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Solving Bernstein’s Problem: A Proposal for
the Development of Coordinated Movement

by Selection

Olaf Sporns and Gerald M. Edelman

The Neurosciences Institute

SPORNS, OLAF, AND EDELMAN, GERALD M. Solving Bernstein’s Problem: A Proposal for the Devel-
opment of Coordinated Movement by Selection. CHILD DEVELOPMENT, 1993, 64, 960-981. In
recent years, many established concepts in the theory of human motor development have under-
gone profound change, and our knowledge has increased greatly. Nevertheless, some outstanding
problems remain unsolved. A central problem concerns the redundancy of effective movements,
first pointed out by N. A. Bernstein. The human motor system is mechanically complex and can
make use of a large number of degrees of freedom. The controlled operation of such a system
requires a reduction of mechanical redundancy, effectively by reducing the number of degrees of
freedom. More recent work has shown that this problem is hard to solve explicitly by computing
solutions to the equations of motion of the system. Equally challenging to traditional computa-
tional approaches is the fact the motor systems show remarkable adaptability and flexibility in
the presence of changing biomechanical properties of motor organs during development and
when faced with different environmental conditions or tasks. Solutions to these problems would
have a large impact on a variety of issues in child development. In this article, we stress the
importance of the somatic selection of neuronal groups in maps for the progressive transformation
of a primary movement repertoire into a set of motor synergies and adaptive action patterns. We
present results from computer simulations of a simple motor system that works according to such
selectional principles. This approach suggests a provisional solution to Bernstein’s problem and
provides new parameters to guide experimental approaches to the development of sensorimotor

coordination.

A major function of animal and human
nervous systems is the coordinated control
of limb and body movements. Coordinated
motor activity enables an animal to explore
its environment and to sample and attend
to sensory stimuli, and it is essential for its
survival within its econiche. Initially, how-
ever, the motor capabilities of newborn
higher vertebrates are generally inadequate
to accomplish any of these wvital tasks,
and these capabilities undergo profound
changes over an extended period of postna-
tal development. This period is of particular
interest in human infants, many of whose
motor abilities at birth appear to be among
the least developed when compared to those
of other vertebrate species. A child’s contin-
ued progress in achieving precise control of
motor functions is an obvious prerequisite
for its further behavioral, cognitive, and so-

cial development (Cratty, 1979; Thelen,
1989a).

A satisfactory understanding of early hu-
man development can only be achieved
within the context of a global theory of brain
function. Several theories based on informa-
tion processing have been proposed. In such
theories, motor function is largely viewed as
dependent upon cybernetic control mecha-
nisms and feedback loops of a more or less
intricate nature. In this article, we consider
a number of issues related to biological
movement that pose several serious chal-
lenges to the formulation of an adequate the-
ory in terms of conventional information pro-
cessing. Some of these challenges are:

a) Evolutionary changes in the structure
and function of the musculoskeletal appara-
tus must be compensated for by accompa-
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nying changes in the nervous system. Dur-
ing evolution, genetic changes may affect
the biomechanics of limbs or the morphol-
ogy of muscles and tendons in many differ-
ent ways. In order to maintain adequate con-
trol by corresponding circuits in the nervous
system, these circuits must be adjusted in a
coordinated manner (for examples, see Edel-
man, 1987). Coordinated mutations affecting
both body mechanics and brain structure
are, however, unlikely to occur simulta-
neously in the same individual (although the
two domains obviously co-evolve on a larger
time scale). This evolutionary problem de-
mands a theory of motor function that per-
mits for the possibility of rapid alterations
of neural circuits (involving mechanisms of
neural plasticity) in response to peripheral
biomechanical change.

b) All but the most stereotypic move-
ments exhibit high degrees of variability,
can be executed in a large number of possi-
ble ways, are redundantly specified by neu-
ral signals, and seem to involve widespread
and mutually overlapping parts of the ner-
vous system. While motor learning generally
increases the precision of movements, even
fully matured motor systems can execute
movements in a large number of unpracticed
ways. The key point is that the number of
executable solutions to a given motor task
always far exceeds the small number of
learned examples. As we have mentioned,
the problem posed by motor redundancy
was first clearly recognized by N. A. Bern-
stein (Bernstein, 1967; Turvey, 1990; Whit-
ing, 1984).

¢) Motor coordination (particularly in
humans) is not innately specified but devel-
ops gradually during postnatal life. For
example, reaching movements in human
infants are initially highly imprecise and
variable and lack the characteristic patterns
of organization found in the adult (see, e.g.,
Fetters & Todd, 1987; Thelen & Fisher,
1983; Trevarthen, 1974; von Hofsten, 1982).
In the course of its development, an individ-
ual is able to accommodate great individ-
ual variations in neural and biomechanical
structures. Moreover, many motor systems
remain plastic throughout adult life, ready to
compensate for metric and dynamic changes
in the biomechanics of motor organs, includ-
ing even the loss of entire limbs.

Although some promising advances
have been made in the framework of eco-
logical psychology and nonlinear systems
theory, these challenges have not been met
adequately by cybemetic, kinematic, or in-
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formation-processing models. We will con-
sider an alternative view that appears to
deal more effectively with all these chal-
lenges. After briefly discussing the historical
origins of some key problems of motor de-
velopment (especially the problem of redun-
dancy in the specification of motor com-
mands), we will consider Bernstein’s notion
of motor synergies as functional units of the
motor system. We will then explicitly dis-
cuss some limitations and inconsistencies in
viewing motor function as governed solely
by feedback control loops, algorithms, or
computations. In contrast to these ap-
proaches, we propose that successful devel-
opmental coordination between neuronal
activity and the biomechanics of the muscu-
loskeletal system is based on variation and
is the result of somatic selective processes
within brain circuits. Selection acts to match
possible motor commands to constraints
posed by neural structure and kinematics.
We will contrast our proposals with previous
ideas based on information-processing mod-
els and briefly discuss some computer sim-
ulations that exemplify the proposed ap-
proach and demonstrate its self-consistency.

Bernstein’s Problem

Bernstein, in 1935, pointed out that “the
relationship between movements and the in-
nervational impulses which evoke them is
extremely complex and is, moreover, by no
means univocal” (quoted in Whiting, 1984,
p. 77; see also Turvey, 1990). Bernstein rec-
ognized that an “unequivocal relationship
between impulses and movements does not
and cannot exist” (Whiting, 1984, p. 82),
partly because any movement is defined by
greatly varying interactions of centrally syn-
thesized motor signals and the external force
field acting on the moving part of the body
at the periphery. He noted that the design
of the vertebrate motor apparatus creates a
problem in the control of body movements,
largely because of the many sources of inde-
terminacy between central command and
peripheral movements. The motor organs of
animals or humans, composed of multiple
linkages and joints and an even greater num-
ber of muscles, can attain a large number
of degrees of freedom. This number will in
general be far greater than the dimension of
their workspace, defined as that region of
space within which the motor organ can
move. This leads to what Bernstein termed
redundancy: more than one motor signal can
lead to the same trajectory of a given motor
system; moreover, identical motor signals
can lead to different movements under non-
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identical initial conditions or in the pres-
ence of variations in the external force field.
Indeed, Bernstein defined motor coordina-
tion itself as “the process of mastering re-
dundant degrees of freedom of the moving
organ, in other words its conversion to a con-
trollable system” (Bernstein, 1967, p. 127).
Determining how this conversion process
takes place is what we will refer to as Bern-
stein’s problem.

