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Random Forests for Regression and 
Classification 
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Outline 

• Background. 
• Trees. 
• Bagging predictors. 
• Random Forests algorithm. 
• Variable importance. 
• Proximity measures. 
• Visualization. 
• Partial plots and interpretation of effects. 
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What is Regression? 

 Given data on predictor variables (inputs, X) and 
a continuous response variable (output, Y) build 
a model for: 
– Predicting the value of the response from the 

predictors. 
– Understanding the relationship between the 

predictors and the response. 
e.g. predict a person’s systolic blood pressure based on 

their age, height, weight, etc. 
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Regression Examples 

• Y: income 
 X: age, education, sex, occupation, …  
• Y: crop yield 
 X: rainfall, temperature, humidity, … 
• Y: test scores 
 X: teaching method, age, sex, ability, … 
• Y: selling price of homes 
 X: size, age, location, quality, … 
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Regression Background 

• Linear regression  
• Multiple linear regression 
• Nonlinear regression (parametric) 
• Nonparametric regression (smoothing)  

– Kernel smoothing 
– B-splines 
– Smoothing splines 
– Wavelets 
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Regression Picture 
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Regression Picture 
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Regression Picture 
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Regression Picture 
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What is Classification? 

 Given data on predictor variables (inputs, X) and 
a categorical response variable (output, Y) build 
a model for: 
– Predicting the value of the response from the 

predictors. 
– Understanding the relationship between the 

predictors and the response. 
e.g. predict a person’s 5-year-survival (yes/no) based 

on their age, height, weight, etc. 
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Classification Examples 

• Y: presence/absence of disease 
 X: diagnostic measurements 
• Y: land cover (grass, trees, water, roads…) 
 X: satellite image data (frequency bands) 
• Y: loan defaults (yes/no) 
 X: credit score, own or rent, age, marital status, … 
• Y: dementia status 
 X: scores on a battery of psychological tests 
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Classification Background 

• Linear discriminant analysis (1930’s) 
• Logistic regression (1944) 
• Nearest neighbors classifiers (1951) 
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Classification Picture 
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Classification Picture 
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Classification Picture 
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Classification Picture 
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Classification Picture 
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Classification Picture 
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Classification Picture 
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Classification Picture 

  

Ovronnaz, Switzerland September 15-17, 2010 22 



Classification Picture 
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Regression and Classification 

 Given data  
D  = { (xi,yi), i=1,…,n}  

 where xi =(xi1,…,xip), build a model f-hat so that  
 Y-hat = f-hat (X) for random variables X = (X1,…,Xp) and Y.  
 
 Then f-hat will be used for: 

– Predicting the value of the response from the predictors: 
y0-hat = f-hat(x0) where x0 = (xo1,…,xop). 

– Understanding the relationship between the predictors 
and the response. 
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Assumptions 

Ovronnaz, Switzerland 

• Independent observations 
– Not autocorrelated over time or space 
– Not usually from a designed experiment 
– Not matched case-control 

• Goal is prediction and (sometimes) 
understanding 
– Which predictors are useful? How? Where? 
– Is there “interesting” structure? 
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Predictive Accuracy 

Ovronnaz, Switzerland 

• Regression 
– Expected mean squared error 

• Classification 
– Expected (classwise) error rate 
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Estimates of Predictive Accuracy 

Ovronnaz, Switzerland 

• Resubstitution 
– Use the accuracy on the training set as an 

estimate of generalization error.  
• AIC etc 

– Use assumptions about model. 
• Crossvalidation 

– Randomly select a training set, use the rest as the 
test set.  

– 10-fold crossvalidation. 
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10-Fold Crossvalidation 

Ovronnaz, Switzerland 

Divide the data at random into 10 pieces, D1,…,D10. 
• Fit the predictor to D2,…,D10; predict D1. 
• Fit the predictor to D1,D3,…,D10; predict D2. 
• Fit the predictor to D1,D2,D4,…,D10; predict D3. 
• … 
• Fit the predictor to D1,D2,…,D9; predict D10. 
  
Compute the estimate using the assembled 

predictions and their observed values. 
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Estimates of Predictive Accuracy 

Ovronnaz, Switzerland 

Typically, resubstitution estimates are optimistic 
compared to crossvalidation estimates.  

