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Chapitre 1

Préliminaires Mathématiques

1.1 Notations

1.1.1 Notations des scalaires, vecteurs et matrices.

Dans ce qui suit, les scalaires et les points de I’espace sont représentés par des symboles commencant
par des lettres minuscules (exemple z,i,det A...) et les vecteurs et les fonctions & valeurs vectorielles
par des symboles commencant par des lettres minuscules en caractéres gras (exemples : , 7, 1, u, f,
g, divo,...). Les matrices sont représentées par des symboles commengant par des lettres majuscules en
caractére gras avec les exceptions suivantes : Vu (gradient du déplacement), e(u) (tenseur d’élasticité
linéarisé), o (tenseur des contraintes). Le symbole I represente la matrice identité 3 x 3 :

1 00
I=(0 10
0 0 1

1.1.2 Composantes des vecteurs et matrices.

— On note (er,ez,e3) la base canonique de R? (elle est orthonormée).

— On note u; ou (u); les composantes d’un vecteur w dans la base canonique, c'est & dire u =
3 3
D1 i€ = Y i (u)ie;.
— On note u - v le produit scalaire de deux vecteurs u et v (u-v = S0 wiv; = S0 (w); (v);).

— On note A;; ou (A);; les composantes d’une matrice A : A;; est la composante se trouvant sur la
1¢¢ ligne et la ¢ colonne de A.

— On note AB le produit de deux matrices ((AB);; = S"3_, At Bi;j)-

— On note A:B le produit "scalaire” de deux matrices (A:B = Z?,jzl A;;Bij).

— 11 est pratique d’identifier un endomorphisme A de R® & la matrice (notée encore A) qui le
représente dans la base canonique.

1.1.3 Notations simplifiée des dérivées partielles.

Pour simplifier les notations, I'usage consiste a noter les dérivées partielles de la maniere suivante

of
8 = f,i~
T
De fagon analogue, les dérivées secondes, troisieme,... se notent
o*f &
= fij ————— = fijky . €bC.
O0x;0x; 0x;0x 0z,

7



1.1.4 Convention de sommation des indices répétés d’Einstein.

La convention de sommation des indices répétés consiste a déclarer que lorsque un indice muet est répété,

il y a sommation sur cet indice. Par exemple si S est une matrice carrée de composante S;;, alors sa trace
3 . .

tr§ = >, Si; est notée avec cette convention,

tI‘S = S“

Exercices.

Vérifier qu’en utilisant la convention de sommation des indices répétés on obtient les formules sui-
vantes :

1. (a)

U = U;€;,
U-v = u;v;,
Au = Aijujei,
(AB);; = AixByj,

2. Montrer que pour toute matrice n x n A et tout (a,b) € (R")?,

a-Ab=Ala-b. (1.1.2)

1.1.5 Produit tensoriel de deux vecteurs.

Soient u et v deux vecteurs de R3. On appelle produit tensoriel de u par v la matrice notée u ® v et
définie par ses composantes

(u ® 'U)ij = U;Vy.

Par exemple, e; ® e; est la matrice dont toutes les composantes sont nulles sauf celle situé sur la ¢“™¢

0 01
ligne et la j™¢ colonne de A, qui elle est égale & 1. Exemple : e ®e3=| 0 0 0
0 0O

Exercices.

1. Montrer que toute matrice A vérifie (en utilisant la convention de sommation des indices répétés)
A= Aijei (%9 €;.

En déduire que la famille (e; ® €;)(; j)ef1,2,3}2 est une base de I’ensemble des matrices 3 x 3.

2. Montrer que pour tous vecteurs u, v, w,

(u@v)w = (v wu. (1.1.3)
En déduire que
(ei & ej)u = uje;.
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3. Montrer que pour tout vecteurs u, v, w,

(uRv)wer)= (v wuc. (1.1.4)
En utilisant ((1.1.6)), en déduire que

(e;@ej)(er@e) =0 @ ey.