Bernstein proposed that the motor appa-
ratus is functionally organized into synergies
or classes of movement patterns. He empha-
sized the “gestalt” character of individual
movements, finding it difficult to decompose
them into constitutive atomic parts, such as
the activities of individual muscles or rota-
tions around a single joint: “A movement
never responds to detailed changes by a

change in its detail; it responds as a whole
to changes in each small part” (in Whiting,
1984, p. 84). Quite naturally, repetitions of
movements produce a class of similar but not
identical trajectories. An example of how the
gestalt character of a movement is preserved
under complete reconstruction of its accom-
panying muscle activities is given in Figure
1A. Many different circles can be described
with the hand as the arm extends in various
directions from the body; these movements
(forming a functional synergy) can be per-
formed without further specific training. In
related experiments, Lashley and others no-
ticed that “when habitually used motor or-
gans are rendered nonfunctional by removal
or paralysis, there is an immediate spontane-
ous use of other motor systems which had
not previously been associated with or used
in the performance of the activity” (Lashley,

A5lor tpuntbinct- Tobor,  eqpwolond,

right hand
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right mirror nilon it motor W
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F16. 1.—A, An equivalence class of movements according to N. A. Bernstein. Movements with

topologically identical trajectories are executed by different sets of motor commands and under partici-
pation of different muscle groups. From Bernstein (1967), reproduced with permission. B, Motor equiv-
alence according to K. Lashley. This Figure shows “the writing of two individuals, blindfolded, using
right and left hands in various positions, as well as other muscle groups, unpracticed. In spite of
clumsiness, the general features of the writing, individual differences in the forming of letters, and the
like, are characteristically maintained. The mechanics of writing is a sequence of movements in relation
to body position, not a set pattern of special groups of muscles” (Lashley, 1942, quoted after Pribram,
1969, p. 248). From Pribram, 1969, reproduced with permission. C, “Topology” according to Bernstein
(1967). This term is adopted for all qualitative aspects of spatial configuration or forms of movements,
in contrast to quantitative metric aspects. Examples include 1-5, topological class of five-pointed stars;
6, topological class of figure eights with four angles; 7—14, topological class of letters A. From Bernstein
(1967), reproduced with permission.



1933, quoted in Beach, Hebb, Morgan, &
Nissen, 1960, p. 239). In other words, “motor
acts . . . may be executed immediately with
motor organs which were not associated
with the act during training” (p. 240; see also
Fig. 1B). These reflections gave rise to the
concept of motor equivalence, referring to
the variety of specific muscle contractions
and joint revolutions that produce the same
end result (Hebb, 1949).

Synergies and the Structure of
Movements

Synergies are classes of movement pat-
terns involving collections of muscle or joint
variables that act as basic units in the regula-
tion and control of movement. Bernstein was
the first to propose that synergies are used
by the developing nervous system to reduce
the number both of controlled parameters
and of afferent signals needed to generate
and guide an ongoing movement. According
to Bernstein, certain synergies are often as-
sociated with a particular muscle group and
can therefore be at least partially defined by
morphology and anatomy. Other synergies
can be more clearly related to a given task
and provide a basis for “motor equivalence.”
Bernstein also proposed that synergies cap-
ture the “topological” rather than metric fea-
tures of movements (see Fig. 1C). The tem-
poral structure of motor programs emerges
through their parallel or sequential activa-
tion. These ideas have been elaborated by
others. In closely related formulations by
Gelfand (Arshavsky, Gelfand, & Orlovsky,
1986; Gelfand, Gurfinkel, Tsetlin, & Shik,
1971, 1973), syngergies are identified with
central motor programs that can be triggered
by simple commands. Saltzman (1979) dis-
tinguishes between functional synergies and
muscle synergies operating at different lev-
els in a hierarchical control structure (Tur-
vey, 1977). Functional synergies give rise to,
or consist of, a set of motions produced
across a given set of joints. Muscle synergies
are defined by groups of muscles that act as
units and can span many joints. The activa-
tion of a functional synergy produces a pat-
tern of joint velocities characterized, for
example, by relatively fixed ratios across
multiple joints. Most synergies emerge after
sensorimotor training during postnatal de-
velopment and underlie such well-practiced
actions as walking or reaching for objects.
Even after such fundamental synergies have
emerged, however, additional problems
must be confronted, such as the selection of
the appropriate functional synergies in a
given situation and the ordering and timing
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of muscle contractions and joint angle
changes in ongoing motor activity.

The study of synergies in humans and
animals has led to the identification of many
kinds of invariant movement features. Al-
though, in principle, many different strate-
gies to execute a movement can be pursued,
certain kinematic variables exhibit mutual
dependencies and patterned changes. Kine-
matic variables have been studied in differ-
ent systems and including fixed joint veloc-
ity ratios, time profiles of spatial movement
parameters, and the relative timing of articu-
lator movements during speech production.
Examples of fixed joint velocity ratios have
been described for hand movements (Kots
& Syrovegin, 1966) and pointing movements
(Soechting & Laquaniti, 1981) in humans.
Laquaniti, Soechting, and Terzuolo (1986)
showed that, although individual variations
occur, shoulder and elbow motions are gen-
erally tightly coupled. The hand trajectories
of humans drawing geometrical figures like
ellipses and circles in free space (Soechting,
Laquaniti, & Terzuelo, 1986) have the same
overall shape independent of the starting po-
sition or orientation of the figure (compare
Fig. 1B). In summary, many of the defining
characteristics of synergies (e.g., the invari-
ance of kinematic or muscle variables and
the fact that they cannot be unequivocally
dissociated into independent elementary
components) have been demonstrated in a
wide variety of motor systems (Buchanan,
Almdale, Lewis, & Rymer, 1986; Ganor &
Golani, 1980; Greene, 1982; Lee, 1984;
Nashner & McCollum, 1985; Shik & Orlov-
sky, 1976; Soechting & Laquaniti, 1989; Viv-
iani & McCollum, 1983).

Vigorous efforts to understand these is-
sues have been made by workers who have
adopted computational formulations of the
kinematics of motion. A brief discussion of
these approaches will help to identify some
of the current problems in this area and set
the stage for a contrasting treatment of these
problems by selectional theories.

Kinematic Concepts and
Computational Strategies

Kinematics.—The variability and flexi-
bility of movements reflect the mechanical
redundancy of the musculoskeletal system.
A redundant system can be defined as one
in which the number of degrees of freedom
is larger than the number of independent
spatial variables of the mechanical compo-
nents. In a mechanically redundant system,
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there is more than one way to generate
a given trajectory through the motion of
the joints involved. According to Saltzman
(1979), “the degrees of freedom for a given
system are the least number of independent
coordinates required to specify the positions
of the system elements without violating any
geometric constraints.” In the case of an
open kinematic chain consisting of multiple
links with joints that revolve around a single
axis of rotation (hinge joints), the number of
degrees of freedom simply equals the num-
ber of joints. Some joints of animal and hu-
man limbs have more than 1 degree of free-
dom; for example, the wrist joint is biaxial,
the shoulder joint triaxial. The number of
independent spatial variables depends also
in part on the dimension of the workspace.
In a two-dimensional (planar) workspace,
the position of each link in a kinematic chain
can be specified by its Cartesian coordi-
nates. Thus, in a two-dimensional work-
space, kinematic chains with more than two
links are redundant. In a three-dimensional
workspace, six coordinates must be specified
for a given link, three for position and three
for orientation. Typically, the human arm (in
its three main joints—wrist, elbow, and
shoulder) contains 7 mechanical degrees of
freedom and thus represents a redundant
system in three-dimensional space. If one
also takes body motion or motion of the
shoulder girdle into account, the effective
number of degrees of freedom grows sig-
nificantly (up to 100, according to Turvey,
1990).

Roughly speaking, kinematics deals
with the interconversion of joint and spatial
variables. Joint variables may comprise, for
example, a set of joint angles, angular veloci-
ties, or angular accelerations, and are often
expressed in a polar coordinate system cen-
tered at the base of the kinematic chain. Spa-
tial variables are, for example, the course of
a movement path or the position or velocity
of an environmental target and are often ex-
pressed in Cartesian coordinates. The direct
kinematic transform describes the transla-
tion of a given set of joint coordinates into
a geometric path of the kinematic chain.
While this transform always exists uniquely,
the inverse operation (called the inverse
kinematic transform) is indeterminate if the
system is redundant. This means that any
given path can be produced by a variety (po-
tentially an infinity) of sets of joint angle
changes. A typical example (easily repro-
duced by the reader) is a pointing movement
of the arm along a given path. For each con-
figuration of start point, end point, and path,

an infinite number of solutions can be car-
ried out (see also Fig. 1A4). Cybernetic theo-
ries of motor control and robotics hold that
computing the inverse kinematic transform
for a given desired movement path is the key
problem that motor systems face. Because of
its indeterminacy, the problem is mathemat-
ically “ill-posed.”

