%t(Xprop)

betatildeprop=b1=Uprop%*%X%*%betatilde

betamlprop=b2=Uprop%*%y

s2prop=t(y-alphaml-Xprop%*%betamlprop)%*

%(y-alphaml-Xprop%*%betamlprop)

kappaprop=as.numeric(s2prop+t(betatildeprop-betamlprop)%*

%t(Xprop)%*%Xprop%*%

(betatildeprop-betamlprop)/(g+1))

intlikeprop=(g+1)^(-pprop/2)*kappaprop^(-(n-1)/2)

}

if (runif(1)<=(intlikeprop/intlikecur)){
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mcur=mprop

intlikecur=intlikeprop

}

gamma[t+1]=sum(2^(0:(p-1))*mcur)+1

}

gamma=gamma[20001:niter] #20,000 burnin steps

res=as.data.frame(table(as.factor(gamma)))

odo=order(res$Freq)[length(res$Freq):(length(res$Freq)-9)]

modcho=res$Var1[odo]

probtop10=res$Freq[odo]/(niter-20000)

In this setting of caterpillar, handling only eight (potential) explana-
tory variables means that it is possible to compute all of the 28 probabilities
π(γ|y) and to thus deduce the normalizing constant in (3.7). We can therefore
compare these exact values with the approximations produced by the Gibbs
sampler. Using T0 =20,000 and T0 =80,000, i.e. a total of 105 simulations,
we obtain the following results for the top five models:

Models PostProb Gibbs estimates

of the PostProb

1 1 2 7 0.0767 0.0740

2 1 7 0.0689 0.0675

3 1 2 3 7 0.0686 0.0668

4 1 3 7 0.0376 0.0376

5 1 2 6 0.0369 0.0370

The comparison is quite comforting for the Gibbs sampler as the differences
are truly minor! Rather naturally, as the number of variables grows, the num-
ber of simulations needed to provide a good approximation grows as well. Once
more, we recommend running the code several times (with different random
sequences) to ensure the stability of the approximation.

3.7 Exercises

3.1 Show that the matrix Z is of full rank if and only if the matrix ZTZ is in-
vertible (where ZT denotes the transpose of the matrix Z, which can be produced
in R using the t(Z) command). Apply to Z = [1n X] and deduce that this
cannot happen when p+ 1 > n.

3.2 Show that solving the minimization program

min
β

(y −Xβ)T(y −Xβ)
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requires solving the system of equations (XTX)β = XTy. Check that this can
be done via the R command solve(t(X)%*%(X),t(X)%*%y).

3.3 Show that the variance of the maximum likelihood estimator of β in the
regression model is given by V(β̂|σ2) = σ2(XTX)−1.

3.4 For the model
y|β, σ2 ∼ Nn

(
Xβ, σ2In

)

a conjugate prior distribution is as follows: the conditional distribution of β is
given by

β|σ2 ∼ Np(β̃, σ
2M−1) ,

where M is a (p, p) positive definite symmetric matrix, and the marginal prior on
σ2 is an inverse Gamma distribution

σ2 ∼ I G (a, b), a, b > 0 .

Taking advantage of the matrix identities

(
M+XTX

)−1
= M−1 −M−1

(
M−1 + (XTX)−1

)−1
M−1

= (XTX)−1 − (XTX)−1
(
M−1 + (XTX)−1

)−1
(XTX)−1

and

XTX(M+XTX)−1M =
(
M−1(M +XTX)(XTX)−1

)−1

=
(
M−1 + (XTX)−1

)−1
,

establish that

β|y, σ2 ∼ Np

(
(M+XTX)−1{(XTX)β̂ +Mβ̃}, σ2(M+XTX)−1

)
(3.8)

where β̂ = (XTX)−1XTy and

σ2|y ∼ I G

(
n

2
+ a, b+

s2

2
+

(β̃ − β̂)T
(
M−1 + (XTX)−1

)−1
(β̃ − β̂)

2

)

(3.9)

where s2 = (y − β̂X)T(y − β̂X) are the correct posterior distributions. Give a
(1− α) HPD region on β.

3.5 The regression model of Exercise 3.4 can also be used in a predictive sense:
for a given (m, p+ 1) explanatory matrix X̃, i.e., when predicting m unobserved
variates ỹi, the corresponding outcome ỹ can be inferred through the predictive
distribution π(ỹ|σ2,y). Show that π(ỹ|σ2,y) is a Gaussian density with mean

E
π[ỹ|σ2,y] = X̃(M +XTX)−1(XTXβ̂ +Mβ̃)
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and covariance matrix

V
π(ỹ|σ2,y) = σ2(Im + X̃(M+XTX)−1X̃T) .

Deduce that

ỹ|y ∼ Tm

(
n+ 2a, X̃(M+XTX)−1(XTXβ̂ +Mβ̃),

2b+ s2 + (β̃ − β̂)T
(
M−1 + (XTX)−1

)−1
(β̃ − β̂)

n+ 2a

×
{
Im + X̃(M +XTX)−1X̃T

})
.

3.6 Show that the marginal distribution of y associated with (3.8) and (3.9) is
given by

y ∼ Tn

(
2a,Xβ̃,

b

a
(In +XM−1XT)

)
.

3.7 Show that the matrix (In + gX(XTX)−1XT) has 1 and g + 1 as only
eigenvalues. (Hint: Show that the eigenvectors associated with g + 1 are of the
form Xβ and that the eigenvectors associated with 1 are those orthogonal to
X.) Deduce that the determinant of the matrix (In + gX(XTX)−1XT) is indeed
(g + 1)p+1.

3.8 Under the Jeffreys prior, give the predictive distribution of ỹ, m dimensional
vector corresponding to the (m, p) matrix of explanatory variables X̃.

3.9 If (x1, x2) is distributed from the uniform distribution on

{
(x1, x2); (x1 − 1)2 + (x2 − 1)2 ≤ 1

}∪{(x1, x2); (x1 + 1)2 + (x2 + 1)2 ≤ 1
}
,

show that the Gibbs sampler does not produce an irreducible chain. For this dis-
tribution, find an alternative Gibbs sampler that works. (Hint: Consider a rotation
of the coordinate axes.)

3.10 If a joint density g(y1, y2) corresponds to the conditional distributions
g1(y1|y2) and g2(y2|y1), show that it is given by

g(y1, y2) =
g2(y2|y1)∫

g2(v|y1)/g1(y1|v) dv .

3.11 Considering the model

η|θ ∼ Bin(n, θ) , θ ∼ Be(a, b),
derive the joint distribution of (η, θ) and the corresponding full conditional distri-
butions. Implement a Gibbs sampler associated with those full conditionals and
compare the outcome of the Gibbs sampler on θ with the true marginal distribu-
tion of θ.
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3.12 Take the posterior distribution on (θ, σ2) associated with the joint model

xi|θ, σ2 ∼ N (θ, σ2), i = 1, . . . , n,

θ ∼ N (θ0, τ
2) , σ2 ∼ IG (a, b) .

Show that the full conditional distributions are given by

θ|x, σ2 ∼ N

(
σ2

σ2 + nτ2
θ0 +

nτ2

σ2 + nτ2
x̄,

σ2τ2

σ2 + nτ2

)

and

σ2|x, θ ∼ IG

(
n

2
+ a,

1

2

∑
i

(xi − θ)2 + b

)
,

where x̄ is the empirical average of the observations. Implement the Gibbs sampler
associated with these conditionals.
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