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Normal Models

This was where the work really took place.
—Ian Rankin, Knots & Crosses.—

Roadmap

This chapter uses the standard normal N (μ, σ2) distribution as an easy entry to
generic Bayesian inferential methods. As in every subsequent chapter, we start
with a description of the data used as a chapter benchmark for illustrating new
methods and for testing assimilation of the techniques. We then propose a cor-
responding statistical model centered on the normal distribution and consider
specific inferential questions to address at this level, namely parameter estima-
tion, model choice, and outlier detection, once set the description of the Bayesian
resolution of inferential problems. As befits a first chapter, we also introduce here
general computational techniques known as Monte Carlo methods.
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26 2 Normal Models

2.1 Normal Modeling

The normal (or Gaussian) distribution N (μ, σ2), with density on R,

f(x|μ, σ) = 1√
2πσ

exp

{
− 1

2σ2
(x− μ)2

}
,

is certainly one of the most studied and one of the most used distributions
because of its “normality”: It appears both as the limit of additive small
effects and as a representation of symmetric phenomena without long tails,
and it offers many openings in terms of analytical properties and closed-form
computations. As such, it is thus the natural opening to a modeling course,
even more than discrete and apparently simpler models such as the binomial
and Poisson models we will discuss in the following chapters. Note, however,
that we do not advocate at this stage the use of the normal distribution as
a one-fits-all model: There exist many continuous situations where a normal
model is inappropriate for many possible reasons (e.g., skewness, fat tails,
dependence, multimodality).

Fig. 2.1. Dataset normaldata: Histogram of the observed fringe shifts in Illing-
worth’s 1927 experiment
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Our normal dataset, normaldata, is linked with the famous Michelson–
Morlay experiment that opened the way to Einstein’s relativity theory in
1887. The experiment was intended to detect the “æther flow” and hence
the existence of æther, this theoretical medium physicists postulated at this
epoch was necessary to the transmission of light. Michelson’s measuring de-
vice consisted in measuring the difference in the speeds of two light beams
travelling the same distance in two orthogonal directions. As often in physics,
the measurement was done by interferometry and differences in the travelling
time inferred from shift in the fringes of the light spectrum. However, the
experiment produced very small measurements that were not conclusive for
the detection of the æther. Later experiments tried to achieve higher preci-
sion, as the one by Illingworth in 1927 used here as normaldata, only to
obtain smaller and smaller upper bounds on the æther windspeed. While the
original dataset is available in R as morley, the entries are approximated to
the nearest multiple of ten and are therefore difficult to analyze as normal
observations.

The 64 data points in normaldata are associated with session numbers
(first column), corresponding to different times of the day, and the values in the
second column represent the averaged fringe displacement due to orientation
taken over ten measurements made by Illingworth, who assumed a normal
error model. Figure 2.1 produces an histogram of the data by the simple R
commands

> data(normaldata)

> shift=normaldata[,2]

> hist(shift,nclass=10,col="steelblue",prob=TRUE,main="")

This histogram seems compatible with a symmetric unimodal distribution
such as the normal distribution. As shown in Fig. 2.2 by a qq-plot obtained
by the commands

> qqnorm((shift-mean(shift))/sd(shift),pch=19,col="gold2")

> abline(a=0,b=1,lty=2,col="indianred",lwd=2)

which compare the empirical cdf with a pluggin normal estimate, The
N (μ, σ2) fit may not be perfect, though, because of (a) a possible bimodality
of the histogram and (b) potential outliers.

As mentioned above, the use of a normal distribution for modeling a given
dataset is a convenient device that does not need to correspond to a perfect fit.
With some degree of approximation, the normal distribution may agree with
the data sufficiently to be used in place of the true distribution (if any). There
exist, however, some setups where the normal distribution is thought to be the
exact distribution behind the dataset (or where departure from normality has
a significance for the theory behind the observations). In Marin and Robert
(2007), we introduced a huge dataset related to the astronomical concept of
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Fig. 2.2. Dataset normaldata: qq-plot of the observed fringe shifts against the
normal quantiles

the cosmological background noise that illustrated this point, but chose not
to reproduce the set in this edition due to the difficulty in handling it.

2.2 The Bayesian Toolkit

2.2.1 Posterior Distribution

Given an independent and identically distributed (later abbreviated as iid)
sample Dn = (x1, . . . , xn) from a density f(x|θ), depending upon an un-
known parameter θ ∈ Θ, for instance the mean μ of the benchmark normal
distribution, the associated likelihood function is

�(θ|Dn) =

n∏
i=1

f(xi|θ) . (2.1)

This function of θ is a fundamental entity for the analysis of the information
provided about θ by the sample Dn, and Bayesian analysis relies on (2.1) to
draw its inference on θ. For instance, when Dn is a normal N (μ, σ2) sample
of size n and θ = (μ, σ2), we get

�(θ|Dn) =

n∏
i=1

exp{−(xi − μ)2/2σ2}/
√
2πσ
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∝ exp

{
−
∑
i=1

(xi − μ)2/2σ2

}
/σn

∝ exp

{
−
(
nμ2 − 2nx̄μ+

∑
i=1

x2
i

)/
2σ2

}
/σn

∝ exp
{− [n(μ− x̄)2 + s2

] /
2σ2
}
/σn,

where x̄ denotes the empirical mean and where s2 is the sum
∑n

i=1(xi − x̄)2.
This shows in particular that x̄ and s2 are sufficient statistics.

� In the above display of equations, the sign ∝ means proportional to. This

proportionality is understood for functions of θ, meaning that the discarded

constants do not depend on θ but may well depend on the data Dn. This

shortcut is both handy in complex Bayesian derivations and fraught with danger

when considering several levels of parameters.

The major input of the Bayesian approach, compared with a traditional
likelihood approach, is that it modifies the likelihood function into a posterior
distribution, which is a valid probability distribution on Θ defined by the
classical Bayes’ formula (or theorem)

π(θ|Dn) =
�(θ|Dn)π(θ)∫
�(θ|Dn)π(θ) dθ

. (2.2)

The factor π(θ) in (2.2) is called the prior and it obviously has to be chosen
to start the analysis.

� The posterior density is a probability density on the parameter, which does not

mean the parameter θ need be a genuine random variable. This density is used

as an inferential tool, not as a truthful representation.

A first motivation for this approach is that the prior distribution sum-
marizes the prior information on θ; that is, the knowledge that is available
on θ prior to the observation of the sample Dn. However, the choice of π(θ)
is often decided on practical grounds rather than strong subjective beliefs or
overwhelming prior information. A second motivation for the Bayesian con-
struct is therefore to provide a fully probabilistic framework for the inferential
analysis, with respect to a reference measure π(θ).

As an illustration, consider the simplest case of the normal distribution
with known variance, N (μ, σ2). If the prior distribution on μ, π(μ), is the
normal N

(
0, σ2
)
, the posterior distribution is easily derived via Bayes’ the-

orem

π(μ|Dn) ∝ π(μ) �(θ|Dn)

∝ exp{−μ2/2σ2} exp
{−n(x̄− μ)2/2σ2

}
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∝ exp
{−(n+ 1)μ2/2σ2 + 2nμx̄/2σ2

}
∝ exp
{−(n+ 1)[μ− nx̄/(n+ 1)]2/2σ2

}
,

which means that this posterior distribution in μ is a normal distribution
with mean nx̄/(n + 1) and variance σ2/(n + 1). The mean (and mode) of
the posterior is therefore different from the classical estimator x̄, which may
seem as a paradoxical feature of this Bayesian analysis. The reason for the
difference is that the prior information that μ is close enough to zero is taken
into account by the posterior distribution, which thus shrinks the original
estimate towards zero. If we were given an alternative information that μ was
close to ten, the posterior distribution would similarly shrink μ towards ten.
The change from a factor n to a factor (n + 1) in the (posterior) variance
is similarly explained by the prior information, in that accounting for this
information reduces the variability of our answer.

For normaldata, we can first assume that the value of σ is the variability
of the Michelson–Morley apparatus, namely 0.75. In that case, the posterior
distribution on the fringe shift average μ is a normal N (nx̄/(n+1), σ2/(n+1))
distribution, hence with mean and variance

> n=length(shift)

> mmu=sum(shift)/(n+1); mmu

[1] -0.01461538

> vmu=0.75^2/(n+1); vmu

[1] 0.008653846

represented on Fig. 2.3 as a dotted curve.

The case of a normal distribution with a known variance being quite un-
realistic, we now consider the general case of an iid sample Dn = (x1, . . . , xn)
from the normal distribution N (μ, σ2) and θ = (μ, σ2). Keeping the same
prior distribution N

(
0, σ2
)
on μ, which then appears as a conditional distri-

bution of μ given σ2, i.e., relies on the generic decomposition

π(μ, σ2) = π(μ|σ2)π(σ2) ,

we have to introduce a further prior distribution on σ2. To make computations
simple at this early stage, we choose an exponential E (1) distribution on
σ−2. This means that the random variable ω = σ−2 is distributed from an
exponential E (1) distribution, the distribution on σ2 being derived by the
usual change of variable technique,

π(σ2) = exp(−σ−2)

∣∣∣∣dσ
−2

dσ2

∣∣∣∣ = exp(−σ−2) (σ2)−2 .

(This distribution is a special case of an inverse gamma distribution, namely
IG(1, 1).) The corresponding posterior density on θ is then given by
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π((μ, σ2)|Dn) ∝ π(σ2)× π(μ|σ2)× �((μ, σ2)|Dn)

∝ (σ−2)1/2+2 exp
{−(μ2+2)/2σ2

}
×(σ−2)n/2 exp

{− (n(μ− x)2+s2
)
/2σ2
}

∝ (σ2)−(n+5)/2 exp
{− [(n+1)(μ− nx̄/(n+1))2+(2+s2)

]
/2σ2
}

∝ (σ2)−1/2 exp
{−(n+1)[μ− nx̄/(n+1)]2/2σ2

}
.