1.1.6 Le symbole de Kronecker ¢;;.
Le symbole de Kronecker d;; est défini par

1 sii=j
5y = { Le=J (1.1.5)
0 sinon.
Exercice.
Montrer les formules suivantes :
1.
€;-€; = 51’]’ (116)
2.
0ii =3 (avec la convention de sommation des indices répétés).
3.
Vi, k € {1,2,3}, 0305k = ik (avec la convention de sommation des indices répétés).
4. Pour toute matrice A,
Vi, k € {1,2,3}, 0ij Aji = Ak (avec la convention de sommation des indices répétés).
(1.1.7)
5. On a
Iij = 6ij-
1.1.7 Le symbole d’orientation ;.
Le symbole d’orientation €;;;, est défini par
€123 = 1,
et par le fait que si 'on permute deux indices, on change le signe de €5y, :
€jik = —€ijk, Ekji = —Eijk, Eikj = —Eijk- (1.1.8)
On déduit
€123 = €231 = €312 = 1, €132 = €321 = €213 = —1,
et
€ijk =0 si i=j ou j=k ou i=k (1.1.9)
On peut dire que
. . 1 2 3 C e
signature de la permutation | = si {i,4,k} ={1,2,3}
Eijk = T ] k
0 sinon.



Résultat fondammental :

Théoréme 1.1.1. On a la formule suivante :

Vi, j,p,q € {1,2,3}, EijkEpak = Oip0jqg — OigOjp

1.1.10
(avec la convention de sommation des indices Tépétés). ( )

Démonstration. On distingue différents cas :

— Sii=j, alors, d’apres (1.1.9), €ijxepqr = 0 €t ;pdjq — digd;p = 0, donc (1.1.10) est vrai.

— Si p = ¢ : méme conclusion
— Sii # j et p# q, deux cas sont possibles : soit {i,7} = {p, ¢}, soit {i,5} # {p,q}.
1. Si {i,5} = {p, q}, alors notant kq 'unique entier tel que {3, j, ko} = {p, ¢, ko} = {1,2,3}, on a

3 1 sit=petj=q
{ = 0ip0iq — 0iglip-

Z€ijk€qu = EijkoEpgk, (Sans sommation) = o s
1 —1 sit=qetj=p,
donc (|1.1.10]) est vérifié.
2. si{i,j} # {p.q}, alors {i,j} U{p, ¢} = {1,2,3}, et soit i & {p, ¢}, soit j & {p, q}.
(a) Sii & {p,q}, dip = big = 0, donc 6;,0,4—0;49;, = 0. Par ailleurs, quel que soit k € {1,2,3} =
{i,7} U {p,q}, on a soit k € {3, 5}, alors €;;, = 0, soit k € {p,q}, alors epqr, = 0. Dans les
deux cas, €ixepqk = 0 (sans sommation). Donc (1.1.10) est vérifié.

(b) Sij ¢ {p,q} : méme conclusion.

O
Exercices.
1. Montrer que
Eijk = €kij Vi, 4,k € {1,273}. (1111)
2. Montrer que
EijkEpjk = 204p (avec la convention de sommation des indices répétés). (1.1.12)
Indication : utiliser (|1.1.10)).
3. Montrer que, avec la convention de sommation des indices répétés,
€ijk€ijk = 6 (avec la convention de sommation des indices répétés). (1.1.13)
Indication : utiliser (|1.1.12)).
4. Montrer que
M;; =M;; Vi,j€{1,2,3} = eM;z=0 Vie{l, 23} (1.1.14)

1.2 Produit vectoriel et produit mixte.

1.2.1 Produit vectoriel de deux vecteurs u et v

Le produit vectoriel de deux vecteurs u et v est défini par

uNY = (Ug’Ug — ’U,31)2)61 + (U,gUl — UlUg)CQ + (U1U2 — u21)1)eg.

Le nombre |ju A v|| représente la surface du parallélogramme de cotés u et v. Il est donné par
[ Al| = ful[[[v]| |sin (@, v)].
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Exercice.

1. Vérifier la formule suivante :

UNV = €45,U VL€ (avec la convention de sommation des indices répétés). (1.2.1)

2. Montrer la formule du double produit vectoriel :

uA (v Aw) = (vw)v — (uv)w. (1.2.2)

Indication : utiliser les formules (1.1.10]) et (1.2.1]).