 
Crossvalidation estimates tend to be pessimistic 

because they are based on smaller samples.  
 
Random Forests has its own way of estimating 

predictive accuracy (“out-of-bag” estimates). 
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Case Study: Cavity Nesting birds in 
the Uintah Mountains, Utah  

 

• Red-naped sapsucker (Sphyrapicus nuchalis) 
 (n = 42 nest sites) 

 
 

• Mountain chickadee  
• (Parus gambeli) (n = 42 nest sites) 

 
 

• Northern flicker (Colaptes auratus) 
 (n = 23 nest sites) 
 
• n = 106 non-nest sites 
 



 

 
• Response variable is the presence (coded 1) or absence 

(coded 0) of a nest. 
 

• Predictor variables (measured on 0.04 ha plots around 
the sites) are: 
– Numbers of trees in various size classes from less than 

1 inch in diameter at breast height to greater than 15 
inches in diameter. 

– Number of snags and number of downed snags. 
– Percent shrub cover. 
– Number of conifers. 
– Stand Type, coded as 0 for pure aspen and 1 for mixed 

aspen and conifer. 

Case Study: Cavity Nesting birds in 
the Uintah Mountains, Utah 



Assessing Accuracy in Classification  
 
 
 
 
 
 
 
 
 
 

Actual 
Class 

Predicted Class 

Total 
Absence Presence 

0 1 
Absence, 0 a b a+b 

Presence, 1 c d c+d 
Total a+c b+d n 



Assessing Accuracy in Classification  
 
 
 
 
 
 
 
 
 

 
 Error rate = ( c + b ) / n 

Actual 
Class 

Predicted Class 

Total 
Absence Presence 

0 1 
Absence, 0 a b a+b 

Presence, 1 c d c+d 
Total a+c b+d n 



Resubstitution Accuracy  
(fully grown tree) 

 
 
 
 
 
  
 

 
 
 Error rate = ( 0 + 1 )/213 = (approx) 0.005 or 0.5%  
 
 
 
 
 
 
 

Actual 
Class 

Predicted Class 

Total 
Absence Presence 

0 1 
Absence, 0 105 1 106 

Presence, 1 0 107 107 
Total 105 108 213 



Crossvalidation Accuracy  
(fully grown tree) 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

Actual 
Class 

Predicted Class 

Total 
Absence Presence 

0 1 
Absence, 0 83 23 106 

Presence, 1 22 85 107 
Total 105 108 213 

 
 
 
 
 
  
 

 
 
 Error rate = ( 22 + 23 )/213 = (approx) .21 or 21%  
 
 
 
 
 
 
 



Outline 

• Background. 
• Trees. 
• Bagging predictors. 
• Random Forests algorithm. 
• Variable importance. 
• Proximity measures. 
• Visualization. 
• Partial plots and interpretation of effects. 
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Classification and Regression Trees 
Pioneers: 
• Morgan and Sonquist (1963). 
• Breiman, Friedman, Olshen, Stone (1984). CART 
• Quinlan (1993). C4.5 
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Classification and Regression Trees 

• Grow a binary tree. 
• At each node, “split” the data into two “daughter” nodes. 
• Splits are chosen using a splitting criterion. 
• Bottom nodes are “terminal” nodes.  
• For regression the predicted value at a node is the average 

response variable for all observations in the node. 
• For classification the predicted class is the most common class 

in the node (majority vote). 
• For classification trees, can also get estimated probability of 

membership in each of the classes 
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A Classification Tree 

Ovronnaz, Switzerland 

Predict hepatitis (0=absent, 1=present) 
using protein and alkaline phosphate. 
 
“Yes” goes left.  