×(σ2)−(n+2)/2−1 exp
{−(2+s2)/2σ2

}
.

Therefore, the posterior on θ can be decomposed as the product of an inverse
gamma distribution on σ2, I G ((n+ 2)/2, [2 + s2]/2)—which is the distribu-
tion of the inverse of a gamma G ((n+2)/2, [2+s2]/2) random variable—and,
conditionally on σ2, a normal distribution on μ, N (nx̄/(n+ 1), σ2/(n+ 1)).
The interpretation of this posterior is quite similar to the case when σ is
known, with the difference that the variability in σ induces more variabil-
ity in μ, the marginal posterior in μ being then a Student’s t distribution1

(Exercise 2.1)

μ|Dn ∼ T
(
n+ 2, nx̄/(n+ 1), (2 + s2)/(n+ 1)(n+ 2)

)
,

with n+ 2 degrees of freedom, a location parameter proportional to x̄ and a
scale parameter (almost) proportional to s.

For normaldata, an E xp(1) prior on σ−2 being compatible with the value
observed on the Michelson–Morley experiment, the parameters of the t distri-
bution on μ are therefore n = 64,

> mtmu=sum(shift)/(n+1);mtmu

[1] -0.01461538

> stmu=(2+(n-1)*var(shift))/((n+2)*(n+1));stmu

[1] 0.0010841496

We compare the resulting posterior with the one based on the assumption
σ = 0.75 on Fig. 2.3, using the curve commands (note that the mnormt li-
brary may require the preliminary installation of the corresponding package
by install.packages("mnormt")):

> library(mnormt)

> curve(dmt(x,mean=mmu,S=stmu,df=n+2),col="chocolate2",lwd=2,

+ xlab="x",ylab="",xlim=c(-.5,.5))

> curve(dnorm(x,mean=mmu,sd=sqrt(vmu)),col="steelblue2",

+ lwd=2,add=TRUE,lty=2)

1We will omit the reference to Student in the subsequent uses of this distribution,
as is the rule in anglo-saxon textbooks.
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Fig. 2.3. Dataset normaldata: Two posterior distributions on μ corresponding
to an hypothetical σ = 0.75 (dashed lines) and to an unknown σ2 under the prior
σ−2 ∼ E (1) (plain lines)

Although this may sound counterintuitive, in this very case, estimating the
variance produces a reduction in the variability of the posterior distribution
on μ. This is because the postulated value of σ2 is actually inappropriate for
Illingworth’s experiment, being far too large. Since the posterior distribution
on σ2 is an I G (33, 1.82) distribution for normaldata, the probability that
σ is as large as 0.75 can be evaluated as

> digmma=function(x,shape,scale){dgamma(1/x,shape,scale)/x^2}

> curve(digmma(x,shape=33,scale=(1+(n+1)*var(shift))/2),

+ xlim=c(0,.2),lwd=2)

> pgamma(1/(.75)^2,shape=33,scale=(1+(n+1)*var(shift))/2)

[1] 8.99453e-39

which shows that 0.75 is quite unrealistic, being ten times as large as the
mode of the posterior density on σ2.

The above R command library(mnormt) calls the mnormt library, which
contains useful additional functions related with multivariate normal and t
distributions. In particular, dmt allows for location and scale parameters in the
t distribution. Note also that s2 is computed as (n-1)*var(shift) because R
implicitly adopts a classical approach in using the “best unbiased estimator”
of σ2.
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2.2.2 Bayesian Estimates

A concept that is at the core of Bayesian analysis is that one should provide
an inferential assessment conditional on the realized value of Dn. Bayesian
analysis gives a proper probabilistic meaning to this conditioning by allocating
to θ a probability distribution. Once the prior distribution is selected, Bayesian
inference formally is “over”; that is, it is completely determined since the
estimation, testing, and evaluation procedures are automatically provided by
the prior and the way procedures are compared (or penalized). For instance,

if estimations θ̂ of θ are compared via the sum of squared errors,

L(θ, θ̂) = ‖θ − θ̂‖2 ,

the corresponding Bayes optimum is the expected value of θ under the posterior
distribution,2

θ̂ =

∫
θ π(θ|Dn) dθ =

∫
θ �(θ|Dn)π(θ) dθ∫
�(θ|Dn)π(θ) dθ

, (2.3)

for a given sample Dn.
When no specific penalty criterion is available, the estimator (2.3) is of-

ten used as a default estimator, although alternatives are also available. For
instance, the maximum a posteriori estimator (MAP) is defined as

θ̂ = argmaxθ π(θ|Dn) = argmaxθ π(θ)�(θ|Dn), (2.4)

where the function to maximize is usually provided in closed form. However,
numerical problems often make the optimization involved in finding the MAP
far from trivial. Note also here the similarity of (2.4) with the maximum
likelihood estimator (MLE): The influence of the prior distribution π(θ) on
the estimate progressively disappears as the number of observations n in-
creases, and the MAP estimator often recovers the asymptotic properties of
the MLE.

For normaldata, since the posterior distribution on σ−2 is a G (32, 1.82)
distribution, the posterior expectation of σ−2 given Illingworth’s experimental
data is 32/1.82 = 17.53. The posterior expectation of σ2 requires a supple-
mentary effort in order to derive the mean of an inverse gamma distribution
(see Exercise 2.2), namely

E
π[σ2|Dn] = 1.82/(33− 1) = 0.057 .

2Estimators are functions of the data Dn, while estimates are values taken by
those functions. In most cases, we will denote them with a “hat” symbol, the de-
pendence on Dn being implicit.
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Similarly, the MAP estimate is given here by

argmaxθ π(σ
2|Dn) = 1.82/(33 + 1) = 0.054

(see also Exercise 2.2). These values therefore reinforce our observation that
the Michelson–Morley precision is not appropriate for the Illingworth experi-
ment, which is much more precise indeed.

2.2.3 Conjugate Prior Distributions

The selection of the prior distribution is an important issue in Bayesian statis-
tics. When prior information is available about the data or the model, it can
(and must) be used in building the prior, and we will see some implementa-
tions of this recommendation in the following chapters. In many situations,
however, the selection of the prior distribution is quite delicate, due to the
absence of reliable prior information, and default solutions must be chosen
instead. Since the choice of the prior distribution has a considerable influence
on the resulting inference, this inferential step must be conducted with the
utmost care.

From a computational viewpoint, the most convenient choice of prior dis-
tributions is to mimic the likelihood structure within the prior. In the most
advantageous cases, priors and posteriors remain within the same param-
eterized family. Such priors are called conjugate. While the foundations of
this principle are too advanced to be processed here (see, e.g., Robert, 2007,
Chap. 3), such priors exist for most usual families, including the normal dis-
tribution. Indeed, as seen in Sect. 2.2.1, when the prior on a normal mean is
normal, the corresponding posterior is also normal.

Since conjugate priors are such that the prior and posterior densities be-
long to the same parametric family, using the observations boils down to an
update of the parameters of the prior. To avoid confusion, the parameters
involved in the prior distribution on the model parameter are usually called
hyperparameters. (They can themselves be associated with prior distributions,
then called hyperpriors.)

For most practical purposes, it is sufficient to consider the conjugate priors
described in Table 2.1. The derivation of each row is straightforward if painful
and proceeds from the same application of Bayes’ formula as for the normal
case above (Exercise 2.5). For distributions that are not within this table, a
conjugate prior may or may not be available (Exercise 2.6).

An important feature of conjugate priors is that one has a priori to select
two hyperparameters, e.g., a mean and a variance in the normal case. On the
one hand, this is an advantage when using a conjugate prior, namely that one
has to select only a few parameters to determine the prior distribution. On
the other hand, this is a drawback in that the information known a priori on μ
may be either insufficient to determine both parameters or incompatible with
the structure imposed by conjugacy.
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Table 2.1. Conjugate priors for the most common statistical families

f(x|θ) π(θ) π(θ|x)
Normal Normal

N (θ, σ2) N (μ, τ 2) N (ρ(σ2μ+ τ 2x), ρσ2τ 2)

ρ−1 = σ2 + τ 2

Poisson Gamma
P(θ) G (α, β) G (α+ x, β + 1)

Gamma Gamma
G (ν, θ) G (α, β) G (α+ ν, β + x)

Binomial Beta
B(n, θ) Be(α,β) Be(α+ x, β + n− x)

Negative Binomial Beta
N eg(m,θ) Be(α,β) Be(α+m,β + x)

Multinomial Dirichlet
Mk(θ1, . . . , θk) D(α1, . . . , αk) D(α1 + x1, . . . , αk + xk)

Normal Gamma

N (μ, 1/θ) G (α, β) G (α+ 0.5, β + (μ− x)2/2)

2.2.4 Noninformative Priors

There is no compelling reason to choose conjugate priors as our priors, ex-
cept for their simplicity, but the restrictive aspect of conjugate priors can
be attenuated by using hyperpriors on the hyperparameters themselves, al-
though we will not deal with this additional level of complexity in the current
chapter. The core message is therefore that conjugate priors are nice to work
with, but require a hyperparameter determination that may prove awkward
in some settings and that may moreover have a lasting impact on the resulting
inference.

Instead of using conjugate priors, one can opt for a completely different
perspective and rely on so-called noninformative priors that aim at attenuat-
ing the impact of the prior on the resulting inference. These priors are fun-
damentally defined as coherent extensions of the uniform distribution. Their
purpose is to provide a reference measure that has as little as possible bear-
ing on the inference (relative to the information brought by the likelihood).
We first warn the reader that, for unbounded parameter spaces, the den-
sities of noninformative priors actually fail to integrate to a finite number
and they are defined instead as positive measures. While this sounds like an
invalid extension of the probabilistic framework, it is quite correct to def-
ine the corresponding posterior distributions by (2.2), as long as the integral
in the denominator is finite (almost surely). A more detailed account is for
instance provided in Robert (2007, Sect. 1.5) about this possibility of using
σ-finite measures (sometimes called improper priors) in settings where true
probability prior distributions are too difficult to come by or too subjective
to be accepted by all. For instance, location models
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x ∼ p(x− θ)

are usually associated with flat priors π(θ) = 1 (note that these models include
the normal N (θ, 1) as a special case), while scale models

x ∼ 1

θ
f
(x
θ

)

are usually associated with the log-transform of a flat prior, that is,

π(θ) = 1/θ .