In principle, two different strategies can
be adopted to compute a set of joint angle
changes for the inverse kinematic transform:

a) Decrease the number of independent
joint variables. The number of degrees of
freedom that are used in the movement of a
multilink chain can be reduced, for example,
by freezing one or several of the joints. An-
other possibility is to introduce constraints
that allow the expression of one joint vari-
able as a function of another. For example,
if elbow movements can be expressed as a
function of shoulder movements, the num-
ber of degrees of freedom has effectively
been reduced by one. This strategy is re-
lated to the formation of synergies of joint or
muscle ensembles.

b) Increase the number of specified spa-
tial variables. In addition to specifying de-
sired spatial coordinates for the end point
of the kinematic chain (usually carrying the
effector, e.g., a gripper), spatial coordinates
for other links of the chain may be intro-
duced (e.g., as criteria for optimization of the
movement path in terms of length or mini-
mal energy consumption). For example,
such criteria could involve the requirement
that individual joints rotate as little as possi-
ble or that distal joints move more than prox-
imal ones.

Both of these strategies work by intro-
ducing additional constraints, either on the
motor apparatus itself or on the workspace.
Let us see how these kinematic concepts can
be put to use in computational approaches.

Computational strategies.—Most com-
putational approaches to the problem of
guidance and control of a kinematic chain
follow a number of defined steps. We choose
as an example a robot arm. First, the desired
trajectory (in Cartesian coordinates) of the
effector attached to the arm is computed.
Second, the inverse kinematic transform is
computed, resulting in a set of joint angles
and joint angle changes that correspond to
the desired effector path. If real motors are
involved in moving the robot arm, the ade-
quate motor torque for each joint must be
computed in a third step.



The second and third steps involve com-
puting inverse transforms. In principle,
there are two computational strategies that
will produce solutions for these steps (Hol-
lerbach, 1982; see also Loeb, 1983):

a) The joint angle changes and torques
producing a desired movement path can be
found by directly solving the set of dynami-
cal equations that describe the behavior of
the multijointed arm. For realistic motions
of a robot arm, it is important to solve these
equations in real time, that is, all computa-
tions have to be done at least as fast as in-
coming signals arrive. Computational strate-
gies of this class are hampered by the fact
that a large number of (often nonlinear)
terms has to be taken into account. These
include inertial forces such as link interac-
tion, centripetal and Coriolis forces, and a
variety of other effects due to gravity. The
dynamical equations for a multijointed arm
in three-space can thus become extremely
complicated, and computations of even sim-
ple trajectory fragments tend to take signifi-
cant computational time. A complete set of
Newtonian equations for position and joint
velocities of a three-jointed arm in three-
space contains 1,600 terms and requires
13,000 multiplications for its solution (after
Raibert, 1978). The equations to compute
the inverse dynamics of motions for a model
with five degrees of freedom of the upper
arm alone can themselves occupy two entire
pages of closely spaced text (after Hogan,
1988). Attempts have been made to simplify
the systems of equations and associated al-
gorithms sufficiently, to allow fast and reli-
able computation (Hollerbach, 1980; Luh,
Walker, & Paul, 1980). The continual in-
crease in computer power is likely to make
this strategy more feasible for many applica-
tions, but its biological relevance remains
marginal.

b) A second class of solutions to the in-
verse dynamics problem involves the re-
trieval from memory (in the form of a “look-
up table”) of the desired joint torques for a
given desired movement of the multijointed
arm (first introduced by Raibert, 1978; Rai-
bert & Horn, 1978). However, the amount of
memory needed is very large and increases
dramatically with the dimensionality and
complexity of the task. Furthermore, a pre-
cise index is needed for retrieval, and the
stored items may have to be updated in-
stantly, particularly if the mechanical con-
figuration or mass of a kinematic chain
changes abruptly (as happens when a load is
picked up).
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What both approaches have in common
is that they attempt to solve the inverse kine-
matics problem directly by computation.
Neither strategy makes use of synergies as
functional components of the motor ensem-
ble or of the dynamic and associative proper-
ties of neural architectures in order to con-
strain the number of possible solutions.
Neural network models have been claimed
to take some of these issues into account in
their approach to the inverse kinematics
problem.

Neural network models.—Computa-
tional approaches to motor control have
been enriched by a recent resurgence of in-
terest in neural network models (e.g., Ber-
kinblit, Gelfand, & Feldman, 1986; Bullock
& Grossberg, 1988; Hinton, 1984; Kawato,
Furukawa, & Suzuki, 1987; Kawato, Isobe,
Maeda, & Suzuki, 1988; Kuperstein, 1988;
Massone & Bizzi, 1989). Much of the appeal
of these models appears to have arisen from
their resemblance to real brain structures, a
resemblance that is nonetheless often only
superficial. Most network models share a
common feature with more conventional
computational approaches. The movement
of a kinematic chain is determined by a “de-
sired trajectory.” This is either precomputed
and presented to the model as a desired out-
put vector to which network behavior must
converge (Kawato et al., 1987, 1988), or it is
represented internally (computed from sen-
sory input) and then serves to guide an on-
going movement to its goal (Bullock &
Grossberg, 1988; Hogan, 1988).

Hinton’s (1984) iterative model for the
generation of reaching movements contains
representations of joint angles and positions
in addition to a “desired vector” from the
tip of the arm to the target. Joint angles are
updated in a parallel fashion while the de-
sired vector is minimized or shortened. Hin-
ton notes that elimination of interactions be-
tween individual joints will frequently lead
to grossly suboptimal trajectories, To rem-
edy this situation, he proposes that, under
certain conditions, synergies act as computa-
tional subroutines.

Bullock and Grossberg (1988) have de-
scribed a model of arm movements called
the vector-integration-to-end-point model. A
target position command specifies where the
arm is intended to move, and an indepen-
dently generated second command specifies
the movement speed. An arm trajectory is
then computed from a present position vec-
tor and a difference vector that is continu-
ously updated and that specifies the differ-
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ence between present and target position.
The present position vector (in connection
with the difference vector) determines an
outgoing motor signal leading to motion.
The model essentially depends on the con-
tinuous updating of the difference vector,
presumably by sensory feedback signals
sampled during motion. A model requiring
constant updating may be inadequate for
rapid movements such as saccades or ballis-
tic reaching.

Ritter, Martinetz, and Schulten (1989)
have constructed a model containing neural
maps that learns to position an arm under
visual feedback. Ultimately, the arm moves
with high accuracy to a target position. The
authors found that, if some subregions of
space are covered more frequently than oth-
ers, the sensorimotor map adapts by recruit-
ing more neuronal units in that area. An-
other model of sensorimotor coordination
has been developed by Kuperstein (1988;
see also Grossberg & Kuperstein, 1986; Ku-
perstein, 1991). The arm used in their model
has 5 degrees of freedom and operates in
three-dimensional space. During reaching,
the arm travels instantly from one equilib-
rium position to another (that is, joint angles
are linearly proportional to muscle activity).
During the first stage of training, the “eyes”
of a robot are fixed on the target by an
unspecified mechanism. The arm is allowed
repetitively to position itself by random
motions from a standard starting position.
During these movements, kinesthetic eye
position signals and target vision are sam-
pled and correlated with the random motor
signal in simulated neural networks. The
discrepancies between actual postures and
the ones computed from the sensory infor-
mation are split into respective components
for individual sets of muscles and the synap-
tic weights in the networks are changed in
order to minimize this discrepancy. After
training of the system, the random generator
is removed and a visual target can then drive
the individual joints, using the maps con-
structed in the first stage.