 

|protein< 45.43

protein>=26

alkphos< 171

protein< 38.59
alkphos< 129.40

19/0 0
4/0

1
1/2

1
1/4

1
0/3

1
7/114
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Splitting criteria 

• Regression: residual sum of squares  
  RSS = ∑left (yi – yL*)2 + ∑right (yi – yR*)2 

 

where   yL* = mean y-value for left node    
   yR* = mean y-value for right node  
 

• Classification: Gini criterion  
  Gini = NL ∑k=1,…,K pkL (1- pkL) + NR ∑k=1,…,K pkR (1- pkR) 
 

where  pkL = proportion of class k in left node 
       pkR = proportion of class k in right node 
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Choosing the best horizontal split 

Ovronnaz, Switzerland 

Best horizontal split is at 3.67 with RSS = 68.09. 
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Choosing the best vertical split 

Ovronnaz, Switzerland 

Best vertical split is at 1.05 with RSS = 61.76. 
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Regression tree (prostate cancer) 
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Choosing the best split in the left node 

Ovronnaz, Switzerland 

Best horizontal split is at 3.66 with RSS = 16.11. 
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Choosing the best split in the left node 

Ovronnaz, Switzerland 

Best vertical split is at -.48 with RSS = 13.61. 
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Regression tree (prostate cancer) 
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Choosing the best split in the right node 

Ovronnaz, Switzerland 

Best horizontal split is at 3.07 with RSS = 27.15. 
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Choosing the best split in the right node 

Ovronnaz, Switzerland 

Best vertical split is at 2.79 with RSS = 25.11. 
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Regression tree (prostate cancer) 
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Choosing the best split in the third node 

Ovronnaz, Switzerland 

Best horizontal split is at 3.07 with RSS = 14.42, but 
this is too close to the edge. Use 3.46 with RSS = 16.14. 
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Choosing the best split in the third node 

Ovronnaz, Switzerland 

Best vertical split is at 2.46 with RSS = 18.97. 
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Regression tree (prostate cancer) 
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Regression tree (prostate cancer) 
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Regression tree (prostate cancer) 

Ovronnaz, Switzerland 

lca
vollweight

lpsa
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Classification tree (hepatitis) 

Ovronnaz, Switzerland 

|protein< 45.43

protein>=26

alkphos< 171

protein< 38.59
alkphos< 129.40

19/0 0
4/0

1
1/2

1
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1
0/3

1
7/11
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Classification tree (hepatitis) 

Ovronnaz, Switzerland 
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Classification tree (hepatitis) 

Ovronnaz, Switzerland 
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Classification tree (hepatitis) 

Ovronnaz, Switzerland 
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Classification tree (hepatitis) 

Ovronnaz, Switzerland 
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1
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Pruning 

• If the tree is too big, the lower “branches” are 
modeling noise in the data (“overfitting”). 
 

• The usual paradigm is to grow the trees large 
and “prune” back unnecessary splits. 
 

• Methods for pruning trees have been 
developed. Most use some form of 
crossvalidation. Tuning may be necessary. 
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Case Study: Cavity Nesting birds in 
the Uintah Mountains, Utah 

Choose cp = .035 



Crossvalidation Accuracy  
(cp = .035) 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

Actual 
Class 

Predicted Class 

Total 
Absence Presence 

0 1 
Absence, 0 85 21 106 

Presence, 1 19 88 107 
Total 104 109 213 

 
 
 
 
 
  
 

 
 
 Error rate = ( 19 + 21 )/213 = (approx) .19 or 19%  
 
 
 
 
 
 
 



Classification and Regression Trees 
Advantages 
 

• Applicable to both regression and classification problems. 
 

• Handle categorical predictors naturally.  
 

• Computationally simple and quick to fit, even for large problems. 
 

• No formal distributional assumptions (non-parametric). 
 

• Can handle highly non-linear interactions and classification boundaries. 
 

• Automatic variable selection.  
 

• Handle missing values through surrogate variables. 
 

• Very easy to interpret if the tree is small.  

Ovronnaz, Switzerland September 15-17, 2010 63 



Classification and Regression Trees 

Advantages (ctnd) 
 

• The picture of the 
tree can give valuable 
insights into which 
variables are 
important and where. 
 

• The terminal nodes 
suggest a natural 
clustering of data into 
homogeneous 
groups. 

Ovronnaz, Switzerland 

|protein< 45.43

fatigue< 1.5

alkphos< 171

age>=28.5

albumin< 2.75

varices< 1.
firm>=1.5

0
24/0

1
0/2

1
1/4

1
0/3

0
2/0

0
2/1

1
0/4

1
3/109
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Classification and Regression Trees  

Disadvantages 
 

• Accuracy - current methods, such as support vector 
machines and ensemble classifiers often have 30% lower 
error rates than CART. 