In a more general setting, the (noninformative) prior favored by most Bayesi-
ans is the so-called Jeffreys prior,3 which is related to the Fisher information
matrix

IF (θ) = varθ

(
∂ log f(X |θ)

∂θ

)

by

πJ(θ) =
∣∣IF (θ)∣∣1/2 ,

where |I| denotes the determinant of the matrix I.
Since the mean μ of a normal model is a location parameter, when the

variance σ2 is known, the standard choice of noninformative parameter is an
arbitrary constant π(μ) (taken to be 1 by default). Given that this flat prior
formally corresponds to the limiting case τ = ∞ in the conjugate normal
prior, it is easy to verify that this noninformative prior is associated with the
posterior distribution N (x, 1), which happens to be the likelihood function
in that case. An interesting consequence of this observation is that the MAP
estimator is also the maximum likelihood estimator in that (special) case. For
the general case when θ = (μ, σ2), the Fisher information matrix leads to
the Jeffreys prior πJ(θ) = 1/σ3 (Exercise 2.4). The corresponding posterior
distribution on (μ, σ2) is then

π((μ, σ2)|Dn) ∝ (σ−2)(3+n)/2 exp
{− (n(μ− x)2 + s2

)
/2σ2
}

∝ σ−1 exp
{−n(μ− x̄)2/2σ2

}× (σ2)−(n+2)/2 exp

{−s2

2σ2

}
,

that is,
θ ∼ N

(
x̄, σ2/n

)× I G
(
n/2, s2/2

)
.

a product of a conditional normal on μ by an inverse gamma on σ2. Therefore
the marginal posterior distribution on μ is a t distribution (Exercise 2.1)

μ|Dn ∼ T
(
n, x̄, s2/n2)

)
.

3Harold Jeffreys was an English geophysicist who developed and formalized
Bayesian methods in the 1930s in order to analyze geophysical data. He ended up
writing an influential treatise on Bayesian statistics entitled Theory of Probability.
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For normaldata, the difference in Fig. 2.3 between the noninformative
solution and the conjugate posterior is minor, but it expresses that the prior
distribution E (1) on σ−2 is not very appropriate for the Illingworth experi-
ment, since it does not put enough prior weight on the region of importance,
i.e. near 0.05. As a result, the most concentrated posterior is (seemingly para-
doxically) the one associated with the noninformative prior!

� A major (and potentially dangerous) difference between proper and improper
priors is that the posterior distribution associated with an improper prior is not
necessarily defined, that is, it may happen that

∫
π(θ)
(θ|Dn) dθ < ∞ (2.5)

does not hold. In some cases, this difficulty disappears when the sample size is

large enough. In others (see Chap. 6), it may remain whatever the sample size.

But the main thing is that, when using improper priors, condition (2.5) must

always be checked.

2.2.5 Bayesian Credible Intervals

One point that must be clear from the beginning is that the Bayesian approach
is a complete inferential approach. Therefore, it covers confidence evaluation,
testing, prediction, model checking, and point estimation. We will progres-
sively cover the different facets of Bayesian analysis in other chapters of this
book, but we address here the issue of confidence intervals because it is rather
a straightforward step from point estimation.

As with everything else, the derivation of the confidence intervals (or con-
fidence regions in more general settings) is based on the posterior distribution
π(θ|Dn). Since the Bayesian approach processes θ as a random variable, a
natural definition of a confidence region on θ is to determine C(Dn) such that

π(θ ∈ C(Dn)|Dn) = 1− α (2.6)

where α is a predetermined level such as 0.05.4

The important difference with a traditional perspective in (2.6) is that the
integration is done over the parameter space, rather than over the observation
space. The quantity 1− α thus corresponds to the probability that a random
θ belongs to this set C(Dn), rather than to the probability that the random
set contains the “true” value of θ. Given this drift in the interpretation of a

4There is nothing special about 0.05 when compared with, say, 0.87 or 0.12. It
is just that the famous 5% level is accepted by most as an acceptable level of error.
If the context of the analysis tells a different story, another value for α (including
one that may even depend on the data) should be chosen!
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confidence set (rather called a credible set by Bayesians), the determination of
the best5 credible set turns out to be easier than in the classical sense: indeed,
this set simply corresponds to the values of θ with the highest posterior values,

C(Dn) = {θ; π(θ|Dn) ≥ kα} ,

where kα is determined by the coverage constraint (2.6). This region is called
the highest posterior density (HPD) region.

For normaldata, since the marginal posterior distribution on μ associated
with the Jeffreys prior is the t distribution, T (n, x̄, s2/n2),

π(μ|Dn) ∝
[
n(μ− x̄)2 + s2

]−(n+1)/2

with n = 64 degrees of freedom. Therefore, due to the symmetry properties
of the t distribution, the 95% credible interval on μ is centered at x̄ and its
range is derived from the 0.975 quantile of the t distribution with n degrees
of freedom,

> qt(.975,df=n)*sqrt((n-1)*var(shift)/n^2)

[1] 0.05082314

since the mnormt package does not compute quantiles. The resulting confidence
interval is therefore given by

> qt(.975,df=n)*sqrt((n-1)*var(shift)/n^2)+mean(shift)

[1] 0.03597939

> -qt(.975,df=n)*sqrt((n-1)*var(shift)/n^2)+mean(shift)

[1] -0.06566689

i.e. equal to [−0.066, 0.036]. In conclusion, the value 0 belongs to this credible
interval on μ and this (noninformative) Bayesian analysis of normaldata
shows that, indeed, the absence of æther wind is not infirmed by Illingworth’s
experiment.

�While the shape of an optimal Bayesian confidence set is easily derived, the

computation of either the bound kα or the set C(Dn) may be too challenging

to allow an analytic construction outside conjugate setups (see Exercise 2.11).

2.3 Bayesian Model Choice

Deciding the validity of some assumptions or restrictions on the parameter
θ is a major part of the statistician’s job. In classical statistics, this type of

5In the sense of producing the smallest possible volume with a given coverage.
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problems goes under the name of hypothesis testing, following the framework
set by Fisher, Neyman and Pearson in the 1930s. Hypothesis testing considers
a decision problem where an hypothesis is either true or false and where the
answer provided by the statistician is also a statement whether or not the hy-
pothesis is true. However, we deem this approach to be too formalized—even
though it can be directly reproduced from a Bayesian perspective, as shown
in Robert (2007, Chap. 5)—, we strongly favour a model choice philosophy,
namely that two or more models are proposed in parallel and assessed in
terms of their respective fits of the data. This view acknowledges the fact that
models are at best approximations of reality and it does not aim at finding a
“true model”, as hypothesis testing may do. In this book, we will thus follow
the later approach and take the stand that inference problems expressed as
hypothesis testing by the classical statisticians are in fact comparisons of dif-
ferent models. In terms of numerical outcomes, both perspectives—Bayesian
hypothesis testing vs. Bayesian model choice—are exchangeable but we al-
ready warn the reader that, while the Bayesian solution is formally very close
to a likelihood (ratio) statistic, its numerical values often strongly differ from
the classical solutions.

2.3.1 The Model Index as a Parameter

The essential novelty when dealing with the comparison of models is that this
issue makes the model itself an unknown quantity of interest. Therefore, if we
are comparing two or more models with indices k = 1, 2, . . . , J , we introduce a
model indicator M taking values in {1, 2, . . . , J} and representing the index of
the “true” model. If M = k, then the data Dn are generated from a statistical
model Mk with likelihood �(θk|Dn) and parameter θk taking its value in a
parameter space Θk. An obvious illustration is when opposing two standard
parametric families, e.g., a normal family against a t family, in which case
J = 2, Θ1 = R × R

∗
+—for mean and variance—and Θ2 = R

∗
+ × R× R

∗
+—for

degree of freedom, mean and variance—, but this framework also includes soft
or hard constraints on the parameters, as for instance imposing that a mean
μ is positive.

In this setting, a natural Bayes procedure associated with a prior distri-
bution π is to consider the posterior probability

δπ(Dn) = P
π(M = k|Dn) ,

i.e., the posterior probability that the model index is k, and select the index
of the model with the highest posterior probability as the model preferred
by the data Dn. This representation implies that the prior π is defined over
the collection of model indices, {1, 2, . . . , J}, and, conditionally on the model
index M, on the corresponding parameter space, Θk. This construction may
sound both artificial and incomplete, as there is no prior on the parameter θk
unless M = k, but it nonetheless perfectly translates the problem at hand:
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inference on θk is meaningless unless this is the parameter of the correct model.
Furthermore, the quantity of interest integrates out the parameter, since

P
π(M = k|Dn) =

P
π(M = k)

∫
�(θk|Dn)πk(θk) dθk∑J

j=1 P
π(M = j)πj(θj) dθj

.

�We believe it is worth emphasizing the above point: A parameter θk associated

with a model does not have a statistical meaning outside this model. This means

in particular that the notion of parameters “common to all models” often found

in the literature, including the Bayesian literature, is not acceptable within a

model choice perspective. Two models must have distinct parameters, if only

because the purpose of the analysis is to end up with a single model.

The choice of the prior π is highly dependent on the value of the prior
model probabilities Pπ(M = k). In some cases, there is experimental or sub-
jective evidence about those probabilities, but in others, we are forced to settle
for equal weights Pπ(M = k) = 1/J . For instance, given a single observation
x ∼ N (μ, σ2) from a normal model where σ2 is known, assuming μ ∼ N (ξ, τ2),
the posterior distribution π(μ|x) is the normal distribution N (ξ(x), ω2) with

ξ(x) =
σ2ξ + τ2x

σ2 + τ2
and ω2 =

σ2τ2

σ2 + τ2
.

