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1.5 Opérateurs différentiels courants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 Laplacien d’un champ scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.2 Divergence d’un champ vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.3 Gradient d’un champ scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.4 Rotationnel d’un champ vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.5 Gradient d’un champ vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.6 Divergence d’un champ matriciel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.7 Laplacien d’un champ vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.8 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.9 Exercices supplémentaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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3.4 Théorème de Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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3.5.4 Cas d’un milieu au repos : équation de la chaleur, loi de Fourier. . . . . . . . . . . 39
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Chapitre 1

Préliminaires Mathématiques

1.1 Notations

1.1.1 Notations des scalaires, vecteurs et matrices.

Dans ce qui suit, les scalaires et les points de l’espace sont représentés par des symboles commençant
par des lettres minuscules (exemple x, i,detAAA...) et les vecteurs et les fonctions à valeurs vectorielles
par des symboles commençant par des lettres minuscules en caractères gras (exemples : xxx, xxxT , iii, uuu, fff ,
ggg, divσσσ,...). Les matrices sont représentées par des symboles commençant par des lettres majuscules en
caractére gras avec les exceptions suivantes : ∇∇∇uuu (gradient du déplacement), eee(uuu) (tenseur d’élasticité
linéarisé), σσσ (tenseur des contraintes). Le symbole III represente la matrice identité 3× 3 :

III =

Ñ
1 0 0
0 1 0
0 0 1

é
.

1.1.2 Composantes des vecteurs et matrices.

— On note (eee1, eee2, eee3) la base canonique de R3 (elle est orthonormée).

— On note ui ou (uuu)i les composantes d’un vecteur uuu dans la base canonique, c’est à dire uuu =∑3
i=1 uieeei =

∑3
i=1(uuu)ieeei.

— On note uuu · vvv le produit scalaire de deux vecteurs uuu et vvv (uuu · vvv =
∑3
i=1 uivi =

∑3
i=1(uuu)i(vvv)i).

— On note Aij ou (AAA)ij les composantes d’une matrice AAA : Aij est la composante se trouvant sur la
ieme ligne et la jeme colonne de AAA.

— On note AAABBB le produit de deux matrices ((AAABBB)ij =
∑3
k=1AikBkj).

— On note AAA :BBB le produit ”scalaire” de deux matrices (AAA :BBB =
∑3
i,j=1AijBij).

— Il est pratique d’identifier un endomorphisme AAA de R3 à la matrice (notée encore AAA) qui le
représente dans la base canonique.

1.1.3 Notations simplifiée des dérivées partielles.

Pour simplifier les notations, l’usage consiste à noter les dérivées partielles de la manière suivante

∂f

∂xi
= f,i.

De façon analogue, les dérivées secondes, troisième,... se notent

∂2f

∂xi∂xj
= f,ij ,

∂3f

∂xi∂xj∂xk
=: f,ijk, ..... etc...
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1.1.4 Convention de sommation des indices répétés d’Einstein.

La convention de sommation des indices répétés consiste à déclarer que lorsque un indice muet est répété,
il y a sommation sur cet indice. Par exemple si SSS est une matrice carrée de composante Sij , alors sa trace
trSSS =

∑3
i=1 Sii est notée avec cette convention,

trSSS = Sii.

Exercices.

Vérifier qu’en utilisant la convention de sommation des indices répétés on obtient les formules sui-
vantes :

1. (a)
uuu = uieeei,

(b)
uuu · vvv = uivi,

(c)
AAAuuu = Aijujeeei,

(d)
(AAABBB)ij = AikBkj ,

(e)
AAA :BBB = AijBij . (1.1.1)

2. Montrer que pour toute matrice n× n AAA et tout (aaa,bbb) ∈ (Rn)2,

aaa ·AAAbbb = AAAtaaa · bbb. (1.1.2)

1.1.5 Produit tensoriel de deux vecteurs.

Soient uuu et vvv deux vecteurs de R3. On appelle produit tensoriel de uuu par vvv la matrice notée uuu ⊗ vvv et
définie par ses composantes

(uuu⊗ vvv)ij = uivj .

Par exemple, eeei ⊗ eeej est la matrice dont toutes les composantes sont nulles sauf celle situé sur la ieme

ligne et la jeme colonne de AAA, qui elle est égale à 1. Exemple : eee1 ⊗ eee3 =

Ñ
0 0 1
0 0 0
0 0 0

é
.

Exercices.

1. Montrer que toute matrice AAA vérifie (en utilisant la convention de sommation des indices répétés)

AAA = Aijeeei ⊗ eeej .

En déduire que la famille (eeei ⊗ eeej)(i,j)∈{1,2,3}2 est une base de l’ensemble des matrices 3× 3.

2. Montrer que pour tous vecteurs uuu, vvv, www,

(uuu⊗ vvv)www = (vvv ·www)uuu. (1.1.3)

En déduire que

(eeei ⊗ eeej)uuu = ujeeei.
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3. Montrer que pour tout vecteurs uuu, vvv, www, xxx

(uuu⊗ vvv)(www ⊗ xxx) = (vvv ·www)uuu⊗ xxx. (1.1.4)

En utilisant (1.1.6), en déduire que

(eeei ⊗ eeej)(eeek ⊗ eeel) = δjk eeei ⊗ eeel.

1.1.6 Le symbole de Kronecker δij.

Le symbole de Kronecker δij est défini par

δij =

®
1 si i = j

0 sinon.
(1.1.5)

Exercice.

Montrer les formules suivantes :

1.
eeei · eeej = δij (1.1.6)

2.
δii = 3 (avec la convention de sommation des indices répétés).

3.

∀i, k ∈ {1, 2, 3}, δijδjk = δik (avec la convention de sommation des indices répétés).

4. Pour toute matrice AAA,

∀i, k ∈ {1, 2, 3}, δijAjk = Aik (avec la convention de sommation des indices répétés).
(1.1.7)

5. On a
Iij = δij .

1.1.7 Le symbole d’orientation εijk.

Le symbole d’orientation εijk est défini par

ε123 = 1,

et par le fait que si l’on permute deux indices, on change le signe de εijk :

εjik = −εijk, εkji = −εijk, εikj = −εijk. (1.1.8)

On déduit

ε123 = ε231 = ε312 = 1, ε132 = ε321 = ε213 = −1,

et

εijk = 0 si i = j ou j = k ou i = k. (1.1.9)

On peut dire que

εijk =

signature de la permutation

Ç
1 2 3

i j k

å
si {i, j, k} = {1, 2, 3}

0 sinon.
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Résultat fondammental :

Théorème 1.1.1. On a la formule suivante :

∀i, j, p, q ∈ {1, 2, 3}, εijkεpqk = δipδjq − δiqδjp
(avec la convention de sommation des indices répétés).

(1.1.10)

Démonstration. On distingue différents cas :
— Si i = j, alors, d’après (1.1.9), εijkεpqk = 0 et δipδjq − δiqδjp = 0, donc (1.1.10) est vrai.
— Si p = q : même conclusion
— Si i 6= j et p 6= q, deux cas sont possibles : soit {i, j} = {p, q}, soit {i, j} 6= {p, q}.

1. Si {i, j} = {p, q}, alors notant k0 l’unique entier tel que {i, j, k0} = {p, q, k0} = {1, 2, 3}, on a

3∑
k=1

εijkεpqk = εijk0εpqk0 (sans sommation) =

®
1 si i = p et j = q

−1 si i = q et j = p,
= δipδjq − δiqδjp.

donc (1.1.10) est vérifié.

2. si {i, j} 6= {p, q}, alors {i, j} ∪ {p, q} = {1, 2, 3}, et soit i 6∈ {p, q}, soit j 6∈ {p, q}.
(a) Si i 6∈ {p, q}, δip = δiq = 0, donc δipδjq−δiqδjp = 0. Par ailleurs, quel que soit k ∈ {1, 2, 3} =
{i, j} ∪ {p, q}, on a soit k ∈ {i, j}, alors εijk = 0, soit k ∈ {p, q}, alors εpqk = 0. Dans les
deux cas, εijkεpqk = 0 (sans sommation). Donc (1.1.10) est vérifié.

(b) Si j 6∈ {p, q} : même conclusion.

Exercices.

1. Montrer que

εijk = εkij ∀i, j, k ∈ {1, 2, 3}. (1.1.11)

2. Montrer que

εijkεpjk = 2δip (avec la convention de sommation des indices répétés). (1.1.12)

Indication : utiliser (1.1.10).

3. Montrer que, avec la convention de sommation des indices répétés,

εijkεijk = 6 (avec la convention de sommation des indices répétés). (1.1.13)

Indication : utiliser (1.1.12).

4. Montrer que

Mij = Mji ∀i, j ∈ {1, 2, 3} =⇒ εijkMjk = 0 ∀i ∈ {1, 2, 3}. (1.1.14)

1.2 Produit vectoriel et produit mixte.

1.2.1 Produit vectoriel de deux vecteurs uuu et vvv

Le produit vectoriel de deux vecteurs uuu et vvv est défini par

uuu ∧ vvv = (u2v3 − u3v2)eee1 + (u3v1 − u1v3)eee2 + (u1v2 − u2v1)eee3.

Le nombre ||uuu ∧ vvv|| représente la surface du parallélogramme de cotés uuu et vvv. Il est donné par

||uuu ∧ vvv|| = ||uuu||||vvv|| |sin (ûuu,vvv)| .
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Exercice.

1. Vérifier la formule suivante :

uuu ∧ vvv = εijkujvkeeei (avec la convention de sommation des indices répétés). (1.2.1)

2. Montrer la formule du double produit vectoriel :

uuu ∧ (vvv ∧www) = (uuu.www)vvv − (uuu.vvv)www. (1.2.2)

Indication : utiliser les formules (1.1.10) et (1.2.1).

1.2.2 Produit mixte.

Le produit mixte de trois vecteurs uuu1, uuu2, uuu3 est le scalaire défini par

uuu1 · (uuu2 ∧ uuu3).

La valeur absolue du produit mixte uuu1 · (uuu2 ∧uuu3) est égale au volume du parallélépipède dont trois arêtes
issues d’un même sommet sont égales à uuu1, uuu2, uuu3.

Exercices.

Soient uuu1, uuu2, uuu3 trois vecteurs.

1. Montrer que (avec la convention de sommation des indices répétés)

uuu1 · (uuu2 ∧ uuu3) =εijk(uuu1)i(uuu2)j(uuu3)k. (1.2.3)

2. Montrer que

uuu1 · (uuu2 ∧ uuu3) = uuu2 · (uuu3 ∧ uuu1) = uuu3 · (uuu1 ∧ uuu2)

= −uuu2 · (uuu1 ∧ uuu3) = −uuu1 · (uuu3 ∧ uuu2) = −uuu3 · (uuu2 ∧ uuu1),

3. En déduire que pour tout p, q, r ∈ {1, 2, 3},

uuup · (uuuq ∧ uuur) = εpqruuu1 · (uuu2 ∧ uuu3), (1.2.4)

puis que (avec la convention de sommation des indices répétés)

εpqruuup · (uuuq ∧ uuur) = 6 uuu1 · (uuu2 ∧ uuu3),

(Indication : utiliser (1.1.13)),

enfin que

uuu1 · (uuu2 ∧ uuu3) =
1

6
εpqruuup · (uuuq ∧ uuur). (1.2.5)

1.2.3 Application au calcul du déterminant d’une matrice 3× 3.

Soit AAA une matrice 3× 3 et uuu1, uuu2, uuu3 ses vecteurs colonne, définis par :

uuu1 :=

Ñ
A11

A21

A31

é
, uuu2 :=

Ñ
A12

A22

A32

é
, uuu3 :=

Ñ
A13

A23

A33

é
. (1.2.6)

On a donc
Aij = (uuuj)i. (1.2.7)
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Definition 1.2.1. On appelle déterminant de AAA le scalaire detAAA défini par

detAAA = uuu1 · (uuu2 ∧ uuu3). (1.2.8)

Théorème 1.2.1. Avec la convention de sommation des indices répétés,

detAAA =
1

6
εijkεpqrAipAjqAkr. (1.2.9)

Démonstration.
detAAA = uuu1 · (uuu2 ∧ uuu3)

=
1

6
εpqruuup · (uuuq ∧ uuur) d’après (1.2.5)

=
1

6
εpqrεijk(uuup)i(uuuq)j(uuur)k

=
1

6
εijkεpqrAipAjqAkr d’après (1.2.7).

Exercices

1. Montrer que
detAAAt = detAAA. (1.2.10)

Indication : utiliser (1.2.9).

2. Montrer que (avec la convention de sommation des indices répétés)

εpqrdetAAA = εijkAipAjqAkr. (1.2.11)

Indication : utiliser (1.2.4) et (1.2.8).

3. Montrer que (avec la convention de sommation des indices répétés)

εpqrdetAAA = εijkApiAqjArk. (1.2.12)

Indication : utiliser (1.2.10) et (1.2.11).

4. Montrer que

det(AAABBB) = detAAA detBBB

Indication : utiliser (1.2.9), (1.2.11) et (1.2.12).

5. Montrer que

AAAuuu · (AAAvvv ∧AAAwww) = (detAAA)(uuu · (vvv ∧www)). (1.2.13)

Indication : utiliser (1.2.3) et (1.2.12).

Remarque 1.2.1. La formule (1.2.13) dit que le volume du parallélépipède de cotés déterminés par les
vecteurs AAAuuu,AAAvvv,AAAwww est le produit par |detAAA| de celui de cotés déterminés uuu,vvv,www. Cette formule est à la
base de la formule de changement de variables (2.4.2).

1.3 Matrices symétriques

Definition 1.3.1. Une matrice n× n SSS est dite symétrique si

SSSt = SSS.

Un endomorphisme SSS de Rn est dit symétrique si et seulement si

SSSuuu · vvv = uuu ·SSSvvv ∀uuu,vvv ∈ Rn. (1.3.1)
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Remarque 1.3.1. Soit SSS une matrice n×n. Il est commode de noter encore SSS l’endomorphisme qu’elle
représente dans la base canonique. Alors SSS est une matrice symétrique si et seulement si SSS est un endo-
morphisme symétrique. Autrement dit,

SSSt = SSS ⇐⇒ uuu ·SSSvvv = SSSuuu · vvv ∀uuu,vvv ∈ Rn. (1.3.2)

Indication : ⇒ résulte de (1.1.2). ⇐ : choisir (uuu,vvv) = (eeei, eeej).

Résultat fondamental.

Théorème 1.3.1. Une matrice réelle n × n SSS est symétrique si et seulement si elle admet une base
orthonormée de vecteurs propres. De manière équivalente, un endomorphisme SSS d’un espace euclidien de
dimension n est symétrique si et seulement si il admet une base orthonormée de vecteurs propres.

Démonstration. AppelonsHn cette propriété.H1 est vraie. SupposonsHn et soitSSS une matrice symétrique
(n + 1) × (n + 1) à coefficients réels. Soit λ ∈ C une racine complexe du polynôme caractéristique de SSS
et uuu ∈ Cn+1 \ {~0} un vecteur propre associé à λ (i.e., SSSuuu = λuuu). On a, avec la règle de sommation de 1 à
n+ 1 des indices répétés,

uuu ·SSSuuu = uuu · λuuu = λuiui = λ|uuu|2.

D’autre part, puisque SSS est symétrique et SSS = SSS, on a d’après (1.1.2)

uuu ·SSSuuu = SSStuuu · uuu = SSSuuu · uuu = SSSuuu · uuu = SSSuuu · uuu = (λuuu) · uuu = λuuu · uuu = λ|uuu|2,

donc, puisque uuu 6= 0 (car c’est un vecteur propre), λ = λ. On déduit que λ ∈ R (et donc que toutes les
racines du polynôme caractéristique de SSS sont réelles).

Donc il existe un vecteur propre normé uuu1 ∈ Rn+1 de SSS associé à λ. Notons H le sous-espace vectoriel
de Rn+1 de dimension n défini par

H = {uuu1}⊥ =
{
vvv ∈ Rn+1, uuu1 · vvv = 0

}
.

On a

∀vvv ∈ H, uuu1 ·SSSvvv = SSStuuu1 · vvv = SSSuuu1 · vvv = λuuu1 · vvv = 0.

On déduit

SSSH ⊂ H.

La restriction de l’endomorphisme SSS à H, noté encore SSS, est donc un endomorphisme de H. Il est clair que
cette restriction est symétrique (i.e. que www ·SSSvvv = SSSwww · vvv ∀www,vvv ∈ H). L’espace H étant de dimension n,
l’hypothèse de récurrence Hn s’applique : il existe une base orthonormée (uuu2, ...,uuun+1) de H de vecteurs
propres de la restriction de SSS à H. On déduit que le système (uuu1, ...,uuun+1) est une base orthonormée de
Rn+1 de vecteurs propres de SSS.

Exercice

Soit SSS une matrice symétrique et soit (sss1, sss2, ..., sssn) une base orthonormée formée de vecteurs propres
de SSS associées aux valeurs propres λ1, λ2, ..., λn. Montrer que

SSS = Σnk=1λksssk ⊗ sssk. (1.3.3)

Indication : tester Σnk=1λksssk ⊗ sssk sur les vecteurs de la base (sss1, sss2, ..., sssn).
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1.4 Matrices orthogonales

Soit OOO une matrice 3× 3 et uuu1 = OOOeee1, uuu2 = OOOeee2, uuu3 = OOOeee3 ses vecteurs colonne, définis par :

uuu1 :=

Ñ
O11

O21

O31

é
, uuu2 :=

Ñ
O12

O22

O32

é
, uuu3 :=

Ñ
O13

O23

O33

é
.

Remarquons que

(OOOtOOO)ij = uuui · uuuj , ∀(i, j) ∈ {1, 2, 3}.

Si (uuu1,uuu2,uuu3) est une base orthonormée de R3, (OOOtOOO)ij = uuui · uuuj = δij , c’est à dire

OOOtOOO = III.

On dit alors que OOO est une matrice orthogonale. L’application linéaire représentée par OOO, qui transforme
toute base orthonormée en une base orthonormée, est appelée une isométrie linéaire sur R3.

Definition 1.4.1. Une matrice 3× 3 OOO est dite orthogonale si et seulement si

OOOtOOO = III.

Le théorème de décomposition polaire (théorème 1.7.1) dit que toute matrice 3 × 3 est le produit
d’une matrice symétrique par une matrice orthogonale.

1.5 Opérateurs différentiels courants.

Les fonctions et champs vectoriels ou matriciels considérés dans ce qui suit sont supposés indéfiniment
dérivables.

1.5.1 Laplacien d’un champ scalaire

Le Laplacien d’un champ scalaire f : R3 → R est le champ scalaire ∆f : R3 → R défini par

∆f :=
3∑
i=1

∂2f

∂x2
i

=
3∑
i=1

f,ii,

soit, avec la convention de sommation des indices répétés,

∆f := f,ii.

1.5.2 Divergence d’un champ vectoriel

La divergence d’un champ vectoriel uuu : R3 → R3 est le champ scalaire div uuu : R3 → R défini par

div uuu :=
3∑
i=1

∂ui
∂xi

=
3∑
i=1

ui,i,

soit, avec la convention de sommation des indices répétés,

div uuu = ui,i.
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1.5.3 Gradient d’un champ scalaire

Le gradient d’un champ scalaire f : R3 → R est le champ vectoriel ∇∇∇f : R3 → R3 défini par

∇∇∇f :=
3∑
i=1

∂f

∂xi
eeei =

3∑
i=1

f,ieeei,

soit, avec la convention de sommation des indices répétés,

∇∇∇f = f,ieeei.

Cela s’écrit encore

∇∇∇f =

Ö
∂f
∂x1
∂f
∂x2
∂f
∂x3

è
. (1.5.1)

1.5.4 Rotationnel d’un champ vectoriel

La rotationnel d’un champ vectoriel uuu : R3 → R3 est le champ vectoriel rotuuu : R3 → R3 défini par

rotuuu =

Å
∂u3

∂x2
− ∂u2

∂x3

ã
eee1 +

Å
∂u1

∂x3
− ∂u3

∂x1

ã
eee2 +

Å
∂u2

∂x1
− ∂u1

∂x2

ã
eee3.

On peut écrire, formellement,

rotuuu =

Ö
∂u3

∂x2
− ∂u2

∂x3
∂u1

∂x3
− ∂u3

∂x1
∂u2

∂x1
− ∂u1

∂x2

è
=

Ñ ∂
∂x1
∂
∂x2
∂
∂x3

é
∧

Ñ
u1

u2

u3

é
=∇∇∇∧ uuu.

Remarque 1.5.1. On déduit de l’exercice 1.2.1 que

rotuuu =
3∑

i,j,k=1

εijkuk,jeeei.

soit, avec la convention de sommation des indices répétés,

rotuuu = εijkuk,jeeei.

1.5.5 Gradient d’un champ vectoriel

Le gradient d’un champ vectoriel uuu : R3 → R3 est le champ matriciel ∇∇∇uuu : R3 →M3×3 défini par

∇∇∇uuu :=
3∑

i,j=1

∂ui
∂xj

eeei ⊗ eeej ,

soit, avec la convention de sommation des indices répétés,

∇∇∇uuu = ui,jeeei ⊗ eeej .

Cela qui s’écrit encore

∇∇∇uuu =

Ö
∂u1

∂x1

∂u1

∂x2

∂u1

∂x3
∂u2

∂x1

∂u2

∂x2

∂u2

∂x3
∂u3

∂x1

∂u3

∂x2

∂u3

∂x3

è
(matrice jacobienne de uuu). (1.5.2)
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Exercice.

Soit un champ vectoriel uuu : R3 → R3. Montrer que

rotuuu =

Ñ
−(∇∇∇uuu−∇∇∇tuuu)23

(∇∇∇uuu−∇∇∇tuuu)13

−(∇∇∇uuu−∇∇∇tuuu)12

é
. (1.5.3)

1.5.6 Divergence d’un champ matriciel

La divergence d’un champ matriciel AAA : R3 →M3×3 est le champ vectoriel divAAA : R3 → R3 défini par

divAAA :=
3∑

i,j=1

∂Aij
∂xj

eeei =
3∑

i,j=1

Aij,jeeei,

soit, avec la convention de sommation des indices répétés,

divAAA = Aij,jeeei,

ce qui s’écrit encore

divAAA =

Ö
∂A11

∂x1
+ ∂A12

∂x2
+ ∂A13

∂x3
∂A21

∂x1
+ ∂A22

∂x2
+ ∂A23

∂x3
∂A31

∂x1
+ ∂A32

∂x2
+ ∂A33

∂x3

è
.

La ieme composante de divA est égale à la divergence de la ieme ligne de AAA.

1.5.7 Laplacien d’un champ vectoriel

Le Laplacien d’un champ vectoriel uuu : R3 → R3 est le champ vectoriel ∆∆∆uuu : R3 → R3 défini par

∆∆∆uuu =
3∑
i=1

∆uieeei.

soit, avec la convention de sommation des indices répétés,

∆∆∆uuu = ∆uieeei = ui,jjeeei.

Les composantes du vecteur ∆∆∆uuu sont les laplaciens des composantes de uuu.

1.5.8 Exercices.

1. Montrer que

rot∇∇∇f = 0. (1.5.4)

Remarque 1.5.2. Le lemme de Poincaré (Théorème 1.5.1) dit que

rotaaa = ~0 ⇐⇒ ∃ f, aaa =∇∇∇f.

2. Montrer que

div rotuuu = 0. (1.5.5)

Remarque 1.5.3. Une variante du lemme de Poincaré (Théorème 1.5.2) dit que

div aaa = ~0 ⇐⇒ ∃ uuu aaa = rotuuu
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3. Montrer que

(rotuuu) ∧ uuu = (∇∇∇uuu)uuu− 1

2
∇∇∇(|uuu|2).

4. Montrer que

rot (rotuuu) =∇∇∇div uuu−∆uuu. (1.5.6)

1.5.9 Exercices supplémentaires.

1. Montrer que

∇∇∇(fg) = f∇∇∇g + g∇∇∇f.

2. Montrer que

∇∇∇f ∧∇∇∇g = rot (f∇∇∇g) = −rot (g∇∇∇f).

(Utiliser (1.5.4)).

3. Montrer que

div (fuuu) = (∇∇∇f) · uuu+ fdiv uuu.

4. Montrer que

rot (fuuu) = frotuuu+∇∇∇f ∧ uuu.

5. Montrer que

div (uuu ∧ vvv) = (rotuuu) · vvv − (rotvvv) · uuu.

6. Montrer que

[rot (uuu ∧ vvv)]i = (uuuivvvj),j − (uuujvvvi),j .