1.2.2 Produit mixte.

Le produit mixte de trois vecteurs 4, Uz, u3 est le scalaire défini par

uj - (U2 AN 'U,3).
La valeur absolue du produit mixte u - (u2 Aus) est égale au volume du parallélépipede dont trois arétes

issues d’'un méme sommet sont égales a w1, us, u3.

Exercices.

Soient u1, us, u3 trois vecteurs.

1. Montrer que (avec la convention de sommation des indices répétés)
up - (U2 /\’U,3) :Eijk(ul)i(’u,g)j(u?,)k. (123)
2. Montrer que

uy - (ug Auz) =ug - (uz Aur) = usz - (ug Auo)
= —Ug - (U1 /\’11,3) = —Uj - (Ug /\’U,Q) = —us - (’U,2 /\ul),

3. En déduire que pour tout p,q,r € {1,2,3},

Up - (Ug AUy) = Epgrtir - (U2 Ausg), (1.2.4)

puis que (avec la convention de sommation des indices répétés)

Epgritp - (Ug AUy) = 6 w1 - (U2 Aug),

(Indication : utiliser (1.1.13])),

enfin que

1
uy - (ug Aug) = GEpartip (ug Nuy). (1.2.5)

1.2.3 Application au calcul du déterminant d’une matrice 3 x 3.

Soit A une matrice 3 x 3 et uy, Uz, ug ses vecteurs colonne, définis par :

A Aqo Ais
up = | A2 |, ug = | A |, ug = | Aoz |. (1.2.6)
Aszy Asp Ass
On a donc
Aij = (uj);. (1.2.7)
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Definition 1.2.1. On appelle déterminant de A le scalaire det A défini par

det A =y - (uz Aug).

Théoréme 1.2.1. Avec la convention de sommation des indices répétés,

Démonstration.
det A =y - (u2 Ausg)
1
= gEpartp - (ug ANuy) d’apres ([1.2.5)
1
= GEparcigh(p)i(ug) (ur)r
1 .
= EeijkequAiijqur d’apres ((1.2.7)).
Exercices
1. Montrer que

Remarque 1.2.1. La formule (1.2.13
vecteurs Au, Av, Aw est le produit par

1
det A = ggijkgpqrAiijqur‘

det A" = det A.
Indication : utiliser (1.2.9)).

Mountrer que (avec la convention de sommation des indices répétés)
qurdetA = €ijkAiijqur-

Indication : utiliser (1.2.4]) et (1.2.8]).

Montrer que (avec la convention de sommation des indices répétés)

quTdet A= EijkApiquArk~

Indication : utiliser (1.2.10) et (1.2.11)).

. Montrer que

det(AB) = det Adet B
Indication : utiliser (1.2.9), (1.2.11) et (1.2.12).

Montrer que

Au - (Av N Aw) = (det A)(u - (v Aw)).
Indication : utiliser (1.2.3) et (1.2.12).

base de la formule de changement de variables (2.4.2)).

1.3 Matrices symétriques

Definition 1.3.1. Une matrice n x n S est dite symétrique si

S'=8.

Un endomorphisme S de R™ est dit symétrique si et seulement si

Su-v=u-Sv Yu,v € R™.

12
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Remarque 1.3.1. Soit S une matrice n X n. Il est commode de noter encore S I’endomorphisme qu’elle
représente dans la base canonique. Alors S est une matrice symétrique si et seulement si S est un endo-
morphisme symétrique. Autrement dit,

S'=8 <= u-Sv=8u-v VuveR" (1.3.2)

Indication : = résulte de (1.1.2). <= : choisir (u,v) = (e;,€;).

Résultat fondamental.

Théoréme 1.3.1. Une matrice réelle n x n S est symétrique si et seulement si elle admet une base
orthonormée de vecteurs propres. De maniere équivalente, un endomorphisme S d’un espace euclidien de
dimension n est symétrique si et seulement si il admet une base orthonormée de vecteurs propres.

Démonstration. Appelons H,, cette propriété. H; est vraie. Supposons H,, et soit S une matrice symétrique
(n+1) x (n+ 1) a coefficients réels. Soit A € C une racine complexe du polynéme caractéristique de S
et w € C"*1\ {0} un vecteur propre associé & A (i.e., Su = \u). On a, avec la régle de sommation de 1 &
n + 1 des indices répétés,

u-Su=1u- = \uu; = \ul>.
D’autre part, puisque S est symétrique et § =S, on a d’apres (1.1.2)
- Su=Su-u=8u=Su-u=S8u-u= ) u=X\u u=\u?

donc, puisque u # 0 (car c’est un vecteur propre), A = A. On déduit que A € R (et donc que toutes les
racines du polynéme caractéristique de S sont réelles).

