

HLMA201 - Algèbre linéaire 2 - 2017-2018

FEUILLE DE TRAVAUX DIRIGÉS N° 5

1. Echauffement

		\mathbf{V}	${f F}$
(1)	L'ensemble des polynômes de degré 2 à coefficients dans $\mathbb R$ est un sous-espace vectoriel de $\mathbb R[X]$		
(2)	Les coordonnées du polynôme $P=X^2+2X+3$ dans la base canonique de \mathbb{R}_2 sont $(1,2,3)$.	[X]	
(3)	Le polynôme $(0,1,2,3,0,1,0,0\dots)$ est de degré 5	_	_
(4)	La famille $(X, X(X-1), X(X-1)^2)$ est une famille libre de $\mathbb{R}_3[X]$		
(5)	La famille $(X, X(X-1), X(X-1)^2)$ est une base de $\mathbb{R}_3[X]$		
(6)	La famille $(2, X - 1, (X - 1)(X - 2), (X - 3)(X - 1)^2)$ est une base de $\mathbb{R}_3[X]$		
(7)	Le polynôme $X^2 - 2$ admet une racine dans \mathbb{Q}		

Exercice 1

Soient A, P et Q les polynômes suivants :

$$A = X^7 + X^6 + X^5 - 3X^4 + 11X^3 + 11X^2 + 15X - 12$$

$$P = X^3 + X^2 + X - 1$$

$$Q = X^4 - 2X + 13$$

Calculer alors P + Q, PQ et A - PQ.

Exercice 2

Trouver un polynôme de degré inférieur ou égal à 3 tel que :

$$P(0) = 1, P(1) = 0, P(-1) = -2, P(2) = 4.$$

2. Entrainement

Exercice 3

Un polynôme P est dit *inversible* dans $\mathbb{K}[X]$ lorsqu'il existe $Q \in \mathbb{K}[X]$ avec PQ = 1. Montrer que les seuls éléments inversibles de $\mathbb{K}[X]$ sont les polynômes constants non nuls.

Exercice 4

Soient P et Q des polynômes de $\mathbb{K}[X]$.

(1) Montrer que si les polynômes P+Q et P-Q sont constants, alors les polynômes P et Q sont constants.

1

(2) On suppose le polynôme P^2-Q^2 constant et non nul. Montrer que les polynômes P et Q sont constants.

Exercice 5

Soit $A \in \mathbb{K}[X]$ un polynôme non nul, de degré a.

- (1) Montrer que pour tout $n \in \mathbb{N}$, la famille $(1, X, \dots, X^{a-1}, A, AX, \dots, AX^n)$ est une base de $\mathbb{K}_{a+n}[X]$.
- (2) Montrer que pour tout polynôme P de $\mathbb{K}[X]$, il existe un couple unique (Q, R) de polynômes de $\mathbb{K}[X]$ vérifiant :

$$P = AQ + R$$
 et $\deg(R) < \deg(A)$.

Exercice 6

- (1) Soit $P \in \mathbb{R}[X]$. On suppose que P admet une racine complexe $\alpha \in \mathbb{C}$. Montrer que $\bar{\alpha}$ est aussi une racine de P.
- (2) Soit $P = X^4 X^3 + 2X^2 X + 1$. En remarquant que i est racine de P, factoriser P dans \mathbb{R} (c'est à dire écrire P comme un produit de polynômes non constants à coefficients réels)

Exercice 7 Polynômes interpolateurs de Lagrange

Soient x_0, x_1, \ldots, x_n n+1 réels distincts deux à deux. On pose, pour tout entier $i \in [0, n]$,

$$L_i = \prod_{\substack{j=0\\j\neq i}}^n \frac{X - x_j}{x_i - x_j}.$$

(1) Vérifier que pour tout couple (i, j) d'entiers, on a

$$\tilde{L}_i(x_j) = \begin{cases} 1 & \text{si } i = j, \\ 0 & \text{si } i \neq j. \end{cases}$$

- (2) Justifier que la famille (L_0, \ldots, L_n) forme une base de $\mathbb{R}_n[X]$
- (3) Monter que pour tout $(y_0, y_1, \dots, y_n) \in \mathbb{R}^{n+1}$, il existe un unique polynôme $P \in \mathbb{R}[X]$ tel que pour tout entier $j \in [|0, n|], P(x_j) = y_j$ et que ce polynôme est $P = \sum_{i=0}^{n} y_i L_i$.
- (4) Application : Trouver un polynôme de degré inférieur ou égal à 3 tel que :

$$P(0) = 1$$
, $P(1) = 0$, $P(-1) = -2$, $P(2) = 4$.

Exercice 8

Soit la matrice $A = \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix}$, et P le polynôme $X^2 - 3X + 2$.

- (1) Vérifier que P(A) = 0.
- (2) Justifier alors que A est inversible, et donner son inverse.

3. Exercices d'approfondissement

Exercice 9

Soient x_0, x_1, \ldots, x_n n+1 réels distincts deux à deux. On pose, pour tout entier $i \in [0, n]$,

$$L_i = \prod_{\substack{j=0\\j\neq i}}^n \frac{X - x_j}{x_i - x_j}.$$

Montrer que
$$\sum_{i=0}^{n} L_i = 1$$
 et que $\sum_{i=0}^{n} x_i L_i = X$.

Exercice 10

(1) On considère les sous-espaces vectoriel suivants de $\mathbb{K}_3[X]$:

$$F = \{P \in \mathbb{K}_3[X], \ P(0) = P(1) = P(2) = 0\};$$

$$G = \{P \in \mathbb{K}_3[X], \ P(1) = P(2) = P(3) = 0\};$$

$$H = \{P \in \mathbb{K}_3[X], \ P(-X) = P(X)\}.$$

Montrer que $\mathbb{K}_3[X] = F \oplus G \oplus H$.

(2) On considère les sous-espaces vectoriel suivants de $\mathbb{K}_3[X]$:

$$\begin{split} F &= \{P \in \mathbb{K}_3[X], \ P(0) = P(1) = P(-1) = 0\}; \\ G &= \{P \in \mathbb{K}_3[X], \ P(1) = P(2) = P'(2) = 0\}; \\ H &= \{P \in \mathbb{K}_3[X], \ P(-X) = -P(X)\}. \end{split}$$

A t-on :
$$\mathbb{K}_3[X] = F \oplus G \oplus H$$
?

Exercice 11

Exercice II
Soit
$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
 un élément de $\mathcal{M}_2(\mathbb{K})$.
On considère le polynôme $P = X^2 - (a+d)X + (ad-bc)$.

- (1) Vérifier que P(A) = 0.
- (2) En déduire une condition suffisante sur a, b, c, d pour que A soit une matrice inversible.
- (3) Cette condition est-elle nécessaire?