En déduire que

rot (uuu ∧ vvv) = (div vvv)uuu+ (∇∇∇uuu)vvv − (div uuu)vvv − (∇∇∇vvv)uuu.

7. Montrer que

∇∇∇(uuu · vvv) = uuu ∧ (rotvvv) + vvv ∧ (rotuuu) + (∇∇∇vvv)uuu+ (∇∇∇uuu)vvv

8. Soit OOO une matrice 3× 3 orthogonale (i.e. vérifiant OOOtOOO = I). Montrer que

∆(u(OOOx)) = (∆u)(OOOx).

En particulier,

∆u = 0 et v(x) := u(OOOx) =⇒ ∆v = 0.
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1.5.10 Dérivées partielles d’application composées de plusieurs variables

1. Soit f : R3 → R et ggg : R3 → R3 différentiables. Les dérivées partielles de f◦ggg(x) = f(g1(x), g2(x), g3(x))
sont données, avec la convention de sommation des indices rérétés, par

(f(g1(x), g2(x), g3(x)),j = (f,k(g1(x), g2(x), g3(x)))gk,j(x),

que l’on écrit
(f ◦ ggg),j = (f,k ◦ ggg)gk,j , (1.5.7)

ou, d’après (1.5.1),
∇∇∇(f ◦ ggg) = (f,k ◦ ggg)gk,jeeej .

2. On suppose maintenant que f : (x, t) ∈ R3 × R→ f(x, t) ∈ R et ggg : (x, t) ∈ R3 × R→ ggg(x, t) ∈ R3

sont des fonctions différentiables de 4 variables x1, x2, x3, t, la variable t représentant le temps. La
dérivée partielle par rapport au temps de f(ggg(x, t), t) est donnée par

∂

∂t
(f(g1(x, t), g2(x, t), g3(x, t)), t)

= f,k(g1(x, t), g2(x, t), g3(x, t), t)
∂gk(x, t)

∂t
+
∂f

∂t
(g1(x, t), g2(x, t), g3(x, t), t),

soit, en abrégé, notant h,t = ∂h
∂t la dérivée partielle par rapport au temps d’une fonction h,

(f(ggg, t)),t = f,k(ggg, t)(gk),t + f,t(ggg, t) (1.5.8)

1.5.11 Application : dérivée particulaire.

Soit un milieu matériel continu (liquide, solide ou gaz) et soit vvv(xxx(t), t) la vitesse de la particule de
ce milieu occupant la position xxx(t) à l’instant t. Son accélération γγγ(xxx(t), t) est donnée par γγγ(xxx(t), t) =
γi(xxx(t), t)eeei, avec

γi(xxx(t), t) =
∂

∂t
vi(xxx(t), t)

= vi,k(xxx, t))(xk),t + vi,t(xxx(t), t)) formule (1.5.8) avec ggg = xxx(t) et f = vi

= vi,k(xxx, t))vk(xxx, t) + vi,t(xxx(t), t)), car (xk(t)),t = vk(xxx(t), t).

En abrégé,

γγγ = (∇∇∇vvv)vvv +
∂vvv

∂t
.

On dit que γγγ(x, t) est la ”dérivée particulaire” de la vitesse (abréviation de ”dérivée par rapport au temps
de la vitesse d’une particule de position xxx(t) que l’on suit dans son mouvement”). La dérivée particulaire
de la vitesse se note

d

dt
vvv = (∇∇∇vvv)vvv +

∂vvv

∂t
.

Notez bien la différence graphique entre d
dt

et ∂
∂t . Si k(x, t) est une autre grandeur physique attachée au

milieu matériel (température, masse volumique, etc...), la dérivée particulaire de k est donnée par

d

dt
k =∇∇∇k · vvv +

∂k

∂t
.

Si Ω(t) est le volume occupé à l’instant t par un milieu matériel continu, on note de même

d

dt

ˆ
Ω(t)

k(x, t)dH3(x)

la dérivée par rapport au temps de l’intégrale
´

Ω(t)
k(x, t)dH3(x) lorsque l’on suit Ω(t) dans son mouve-

ment. Le calcul de cette dérivée (section 2.4) est difficile. Il est essentiel dans ce cours.
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1.5.12 Lemme de Poincaré et variante.

Le théorème suivant permet en particulier d’établir, dans ce cours, les ”équations de compatibilité”
et les ”équations de Beltrami” (Chapitre 9) qui servent à résoudre des problèmes d’élasticité.

Théorème 1.5.1 (Lemme de Poincaré). Soit U un ouvert convexe de Rn. On a l’équivalence

aaa ∈ C1(U,Rn), ai,j = aj,i ∀ (i, j) ∈ {1, 2, ..., n}2

⇐⇒
∃f ∈ C2(U), aaa =∇∇∇f.

(1.5.9)

De plus,

aaa(x) =

ˆ 1

t=0

xiai(tx)dt.

Dans le cas ou n = 3, (1.5.9) s’énonce

[aaa ∈ C1(U,R3), rotaaa = 0] ⇐⇒ [∃f ∈ C2(U), aaa =∇∇∇f ]. (1.5.10)

Démonstration. ⇐ Si aaa =∇∇∇ϕ, d’après le théorème de Schwarz, ai,j − aj,i = (ϕ,i),j − (ϕ,j),i = 0.

⇒
Soit aaa ∈ C1(U,Rn) tel que

ai,j = aj,i ∀ (i, j) ∈ {1, 2, ..., n}2. (1.5.11)

On pose

ϕ(t, x) := xiai(tx). (1.5.12)

On a, ∀j ∈ {1, 2, .., n}, (avec la convention de sommation de 1 à n des indices répétés)

(ϕ(t, x)),j = (xiai(tx)),j

= (xi),jai(tx) + xi(ai(tx)),j

= δijai(tx) + xi(ai,k(tx))(txk),j cf (1.5.7)

= δijai(tx) + xiai,k(tx)tδkj

= aj(tx) + txiai,j(tx)

= aj(tx) + txiaj,i(tx) d’après (1.5.11).

(1.5.13)

Par ailleurs,
∂

∂t
(taj(tx)) = aj(tx) + t

∂

∂t
(aj(tx))

= aj(tx) + taj,k(tx)
∂

∂t
(txk) cf (1.5.8)

= aj(tx) + txkaj,k(tx)

= aj(tx) + txiaj,i(tx).

(1.5.14)

On déduit de (1.5.13) et (1.5.14) que

(ϕ(t, x)),j =
∂

∂t
(taj(tx)). (1.5.15)

Posant

f(x) :=

ˆ 1

t=0

ϕ(t, x)dt,

on obtient
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(f(x)),j =

Çˆ 1

t=0

ϕ(t, x)dt

å
,j

=

ˆ 1

t=0

(ϕ(t, x)),jdt

=

ˆ 1

t=0

∂

∂t
(taj(tx)) dt d’après (1.5.15),

= [taj(tx)]1t=0 = aj(x),

d’où

aaa =∇∇∇f.

1.5.13 Version bidimensionelle du Lemme de Poincaré .

La version suivante du lemme de Poincaré permet en particulier (voir Section 4.2) de caractériser
les contraintes dans un solide élastique lorsque celles-ci ne dépendent que de deux variables (x1, x2)
(contraintes planes).

Corollaire 1.5.1. Soit V un ouvert convexe de R2. On a[
bbb ∈ C1(V ;R2), b1,1 + b2,2 = 0

]
⇐⇒ ∃ f(x1, x2) ∈ C2(V ),

ß
b1 = f,2
b2 = −f,1.

(1.5.16)

Démonstration. ⇐ Résulte du théorème de Schwarz.

⇒ Posons U = V × R. Le champ aaa =

Ñ
−b2
b1
0

é
vérifie ai,j = aj,i ∀ (i, j) ∈ {1, 2, 3} donc, d’après

(1.5.9), il existe f ∈ C2(U) telle que Ñ
a1

a2

0

é
=

Ñ
f,1
f,2
f,3

é
.

Donc f,3 = 0 (i. e. f = f(x1, x2)), b1 = a2 = f,2, et b2 = −a1 = −f,1.

1.5.14 ∗ Variante du Lemme de Poincaré.

Le lemme suivant concerne les champs vectoriels vvv de divergence nulle. La réunion des courbes tan-
gentes à un tel champ vvv en tout point et passant par un contour donné a une forme tubulaire. Pour cette
raison, un champ vérifiant div vvv = 0 est appelé un champ solénöıdal, du grec σωληνoειδες signifiant ”de
forme tubulaire”.

Théorème 1.5.2. Soit U est un ouvert convexe de R3. On a l’équivalence

[aaa ∈ C1(U ;R3), div aaa = 0] ⇐⇒ [∃uuu ∈ C2(U ;R3), aaa = rotuuu.] (1.5.17)

Démonstration. ⇐ : voir (1.5.5).

⇒ : la preuve est assez simple, mais elle utilise les formes différentielles qui sont hors programme. Voir
[7].
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1.6 Théorème de Stokes

Le théorème de Stokes est l’analogue tri-dimensionnel de la formule fondamentale de l’analyse : f(b)−
f(a) =

´ b
a
f ′(t)dt. La formule énoncée dans ce théorème est encore plus fondamentale. En mécanique, elle

est omniprésente. Dans la suite, on note dH2 l’élément de surface et dH3 l’élément de volume.

Théorème 1.6.1. Soit Ω un ouvert borné de R3 de frontière ∂Ω régulière (de classe C1) et soit
f ∈ C1(R3). Alors ˆ

Ω

∂f

∂xi
dH3 =

ˆ
∂Ω

fnidH2, (1.6.1)

soit, avec les notations simplifiées,

ˆ
Ω

f,idH3 =

ˆ
∂Ω

fnidH2.

où ni = nnn ·eeei et nnn désigne le vecteur unitaire orthogonal à ∂Ω dirigé vers l’extérieur de Ω ( normale
unitaire extérieure à ∂Ω).

Démonstration. (Idée de la démonstration). La formule (1.6.1) se généralise à Rn pour tout entier n ≥ 1 :ˆ
Ω

∂f

∂xi
dHn =

ˆ
∂Ω

fnidHn−1. (1.6.2)

On donne une idée de la démonstration pour n = 2 et i = 1 dans le cas d’un ouvert convexe Ω de R2.

Figure 1.1 –

D’après le théorème de Fubini, les notations étant indiquées sur la figure,
ˆ

Ω

∂f

∂x1
dH2 =

ˆ x2=xmax
2

x2=xmin
2

dx2

Çˆ x1=xmax
1 (x2)

x1=xmin
1 (x2)

∂f

∂x1
(x1, x2)dx1

å
=

ˆ x2=xmax
2

x2=xmin
2

dx2 [f(x1, x2)]
x1=xmax

1 (x2)

x1=xmin
1 (x2)

=

ˆ x2=xmax
2

x2=xmin
2

f(xmax1 (x2), x2)dx2 −
ˆ x2=xmax

2

x2=xmin
2

f(xmin1 (x2), x2)dx2.

(1.6.3)
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La variation infinitésimale dx2 apparaissant dans le terme
´ x2=xmax

2

x2=xmin
2

f(xmax1 (x2), x2)dx2 est représentée

sur la figure par le trait vertical vert à droite. Elle correspond à un déplacement infinitétésimal dH1(x1, x2)
le long de la frontière ∂Ω de Ω, représentée par le trait oblique vert. Les segments dx2 et dH1(x1, x2)
définissent un triangle rectangle. L’angle entre dx2 et dH1(x1, x2), noté β, vérifie cosβ = dx2

dH1(x1,x2) . Cet

angle β est aussi l’angle entre la normale extérieure nnn et et le vecteur xxx1, donc (voir figure) cosβ = |n1|
||nnn|| =

n1 car ||nnn|| = 1 et n1 ≥ 0. On déduit dx2

dH1(x1,x2) = n1, soit

dx2 = n1dH1(x1, x2) au point (xmax1 (x2), x2).

Ainsi, ˆ x2=xmax
2

x2=xmin
2

f(xmax1 (x2), x2)dx2 =

ˆ
(x1,x2)∈∂1Ω

f(x1, x2)n1dH1(x1, x2).

Répétant ce raisonnement en (xmin1 (x2), x2), remarquant qu’en ce point n1 ≤ 0 et donc

dx2 = −n1dH2(x1, x2) au point (xmin1 (x2), x2),

on obtient ˆ x2=xmax
2

x2=xmin
2

f(xmin1 (x2), x2)dx2 = −
ˆ

(x1,x2)∈∂2Ω

f(x1, x2)n1dH1(x1, x2).

Renenant à (1.6.3), on déduit

ˆ
Ω

∂f

∂xi
dH2 =

ˆ x2=xmax
2

x2=xmin
2

f(xmax1 (x2), x2)dx2 −
ˆ x2=xmax

2

x2=xmin
2

f(xmin1 (x2), x2)dx2

=

ˆ
(x1,x2)∈∂1Ω

f(x1, x2)n1dH1(x1, x2) +

ˆ
(x1,x2)∈∂2Ω

f(x1, x2)n1dH1(x1, x2)

=

ˆ
∂1Ω∪∂2Ω

fn1dH1

=

ˆ
∂Ω

fn1dH1.

1.6.1 Applications

En combinant le calcul indiciel et la formule de Stokes, on obtient une variété de nouvelles formules.
Par exemple, la formule ˆ

Ω

∇∇∇fdH3 =

ˆ
∂Ω

fnnndH2,

s’obtient en écrivant ˆ
Ω

∇∇∇fdH3 =

ˆ
Ω

f,ieeeidH3

=

ˆ
Ω

f,idH3eeei

=

ˆ
∂Ω

fnidH3eeei d’après (1.6.1)

=

ˆ
∂Ω

fnieeeidH3

=

ˆ
∂Ω

fnnndH3.
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Exercices

En combinant le calcul indiciel et la formule de Stokes, montrer les formules suivantes :

1. ˆ
Ω

rotuuudH3 =

ˆ
∂Ω

nnn ∧ uuudH2.

2. ˆ
Ω

div uuudH3 =

ˆ
∂Ω

uuu.nnndH2. (1.6.4)

3. ˆ
Ω

∇∇∇uuudH3 =

ˆ
∂Ω

uuu⊗nnndH2, ((uuu⊗nnn)ij := uinj).

4. ˆ
Ω

divSSSdH3 =

ˆ
∂Ω

SSSnnndH2. (1.6.5)

5. ˆ
Ω

f4gdH3 =

ˆ
∂Ω

f
∂g

∂n
dH2 −

ˆ
Ω

∇∇∇f.∇∇∇gdH3,

Å
∂g

∂n
:=∇∇∇g.nnn.

ã
6. ˆ

Ω

(f4g − g4f)dH3 =

ˆ
∂Ω

Å
f
∂g

∂n
− g ∂f

∂n

ã
dH2 ( formule de Green).

1.7 ∗ Compléments : matrice des cofacteurs ; théorème de décomposition
polaire

Les importantes notions abordées dans cette section ne sont pas nécessaires à la compréhension de la
suite du cours.

1.7.1 ∗ Exercice : matrice des cofacteurs (ou comatrice)

SoitAAA une matrice 3×3 de vecteurs colonne uuu1, uuu2, uuu3 (voir (1.2.6)). On appelle matrice des cofacteurs
(ou comatrice) de AAA, la matrice 3×3, notée CofCofCofAAA, dont les vecteurs colonne sont uuu2∧uuu3, uuu3∧uuu1, uuu1∧uuu2 :Ñ

(Cof A)11

(Cof A)21

(Cof A)31

é
= uuu2 ∧ uuu3,

Ñ
(Cof A)12

(Cof A)22

(Cof A)32

é
= uuu3 ∧ uuu1,

Ñ
(Cof A)13

(Cof A)23

(Cof A)33

é
= uuu1 ∧ uuu2. (1.7.1)

1. Montrer que

uuu2 ∧ uuu3 =
1

2
ε1pquuup ∧ uuuq,

uuu3 ∧ uuu1 =
1

2
ε2pquuup ∧ uuuq,

uuu1 ∧ uuu2 =
1

2
ε3pquuup ∧ uuuq.

2. En déduire que

(CofCofCofAAA)ij =

Å
1

2
εjpquuup ∧ uuuq

ã
i

,

puis que

(CofCofCofAAA)ij =
1

2
εimnεjpqAmpAnq. (1.7.2)
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3. Montrer que

(CofCofCofAAA)t = (CofCofCofAAAt)

4. Montrer que
AAA(CofCofCofAAAt) = (detAAA)III, (1.7.3)

En déduire que si AAA est inversible,

AAA−1 =
1

detAAA
(CofCofCofAAA)t.

5. Montrer que

CofCofCof(AAABBB) = CofCofCofAAA CofCofCofBBB.

6. En déduire que si AAA est inversible, CofCofCofAAA CofCofCof(AAA−1) = III, donc CofCofCof(AAA) est inversible et

(CofCofCofAAA)−1 = CofCofCof(AAA−1).

7. Montrer que

AAAuuu ∧AAAvvv = (CofCofCofAAA)(uuu ∧ vvv). (1.7.4)

8. Montrer que

div (CofCofCof(∇∇∇uuu)) = 0.

Indication : utiliser (1.7.2).

1.7.2 ∗ Exercice : théorème de décomposition polaire d’une matrice n× n
Le but de cet exercice est de montrer le résultat suivant :

Théorème 1.7.1 (théorème de décomposition polaire). Pour toute matrice n×n AAA, il existe des matrices
symétriques SSS et S̃SS, et une matrice orthogonale QQQ telles que AAA = QQQSSS = S̃SSQQQ. Autrement dit, il existe des
matrices n× n SSS, S̃SS et QQQ telles que

AAA = QQQSSS = S̃SSQQQ, SSSt = SSS, S̃SS
t

= S̃SS, QQQtQQQ = III. (1.7.5)

Il suffit de démontrer ce théorème lorsque AAA est inversible. La densité des matrices inversibles dans
l’ensemble des matrices permet ensuite de conclure. On fixe donc une matrice inversible AAA. On pose

CCC = AAAtAAA. (1.7.6)

1. Vérifier que CCC est symétrique, que detCCC = (detAAA)2 > 0, que les valeurs propres de CCC sont non
nulles, et

aaa · (CCCbbb) = (AAAaaa) · (AAAbbb) ∀aaa,bbb ∈ Rn. (1.7.7)

2. Montrer que pour toute base orthonormée (ccc1, ccc2, ..., cccn) de Rn et pour toute matrice BBB, on a

BBB =
n∑
k=1

(BBBccck)⊗ ccck (1.7.8)

3. Soit (ccc1, ccc2, ..., cccn) une base orthonormée de Rn des vecteurs propres de CCC associés aux valeurs
propres λ1, λ2, ..., λn, c’est à dire CCCccck = λkccck pour tout k ∈ {1, 2, ..., n} (voir Théorème 1.3.1).
Monter que

λk|ccck|2 = ccck · (CCCccck) = (AAAccck) · (AAAccck) = |AAAccck|2 (sans sommation) ∀k ∈ {1, 2, ..., n}.
En déduire que les valeurs propres de CCC sont strictement positives.
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4. On pose

dddk = AAAccck ∀k ∈ {1, 2, ..., n}.

Montrer que

dddi · dddj = λiδij (sans sommation) ∀i, j ∈ {1, 2, ..., n}.

En déduire que
Ä

1√
λ1
ddd1,

1√
λ2
ddd2, ...,

1√
λn
dddn
ä

est une base orthonormée de Rn.

5. On pose

SSS =
n∑
k=1

√
λkccck ⊗ ccck, S̃SS =

n∑
k=1

dddk ⊗
1√
λk
dddk QQQ =

n∑
k=1

1√
λk
dddk ⊗ ccck. (1.7.9)

Montrer que SSS et S̃SS sont symétriques, que QQQ est orthogonale, et que

AAA = QQQSSS = S̃SSQQQ.
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Chapitre 2

Cinématique des milieux continus

On désigne par milieu continu tout liquide, gaz ou solide, déformable ou non, quand on le considère
d’un point de vue macroscopique, par opposition à une description corpusculaire.

2.1 Définition du mouvement d’un milieu continu.

On considère un milieu continu en mouvement, qui occupe à chaque instant t une région Ω(t) de
l’espace. On se place dans le cadre de la mécanique classique, non relativiste. Le mouvement du milieu
continu est défini complètement si, pour chaque instant t et pour chaque point matériel M(t) du milieu
(se déplaçant au cours du temps) on connait l’application qui à la position X du point à l’instant 0 associe

sa position x à l’instant t. Les coordonnées X :=

Ñ
X1

X2

X3

é
point matériel à l’instant t = 0 sont appelées ses

coordonnées de Lagrange, et les coordonnées x :=

Ñ
x1

x2

x3

é
point matériel à l’instant t sont appelées

ses coordonnées d’Euler. Dans la suite, on notera

fff : (X, t) ∈ Ω(0)× R→ fff(XXX, t) ∈ Ω(t) (2.1.1)

l’application qui donne les coordonnées d’Euler x = fff(XXX, t) en fonction du temps t et des coordonnées
de Lagrange X. On supposera dans la suite que fff est indéfiniment différentiable, et que pour tout t fixé,
l’application X ∈ Ω(0) → fff(XXX, t) est une bijection de Ω(0) sur Ω(t), dont la bijection réciproque sera
notée ggg(x, t). L’application ggg est donc définie par

ggg(fff(XXX, t), t) = X ∀X ∈ Ω(0). (2.1.2)

On supposera aussi que ggg est indéfiniment différentiable.

Definition 2.1.1.

1. On appelle trajectoire d’un point matériel l’ensemble des positions de l’espace qu’il occupe au cours
du temps. Si X représente les coordonnées de Lagrange du point matériel, sa trajectoire est la courbe
de l’espace donnée par

Traj(X) := {fff(XXX, t), t ∈ R} .

2. Soit P un point fixe de l’espace et soit t1 un réel fixé. On appelle ligne d’émission de P à l’instant
t1 l’ensemble des positions à l’instant t1 de tous les points matériels qui sont passé par la position P
à un instant antérieur. Si xP représente les coordonnées de P , la ligne d’émission de P à l’instant
t1 est la courbe de l’espace donnée par

Emission(P, t1) := {fff(ggg(xp, t), t1), t ∈ [0, t1]} .
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3. On appelle ligne de courant à l’instant t1 toute courbe incluse dans Ω(t1) et telle que la vitesse à
l’instant t de tout point matériel situé sur la courbe soit tangente à la courbe.

2.2 Vitesse.

La vitesse à l’instant t d’un point matériel M(t) occupant la position X à l’instant 0 est donnée par
vvv(M(t)) = ∂

∂tfff(XXX, t). On note

vvv
˜

: (X, t) ∈ Ω(0)× R→ vvv
˜
(X, t) :=

∂

∂t
fff(XXX, t), (2.2.1)

l’application qui associe au couple (X, t) la vitesse à l’instant t du point matériel de coordonnées lagran-
giennes X.
On note

vvv : (x, t) ∈ Ω(t)× R→ vvv(x, t) := vvv
˜
(g(x, t), t),

l’application qui associe au couple (x, t) la vitesse à l’instant t du point matériel de coordonnées eulériennes
x. La description du champ des vitesses par vvv

˜
est appelée la description lagrangienne du mouvement et

la description du champ des vitesses par vvv est appelée la description eulérienne du mouvement.

2.3 Accélération. Dérivées particulaires.

Nous reprenons plus en détail la notion introduite en section 1.5.11. L’accélération à l’instant t d’un

point matériel M(t) occupant la position X à l’instant 0 est donnée par γγγ(M(t)) = ∂2

∂t2fff(XXX, t). On définit
de manière analogue les descriptions lagrangiennes γγγ

˜
(X, t) et eulériennes γγγ(x, t) de l’accélération :

— γγγ
˜
(X, t) est l’accélération à l’instant t du point matériel de coordonnées de Lagrange X.

— γγγ(x, t) est l’accélération à l’instant t du point matériel de coordonnées d’Euler x à l’instant t .
On a

γγγ(x, t) = γγγ
˜
(g(x, t), t),

γγγ
˜
(X, t) =

∂2

∂t2
fff(XXX, t) =

∂

∂t
vvv
˜
(X, t). (2.3.1)

En description eulérienne, l’accélération γγγ(x, t) n’est pas égale à la dérivée partielle par rapport au temps
de vvv(x, t). Cela vient du fait que la position x du point varie au cours du temps. Posant x = fff(XXX, t),
d’après le théorème de dérivation des fonctions composées de plusieurs variables, on a

γγγ(x, t) =
∂

∂t
(vvv(fff(XXX, t), t)) =

∂vvv

∂t
(x, t) +

3∑
i=1

∂vvv

∂xi
(fff(XXX, t), t)

∂fi
∂t

(X, t)

=
∂vvv

∂t
(x, t) +

3∑
i=1

∂vvv

∂xi
(x, t)vi

˜
(X, t),

c’est à dire, puisque vi
˜

(X, t) = vi(fff(X, t), t) = vi(x, t)

γγγ(x, t) =
∂vvv

∂t
(x, t) +

3∑
i=1

∂vvv

∂xi
(x, t)vi(x, t).
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On dit encore que la description eulérienne γγγ(x, t) de l’accélération est égale à la dérivée particulaire

du champ des vitesses vvv(x, t) en description eulérienne. On a vu dérivée particulaire est notée d
dt

. On a
donc

γγγ(x, t) =
d

dt
vvv(x, t) =

∂vvv

∂t
(x, t) +

3∑
i=1

∂vvv

∂xi
(x, t)vi(x, t).