In summary, most of the existing net-
work models require both the setting of a
desired path and the specification of fairly
elaborate feedback signals, such as differ-
ence or error vectors, in order to converge to
a desired mode of action. However, these
feedback signals are often not specified in
biological terms. While it has certainly been
shown in many experiments (e.g., Bauer &
Held, 1975; Held & Bauer, 1974) that sen-
sory input is essential for ongoing purpose-

ful movement as well as motor learning, the
predominant view of learning as conver-
gence to a previously determined or pre-
scribed state, and thus the instructive nature
of such inputs, is far from proven.

Dynamic systems theory.—Recently, at-
tempts have been made to link the emer-
gence of coordinated movements to con-
cepts of nonlinear systems theory. This
approach was originated by Kelso (for re-
view see Kelso & Tuller, 1984; Schoner &
Kelso, 1988), as well as Kugler and Turvey
(1987; see also Kugler, Kelso, & Turvey,
1982). According to this approach, coordi-
nated movement is produced by many inter-
acting elements with potentially many de-
grees of freedom, constituting a nonlinear
system which can attain a certain number
of dynamic states. For example, rhythmic
swimming motions can be described by rela-
tively few parameters (such as frequency
and amplitude), that is, are characterized by
only a few degrees of freedom, even though
many neurons, muscles, and bones may be
involved in their generation. The interest in
rhythmic movements of this kind dates back
to Erich von Holst (1937); recent work on
rhythmic movements in animals and humans
viewed in the context of dynamic systems
theory includes the studies by Schmidt,
Beek, Treffner, and Turvey (1991); Schoner
and Kelso (1988); Thelen, Skala, and Kelso
(1987); and Ulrich (1989). More recently,
Thelen has proposed that development
might be understood as a temporal sequence
of coordinative modes or attractor states
(Thelen, 1990). The transition from one state
to another would be under the control of
relatively few developmental control pa-
rameters; the emergence of coordinated leg
movements in infants has been investigated
from this perspective (Thelen, 1989b).

Many basic concepts (such as the impor-
tance of nonlinear self-organizing inter-
actions within a complex system) of these
dynamical theories are consistent with se-
lectionism (see Kelso & Tuller, 1984). Like
selectionism, dynamical systems theory re-
jects instructionism and an algorithmic treat-
ment of learning and motor development.
However, selectionism differs in that it is
explicitly based on neuroanatomy and neu-
rophysiology and explicitly recognizes the
importance of analyzing the interactions of
multiple levels of organization (such as neu-
ral circuits or limb biomechanics). In partic-
ular, dynamical systems theory by itself does
not identify specific neural mechanisms of
developing and mature motor systems.



The next section contains a broad out-
line of our proposal to abandon the instruc-
tive or computational paradigm and look at
the problem from a new selectional per-
spective.

An Appreach to Solving Bernstein’s
Problem by Selection

There is overwhelming evidence that
the emergence of coordinated movements is
intimately tied both to the growth of the
musculoskeletal system and to the develop-
ment of the brain. Thus, neural development
and learning cannot be considered outside
of their biomechanical context. A key theo-
retical issue is how changes in brain cir-
cuitry controlling muscles and joints become
matched to simultaneously occurring devel-
opmental changes at the periphery (the in-
terface between the musculoskeletal system
and the environment of the organism). How
can coordination emerge from the many
components and interactions of such a sys-
tem? A promising approach is to consider
various aspects of this question in terms of
population thinking (Mayr, 1959). The the-
ory of neuronal group selection (Edelman,
1978, 1987, 1989, 1993) is a consistent at-
tempt to apply population thinking to the
functioning of the nervous system and pro-
vides the basis for the present proposal.

Neuronal group selection.—The theory
of neuronal group selection places great em-
phasis on the structural variability of brain
circuitry. During development, neuronal cir-
cuits are not precisely wired at the level of
microanatomy. Thus, the brain contains rep-
ertoires of variant circuits (structural vari-
ability) that can give rise to many different
outputs (dynamic variability). Those variant
circuits form neuronal groups, local collec-
tives of several hundreds to thousands of
more strongly interconnected neurons that
tend to share functional properties and to
discharge in a temporally correlated fashion.
The postulated neuronal groups are consid-
ered to be the basic functional units or units
of selection. They have recently been exper-
imentally identified in several cerebral corti-
cal regions (Gray & Singer, 1989).

In the cortex, neuronal groups are ar-
ranged in neural maps, representing, for ex-
ample, visual space or the body surface.
While these neural maps are often function-
ally segregated and occupy circumscribed
regions of the cortex, they are anatomically
coupled through long-range connections.
Virtually all of these connections are recip-
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rocal. Recursive reciprocal signaling (called
reentry) between neuronal groups in distant
sensory and motor regions gives rise to new
dynamical properties, including temporal
correlations (Sporns, Tononi, & Edelman,
1993; Tononi, Sporns, & Edelman, 1992a,
1992b). In general, reentry is the key opera-
tion that serves to integrate the activities of
the multiple sensory and motor areas of the
brain.

How do these ideas relate to population
thinking? Repertoires of variant neuronal
groups are subject to somatic selection (i.e.,
selection occurring during the lifetime of the
organism). This selection occurs for particu-
lar groups when their activation in a given
context matches given environmental and
internal constraints as compared to compet-
ing groups. For example, particular groups
may be selected for their contribution to per-
ceptual categorization or to motor tasks. The
mechanism of selection in the nervous sys-
tem is synaptic change (by a variety of de-
tailed mechanisms) leading to the selective
amplification or diminution of neuronal
group responses. The selection of neuronal
groups ultimately allows the discrimination
and categorization of sensory inputs and the
integration of sensory and motor processes
to yield adaptive behavior. This integration
depends upon higher-order relationships.
For example, dynamically coupled sets of
neuronal groups in a variety of functionally
segregated maps linked by reentrant con-
nections that are active for a given sensori-
motor task can constitute a global mapping
(see Edelman, 1989). By its nature, a given
global mapping involves widespread and
distributed regions of the brain.

Neuronal group selection by no means
relies purely on mechanisms of elimination
or regression, as has been implied by others
(Purves, 1988). Simple regression (i.e., over-
production of neural connections and subse-
quent elimination of “inappropriate” ones in
development) may occur in some isolated in-
stances, but is not general enough to account
for either somatic or evolutionary selection
(Edelman, 1987, 1989). Instead, the theory
of neuronal group selection stresses the im-
portance of both stabilization of selected
neuronal circuitry (including the possibility
of generating new connections, under favor-
able circumstances) and balanced compe-
tition.

Selection in sensorimotor develop-
ment.—How do these notions apply to Bern-
stein’s problem? We propose that the de-
velopment of sensorimotor coordination
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proceeds in three concurrent steps: (a) the
spontaneous generation during develop-
ment of a variety of movements forming a
basic movement repertoire; (b) development
of the ability to sense the effects of various
movements in the environment, eventually
allowing neural selection to be guided by
adaptive value (for a discussion of value, see
below); and (¢) the actual selection of move-
ments in various global mappings under the
constraint of adaptive value. Selection in the
nervous system is mediated mainly via syn-
aptic change, resulting (on average) in the
stabilization of those brain circuits that sup-
port adaptive (or goal-directed) movements.
Somatic selection in the nervous system and
motor action at the periphery are thus subtly
intertwined through the action of global
mappings. Successive selection events will
result in a progressive modification of a
given movement repertoire and will thus
shape the ongoing motor activity of the or-
ganism. On the other hand, an emerging
movement repertoire (occurring as a result
of changes in biomechanics or environmen-
tal demands) will also drive selection to
yield consistent and adaptive coordination.