• Instability – if we change the data a little, the tree picture 
can change a lot. So the interpretation is not as 
straightforward as it appears.  

 

Today, we can do better! 
Random Forests 
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Outline 

• Background. 
• Trees. 
• Bagging predictors. 
• Random Forests algorithm. 
• Variable importance. 
• Proximity measures. 
• Visualization. 
• Partial plots and interpretation of effects. 
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Data and Underlying Function 

Ovronnaz, Switzerland 
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Single Regression Tree 

Ovronnaz, Switzerland 
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10 Regression Trees  

Ovronnaz, Switzerland 
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Average of 100 Regression Trees  

Ovronnaz, Switzerland 
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Hard problem for a single tree: 

Ovronnaz, Switzerland 
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Single tree: 

Ovronnaz, Switzerland 
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25 Averaged Trees: 

Ovronnaz, Switzerland 
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25 Voted Trees: 

Ovronnaz, Switzerland 
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Bagging (Bootstrap Aggregating) 

Breiman, “Bagging Predictors”,  Machine Learning, 1996. 
 

Fit classification or regression models to bootstrap samples from 
the data and combine by voting (classification) or averaging  
(regression). 
 

Bootstrap sample   ➾   f1(x) 

Bootstrap sample   ➾   f2(x) 
Bootstrap sample   ➾   f3(x)   Combine f1(x),…, fM(x)   ➾   f(x)     
…        
Bootstrap sample   ➾   fM(x)          fi(x)’s are “base learners”  
 

Ovronnaz, Switzerland 

MODEL  AVERAGING 
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Bagging (Bootstrap Aggregating) 
 

• A bootstrap sample is chosen at random with  replacement 
from the data. Some observations end up in the bootstrap 
sample more than once, while others are not included 
(“out of bag”). 
 

• Bagging reduces the variance of the base learner but has 
limited effect on the bias.  
 

• It’s most effective if we use strong  base learners that have 
very little bias but high variance (unstable). E.g. trees. 
 

• Both bagging and boosting are examples of “ensemble 
learners” that were popular in machine learning in the ‘90s. 
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Bagging CART 
Dataset # cases # vars # classes CART Bagged 

CART 
Decrease 

% 

Waveform 300 21 3 29.1 19.3 34 

Heart 1395 16 2 4.9 2.8 43 

Breast Cancer 699 9 2 5.9 3.7 37 

Ionosphere 351 34 2 11.2 7.9 29 

Diabetes 768 8 2 25.3 23.9 6 

Glass 214 9 6 30.4 23.6 22 

Soybean 683 35 19 8.6 6.8 21 

Ovronnaz, Switzerland September 15-17, 2010 77 
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Outline 

• Background. 
• Trees. 
• Bagging predictors. 
• Random Forests algorithm. 
• Variable importance. 
• Proximity measures. 
• Visualization. 
• Partial plots and interpretation of effects. 
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Random Forests 
Dataset # cases # vars # classes CART Bagged 

CART 
Random 

Forests 

Waveform 300 21 3 29.1 19.3 17.2 

Breast Cancer 699 9 2 5.9 3.7 2.9 

Ionosphere 351 34 2 11.2 7.9 7.1 

Diabetes 768 8 2 25.3 23.9 24.2 

Glass 214 9 6 30.4 23.6 20.6 
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Random Forests 
Grow a forest of many trees. (R default is 500) 
 

Grow each tree on an independent bootstrap sample* from  
the training data.  
 

At each node: 
1. Select m variables at random out of all M possible 

variables (independently for each node). 
2. Find the best split on the selected m variables.  
 

Grow the trees to maximum depth (classification). 
 

Vote/average the trees to get predictions for new data. 
 
*Sample N cases at random with replacement. 
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Random Forests 
Inherit many of the advantages of CART: 
 

• Applicable to both regression and classification problems. Yes. 
 

• Handle categorical predictors naturally. Yes. 
 

• Computationally simple and quick to fit, even for large problems. Yes. 
 