Definition 2.3.1. On appelle dérivée particulaire d’une quantité k attachée à une particule la dérivée
par rapport au temps de cette quantité quand on suit la particule dans son mouvement. Si la quantité k
est donnée en description eulérienne

d

dt
k(x, t) =

∂k

∂t
(x, t) +

3∑
i=1

∂k

∂xi
(x, t)vi(x, t),

en abrégé,

d

dt
k =

∂k

∂t
+∇∇∇k · vvv. (2.3.2)

2.4 Dérivée particulaire d’une intégrale de volume.

La formule que nous allons démontrer dans cette section permet d’obtenir la plupart des équations
de mécanique des milieux continus, comme nous le verrons plus loin. Cette formule s’écrit :

Théorème 2.4.1.
d

dt

ˆ
Ω(t)

k(x, t)dx =

ˆ
Ω(t)

d

dt
k + kdiv vvvdx. (2.4.1)

Le principe de la démonstration de cette formule consiste à se ramener par changement de variables à
une intégrale sur le domaine fixe Ω(0), à dériver par rapport au temps, puis à revenir par le changement
de variables inverse à une intégrale sur Ω(t). Commençons par énoncer la formule de changements de
variables :

2.4.1 La formule de changements de variables

Théorème 2.4.2. Soit ϕϕϕ : R3 → R3 une application de classe C1, inversible et dont l’application
réciproque est de classe C1. Soit k : R3 → R3 une application intégrable. Alors pour tout ouvert U de R3,
la formule de changements de variables suivante est vérifiée

ˆ
ϕϕϕ(U)

k(x)dx =

ˆ
U

k(ϕϕϕ(X))|det∇∇∇ϕϕϕ|dX. (2.4.2)

Nous allons appliquer cette formule à t fixé avec ϕϕϕ(X) := fff(XXX, t), U = Ω(0), de sorte que ϕϕϕ(U) =
fff(Ω(0), t) = Ω(t). Dans la suite, nous noterons FFF la matrice définie par

FFF :=∇∇∇fff =

Ö
∂f1
∂X1

∂f1
∂X2

∂f1
∂X3

∂f2
∂X1

∂f2
∂X2

∂f2
∂X3

∂f3
∂X1

∂f3
∂X2

∂f3
∂X3

è
. (2.4.3)

La matrice FFF est donc le gradient de la transformation X → fff(XXX, t), appelée aussi la matrice jacobienne
de la transformation. Son déterminant, appelé le jacobien de la transformation, sera noté J . D’après
(1.2.9) on a

J = detFFF =
1

6
εijkεpqrFipFjqFkr. (2.4.4)

Nous verrons plus loin (cf. exercice 2.4.2) que J > 0. La formule de changement de variables s’écrit alors
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ˆ
Ω(t)

k(x, t)dx =

ˆ
Ω(0)

k(f(X, t), t)JdX. (2.4.5)

Comme le domaine Ω(0) est fixe, on peut écrire

d

dt

ˆ
Ω(t)

k(x, t)dx =
d

dt

Çˆ
Ω(0)

k(f(X, t), t)JdX

å
=

ˆ
Ω(0)

d

dt
(k(f(X, t), t)J) dX

=

ˆ
Ω(0)

d

dt
(k(f(X, t), t)) JdX +

ˆ
Ω(0)

k(f(X, t), t)
d

dt
JdX.

(2.4.6)

Le changement de variables inverse donne

ˆ
Ω(0)

d

dt
(k(f(X, t), t)) JdX =

ˆ
Ω(t)

d

dt
k dx. (2.4.7)

Nous montrons plus loin, dans l’exercice 2.4.1, la formule suivante :

d

dt
J = Jdiv vvv. (2.4.8)

On a donc

ˆ
Ω(0)

k(f(X, t), t)
d

dt
JdX =

ˆ
Ω(0)

k(f(X, t), t)Jdiv vvvdX =

ˆ
Ω(t)

kdiv vvvdx. (2.4.9)

Regroupant (2.4.6), (2.4.7), (2.4.9), la formule (2.4.1) est démontrée.

Exercice 2.4.1. Calcul de d
dt
J .

1. Montrer en utilisant la formule (2.4.4) que

d

dt
J =

1

2
εijkεpqr

Å
d

dt
Fip

ã
FjqFkr. (2.4.10)

2. Montrer en utilisant (2.2.1) et (2.4.3) que

d

dt
Fip = vi,sFsp (2.4.11)

En déduire que

d

dt
J =

1

2
εijkεpqrvi,sFspFjqFkr.

3. En utilisant la formule (1.2.11), montrer que

d

dt
J =

1

2
εijkεsjkvi,sJ.

4. Montrer que

d

dt
J = Jdiv vvv.

La formule (2.4.8) est démontrée.
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Remarque 2.4.1. D’après (2.4.11),

d

dt
FFF =∇∇∇vvvFFF . (2.4.12)

Exercice 2.4.2. Le but de cet exercice est de montrer qu’à tout instant t, on a : det(∇∇∇fff) = J > 0

1. Montrer que (en utilisant (2.1.2))

∇∇∇ggg(f(X, t))∇∇∇fff(XXX, t) =∇∇∇(IIIX) = III.

2. En déduire que

det(∇∇∇fff(XXX, t)) = J(X, t) 6= 0 ∀t ∈ R.

3. En déduire que J(X, t) garde un signe constant au cours du temps, puis (en considérant l’instant
t = 0) que

J(X, t) > 0 ∀X ∈ Ω(0),∀t ∈ R.
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Chapitre 3

Lois de conservation

3.1 Loi de conservation de la masse

Enoncé : La masse d’un système matériel que l’on suit dans son mouvement reste constante.

3.1.1 Equation de continuité.

Soit ω(t) un tel système. Sa masse est donnée par

m(ω(t)) =

ˆ
ω(t)

ρ(x, t)dH3, (3.1.1)

où ρ(x, t) désigne la masse volumique au point x à l’instant t. La loi de conservation de la masse dit que

d

dt
m(ω(t)) = 0 ∀ω(t),

ce qui s’écrit, d’après le théorème 2.4.1

ˆ
ω(t)

d

dt
ρ(x, t) + ρdiv vvvdH3 = 0 ∀ω(t).

De l’arbitraire sur ω(t), on déduit que la loi de conservation de la masse implique que la représentation
eulérienne ρ(x, t) de la masse volumique vérifie l’équation suivante, connue sous le nom d’équation de
continuité :

Théorème 3.1.1. Loi de conservation de la masse est équivalente à l’équation :

d

dt
ρ+ ρ div vvv = 0. (3.1.2)

Exercice 3.1.1. Montrer que l’équation de continuité s’écrit encore

∂

∂t
ρ+∇∇∇ρ · vvv + ρdiv vvv = 0. (3.1.3)

ou encore

∂

∂t
ρ+ div (ρvvv) = 0. (3.1.4)

Indication : utiliser la formule de dérivation particulaire (2.3.2).

Dans l’exercice suivant, nous examinons les conséquences de la loi de conservation de la masse sur les
formules de dérivation particulaire.
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Exercice 3.1.2. 1. Déduire de la formule de dérivation particulaire d’une intégrale de volume et de
l’équation de continuité (3.1.2) la formule importante suivante

d

dt

ˆ
Ω(t)

ρk(x, t)dx =

ˆ
Ω(t)

ρ
d

dt
kdx. (3.1.5)

2. En déduire que

d

dt

ˆ
Ω(t)

ρvvv(x, t)dx =

ˆ
Ω(t)

ργγγ(x, t)dx. (3.1.6)

3. Montrer que

d

dt

ˆ
Ω(t)

ρ
−−→
OM ∧ vvv(x, t)dx =

ˆ
Ω(t)

ρ
−−→
OM ∧ γγγ(x, t)dx. (3.1.7)

3.2 Loi de conservation de la quantité de mouvement. Principe
Fondammental de la Dynamique.

Enoncé du Principe Fondammental de la Dynamique pour les milieux continus.

Dans un repère galiléen, pour tout système matériel, la dérivée par rapport au temps du torseur des
quantités de mouvement est égale au torseur des forces extérieures appliquées au système.

3.3 Equations du mouvement et équations d’équilibre d’un mi-
lieu continu

Considérons un système matériel Ω(t) et soit ω(t) un système matériel quelconque inclus dans Ω(t).

Les forces extérieures agissant sur ω(t) sont des forces massiques de densité volumique ρ~f dans ω(t) et

des forces de contact de densité ~F (M, t,nnn) sur ∂ω(t), de sorte que le torseur des forces extérieures a une
résultante et un moment en O donnés respectivement par

ˆ
ω(t)

ρ~fdx+

ˆ
∂ω(t)

~F (nnn)dS,

ˆ
ω(t)

−−→
OM ∧ ρ~fdx+

ˆ
∂ω(t)

−−→
OM ∧ ~F (nnn)dS.

Le torseur des quantités de mouvement a une résultante et un moment en O donnés respectivement par

ˆ
ω(t)

ρvvvdx,

ˆ
ω(t)

−−→
OM ∧ ρvvvdx.

L’énoncé de la loi fondamentale de la dynamique se traduit donc par les égalités vectorielles

d

dt

ˆ
ω(t)

ρvvvdx =

ˆ
ω(t)

ρ~fdx+

ˆ
∂ω(t)

~F (nnn)dS,

d

dt

ˆ
ω(t)

−−→
OM ∧ ρvvvdx =

ˆ
ω(t)

−−→
OM ∧ ρ~fdx+

ˆ
∂ω(t)

−−→
OM ∧ ~F (nnn)dS.

(3.3.1)

Compte tenu de (3.1.5), on a
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d

dt

ˆ
ω(t)

ρvvvdx =

ˆ
ω(t)

ρ
d

dt
vvvdx =

ˆ
ω(t)

ργγγdx,

d

dt

ˆ
ω(t)

−−→
OM ∧ ρvvvdx =

ˆ
ω(t)

ρ
d

dt
(
−−→
OM ∧ vvv)dx =

ˆ
ω(t)

ρ
−−→
OM ∧ γγγdx.

On déduit

ˆ
ω(t)

ργγγ − ρ~fdx =

ˆ
∂ω(t)

~F (nnn)dS, (3.3.2)

ˆ
ω(t)

−−→
OM ∧ (ργγγ − ρ~f)dx =

ˆ
∂ω(t)

−−→
OM ∧ ~F (nnn)dS. (3.3.3)

Après un changement de notation, ces deux équations sont de la forme

ˆ
ω(t)

bbbdx =

ˆ
∂ω(t)

ααα(nnn)dS.

Le Théorème de Cauchy, énoncé et démontré dans la section suivante, établit, lorsqu’une telle équation
est vérifiée quel que soit ω(t), l’existence en tout point M d’une matrice TTT (M) telle que

ααα(M,nnn) = TTT (M)nnn.

Appliquant ce théorème pour bbb = ργγγ− ρ~f et ααα(M,nnn) = ~F (M,nnn), on déduit de l’équation (3.3.2), vérifiée
pour tout ω(t), l’existence d’une matrice, notée σσσ et appelée le tenseur des contraintes de Cauchy,
telle que

~F (M,nnn) = σσσ(M)nnn. (3.3.4)

Il résulte alors de la fomule de Stockes que

ˆ
∂ω(t)

~F (nnn)dS =

ˆ
∂ω(t)

σσσnnndS =

ˆ
∂ω(t)

σijnjeeeidS

=

ˆ
ω(t)

σij,jeeeidx =

ˆ
ω(t)

divσσσdx.

(3.3.5)

Combinant (3.3.2) et (3.3.5), on déduit

ˆ
ω(t)

ργγγ − ρ~f − divσσσdx = 0.

Cette équation étant vraie pour tout ω(t), il en résulte

ργγγ = ρ~f + divσσσ. (3.3.6)

Les équations (3.3.6) sont les équations du mouvement du milieu continu. Si le milieu est en
équilibre ou en mouvement de translation uniforme, γγγ = 0 et les équations se réduisent à

ρ~f + divσσσ = 0. (3.3.7)

Les équations (3.3.7) sont les équations d’équilibre du milieu continu.

On déduit de (3.3.4) et de la formule de Stokes que

ˆ
∂ω(t)

−−→
OM ∧ ~F (nnn)dS =

ˆ
∂ω(t)

−−→
OM ∧ σσσnnndS =

ˆ
∂ω(t)

εijkxjσklnleeeidS

=

ˆ
ω(t)

εijk(xjσkl),leeeidx =

ˆ
ω(t)

εijkδjlσkleeei + εijkxjσkl,leeeidx

=

ˆ
ω(t)

εijkσkjeeei +
−−→
OM ∧ divσσσdx,
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soit

ˆ
∂ω(t)

−−→
OM ∧ ~F (nnn)dS =

ˆ
ω(t)

εijkσkjeeei +
−−→
OM ∧ divσσσdx.

Reportant cette équation dans (3.3.3), on déduit

ˆ
ω(t)

−−→
OM ∧ (ργγγ − ρ~f)dx =

ˆ
ω(t)

εijkσkjeeei +
−−→
OM ∧ divσσσdx.

Compte tenu des équations du mouvement (3.3.6), il vient

ˆ
ω(t)

εijkσkjeeeidx = 0.

De l’arbitraire sur ω(t), on déduit

εijkσkj = 0 ∀i ∈ {1, 2, 3}.

Ceci implique

εpqiεijkσkj = 0 ∀p, q ∈ {1, 2, 3}.

Appliquant la formule (1.1.10), il vient

(δpjδqk − δpkδqj)σkj = 0 ∀p, q ∈ {1, 2, 3},

équivalente à

σqp − σpq = 0 ∀p, q ∈ {1, 2, 3}.

Autrement dit, la matrice σσσ est symétrique. On peut résumer ces résultats dans le théorème suivant :

Théorème 3.3.1. La loi de conservation de la quantité de mouvement (ou le principe fondamental de
la dynamique) implique l’existence en chaque point M du milieu continu d’une matrice symétrique σσσ(M)
appelée tenseur des contraintes de Cauchy et qui satisfait les équations du mouvement

ργγγ = ρ~f + divσσσ. (3.3.8)

ou, si γγγ = 0, les équations d’équilibre

ρ~f + divσσσ = 0. (3.3.9)

3.4 Théorème de Cauchy

Théorème 3.4.1. Soit bbb = bbb(M) un champ de vecteurs défini dans Ω et soit ααα(M,nnn) une application
dépendant du point M et d’un vecteur unitaire nnn. On suppose que pour nnn fixé, l’application M → ααα(M,nnn)
est continue, que le champ bbb est borné, et que la loi de conservation suivante est vérifiée :

ˆ
ω

bbbdx =

ˆ
∂ω

ααα(nnn)dS, ∀ω ⊂ Ω. (3.4.1)

Alors, pour tout point M ∈ Ω, il existe une matrice TTT (M) telle que

ααα(M,nnn) = TTT (M)nnn.

Autrement dit, ααα(M,nnn) dépend linéairement de nnn.

Démonstration.
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Lemme 3.4.1. On a

ααα(M,nnn) = −ααα(M,−nnn). (3.4.2)

Preuve du lemme. Soit Σ le plan passant par M orthogonal à nnn et soit ω une boule de centre M de
rayon r. Le plan Σ partage la boule en deux demi-boules ω1 et ω2. On suppose que nnn est la normale
extérieure à ω1 en M . On désigne par ∂iω la partie de ∂ω qui est incluse dans ∂ωi. En appliquant (3.4.1)
successivement à ω, ω1, ω2, notant ννν la normale extérieure à ω, on obtient

ˆ
ω

bbbdx =

ˆ
∂ω

ααα(ννν)dS,

ˆ
ω1

bbbdx =

ˆ
∂1ω

ααα(ννν)dS +

ˆ
Σ∩ω

ααα(nnn)dS,

ˆ
ω2

bbbdx =

ˆ
∂2ω

ααα(ννν)dS +

ˆ
Σ∩ω

ααα(−nnn)dS.

En ajoutant la deuxième et la troisième équation et en retranchant la dernière, on obtient

ˆ
Σ∩ω

ααα(nnn) +ααα(−nnn)dS = 0.

De la nature arbitraire du choix de ω et de la continuité de M → ααα(M,nnn), il résulte

ααα(M,nnn) = −ααα(M,−nnn).

Le lemme est démontré.

En tout point M ∈ Ω, on prolonge l’application nnn→ ααα(nnn) définie sur les vecteurs unitaires, à tout vecteur
non nul vvv en posant

ααα(M,vvv) := ||vvv||ααα
Å
M,

vvv

||vvv||

ã
.

De plus, on pose

ααα(M,~0) := ~0.

Lemme 3.4.2. L’application ααα(M,vvv) ainsi définie vérifie pour tout vecteur vvv :

ααα(M,λvvv) = λααα(M,vvv) ∀λ ∈ R. (3.4.3)

Preuve du lemme.

ααα(M,λvvv) = ||λvvv||ααα
Å
M,

λvvv

||λvvv||

ã
= |λ|||vvv||ααα

Å
M, signe(λ)

vvv

||vvv||

ã
= signe(λ)|λ|||vvv||ααα

Å
M,

vvv

||vvv||

ã
= λ||vvv||ααα

Å
M,

vvv

||vvv||

ã
= λααα(M,vvv).

Le lemme est démontré.

Lemme 3.4.3. Si vvv et www sont deux vecteurs non colinéaires, alors

ααα(M,vvv +www) = ααα(M,vvv) +ααα(M,www). (3.4.4)

Preuve du lemme. Nous allons établir (3.4.4) en un point M0. Soient A et B les points définis par (voir
figure 3.4)

−−−→
M0A = vvv,

−−−→
M0B = vvv +www, (3.4.5)

H un point du segment [M0, B], (D1) la droite perpendiculaire à vvv passant par M0, (D2)⊥www passant par
M0, (D3)⊥ (vvv +www) passant par H, et s
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Figure 3.1 –

C := (D1) ∩ (D3), D := (D2) ∩ (D3).

Les triangles (M0CD) et (AM0B) sont semblables car leurs cotés sont orthogonaux deux à deux. Il en
résulte que

M0C

||vvv||
=
M0D

||www||
=

CD

||vvv +www||
= ε, (3.4.6)

où ε est une constante positive.
Soit B le prisme droit de base le triangle ∆M0CD situé au-dessus de ∆M0CD et de hauteur ε. On note

∂1B, ∂2B, ∂3B ses faces latérales opposées respectivement à C,D,M0, ∂4B = ∆M0CD sa base inférieure,
∂5B sa face supérieure et kkk la normale extérieure unitaire à B sur ∂4B (voir figure 3.4).

Figure 3.2 –

La normale extérieure unitaire nnn à ∂B vérifie

nnn =
−www
||www||

sur ∂1B, nnn =
−vvv
||vvv||

sur ∂2B, nnn =
vvv +www

||vvv +www||
sur ∂3B,

nnn = kkk sur ∂4B, nnn = −kkk sur ∂5B.
(3.4.7)
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De plus

H3(B) = ε3||vvv ∧www||,
H2(∂1B) = ε2||www||, H2(∂2B) = ε2||vvv||, H2(∂3B) = ε2||vvv +www||,

H2(∂4B) = H2(∂5B) =
1

2
ε2||vvv ∧www||.

(3.4.8)

D’après (3.4.1),

ˆ
B
bbb(M)dH3(M) =

ˆ
∂1B

ααα

Å
M,
−www
||www||

ã
dH2(M) +

ˆ
∂2B

ααα

Å
M,
−vvv
||vvv||

ã
dH2(M)

+

ˆ
∂3B

ααα

Å
M,

vvv +www

||vvv +www||

ã
dH2(M)

+

ˆ
∂4B

ααα (M,kkk) dH2(M) +

ˆ
∂5B

ααα (M,−kkk) dH2(M).

Multiplions par 1
ε2 et appliquons (3.4.2). Compte tenu de (3.4.3), (3.4.8) et de ∂5B = ∂4B + εkkk, il vient

1

ε2

ˆ
B
bbb(M)dH3(M) =

−1

H2(∂B1)

ˆ
∂1B

ααα (M,www) dH2(M) +
−1

H2(∂B2)

ˆ
∂2B

ααα (M,vvv) dH2(M)

+
1

H2(∂B3)

ˆ
∂3B

ααα (M,vvv +www) dH2(M)

+
1

ε2

Åˆ
∂4B

ααα (M,kkk)−ααα (M + εkkk,kkk) dH2(M)

ã
.

(3.4.9)

D’après (3.4.8), puisque bbb est borné,

1

ε2

ˆ
B
bbb(M)dH3(M) ≤ CH

3(B)

ε2
≤ Cε. (3.4.10)

Comme M → ααα(M,nnn) est continue, on a ||ααα (M,kkk)−ααα (M + εkkk,kkk) || → 0 uniformément sur ∂4B lorsque
ε→ 0, donc d’après (3.4.8)

1

ε2

∣∣∣∣ˆ
∂4B

ααα (M,kkk)−ααα (M + εkkk,kkk) dH2(M)

∣∣∣∣ = o(1)
H2(∂4B)

ε2
= o(1)

||vvv ∧www||
2

= o(1). (3.4.11)

De même, ||ααα (M,www)−ααα (M0,www) || → 0 uniformément sur ∂1B lorsque ε→ 0, donc

−1

H2(∂B1)

ˆ
∂1B

ααα (M,www) dH2(M) =

Å −1

H2(∂B1)

ˆ
∂1B

ααα (M0,www) dH2(M)

ã
(1 + o(1))

= −ααα (M0,www) (1 + o(1)).

De manière analogue,

−1

H2(∂B1)

ˆ
∂1B

ααα (M,www) dH2(M) +
−1

H2(∂B2)

ˆ
∂2B

ααα (M,vvv) dH2(M)

+
1

H2(∂B3)

ˆ
∂3B

ααα (M,vvv +www) dH2(M)

= (−ααα (M0,www)−ααα (M0, vvv) +ααα (M0, vvv +www)) (1 + o(1))

(3.4.12)

Reportant (3.4.10), (3.4.11), (3.4.12) dans (3.4.9), on obtient

o(1) = (−ααα (M0,www)−ααα (M0, vvv) +ααα (M0, vvv +www)) (1 + o(1)) + o(1),

ce qui prouve (3.4.4) et achève la preuve du théorème de Cauchy.
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3.5 Conservation de l’énergie

3.5.1 Premier principe de la thermodynamique

Enoncé. Pour tout système matériel, il existe une fonction énergie interne spécifique (c’est à dire par
unité de masse) e(x, t), telle que la dérivée par rapport au temps de l’énergie totale (énergie interne +
énergie cinétique) soit égale à la puissance des forces extérieures appliquées au système plus les apports
de chaleur par unité de temps.

3.5.2 Tenseur des vitesses de déformation

Le tenseur des vitesses de déformation est la matrice DDDvvv définie par

DDDvvv :=
1

2
(∇∇∇vvv +∇∇∇tvvv). (3.5.1)

3.5.3 Equation de l’énergie

Théorème 3.5.1. Le premier principe de la thermodynamique entraine que l’énergie interne spécifique
e vérifie l’équation suivante, appelée équation de l’énergie :

ρ
de

dt
= σσσ : DDDvvv + ρw − div qqq, (3.5.2)

où ρw désigne les apports volumiques de chaleur par unité de temps et qqq le vecteur flux de chaleur.

Preuve. Soit ω(t) ⊂ Ω(t) un sous-système matériel d’un système matériel Ω(t). L’énergie interne du
système ω(t) est donnée par

ˆ
ω(t)

ρedx,

et son énergie cinétique par

ˆ
ω(t)

1

2
ρ|vvv|2dx.

La puissance des forces extérieures volumiques s’écrit

ˆ
ω(t)

ρ~f · vvvdx,

et celle des forces extérieures surfaciques

ˆ
∂ω(t)

~F · vvvdS.

Les apports volumiques de chaleurs valent

ˆ
ω(t)

ρwdS,

et les apports surfaciques de chaleur sont donnés par

ˆ
∂ω(t)

−qqq ·nnndS.