If the question of interest is to decide whether μ is negative or positive, we
can directly compute

P
π(μ < 0|x) = P

π

(
μ− ξ(x)

ω
<

−ξ(x)

ω

)

= Φ (−ξ(x)/ω) , (2.7)

where Φ is the normal cdf. This computation does not seem to follow from
the principles we just stated but it is only a matter of perspective as we
can derive the priors on both models from the original prior. Deriving this
posterior probability indeed means that, a priori, μ is negative with probability
P
π(μ < 0) = Φ(−ξ/τ) and that, in this model, the prior on μ is the truncated

normal

π1(μ) =
exp{−(μ− ξ)2/2τ2}√

2πτΦ(−ξ/τ)
Iμ<0 ,

while μ is positive with probability Φ(ξ/τ) and, in this second model, the prior
on μ is the truncated normal

π2(μ) =
exp{−(μ− ξ)2/2τ2}√

2πτΦ(ξ/τ)
Iμ>0 .

The posterior probability of Pπ(M = k|Dn) is the core object in Bayesian
model choice and, as indicated above, the default procedure is to select the
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model with the highest posterior probability. However, in decisional settings
where the choice between two models has different consequences depending on
the value of k, the boundary in P

π(M = k|Dn) between choosing one model
and the other may be far from 0.5. For instance, in a pharmaceutical trial,
deciding to start production of a new drug does not have the same financial
impact as deciding to run more preliminary tests. Changing the bound away
from 0.5 is in fact equivalent to changing the prior probabilities of both models.

2.3.2 The Bayes Factor

A notion central to Bayesian model choice is the Bayes factor

Bπ
21(Dn) =

P
π(M = 2|Dn)/P

π(M = 1|Dn)

Pπ(M = 2)/Pπ(M = 1)
,

which corresponds to the classical odds or likelihood ratio, the difference be-
ing that the parameters are integrated rather than maximized under each
model. While this quantity is a simple one-to-one transform of the posterior
probability, it can be used for Bayesian model choice without first resorting
to a determination of the prior weights of both models. Obviously, the Bayes
factor depends on prior information through the choice of the model priors π1

and π2,

Bπ
21(Dn) =

∫
Θ2

�2(θ2|Dn)π2(θ2) dθ2∫
Θ1

�1(θ1|Dn)π1(θ1) dθ1
=

m2(Dn)

m1(Dn)
,

and thus it can clearly be perceived as a Bayesian likelihood ratio which
replaces the likelihoods with the marginals under both models.

The evidence brought by the data Dn can be calibrated using for instance
Jeffreys’ scale of evidence:

– if log21(B
π
21) is between 0 and 0.5, the evidence against model M1

is weak,
– if it is between 0.5 and 1, it is substantial,
– if it is between 1 and 2, it is strong, and
– if it is above 2, it is decisive.

While this scale is purely arbitrary, it provides a reference for model assess-
ment in a generic setting.

Consider now the special case when we want to assess whether or not a
specific value of one of the parameters is appropriate, for instance μ = 0 in the
normaldata example. While the classical literature presents this problem as
a point null hypothesis, we simply interpret it as the comparison of two models,
N (0, σ2) and N (μ, σ2), for Illingworth’s data. In a more general framework,
when the sample Dn is distributed as Dn ∼ f(Dn|θ), if we decompose θ as
θ = (δ, ω) and if the restricted model corresponds to the fixed value δ = δ0, we
define π1(ω) as the prior under the restricted model (labelled M1) and π2(θ)
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as the prior under the unrestricted model (labelled M2). The corresponding
Bayes factor is then

Bπ
21(Dn) =

∫
Θ �(θ|Dn)π2(θ) dθ∫

Ω
�((δ0, ω)|Dn)π1(ω) dω

Note that, as hypotheses, point null problems often are criticized as ar-
tificial and impossible to test (in the sense of how often can one distinguish
θ = 0 from θ = 0.0001?!), but, from a model choice perspective, they simply
correspond to more parsimonious models whose fit to the data can be checked
against the fit produced by an unconstrained model. While the unconstrained
model obviously contains values that produce a better fit, averaging over the
whole parameter space Θ may still result in a small integrated likelihood
m2(Dn). The Bayes factor thus contains an automated penalization for com-
plexity, a feature missed by the classical likelihood ratio statistic.

� In the very special case when the whole parameter is constrained to a fixed
value, θ = θ0, the marginal likelihood under model M1 coincides with the
likelihood 
(θ0|Dn) = f(Dn|θ0) and the Bayes factor simplifies in

Bπ
21(Dn) =

∫
Θ
f(Dn|θ)π2(θ) dθ

f(Dn|θ0)
.

For x ∼ N (μ, σ2) and σ2 known, consider assessing μ = 0 when μ ∼
N (0, τ2) under the alternative model (labelled M2). The Bayes factor is the
ratio

Bπ
21(Dn) =

m2(x)

f(x|(0, σ2))

=
σ√

σ2 + τ2
e−x2/2(σ2+τ2)

e−x2/2σ2

=

√
σ2

σ2 + τ2
exp

{
τ2x2

2σ2(σ2 + τ2)

}
.

Table 2.2 gives a sample of the values of the Bayes factor when the normalized
quantity x/σ varies. They obviously depend on the choice of the prior variance
τ2 and the dependence is actually quite severe, as we will see below with the
Jeffreys–Lindley paradox.

For normaldata, since we saw that setting σ to the Michelson–Morley
value of 0.75 was producing a poor outcome compared with the noninforma-
tive solution, the comparison between the constrained and the unconstrained
models is not very trustworthy, but as an illustration, it gives the following
values:
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Table 2.2. Bayes factor B21(z) against the null hypothesis μ = 0 for different
values of z = x/σ and τ

z 0 0.68 1.28 1.96

τ 2 = σ2 0.707 0.794 1.065 1.847
τ 2 = 10σ2 0.302 0.372 0.635 1.728

> BaFa=function(z,rat){

#rat denotes the ratio tau^2/sigma^2

sqrt(1/(1+rat))*exp(z^2/(2*(1+1/rat)))}

> BaFa(mean(shift),1)

[1] 0.7071767

> BaFa(mean(shift),10)

[1] 0.3015650

which supports the constraint μ = 0 for those two values of τ , since the Bayes
factor is less than 1. (For this dataset, the Bayes factor is always less than
one, see Exercise 2.13.)

2.3.3 The Ban on Improper Priors

We introduced noninformative priors in Sect. 2.2.4 as a way to handle situ-
ations when the prior information was not sufficient to build proper priors.
We also saw that, for normaldata, a noninformative prior was able to ex-
hibit conflicts between the prior information (based on the Michelson–Morley
experiment) and the data (resulting from Illingworth’s experiment). Unfor-
tunately, the use of noninformative priors is very much restricted in model
choice settings because the fact that they usually are improper leads to the
impossibility of comparing the resulting marginal likelihoods.

Looking at the expression of the Bayes factor,

Bπ
21(Dn) =

∫
Θ2

�2(θ2|Dn)π2(θ2) dθ2∫
Θ1

�1(θ1|Dn)π1(θ1) dθ1
,

it is clear that, when either π1 or π2 are improper, it is impossible to normalize
the improper measures in a unique manner. Therefore, the Bayes factor be-
comes completely arbitrary since it can be multiplied by one or two arbitrary
constants.

For instance, when comparing x ∼ N (μ, 1) (model M1) with x ∼ N (0, 1)
(model M2), the improper Jeffreys prior on model M1 is π1(μ) = 1. The Bayes
factor corresponding to this choice is

Bπ
12(x) =

e−x2/2∫ +∞
−∞ e−(x−θ)2/2 dθ

=
e−x2/2

√
2π

.
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If, instead, we use the prior π1(μ) = 100, the Bayes factor becomes

Bπ
12(x) =

e−x2/2

100
∫+∞
−∞ e−(x−θ)2/2 dθ

=
e−x2/2

100
√
2π

and is thus one-hundredth of the previous value! Since there is no mathe-
matical way to discriminate between π1(μ) = 1 and π1(μ) = 100, the answer
clearly is non-sensical.

Note that, if we are instead comparing model M1 where μ ≤ 0 and model
M2 where μ > 0, then the posterior probability of model M1 under the flat
prior is

P
π(μ ≤ 0|x) = 1√

2π

∫ 0

−∞
e−(x−θ)2/2 dθ = Φ(−x) ,

which is uniquely defined.
The difficulty in using an improper prior also relates to what is called the

Jeffreys–Lindley paradox, a phenomenon that shows that limiting arguments
are not valid in testing settings. In contrast with estimation settings, the non-
informative prior no longer corresponds to the limit of conjugate inferences.
For instance, for the comparison of the normal x ∼ N (μ, σ2) (model M1) and
of the normal x ∼ N (μ, σ2) (model M2) models when σ2 is known, using a
conjugate prior μ ∼ N (0, τ2), the Bayes factor

Bπ
21(x) =

√
σ2

σ2 + τ2
exp

[
τ2x2

2σ2(σ2 + τ2)

]

converges to 0 when τ goes to +∞, for every value of x, again a non-sensical
procedure.

Since improper priors are an essential part of the Bayesian approach, there
are many proposals found in the literature to overcome this ban. Most of
those proposals rely on a device that transforms the improper prior into a
proper probability distribution by exploiting a fraction of the data Dn and
then restricts itself to the remaining part of the data to run the test as in
a standard situation. The variety of available solutions is due to the many
possibilities of removing the dependence on the choice of the portion of the
data used in the first step. The resulting procedures are called pseudo-Bayes
factors, although some may actually correspond to true Bayes factors. See
Robert (2007, Chap. 5) for more details, although we do not advocate using
those procedures.