• No formal distributional assumptions (non-parametric). Yes. 
 

• Can handle highly non-linear interactions and classification boundaries. 
Yes. 
 

• Automatic variable selection. Yes. But need variable importance too. 
 

• Handles missing values through surrogate variables. Using proximities. 
 

• Very easy to interpret if the tree is small. NO! 
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Random Forests 

But do not inherit: 
 

• The picture of the 
tree can give valuable 
insights into which 
variables are 
important and where. 
 

• The terminal nodes 
suggest a natural 
clustering of data into 
homogeneous 
groups. 
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Random Forests 

Improve on CART with respect to: 
 

• Accuracy – Random Forests is competitive with the best known 
machine learning methods (but note the “no free lunch” 
theorem). 

 
• Instability – if we change the data a little, the individual trees 

may change but the forest is relatively stable because it is a 
combination of many trees. 
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Two Natural Questions 

1. Why bootstrap? (Why subsample?) 
 Bootstrapping → out-of-bag data → 

– Estimated error rate and confusion matrix 
– Variable importance 

 

2. Why trees? 
 Trees →  proximities → 

– Missing value fill-in 
– Outlier detection 
– Illuminating pictures of the data (clusters, structure, 

outliers) 

 
Ovronnaz, Switzerland September 15-17, 2010 84 



The RF Predictor 
•    A case in the training data is not in the bootstrap sample for about 
 one third of the trees (we say the case is “out of bag” or “oob”).  
 Vote (or average) the predictions of these trees to give the RF  
 predictor.  
       
• The oob error rate is the error rate of the RF predictor.  

 
 

• The oob confusion matrix is obtained from the RF predictor. 
 

• For new cases, vote (or average) all  the trees to get the RF 
predictor.  
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The RF Predictor 

For example, suppose we fit 1000 trees, and a case is  
out-of-bag in 339 of them, of which: 
  283 say “class 1” 
  56 say “class 2” 
 

The RF predictor  for this case is class 1. 
 
The “oob” error gives an estimate of test set error  
(generalization error) as trees are added to the ensemble. 
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RFs do not overfit as we fit more trees 

Ovronnaz, Switzerland 

Oob 
test 
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RF handles thousands of predictors 
Ramón Díaz-Uriarte, Sara Alvarez de Andrés  
Bioinformatics Unit, Spanish National Cancer Center 
March, 2005 http://ligarto.org/rdiaz 
 

Compared  
• SVM, linear kernel 
• KNN/crossvalidation (Dudoit et al. JASA 2002) 
• DLDA 
• Shrunken Centroids (Tibshirani et al. PNAS 2002) 
• Random forests  
 

“Given its performance, random forest and variable selection 
using random forest should probably become part of the 
standard tool-box of methods for the analysis of microarray 
data.” 
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Microarray Datasets 
Data P N # Classes 
Leukemia 3051  38  2  
Breast 2 4869  78  2  
Breast 3 4869  96  3  
NCI60 5244  61  8  
Adenocar 9868  76  2  
Brain 5597  42  5  
Colon 2000  62  2  
Lymphoma 4026  62  3  
Prostate 6033 102  2  
Srbct 2308  63  4  
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Microarray Error Rates 

Data SVM KNN DLDA SC RF rank 
Leukemia .014  .029  .020  .025  .051 5 
Breast 2 .325  .337  .331  .324  .342 5 
Breast 3 .380  .449  .370  .396  .351 1 
NCI60 .256  .317  .286  .256  .252 1 
Adenocar .203  .174  .194  .177  .125 1 
Brain .138  .174  .183  .163  .154 2 
Colon .147  .152  .137  .123  .127 2 
Lymphoma .010  .008  .021  .028  .009 2 
Prostate .064  .100  .149  .088  .077 2 
Srbct .017  .023  .011  .012  .021 4 
Mean .155 .176 .170 .159 .151 
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RF handles thousands of predictors 

• Add noise to some standard datasets and see 
how well Random Forests: 
– predicts 
– detects the important variables 
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No noise 
added 10 noise variables 100 noise variables 

