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The Bayesian paradigm

The interpretation of probability depends on different epistemo-
logical frameworks, and there are several philosophical approaches
to understanding what probability means

long-run frequency of events / degree of belief in a hypothesis

Subjectivism

Harold Jeffreys (1891-1989)

Frank Plumpton Ramsey (1903-1930)

Bruno de Finetti (1906-1985)

Leonard Jimmie Savage (1921-1971)
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The Bayesian paradigm

Subjectivism in probability refers to the interpretation that prob-
abilities represent personal beliefs or degrees of certainty about
uncertain events

It contrasts with objective interpretations, viewing probabil-
ity as a subjective measure based on individual judgment
rather than frequency or inherent properties

Subjectivists argue that probabilities can vary between individu-
als based on their information and perspective

Bayesian probability, which updates beliefs as new information
becomes available, is a key framework in this approach
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The Bayesian paradigm

R.A. Fisher (1890-1962) and Harold Jeffreys (1891-1989)

The Jeffreys-Fisher conflict is a most important episode in the
recent history of scientific ideas. Both were themselves eminent
mathematical scientists: Fisher a statistician and geneticist, Jef-
freys a geophysicist

The controversy between R.A. Fisher and Harold Jeffreys was
centered around differing interpretations of probability and sta-
tistical inference
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The Bayesian paradigm

Interpretation of Probability

Fisher (Frequentist Approach): Fisher viewed probability as a
long-run frequency of events. According to the frequentist inter-
pretation, probability is defined through repeated experiments:
the probability of an event is the proportion of times it occurs in
a large number of trials

Jeffreys (Bayesian Approach): Jeffreys, on the other hand, em-
braced a subjective interpretation of probability. He believed that
probability measures the degree of belief in a hypothesis, which
can be updated with new evidence
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The Bayesian paradigm

Hypothesis Testing

Fisher developed the method of significance testing, focusing
on p-values as a measure of evidence against the null hypothe-
sis. He believed that if the p-value was below a threshold (often
0.05), the null hypothesis could be rejected. He did not require
an explicit alternative hypothesis, focusing more on the ability to
reject or retain the null hypothesis

Jeffreys was critical of p-values and focused on Bayes factors,
which compare the likelihood of the data under two competing
hypotheses (the null and the alternative). Bayesian hypothesis
testing incorporates prior information and gives a more direct
comparison between the two hypotheses
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The Bayesian paradigm

Use of Prior Information

Fisher was critical of using prior probabilities, especially when
they were subjective or arbitrary. He believed that statistical in-
ference should be based on the data at hand without needing
prior beliefs

Jeffreys, in contrast, argued that it was natural and necessary
to incorporate prior information into statistical analysis. His ap-
proach, known as Bayesian inference, updates prior beliefs with
data to produce a posterior probability, using Bayes’ theorem
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The Bayesian paradigm

Likelihood Principle

Fisher strongly promoted the likelihood principle, arguing that
the likelihood function (the probability of observing the data given
different parameter values) was key in statistical inference. He
introduced the idea of maximum likelihood estimation (MLE) to
find the parameter values that maximize the likelihood of the ob-
served data

Jeffreys agreed that the likelihood function is important but ar-
gued that it should be integrated with prior probabilities to pro-
duce posterior probabilities for parameters, a key feature of Baye-
sian statistics
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The Bayesian paradigm

Core of the Controversy

Fisher’s frequentist approach was based on using data to make
conclusions about hypotheses without reference to prior beliefs

Jeffreys’ Bayesian approach involved incorporating prior knowl-
edge and using Bayes’ theorem to update the probability of a
hypothesis given new data

Both approaches have strengths and limitations, and modern
statistics has, in many cases, integrated elements of both Fish-
erian and Bayesian thinking
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The Bayesian paradigm

Fisher’s frequentist methods have become standard in many sci-
entific disciplines, especially in hypothesis testing and estima-
tion techniques

Jeffreys’ Bayesian ideas gained more prominence in the latter
half of the 20th century, especially with the rise of computational
power, allowing for more complex Bayesian analyses
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The Bayesian paradigm

Bayes theorem = Inversion of probabilities

If A and B are events such that P(B) , 0,

P(A|B) =
P(A ∩ B)

P(B)
=
P(B|A)P(A)

P(B)
=

P(B|A)P(A)

P(A)P(B|A) + P(Ā)P(B|Ā)
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The Bayesian paradigm

Given an iid sample Dn = (x1, . . . , xn) from a density f(x|θ),
depending upon an unknown parameter θ ∈ Θ, the associated
likelihood function is

f(Dn|θ) =

n∏
i=1

f(xi|θ) = ℓ(θ|Dn)
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The Bayesian paradigm