A natural consequence of selection is
the emergence of synergic relationships be-
tween members of the motor ensemble. In-
deed, the formation of synergies by selection
effectively replaces the need to solve the
problem of inverse kinematics by computa-
tional means. Instead of having explicitly
and accurately to compute a desired trajec-
tory in order to reach a goal, animals select
those purposeful movements from a diverse
repertoire that fulfill adaptive constraints.
After selection, synergies will emerge that
are formed by the amplification of move-
ments that are favored in a given task and
context. Thus, a model based on somatic se-
lective processes eliminates the need explic-
itly to compute systems of nonlinear differ-
ential equations containing many kinematic
and dynamic terms. Rather, we suggest that,
through spontaneous and exploratory motor
activity, the organism discovers possible
“solutions” that satisfy the task constraints
as well as internal value. The variability and
degeneracy that are so vexing in computa-
tional or kinematic approaches are in fact
a necessary prior condition for successful
selection. The synergic, “topological” and
“gestalt” character of movements emerge
under a given set of mechanical and neural
constraints because movements are selected
as whole patterns, without being decom-
posed into parts that are subject to separate

analysis and adjustment by instructive learn-
ing algorithms.

A selectional scheme also allows preex-
istent or preferred movement patterns to be
readily integrated with subsequent motor
learning and adaptation. There is ample evi-
dence that organisms are born with a consid-
erable set of intrinsically specified motion
patterns (presumably the result of evolution-
arily selected circuits in certain parts of the
brain). Such characteristic movement pat-
terns can even be observed at embryonic
stages (Bradley & Bekoff, 1990; Smotherman
& Robinson, 1988); indeed, prenatal motility
may be important for the anatomical speci-
fication of neuromuscular connection pat-
terns (Coghill, 1929; Hamburger, 1970).
Preexistent patterns impose considerable
constraints on the basic movement reper-
toire of an organism and on subsequent mo-
tor development. The selective history of an
organism is critically influenced by such
preexistent patterns which can guide the
transformation of the primary movement
repertoire into a set of adaptive action pat-
terns. These issues bear upon that of value.

Value.—Inasmuch as a selectional sys-
tem operates upon preexistent diversity and
does not have a specific program for most
refined movements, the question of con-
straints upon selection arises. According to
the theory of neuronal group selection
(Edelman, 1989), these constraints are pro-
vided by value systems already specified
during embryogenesis as the result of evolu-
tionary selection upon the phenotype. In the
case of movements, such constraints appear
in neuroanatomy as specific circuitry signal-
ing via particular neurotransmitters. Such
value circuits are prespecified by evolution-
ary selection rather than derived from expe-
rience. The crucial features of such value
schemes are their anatomical simplicity and
the diffuseness of their effects on their target
networks; these features sharply distinguish
value schemes from the instructive agents
and error feedback employed in most learn-
ing algorithms. In general, value circuits
cannot themselves lead to the variety of
highly articulated movements necessary for
development and survival. In this view, in
contrast to instructive views, the coordina-
tion of movement occurs ex post facto as a
result of somatic selection upon value that
has been established by evolutionary se-
lection.

Value systems involved in sensorimotor
development receive sensory inputs that en-



able them to respond to actions or events in
the environment by increasing or decreasing
their level of neuronal activity. Due to their
evolved anatomical structure, the level of re-
sponse of such value systems is related to
simple criteria of saliency or adaptiveness.
For example, a reaching movement estab-
lishing tactile contact with an object may re-
sult in increased neuronal firing in the value
system, thus signaling the adaptiveness of
the movement. This value system might re-
ceive sensory inputs from tactile receptors
located in the skin.

In order to be effective on sensorimotor
development, value systems must be able
differentially to affect synaptic changes in
circuitry controlling movement. For exam-
ple, increased activity in a value system can
influence synaptic changes involving a large
majority of those neurons that participated
in a successful (adaptive) reaching move-
ment. As a result of a positive change (given
positive value) in the underlying circuitry,
this adaptive movement is more likely to be
executed in the future. It is important to
stress that the action of value systems is both
diffuse and probabilistic. Because output
fibers of value systems branch widely over
extended regions of the cerebral cortex, they
influence synaptic modification in large
parts of the nervous system. Given this dif-
fuse effect of value, there can be no local
determination of the contribution of individ-
ual neurons or synapses to a given move-
ment; instead, value acts on whole popula-
tions of neurons. Therefore, value does not
act deterministically but probabilistically.
While on average (over time) selection upon
value will lead to increasingly adaptive be-
havior, on individual trials some members of
the neuronal populations may exhibit “un-
desirable” synaptic changes (driving the sys-
tem away from a more adaptive state). Such
ongoing effects may serve an important func-
tion in maintaining variability as a basis for
further selection. We will give a specific and
detailed example of how a value system acts
in the section on computer simulations.

An important issue concerning value
has to do with the specificity or generality
of value systems. It seems unlikely that a
separate value system exists for each motor
task that an organism might carry out during
its lifetime. Many different levels of pheno-
typic constraints act to define value systems.
These include morphology itself, the acqui-
sition of new neurotransmitters, interactions
between cortical and midbrain homeostatic
systems, and hormonal changes. There is no
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simple relation between the mapping of
motor control systems and combinations of
these different constraints on value. Given
the fact that value is evolutionarily selected
for in the species and varies with different
species, no simple one-to-one correspon-
dence between value and a given motor sys-
tem would be expected. Clearly, since motor
responses are achieved differently in differ-
ent individuals during ontogeny, their possi-
ble patterns are much more numerous than
could be arranged by evolutionary selection.
We would expect that different value sys-
tems are activated for a variety of function-
ally interrelated tasks, that different value
systems might interact, or that hierarchies of
specificity might exist. It is consistent with
this general view that, as compared to spe-
cific acquired cortical responses and their
interactions, there seem to be relatively
few value-related “‘saliency” systems in the
brain and that these systems project to very
widespread and diverse regions of the cere-
bral cortex. Examples are the hypothalamus,
the locus coeruleus, the raphe nuclei, and
the cholinergic basal forebrain system. How
specificity of learning is achieved through
the combined action of such systems with
the cortex is a deep problem that requires
more attention. We believe that the issue of
value constraints and their number presents
one of the greatest future challenges to se-
lectional theories of brain function. A possi-
ble insight may be gained by considering
different combinatorial arrangements of sys-
tems of value as they act on different motor
arrangements.

Selection from a movement reper-
toire.—It is evident from the above outline
of a selectional model that the formation of
synergies requires not only the interaction
of the organism with the environment but
also a means by which the adaptive value
of a movement can be assessed and in turn
influence future movements. A schematic di-
agram illustrating the selectional principle
for coordination of movement is given in
Figure 2. We assume for simplicity that a
movement such as a simple gesture is char-
acterized by values of a set of n joint vari-
ables ¢,. The set of all possible combina-
tions of these n joint variables thus forms an
n-dimensional movement space M (for sim-
plicity n = 2 in Fig. 2). Initially, the subset
of movements that are available to the organ-
ism is only constrained by the mechanics of
its motor ensemble and preexistent move-
ment structures, but is basically uncon-
strained by experience in the environment.
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F1G. 2.—Schematic diagram of a developing movement repertoire contained in a movement space
M. A single movement within the space is specified by a combination of the movement variable ¢; and
&y; it is represented as a small dot. The dot density represents the frequency with which movements
are executed in a particular region of M. The three frames depict different temporal stages. At the left
is the primary movement repertoire containing several preexistent (or “innate”) movement patterns.
The shape of the movement repertoire evolves with time to include previously unoccupied regions of
M or to exclude others. Hatched regions define movement patterns that correspond to a given task.
Movements within these regions 8 meet with positive adaptive value. As a result, their frequency
increases. With time, due to changing environmental and biomechanical constraints, both the move-
ment repertoire and the regions 8 will continue to change shape (see middle and right).

This primary movement repertoire is thus
largely unstructured—with the exception of
preexistent synergic relationships between
the relevant movement variables &,. At the
onset of sensorimotor experience, the organ-
ism is confronted with demands from the en-
vironment, while at the same time it is sub-
ject to its own value systems. For example,
during spontaneous motor activity, some
movements will help to accomplish a task
better than others. In our scheme, such
movements, often primarily defined by con-
straints in the environment (as in a spatial
reaching task), but also by constraints im-
posed by the geometry of the kinematic
chain, might form one or more subsets 6
within the movement space M (Fig. 2). Be-
cause of mechanical redundancy for each
given task, these subsets may span extensive
regions in M.