Dataset Error rate Error rate Ratio Error rate Ratio 

breast 3.1 2.9 0.93 2.8 0.91 
diabetes 23.5 23.8 1.01 25.8 1.10 
ecoli 11.8 13.5 1.14 21.2 1.80 
german 23.5 25.3 1.07 28.8 1.22 
glass 20.4 25.9 1.27 37.0 1.81 
image 1.9 2.1 1.14 4.1 2.22 
iono 6.6 6.5 0.99 7.1 1.07 
liver 25.7 31.0 1.21 40.8 1.59 
sonar 15.2 17.1 1.12 21.3 1.40 
soy 5.3 5.5 1.06 7.0 1.33 
vehicle 25.5 25.0 0.98 28.7 1.12 
votes 4.1 4.6 1.12 5.4 1.33 
vowel 2.6 4.2 1.59 17.9 6.77 

RF error rates (%) 
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Error rates (%) Number of noise variables 

Dataset No noise 
added 10 100 1,000 10,000 

breast 3.1 2.9 2.8 3.6 8.9 
glass 20.4 25.9 37.0 51.4 61.7 
votes 4.1 4.6 5.4 7.8 17.7 

RF error rates 

Ovronnaz, Switzerland September 15-17, 2010 93 



Outline 

• Background. 
• Trees. 
• Bagging predictors. 
• Random Forests algorithm. 
• Variable importance. 
• Proximity measures. 
• Visualization. 
• Partial plots and interpretation of effects. 
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Variable Importance 
RF computes two measures of variable importance,  
one based on a rough-and-ready measure (Gini for  
classification) and the other based on permutations. 
 
To understand how permutation importance is  
computed, need to understand local variable  
importance.  But first… 

Ovronnaz, Switzerland September 15-17, 2010 95 



10 noise variables 100 noise variables 

Dataset  m Number in 
top m Percent Number in 

top m Percent 

breast 9 9.0 100.0 9.0 100.0 
diabetes 8 7.6 95.0 7.3 91.2 
ecoli 7 6.0 85.7 6.0 85.7 
german 24 20.0 83.3 10.1 42.1 
glass 9 8.7 96.7 8.1 90.0 
image 19 18.0 94.7 18.0 94.7 
ionosphere 34 33.0 97.1 33.0 97.1 
liver 6 5.6 93.3 3.1 51.7 
sonar 60 57.5 95.8 48.0 80.0 
soy 35 35.0 100.0 35.0 100.0 
vehicle 18 18.0 100.0 18.0 100.0 
votes 16 14.3 89.4 13.7 85.6 
vowel 10 10.0 100.0 10.0 100.0 

RF variable importance   
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RF error rates 

Number in top m  Number of noise variables 

Dataset m 10 100 1,000 10,000 
breast 9 9.0 9.0 9  9  
glass 9 8.7 8.1 7  6  
votes 16 14.3 13.7 13  13  
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Local Variable Importance 
We usually think about variable importance as an  
overall measure. In part, this is probably because we  
fit models with global structure (linear regression,  
logistic regression). 
 
In CART, variable importance is local.  
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Local Variable Importance 

Different variables are important  
in different regions of the data. 
 

If protein is high, we don’t care  
about alkaline phosphate.  
Similarly if protein is low. But for  
intermediate values of protein,  
alkaline phosphate is important. 
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Local Variable Importance 
For each tree, look at the out-of-bag data: 
• randomly permute the values of variable j 
• pass these perturbed data down the tree, save the 

classes. 
 

For case i  and variable j  find 
 
 error rate with       error rate with 
 variable j  permuted  no permutation 
 
where the error rates are taken over all trees for which  
case i  is out-of-bag. 

Ovronnaz, Switzerland 
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Local importance for a class 2 case 
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TREE 

No 
permutation 

Permute 
variable 1 

 
      … 

Permute 
variable m 

     1      2      2      …      1 
     3      2      2      …      2 
     4      1      1      …      1 
     9      2      2      …      1 
   …    …    …      …    … 
  992      2      2      …      2 

  % Error     10%      11%      …      35% 



Outline 

• Background. 
• Trees. 
• Bagging predictors. 
• Random Forests algorithm. 
• Variable importance. 
• Proximity measures. 
• Visualization. 
• Partial plots and interpretation of effects. 
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Proximities 

Proximity of two cases is the proportion of the  
time that they end up in the same node. 