Donc il existe un vecteur propre normé u; € R"*! de § associé a . Notons H le sous-espace vectoriel
de R"*! de dimension n défini par

H={w} ={veR"™, u v=0}.

YweH, wu -Sv=8%u -v==8u  -v=2>y -v=0.

On déduit
SH C H.

La restriction de ’endomorphisme S & H, noté encore S, est donc un endomorphisme de H. Il est clair que
cette restriction est symétrique (i.e. que w-Sv =Sw-v VYw,v € H). L'espace H étant de dimension n,
Ihypothese de récurrence H,, s’applique : il existe une base orthonormée (us, ..., u,+1) de H de vecteurs
propres de la restriction de S & H. On déduit que le systéme (w1, ..., u,+1) est une base orthonormée de
R"™*! de vecteurs propres de S.

O

Exercice

Soit S une matrice symétrique et soit (81,82, ..., 8, ) une base orthonormée formée de vecteurs propres
de S associées aux valeurs propres A1, Ag, ..., A\,,. Montrer que

S = Eﬁ:l/\ksk X Sg. (1.3.3)
Indication : tester X7 _, ApSr ® 8y sur les vecteurs de la base (81,82, ..,8n).
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1.4 Matrices orthogonales

Soit O une matrice 3 x 3 et u; = Oeq, us = Oes, uz = Oez ses vecteurs colonne, définis par :

O11 O12 O3
uy = | O |, uy:= | O |, uz := | Oa3
Os1 Oss O33

Remarquons que

(OtO)ij =1U; - Uy, V(’L,j) S {1,2,3}.
Si (u1,u2,u3) est une base orthonormée de R3, (0'0);; = u; - u; = §;;, c’est a dire
o'o=1.

On dit alors que O est une matrice orthogonale. L’application linéaire représentée par O, qui transforme
toute base orthonormée en une base orthonormée, est appelée une isométrie linéaire sur R3.

Definition 1.4.1. Une matrice 3 x 3 O est dite orthogonale si et seulement si
oo =1

Le théoreme de décomposition polaire (théoréme [1.7.1]) dit que toute matrice 3 x 3 est le produit
d’une matrice symétrique par une matrice orthogonale.

1.5 Opérateurs différentiels courants.

Les fonctions et champs vectoriels ou matriciels considérés dans ce qui suit sont supposés indéfiniment
dérivables.

1.5.1 Laplacien d’un champ scalaire

Le Laplacien d’un champ scalaire f : R? — R est le champ scalaire Af : R? — R défini par

3 3
Z 0*f Z
Af = 81/'2 = f,ii?
i=1 7t =1
soit, avec la convention de sommation des indices répétés,

Af = fn

1.5.2 Divergence d’un champ vectoriel

La divergence d’un champ vectoriel u : R> — R3 est le champ scalaire div « : R? — R défini par

3

3
. Ou;
divu := E = E Us i,
1=1

=1

soit, avec la convention de sommation des indices répétés,
divu = Us -

14



1.5.3 Gradient d’un champ scalaire

Le gradient d’un champ scalaire f : R — R est le champ vectoriel Vf : R3 — R? défini par

3 3
Vf:= Z gg{iei = Zlf,iei,

i=1

soit, avec la convention de sommation des indices répétés,
Vf=rfie.

Cela s’écrit encore

o
~E =

Vf= (1.5.1)

SR
gles

1.5.4 Rotationnel d’un champ vectoriel

La rotationnel d’un champ vectoriel u : R® — R3 est le champ vectoriel rotu : R? — R3 défini par

rotu = (%,%)e +(%,%)e +(%,%)e
a 8332 81‘3 ! 8303 81‘1 2 (9.%‘1 8I2 3

On peut écrire, formellement,

duz _ Ouz fé)
23}2 2373 851 ul
— w1 _ dus — —
rotu= | 5 -5 | =\ o | A w]|= V Au.
Ous _ ouq i U3
oz, Oxo Oxs

Remarque 1.5.1. On déduit de ’exercice que

3

rotu = E €ijkUk, j€i-
ij k=1

soit, avec la convention de sommation des indices répétés,

rotu = g ug,;€;.