Somatic selection in the nervous system
results from the competitive strengthening
of neural connections (synapses) involved in
the generation of “successful” movements
(e.g., those involved in touching an object or
bringing it to the center of the visual field).
Those giving rise to other movements are
weakened or left unchanged, depending on
the particular synaptic mechanism that is
invoked. As a result of selective synaptic
change, movements that help to accomplish

the task become more probable on average
than others. Because of individual variations
in the biomechanics of motor organs, their
progressive structural and dynamical change
during development, and the unpredictable
nature of environmental demands, these
“desirable” subsets 8 will appear quite dif-
ferent, not just for different species, but also
for different coexisting individuals of the
same species. Thus, there are narrow limits
for “preprogrammed” or “hard-wired” neu-
ral control of movements; the organism must
rely both on spontaneous (though not neces-
sarily random) motor activity and the subse-
quent selection of those movements that si-
multaneously match environmental demand
and internal value.

In this scheme, synergies control move-
ments, forming different task-related subsets
8. The set of movements comprising func-
tional synergies is often degenerate (Edel-
man, 1987) in that it contains movements
that are functionally related (they all accom-
plish the same task) but are structurally non-
isomorphic (they utilize different joint vari-
ables or muscles groups to different extents,
and are controlled by different sets of neu-
ronal groups). The degenerate structure of
functional synergies provides a basis for mo-
tor equivalence. By allowing flexibility (Par-
tridge, 1986) and by forming a diverse sub-



strate for further selective events, a rich
degenerate structure yields evolutionary ad-
vantages to an organism.

Experiments in many areas of neurosci-
ence and psychology are needed to substan-
tiate and refine the key points of the pro-
posal briefly described here. But it is also
important to show how the proposed mecha-
nism actually can work. One way to show
its overall feasibility and self-consistency is
to simulate on a supercomputer a structur-
ally and functionally realistic motor system
working on selectional principles.

Computer Simulations

For several years, we have pursued an
approach to the understanding of higher
brain functions called synthetic neural mod-
eling (for a review, see Reeke, Finkel,
Sporns, & Edelman, 1990; Reeke, Sporns, &
Edelman, 1990). This approach attempts to
address the complex problem of integrative
brain function by using computers to carry
out large-scale simulations of neuronal cir-
cuits acting together with phenotypic organs
that are embedded in an environment. In the
simulations discussed in this section, we re-
quire that afferent sensory signals (coming
from visual or kinesthetic receptors) be sam-
pled both during and after the occurrence of
a movement. A second requirement is that
an intrinsic bias or value must exist favoring
modes of behavior that are more adaptive
than others; an example of such a favored
action might be reaching out and touching
an object. The first instantiation of an auton-
omous ‘“artificial creature,” Darwin III, con-
sists of a complex nervous system, an arm,
and an eye. It behaves in a two-dimensional
environment containing sensory stimuli.
Darwin III is able to track objects visually
and reach for them; visual and tactile sen-
sory inputs are combined to allow complex
perceptual categorizations of a large variety
of stimulus objects. For more detailed de-
scriptions of all of Darwin III’s components,
see Reeke, Finkel, Sporns, and Edelman
(1990) and Reeke, Sporns, and Edelman
(1990). Here we focus exclusively on its mo-
tor functions.

Darwin III contains a four-jointed arm
moved by four sets of independent agonist-
antagonist muscle pairs operating in two-
dimensional space. The system thus has sur-
plus degrees of freedom and is mechanically
redundant. The basic idea behind the model
is that, through experience, gestures or ges-
tural components (corresponding to syner-
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gies) are selected from a relatively unstruc-
tured primary repertoire of movements. The
model has two main functional compo-
nents (see Fig. 3): a module corresponding
roughly to the cerebral cortex, where motor
signals eventually leading to gestural mo-
tions are generated, and a module corre-
sponding roughly to the cerebellum, which
correlates these motor signals with current
sensory inputs and smooths the responses
by eliminating components that are inappro-
priate. Hand and object vision as well as a
simple form of kinesthesia and light touch
provide the sensory signals utilized by the
system. The different signals from these mo-
dalities are transformed through mapped
and unmapped interactions of separate neu-
ronal networks present in the two modules
into motor signals that move the arm to new
positions. It must be understood that, while
components of the model perform functions
similar to those in real brains (and are named
analogically), they are not modeled in ex-
plicit detail. The model is simple as com-
pared to real vertebrate brains; Darwin II1
essentially contains a total of 50,000 neurons
and 620,000 connections, organized in about
50 neuronal repertoires.

The “motor cortex” generates patterns
of activity corresponding to primary gestural
motions through a combination of spontane-
ous activity (triggered by a component of
Gaussian noise) and by responses to sensory
inputs from vision and kinesthetic signals
from the arm. This activity pattern is selec-
tively remodeled (“sculpted”) under the in-
fluence of inhibitory connections coming
from the “cerebellum.” Ultimately, the “cor-
tical” module sends out connections to four
sets of motor neurons (one for each joint) or-
ganized in extensor/flexor pairs.

The “cerebellar” networks receive sen-
sory inputs (vision and kinesthesia) as well
as activity driving the current primary ges-
ture emanating from the “motor cortex.” The
networks respond to specific combinations
of the actual positions of the arm and target
and to combinations of activity patterns cor-
responding to primary gestures. Their inhib-
itory influence (negative selection) on pri-
mary gestures as they are generated in the
motor cortex serves to select or “filter out”
those gestures that are appropriate.

Both “motor cortex” and “‘cerebellum”
in Darwin 111 are topographically ordered in
that they contain groups of units that primar-
ily connect in an ordered sequence to single
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F1G6. 3.—Schematic diagram of the neural circuits controlling Darwin III’s four-jointed arm system.
For detailed explanation see text. Main modules are labeled “MOTOR CORTEX, CEREBELLUM”
(with GR = granule cells and PK = Purkinje cells), and VALUE. Inputs to modules are visual (V) and
kinesthetic (K). Value-dependent modification of connections to and from the cerebellum is indicated

by dashed lines.

joint extensors or flexors. This arrangement
is consistent with anatomical and physiolog-
ical evidence for such motor maps. Intrinsic
connections in the “motor cortical”” network
(not shown in Fig. 3) are biased to favor the
spread of activity from units representing
proximal to more distal joints. Gestural mo-
tions therefore tend to unfold proximodis-
tally, a useful preexistent characteristic for
the large-amplitude reaching movements
under study in the simulations. Although a
certain degree of topography is present in
the system from the beginning, there is no
explicit representation of either “move-
ments,” “muscles,” or “joints” within the
motor cortex. (What is represented in actual
motor cortex is still an open and much
debated question; see Humphrey, 1986;
Lemon, 1988.)

Initially, the connectivity of the reach-
ing system of Darwin III is uninstructed
with respect to appropriate directions and
amplitudes of movement. Coordinated mo-
tions of sets of joints occur only later, after
gestural components have been selected
from spontaneous movements by amplifica-
tion of those synaptic populations that give
rise to such gestures. To detect and signal
the consequences of such successful motor

activity, neuronal circuitry instantiating an
intrinsic value scheme is required. In Dar-
win III’s reaching system, this circuitry con-
sists of a set of neurons responding more
strongly as the moving hand approaches the
vicinity of the visually foveated target ob-
ject. These neurons receive topographically
mapped visual inputs from two separate
neural repertoires responsive, respectively,
to objects in the environment and to the
hand of the automaton itself. Each of these
inputs arborizes in an overlapping fashion
over the surface of the value network, and
thresholds are arranged such that correlated
activity in both inputs is required for a vigor-
ous response. The responses of the value
units thus increase, independent of the abso-
lute position of the target, as the hand ap-
proaches the target and as the degree of
overlap in the topographically mapped in-
puts increases.