There is a major exception to this ban on improper priors that we can
exploit. If both models under comparison have parameters that have similar
enough meanings to share the same prior distribution, as for instance a mea-
surement error σ2, then the normalization issue vanishes. Note that we are
not assuming that parameters are common to both models and thus that we
do not contradict the earlier warning about different parameters to different
models. An illustration is provided by the above remark on the comparison
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of μ < 0 with μ > 0. This partial opening in the use of improper priors rep-
resents an opportunity but it does not apply to parameters of interest, i.e. to
parameters on which restrictions are assessed.

Example 2.1. When comparing two id normal samples, (x1, . . . , xn) and (y1,
. . . , yn), with respective distributions N (μx, σ

2) and N (μy , σ
2), we can ex-

amine whether or not the two means are identical, i.e. μx = μy (corresponding
to modelM1). To take advantage of the structure of this model, we can assume
that σ2 is a measurement error with a similar meaning under both models and
thus that the same prior πσ(σ

2) can be used under both models. This means
that the Bayes factor

Bπ
21(Dn) =

∫
�2(μx, μy, σ|Dn)π(μx, μy)πσ(σ

2) dσ2 dμx dμy∫
�1(μ, σ|Dn)πμ(μ)πσ(σ2) dσ2 dμ

does not depend on the normalizing constant used for πσ(σ
2) and thus that

we can still use an improper prior such as πσ(σ
2) = 1/σ2 in that case. Fur-

thermore, we can rewrite μx and μy as μx = μ−ξ and μy = μ+ξ, respectively,
and use a prior of the form π(μ, ξ) = πμ(μ)πξ(ξ) on the new parameterization
so that, again, the same prior πμ can be used under both models. The same
cancellation of the normalizing constant occurs for πμ, which means a Jeffreys
prior πμ(μ) = 1 can be used. However, we need a proper and well-defined prior
on ξ, for instance ξ ∼ N (0, τ2), which leads to

Bπ
21(Dn) =

∫
e−n[(μ−ξ−x̄)2+(μ+ξ−ȳ)2+s2xy]/2σ

2

σ−2n−2e−ξ2/2τ2

/τ
√
2π dσ2 dμdξ∫

e−n[(μ−x̄)2+(μ−ȳ)2+s2xy]/2σ
2

σ−2n−2 dσ2 dμ

=

∫ [
(μ− ξ − x̄)2 + (μ+ ξ − ȳ)2 + s2xy

]−n
e−ξ2/2τ2

/τ
√
2π dμdξ∫ [

(μ− x̄)2 + (μ− ȳ)2 + s2xy

]−n
dμ

,

where s2xy denotes the average

s2xy =
1

n

n∑
i=1

(xi − x̄)2 +
1

n

n∑
i=1

(yi − ȳ)2 .

While the denominator can be completely integrated out, the numerator can-
not. A numerical approximation to Bπ

21 is thus necessary. (This issue is ad-
dressed in Sect. 2.4.) �

We conclude this section by a full processing of the assessment of μ = 0
for the single sample normal problem. Comparing models M1 : N (0, σ2)
under the prior π1(σ

2) = 1/σ2 and M2 : N (μ, σ2) under the prior made of
π2(σ

2) = 1/σ2 and π2(μ|σ2) equal to the normal N (0, σ2) density, the Bayes
factor is



46 2 Normal Models

Bπ
21(Dn) =

∫
e−[n(x̄−μ)2+s2]/2σ2

e−μ2/2σ2

σ−n−1−2 dμdσ
2

√
2π∫

e−[nx̄2+s2]/2σ2

σ−n−2 dσ2

=

∫
e−(n+1)[μ−nx̄/(n+1)]2 e−[nx̄2/(n+1)+s2]/2σ2

σ−n−3 dμdσ2

√
2π[

nx̄2 + s2

2

]−n/2/
Γ (n/2)

=

∫
(n+ 1)−1/2 e−[nx̄2/(n+1)+s2]/2σ2

σ−n−2 dσ2

[
nx̄2 + s2

2

]−n/2/
Γ (n/2)

=

(n+ 1)−1/2

[
nx̄2/(n+ 1) + s2

2

]−n/2/
Γ (n/2)

[
nx̄2 + s2

2

]−n/2/
Γ (n/2)

= (n+ 1)−1/2

[
nx̄2 + s2

nx̄2/(n+ 1) + s2

]n/2
,

taking once again advantage of the normalizing constant of the gamma dis-
tribution (see also Exercise 2.8). It therefore increases to infinity with x̄2/s2,
starting from 1/

√
n+ 1 when x̄ = 0.

The value of this Bayes factor for Illingworth’s data is given by

> ratio=n*mean(shift)^2/((n-1)*var(shift))

> ((1+ratio)/(1+ratio/(n+1)))^(n/2)/sqrt(n+1)

[1] 0.1466004

which confirms the assessment that the model with μ = 0 is to be preferred.

2.4 Monte Carlo Methods

While, as seen in Sect. 2.3, the Bayes factor and the posterior probability
are the only quantities used in the assessment of models (and hypotheses),
the analytical derivation of those objects is not always possible, since they
involve integrating the likelihood �(θ|Dn) both on the sets Θ1 and Θ2, under
the respective priors π1 and π2. Fortunately, there exist special numerical
techniques for the computation of Bayes factors, which are, mathematically
speaking, simply ratios of integrals. We now detail the techniques used in the
approximation of intractable integrals, but refer to Chen et al. (2000) and
Robert and Casella (2004, 2009) for book-length presentations.
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2.4.1 An Approximation Based on Simulations

The technique that is most commonly used for integral approximations in
statistics is called the Monte Carlo method6 and relies on computer simula-
tions of random variables to produce an approximation technique that con-
verges with the number of simulations. Its justification is thus the law of large
numbers, that is, if x1, . . . , xN are independent and distributed from g, then
the empirical average

ÎN = (h(x1) + . . .+ h(xN ))/N

converges (almost surely) to the integral

I =

∫
h(x)g(x) dx .

We will not expand on the foundations of the random number generators
in this book, except for an introduction to accept–reject methods in Chap. 5
because of their links with Markov chain Monte Carlo techniques (see, in-
stead, Robert and Casella, 2004). The connections of utmost relevance here
are (a) that softwares like R can produce pseudo-random series that are indis-
tinguishable from truly random series with a given distribution, as illustrated
in Table 1.1 and (b) that those software packages necessarily cover a limited
collection of distributions. Therefore, other methods must be found for simu-
lating distributions outside this collection, while relying on the distributions
already available, first and foremost the uniform U (0, 1) distribution.

The implementation of the Monte Carlo method is straightforward, at least
on a formal basis, with the following algorithmic representation:

Algorithm 2.1 Basic Monte Carlo Method

For i = 1, . . . , N ,
simulate xi ∼ g(x).

Take
ÎN = (h(x1) + . . .+ h(xN ))/N

to approximate I.

as long as the (computer-generated) pseudo-random generation from g is feasi-
ble and the h(xi) values are computable. When simulation from g is a problem
because g is nonstandard and usual techniques such as accept–reject algo-
rithms (see Chap. 5) are difficult to devise, more advanced techniques such as
Markov Chain Monte Carlo (MCMC) are required. We will introduce those

6This method is named in reference to the central district of Monaco, where the
famous Monte-Carlo casino lies.
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in both next chapters. When the difficulty is with the intractability of the
function h, the solution is often to use an integral representation of h and to
expand the random variables xi in (xi, yi), where yi is an auxiliary variable.
The use of such representations will be detailed in Chap. 6.

Example 2.2 (Continuation of Example 2.1). As computed in Exam-
ple 2.1, the Bayes factor Bπ

21(Dn) can be simplified into

Bπ
21(Dn) =

∫ [
(μ− ξ − x̄)2 + (μ+ ξ − ȳ)2 + s2xy

]−n
e−ξ2/2τ2

dμ dξ/τ
√
2π∫ [

(μ− x̄)2 + (μ− ȳ)2 + s2xy
]−n

dμ

=

∫ [
(2ξ + x̄− ȳ)2 + 2 s2xy

]−n+1/2
e−ξ2/2τ2

dξ/τ
√
2π

[
(x̄− ȳ)2 + 2 s2xy

]−n+1/2
,

and we are left with a single integral in the numerator that involves the normal
N (0, τ2) density and can thus be represented as an expectation against this
distribution. This means that simulating a normal N (0, τ2) sample of ξi’s
(i = 1, . . . , N) and replacing Bπ

21(Dn) with

B̂π
21(Dn) =

1
N

∑N
i=1

[
(2ξi + x̄− ȳ)2 + 2 s2xy+

2
]−n+1/2

[
(x̄− ȳ)2 + 2 s2xy

]−n+1/2

is an asymptotically valid approximation scheme. �

In normaldata, if we compare the fifth and the sixth sessions, both with
n = 10 observations, we obtain

> illing=as.matrix(normaldata)

> xsam=illing[illing[,1]==5,2]

> xbar=mean(xsam)

[1] -0.041

> ysam=illing[illing[,1]==6,2]

> ybar=mean(ysam)

[1] -0.025

> Ssquar=9*(var(xsam)+var(ysam))/10

[1] 0.101474

Picking τ = 0.75 as earlier, we get the following approximation to the Bayes
factor

> Nsim=10^4

> tau=0.75

> xis=rnorm(Nsim,sd=tau)

> BaFa=mean(((2*xis+xbar-ybar)^2+2*Ssquar)^(-8.5))/

+ ((xbar-ybar)^2+2*Ssquar)^(-8.5)

[1] 0.0763622
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This value of B̂π
21(Dn) implies that ξ = 0, i.e. μx = μy is much more likely

for the data at hand than μx 
= μy. Note that, if we use τ = 0.1 instead, the
approximated Bayes factor is 0.4985 which slightly reduces the argument in
favor of μx = μy.

Obviously, this Monte Carlo estimate of I is not exact, but generating a
sufficiently large number of random variables can render this approximation
error arbitrarily small in a suitable probabilistic sense. It is also possible to
assess the size of this error for a given number of simulations. If∫

|h(x)|2g(x) dx < ∞ ,

the central limit theorem shows that
√
N [ÎN − I] is also normally distributed,

and this can be used to construct asymptotic confidence regions for ÎN , esti-
mating the asymptotic variance from the simulation output.