 
The proximities don’t just measure similarity of the variables -  they  
also take into account the importance of the variables.  

 

Two cases that have quite different predictor variables  
might have large proximity if they differ only on variables   
that are not important. 

 

Two cases that have quite similar values of the predictor variables  
might have small proximity if they differ on inputs that are important. 
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Visualizing using Proximities 

To “look” at the data we use classical multidimensional  
scaling (MDS) to get a picture in 2-D or 3-D: 
 
     MDS 
  Proximities    Scaling Variables 
 
Might see clusters, outliers, unusual structure. 
Can also use nonmetric MDS.  
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Visualizing using Proximities 

• at-a-glance information about which classes are 
overlapping, which classes differ 

• find clusters within classes 
• find easy/hard/unusual cases 
 
With a good tool we can also 
• identify characteristics of unusual points 
• see which variables are locally important  
• see how clusters or unusual points differ 
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Visualizing using Proximities 

Synthetic data, 600 cases 
2 meaningful variables  
48 “noise” variables 
3 classes 
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The Problem with Proximities 

Proximities based on all the data overfit! 
e.g. two cases from different classes must have proximity zero if 

trees are grown deep.  
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Proximity-weighted Nearest Neighbors 

RF is like a nearest-neighbor classifier: 
• Use the proximities as weights for nearest-neighbors. 
• Classify the training data.  
• Compute the error rate. 
 

Want the error rate to be close to the RF oob error  
rate.  
 

BAD NEWS! If we compute proximities from trees in 
which both cases are OOB, we don’t get good 
accuracy when we use the proximities for prediction! 
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Proximity-weighted Nearest Neighbors 

Ovronnaz, Switzerland 

Dataset RF OOB 

breast 2.6 2.9 

diabetes 24.2 23.7 

ecoli 11.6 12.5 

german 23.6 24.1 

glass 20.6 23.8 

image 1.9 2.1 

iono 6.8 6.8 

liver 26.4 26.7 

sonar 13.9 21.6 

soy 5.1 5.4 

vehicle 24.8 27.4 

votes 3.9 3.7 

vowel 2.6 4.5 
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Proximity-weighted Nearest Neighbors 

Ovronnaz, Switzerland 

Dataset RF OOB 
Waveform 15.5 16.1 
Twonorm 3.7 4.6 
Threenorm 14.5 15.7 
Ringnorm 5.6 5.9 
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New Proximity Method  
Start with P = I, the identity matrix. 

For each observation i: 

 For each tree in which case i is oob: 
– Pass case i down the tree and note which terminal node it falls 

into. 

– Increase the proximity between observation i and the k in-bag 
cases that are in the same terminal node, by the amount 1/k.  

 
Can show that except for ties, this gives the same error rate  
as RF, when used as a proximity-weighted nn classifier.  
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New Method 

Ovronnaz, Switzerland 

Dataset RF OOB New 

breast 2.6 2.9 2.6 

diabetes 24.2 23.7 24.4 

ecoli 11.6 12.5 11.9 

german 23.6 24.1 23.4 

glass 20.6 23.8 20.6 

image 1.9 2.1 1.9 

iono 6.8 6.8 6.8 

liver 26.4 26.7 26.4 

sonar 13.9 21.6 13.9 

soy 5.1 5.4 5.3 

vehicle 24.8 27.4 24.8 

votes 3.9 3.7 3.7 

vowel 2.6 4.5 2.6 
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New Method 

Ovronnaz, Switzerland 

Dataset RF OOB New 
Waveform 15.5 16.1 15.5 
Twonorm 3.7 4.6 3.7 
Threenorm 14.5 15.7 14.5 
Ringnorm 5.6 5.9 5.6 
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But… 

The new “proximity” matrix is not symmetric! 
 
→ Methods for doing multidimensional scaling 

on asymmetric matrices. 
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Other Uses for Random Forests 

• Missing data imputation. 
 

• Feature selection (before using a method that 
cannot handle high dimensionality). 
 

• Unsupervised learning (cluster analysis). 
 