The activity in the value repertoire is
transmitted to parts of both the “motor corti-
cal” and “cerebellar” networks and serves
selectively (but only probabilistically) to
strengthen or weaken populations of syn-
apses. After repeated amplification, appro-
priate activity patterns in the cerebellum
will arise as soon as a target appears in the



visual field and before a gesture is initiated.
Its inhibitory connections terminating in the
motor cortex are thus available for “filtering”
and “sculpting” gestures as they happen.

As a biologically based system, Darwin
III’s reaching system offers several distinct
advantages over neural network models,
such as that described by Kuperstein (1988,
1991): (@) No instructive learning algorithm
is used to adjust synaptic weights. Instead,
Darwin III’s networks are subject to selec-
tive amplification depending on a value
scheme (no error vector is used), and synap-
tic changes simultaneously affect neurons
related to all components of the movement.
On the other hand, Kuperstein’s model re-
quires the determination of an error vector
and the splitting of this vector into compo-
nents used to adjust synapses related to spe-
cific joints. While Kuperstein’s calculation of
the error vector is accomplished by a compu-
tational subroutine, value schemes in Dar-
win III are implemented as specialized net-
works that are anatomically and functionally
integrated with the rest of the model. (b)
Kuperstein’s model operates as a look-up ta-
ble of movements arranged in a sensorimo-
tor map; it does not use synergies to reduce
the number of degrees of freedom. In fact,
its 5-degrees-of-freedom arm is nonredun-
dant in three-dimensional space. The net-
work architecture does not allow for interac-
tions between individual joints. (¢) Each
individual reaching movement in Darwin
I1I evolves and changes in time and is elabo-
rated over multiple time steps. This allows
the evaluation of the shape of arm trajecto-
ries, a very important characteristic of hu-
man reaching movements. In contrast, a
reaching movement in Kuperstein’s model
consists of only one step from the initial po-
sition to the end point; this excludes the pos-
sibility of characterizing trajectories. (d) In
contrast to Kuperstein’s model, Darwin III
does not operate in distinct training and per-
formance modes. Instead, the development
of synergies by selective amplification and
actual performance of the arm are concurrent
processes; it is not necessary (as in Ku-
perstein’s model) to connect or disconnect
components of the model when switching
from training to testing.

Darwin IIT’s reaching movements may
be examined by looking at a short sequence
of simulation cycles (Fig. 4) or by consider-
ing diagrams showing plots of bundles of tra-
jectories (Fig. 5). The large variance among
individual motions that exists initially (Fig.
5A) is progressively reduced to a narrow en-
velope of motions, most of which point to-
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ward the object (Fig. 5B). This result resem-
bles data shown by Georgopoulos, Kalaska,
and Massey (1981, see especially their Fig.
3), who have studied the geometry of point-
ing movements in rhesus monkeys during
learning. (Of course, this resemblance does
not by itself indicate that the underlying
neural processes are identical.)

More detailed observation of single
joints in Darwin III (e.g., “elbow” and
“shoulder”) reveals that, after training,
changes in joint angles are no longer inde-
pendent of each other (Fig. 6). Instead, joints
act together in more or less stable ratios and,
as a result of this synergic interaction, the
effective number of degrees of freedom is
reduced. Such relationships exist only in
trained movements (Fig. 6B), but are absent
before training and selective amplification
(Fig. 6A). We have observed linkages be-
tween proximal as well as distal joints and
between joints that are not immediately ad-
jacent to each other (data not shown). Joint
relations may be linear or nonlinear, varying
from example to example, reflecting the dif-
ferent requirements of parts of the work-
space, of arm geometry and neural struc-
tures, as well as differences in the individual
history of selectional events.

The complex anatomical organization of
the system does not allow precalculation of
the relevant neural pathways for a given
“desired” movement. Given the mechanical
redundancy of Darwin III’s arm, there are
multiple degenerate means for each trajec-
tory to reach a given end point. We have
pointed out above that one way to solve
Bernstein’s problem (and to reduce the num-
ber of degrees of freedom in a multilink ki-
nematic chain) is to group muscles or joints
together to form synergies. In the present
model, selection constrains the envelope
of possible motions; as a result, synergies
emerge. Thus, selection guarantees execu-
tion of one or another of the numerous solu-
tions that lead to a successful outcome. Note
that Darwin 1II’s reaching system does not
work by determining a desired trajectory; in
fact, trajectories are not explicitly repre-
sented anywhere within the system. Thus,
the model embodied in Darwin III may
serve as a first working example to illustrate
the benefits of a selectional strategy in creat-
ing synergies.

A system designed to execute a number
of different synergies must incorporate neu-
ral maps that allow the selection of the ap-
propriate synergy for a given sensory con-
text. Synthetic neural modeling allows one
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F16. 4.—Display of Darwin III's four-jointed reaching system on three consecutive cycles A, B,
and C. At each cycle Darwin III's environment and the state of its neuronal repertoires (with circles
representing active neurons) are displayed. The neuronal repertoires, plotted as planar maps of neu-
ronal units, are labeled as follows: VALUE, “value system”; HV, “hand vision”; TH, touch”; WD,
“world”; MC, “motor cortex”; IN, “intermediate layer of the motor cortex”; SG, “spinal ganglia”; KE,
“kinesthesia”; 10, “inferior olive”; GR, “granule cells”; PK, “Purkinje cells.” In addition to object
(dark square) and visual field, the environment display contains a four-jointed arm, anchored at the
bottom of the environment. Repertoire WD reports the position of the target object to MC and GR,
networks representing motor cortex and granule cells of the cerebellum, respectively. In addition to
this visual input, MC and GR receive subthreshold inputs from KE, a network that reports kinestheti-
cally the positions of the four joints. Notice how the activity in KE varies systematically with changing
arm position. The pattern of activity in MC is transmitted to 10, which sends a number of strong
excitatory connections to a repertoire, PK, representing Purkinje cells. Units in 1O only fire if positive
value occurred in the previous cycle (as happens in C); value acts as a modulatory signal that allows
activity in MC to be transmitted to PK (“gating”). There are also a great number of initially weak
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Fic. 5.—Examples of paths taken by the tip of the four-jointed arm as it reaches for square objects
presented at the marked locations in the input array (compare Fig. 4). Left and right panels in A and
B display data sampled before and after 1,440 cycles of training, respectively. Each panel displays 480
cycles (30 trials), recorded while synaptic amplification was frozen. A and B give examples of motions
starting at different initial conditions. The initial set of joint angles was 60, 100, 200, and 90 degrees
for A, and 25, 140, 200, and 90 degrees for B (see Fig. 6 inset). From Reeke and Sporns (1990),
reproduced with permission.

connections between GR and PK; these connections, as well as descending inhibitory fibers from PK
terminating on IN, are modifiable. The PX inhibitory fibers act to select appropriate motor signals for
gestures that are generated in MC and transmitted to the motor neurons, SG, through IN. Thus it is
the pattern of active units in IN that determines which path the arm will describe. The IN activity
pattern in A determines that the arm will move toward the target and is the result of a combination of
excitatory influences from MC, as well as inhibitory action of PK units. PK units can be activated by
strengthened connections from GR alone, and the 10 network becomes unnecessary after training is
completed. On impact on the target (B and C), touch-sensitive neurons in a sensory sheet tied to the
tip of the arm, TH, become active and guide the subsequent tracing of the edges of the object (not
shown). A value-sensitive network (VALUE) receives topographically mapped inputs from both the
target visual area WD, as well as from a repertoire sensitive to the position of the hand (HV). VALUE
fires more vigorously when the hand approaches the target (compare A vs. B); the global output of this
repertoire is used to modulate activity in 10 and amplify connections between WD and MC. The
connections between GR and PK, as well as those between PK and 10, are modified without the
participation of value, but modification can only occur if the IO network is active and fires PK units.
The inhibitory action of PK units results in freezing of the second joint while the first joint flexes A.
On impact gross arm motion is inhibited B, and an additional motion of the third and fourth joint
establishes full contact C (for more complete information see Reeke, Finkel, Sporns, & Edelman, 1990).
From Reeke, Sporns, and Edelman (1989), reproduced with permission.