Le premier principe de la thermodynamique nous dit donc que

d

dt

Çˆ
ω(t)

1

2
ρ|vvv|2 + ρedx

å
=

ˆ
ω(t)

ρ~f · vvvdx+

ˆ
∂ω(t)

~F · vvvdS +

ˆ
ω(t)

ρwdx−
ˆ
∂ω(t)

qqq ·nnndS. (3.5.3)
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D’après (3.3.4) on a ~F = σσσnnn, donc

ˆ
∂ω(t)

~F · vvvdS =

ˆ
∂ω(t)

(σσσnnn) · vvvdS =

ˆ
∂ω(t)

σijnjvidS.

En appliquant la formule de Stokes (voir (1.6.1)), on déduit

ˆ
∂ω(t)

~F · vvvdS =

ˆ
ω(t)

(σijvi),jdS =

ˆ
ω(t)

σij,jvi + σijvi,jdS

=

ˆ
ω(t)

divσσσ · vvv + σσσ :∇∇∇vvvdS,
(3.5.4)

où AAA : BBB désigne le produit scalaire matriciel défini dans la section 1.1.2 (voir aussi (1.1.1)). De même

ˆ
∂ω(t)

qqq ·nnndS =

ˆ
∂ω(t)

qinidS =

ˆ
ω(t)

qi,idx =

ˆ
ω(t)

div qqqdx. (3.5.5)

D’après la formule (3.1.5) de dérivation particulaire d’une intégrale de volume en présence de ρ, on a

d

dt

Çˆ
ω(t)

1

2
ρ|vvv|2 + ρedx

å
=

ˆ
ω(t)

ρ
d

dt

Å
1

2
|vvv|2 + e

ã
dx =

ˆ
ω(t)

ρvvv · γγγ + ρ
de

dt
dx (3.5.6)

En combinant (3.5.3), (3.5.4), (3.5.5), et (3.5.6), on obtient l’équation

ˆ
ω(t)

ρvvv · γγγ + ρ
de

dt
dx =

ˆ
ω(t)

ρ~f · vvv + divσσσ · vvv + σσσ :∇∇∇vvv + ρw − div qqqdx,

équivalente à

ˆ
ω(t)

vvv ·
Ä
ργγγ − ρ~f − divσσσ

ä
+ ρ

de

dt
dx =

ˆ
ω(t)

σσσ :∇∇∇vvv + ρw − div qqqdx.

Les équations du mouvement (3.3.8) du milieu continu nous disent que ργγγ − ρ~f − divσσσ = 0. On déduit

ˆ
ω(t)

ρ
de

dt
dx =

ˆ
ω(t)

σσσ :∇∇∇vvv + ρw − div qqqdx.

Cette dernière équation étant vraie pour tout sous-système ω(t) de Ω(t), il en résulte que

ρ
de

dt
= σσσ :∇∇∇vvv + ρw − div qqq.

Compte tenu de la définition (3.5.1) de DDDvvv et du fait que la matrice σσσ est symétrique, on a

σσσ :∇∇∇vvv = σσσ : DDDvvv.

En combinant les deux dernières équations, on obtient l’équation de l’énergie (3.5.2).

3.5.4 Cas d’un milieu au repos : équation de la chaleur, loi de Fourier.

Dans un milieu au repos, vvv = 0 et de
dt = ∂e

∂t +∇∇∇e · vvv = ∂e
∂t , donc l’équation de l’énergie (3.5.2) s’écrit

ρ
∂e

∂t
= ρw − div qqq. (3.5.7)

Dans un milieu au repos, les deux lois physiques approchées suivantes sont expérimentalement vérifiées
(ce type de loi est appelé ”loi de comportement”) :

— L’énergie interne e est proportionnelle à la température absolue T , soit

e = CT, (3.5.8)

où le coefficient C est appelé la chaleur spécifique.
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— Le vecteur flux de chaleur qqq est proportionnel au vecteur gradient de température et dirigé en sens
opposé (c’est la loi de Fourier), soit

qqq = −K∇∇∇T, K > 0. (3.5.9)

En reportant (3.5.8) et (3.5.9) dans (3.5.7), on obtient l’équation de la chaleur

ρC
∂T

∂t
= ρw + div (K∇∇∇T ). (3.5.10)

Le scalaire positif K est appelé le coefficient de diffusion de la chaleur ou la conductivité thermique. Si le
milieu est anisotrope, le coefficient K doit être remplacé par une matrice de diffusivité symétrique définie
positive. Si le milieu est homogène, cette diffusivité ne dépend pas de x, donc div (K∇∇∇T ) = Kdiv (∇∇∇T ) =
K∆T et (3.5.10) devient

ρC
∂T

∂t
= ρw +K∆T.

3.6 Second principe de la thermodynamique. Inégalité de Clausius-
Duhem

3.6.1 Second principe de la thermodynamique.

Enoncé. Pour tout système matériel, il existe une fonction interne spécifique (c’est à dire par unité
de masse) s appelée entropie spécifique, telle que, pour tout système matériel ω(t), la dérivée par rapport
au temps de l’éntropie totale

´
ω(t)

ρsdx vérifie l’inégalité suivante :

d

dt

ˆ
ω(t)

ρsdx ≥
ˆ
ω(t)

ρ
w

T
dx−

ˆ
∂ω(t)

qqq ·nnn
T

dS ∀ω(t), (3.6.1)

où T est la température absolue.

Théorème 3.6.1. Le second principe de la thermodynamique à l’inégalité suivante :

ρ
ds

dt
≥ ρw

T
− div

( qqq
T

)
. (3.6.2)

Démonstration. On a d
dt

´
ω(t)

ρsdx =
´
ω(t)

ρds
dtdx et

ˆ
∂ω(t)

qqq ·nnn
T

dS =

ˆ
∂ω(t)

qi
T
nidH2 =

ˆ
ω(t)

(qi
T

)
,i
dH3 =

ˆ
ω(t)

div
( qqq
T

)
dH3,

donc (3.6.1) équivaux à

ˆ
ω(t)

ρ
ds

dt
− ρw

T
+ div

( qqq
T

)
dx ≥ 0 ∀ω(t),

qui équivaux à (3.6.2).

3.6.2 Inégalité de Clausius-Duhem

Théorème 3.6.2. L’inégalité (3.6.2) est équivalente à l’inégalité suivante, appelée inégalité de Clausius-
Duhem :

ρ

Å
T
ds

dt
− de

dt

ã
+ σσσ : DDDvvv − qqq · ∇∇∇T

T
≥ 0. (3.6.3)
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Démonstration. D’après (3.5.2) ρw = ρdedt − σσσ : DDDvvv + div qqq, donc l’inégalité (3.6.2) est équivalente à

ρ
ds

dt
≥ 1

T

Å
ρ
de

dt
− σσσ : DDDvvv + div qqq

ã
− div

( qqq
T

)
,

qui, compte tenu de

div
( qqq
T

)
=
(qi
T

)
,i

=
(qi,i
T

)
− T,iqi

T 2
=

div qqq

T
− ∇
∇∇T · qqq
T 2

,

équivaux à l’inégalité

ρ
ds

dt
≥ 1

T

Å
ρ
de

dt
− σσσ : DDDvvv + div qqq

ã
− div qqq

T
+
∇∇∇T · qqq
T 2

,

elle-même équivalente à (3.6.3).
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Chapitre 4

Etude du tenseur des contraintes

4.1 Exercice : cercles de Mohr

On a vu dans le chapitre précédent que la densité surfacique de forces qui s’exerce en un point M sur
toute région limitée par une surface passant par M de normale extérieure nnn au point M est donnée par
la formule (3.3.4), c’est à dire par :

~F (M,nnn) = σσσ(M)nnn. (4.1.1)

Le vecteur ~F est appelé le vecteur contrainte. Il se décompose sous la forme de la somme d’un vecteur
Tn(M,nnn)nnn parallèle à nnn (donc normal à la surface) et d’un vecteur ~Tt(M,nnn) orthogonal à nnn (donc tangent
à la surface) :

~F = Tnnnn+ ~Tt, Tn = ~F ·nnn, ~Tt = ~F − Tnnnn. (4.1.2)

L’objectif de ce problème est de répondre à la question suivante : étant donnés un tenseur des contraintes
σσσ et deux nombres réels X (de signe quelconque) et Y (positif ou nul), existe-t-il une direction nnn telle
que

X = Tn(nnn), Y = ||~Tt(nnn)||? (4.1.3)

Dans la suite, on note σI , σII , σIII les contraintes normales principales associées à σσσ (c’est à dire les valeurs
propres de σσσ), que l’on suppose associées, respectivement, à des vecteurs propres νννI , νννII , νννIII (directions
principales de contraintes) choisis de telle sorte que (νννI , νννII , νννIII) constitue une base orthonormée directe
(c’est toujours possible puisque σσσ est symétrique).

1. Soit nnn un vecteur normé nnn de composantes n1, n2, n3 dans la base (νννI , νννII , νννIII). Montrer que

nnn = n1νννI + n2νννII + n3νννIII

σσσ(M)nnn = n1σIνννI + n2σIIνννII + n3σIIIνννIII

(σσσ(M)nnn) ·nnn = σIn
2
1 + σIIn

2
2 + σIIIn

2
3.

(4.1.4)

2. Montrer que si le vecteur normé nnn vérifie (4.1.3), alors ses composantes n1, n2, n3 dans la base
(νννI , νννII , νννIII) satisfont

n2
1 + n2

2 + n2
3 = 1

σIn
2
1 + σIIn

2
2 + σIIIn

2
3 = X

σ2
In

2
1 + σ2

IIn
2
2 + σ2

IIIn
2
3 = X2 + Y 2.

(4.1.5)

Le système (4.1.5) est un système de 3 équations linéaires par rapport aux inconnues n2
1, n2

2, n2
3.

Du fait de sa structure particulière (matrice de Vandermonde) il se résoud aisément de la manière
suivante :

45



3. Soient P (x) un polynôme quelconque de degré 2 s’écrivant sous la forme P (x) = x2+ax+b. Montrer
que

n2
1P (σI) + n2

2P (σII) + n2
3P (σIII) = Y 2 + P (X)

4. On choisit le polynôme unitaire P du second degré s’annulant pour σII et σIII , soit P (x) =
(x− σII)(x− σIII). En déduire que

n2
1(σI − σII)(σI − σIII) = Y 2 + (X − σII)(X − σIII). (4.1.6)

Montrer de même que

n2
2(σII − σIII)(σII − σI) = Y 2 + (X − σIII)(X − σI), (4.1.7)

n2
3(σIII − σI)(σIII − σII) = Y 2 + (X − σI)(X − σII). (4.1.8)

5. On suppose de plus que

σI < σII < σIII . (4.1.9)

Vérifier que

n2
1 =

Y 2 + (X − σII)(X − σIII)
(σI − σII)(σI − σIII)

,

n2
2 =

Y 2 + (X − σIII)(X − σI)
(σII − σIII)(σII − σI)

,

n2
3 =

Y 2 + (X − σI)(X − σII)
(σIII − σI)(σIII − σII)

.

(4.1.10)

6. Les formules (4.1.10) fournissent n1, n2, n3 à la condition nécessaire et suffisante que le point

P = (X,Y )

soit tel que

Y 2 + (X − σII)(X − σIII) ≥ 0,

Y 2 + (X − σI)(X − σIII) ≤ 0,

Y 2 + (X − σI)(X − σII) ≥ 0.

(4.1.11)

Montrer qu’une équation de la forme

Y 2 + (X − a)(X − b) = 0, (4.1.12)

s’écrit aussi

Y 2 +

Å
X − a+ b

2

ã2

=

Å
a− b

2

ã2

.

En déduire que l’équation (4.1.12) représente le cercle de rayon
∣∣a−b

2

∣∣ et de centre de coordonnées(
a+b

2 , 0
)
. Ce cercle est centré sur OX et passe par les points de OX d’abscisse a et b.

7. Déduire des inégalités (4.1.11) que le point P doit se trouver dans la région délimitée par les trois
cercles centrés sur OX et passant par les points d’abscisse σI , σII , σIII comme l’indique la figure
4.1 et qu’inversement, pour tout point P (X,Y ) appartenant à cette région, il existe
un vecteur unitaire nnn vérifiant (4.1.3) : de plus, les composantes de ce vecteur nnn sont
données, au signe près, par (4.1.10). Dans cette figure, on n’a tracé que des demi-cercles car Y
est toujours positif ou nul, et on a hachuré les régions qui ne sont pas atteintes par P = (X,Y ). On
a donc démontré le théorème suivant :
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Figure 4.1 – Diagramme de Mohr

Théorème 4.1.1. Soit (X,Y ) ∈ R2. On suppose (4.1.9). Alors, il existe un vecteur unitaire nnn
vérifiant (4.1.3) si et seulement si le couple (X,Y ) se situe dans la zone non hachurée de la figure
4.1. Pour tout couple (X,Y ) appartenant à la zone non hachurée de la figure 4.1, tout vecteur nnn
dont les carrés n2

1, n2
2 et n2

3 des composantes dans la base (νννI , νννII , νννIII) sont données par (4.1.10)
vérifie (4.1.3).

8. Déduire de (4.1.10) que si nnn se déplace dans le plan νννI , νννII , c’est à dire si n3 = 0, alors le point
P = (X(nnn), Y (nnn)) se déplace sur le demi-cercle de diamètre ((σI , 0), (σII , 0)), et réciproquement.
Généraliser aux deux autres demi-cercles.

9. Le diagramme de Mohr montre que

σI ≤ X(nnn) ≤ σIII ∀nnn,

que la contrainte tangentielle maximale est atteinte au point P1 donné par

P1 =
(σI + σIII

2
,
σIII − σI

2

)
,

et qu’elle est donnée par

Ymax =
σIII − σI

2
.

Vérifier que les directions nnn correspondantes sont dans le plan νννI , νννIII et satisfont (Indication :
utiliser (4.1.10))

n1 = ±n3, n2 = 0.

Les deux plans associés à cette contrainte tangentielle maximale, appelés parfois plan de cisaille-
ment maximal, sont les plans bissecteurs des directions principales νννI et νννIII correspondant aux
contraintes normales principales extrêmes. C’est fréquemment cette contrainte de cisaillement maxi-
male qui provoque des ruptures du matériau, d’où des faces de rupture en dent de scie (cf. figure
2).

Figure 4.2 – Rupture en dent de scie
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10. On suppose maintenant que

σI = σII < σIII

En utilisant (4.1.8), montrer qu’alors le point P = (X,Y ) se trouve nécessairement sur le cercle de
diamètre ((σI , 0), (σIII , 0)).

Figure 4.3 – cas σI = σII < σIII

Vérifier que l’angle ϕ représenté sur la figure 4.3 vérifie

cosϕ =
X − σI
AP

=
AP

σIII − σI
,

et que n3 défini par (4.1.10) satisfait

n2
3 =

AP 2

(σIII − σI)2
.

En déduire que ϕ représente l’angle de nnn avec la direction principale νννIII (i.e. que | cosϕ| = |nnn.νννIII |).
11. Montrer qu’à chaque point P du demi-cercle correspond tout un cône de directions nnn, cône de

révolution d’axe νννIII et de demi-angle au sommet ( ~OX, ~AP ) = ϕ. En particulier, vérifier que le
point A sur la figure 3 correspond à tout le plan νννI , νννII .

12. En quel point la contrainte tangentielle maximale est-elle atteinte et quelle est sa valeur ? Quels
sont les plans de cisaillement maximal ?

13. Que se passe-t-il dans le cas σI = σII = σIII ?

4.2 Exercice : tenseur des contraintes plan. Fonction d’Airy

On dit qu’un champ de contraintes σσσ est plan (relativement au plan (O, x1, x2) s’il ne dépend que de
x1 et de x2, et est de la forme :

σσσ =

Ñ
σ11(x1, x2) σ12(x1, x2) 0
σ12(x1, x2) σ22(x1, x2) 0

0 0 0

é
.

Pour un champ de contraintes plan, si les forces volumiques sont nulles, les équations d’équilibre div σσσ = 0
s’écrivent

σ11,1 + σ12,2 = 0, (4.2.1)

σ21,1 + σ22,2 = 0. (4.2.2)

On a vu précédemment (cf. (1.5.16)) que
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[
fff ∈ C1(U ;R2), f1,1 + f2,2 = 0

]
⇐⇒ ∃ ϕ(x1, x2) ∈ C2(U),

ß
f1 = ϕ,2
f2 = −ϕ,1.

(4.2.3)

On suppose de plus que σσσ est de classe C1.

1. Montrer que, compte tenu de (4.2.3), l’équation (4.2.1) entraine

∃ ϕ1(x1, x2) ∈ C2(U),

®
σ11 = (ϕ1),2

σ12 = −(ϕ1),1.

2. Montrer que, compte tenu de (4.2.3), l’équation (4.2.2) entraine

∃ ϕ2(x1, x2) ∈ C2(U),

®
σ21 = (ϕ2),2

σ22 = −(ϕ2),1.

3. Déduire de la symétrie de σσσ que

(ϕ1),1 + (ϕ2),2 = 0.

4. Appliquant à nouveau (4.2.3), montrer que

∃ χ(x1, x2) ∈ C3(U),

®
ϕ1 = χ,2

ϕ2 = −χ,1.

5. En déduire que

σσσ =

Ñ
χ,22 −χ,12 0
−χ,12 χ,11 0

0 0 0

é
.

La fonction χ est appelée fonction d’Airy. Inversement, pour toute fonction χ(x1, x2) de classe C3,
le champ σσσ défini ci-dessus est un champ de contrainte plan.
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Chapitre 5

Etude des déformations

5.1 Notion de déformation

On dira qu’un milieu continu en mouvement a subi des déformations entre l’instant t = 0 et l’instant
t si les distances relatives des points ont varié. La notion de déformation est locale : le milieu peut
se déformer à certains endroit et ne pas se déformer à d’autres endroits. On est amené à étudier la
présence de déformation à l’échelle microscopique, c’est à dire à étudier les variations de distance entre
points très proches les uns des autres. La formule de Taylor permet alors d’exprimer ces variations en
fonction du gradient de la transformation. Supposons que le milieu continu en mouvement soit défini par
la transformation

fff : (X, t) ∈ Ω(0)× R+ → fff(XXX, t) ∈ Ω(t). (5.1.1)

Pour simplifier les notations, on pose, comme dans (2.4.3),

FFF (X, t) :=∇∇∇fff(X, t).

La matrice FFF , qui est la matrice jacobienne de la transformation fff , est appelée le gradient de la trans-
formation. Le développement de Taylor au premier ordre s’écrit (voir Remarque 5.1.1)

fff(X, t)− fff(X0, t) = FFF (X, t)(XXX −XXX0) + o(||X −X0||) ∀XXX0,XXX ∈ Ω(0). (5.1.2)

Lorsque XXX est proche de XXX0, le terme o(||X −X0||) peut être négligé. Dans ce cas, notant

−−→
dM0 := XXX −XXX0,

−−→
dM := fff(X, t)− fff(X0, t),

l’équation (5.1.2) devient

−−→
dM = FFF

−−→
dM0. (5.1.3)

Choisissons un second point quelconque de coordonnée XXX ′ proche de XXX0 et posons

−−→
δM0 := XXX ′ −XXX0,

−−→
δM := fff(X ′, t)− fff(X0, t).

On obtient de la même façon

−−→
δM = FFF

−−→
δM0. (5.1.4)

La déformation au voisinage du point M0 peut se caractériser en étudiant les variations de produits
scalaires

−−→
dM ·

−−→
δM −

−−→
dM0
−−→
δM0,

en fonction des vecteurs infinitésimaux
−−→
dM0,

−−→
δM0.
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Remarque 5.1.1. Soit Ω un ouvert de Rn et f ∈ CN (Ω). Pour tout α = (α1, ..., αn) ∈ N et tout
x = (x1, ..., xn) ∈ Ω, on introduit les notations

|α| = α1 + ...+ αn,

α! = α1!α2!...αn!,

Dαf =
∂|α|

∂α1x1∂α2x2...∂αnxn
,

xα = xα1
1 xα2

2 ...xαn
n .

Le développement de Taylor de f à l’ordre N au point x0 ∈ Ω s’écrit

f(x) =
∑

α∈Nn, |α|≤N

Dαf(x0)

α!
(x− x0)α + o(||x− x0||N ). (5.1.5)

5.2 Tenseur des dilatations. Tenseur des déformations

Posons

−−→
dM0 := (dX1, dX2, dX3),

−−→
δM0 := (δX1, δX2, δX3),

−−→
dM := (dx1, dx2, dx3),

−−→
δM := (δx1, δx2, δx3).

(5.2.1)

Compte tenu de (5.1.3) et de (5.1.4), on a

−−→
dM ·

−−→
δM = (FFF

−−→
dM0) · (FFF

−−→
δM0) = (FFF

−−→
dM0)i(FFF

−−→
δM0)i

= FiαdXαFiβδXβ = dXα(FiαFiβ)δXβ = dXαCαβδXβ

=
−−→
dM0 ·CCC

−−→
δM0,

où CCC est la matrice de composantes Cαβ := FiαFiβ . En d’autres termes, on a

−−→
dM ·

−−→
δM =

−−→
dM0 ·CCC

−−→
δM0, (5.2.2)

où

CCC := FFFTFFF . (5.2.3)

La matrice symétrique CCC définie par (5.2.3) est appelée le tenseur des dilatations. On a

−−→
dM ·

−−→
δM −

−−→
dM0
−−→
δM0 =

−−→
dM0 ·CCC

−−→
δM0 −

−−→
dM0 · III

−−→
δM0 =

−−→
dM0 · (CCC − III)

−−→
δM0, (5.2.4)

soit

−−→
dM ·

−−→
δM −

−−→
dM0
−−→
δM0 = 2

−−→
dM0 ·EEE

−−→
δM0, (5.2.5)

où la matrice EEE, définie par

EEE :=
1

2
(CCC − III) =

1

2
(FFF tFFF − III), (5.2.6)

est appelée le tenseur des déformations.

Théorème 5.2.1. La condition nécessaire et suffisante pour qu’il n’y ait pas de déformation au point M
de coordonnée de Lagrange X à l’instant t par rapport à la configuration initiale Ω(0) est que le tenseur
des déformations EEE défini par (5.2.6) vérifie EEE(X, t) = 0.
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La matrice des dilatations CCC est symétrique et possède donc une base orthonormée de vecteurs propres
(νννI , νννII , νννIII). Ces vecteurs sont appelés les directions principales de déformation. On note CI , CII , CIII
ses valeurs propres :

CCCνννI = CIνννI , CCCνννII = CIIνννII , CCCνννIII = CIIIνννIII .

Les valeurs propres CI , CII , CIII sont appelées les dilatations principales. On a :

Théorème 5.2.2. Les dilatations principales CI , CII , CIII du tenseur des dilatation sont strictement
positives.

Preuve. On a

CI = CIνννI · νννI = νννI · (CIνννI) = νννI ·CCCνννI = Cαβ(νννI)α(νννI)β = FiαFiβ(νννI)α(νννI)β

= (Fiα(νννI)α)(Fiβ(νννI)β) = ||FFFνννI ||2 ≥ 0.

On montre de même que CII ≥ 0 et CIII ≥ 0. D’après (6.1.1), (5.2.3) et l’exercice (2.4.2), on a

CICIICIII = detCCC = det(FFFTFFF ) = detFFFT detFFF = (detFFF )2 = (det∇∇∇f(X, t))2 > 0,

donc les valeurs propres CI , CII , CIII de CCC sont strictement positives.

Compte tenu de (5.2.6), on déduit :

Théorème 5.2.3. Le tenseur des déformations EEE défini par (5.2.6) est symétrique, possède les mêmes
directions propres que CCC, et ses valeurs propres EI , EII , EIII sont appelées les déformations princi-
pales. Elles vérifient

EEEνννJ = EJνννJ , J = I, II, III, (sans sommation)

EJ =
1

2
(CJ − 1) > −1

2
, J = I, II, III.