• Survival analysis without making the 
proportional hazards assumption. 
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Missing Data Imputation 
Fast way: replace missing values for a given variable using 

the median of the non-missing values (or the most 
frequent, if categorical) 

 

Better way (using proximities):  
1. Start with the fast way. 
2. Get proximities. 
3. Replace missing values in case i by a weighted average 

of non-missing values, with weights proportional to 
the proximity between case i and the cases with the 
non-missing values.  

Repeat steps 2 and 3 a few times (5 or 6). 
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Feature Selection 

• Ramón Díaz-Uriarte:  
 varSelRF R package. 

 
• In the NIPS competition 2003, several of the 

top entries used RF for feature selection. 
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Unsupervised Learning 
Global histone modification patterns predict risk of prostate 

cancer recurrence 
 
David B. Seligson, Steve Horvath, Tao Shi, Hong Yu, Sheila Tze, 

Michael Grunstein and Siavash K. Kurdistan (all at UCLA). 
 
Used RF clustering of 183 tissue microarrays to find two 

disease subgroups with distinct risks of tumor 
recurrence. 

 
http://www.nature.com/nature/journal/v435/n7046/full/natu

re03672.html 
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Survival Analysis 

• Hemant Ishwaran and Udaya B. Kogalur: 
 randomSurvivalForest R package. 
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Outline 

• Background. 
• Trees. 
• Bagging predictors. 
• Random Forests algorithm. 
• Variable importance. 
• Proximity measures. 
• Visualization. 
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Case Study: Cavity Nesting birds in 
the Uintah Mountains, Utah  

 

• Red-naped sapsucker (Sphyrapicus nuchalis) 
 (n = 42 nest sites) 

 
 

• Mountain chickadee  
 (Parus gambeli) (n = 42 nest sites) 

 
 

• Northern flicker (Colaptes auratus) 
 (n = 23 nest sites) 
 
• n = 106 non-nest sites 
 



 

 
• Response variable is the presence (coded 1) or absence 

(coded 0) of a nest. 
 

• Predictor variables (measured on 0.04 ha plots around 
the sites) are: 
– Numbers of trees in various size classes from less than 

1 inch in diameter at breast height to greater than 15 
inches in diameter. 

– Number of snags and number of downed snags. 
– Percent shrub cover. 
– Number of conifers. 
– Stand Type, coded as 0 for pure aspen and 1 for mixed 

aspen and conifer. 

Case Study: Cavity Nesting birds in 
the Uintah Mountains, Utah 



Autism 

Data courtesy of J.D.Odell and R. Torres, USU 
 
154 subjects (308 chromosomes) 
7 variables, all categorical (up to 30 categories) 
2 classes: 

– Normal, blue (69 subjects) 
– Autistic, red (85 subjects) 
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Brain Cancer Microarrays 

Pomeroy et al. Nature, 2002. 
Dettling and Bühlmann, Genome Biology, 2002. 
 
42 cases, 5,597 genes, 5 tumor types: 
• 10 medulloblastomas BLUE 
• 10 malignant gliomas PALE BLUE 
• 10 atypical teratoid/rhabdoid tumors (AT/RTs) 

GREEN 
• 4 human cerebella ORANGE 
• 8 PNETs RED 
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Dementia 

Data courtesy of J.T. Tschanz, USU 
 
516 subjects 
28 variables 
2 classes: 

– no cognitive impairment, blue (372 people) 
– Alzheimer’s, red (144 people) 
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Metabolomics 

(Lou Gehrig’s disease) 
data courtesy of Metabolon (Chris Beecham) 
 
63 subjects  
317 variables 
3 classes: 

– blue (22 subjects) ALS (no meds) 
– green (9 subjects) ALS (on meds) 
– red (32 subjects) healthy 
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Random Forests Software 

• Free, open-source code (FORTRAN, java) 
 www.math.usu.edu/~adele/forests 
 
• Commercial version (academic discounts) 
 www.salford-systems.com 
 
• R interface, independent development (Andy 

Liaw and Matthew Wiener) 
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Java Software 

Raft uses VisAD 
www.ssec.wisc.edu/~billh/visad.html 
 
and ImageJ 
http://rsb.info.nih.gov/ij/ 
 
These are both open-source projects with great  
mailing lists and helpful developers. 
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