For the approximation of Bπ
21(Dn) proposed above, its variability is illus-

trated in Fig. 2.4, based on 500 replications of the simulation of N = 1000
normal variables used in the approximation and obtained as follows

> xis=matrix(rnorm(500*10^3,sd=tau),nrow=500)

> BF=((2*xis+xbar-ybar)^2+2*Ssquar)^(-8.5)/

+ ((xbar-ybar)^2+2*Ssquar)^(-8.5)

> estims=apply(BF,1,mean)

> hist(estims,nclass=84,prob=T,col="wheat2",

+ main="",xlab="Bayes Factor estimates")

> curve(dnorm(x,mean=mean(estims),sd=sd(estims)),

+ col="steelblue2",add=TRUE)

As can be seen on this figure, the value of 0.076 reported in the previous
Monte Carlo approximation is in the middle of the range of possible values.
More in connection with the above point, the shape of the histogram is clearly
compatible with the normal approximation, as shown by the fitted normal
density.

2.4.2 Importance Sampling

An important feature of Example 2.2 is that, for the Monte Carlo approxima-
tion of Bπ

21(Dn), we exhibited a normal density within the integral and hence
derived a representation of this integral as an expectation under this normal
distribution. This seems like a very restrictive constraint in the approximation
of integrals but this is only an apparent restriction in that we will now show
that there is no need to simulate directly from the normal density and fur-
thermore that there is no intrinsic density corresponding to a given integral,
but rather an infinity of densities!
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Fig. 2.4. Dataset normaldata: Histogram of 500 realizations of the approximation
̂B21(Dn) based on N = 1000 simulations each and normal fit of the sample

Indeed, an arbitrary integral

I =

∫
H(x) dx

can be represented in infinitely many ways as an expectation, since, for an
arbitrary probability density γ, we always have

I =

∫
H(x)

γ(x)
γ(x) dx , (2.8)

under the minimal condition that γ(x) > 0 when H(x). Therefore, the
generation of a sample from γ can provide a converging approximation to
E and the Monte Carlo method applies in a very wide generality. This
method is called importance sampling when applied to an expectation under a
density g,

I =

∫
h(x)g(x) dx ,H(x) = h(x)g(x)

since the values xi simulated from γ are weighted by the importance weights
g(xi)/γ(xi) in the approximation
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ÎN =
1

N

N∑
i=1

g(xi)

γ(xi)
h(xi) .

�While the representation (2.8) holds for any density γ with a support larger than

the support of H , the performance of the empirical average ÎN can deteriorate

considerably when the ratio h(x)g(x)/γ(x) is not bounded as this raises the

possibility for infinite variance in the resulting estimator. When using importance

sampling, one must always take heed of a potentially infinite variance of ÎN .

An additional incentive in using importance sampling is that this method
does not require the density g (or γ) to be known completely. Those densities
can be known only up to a normalizing constant, g(x) ∝ g̃(x) and γ(x) ∝ γ̃(x),
since the ratio

n∑
i=1

h(xi)g̃(xi)/γ̃(xi)

/ n∑
i=1

g̃(xi)/γ̃(xi)

also converges to I when n goes to infinity and when the xi’s are generated
from γ.

The equivalent of Algorithm 2.1 for importance sampling is as follows:

Algorithm 2.2 Importance Sampling Method

For i = 1, . . . , N ,
simulate xi ∼ γ(x);
compute ωi = g̃(xi)/γ(xi) .

Take

ÎN =

N∑
i=1

ωi h(xi)

/ N∑
i=1

ωi

to approximate I.

This algorithm is straightforward to implement. Since it offers a degree of
freedom in the selection of γ, simulation from a manageable distribution can
be imposed, keeping in mind the constraint that γ should have flatter tails
than g. Unfortunately, as the dimension of x increases, differences between
the target density g and the importance density γ have a larger and larger
impact.

Example 2.3. Consider almost the same setting as in Exercise 2.11: Dn =
(x1, . . . , xn) is an iid sample from C (θ, 1) and the prior on θ is a flat prior.
We can use a normal importance function from a N (μ, σ2) distribution to
produce a sample θ1, . . . , θN that approximates the Bayes estimator of θ,
i.e. its posterior mean, by
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δ̂π(Dn) =

∑N
t=1 θt exp

{
(θt − μ)2/2

} ∏n
i=1[1 + (xi − θt)

2]−1

∑N
t=1 exp {(θt − μ)2/2} ∏n

i=1[1 + (xi − θt)2]−1
.

But this is a very poor estimation (see Exercise 2.17 for an analytic explana-
tion) and it degrades considerably when μ increases. If we run an R simulation
experiment producing a sample of estimates when μ increases, as follows,

> Nobs=10

> obs=rcauchy(Nobs)

> Nsim=250

> Nmc=500

> sampl=matrix(rnorm(Nsim*Nmc),nrow=1000) # normal samples

> raga=riga=matrix(0,nrow=50,ncol=2) # ranges

> mu=0

> for (j in 1:50){

+ prod=1/dnorm(sampl-mu) # importance sampling

+ for (i in 1:Nobs)

+ prod=prod*dt(obs[i]-sampl,1)

+ esti=apply(sampl*prod,2,sum)/apply(prod,2,sum)

+ raga[j,]=range(esti)

+ riga[j,]=c(quantile(esti,.025),quantile(esti,.975))

+ sampl=sampl+0.1

+ mu=mu+0.1

+ }

> mus=seq(0,4.9,by=0.1)

> plot(mus,0*mus,col="white",xlab=expression(mu),

+ ylab=expression(hat(theta)),ylim=range(raga))

> polygon(c(mus,rev(mus)),c(raga[,1],rev(raga[,2])),col="grey50")

> polygon(c(mus,rev(mus)),c(riga[,1],rev(riga[,2])),col="pink3")

as shown by Fig. 2.5, not only does the range of the approximation increase,
but it ends up missing the true value θ = 0 when μ is far enough from 0. �

2.4.3 Approximation of Bayes Factors

Bayes factors being ratios of integrals, they can be approximated by regu-
lar importance sampling tools. However, given their specificity as ratios of
marginal likelihoods, hence of normalizing constants of the posterior distri-
butions, there exist more specialized techniques, including a fairly generic
method called bridge sampling, developed by Gelman and Meng (1998).

When comparing two models with sampling densities f1(Dn|θ1) (model
M1) and f2(Dn|θ2) (model M2), assume that both models share the same pa-
rameter space Θ. This is for instance the case when comparing the fit of two
densities with the same number of parameters (modulo a potential reparam-
eterization of one of the models). In this setting, if the corresponding prior
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Fig. 2.5. Representation of the whole range (grey) and of the 95% range (pink)
of variation of the importance sampling approximation to the Bayes estimate for
n = 10 observations from the C (0, 1) distribution and N = 250 simulations of θ
from a N (μ, 1) distribution as a function of μ. This range is computed using 500
replications of the importance sampling estimates

densities are π1(θ) and π2(θ), we only know the unnormalized posterior densi-
ties π̃1(θ|Dn) = f1(Dn|θ)π1(θ) and π̃2(θ|Dn) = f2(Dn|θ)π2(θ). In this general
setting, for any positive function α such that the integrals below exist, the
Bayes factor for comparing the two models satisfies

Bπ
12(Dn) =

m1(x)

m2(x)

=
m1(x)

m2(x)

∫
π̃1(θ|Dn)α(θ)π̃2(θ|Dn)dθ∫
π̃2(θ|Dn)α(θ)π̃1(θ|Dn)dθ

=

∫
π̃1(θ|Dn)α(θ)π2(θ|Dn)dθ∫
π̃2(θ|Dn)α(θ)π1(θ|Dn)dθ

. (2.9)

Therefore, the bridge sampling approximation

N∑
i=1

π̃1(θ2i|Dn)α(θ2i)

/ N∑
i=1

π̃2(θ1i|Dn)α(θ1i) (2.10)
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is a convergent approximation of the Bayes factor Bπ
12(Dn) when θji ∼

πj(θ|Dn) (j = 1, 2, i = 1, . . . , N). One of the appealing features of the method
is that it only requires simulations from the posterior distributions under both
models of interest. Another interesting feature is that α is completely arbi-
trary, which means it can be chosen in the best possible way. Using asymptotic
variance arguments, Gelman and Meng (1998) proved that the best choice is

αO(θ) ∝ 1

π1(θ|Dn) + π2(θ|Dn)
,

which bridges both posteriors. This means that the optimal weight of θ2i in
(2.10) is

π̃1(θ2i|Dn)

π1(θ2i|Dn) + π2(θ2i|Dn)
=

π̃1(θ2i|Dn)

π̃1(θ2i|Dn) +Bπ
12(Dn)π̃2(θ2i|Dn)

,

with an appropriate change of indices for the θ1i’s. There is however a caveat
with this find in that it cannot be attained because the optimum depends on
the very quantity we are trying to approximate! However, the Bayes factor
Bπ

12(Dn) can first be approximated on a crude basis and the corresponding
construction of αO iterated till the Bayes factor approximation (2.10) stabi-
lizes.

We will now illustrate this derivation in the case of the normal model, with
an application to normaldata. (We showed in Sect. 2.3.3 that the Bayes factor
was available in closed form so this implementation of the bridge sampler is
purely for illustrative purposes.) A further implementation is discussed in
Chap. 4, Sect. 4.3.2, in connection with the probit model.