(5.2.7)

5.3 Variation des longueurs

Considérons un élément matériel
−−→
dM0 à l’instant t = 0, de longueur dl0 = ||

−−→
dM0|| et de direction

nnn0 (unitaire), i.e.
−−→
dM0 = dl0nnn0. A l’instant t, cet élément matériel est devenu

−−→
dM et sa longueur est

dl = ||
−−→
dM ||. En choisissant

−−→
δM0 =

−−→
dM0 (et donc

−−→
δM =

−−→
dM) dans (5.2.5), on obtient

dl2 − dl20 = ||
−−→
dM ||2 − ||

−−→
dM0||2 = 2

−−→
dM0 ·EEE

−−→
dM0 = 2dl0nnn0 ·EEE(dl0nnn0)

= 2dl20 nnn0 ·EEEnnn0,

dont on déduit

dl2 − dl20
dl20

= 2nnn0 ·EEEnnn0, (5.3.1)

puis Å
dl

dl0

ã2

= 1 + 2nnn0 ·EEEnnn0 = nnn0 ·nnn0 +nnn0 · 2EEEnnn0

= nnn0 · (III + 2EEE)nnn0 = nnn0 ·CCCnnn0 d’après (5.2.6) ,

et

dl

dl0
=
»
nnn0 · (III + 2EEE)nnn0 (5.3.2)
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Lorsque nnn0 = νννJ est un vecteur propre de CCC, c’est à dire une direction principale de déformation, on
obtient Å

dl

dl0

ã2

= CJ si nnn0 = νννJ ,

ce qui donne une interprétation des dilatations principales et justifie cette dénomination. De même,
lorsque nnn0 = νννJ , on déduit de (5.3.1) que

dl2 − dl20
dl20

= 2EJ si nnn0 = νννJ ,

soit

dl

dl0
=
√

1 + 2EJ si nnn0 = νννJ . (5.3.3)

Si EJ est petit (ce qui est en général le cas lorsque le milieu considéré est un solide élastique, voir le
chapitre suivant), on a

√
1 + 2EJ = 1 + EJ + o(EJ), et

dl

dl0
= 1 + EJ + o(EJ),

dl − dl0
dl0

= EJ + o(EJ) si nnn0 = νννJ ,

ce qui donne une interprétation de la déformation principale EJ dans la direction principale de déformation
νννJ .

5.4 Variations d’angles

Considérons deux éléments matériels
−−→
dM0 et

−−→
δM0 faisant entre eux un angle θ0. Posons

−−→
dM0 = nnn0dl0,

−−→
δM0 = ννν0δl0,

où nnn0 et ννν0 sont des vecteurs unitaires. A l’instant t, ces éléments sont devenus
−−→
dM et

−−→
δM et font entre

eux un angle θ. Posons

−−→
dM = nnndl,

−−→
δM = νννδl,

où nnn et ννν sont des vecteurs unitaires. Nous avons

nnn0 · ννν0 = cos θ0, nnn · ννν = cos θ.

En appliquant la formule (5.2.5), on obtient

cos θdlδl − cos θ0dl0δl0 = 2nnn0 ·EEEν0dl0δl0,

d’où

cos θ = (cos θ0 + 2nnn0 ·EEEν0)
dl0
dl

δl0
δl

= (nnn0 · (III + 2EEE)ννν0)
dl0
dl

δl0
δl
,

et, compte tenu de (5.3.2),

cos θ =
nnn0 · (III + 2EEE)ννν0√

nnn0 · (III + 2EEE)nnn0

√
ννν0 · (III + 2EEE)ννν0

(5.4.1)

Supposons que nnn0 = νννJ soit une direction principale de déformation associée à la déformation normale
principale EJ , (i.e. que EEEnnn0 = EEEνννJ = EJνννJ = EJnnn0). Alors

nnn0 · (III + 2EEE)ννν0 = ννν0 · (III + 2EEE)nnn0 = ννν0(1 + 2EJ)nnn0 = (1 + 2EJ) cos θ0,»
nnn0 · (III + 2EEE)nnn0 =

√
1 + 2EJ ,
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de sorte que

cos θ =

√
1 + 2EJ√

ννν0 · (III + 2EEE)ννν0

cos θ0 si nnn0 = νννJ . (5.4.2)

La formule (5.4.2) entrâıne en particulier que si nnn0 = νννJ est une direction principale de déformation
associée à la déformation normale principale EJ , (i.e. EEEνννJ = EJνννJ), et si ννν0 est orthogonal à nnn0, c’est à
dire nnn0 · ννν0 = cos θ0 = 0, alors après déformation, les directions nnn et ννν restent orthogonales entre elles.

5.5 ∗ Dérivée particulaire d’une intégrale de surface.

Nous allons montrer l’analogue de la formule (2.4.1) lorsque, au lieu de Ω(t), on considère une surface
matérielle Σ(t) que l’on suit dans son mouvement. On note nnn(x, t) une normale unitaire à Σ(t) au point
xxx et nnn0(XXX) la normale unitaire à Σ(0) au point XXX.

Théorème 5.5.1 (Dérivée particulaire d’une intégrale de surface).

d

dt

ˆ
Σ(t)

kkk(x, t) ·nnndH2 =

ˆ
Σ(t)

Å
d

dt
kkk + kkkdiv vvv − (∇∇∇vvv)kkk

ã
·nnn dH2. (5.5.1)

Le principe de la démonstration, comme pour la formule (2.4.1), consiste à se ramener par changement
de variable à une intégrale sur le domaine fixe Σ(0), à dériver par rapport au temps, puis à revenir par le
changement de variables inverse à une intégrale sur Σ(t). Dans ce but, nous avons besoin d’une formule
de changement de variable pour les intégrales de surfaces analogue à celle de changement de variable pour
les volumes considérée dans (2.4.5). Dans le lemme suivant, nous étudions le transformé d’une portion
infinitésimale de surface.

Lemme 5.5.1 (Transformé d’un élément de surface). Soit dS0 portion infinitésimale de S(0) et soit nnn0

un vecteur unitaire orthogonal à dS0. Alors dS0 est transformée au temps t en une portion infinitésimale
de S(t) de surface H2(S) et de normale unitaire nnn données par

H2(dS) = |CofCofCofFFFnnn0|H2(dS0), nnn =
CofCofCofFFFnnn0

|CofCofCofFFFnnn0|
.

En particulier, on a

nnnH2(dS) = (CofCofCofFFF )nnn0H2(dS0). (5.5.2)

Preuve. Rappelons que la surface d’un parallélogramme P de cotés les vecteurs uuu et vvv est donnée par
H2(P ) = ||uuu∧vvv|| et sa normale unitaire est nnnp = uuu∧vvv

||uuu∧vvv|| . Nous considérons, comme portion infinitésimale

dS0 de S(0), le parallélogramme de cotés deux vecteurs infinitésimaux
−−→
dM0 et

−−→
δM0 tangents à Σ(0).

Notant nnn0 la normale unitaire à dS0, on a

H2(dS0) = ||
−−→
dM0 ∧

−−→
δM0||, nnn0 =

−−→
dM0 ∧

−−→
δM0

||
−−→
dM0 ∧

−−→
δM0||

. (5.5.3)

Le parallélogramme dS0 est transformé en un parallélogramme dS de cotés deux vecteurs infinitésimaux−−→
dM = FFF

−−→
dM0 et

−−→
δM = FFF

−−→
δM0 (voir (5.1.3)) et de normale unitaire nnn. L’élément de surface orienté

nnn0H2(dS0) est donc transformé en

nnnH2(dS) =
−−→
dM ∧

−−→
δM, (5.5.4)

où

H2(dS) = ||
−−→
dM ∧

−−→
δM ||, nnn =

−−→
dM ∧

−−→
δM

||
−−→
dM ∧

−−→
δM ||

. (5.5.5)
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D’après (1.7.4), on a

−−→
dM ∧

−−→
δM = FFF

−−→
dM0 ∧FFF

−−→
δM0 = CofCofCofFFF

−−→
dM0 ∧

−−→
δM0.

ce qui, compte tenu de (5.5.3), (5.5.4), et (5.5.5) donne (5.5.2).

Nous énoncons l’analogue de la formule de changement de variable (2.4.5) pour les intégrales de surfaces :

Proposition 5.5.1 (formule de changement de variable pour les intégrales de surfaces).

ˆ
Σ(t)

kkk(x, t) ·nnndH2 =

ˆ
Σ(0)

kkk(fff(XXX, t), t) ·CofCofCofFFFnnn0dH2. (5.5.6)

Preuve (idée).
´

Σ(t)
kkk(x, t)·nnndH2 =

´
Σ(t)

kkk(x, t)·nnnH2(dS) et d’après (5.5.2),nnnH2(dS) = CofCofCofFFFnnn0H2(dS0),

d’où le résultat.

Preuve du Théorème 5.5.1. On déduit de (5.5.6) que

d

dt

ˆ
Σ(t)

kkk(x, t) ·nnndH2 =

ˆ
Σ(0)

dkkk

dt
(fff(XXX, t), t) · (CofCofCofFFFnnn0)dH2 +

ˆ
Σ(0)

kkk(fff(XXX, t), t) ·
Å

d

dt
CofCofCofFFF

ã
nnn0dH2.

(5.5.7)
En appliquant (5.5.6) à dkkk

dt ,

ˆ
Σ(0)

dkkk

dt
(fff(XXX, t), t) · (CofCofCofFFFnnn0)dH2 =

ˆ
Σ(t)

dkkk

dt
·nnndH2. (5.5.8)

D’après (1.7.3) et (2.4.4),

FFF (CofCofCofFFF )t = (CofCofCofFFF )tFFF = JIII, FFF tCofCofCofFFF = CofCofCofFFFFFF t = JIII. (5.5.9)

D’après (2.4.8) et (5.5.9) , d
dt

(FFF (CofCofCofFFF )t) = dJ
dt III = J(div vvv)III, soit

dFFF

dt
(CofCofCofFFF )t +FFF

d(CofCofCofFFF )t

dt
= J(div vvv)III. (5.5.10)

D’après (2.4.12), dFFF
dt =∇∇∇vvvFFF , donc d’après (5.5.9),

dFFF

dt
(CofCofCofFFF )t =∇∇∇vvvFFF (CofCofCofFFF )t = J∇∇∇vvv. (5.5.11)

On déduit de (5.5.10) et (5.5.11) que

FFF
d(CofCofCofFFF )t

dt
= J (div vvv III −∇∇∇vvv) .

En transposant, on obtient

dCofCofCofFFF

dt
FFF t = J

(
div vvv III −∇∇∇vvvt

)
.

En multipliant à droite par CofCofCofFFF , on trouve

dCofCofCofFFF

dt
FFF tCofCofCofFFF = J

(
div vvv III −∇∇∇vvvt

)
CofCofCofFFF .

Compte tenu de (5.5.9), on déduit

dCofCofCofFFF

dt
=
(
div vvv III −∇∇∇vvvt

)
CofCofCofFFF = div vvv CofCofCofFFF −∇∇∇vvvt CofCofCofFFF .
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D’après (1.1.2) appliqué à AAA =∇∇∇vvv et bbb = CofCofCofFFFnnn0, on a

kkk · ∇∇∇vvvtCofCofCofFFFnnn0 =∇∇∇vvvkkk · (CofCofCofFFFnnn0).

Appliquant les deux équations précédentes et la formule de changement de variable (5.5.6) pour les
intégrales de surfaces, on obtient

ˆ
Σ(0)

kkk(fff(XXX, t), t) ·
Å

d

dt
CofCofCofFFF

ã
nnn0dH2 =

ˆ
Σ(0)

kkk(fff(XXX, t), t) ·
(
div vvv III −∇∇∇vvvt

)
CofCofCofFFFnnn0dH2

=

ˆ
Σ(0)

(div vvv III −∇∇∇vvv)kkk(fff(XXX, t), t) ·CofCofCofFFFnnn0dH2

=

ˆ
Σ(t)

(kkkdiv vvv − (∇∇∇vvv)kkk) ·nnndH2,

qui, combiné à (5.5.7) et (5.5.8), donne (5.5.1).
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Chapitre 6

Equations de l’élasticité linéaire

6.1 Notations.

Considérons un milieu continu en mouvement. La position à l’instant t d’un point matériel occupant
la position XXX à l’instant 0 est notée fff(XXX, t). L’application fff est appelée la transformation. Le gradient
de la transformation est noté FFF :

FFF (X, t) =∇∇∇Xfff(X, t), Fij =
∂fi
∂Xj

. (6.1.1)

On rappelle que le tenseur des déformations de Green-Lagrange est la matrice EEE définie par

EEE =
1

2
(FFF tFFF − III). (6.1.2)

6.2 Définition générale d’un matériau élastique

Un milieu continu est dit élastique si le tenseur des contrainte σσσ s’exprime en fonction de la position
et du tenseur des déformations EEE calculé par rapport à un état de référence pour lequel les contraintes
sont nulles.

Un milieu élastique est dit linéaire lorsque l’approximation linéaire de sa loi de comportement donne
une description convenable de son comportement. Les équations régissant le mouvement d’un milieu
élastique sont obtenues en reportant cette loi de comportement dans l’équation du mouvement

ργγγ = divσσσ + ρfff dans Ω(t).

Mais la divergence ci-dessus est exprimée en coordonnées eulériennes rattachées au milieu physique à
l’instant t (divσσσ = ∂

∂xj
σijeeei) tandis que le tenseur des déformations EEE dépend des coordonnées La-

grangiennes X rattachées au milieu physique à l’instant initial t = 0. Nous sommes amenés à exprimer
l’équation du mouvement en coordonnées de Lagrange. Cela nous conduira à définir un nouveau tenseur
des contraintes exprimé en coordonnées de Lagrange.

6.3 Equations du mouvement en coordonnées de Lagrange et
relations de comportement.

La loi fondamentale de la dynamique implique (voir (3.3.1))

d

dt

ˆ
ω(t)

ρvvvdH3(x) =

ˆ
ω(t)

ρfffdH3(x) +

ˆ
∂ω(t)

σσσnnndH2(x) ∀ω(t) ⊂ Ω(t). (6.3.1)
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D’après (2.4.5), (5.5.6)), on a les formules suivantes associées au changement de variables xxx = fff(XXX, t)
dans les intégrales de volume et dans les intégrales de surface, pour tout ω(t) ⊂ Ω(t), tout champ scalaire
k(x, t) et tout champ vectoriel kkk(x, t) :

ˆ
ω(t)

k(x, t)dH3(x) =

ˆ
ω(0)

k(f(X, t), t)J(X, t)dH3(X),

ˆ
∂ω(t)

kkk(x, t) ·nnndH2(x) =

ˆ
∂ω(0)

kkk(f(XXX, t), t) ·CofCofCofFFFnnn0dH2(X),

(6.3.2)

où J = detFFF et CofCofCofFFF est la matrice des cofacteurs de FFF . On déduit de (6.3.1) et (6.3.2) que

d

dt

ˆ
ω(0)

ρ(f(X, t), t)vvv(f(X, t), t)J(X, t)dH3(X) =

ˆ
ω(t)

ρ(f(X, t), t)fff(f(X, t), t)J(X, t)dH3(X) +

ˆ
∂ω(t)

σσσ(f(X, t), t)CofCofCofFFFnnn0dH2(X) ∀ω(t) ⊂ Ω(t),

que nous écrirons, pour alléger les notations

d

dt

ˆ
ω(0)

ρvvvJdH3(X) =

ˆ
ω(0)

ρfffJdH3(X) +

ˆ
∂ω(0)

σσσCofCofCofFFFnnn0dH2(X) ∀ω(0) ⊂ Ω(0). (6.3.3)

La densité de forces σσσnnn sur ∂ω(t) devient donc une densité de forces σσσCofCofCofFFFnnn0 sur ∂ω(0). Cela suggère
d’introduire un nouveau tenseur des contraintes σ̂σσ, connu sous le nom de ”premier tenseur des
contraintes de Piola Kirchhoff”, et défini par

σ̂σσ(X, t) = σσσ(f(X, t), t)CofCofCofFFF (X, t). (6.3.4)

Il est utile de remarquer que, comme CofCofCofFFF = detFFF tFFF−t (notant FFF−t = (FFF t)−1), (6.3.4) équivaut à

1

detFFF
σ̂σσ(X, t)FFF t = σσσ(f(X, t), t). (6.3.5)

D’après (6.3.3) et (6.3.5),

ˆ
ω(0)

ρ
d

dt
vvv JdH3(X) =

ˆ
ω(0)

ρfffJdH3(X) +

ˆ
∂ω(0)

σ̂σσnnn0dH2(X) ∀ω(0) ⊂ Ω(0).

Il résulte de la formule de Stokes et du choix arbitraire de ω(0) que

ρ
d

dt
vvv J = ρfffJ + divXσ̂σσ dans Ω(0), (6.3.6)

où apparait l’opérateur différentiel divX par rapport aux coordonnées de Lagrange.

Le principe de conservation de la masse permet une simplification de (6.3.6). En effet, on a :

Lemme 6.3.1. Notant
ρ0(X) = ρ(X, 0), (notation) (6.3.7)

la masse volumique à l’instant t = 0, on a

ρ(f(X, t), t)J(X, t) = ρ0(X) ∀(X, t) ∈ Ω(0)× R+ (6.3.8)

Démonstration. Soit ω(t) un sous-système matériel de Ω(t) que l’on suit dans son mouvement. On note
m(ω(t)) sa masse, donnée par (3.1.1), c’est à dire par

m(ω(t)) =

ˆ
ω(t)

ρ(x, t)dH3(x),
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En utilisant la formule de changement de variables (2.4.5), on déduit

m(ω(t)) =

ˆ
ω(0)

ρ(f(X, t), t)J(X, t)dH3(X).

Par ailleurs, notant ρ0(X) = ρ(X, 0) la masse volumique du milieu à l’instant t = 0, on a

m(ω(0)) =

ˆ
ω(0)

ρ0(X)dH3(X).

D’après le principe de conservation de la masse, on a m(ω(0)) = m(ω(t)). On déduit donc

ˆ
ω(0)

ρ0(X)dH3(X) =

ˆ
ω(0)

ρ(f(X, t), t)J(X, t)dH3(X), ∀ω(0) ⊂ Ω(0).

Le choix de ω(0) étant arbitraire, on déduit (6.3.8).

Compte tenu de (6.3.8), l’équation (6.3.6) s’écrit

ρ0
d

dt
vvv = ρ0fff + divXσ̂σσ dans Ω(0). (6.3.9)

L’inconvénient du tenseur σ̂σσ est qu’il n’est pas symétrique. Pour y remédier, on introduit le second
tenseur des contraintes de Piola-Kirchhoff noté ˆ̂σσσ et défini par

ˆ̂σσσ =
1

J
CofCofCofFFF tσ̂σσ =

1

J
CofCofCofFFF tσσσCofCofCofFFF . (6.3.10)

Le second tenseur des contraintes de Piola-Kirchhoff est symétrique. De plus, comme 1
JCofCofCofFFF t = FFF−1,

on a
σ̂σσ = FFF ˆ̂σσσ, (6.3.11)

et l’équation (6.3.9) s’écrit

ρ0
d

dt
vvv = ρ0fff + divX(FFF ˆ̂σσσ) dans Ω(0). (6.3.12)

Definition 6.3.1 (Définition générale d’un milieu élastique). On dit qu’un milieu matériel est élastique
s’il est caractérisé par une loi de comportement liant son second tenseur des contraintes de Piola-Kirchhoff
ˆ̂σσσ à son tenseur des déformation EEE, c’est à dire une loi de comportement de la forme

ˆ̂σσσ = ggg(EEE), EEE =
1

2
(FFF tFFF − III), ggg(0) = 0. (6.3.13)

Les équations du mouvement (6.3.12), où ˆ̂σσσ est donné par (6.3.13), sont très non linéaires. Il est difficile
d’en obtenir des solutions. Nous allons en effectuer une linéarisation qui fournira les équations classiques de
l’élasticité. Cette théorie linéarisée rend bien compte du comportement de nombreux milieux (la plupart
des métaux, le bois, certains plastiques, etc...).

6.4 Linéarisation des équations de l’élasticité.

6.4.1 Principe de la linéarisation

On introduit le vecteur déplacement

uuu(XXX, t) = xxx−XXX, xxx = fff(XXX, t). (6.4.1)
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et on linéarise par rapport à ∇∇∇uuu, c’est à dire que l’on effectue des développements limités par rapport à
∇∇∇uuu en ne conservant que les termes constants et les termes linéaires par rapport à ∇∇∇uuu. Cela. revient à
supposer que les composantes de ∇∇∇uuu sont très petites, c’est à dire∣∣∣∣ ∂ui∂Xj

∣∣∣∣� 1.

Cette approximation est connue sous le nom hypothèse des petites perturbations, qu’on note en
abrégé h.p.p..

6.4.2 Tenseur des déformations linéarisées

D’après (2.4.3) et (6.4.1),

FFF =∇∇∇fff =∇∇∇(uuu+XXX) = III +∇∇∇uuu, (6.4.2)

d’où, compte tenu de (6.3.13),

EEE =
1

2
(FFF tFFF − III) =

1

2

((
III +∇∇∇tuuu

)
(III +∇∇∇uuu)− III

)
=

1

2

(
∇∇∇uuu+∇∇∇tuuu+∇∇∇tuuu∇∇∇uuu

)
=

1

2

(
∇∇∇uuu+∇∇∇tuuu

)
+O(|∇∇∇uuu|2).

(6.4.3)

On déduit :

Théorème 6.4.1. Sous l’hypothèse des petites perturbations,

EEE = εεε(uuu) +O(|∇∇∇uuu|2). (6.4.4)

où εεε(uuu), défini par

εεε(uuu) =
1

2

(
∇∇∇uuu+∇∇∇tuuu

)
, (6.4.5)

est appelé le tenseur des déformations linéarisées du milieu continu.

6.4.3 Linéarisation de la loi de comportement

Supposons que l’application ggg apparaissant dans (6.3.13) soit différentiable à l’origine. Fixons i, j et
écrivons le développement de Taylor de gij(EEE) à l’ordre N = 1 au voisinage de 0. D’après (5.1.5), (6.3.13)
et (6.4.4), compte tenu de ggg(0) = 0,

(ˆ̂σσσ)ij = gij(EEE) = gij(0) +
∂gij
∂Ekl

(0)Ekl +O(|EEE|2)

=
∂gij
∂Ekl

(0)
(
εkl(uuu) +O(|∇∇∇uuu|2)

)
+O(|∇∇∇uuu|2)

=
∂gij
∂Ekl

(0) (εkl(uuu)) +O(|∇∇∇uuu|2).

soit, en posant

aijkl =
∂gij
∂Ekl

(0), (6.4.6)

ˆ̂σij = aijklεkl(uuu) +O(|∇∇∇uuu|2), ∀i, j ∈ {1, 2, 3}, (6.4.7)

où εkl est défini par (6.4.5).

Definition 6.4.1. La relation (6.4.7) est appelée la loi de comportement de l’élasticité linéarisée. Les
coefficients aijkl définis par (6.4.6) sont appelés les coefficients d’élasticité. Du fait de la symétrie des

tenseurs ˆ̂σσσ et εεε(uuu), ils satisfont les relations de symétrie

aijkl = ajikl = aijlk. (6.4.8)
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6.4.4 Expressions linéarisées du premier tenseur des contraintes de Piola-
Kirchhoff σ̂σσ et du tenseur des contraintes σσσ

D’après (6.3.11), (6.4.2) et (6.4.7),

σ̂ij(X, t) =
Ä
FFF ˆ̂σσσ
ä
ij

d’après (6.3.11)

=
Ä
(III +∇∇∇uuu)ˆ̂σσσ

ä
ij

d’après (6.4.2)

= ˆ̂σij +
Ä
∇∇∇uuuˆ̂σσσ

ä
ij

= ˆ̂σij +O(|∇∇∇uuu|2) d’après (6.4.7)

= aijklεkl(uuu) +O(|∇∇∇uuu|2) d’après (6.4.7).

Ainsi le premier tenseur des contraintes de Piola-Kirchhoff vérifie

σ̂ij(X, t) = aijklεkl(uuu(X, t)) +O(|∇∇∇uuu|2), ∀i, j ∈ {1, 2, 3}. (6.4.9)

D’après (6.3.5), (6.4.2) et (6.4.9) on a

σij(f(X, t), t) =

Å
1

detFFF
σ̂σσ(X, t)FFF t

ã
ij

d’après (6.3.5)

=
1

detFFF
σ̂im(X, t)(FFF t)mj

=
1

detFFF

(
aimklεkl(uuu) +O(|∇∇∇uuu|2)

)Å
δmj +

∂uj
∂Xm

ã
d’après (6.4.2) et (6.4.9)

=
1

detFFF
aijklεkl(uuu) +O(|∇∇∇uuu|2).