975



‘uorsstuiad

Yim paonpoidar ((0ee1) suiodg pue aya9y woig *(, sfenplarpur ) sajduwexs JUSISJJIP Om) Aq PIII3as $9IBI9UAS 91} UT SUOTjELIRA 0} pesj ued walsAs 9y} Jo
2INPNYS [EUOINSU DY UL SUONBLIEA [EQIUT WIOPUEI Jel} Pjou 9q pnoys 3 -souereadde 3y311 saddn ‘g) 1esurjuou 10 (3y8u 1oddn ‘y) reaul] s10W ALY ULd
pue ‘syutof [e3sIp se [[om se (g pue Y ul sjoued 1oddn) [ewixold Usam}aq PIAIISYO 3¢ UBD SUOHE[SI YONG ‘SUONL[IA PIXY PIYSI[eISD MOU dABY 1930 O
woyj juspuadapur A[snoiasid siam ey} $3[3UE JUIOf PUE “ISMOIIEU YONW JXe sUonnqrysip 9sayy ‘(spaued 3y31) Suturen 193y '$o[3ur JuI0f JO SUOHBUIQUIOD
JO suonNquISIp pasIadsip A[opim Aq poazLialdeIeyd ‘UIUlRI] 910J9( SJUSIWSAOUL MOYS g pue Y ul sjoued o] ‘s99139p (8T 03 () WO uni pue jutof Yoes
punore uoejoL IB[N3UE JO UIZLIO PUB UORISIIP Y} UYSP sdie-JBy Y J, 'sI[3Ue JUIOof JO JUSWLINSEIW SY} 10J SUORUSAUOD 9} sajeysny[l }osul 9y J, '(s2in3y
30q ur 19430 Yoes 0} puodsaiiod g pue y s[aued) G ‘814 Ul SUSWSAOUL PIUIE]} PUE PSUTERUN UO BIEP WIOL pauleqo safdue ulof Jo s30[d—'9g 914

€ yuior € jutor € o € o
oLz o9t oLz 09l oLz 09l oLz 091l
F T _ _ T LT ' ' _ "lost H _ _ _ "1 o081 L _ ' . " o081
| . f. n - N . -
[
) g S g
I 13 A 3 3
» & B »
[ L1 . .
o,
001 L r 0
T ¥ T T T T T
' 091 o9t - BELTE F J oot
& o & s
g ) = s
L i 5 I | g L i 3 L J 3
=1 =9 - N
N N N
L ] L | S 1 + J
(1 ; \ . ] v C, ) sv Co L P 7 §¥ (1 . . . ] 9r




to explore the issue of mapping a sensory
input space onto a map of synergies (or ges-
tures) by incorporating different neural and
phenotypic structures into any given model.
Indeed, we have designed a second motor
system for Darwin III with more sophis-
ticated neural maps and have been able
to achieve reliable and accurate reaching
movements over the entire input space (for a
detailed description, see Sporns, 1990). The
mechanics of the arm were simplified by re-
ducing the number of joints to two. While
working according to the same selective par-
adigm used to create synergies in the model
with the four-jointed arm, the model incor-
porating neural maps exceeded the perfor-
mance of the previous model in several re-
spects. The model was able to provide for
accurate reaching movements from an ar-
bitrary starting position to any target posi-
tion within the workspace. Unlike the first
model, such reaching movements could be
performed at the same time the eye was
moving, for example, while saccading to a
visual object (Fig. 7). Furthermore, the
model was able to perform over a wide range
of changes in arm size or metric without ex-
ternal adjustments of structural or dynamic
parameters in the nervous system. A sudden
change in the biomechanics of the arm led
to an initial decrease in performance accu-
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racy. Continuing somatic selection of cir-
cuits, however, provided a sufficient basis
for progressive adaptive change. This exam-
ple provides a demonstration that develop-
mental and evolutionary changes in the bio-
mechanics of motor organs can be
compensated for by accompanying somatic
selective changes in the nervous structures
controlling their action. This ability is one
of the strongest arguments for somatic selec-
tion in the brain (Edelman, 1987).

In conclusion, the computer simulations
presented in this article show the self-
consistency of an approach based on se-
lectional principles. Taken together with
experimental evidence on sensorimotor
development (e.g., Ulrich, 1989; see also the
review by Thelen, 1989a), they make a case
for the role of selection in the emergence of
motor synergies. According to our hypoth-
esis, selection provides the supervening
principle that transforms a complex and
heterogeneous system into one that is charac-
terized by the coordinated action of its parts.

Discussion

Experimental evidence, theoretical con-
siderations, and modeling studies suggest
that somatic selection plays a key role in
higher brain function and in the develop-

100
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Hand
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F1G. 7.—Training curves of oculomotor and reaching systems for a simultaneous simulation of a
moving eye and two-jointed arm. Because of simultaneous training, visual signals used in the reaching
system change constantly as the eye moves. As compared to simulations without simultaneous eye
movements (data not shown), progress in training the arm is somewhat delayed, but eventually a
high performance level is reached and maintained. This shows that the selective training paradigm is
independent of the details of the simulation and the way sensory inputs are provided to the neuronal
repertoires. Absolute performance limits are 100% for the oculomotor and about 80% for the reaching
system. From Reeke, Sporns, and Edelman (1990), reproduced with permission.
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ment of coordinated movement. In this arti-
cle, we have reconsidered Bernstein’s prob-
lem within the framework of a selectional
theory of the brain. We have argued that
an appropriate theory of selection appears
closer to the biological data than a purely
computational treatment of the inverse kine-
matics problem. Coordinated movement is
possible without explicit computations of
desired movement paths. A selectional the-
ory also accounts for synergies as functional
units of the motor ensemble and as active
components in sensorimotor development.
Synergies emerge from selective events as
coordinative structures (Kelso & Tuller,
1984; Thelen, 1988; Thelen, Kelso & Fogel,
1987; Ulrich, 1989) that are able to reduce
the numbers of degrees of freedom in a com-
plex multicomponent motor system. The
main advantage of a selectional theory is that
it accounts for the instantaneous adaptability
of the motor ensemble and its associated
neural circuitry in response to biomechani-
cal and environmental changes. This adapt-
ability is not conferred upon the system by
instructive procedures imposed from with-
out. Instead, adaptation results from the dy-
namic interplay of the motor ensemble with
the environment constrained by internal
value systems. Such a view readily accounts
for individual developmental change.

As we stated earlier, for selection to be
effective in a motor system, three require-
ments must be met: (@) There must be a pri-
mary movement repertoire of sufficient rich-
ness and variability. (b) Movements must
have differential effects in the environment
which can be sensed by their originator. (¢)
Mechanisms must exist that allow sensory
inputs reporting the consequences of move-
ments to act differentially within the ner-
vous system, such that (on average) those
movements that simultaneously satisfy envi-
ronmental constraints and evolved internal
value constraints will become more likely
than others. All of these requirements are
easily met by actual biological motor sys-
tems. In contrast, there is little direct evi-
dence that the nervous system precomputes
desired trajectories, computes comparisons
between actual movements and desired
ones, or uses explicit error signals to adjust
individual components of the motor control
system and minimize future error.

Finally, several points that have not
been considered in detail deserve at least
some brief emphasis. The intricate interplay
between sensory inputs and motor action in
the formation of gestural components and

synergies highlights only one aspect of the
deep interrelation between action and per-
ception. Motion is fundamental for percep-
tual categorization, one of the most basic of
neural and cognitive processes (Edelman,
1987). For example, motion is crucial in the
detection of spatially correlated object fea-
tures, and it naturally ensures the continuity
of successive sensory inputs referring to a
single object. Body and eye movements are
essential for the development of fundamen-
tal visual cognitive concepts such as the
unity, boundedness, and persistence of ob-
jects (Spelke, 1990), and the construction
during development of spatial maps of
the environment. The importance of self-
generated movements in such a variety of
functions is recognized by the theory of neu-
ronal group selection. Coordinated move-
ment is taken to be not just peripheral out-
put, but an active ingredient in perceptual
and cognitive processes, both during devel-
opment and in adult function.
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