When assessing whether or μ = 0 is appropriate for the single sample nor-
mal model, the above approximation does not apply directly because there is
an extra parameter in the unconstrained model. There are however two easy
tricks out of this difficulty. The first one, repeatedly found in the literature, is
to add an arbitrary density to make dimensions match. In the normal example,
this means introducing an arbitrary (normalized) density π∗

1(μ|σ2) in the con-
strained model (denoted M1) and extending the Bayes factor representation
(2.9) to

Bπ
12(Dn) =

∫
π∗
1(μ|σ2)π̃1(σ

2|Dn)α(θ)π2(θ|Dn)dθ∫
π̃2(θ|Dn)α(θ)π1(σ

2|Dn)dσ
2π∗

1(μ|σ2)dμ
.

which holds independently of π∗
1(μ|σ2) for the same reason as in (2.9). The

choice of the substitute π∗
1(μ|σ2) equal to an approximation of π2(μ|Dn, σ

2) is
suggested by Chen et al. (2000). For instance, we can use as π∗

1(μ|σ2) a normal
distribution N (μ̂, σ̂2) where μ̂ and σ̂2 are computed based on a simulation
from π2(μ, σ|Dn).
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The exact value of this Bayes factor Bπ
12(Dn) for Illingworth’s data is given

by

> ((1+ratio)/(1+ratio/(n+1)))^(-n/2)*sqrt(n+1)

[1] 6.821262

while the bridge sampling solution is obtained as

> n=64

> xbar=mean(shift)

> sqar=(n-1)*var(shift)

> Nmc=10^7

> # Simulation from model M2:

> sigma2=1/rgamma(Nmc,shape=n/2,rate=(n*xbar^2/(n+1)+sqar)/2)

> mu2=rnorm(Nmc,n*xbar/(n+1),sd=sqrt(sigma2/(n+1)))

> # Simulation from model M1:

> sigma1=1/rgamma(Nmc,shape=n/2,rate=(n*xbar^2+sqar)/2)

> muhat=mean(mu2)

> tauat=sd(mu2)

> mu1=rnorm(Nmc,mean=muhat,sd=tauat)

> #tilde functions

> tildepi1=function(sigma,mu){

+ exp(-.5*((n*xbar^2+sqar)/sigma+(n+2)*log(sigma))+

+ dnorm(mu,muhat,tauat,log=T))

+ }

> tildepi2=function(sigma,mu){

+ exp(-.5*((n*(xbar-mu)^2+sqar+mu^2)/sigma+(n+3)*log(sigma)+

+ log(2*pi)))}

> #Bayes Factor loop

> K=diff=1

> rationum=tildepi2(sigma1,mu1)/tildepi1(sigma1,mu1)

> ratioden=tildepi1(sigma2,mu2)/tildepi2(sigma2,mu2)

> while (diff>0.01*K){

+ BF=mean(1/(1+K*rationum))/mean(1/(K+ratioden))

+ diff=abs(K-BF)

+ K=BF}

and returns the value

> BF

[1] 6.820955

which is definitely close to the true value!

The second possible trick to overcome the dimension difficulty while using
the bridge sampling strategy is to introduce artificial posterior distributions
in each of the parameters spaces and to process each marginal likelihood as
an integral ratio in itself. For instance, if η1(θ1) is an arbitrary normalized
density on θ1, and α is an arbitrary function, we have
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m1(Dn) =

∫
π̃1(θ1|Dn) dθ1 =

∫
π̃1(θ1|Dn)α(θ1)η1(θ1) dθ1∫
η1(θ1)α(θ1)π1(θ1|Dn) dθ1

by application of (2.9). Therefore, the optimal choice of α leads to the ap-
proximation

m̂1(Dn) =

∑N
i=1 π̃1(θ

η
1i|Dn)
/ {m1(Dn)π̃1(θ

η
1i|Dn) + η(θη1i)}∑N

i=1 η(θ1i)
/ {m1(Dn)π̃1(θ1i|Dn) + η(θ1i)}

when θ1i ∼ π1(θ1|Dn) and θη1i ∼ η(θ1). The choice of the density η is obvi-
ously fundamental and it should be close to the true posterior π1(θ1|Dn) to
guarantee good convergence approximation. Using a normal approximation to
the posterior distribution of θ or a non-parametric approximation based on
a sample from π1(θ1|Dn), or yet again an average of MCMC proposals (see
Chap. 4) are reasonable choices.

The R implementation of this approach can be done as follows

> sigma1=1/rgamma(Nmc,shape=n/2,rate=(n*xbar^2+sqar)/2)

> sihat=mean(log(sigma1))

> tahat=sd(log(sigma1))

> sigma1b=exp(rnorm(Nmc,sihat,tahat))

> #tilde function

> tildepi1=function(sigma){

exp(-.5*((n*xbar^2+sqar)/sigma+(n+2)*log(sigma)))}

> K=diff=1

> rnum=dnorm(log(sigma1b),sihat,tahat)/

+ (sigma1b*tildepi1(sigma1b))

> rden=sigma1*tildepi1(sigma1)/dnorm(log(sigma1),sihat,tahat)

> while (diff>0.01*K){

> BF=mean(1/(1+K*rnum))/mean(1/(K+rden))

> diff=abs(K-BF)

> K=BF}

> m1=BF

when using a normal distribution on log(σ2) as an approximation to
π1(θ1|Dn). When considering the unconstrained model, a bivariate normal
density can be used, as in

> sigma2=1/rgamma(Nmc,shape=n/2,rate=(n*xbar^2/(n+1)+sqar)/2)

> mu2=rnorm(Nmc,n*xbar/(n+1),sd=sqrt(sigma2/(n+1)))

> temean=c(mean(mu2),mean(log(sigma2)))



2.4 Monte Carlo Methods 57

> tevar=cov.wt(cbind(mu2,log(sigma2)))$cov

> te2b=rmnorm(Nmc,mean=temean,tevar)

> mu2b=te2b[,1]

> sigma2b=exp(te2b[,2])

leading to

> m1/m2

[1] 6.824417

The performances of both extensions are obviously highly dependent on
the choice of the completion factors, η1 and η2 on the one hand and π∗

1 on the
other hand. The performances of the first solution, which bridges both models
via π∗

1 , are bound to deteriorate as the dimension gap between those models
increases. The impact of the dimension of the models is less keenly felt for the
other solution, as the approximation remains local.

As a simple illustration of the performances of both methods, we pro-
duce here a comparison between the completions based on a single pseudo-
conditional and on two local approximations to the posteriors, by running
repeated approximations for normaldata and tracing the resulting boxplot
as a measure of the variability of those methods. As shown in Fig. 2.6, the
variability is quite comparable for both solutions in this specific case.

Note that there exist many other approaches to the approximative com-
putation of marginal likelihoods and of Bayes factors that we cannot cover
here. We want however to point out the dangers of the harmonic mean ap-
proximation. This approach proceeds from the interesting identity

E
π1

[
ϕ1(θ1)

π1(θ1)�1(θ1|Dn)

∣∣∣∣Dn

]
=

∫
ϕ1(θ1)

π1(θ1)�1(θ1|Dn)

π1(θ1)�1(θ1|Dn)

m1(Dn)
dθ1

=
1

m1(Dn)
,

which holds, no matter what the density ϕ1(θ1) is—provided ϕ1(θ1) = 0 when
π1(θ1)�1(θ1|Dn) = 0—. The most common implementation in approximations
of the marginal likelihood uses ϕ1(θ1) = π1(θ1), leading to the approximation

m̂1(Dn) = 1

/
N−1

N∑
j=1

1

�1(θ1j |Dn)
.

While very tempting, since it allows for a direct processing of simulations
from the posterior distribution, this approximation is unfortunately most often
associated with an infinite variance (Exercise 2.19) and, thus, should not be
used. On the opposite, using ϕ1’s with supports constrained to the 25% HPD
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doublesingle

Fig. 2.6. Dataset normaldata: Boxplot of the variability of the approximations
to the Bayes factor assessing whether or not μ = 0, based on a single and on
a double completions. Each approximation is based on 105 simulations and the
boxplots are based on 250 approximations. The dotted line corresponds to the true
value of Bπ

12(Dn)

regions—approximated by the convex hull of the 10% or of the 25% highest
simulations—is both completely appropriate and implementable (Marin and
Robert, 2010).

2.5 Outlier Detection

The above description of inference in normal models is only an introduction
both to Bayesian inference and to normal structures. Needless to say, there
exists a much wider range of possible applications. For instance, we will meet
the normal model again in Chap. 4 as the original case of the (generalized)
linear model. Before that, we conclude this chapter with a simple extension
of interest, the detection of outliers.

Since normal modeling is often an approximation to the “real thing,” there
may be doubts about its adequacy. As already mentioned above, we will deal
later with the problem of checking that the normal distribution is appropriate
for the whole dataset. Here, we consider the somehow simpler problem of sep-
arately assessing whether or not each point in the dataset is compatible with
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normality. There are many different ways of dealing with this problem. We
choose here to use the predictive distribution: If an observation xi is unlikely
under the predictive distribution based on the other observations, then we
can argue against its distribution being equal to the distribution of the other
observations.

If xn+1 is a future observation from the same distribution f(·|θ) as the
sample Dn, its predictive distribution given the current sample is defined as

fπ(xn+1|Dn) =

∫
f(xn+1|θ,Dn)π(θ|Dn) dθ =

∫
f(xn+1|θ)π(θ|Dn) dθ .

This definition is coherent with the Bayesian approach, which considers xn+1

as an extra unknown and then integrates out θ if xn+1 is the “parameter” of
interest.

For the normal N (μ, σ2) setup, using a conjugate prior on (μ, σ2) of the
form

(σ2)−λσ−3/2 exp−{λμ(μ− ξ)2 + α
}
/2σ2 ,

the corresponding posterior distribution on (μ, σ2) given Dn is

N

(
λμξ + nxn

λμ + n
,

σ2

λμ + n

)
×I G

(
λσ + n/2,

[
α+ s2 +

nλμ

λμ + n
(x− ξ)2

]
/2

)
,

denoted by

N
(
ξ(Dn), σ

2/λμ(Dn)
)× I G (λσ(Dn)/2, α(Dn)/2) ,

and the predictive on xn+1 is derived as

fπ(xn+1|Dn) ∝
∫
(σ2)−λσ(Dn)/2−1−1 exp−(xn+1 − μ)2/2σ2

× exp−{λμ(Dn)(μ− ξ(Dn))
2 + α(Dn)

}
/2σ2 d(μ, σ2)

∝
∫
(σ2)−λσ(Dn)/2−3/2 exp−{(λμ(Dn) + 1)(xn+1 − ξ(Dn))

2

/
λμ(Dn) + α(Dn)

}
/2σ2 dσ2

∝
[
α(Dn) +

λμ(Dn) + 1

λμ(Dn)
(xn+1 − ξ(Dn))

2

]−(λσ(Dn)+1)/2

.