When Dn is a normal N (µ,σ2) sample of size n and θ = (µ,σ2),
we get

ℓ(θ|Dn) =

n∏
i=1

exp{−(xi − µ)2/2σ2}/
√

2πσ

∝ exp

{
−
∑
i=1

(xi − µ)2/2σ2

}
/σn

∝ exp

{
−

(
nµ2 − 2nx̄µ+

∑
i=1

x2
i

)/
2σ2

}
/σn

∝ exp
{
−
[
n(µ− x̄)2 + s2] /2σ2} /σn,

x̄ denotes the empirical mean and s2 =
∑n

i=1(xi − x̄)2
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The Bayesian paradigm

In the Bayesian approach θ is considered as a random vari-
able

In some sense, the likelihood function is transformed into a pos-
terior distribution, which is a valid probability distribution on Θ

π(θ|Dn) =
ℓ(θ|Dn)π(θ)∫
ℓ(θ|Dn)π(θ) dθ

π(θ) is called the prior distribution and it has to be chosen to
start the analysis
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The Bayesian paradigm

The posterior density is a probability density on the parameter,
which does not mean the parameter θ need be a genuine ran-
dom variable

This density is used as an inferential tool, not as a truthful
representation
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The Bayesian paradigm

Two motivations:

▶ the prior distribution summarizes the prior information on θ.
However, the choice of π(θ) is often decided on practical
grounds rather than strong subjective beliefs

▶ the Bayesian approach provides a fully probabilistic
framework for the inferential analysis, with respect to a
reference measure π(θ)
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The Bayesian paradigm

Suppose Dn is a normal N (µ,σ2) sample of size n

When σ2 is known, if µ ∼ N
(
0,σ2

)
, then

π(µ|Dn) ∝ π(µ) f(Dn|µ)

∝ π(µ) ℓ(µ|Dn)

∝ exp{−µ2/2σ2} exp
{
−n(x̄− µ)2/2σ2}

∝ exp
{
−(n+ 1)µ2/2σ2 + 2nµx̄/2σ2}

∝ exp
{
−(n+ 1)[µ− nx̄/(n+ 1)]2/2σ2}

µ|Dn ∼ N
(
nx̄/(n+ 1),σ2/(n+ 1)

)
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The Bayesian paradigm

When σ2 is unknown, θ = (µ,σ2), if µ|σ2 ∼ N
(
0,σ2

)
and σ2 ∼

I G (1, 1), then π((µ,σ2)|Dn) ∝ π(σ2)× π(µ|σ2)× f(Dn|µ,σ2)

∝ (σ−2)1/2+2 exp
{
−(µ2 + 2)/2σ2} 1σ2>0

(σ−2)n/2 exp
{
−
(
n(µ− x)2 + s2) /2σ2}

µ|Dn,σ2 ∼ N

(
nx̄

n+ 1
,

σ2

n+ 1

)

σ2|Dn ∼ I G

({
1 +

n

2

}
,
{

1 +
s2

2
+

nx̄

2(n+ 1)

})
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The Bayesian paradigm

Variability in σ2 induces more variability in µ, the marginal pos-
terior in µ being then a Student’s t distribution

µ|Dn ∼ T

(
n+ 2,

nx̄

n+ 1
,
2 + s2 + (nx̄)/(n+ 1)

(n+ 1)(n+ 2)

)
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Bayesian estimates

For a given loss function L
(
θ, θ̂(Dn)

)
, we deduce a Bayesian

estimate by minimizing the posterior expected loss:

Eπ
θ|Dn

(
L
(
θ, θ̂(Dn)

))
To minimize the posterior expected loss is equivalent to
minimize the Bayes risk, the frequentist risk integrated over
the prior distribution
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Bayesian estimates

For instance, for the L2 loss function, the corresponding Bayes
optimum is the expected value of θ under the posterior distribu-
tion,

θ̂(Dn) =

∫
θπ(θ|Dn) dθ =

∫
θ ℓ(θ|Dn)π(θ) dθ∫
ℓ(θ|Dn)π(θ) dθ
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Bayesian estimates

When no specific penalty criterion is available, the posterior ex-
pectation is often used as a default estimator, although alterna-
tives are also available. For instance, the maximum a posteriori
estimator (MAP) is defined as

θ̂(Dn) ∈ argmaxθ π(θ|Dn)

Similarity of with the maximum likelihood estimator: the in-
fluence of the prior distribution π(θ) on the estimate pro-
gressively disappears as the number of observations n in-
creases
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Conjugate prior

The selection of the prior distribution is an important issue in
Bayesian statistics

When prior information is available about the data or the model,
it can be used in building the prior

In many situations, however, the selection of the prior distribution
is quite delicate

Since the choice of the prior distribution has a considerable
influence on the resulting inference, this inferential step
must be conducted with the utmost care
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Conjugate prior