D’où

σij(f(X, t), t) =
1

detFFF
aijklεkl(uuu) +O(|∇∇∇uuu|2). (6.4.10)

On a

detFFF =
1

6
εijkεpqrFipFjqFkr d’après (1.2.9)

=
1

6
εijkεpqr

Å
δip +

∂ui
∂Xp

ãÅ
δjq +

∂uj
∂Xq

ãÅ
δkr +

∂uk
∂Xr

ã
d’après (6.4.2)

=
1

6
εijkεpqrδipδjqδkr +

1

2
εijkεpqr

∂ui
∂Xp

δjqδkr +O(|∇∇∇uuu|2) idem avec (2.4.10)

= detIII +
1

2
εijkεpjk

∂ui
∂Xp

+O(|∇∇∇uuu|2)

= 1 +
1

2
2δip

∂ui
∂Xp

+O(|∇∇∇uuu|2) d’après (1.1.12)

= 1 +
∂ui
∂Xi

+O(|∇∇∇uuu|2),

soit
J = detFFF = 1 + div uuu(X, t) +O(|∇∇∇uuu)|2). (6.4.11)

On déduit

σij(f(X, t), t) =
1

detFFF
aijklεkl(uuu) +O(|∇∇∇uuu|2) d’après (6.4.10)

= (1 + div uuu+O(|∇∇∇uuu|2))−1aijklεkl(uuu) +O(|∇∇∇uuu|2) d’après (6.4.11)

= (1− div uuu+O(|∇∇∇uuu|2))aijklεkl(uuu) +O(|∇∇∇uuu|2)

= aijklεkl(uuu) +O(|∇∇∇uuu|2).
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soit

σij(f(X, t), t) = aijklεkl(uuu) +O(|∇∇∇uuu|2), ∀i, j ∈ {1, 2, 3}. (6.4.12)

On conclut :

Théorème 6.4.2. Le tenseur des contraintes σσσ(f(X, t), t), le premier tenseur des contraintes de Piola-

Kirchhoff σ̂σσ(X, t) et le second tenseur des contraintes de Piola-Kirchhoff ˆ̂σσσ(X, t) ont le même développement
au premier ordre sous l’hypothèse des petites perturbations. La loi de comportement de l’élasticité linéarisée
s’exprime indifféremment sous la forme (6.4.7), (6.4.9), ou(6.4.12).

6.4.5 Linéarisation des équations du mouvement

On a

d

dt
vvv(f(X, t), t) =

∂2fff(X, t)

∂t2

=
∂2uuu(X, t)

∂t2
d’après (6.4.1).

(6.4.13)

Les équations du mouvement (6.3.9), c’est à dire

ρ0
d

dt
vvv = ρ0fff + divXσ̂σσ dans Ω(0).

s’écrivent, compte tenu de (6.4.13) et (6.4.9)

ρ0
∂2uuu(X, t)

∂t2
= ρ0fff + divX(aijklεkl(uuu) +O(|∇∇∇uuu|2)) dans Ω(0).

On supposera que le terme divX(O(|∇∇∇uuu|2)) peut être négligé. L’équation du mouvement linéarisée s’écrit
alors

ρ0
∂2uuu(X, t)

∂t2
= ρ0fff + divXσσσ

l dans Ω(0)

σσσl(X, t) = aijklεkl(uuu)eeei ⊗ eeej .
(6.4.14)

Remarque 6.4.1. La matrice σσσl est le tenseur des contraintes linéarisé. Les équations (6.4.7), (6.4.9),

(6.4.12) et (6.4.14) montrent qu’en élasticité linéarisée, il n’y a pas lieu de distinguer σσσ de σ̂σσ, ˆ̂σσσ ou σσσl.
Dans la suite du cours, pour simplifier, ces quatre tenseurs seront notés σσσ :

σσσ = σ̂σσ = ˆ̂σσσ = σσσl = aijklεkl(uuu)eeei ⊗ eeej dans l’approximation linéaire. (6.4.15)

6.4.6 Conditions aux limites linéarisées

Si les forces sont données sur une partie Γ1(t) de la frontière ∂Ω(t) de Ω(t) par une densité surfacique
FFF (x), on a

σσσ(x, t)nnn(x, t) = ~F (x) sur Γ1(t). (6.4.16)

A l’instant t = 0, les points matériels de Γ1(t) occupent une portion Γ1(0) de ∂Ω(0), et la normale
extérieure nnn0(X) est donnée en fonction de nnn(x, t) = nnn(f(X, t), t) par la formule (5.5.2), c’est à dire par

nnn(f(X, t), t) =
CofCofCofFFF (X, t)nnn0(X)

|CofCofCofFFF (X, t)nnn0(X)|
. (6.4.17)
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Or,

(CofCofCofFFF )ij =
1

2
εimnεjpqFmpFnq d’après (1.7.2)

=
1

2
εimnεjpq(III +∇∇∇uuu)mp(III +∇∇∇uuu)nq d’après (6.4.2)

=
1

2
εimnεjpq(δmp +

∂um
∂Xp

)(δnq +
∂un
∂Xq

)

=
1

2
εimnεjpqδmpδnq +O(|∇∇∇uuu|)

=
1

2
εimnεjmn +O(|∇∇∇uuu|)

= δij +O(|∇∇∇uuu|) d’après (1.1.12),

donc

CofCofCofFFF = (1 +O(|∇∇∇u|))III. (6.4.18)

On déduit de (6.4.17) et (6.4.18) que

nnn(f(X, t), t) = (1 +O(|∇∇∇uuu|))nnn0(X).

La condition aux limites (6.4.16) s’écrit donc dans l’approximation linéaire,

σσσ(f(X, t), t)nnn0(X) = ~F (f(X, t),nnn0(X)) sur Γ1(0).

On peut donc écrire les conditions aux limites indifféremment sur le bord ∂Ω(t) ou sur le bord ∂Ω(0).

6.4.7 Lien entre dérivées par rapport aux variables de Lagranges et dérivées
par rapport aux variables d’Euler dans l’approximation linéaire

∂

∂Xi
ψ(f(X, t), t) =

Å
∂

∂xj
ψ(f(X, t), t)

ã
∂fj(X, t)

∂Xi

=

Å
∂ψ

∂xj

ã
(f(X, t), t)Fji d’après (6.1.1)

=

Å
∂ψ

∂xj

ã
(f(X, t), t)

Å
δji +

∂uj
∂Xi

ã
d’après (6.4.2)

=

Å
∂ψ

∂xi

ã
(f(X, t), t)(1 +O(|∇∇∇uuu|)).

Donc, dans l’approximation linéaire, il n’y a pas lieu de distinguer les dérivées partielles par rapport aux
variables de Lagrange des dérivées partielles par rapport aux variables d’Euler :

∂

∂Xi
ψ(f(X, t), t) '

Å
∂ψ

∂xi

ã
(f(X, t), t) dans l’approximation linéaire. (6.4.19)

6.4.8 Équations de l’élasticité linéaire

Supposons que l’on connaisse la densité ~F des forces appliquées sur la frontière ∂Ω du milieu continu
élastique linéaire occupant le domaine Ω. En remarquant que la vitesse vvv et l’accélération γγγ vérifient
d’aprés (2.2.1), (2.3.1) et (6.4.1),

vvv =
duuu

dt
, γγγ =

d2uuu

dt2
(6.4.20)

les équations gouvernant le comportement du milieu continu élastique linéaire s’écrivent alors, d’après
(3.3.6), (6.4.5), (6.3.10), (6.4.7) et (6.4.19)
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

ρ
d2uuu

dt2
= divσσσ + ρ~f dans Ω, (équations du mouvement)

σij = aijkhεkh(uuu), (loi de comportement)

εεε(uuu) =
1

2
(∇∇∇uuu+∇∇∇tuuu), (tenseur des déformations linéarisées)

σσσnnn = ~F sur ∂Ω (conditions aux limites).

(6.4.21)

6.5 Conséquence de l’existence d’une énergie interne de déformation

En l’absence d’effets thermiques, c’est à dire lorsque les apports volumiques de chaleur par unité de
temps ρw et le vecteur flux de chaleur qqq sont négligés, l’énergie interne spécifique e vérifie l’équation (voir
(3.5.2))

ρ
de

dt
= σσσ : DDDvvv, (6.5.1)

où DDDvvv est le tenseur des vitesses de déformation défini par la formule (3.5.1), c’est à dire

DDDvvv :=
1

2
(∇∇∇vvv +∇∇∇tvvv).

D’après (6.4.19), dans le cadre de l’élasticité linéaire, les dérivées par rapport aux variables de Lagrange
Xi sont approximativement égales aux dérivées par rapport aux variables d’Euler xi. Compte tenu de
(6.4.5) et (6.4.20), on déduit

DDDvvv =
1

2
(∇∇∇vvv +∇∇∇tvvv) =

1

2

Å
∇∇∇X
Å
duuu

dt

ã
+∇∇∇tX

Å
duuu

dt

ãã
=

d

dt

1

2
(∇∇∇Xuuu+∇∇∇tXuuu)

=
d

dt
εεε(uuu).

(6.5.2)

D’après (6.5.1) et (6.5.2), en l’absence d’effets thermique, l’énergie interne spécifique e du milieu élastique
linéaire vérifie l’équation

ρ
de

dt
= σσσ :

d

dt
εεε(uuu) = σij

dεij
dt

. (6.5.3)

Si l’énergie interne spécifique e est uniquement une énergie interne de déformation, c’est à dire uniquement
une fonction de la déformation εεε, on a

de

dt
=
∂e

∂εij

dεij
dt

. (6.5.4)

On déduit de (6.5.3) et (6.5.4) que Å
ρ
∂e

∂εij
− σij

ã
d

dt
εij = 0, (6.5.5)

ce qui fournit l’expression suivante des composantes du tenseur des contraintes σσσ en fonction de l’énergie
spécifique e :

ρ
∂e

∂εij
= σij ∀i, j ∈ {1, 2, 3}. (6.5.6)

Compte tenu de (6.4.15),

ρ
∂e

∂εij
= aijkhεkh ∀i, j ∈ {1, 2, 3}. (6.5.7)
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En dérivant par rapport à εkh on obtient l’expression suivante des coefficients d’élasticité aijkh en fonction
de l’énergie spécifique e :

ρ
∂2e

∂εij∂εkh
= aijkh ∀i, j, k, h ∈ {1, 2, 3}. (6.5.8)

D’après le théorème de Schwarz, on a ∂2e
∂εij∂εkh

= ∂2e
∂εkh∂εij

, donc

aijkh = akhij ∀i, j, k, h ∈ {1, 2, 3}. (6.5.9)

Compte tenu de (6.4.8), les coefficients d’élasticité vérifient les relations de symétrie suivantes :

aijkh = ajikh = aijhk = akhij ∀i, j, k, h ∈ {1, 2, 3}. (6.5.10)

Si maintenant on intègre (6.5.7), ce qui devient possible grâce à (6.5.9), on obtient

e =
1

2ρ
aijkhεijεkh. (6.5.11)

On a donc établi le théorème suivant :

Théorème 6.5.1. La condition nécessaire et suffisante pour qu’il existe une énergie de déformation e
en élasticité linéarisée est que les coefficients d’élasticité satisfassent

aijkh = akhij ∀i, j, k, h ∈ {1, 2, 3}. (6.5.12)

Compte tenu de (6.4.8), les coefficients d’élasticité satisfont

aijkh = ajikh = aijhk = akhij ∀i, j, k, h ∈ {1, 2, 3}. (6.5.13)

En l’absence d’effets thermiques, on a

e =
1

2ρ
aijhkεijεkh =

1

2ρ
σσσ(εεε) : εεε, (6.5.14)

et

σij = ρ
∂e

∂εij
, ρ

∂2e

∂εij∂εkh
= aijkh ∀i, j, k, h ∈ {1, 2, 3}. (6.5.15)

6.6 Isotropie. Loi de Hooke

6.6.1 Définition d’un milieu élastique isotrope

Si, en un point XXX, le milieu a les mêmes propriétés quelles que soient les directions autour de XXX,
on dit qu’il est isotrope. Considérons un milieu élastique, linéaire ou non. La loi de comportement d’un
milieu élastique dit que le tenseur des contraintes σσσ est une fonction du tenseur des déformations EEE :
σσσ = σσσ(EEE). La propriété d’isotropie s’exprime en disant que si, dans une base orthonormée (ννν1, ννν2, ννν3), le
tenseur des déformations EEE donné par

EEE = Eijνννi ⊗ νννj , (6.6.1)

est associé au tenseur des contraintes

σσσ(EEE) = σijνννi ⊗ νννj , (6.6.2)

alors dans tout autre base orthonormée (nnn1,nnn2,nnn3), le tenseur des déformations

ẼEE = Eijnnni ⊗nnnj , (6.6.3)
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est associée au tenseur des contraintes

σ̃σσ = σijnnni ⊗nnnj . (6.6.4)

Autrement dit,

σσσ(ẼEE) = σijnnni ⊗nnnj . (6.6.5)

Definition 6.6.1. Soit Ω un milieu élastique linéaire ou non linéaire et soit X un point matériel de Ω.
On note σσσ = σσσ(EEE) la loi de comportement élastique du milieu au point X. On dit que le milieu matériel
est isotrope au point X si et seulement si, quels que soient les nombres réels Eij et σij avec Eij = Eji,
σij = σji i, j ∈ {1, 2, 3}, et quelle que soit la base orthonormée (ννν1, ννν2, ννν3) de R3,

σσσ(Eijνννi ⊗ νννj) = σijνννi ⊗ νννj =⇒ σσσ(Eijnnni ⊗nnnj) = σijnnni ⊗nnnj pour toute base orthonormée (nnn1,nnn2,nnn3).

Exercice

Soient (ννν1, ννν2, ννν3) et (nnn1,nnn2,nnn3) deux bases orthonormées de R3 et soient EEE, σσσ, ẼEE et σ̃σσ définies respec-
tivement par (6.6.1), (6.6.2), (6.6.3), (6.6.4). Soit, en utilisant la convention de sommation des indices
répétés,

QQQ = νννi ⊗nnni

1. Montrer que QQQ transforme la base orthonormée (nnn1,nnn2,nnn3) en la base orthonormée (ννν1, ννν2, ννν3).

2. Montrer que QQQtQQQ = III.

3. Vérifier en utilisant (1.1.4) que

ẼEE = QQQtEEEQQQ, σ̃σσ = QQQtσσσ(EEE)QQQ.

4. En déduire que le milieu élastique est isotrope si et seulement si, quelle que soit la matrice ortho-
gonale QQQ et le tenseur des déformations EEE, on a

σσσ(QQQtEEEQQQ) = QQQtσσσ(EEE)QQQ, ∀QQQ ∈M3×3(R), QQQtQQQ = QQQQQQt = III.

L’exercice ci-dessus nous permet d’énoncer la proposition suivante :

Proposition 6.6.1. Un matériau élastique linéaire ou non est isotrope en un point X si et seulement si
sa loi de comportement EEE → σσσ(EEE) vérifie

σσσ(QQQtEEEQQQ) = QQQtσσσ(EEE)QQQ, (6.6.6)

quelles que soient la matrice orthogonale QQQ et la matrice symétrique EEE.

6.6.2 Energie élastique d’un milieu élastique linéaire isotrope

Lemme 6.6.1. Dans un matériau élastique linéaire isotrope, l’énergie élastique vérifie

e(QQQtεεεQQQ) = e(εεε), ∀QQQ ∈M3×3(R), QQQtQQQ = III. (6.6.7)

Démonstration. Compte tenu de (6.5.14) et de (6.6.6), on a

e(QQQtεεεQQQ) =
1

2ρ
σσσ(QQQtεεεQQQ) : QQQtεεεQQQ =

1

2ρ
QQQtσσσ(εεε)QQQ : QQQtεεεQQQ =

1

2ρ
(QQQtσσσ(εεε)QQQ)ij(QQQ

tεεεQQQ)ij

=
1

2ρ
QtipσpqQqjQ

t
irεrsQsj =

1

2ρ
(QtipQ

t
ir)(QqjQsj)σpqεrs

=
1

2ρ
(QQQQQQt)pr(QQQQQQ

t)qsσpqεrs =
1

2ρ
δprδqsσpqεrs =

1

2ρ
σpqεpq = e(εεε).
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Lemme 6.6.2. Dans un matériau élastique linéaire isotrope, l’énergie élastique s’écrit

e =
1

2ρ

(
(a− b) tr(εεε2) + b(trεεε)2

)
, (6.6.8)

où

a := a1111 = a2222 = a3333; b := a1122 = a1133 = a2233. (6.6.9)

Démonstration. Compte tenu de sa symétrie, la matrice εεε admet une base orthonormée de vecteurs
propres associés aux valeurs propres ε1, ε2, ε3. Il existe donc une matrice QQQ orthogonale, c’est à dire

vérifiant (6.6.6), telle que QQQtεεεQQQ =

Ñ
ε1 0 0
0 ε2 0
0 0 ε3

é
. On déduit de (6.6.6) que

e(εεε) = e

ÑÑ
ε1 0 0
0 ε2 0
0 0 ε3

éé
,

puis de (6.5.14), en remarquant que

Ñ
ε1 0 0
0 ε2 0
0 0 ε3

é
ij

= δijεj (sans sommation), et en tenant compte de

(6.5.9), que (dans les équations suivantes, nous n’utilisons pas la convention de sommation des indices
répétés)

e =
3∑

i,j,k,h=1

1

2ρ
aijhkεijεkh =

3∑
i,j,k,h=1

1

2ρ
aijhk

Ñ
ε1 0 0
0 ε2 0
0 0 ε3

é
ij

Ñ
ε1 0 0
0 ε2 0
0 0 ε3

é
kh

=
1

2ρ

3∑
i,j,k,h=1

aijkhδijεjδkhεh =
1

2ρ

3∑
i,k=1

aiikkεiεk

=
1

2ρ

(
a1111ε

2
1 + a2222ε

2
2 + a3333ε

2
3 + 2a1122ε1ε2 + 2a1133ε1ε3 + 2a2233ε2ε3

)
.

(6.6.10)

Dans la formule ci-dessus, l’ordre des valeurs propres est indifférent, i.e.

e(ε1, ε2, ε3) = e(ε1, ε3, ε2) = e(ε2, ε1, ε3) = e(ε2, ε3, ε1) = e(ε3, ε1, ε2) = e(ε3, ε2, ε1).

Il en résulte que a1111 = a2222 = a3333 et a1122 = a1133 = a2233. Posant

a := a1111 = a2222 = a3333; b := a1122 = a1133 = a2233, (6.6.11)

on déduit de (6.6.10) que

e =
1

2ρ

(
a(ε2

1 + ε2
2 + ε2

3) + 2b(ε1ε2 + ε1ε3 + ε2ε3)
)
. (6.6.12)

Remarquant que

trεεε = ε1 + ε2 + ε3; tr(εεε2) = ε2
1 + ε2

2 + ε2
3,

(trεεε)2 = (ε1 + ε2 + ε3)2 = ε2
1 + ε2

2 + ε2
3 + 2(ε1ε2 + ε1ε3 + ε2ε3),

(6.6.13)

on déduit de (6.6.12) que

e =
1

2ρ

(
a tr(εεε2) + b((trεεε)2 − tr(εεε2)

)
=

1

2ρ

(
(a− b) tr(εεε2) + b(trεεε)2

)
.

Le lemme est démontré.

69



6.6.3 Loi de comportement d’un milieu élastique linéaire isotrope : Loi de
Hooke. Coefficients de Lamé.

Théorème 6.6.1 (loi de Hooke). Dans un matériau élastique linéaire isotrope, le tenseur des contraintes
s’écrit

σσσ = λ(trεεε)III + 2µεεε, (6.6.14)

et l’énergie spécifique est donnée par

e =
1

2ρ

(
λ(trεεε)2 + 2µ tr(εεε2)

)
. (6.6.15)

La loi de comportement (6.6.14) est appelée la loi de Hooke. Les coefficients λ, µ sont appelés les
coefficients de Lamé. Ils sont donnés par (cf. (6.6.11))

λ = b = a1122; µ =
a− b

2
=
a1111 − a1122

2
. (6.6.16)

Démonstration. D’après le lemme 6.6.2, l’énergie spécifique d’un milieu élastique linéaire isotrope est
donnée, lorsque l’on néglige les effets thermiques, par

e =
1

2ρ

(
(a− b) tr(εεε2) + b(trεεε)2

)
=

1

2ρ
((a− b)εpqεpq + bεppεqq) , (6.6.17)

où
a := a1111 = a2222 = a3333; b := a1122 = a1133 = a2233.

D’après le théorème 6.5.1, le tenseur des contraintes d’un milieu élastique linéaire est donné par (voir la
formule (6.5.15))

σij = ρ
∂e

∂εij
.

On déduit

σij = ρ
∂

∂εij

Å
1

2ρ
((a− b)εpqεpq + bεppεqq)

ã
=

1

2

Å
(a− b) ∂

∂εij
(εpqεpq) + b

∂

∂εij
(εppεqq)

ã
=

1

2
((a− b)2δipδjqεpq + b (2δijεqq))

= (a− b)εij + bδij trεεε

autrement dit,

σσσ = b(trεεε)III + (a− b)εεε.
En introduisant les coefficients de Lamé

λ = b; µ =
a− b

2
,

on obtient la loi de Hooke (6.6.14). Revenant à (6.6.17), on trouve

e =
1

2ρ

(
(a− b) tr(εεε2) + b(trεεε)2

)
=

1

2ρ

(
λ(trεεε)2 + 2µ tr(εεε2)

)
,

soit (6.6.15).
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6.6.4 Calcul des coefficients d’élasticité d’un matériau élastique linéaire iso-
trope

D’après (6.5.8) et (6.6.15) on a, ∀i, j, k, h,

aijkh = ρ
∂2e

∂εij∂εkh
d’après (6.5.8)

= ρ
∂2

∂εij∂εkh

Å
1

2ρ

(
λ(trεεε)2 + 2µ tr(εεε2)

)ã
d’après (6.6.15)

=
1

2

∂

∂εij

Å
∂

∂εkh
(λεppεqq + 2µεpqεpq)

ã
=

1

2

∂

∂εij

Å
2λ
∂εpp
∂εkh

εqq + 4µ
∂εpq
∂εkh

εpq

ã
=

∂

∂εij
(λδkhεqq + 2µδpkδqhεqp)

=
∂

∂εij
(λδkhεqq + 2µεhk)

= λδkh
∂εqq
∂εij

+ 2µ
∂

∂εij

(εhk + εkh
2

)
= λδkhδij + 2µ

∂

∂εij

Å
δihδjk + δikδjh

2

ã
,

soit
aijkh = λδijδkh + µ(δikδjh + δihδjk), ∀i, j, k, h ∈ {1, 2, 3, 4}. (6.6.18)

En particulier,

aijij = aijji = µ ∀i 6= j, (sans sommation des indices répétés)

aiijj = λ ∀i 6= j, (sans sommation des indices répétés)

aiiii = λ+ 2µ ∀i, (sans sommation des indices répétés)

aijkl = 0 si card {i, j, k, l} ≥ 3.
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Chapitre 7

Existence et unicité de la solution
d’un problème d’élasticité linéaire

7.1 Exemple 1 : Problème d’équilibre avec condition aux limites
de Dirichlet homogènes.

Nous cherchons un champ de déplacement uuu : Ω → R3 satisfaisant le problème d’équilibre déduit

de (6.4.21) en remplaçant d2uuu
dt2 par zéro la condition au bord σσσ(uuu)nnn = ~F sur ∂Ω (dite ” condition aux

limites de Neumann”) par la condition au bord (dite ”condition aux limites de Dirichlet homogène”)
uuu = 0 sur ∂Ω, c’est à dire : 

− divσσσ(uuu) = ρfff dans Ω,

σij(uuu) = aijkhεkh(uuu), (noté σσσ(uuu) = aaaεεε(uuu))

εεε(uuu) =
1

2
(∇∇∇uuu+∇∇∇tuuu),

uuu = 0 sur ∂Ω,

(7.1.1)

lorsque la condition

aijkhSijS
′
kh ≤ C|SSS||SSS′|, ∀SSS, SSS′ ∈ S3 (C > 0)

aijkhSijSkh ≥ αSijSij , ∀SSS ∈ S3 (α > 0) (condition d’ellipticité)
(7.1.2)

est vérifiée.