Therefore, the predictive of xn+1 given the sample Dn is a Student t distribu-
tion with mean ξ(Dn) and λσ(Dn) degrees of freedom. In the special case of the
noninformative prior, corresponding to the limiting values λμ = λσ = α = 0,
the predictive is

fπ(xn+1|Dn) ∝
[
s2 +

n+ 1

n
1(xn+1 − xn)

2

]−(n+1)/2

. (2.11)
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It is therefore a Student’s t distribution with n degrees of freedom, a mean
equal to xn and a scale factor equal to (n − 1)s2/n, which is equivalent to
a variance equal to (n − 1)s2/n2 (to compare with the maximum likelihood
estimator σ̂2

n = s2/n).
In the outlier problem, we process each observation xi ∈ Dn as if it

was a “future” observation. Namely, we consider fπ
i (x|D i

n) as being the pre-
dictive distribution based on D i

n = (x1, . . . , xi−1, xi+1, . . . , xn). Considering
fπ
i (xi|D i

n) or the corresponding cdf Fπ
i (xi|D i

n) (in dimension one) gives an
indication of the level of compatibility of the observation xi with the sample.
To quantify this level, we can, for instance, approximate the distribution of
Fπ
i (xi|D i

n) as being uniform over [0, 1] since Fπ
i (·|D i

n) does converge to the
true cdf of the model. Simultaneously checking all Fπ

i (xi|D i
n) over imay signal

outliers.

� The detection of outliers must pay attention to the Bonferroni fallacy, which
is that extreme values do occur in large enough samples. This means that, as n
increases, we will see smaller and smaller values of F π

i (xi|D i
n) occurring, and

this even when the whole sample is from the same distribution. The significance
level must therefore be chosen in accordance with this observation, for instance
using a bound a on F π

i (xi|D i
n) such that

1− (1− a)n = 1− α ,

where α is the nominal level chosen for outlier detection.

Considering normaldata, we can compute the predictive cdf for each of
the 64 observations, considering the 63 remaining ones as data.

> n=length(shift)

> outl=rep(0,n)

> for (i in 1:n){

+ lomean=-mean(shift[-i])

+ losd=sd(shift[-i])*sqrt((n-2)/n)

+ outl[i]=pt((shift[i]-lomean)/losd,df=n-1)

+ }

Figure 2.7 provides the qq-plot of the Fπ
i (xi|D i

n)’s against the uniform quan-
tiles and compares it with a qq-plot based on a dataset truly simulated from
the uniform U (0, 1).

> plot(c(0,1),c(0,1),lwd=2,ylab="Predictive",xlab="Uniform",

+ type="l")

> points((1:n)/(n+1),sort(outl),pch=19,col="steelblue3")

> points((1:n)/(n+1),sort(runif(n)),pch=19,col="tomato")

There is no clear departure from uniformity when looking at this graph, except
of course for the multiple values found in normaldata.
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Fig. 2.7. Dataset normaldata: qq-plot of the sample of the F π
i (xi|D i

n) for a uniform
U (0, 1) distribution (blue dots) and comparison with a qq-plot for a uniform U (0, 1)
sample (red dots)

2.6 Exercises

2.1 Show that, if

μ|σ2 ∼ N (ξ, σ2/λμ) , σ2 ∼ I G (λσ/2, α/2) ,

then
μ ∼ T (λσ, ξ, α/λμλσ)

a t distribution with λσ degrees of freedom, location parameter ξ and scale parameter
α/λμλσ.

2.2 Show that, if σ2 ∼ I G (α, β), then E[σ2] = β/(α − 1). Derive from the density
of I G (α, β) that the mode is located in β/(α+ 1).

2.3 Show that minimizing (in θ̂(Dn)) the posterior expectation E
π[||θ − θ̂||2|Dn] pro-

duces the posterior expectation as the solution in θ̂.

2.4 Show that the Fisher information on θ = (μ, σ2) for the normal N (μ, σ2) distri-
bution is given by
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IF (θ) = Eθ

[(
1/σ2 2(x− μ)/2σ4

2(x− μ)/2σ4 (μ− x)2/σ6 − 1/2σ4

)]
=

(
1/σ2 0
0 1/2σ4

)

and deduce that Jeffreys’ prior is πJ (θ) ∝ 1/σ3.

2.5 Derive each line of Table 2.1 by an application of Bayes’ formula, π(θ|x) ∝
π(θ)f(x|θ), and the identification of the standard distributions.

2.6 A Weibull distribution W (α, β, γ) is defined as the power transform of a gamma
G (α, β) distribution: If x ∼ W (α, β, γ), then xγ ∼ G (α, β). Show that, when γ is
known, W (α, β, γ) allows for a conjugate family, but that it does not an exponential
family when γ is unknown.

2.7 Show that, when the prior on θ = (μ, σ2) is N (ξ, σ2/λμ) × I G (λσ, α), the
marginal prior on μ is a Student t distribution T (2λσ, ξ, α/λμλσ) (see Example 2.18 for
the definition of a Student t density). Give the corresponding marginal prior on σ2. For
an iid sample Dn = (x1, . . . , xn) from N (μ, σ2), derive the parameters of the posterior
distribution of (μ, σ2).

2.8 Show that the normalizing constant for a Student T (ν, μ, σ2) distribution is

Γ ((ν + 1)/2)/Γ (ν/2)

σ
√
νπ

.

Deduce that the density of the Student t distribution T (ν, θ, σ2) is

fν(x) =
Γ ((ν + 1)/2)

σ
√
νπ Γ (ν/2)

(
1 +

(x− θ)2

νσ2

)−(ν+1)/2

.

2.9 Show that, for location and scale models, the specific noninformative priors are
special cases of Jeffreys’ generic prior, i.e., that πJ(θ) = 1 and πJ(θ) = 1/θ, respectively.

2.10 Show that, when π(θ) is a probability density, (2.5) necessarily holds for all
datasets Dn.

2.11 Consider a dataset Dn from the Cauchy distribution, C (μ, 1).

1. Show that the likelihood function is


(μ|Dn) =
n∏

i=1

fμ(xi) =
1

πn
∏n

i=1(1 + (xi − μ)2)
.

2. Examine whether or not there is a conjugate prior for this problem. (The answer is
no.)

3. Introducing a normal prior on μ, say N (0, 10), show that the posterior distribution
is proportional to

π̃(μ|Dn) =
exp(−μ2/20)∏n

i=1(1 + (xi − μ)2)
.

4. Propose a numerical solution for solving π̃(μ|Dn) = k. (Hint: A simple trapezoidal
integration can be used: based on a discretization size Δ, computing π̃(μ|Dn) on a
regular grid of width Δ and summing up.)
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2.12 Show that the limit of the posterior probability P
π(μ < 0|x) of (2.7) when τ

goes to ∞ is Φ(−x/σ). Show that, when ξ varies in R, the posterior probability can
take any value between 0 and 1.

2.13 Define a function BaRaJ of the ratio rat when z=mean(shift)/.75 in the func-
tion BaFa. Deduce from a plot of the function BaRaJ that the Bayes factor is always less
than one when rat varies. (Note: It is possible to establish analytically that the Bayes
factor is maximal and equal to 1 for τ = 0.)

2.14 In the application part of Example 2.1 to normaldata, plot the approximated
Bayes factor as a function of τ . (Hint: Simulate a single normal N (0, 1) sample and
recycle it for all values of τ .)

2.15 In the setup of Example 2.1, show that, when ξ ∼ N (0, σ2), the Bayes factor
can be expressed in closed form using the normalizing constant of the t distribution (see
Exercise 2.8)

2.16 Discuss what happens to the importance sampling approximation when the sup-
port of g is larger than the support of γ.

2.17 Show that, when γ is the normal N (0, ν/(ν − 2)) density and fν is the density
of the t distribution with ν degrees of freedom, the ratio

f2
ν (x)

γ(x)
∝ ex

2(ν−2)/2ν

[1 + x2/ν](ν+1)

does not have a finite integral. What does this imply about the variance of the importance
weights?

Deduce that the importance weights of Example 2.3 have infinite variance.

2.18 If fν denotes the density of the Student t distribution T (ν, 0, 1) (see Exer-
cise 2.8), consider the integral

I =

∫ √∣∣∣∣ x

1− x

∣∣∣∣ fν(x) dx .

1. Show that I is finite but that∫
|x|

|1− x|fν(x) dx = ∞ .

2. Discuss the respective merits of the following importance functions γ
– the density of the Student T (ν, 0, 1) distribution,
– the density of the Cauchy C (0, 1) distribution,
– the density of the normal N (0, ν/(ν − 2)) distribution.
In particular, show via an R simulation experiment that these different choices all
lead to unreliable estimates of I and deduce that the three corresponding estimators
have infinite variance.

3. Discuss the alternative choice of a gamma distribution folded at 1, that is, the
distribution of x symmetric around 1 and such that

|x− 1| ∼ Ga(α, 1) .
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Show that

h(x)
f2(x)

γ(x)
∝

√
x f2

ν (x) |1− x|1−α−1 exp |1− x|

is integrable around x = 1 when α < 1 but not at infinity. Run a simulation
experiment to evaluate the performances of this new proposal.

2.19 Evaluate the harmonic mean approximation

m̂1(Dn) = 1

/
N−1

N∑
j=1

1


1(θ1j |Dn)
.

when applied to the N (0, σ2) model, normaldata, and an I G (1, 1) prior on σ2.
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