Conjugate priors are such that the prior and posterior den-
sities belong to the same parametric family

An advantage when using a conjugate prior, is that one has to
select only a few parameters to determine the prior distribution

But the information known a priori may be either insufficient or
incompatible with the structure imposed by conjugacy
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Conjugate prior

Justifications
▶ Device of virtual past observations
▶ First approximations to adequate priors, backed up by

robustness analysis
▶ But mostly... tractability and simplicity
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Conjugate priorFormation de statistique bayésienne 29 septembre 2015

f(x|✓) ⇡(✓) ⇡(✓|x)

Normal Normal

N (✓,�2) N (µ, ⌧2) N (⇢(�2µ + ⌧2x), ⇢�2⌧2)

⇢�1 = �2 + ⌧2

Poisson Gamma

P(✓) G(↵,�) G(↵ + x,� + 1)

Gamma Gamma

G(⌫, ✓) G(↵,�) G(↵ + ⌫,� + x)

Binomial Beta

B(n, ✓) Be(↵,�) Be(↵ + x,� + n � x)

Institut de l’élevage page 20/61
Jean-Michel Marin (IMAG) Bayesian parameter inference HAX918X 27 / 36



Conjugate priorFormation de statistique bayésienne 29 septembre 2015

f(x|✓) ⇡(✓) ⇡(✓|x)

Negative Binomial Beta

N eg(m, ✓) Be(↵,�) Be(↵ + m,� + x)

Multinomial Dirichlet

Mk(✓1, . . . , ✓k) D(↵1, . . . ,↵k) D(↵1 + x1, . . . ,↵k + xk)

Normal Gamma

N (µ, 1/✓) Ga(↵,�) G(↵ + 0.5,� + (µ � x)2/2)

Institut de l’élevage page 21/61
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Noninformative prior

Conjugate priors are nice to work with, but require hyperparam-
eters’s determination

One can opt for a completely different perspective and rely on
so-called noninformative priors that aim at attenuating the im-
pact of the prior on the resulting inference

These priors are fundamentally defined as coherent extensions
of the uniform distribution
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Noninformative prior

For unbounded parameter spaces, the densities of noninforma-
tive priors actually may fail to integrate to a finite number and
they are defined instead as positive measures

Generalized Bayesian estimators with improper
prior distributions
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Noninformative prior

Location models x|θ ∼ f(x − θ) are usually associated with flat
priors π(θ) ∝ 1

Scale models x|θ ∼ 1
θ f
(
x
θ

)
are usually associated with the log-

transform of a flat prior, that is, π(θ) ∝ 1/θ× 1θ>0
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Jeffreys prior

In a more general setting, the noninformative prior favored by
most Bayesians is the so-called Jeffreys prior which is related
to the Fisher information matrix

IFx(θ) = −E

(
∂2 log f(x|θ)

(∂θ)2

)
by

πJ(θ) ∝
√
|IFx(θ)]× 1θ∈Θ ,

where |I| denotes the determinant of the matrix I
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Jeffreys prior

Suppose Dn is a normal N (µ,σ2) sample of size n and θ =
(µ,σ2)

The Fisher information matrix leads to the Jeffreys prior

πJ(µ,σ2) ∝ 1/{
(
σ2)}3/21σ2>0

µ|σ2, Dn ∼ N
(
x̄,σ2/n

)
σ2|Dn ∼ I G

(
n/2, s2/2

)
µ|Dn ∼ T

(
n, x̄, s2/n

)
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Bayesian Credible Intervals

Since the Bayesian approach processes θ as a random variable,
a natural definition of a confidence region on θ is to determine
C(Dn) such that

π(θ ∈ C(Dn)|Dn) = 1 − α

where α is a predetermined level

The integration is done over the parameter space, rather
than over the observation space

The quantity 1 − α thus corresponds to the probability that a
random θ belongs to this set C(Dn), rather than to the probability
that the random set contains the true value of θ
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Bayesian Credible Intervals

Given this drift in the interpretation of a confidence set is called
a credible set by Bayesians.

A standard credible set corresponds to the values of θ with the
highest posterior values,

C(Dn) = {θ; π(θ|Dn) ⩾ kα}

where kα is determined by the coverage constraint

This region is called the Highest Posterior Density (HPD) re-
gion
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Bayesian Credible Intervals

Once again, suppose Dn is a normal N (µ,σ2) sample of size
n and θ = (µ,σ2)

µ|σ2, Dn ∼ N
(
x̄,σ2/n

)
σ2|Dn ∼ I G

(
n/2, s2/2

)
µ|Dn ∼ T

(
n, x̄, s2/n

)
Therefore, the credible interval of probability 1 − α on µ is

[x̄− t1−α/2,n

√
s2/n, x̄+ t1−α/2,n

√
s2/n]
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