7.1.1 Espace de Hilbert H1(Ω;R3). Inégalités de Poincaré et de Korn. Théorème
de Lax Milgram.

On rappelle que l’espace de Sobolev H1(Ω) est défini par

H1(Ω) =

u ∈ L2(Ω)

∣∣∣∣∣∣∣
∃g1, g2, g3 ∈ L2(Ω),ˆ

Ω

fϕ,idx = −
ˆ

Ω

giϕdx ∀ϕ ∈ C∞c (Ω), ∀i ∈ {1, 2, 3}

 . (7.1.3)

Si u ∈ H1(Ω), les fonctions gi sont unique et notée gi = u,i. L’espace de Sobolev H1(Ω;R3) est défini par

H1(Ω;R3) =
{
uuu ∈ L2(Ω;R3), ui ∈ H1(Ω) ∀i ∈ {1, 2, 3}

}
. (7.1.4)

L’espace de Sobolev H1(Ω) est associé au produit scalaire et à la norme
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(u, v)H1 =

ˆ
Ω

uv +∇∇∇u · ∇∇∇vdH3,

||u||H1 = (u, v)H1 =

 ˆ
Ω

|u|2 + |∇∇∇u|2 dH3.

qui lui donnent une structure d’espace de Hilbert. On définit de même l’espace de Sobolev H1(Ω;R3) : il
est associé au produit scalaire et à la norme

(uuu,vvv)H1 =

ˆ
Ω

uuu · vvv +∇∇∇uuu :∇∇∇vvvdH3,

||uuu||H1
= (uuu,uuu)H1 =

 ˆ
Ω

(|uuu|2 +∇∇∇uuu :∇∇∇uuu) dH3.

qui lui donnent aussi une structure d’espace de Hilbert. Si la frontière de Ω est assez régulière, on peut
définir les valeurs prisent par un élément uuu de H1(Ω;R3) sur le bord ∂Ω. La restriction de uuu à ∂Ω est
appelée la trace de uuu et notée uuub∂Ω. Elle vérifie uuub∂Ω ∈ L2

H2(∂Ω;R3). On peut employer la formule de
Stokes avec les éléments de H1(Ω;R3). On note

H1
0 (Ω;R3) =

{
uuu ∈ H1(Ω;R3), uuubΩ = 0

}
. (7.1.5)

Lemme 7.1.1 (Inégalité de Poincaré.). Si Ω est borné, il existe C > 0 tel que

ˆ
Ω

|u|2dH3 ≤ C
ˆ

Ω

|∇∇∇u|2dH3 ∀u ∈ H1
0 (Ω). (7.1.6)

Démonstration. On utilisera l’inégalité de Jensen :∣∣∣∣∣ 1

b− a

ˆ b

a

u(t)dt

∣∣∣∣∣
2

≤ 1

b− a

ˆ b

a

u2(t)dt ∀u ∈ C([a, b]). (7.1.7)

Soit L tel que Ω ⊂ (−L,L)3 et u ∈ C1
c (Ω) prolongée par 0 sur (−L,L)3 \ Ω.

ˆ
Ω

|u|2dH3 =

ˆ
(−L,L)3

|u|2dH3

=

ˆ
(−L,L)3

∣∣∣∣ˆ x1

−L
u,1(t, x2, x3)dt

∣∣∣∣2 dH3

=

ˆ
(−L,L)3

Çˆ L

−L
|u,1(t, x2, x3)|dt

å2

dH3

=

ˆ
(−L,L)3

4L2

Ç
1

2L

ˆ L

−L
|u,1(t, x2, x3)|dt

å2

dH3

≤
ˆ

(−L,L)3
2L

ˆ L

−L
|u,1(t, x2, x3)|2 dtdx1dx2dx3 (d’après (7.1.7))

= 4L2

ˆ
(−L,L)2

ˆ L

−L
|u,1(t, x2, x3)|2 dtdx2dx3 (en intégrant par rapport à x1)

= 4L2

ˆ
(−L,L)3

|u,1|2 dH3

≤ 4L2

ˆ
Ω

|∇∇∇u|2dH3 ∀u ∈ H1
0 (Ω).
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Lemme 7.1.2 (Inégalité de Korn.).

ˆ
R3

|∇∇∇uuu|2dH3 ≤ 2

ˆ
R3

|εεε(uuu)|2dH3 ∀u ∈ C1
c (R3;R3), (7.1.8)

ˆ
Ω

|∇∇∇uuu|2dH3 ≤ 2

ˆ
Ω

|εεε(uuu)|2dH3 ∀u ∈ H1
0 (Ω;R3). (7.1.9)

Démonstration.
ˆ
R3

|εεε(uuu)|2dH3 =

ˆ
R3

1

2
(ui,j + uj,i)

1

2
(ui,j + uj,i)dH3 =

ˆ
R3

1

2
ui,jui,j +

1

2
ui,juj,idH3

=

ˆ
R3

1

2
|∇∇∇uuu|2 − 1

2
ui,jiujdH3 =

ˆ
R3

1

2
|∇∇∇uuu|2 +

1

2
ui,iuj,jdH3

=

ˆ
R3

1

2
|∇∇∇uuu|2 +

1

2
(div uuu)2dH3 ≥

ˆ
R3

1

2
|∇∇∇uuu|2dH3.

Théorème 7.1.1 (théorème de Lax-Milgram). Soit H un espace de Hilbert et a : (u, v) ∈ H × H une
forme bilinéaire continue coercive sur H, c’est à dire vérifiant

a(λu+ µv,w) = λa(u,w) + µa(v, w)

a(w, λu+ µv) = λa(w, u) + µa(w, u)

´
∀u, v, w ∈ H, ∀λ, µ ∈ R bilinéarité

∃C > 0, |a(u, v)| ≤ C|u|H |v|H ∀u, v ∈ H continuité

∃c > 0, |a(u, u)| ≥ c|u|2H coercivité.

(7.1.10)

Soit L : H → R une forme linéaire continue sur H, c’est à dire vérifiant

L(λu+ µv) = λL(u) + µL(v) linéarité

∃C > 0, |L(u)| ≤ C|u|H ∀u ∈ H continuité.
(7.1.11)

Alors il existe u ∈ H unique tel que

a(u, v) = L(v) ∀v ∈ H. (7.1.12)

De plus, si a est symétrique, c’est à dire si

a(u, v) = a(v, u) ∀u, v ∈ H. (7.1.13)

alors u est caractérisé par la propriété

u ∈ H et
1

2
a(u, u)− L(u) = min

v∈H

ß
1

2
a(v, v)− L(v)

™
. (7.1.14)

Pour la preuve, voir [2][p. 84].

7.1.2 Application au problème (7.1.1) (voir aussi [2][paragraphe IX.5])

Si uuu est solution de (7.1.1), on a

uuu ∈ H1
0 (Ω;R3),ˆ

Ω

−divσσσ(uuu) · vvvdH3 =

ˆ
Ω

ρρρfff · vvvdH3 ∀vvv ∈ H1
0 (Ω;R3).
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Or, d’après la formule de Stokes, (en utilisant la convention de sommation des indices répétés)
ˆ

Ω

−divσσσ(uuu) · vvvdH3 =

ˆ
Ω

−σij,j(uuu)vidH3

=

ˆ
Ω

−(σij(uuu)vi),j + σij(uuu)vi,jdH3

=

ˆ
∂Ω

−σij(uuu)vinjdH2 +

ˆ
Ω

σij(uuu)vi,jdH3

=

ˆ
∂Ω

−(σσσ(uuu)nnn) · vvvdH2 +

ˆ
Ω

σσσ(uuu) :∇∇∇vvvdH3

=

ˆ
Ω

σσσ(uuu) :∇∇∇vvvdH3 car vvvbΩ = 0

=

ˆ
Ω

σσσ(uuu) : εεε(vvv)dH3 car σσσt = σσσ

=

ˆ
Ω

aaaεεε(uuu) : εεε(vvv)dH3 d’après (7.1.1),

(7.1.15)

donc
uuu ∈ H1

0 (Ω;R3),ˆ
Ω

aaaεεε(uuu) : εεε(vvv)dH3 =

ˆ
Ω

ρfff · vvv ∀vvv ∈ H1
0 (Ω;R3).

(7.1.16)

Donc uuu vérifie (7.1.12) avec

H = H1
0 (Ω;R3), a(uuu,vvv) =

ˆ
Ω

aaaεεε(uuu) : εεε(vvv)dH3, L(vvv) =

ˆ
Ω

ρfff · vvv.

Vérifions que les hypothèses du théorème de Lax-Milgram (théorème (7.1.1)) sont satisfaites. Les deux
premières ligne de (7.1.10) sont faciles à vérifier. D’après (7.1.2) et l’inégalité de Cauchy-Schwarz

a(uuu,vvv) =

ˆ
Ω

aaaεεε(uuu) : εεε(vvv)dH3 ≤ C
ˆ

Ω

|εεε(uuu)||εεε(uuu)|dH3

≤ C
 ˆ

Ω

|∇∇∇uuu|2dH3

 ˆ
Ω

|∇∇∇vvv|2dH3 ≤ C||uuu||H1
0 (Ω;R3)||vvv||H1

0 (Ω;R3),

donc la troisième ligne de (7.1.10) est vérifiée. D’après (7.1.2), (7.1.9), et (7.1.6),

a(uuu,uuu) =

ˆ
Ω

aaaεεε(uuu) : εεε(uuu)dH3 ≥ C
ˆ

Ω

|εεε(uuu)|2dH3 ≥ C
ˆ

Ω

|∇∇∇(uuu)|2dH3 ≥ C
ˆ

Ω

|uuu|2dH3

où la constante C > 0 peut varier d’une inégalité à l’autre. Donc la quatrième ligne de (7.1.10) est vérifiée.
D’après l’inégalité de Cauchy-Schwarz, (7.1.11) est vérifiée. D’après le théorème 7.1.1, le problème (7.1.16)
admet une solution unique uuu, caractérisée, puisque a(., .) est symétrique, par

uuu ∈ H1
0 (Ω;R3), et

1

2

ˆ
Ω

aaaεεε(uuu) : εεε(uuu)dH3 −
ˆ

Ω

ρfff · uuudH3 = min
vvv∈H1

0 (Ω;R3)

ß
1

2

ˆ
Ω

aaaεεε(vvv) : εεε(vvv)dH3 −
ˆ

Ω

ρfff · vvv
™
.

Inversement, si uuu est solution de (7.1.16), d’après (7.1.15)
ˆ

Ω

−divσσσ(uuu) · vvvdH3 =

ˆ
Ω

ρfff · vvvdH3, ∀ vvv ∈ H1
0 (Ω;R3), (au sens des distributions)

donc −divσσσ(uuu) = ρfff dans Ω au sens des distributions et uuu est solution de (7.1.1) au sens des distributions.
On peut montrer (voir [2][Chapitre IX]) que si ρfff et les coefficients aijkl sont assez régulières, par exemple
de classe C∞ et si le bord ∂Ω à une forme régulière, alors cette solution uuu est de classe C2, et est une
solution au sens ”classique” de (7.1.1).
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7.2 Exemple 2 : Problème d’équilibre avec condition aux limites
de Dirichlet inhomogènes.

Nous cherchons un champ de déplacement uuu : Ω → R3 satisfaisant le problème d’équilibre déduit de
(7.1.1) en remplaçant la condition au bord uuu = 0 sur ∂Ω par la condition au bord (dite ”condition aux
limites de Dirichlet non homogène”) uuu = ggg sur ∂Ω, où ggg ∈ C∞(R3;R3), c’est à dire :

− divσσσ(uuu) = ρfff dans Ω,

σij(uuu) = aijkhεkh(uuu), (noté σσσ = aaaεεε(uuu))

εεε(uuu) =
1

2
(∇∇∇uuu+∇∇∇tuuu),

uuu = ggg sur ∂Ω.

(7.2.1)

Elle est donnée par

uuu = uuu0 + ggg,

où uuu0 est la solution déduite de (7.1.1) en remplaçant ρfff par ρfff − divσσσ(ggg).

7.3 Exemple 3 : Problème d’équilibre avec condition aux limites
mixtes de Dirichlet homogènes et de Neumann homogènes.

Nous cherchons un champ de déplacement uuu : Ω → R3 satisfaisant le problème d’équilibre déduit de
(7.1.1) en remplaçant la condition au bord uuu = 0 sur ∂Ω par les conditions au bord mixtes uuu = 0 sur Γ0

(Dirichlet homogène), et σσσ(uuu) ·nnn = 0 sur Γ1 (Neumann homogène), où ∂Ω est la réunion disjointe de Γ0

et Γ1, et H2(Γ0) > 0, c’est à dire :

− divσσσ(uuu) = ρfff dans Ω,

σij(uuu) = aijkhεkh(uuu), (noté σσσ = aaaεεε(uuu))

εεε(uuu) =
1

2
(∇∇∇uuu+∇∇∇tuuu),

uuu = 0 sur Γ0,

σσσ(uuu) ·nnn = 0 sur Γ1.

(7.3.1)

Si uuu est solution de (7.3.1), on a

uuu ∈ H̃1
0 (Ω;R3) :=

{
uuu ∈ H1(Ω;R3), uuubΩ = 0 sur Γ0

}
,ˆ

Ω

−divσσσ(uuu) · vvvdH3 =

ˆ
Ω

ρρρfff · vvvdH3 ∀vvv ∈ H̃1
0 (Ω;R3).

Or, d’après la formule de Stokes, ∀vvv ∈ H̃1
0 (Ω;R3), (en utilisant la convention de sommation des indices

répétés)

ˆ
Ω

−divσσσ(uuu) · vvvdH3 =

ˆ
Ω

−σij,j(uuu)vidH3

=

ˆ
Ω

−(σij(uuu)vi),j + σij(uuu)vi,jdH3

=

ˆ
∂Ω

−σij(uuu)vinjdH2 +

ˆ
Ω

σij(uuu)vi,jdH3

=

ˆ
∂Ω

−(σσσ(uuu)nnn) · vvvdH2 +

ˆ
Ω

σσσ(uuu) :∇∇∇vvvdH3

=

ˆ
Ω

aaaεεε(uuu) : εεε(vvv)dH3 car vvv = 0 sur Γ0 et σσσ(uuu)nnn = 0 sur Γ1,

(7.3.2)
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donc
uuu ∈ H̃1

0 (Ω;R3),ˆ
Ω

aaaεεε(uuu) : εεε(vvv)dH3 =

ˆ
Ω

ρfff · vvv ∀vvv ∈ H̃1
0 (Ω;R3).

(7.3.3)

Donc uuu vérifie (7.1.12) avec

H = H̃1
0 (Ω;R3), a(uuu,vvv) =

ˆ
Ω

aaaεεε(uuu) : εεε(vvv)dH3, L(vvv) =

ˆ
Ω

ρfff · vvv.

On peut montrer que les inégalités de Korn et de Poincaré sont aussi vérifiées dans H̃1
0 (Ω;R3). En

répétant le raisonnement de la section (7.1.2), on déduit que le problème (7.3.3) admet une solution
unique uuu, caractérisée, puisque a(., .) est symétrique, par

uuu ∈ H̃1
0 (Ω;R3), et

1

2

ˆ
Ω

aaaεεε(uuu) : εεε(uuu)dH3 −
ˆ

Ω

ρfff · uuudH3 = min
vvv∈H̃1

0 (Ω;R3)

ß
1

2

ˆ
Ω

aaaεεε(vvv) : εεε(vvv)dH3 −
ˆ

Ω

ρfff · vvv
™
.

Inversement, si uuu est solution de (7.3.3), d’après (7.3.2)

ˆ
Ω

−divσσσ(uuu) · vvvdH3 =

ˆ
Ω

ρfff · vvvdH3, ∀ vvv ∈ H̃1
0 (Ω;R3),

donc −divσσσ(uuu) = ρfff dans Ω et uuu est solution de (7.3.1).
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Chapitre 8

Problèmes d’élasticité linéaire

8.1 Problème 1 : compression uniforme

8.1.1 Enoncé du problème et mise en équation

Soit un corps élastique, homogène, isotrope, qui occupe une région Ω. On suppose que ce corps
élastique est plongé dans un gaz à pression constante p. On néglige les forces volumiques (pesanteur). On
suppose que ce corps est en équilibre. On se place dans le cadre de l’élasticité linéaire.

Figure 8.1 –

1. Quelle est la loi de comportement satisfaite par ce corps élastique ?

2. Ecrire les équations d’équilibre, les conditions aux limites.

8.1.2 Solution du problème et conséquences

1. Montrer que la matrice constante σσσ = −pIII vérifie les équations aux limites et les conditions aux
limites.

2. Exprimer le tenseur d’élasticité linéarisé en fonction du tenseur des contraintes σσσ = −pIII.

Réponse : εεε = − p
3λ+2µIII.

3. Montrer que le champ de déplacements uuu défini par ui = −p
3λ+2µxi est associé au tenseur d’élasticité

linéarisé obtenu dans la question précédente.

4. On note Vt = H3(Ω(t)). Montrer que

Vt − V0 =

ˆ
Ω(0)

detFFF − 1dH3. (8.1.1)
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Indication : utiliser la formule de changement de variables (2.4.5) avec k = 1. On rappelle que le
volume d’un ensemble Ω est donné par H3(Ω) =

´
Ω
dH3.

5. En déduire que dans l’hypothèse des petites perturbations,

Vt − V0

V0
' 1

V0

ˆ
Ω(0)

div uuudH3. (8.1.2)

6. Calculer V−V0

V0
.

Réponse : V−V0

V0
= −3p

3λ+2µ = −p
K , où K := 3λ+2µ

3 est appelé le module de rigidité à la compression.

Remarque 8.1.1. L’expérience (et le bon sens) fait apparâıtre que l’application d’une pression (positive)
ne peut entrâıner qu’une diminution de volume, ce qui impose

3K = 3λ+ 2µ > 0. (8.1.3)

8.2 Problème 2 : traction simple

8.2.1 Enoncé du problème

Soit une poutre cylindrique de longueur L, constituée d’un matériau élastique, homogène, isotrope, et
limitée par deux sections droites Γ0 et Γ1. On se place dans le cadre de l’élasticité linéaire. On rapporte
la poutre à un système de coordonnées orthonormées tel que Γ0 soit dans le plan (0, x2, x3) et Γ1 dans le
plan d’équation x1 = L (voir figure).

La poutre est soumise à des forces de traction ~F sur Γ1 et −~F sur Γ0, parallèles à l’axe du cylindre
(O,eee1). On suppose que ces forces sont uniformément réparties sur les bases, de sorte que la base Γ1 est
soumise à une densité de forces (F, 0, 0) et Γ0 à une densité de forces (−F, 0, 0), avec

(F, 0, 0) =
~F

S
,

où S est l’aire de la section droite. La surface latérale Γl n’est soumise à aucune forces et les forces
volumiques sont nulles.

Figure 8.2 –

8.2.2 Mise en équations

1. Ecrire les équations d’équilibre, la loi de comportement, et les équations traduisant les conditions
aux limites.
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2. Montrer les équations traduisant les conditions aux limites peuvent se simplifier en
σi2n2 + σi3n3 = 0, i = 1, 2, 3 sur Γl,

σ11 = F, σ21 = σ31 = 0 sur Γ0,

σ11 = F, σ21 = σ31 = 0 sur Γ1,

(8.2.1)

8.2.3 Résolution

1. Vérifier que le champ des contraintes constant défini par

σ11 = F, σ22 = σ33 = σ23 = σ13 = σ12 = 0, (8.2.2)

satisfait les équations d’équilibre et les conditions aux limites (8.2.1).

2. Déterminer le tenseur des déformations linéarisé εεε(uuu) en fonction de σσσ donné par (8.2.1) et des
coefficients de Lamé.

Réponse :

ε11 =
λ+ µ

µ(3λ+ 2µ)
F, ε22 = ε33 = − λ

2µ(3λ+ 2µ)
F,

et les trois autres composantes sont nulles.

3. Vérifier que le champ de déplacements

u1 = ε11x1, u2 = ε22x2, u3 = ε33x3,

est un champ de déplacements solution.

8.2.4 Analyse de la solution obtenue. Module de Young.

1. L’allongement ∆L de la barre est donné par le déplacement du point (L, 0, 0). Montrer que

∆L

L
=
F

E
, E :=

µ(3λ+ 2µ)

(λ+ µ)
. (8.2.3)

Le coefficient E défini ci-dessus est appelé le module d’Young. C’est un module de rigidité à
l’allongement. L’allongement est d’autant plus petit que E est grand. L’expérience (et le bon sens)
montre que le module de Young est toujours positif, i.e.

E =
µ(3λ+ 2µ)

(λ+ µ)
> 0. (8.2.4)

Figure 8.3 –
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8.2.5 Coefficient de Poisson.

En même temps que la poutre s’allonge, ses dimensions transversales diminuent car

u2 = − λ

2µ(3λ+ 2µ)
Fx2, u3 = − λ

2µ(3λ+ 2µ)
Fx3.

On appelle coefficient de Poisson le nombre ν défini par

ν :=
λ

2(λ+ µ)
. (8.2.5)

1. Soit l le diamètre de la poutre avant déformation et soit l + ∆l son diamètre après déformation
(voir figure 8.3). Montrer que

∆l

l
= −ν∆L

L
.

2. L’expérience (et le bon sens) montre que le coefficient de Poisson est toujours positif, i.e.

ν =
λ

2(λ+ µ)
> 0. (8.2.6)

Montrer, en utilisant (8.1.3), (8.2.4), et (8.2.6), que

λ > 0, µ > 0, 0 < ν <
1

2
.

3. Les relations (8.2.3) et (8.2.5) peuvent s’inverser. Montrer que

λ =
νE

(1− 2ν)(1 + ν)
, µ =

E

2(1 + ν)
. (8.2.7)

4. Montrer que la loi de Hooke entraine la relation suivante :

εεε =
1

2µ

ï
σσσ − λ

3λ+ 2µ
trσσσIII

ò
.

Indication : la loi de Hooke est une égalité de deux matrices. Ecrire l’égalité des traces de ces deux
matrices.

5. En déduire que

εεε =
1 + ν

E
σσσ − ν

E
trσσσIII. (8.2.8)

8.3 Problème 3 : cisaillement simple

Dans le cadre de l’élasticité linéaire, on étudie l’équilibre d’un corps élastique homogène isotrope de
forme parallélépipédique, qui occupe la région Ω définie dans un repère orthonormé 0x1x2x3 par

Ω = {xxx| 0 < x1 < a, 0 < x2 < b, 0 < x3 < c} ,

où a, b, c sont des longueurs données. (Dans la figure ci-dessous, il faut faire la correction suivante : l’axe
vertical est x3, la coordonnée b sur cet axe doit être remplacée par c).
On suppose que le déplacement est donné par (un tel déplacement est dit ”de cisaillement ” dans le plan
x1, x3)

u1 = kx3, u2 = u3 = 0. (8.3.1)

On se propose de calculer les densités de forces qui provoquent ce champ de déplacement.
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Figure 8.4 –

8.3.1 Loi de comportement

Quelle est la loi de comportement satisfaite par ce corps élastique ?

8.3.2 Equations d’équilibre

Ecrire les équations d’équilibre.

8.3.3 Tenseur des déformations linéarisé

Calculer le tenseur des déformations linéarisé εεε(uuu) associé au déplacement uuu défini par (8.3.1).

8.3.4 Tenseur des contraintes

Calculer le tenseur des contraintes σσσ associé au tenseur des déformations linéarisé εεε(uuu).

8.3.5 Forces volumiques

A l’aide des équations d’équilibre et de l’expression de σσσ, calculer les forces volumiques ρ~f .

8.3.6 Forces surfaciques

Calculer les forces surfaciques ~F = σσσnnn sur chacune 6 faces du parallélépipède, d’équations respectives
x1 = 0, x1 = a, x2 = 0, x2 = b, x3 = 0, x3 = c.

Réponses : 

~f = 0,

~F = (kµ, 0, 0) sur la face x3 = c,

~F = (−kµ, 0, 0) sur la face x3 = 0,

~F = (0, 0, kµ) sur la face x1 = a,

~F = (0, 0,−kµ) sur la face x1 = 0,

~F = ~0 sur les faces x2 = 0 et x2 = b.
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Chapitre 9

Equations de Navier, conditions de
compatibilités, équations de
Beltrami

9.1 Equations de Navier

On considère un matériau élastique linéaire homogène isotrope à l’équilibre, occupant un domaine
Ω, et soumis à des forces extérieures volumiques ρfff . Les coefficients de Lamé sont notés λ et µ. Le
déplacement uuu est solution du problème

− divσσσ = ρ~f dans Ω, (équations d’équilibre)

σσσ = λ tr(εεε(uuu))III + 2µεεε(uuu), (loi de comportement de Hooke)

εεε(uuu) =
1

2
(∇∇∇uuu+∇∇∇tuuu), (tenseur des déformations linéarisées)

uuu = ggg sur Γ0 ⊂ ∂Ω (conditions aux limites de Dirichlet)

σσσnnn = ~F sur Γ1 = ∂Ω \ Γ0 (conditions aux limites de Neuman).

(9.1.1)

Théorème 9.1.1. Le problème (9.1.1) est équivalent au problème suivant :
(λ+ µ)∇∇∇(div uuu) + µ∆∆∆uuu+ ρfff = 0 équations de Navier

uuu = ggg sur Γ0 ⊂ ∂Ω,

(λ tr(εεε(uuu))III + 2µεεε(uuu))nnn = ~F sur Γ1 = ∂Ω \ Γ0.

(9.1.2)

Les équations

(λ+ µ)∇∇∇(div uuu) + µ∆∆∆uuu+ ρfff = 0. (9.1.3)

sont appelées les équations de Navier. Equivalentes aux équations d’équilibre, elles les expriment en
fonction du déplacement uuu. Les équations de Navier sont équivalentes à

(λ+ 2µ)∇∇∇(div uuu)− µrot (rotuuu) + ρfff = 0. (9.1.4)

Cette version des équations de Navier est intéressante lorsque rotuuu = 0.

Démonstration. (Sous forme d’exercice)

1. On note III la matrice identité 3× 3. Montrer en utilisant le calcul indiciel que

div(tr(εεε(uuu))III) =∇∇∇(div uuu). (9.1.5)
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2. Montrer par calcul indiciel que

div(εεε(uuu)) =
1

2
(∆∆∆uuu+∇∇∇(div uuu)) . (9.1.6)

3. Déduire de (9.1.5), (9.1.6) et de la loi de Hooke, que le tenseur des contraintes σσσ(uuu) vérifie

div(σσσ(uuu)) = (λ+ µ)∇∇∇(div uuu) + µ∆∆∆uuu. (9.1.7)

4. Déduire de (9.1.7) et des équations d’équilibre que le champ des déplacement uuu vérifie à l’équilibre
les équations de Navier (9.1.3)

5. On rappelle que (cf. (1.5.6))

rot (rotuuu) =∇∇∇(div uuu)−∆∆∆uuu.

Montrer que les équations de Navier sont équivalentes à

(λ+ 2µ)∇∇∇(div uuu)− µrot (rotuuu) + ρfff = 0.

9.2 Equations de compatibilités

Dans ce qui suit, pour faciliter la lecture de la démonstration, le tenseur des déformations linéarisées
est noté eee (au lieu de εεε).

Pour résoudre (9.1.1), on peut chercher directement une solution σσσ de −divσσσ = ρfff . Il faut ensuite
déterminer s’il existe uuu tel que σσσ = λ tr(eee(uuu))III + 2µeee(uuu). Compte tenu de l’équation eee = 1+ν

E σσσ − ν
E trσσσIII

(voir (8.2.8)), cela revient à déterminer les conditions sur eee garantissant l’existence de uuu tel que eee =
1
2 (∇∇∇uuu+∇∇∇tuuu). Ces conditions s’appellent les équations de compatibilités. Elles sont analogues aux condi-
tions sur aaa garantissant l’existence de f telle que ∇∇∇f = aaa déterminées par le Théorème 1.5.10 (Lemme
de Poincaré) qui établit l’équivalence

[aaa ∈ C1(Ω,R3), rotaaa = 0] ⇐⇒ [∃f ∈ C2(Ω), aaa =∇∇∇f ]. (9.2.1)

Elles sont énoncées dans le théorème suivant, dont la preuve repose sur le lemme de Poincaré :

Théorème 9.2.1 (Equations de compatibilités). Soit Ω un ouvert convexe de R3. On a l’équivalence

[eee ∈ C2(Ω,S3), εipqεjrsepr,qs = 0 ∀i, j = 1, 2, 3] (9.2.2)

⇐⇒

[∃uuu ∈ C3(ΩΩΩ;R3), eee =
1

2

(
∇∇∇uuu+∇∇∇tuuu

)
].
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Preuve

1. ⇐ : exercice.

2. ⇒ : supposons
εipqεjrsepr,qs = 0 ∀i, j = 1, 2, 3. (9.2.3)

Notre but est de trouver uuu tel que

eij =
1

2
(ui,j + uj,i), (9.2.4)

pour tout (i, j). Fixons p ∈ {1, 2, 3}, multiplions (9.2.4) par εpjk, dérivons par rapport à xk et
sommons par rapport à j et k. On obtient

εpjkeij,k =
1

2
(εpjkui,jk + εpjkuj,ik)

=
1

2
(εpjkuj,ik)

=

Å
1

2
(εpjkuj,k)

ã
,i

,

(9.2.5)

Donc s’il existe uuu vérifiant (9.2.4), alors nécessairement

∇∇∇
Å

1

2
(εpjkuj,k)

ã
= aaap, (9.2.6)

où
aaap = εpjkeij,keeei. (9.2.7)

D’après (9.2.6), pour que uuu existe, il est nécessaire que aaap soit un gradient pour tout p. D’après le
Lemme de Poincaré (voir (1.5.10)), pour que aaap soit un gradient, il est nécessaire et suffisant que
rotaaap = 0. Calculons

rotaaap = (rotaaap)seees

= εsqia
p
i,qeees d’après (9.2.7)

= εsqiεpjkeij,kqeees

= −εsiqεpjkeij,qkeees = 0 d’après (9.2.3).

Le lemme de Poincaré nous dit alors que (voir (1.5.10))

∃ωp ∈ C2(Ω), ∇∇∇ωp = aaap. (9.2.8)

L’équation (9.2.6) nous suggère, compte tenu de (9.2.8), de rechercher un champ uuu vérifiant

ωp =
1

2
εpjkuj,k ∀p ∈ {1, 2, 3}. (9.2.9)

Si un tel champ uuu existe, alors pour tout (r, s),

εprsωp =
1

2
εprsεpjkuj,k

=
1

2
(δrjδsk − δrkδsj)uj,k

=
1

2
(ur,s − us,r),

donc si uuu existe,

ur,s =
1

2
(ur,s + us,r) +

1

2
(ur,s − us,r) = ers + εprsωp,

ce qui équivaux à
∇∇∇ur = bbbr, où bbbr = (ers + εprsωp)eees. (9.2.10)
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Toujours d’après le Lemme de Poincaré (voir (1.5.10)), une fonction ur vérifiant ∇∇∇ur = bbbr existe si
et seulement si existe si et seulement si rotbbbr = ~0. Or on a

(rotbbbr)v = εvisb
r
s,i

= εvis (ers + εprsωp),i d’après (9.2.10)

= εvisers,i + εvisεprsωp,i

= εvisers,i + εvisεprsa
p
i car ∇∇∇ωp = aaap, voir (9.2.8)

= εvisers,i + (δvpδir − δvrδip)api
= εvisers,i + avr − δrvaii
= εvisers,i + εvjkerj,k − δrvεijkeij,k car aaap = εpjkeij,keeei

= εvisers,i + εvjkerj,k car εijkeij,k = 0 puisque eij = eji,

= εvisers,i + εviseri,s changement d’indice,

= εvis (ers,i + eri,s)

= 0 car Mr
is = ers,i + eri,s vérifie Mr

is = Mr
si,

soit
rotbbbr = 0.

Donc, d’après le Lemme de Poincaré, pour tout r ∈ {1, 2, 3}, il existe ur satisfaisant

∇∇∇ur = bbbr. (9.2.11)

La preuve de l’implication ⇒ est terminée si nous montrons que 1
2 (∇∇∇uuu+∇∇∇tuuu) = eee. Calculons :

ur,s + us,r = brs + bsr d’après (9.2.11)

= ers + εprsωp + esr + εpsrωp d’après (9.2.10)

= ers + esr car εprs + εpsr = 0

= 2ers car ers = esr

Le théorème 9.2.1 est démontré.

Remarque 9.2.1. La démonstration précédente présente une méthode systématique de construction
d’un champ de déplacement uuu à partir d’un champ de déformation eee : partant de aaap défini par (9.2.7), on
détermine ωp vérifiant (9.2.8) et on définit bbbr par (9.2.10). Le champ des déplacements est alors obtenu
en résolvant (9.2.11).

9.2.1 Trois formulations équivalentes des équations de compatibilités

Voici trois variantes équivalentes des équations de compatibilités :

1. Les différents choix de (i, j) choix de (i, j) dans l’équation (9.2.3) conduisent à l’équivalence sui-
vante :

εipqεjrsepr,qs = 0 ∀i, j = 1, 2, 3

⇐⇒

(i, j) = (1, 1) : e22,33 + e33,22 = 2e23,32,

(i, j) = (2, 2) : e11,33 + e33,11 = 2e13,31,

(i, j) = (3, 3) : e22,11 + e11,22 = 2e21,12,

(i, j) = (1, 2) : e12,33 + e33,12 = e13,23 + e23,13,

(i, j) = (2, 3) : e23,11 + e11,23 = e21,31 + e31,21,

(i, j) = (1, 3) : e13,22 + e22,13 = e12,32 + e32,12.

(9.2.12)
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2. On a
εipqεjrsepr,qs = 0 ∀i, j = 1, 2, 3

⇐⇒

eij,kl + ekl,ij = eil,jk + ejk,il ∀i, j, k, l ∈ {1, 2, 3}. (9.2.13)

En effet, si εipqεjrsepr,qs = 0 ∀i, j = 1, 2, 3, d’après le théorème 9.2.1 il existe uuu tel que eee =
1
2 (∇∇∇uuu + ∇∇∇tuuu)). En substituant eee = 1

2 (∇∇∇uuu + ∇∇∇tuuu)) on vérifie que eij,kl + ekl,ij = eil,jk + ejk,il.
Inversement, si eij,kl + ekl,ij = eil,jk + ejk,il, différents choix de (i, j, k, l) conduisent à (9.2.12) qui
équivaux, comme on l’a vu, à εipqεjrsepr,qs = 0 ∀i, j = 1, 2, 3.

3. On a (en utilisant la convention de sommation des indices répétés) :

εipqεjrsepr,qs = 0 ∀i, j = 1, 2, 3 (9.2.14)

⇐⇒

eij,kk + ekk,ij = eik,jk + ejk,ik ∀i, j = 1, 2, 3. (9.2.15)

L’implication =⇒ s’obtient en choisissant k = l dans (9.2.13) et en sommant par rapport à k.
L’implication ⇐= s’obtient en testant les différents choix de (i, j) : on montre (9.2.15) =⇒ (9.2.12)
qui entraine (9.2.14) d’après la variante 1. Plus précisément, en choisissant (i, j) = (1, 2) dans
(9.2.15), on obtient

e12,11 + e11,12 + e12,22 + e22,12 + e12,33 + e33,12 = e11,21 + e21,11 + e12,22 + e22,12 + e13,23 + e23,13,

qui se simplifie en
e12,33 + e33,12 = e13,23 + e23,13.

Par permutation circulaire des indices, on obtient les trois dernière lignes de (9.2.12).

Ensuite, en choisissant (i, j) = (1, 1) dans (9.2.15), on obtient

e11,11 + e11,11 + e11,22 + e22,11 + e11,33 + e33,11 = e11,11 + e11,11 + e12,12 + e12,12 + e13,13 + e13,13,

qui se simplifie en

e11,22 + e22,11 + e11,33 + e33,11 = e12,12 + e12,12 + e13,13 + e13,13, (9.2.16)

Par permutation circulaire on déduit, pour (i, j) = (2, 2),

e22,33 + e33,22 + e22,11 + e11,22 = e23,23 + e23,23 + e21,21 + e21,21, (9.2.17)

et pour (i, j) = (3, 3),

e33,11 + e11,33 + e33,22 + e22,33 = e31,31 + e31,31 + e32,32 + e32,32. (9.2.18)

(9.2.16) moins (9.2.17) donne

e11,33 + e33,11 − (e22,33 + e33,22) = e13,13 + e13,13 − (e23,23 + e23,23), (9.2.19)

et (9.2.18) moins (9.2.19) fournit

2(e33,22 + e22,33) = 2(e32,32 + e32,32),

qui équivaut à la première ligne de (9.2.12). Les seconde et troisième lignes de (9.2.12) s’obtiennent
ensuite par permutation circulaire.
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9.3 Equations de Beltrami

Théorème 9.3.1. Soit Ω un ouvert convexe de R3, soit σσσ ∈ C2(Ω;S3) tel que −divσσσ = fff dans Ω, et
soit eee = 1+ν

E σσσ − ν
E trσσσIII. On a l’équivalenceï
∃uuu ∈ C3(Ω;R3), eee(uuu) =

1

2
(∇∇∇uuu+∇∇∇tuuu),

ò
⇐⇒

[(1 + ν)∆σij + σkk,ij + (1 + ν)

Å
fi,j + fj,i +

ν

1− ν
fl,lδij

ã
= 0 ∀i, j = 1, 2, 3]︸ ︷︷ ︸

équations de Beltrami

⇐⇒

(1 + ν)∆σσσ +∇∇∇(∇∇∇(trσσσ)) + (1 + ν)

Å
∇∇∇fff + (∇∇∇fff)t +

ν

1− ν
(div fff)III

ã
= 0

(9.3.1)

Démonstration.
Preuve de l’implication =⇒. D’après le théorème 9.2.1 et l’équivalence (9.2.15), l’existence de uuu tel
que eee(uuu) = 1

2 (∇∇∇uuu+∇∇∇tuuu) équivaux aux équations de compatibilité eij,kk+ekk,ij−eik,jk−ejk,ik = 0 (i, j ∈
{1, 2, 3}). En reportant dans la loi de Hooke inversée eee = 1+ν

E σσσ − ν
E trσσσIII (voir (8.2.8)) dans (9.2.15), on

déduit que les équations de compatibilités sont équivalentes à

eij,kk + ekk,ij − eik,jk − ejk,ik =

Å
1 + ν

E
σσσ − ν

E
(trσσσ)III

ã
ij,kk

+

Å
1 + ν

E
σσσ − ν

E
(trσσσ)III

ã
kk,ij

−
Å

1 + ν

E
σσσ − ν

E
(trσσσ)III

ã
ik,jk

−
Å

1 + ν

E
σσσ − ν

E
(trσσσ)III

ã
jk,ik

= 0,

soitÅ
1 + ν

E
σij,kk −

ν

E
(trσσσ),kkδij

ã
+

Å
1 + ν

E
(trσσσ),ij − 3

ν

E
(trσσσ),ij

ã
−
Å

1 + ν

E
σik,jk −

ν

E
(trσσσ),jkδik

ã
−
Å

1 + ν

E
σjk,ik −

ν

E
(trσσσ),ikδjk

ã
= 0,

soitÅ
1 + ν

E
σij,kk −

ν

E
(trσσσ),kkδij

ã
+

Å
1− 2ν

E
(trσσσ),ij

ã
−
Å

1 + ν

E
(σik,k),j −

ν

E
(trσσσ),ji

ã
−
Å

1 + ν

E
(σjk,k),i −

ν

E
(trσσσ),ij

ã
= 0.

Les équations de compatibilités sont donc équivalentes à

1 + ν

E
σij,kk −

ν

E
(trσσσ),kkδij +

1

E
(trσσσ),ij −

1 + ν

E
(σik,k),j −

1 + ν

E
(σjk,k),i = 0. (9.3.2)

Or σij,kk = (∆∆∆σσσ)ij et (trσσσ),kk = ∆∆∆(trσσσ). De plus, σσσ vérifie −divσσσ = fff , donc (σik,k),j = −fi,j et
(σjk,k),i = −fj,i. En multipliant (9.3.2) par E, on déduit que

(9.3.2) ⇐⇒ (1 + ν)(∆∆∆σσσ)ij − ν∆(trσσσ)δij + (trσσσ),ij + (1 + ν) (fi,j + fj,i) = 0.
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C’est vrai pour tout i, j, donc

(1 + ν)∆∆∆σσσ − ν∆(trσσσ)III +∇∇∇∇∇∇(trσσσ) + (1 + ν)
(
∇∇∇fff +∇∇∇tfff

)
= 0. (9.3.3)

En prenant la trace de l’équation ci-dessus, notant que tr∆∆∆σσσ = ∆(trσσσ), tr(∇∇∇∇∇∇(trσσσ)) = ∆(trσσσ), tr∇∇∇fff =
tr∇∇∇tfff = div fff , on obtient

(1 + ν) tr∆∆∆σσσ︸ ︷︷ ︸
=∆(trσσσ)

−3ν∆(trσσσ) + tr∇∇∇∇∇∇(trσσσ)︸ ︷︷ ︸
=∆(trσσσ)

+(1 + ν)

Ö
tr∇∇∇fff︸ ︷︷ ︸
=div fff

+ tr∇∇∇tfff︸ ︷︷ ︸
=div fff

è
= 0.

soit
(1 + ν − 3ν + 1)∆(trσσσ) + 2(1 + ν)div fff = 0,

d’où

∆(trσσσ) = − (1 + ν)

(1− ν)
div fff. (9.3.4)

En reportant l’équation ci-dessus dans (9.3.3), on obtient

(1 + ν)∆∆∆σσσ +∇∇∇∇∇∇(trσσσ) + (1 + ν)

Å
∇∇∇fff +∇∇∇tfff +

ν

(1− ν)
(div fff)III

ã
= 0. (9.3.5)

L’implication =⇒ de (9.3.1) est démontrée.

Preuve de l’implication ⇐=. Inversement, en prenant la trace de (9.3.5) on obtient (9.3.4) par

laquelle on exprime divfff en fonction de σσσ. En reportant cette expression dans (9.3.5) on retrouve (9.3.3)
qui d’après ce qui précède équivaux aux équations de compatibilité (9.2.2).

Remarque 9.3.1. Dans le cas de forces volumiques constantes, les équations de Beltrami s’écrivent

(1 + ν)∆σij + σkk,ij , ∀i, j = 1, 2, 3,

ce qui équivaux à
(1 + ν)∆σσσ +∇∇∇(∇∇∇(trσσσ)) = 0.

L’équation ci-dessus est satisfaite par tout champ σσσ constant ou affine par rapport aux variables d’espace
xi. C’est la raison pour laquelle, dans les exemples simples de problèmes d’élasticité développés en sections
8.1 et 8.2, nous avons obtenu des champs de déplacements associés aux champs de contraintes présumés
solution.

9.4 Champ de déformations planes. Champ de contraintes planes

9.4.1 Champ de déformations planes

Si dans un corps élastique homogène isotrope de forme cylindrique de génératrices parallèles à Ox3,
le champ des déplacements est de la forme

u1 = u1(x1, x2), u2 = u2(x1, x2), u3 = 0,

le champ des déformations est donné par

ε11 = u1,1, ε22 = u2,2, ε33 = ε23 = ε13 = 0, ε12 =
1

2
(u1,2 + u2,1).

On dit qu’on a affaire à un champ de déformations planes, parallèlement au plan (x1, x2). Les seules
composantes non nulles du tenseur des déformations sont les composantes Eαβ où α, β ∈ {1, 2}. De plus,
ces composantes ne dépendent que de x1, x2, et non de x3.
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Le tenseur des contraintes associées est de la forme

σσσ = λ(treee) + 2µε =

Ñ
σ11 σ12 0
σ12 σ22 0
0 0 σ33

é
σαβ = λ(εγγ)δαβ + 2µεαβ ∀α, β ∈ {1, 2},

σ33 = λ(ε11 + ε22) =
λ

2(λ+ µ)
(σ11 + σ22)

(9.4.1)

où les composantes σαβ , α, β = 1, 2, ne dépendent que de x1 et x2 et sont données par

σαβ = λ(εγγ)δαβ + 2µεαβ ∀α, β ∈ {1, 2}, (9.4.2)

où nous convenons que les indices répétés grecs sont sommés de 1 à 2. Par ailleurs, comme ε33 = 0,

σ33 = λ(ε11 + ε22) =
λ

2(λ+ µ)
(σ11 + σ22)

Le champ des contraintes est donc, comme le champ des déformations, indépendant de x3. On ne pourra
donc être dans un cas de déformations planes que si l’ensemble du problème posé est indépendant de x3,
c’est à dire invariant par rapport à toute translation parallèle à Ox3.

Le problème à résoudre sera alors un problème bidimensionnel posé sur une section droite ω quelconque
de Ω. Les équations du problème seront

σαβ,β + fα = 0 dans Ω, (nécessairement f3 = 0), α ∈ {1, 2}, (9.4.3)

les équations de comportement (9.4.1), et les conditions aux limites sur la frontière ∂ω de l’ouvert bidi-
mensionnel. C’est ce qu’on appelle un problème d’élasticité bidimensionnelle (ou plane). La composante
σ33 sera calculée à postériori en utilisant la relation (9.4.1) (troisième ligne).

9.4.2 Champ de contraintes planes

C’est par définition un champ de contraintes σij qui ne dépend que de x1 et x2 et dont les composantes
σi3, i = 1, 2, 3 sont nulles. Si le corps élastique est isotrope, le champ des déformations associé εij est
relié au champ des contraintes par la loi de Hooke, soit

σαβ = λ(ε11 + ε22 + ε33)δαβ + 2µεαβ α, β = 1, 2,

0 = ε13 = ε23,

0 = λ(ε11 + ε22 + ε33) + 2µε33.

(9.4.4)

Il en résulte que ε33 s’exprime explicitement en fonction de ε11 et ε22 par

ε33 =
−λ

λ+ 2µ
(ε11 + ε22) (9.4.5)

On peut écrire les équations (9.4.4) en fonction des seules composantes εαβ par

σαβ = λ∗εγγδαβ + 2µεαβ (9.4.6)

où

λ∗ =
2λµ

λ+ 2µ
.

Il en résulte que les εαβ ne dépendent que de x1, x2 et, d’après (9.4.5), il en est de même pour ε33.
Il apparâıt alors qu’un problème de contraintes planes conduit aux mêmes équations d’équilibre (9.4.3)

et à la loi de comportement bidimensionnelle (9.4.6) qui est du même type que (9.4.1), λ étant remplacé
par λ∗. D’un point de vue mathématique, les problèmes de contraintes planes et de déformation plane
sont de même nature.
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9.4.3 Fonction d’Airy

Théorème 9.4.1. Soit un corps élastique isotrope dont la forme est un cylindre Ω = ω × (0, L), soumis
à un champ de contraintes planes σσσ(x1, x2) de classe C1 parallèlement au plan x1, x2. On suppose que
les forces volumiques sont nulles. Alors il existe une fonction χ ∈ C3(ω) telle que

σσσ =

Ñ
χ,22 −χ,12 0
−χ,12 χ,11 0

0 0 0

é
. (9.4.7)

La fonction χ est appelée la fonction d’Airy.

Avant de prouver le théorème, nous établissons une variante bidimensionnelle du théorème de Poincaré :

Lemme 9.4.1. Soit ω est un ouvert convexe de R2. On a l’équivalence

[hhh ∈ C1(ω,R2), h1,1 + h2,2 = 0] ⇐⇒ [∃f ∈ C2(ω), h2 = −f,1, h1 = f,2]. (9.4.8)

Démonstration. Posons aaa =

Ñ
−h2

h1

0

é
. On a rotaaa =

Ñ
0
0

a2,1 − a1,2

é
=

Ñ
0
0

h1,1 + h2,2

é
= ~0 donc, d’après

le théorème 1.5.10 (de Poincaré), il existe f tel que

aaa =

Ñ
f,1
f,2
f,3

é
=

Ñ
−h2

h1

0

é
.

On déduit
h2 = −f,1, h1 = f,2, f = f(x1, x2).

Et réciproquement.

Preuve du Théorème 9.4.1. Un champ de contraintes planes σσσ = {σαβ} dans un matériaux où les
forces volumiques sont nulles, doit satisfaire les deux équations d’équilibre suivantes dans ω :®

σ11,1 + σ12,2 = 0

σ21,1 + σ22,2 = 0.
(9.4.9)

D’après 1.5.16 appliqué à l’équation σ11,1 + σ12,2 = 0, il existe une fonction ϕ1(x1, x2) ∈ C1(ω) telle que

σ12 = −(ϕ1),1, σ11 = (ϕ1),2. (9.4.10)

Comme σσσ ∈ C3(ω;S3), on a ϕ1 ∈ C2(ω). De même, d’après 1.5.16 appliqué à l’équation σ21,1 +σ22,2 = 0,
il existe une fonction ϕ2(x1, x2) ∈ C2(ω) telle que

σ22 = −(ϕ2),1, σ21 = (ϕ2),2. (9.4.11)

La matrice σσσ étant symétrique, σ12 = σ21 donc −(ϕ1),1 = (ϕ2),2. On déduit

ϕ1,1 + ϕ2,2 = 0.

D’après le lemme 1.5.17 appliqué à l’équation ϕ1,1 + ϕ2,2 = 0, il existe une fonction χ(x1, x2) ∈ C1(ω)
telle que

ϕ2 = −χ,1, ϕ1 = χ,2. (9.4.12)

Comme ϕ1, ϕ2 ∈ C2(ω), on a χ ∈ C3(ω). Il résulte de (9.4.10), (9.4.11), (9.4.12) que

σ12 = −(ϕ1),1 = −χ,12, σ11 = (ϕ1),2 = χ,22.

σ22 = −(ϕ2),1 = χ,11, σ21 = (ϕ2),2 = −χ,12,

qui équivaux à (9.4.7).

93



94



Chapitre 10
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