1.5.5 Gradient d’un champ vectoriel

Le gradient d’un champ vectoriel u : R? — R3 est le champ matriciel Vu : R? — M3 défini par

3ui
Vu := Z 8xjei K ey,

soit, avec la convention de sommation des indices répétés,
Vu = Ui, 5€4 & €;.
Cela qui s’écrit encore

Ouy  duy  duy
3Z1 812 8:63
Ouy  OQuy  Ouy
812 813
Oug  Oug  Oug
81'1 61‘2 6113

(matrice jacobienne de u). (1.5.2)
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Exercice.

Soit un champ vectoriel u : R3 — R3. Montrer que

*(V’U: — Vtu)23
rotu= | (Vu—V%u); |. (1.5.3)
—(VU — Vtu)lg

1.5.6 Divergence d’un champ matriciel

La divergence d’un champ matriciel A : R3 — My 3 est le champ vectoriel divA : R? — R3 défini par

divA := aAU €; = Z AU §€is

i,jzl ,j=1

soit, avec la convention de sommation des indices répétés,
divA = Aimei,
ce qui s’écrit encore

31411 + 81412 + aAlS

011 Oxo Ox3

diVA _ 8A21 aAgz + 8A23
o\ aA 553

31 32 33

Ox1 + Oxo + Oxs

La ™€ composante de divA est égale a la divergence de la ™€ ligne de A.

1.5.7 Laplacien d’un champ vectoriel

Le Laplacien d'un champ vectoriel u : R3 — R? est le champ vectoriel Au : R? — R? défini par

3
Au = Z Auiei.

i=1

soit, avec la convention de sommation des indices répétés,
Au = Aulel = Uj,55€4-

Les composantes du vecteur Au sont les laplaciens des composantes de u.

1.5.8 Exercices.

1. Montrer que
rotVf =0. (1.5.4)
Remarque 1.5.2. Le lemme de Poincaré (Théoréme dit que
rota=0 < 3 f, a=V/f
2. Montrer que

div rotu = 0. (1.5.5)
Remarque 1.5.3. Une variante du lemme de Poincaré (Théoréme dit que

diva=0 < Ju a=rotu
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3. Montrer que

(rotu) ANu = (Vu)u — %V("U,P)

4. Montrer que

rot (rotu) = Vdiv u — Au. (1.5.6)

1.5.9 Exercices supplémentaires.

1. Montrer que

V(fg) = fVg+4Vf/.
2. Montrer que

VfAVg=rot(fVg) =—rot (gVf).
(Utiliser (1.5.4)).

3. Montrer que

div (fu) = (Vf) - u+ fdiv u.
4. Montrer que
rot (fu) = frotu+ V[ Au.
5. Montrer que
div (u Av) = (rotu) - v — (rotwv) - u.
6. Montrer que

[I’Ot (’U, /\’U)]i = (’Uli’l)j)’j - (’U,j’UZ')J‘.

En déduire que
rot (u Av) = (div v)u + (Vu)v — (div u)v — (Vo)u.

7. Montrer que
V(u-v) =uA (rotv) +v A (rotu) + (Vo)u + (Vu)v
8. Soit O une matrice 3 x 3 orthogonale (i.e. vérifiant O'O = I). Montrer que
A(u(0z)) = (Au)(Oz).

En particulier,

I
e

Au=0 et v(z):=u(Ox) = Av

17



1.5.10 Dérivées partielles d’application composées de plusieurs variables

1. Soit f : R3 — Ret g : R?* — R3 différentiables. Les dérivées partielles de fog(x) = f(g1(x), g2(x), g3(x))
sont données, avec la convention de sommation des indices rérétés, par

(f(g1(x), g2(x), g3(x)) ; = (fr(91(2), 92(x), g3(x))) gk 5 (),

que ’on écrit
(fog);=( ko9 9k, (1.5.7)
ou, d'aprés (L5.1),
V(fog)=(fro9g)gr;e;-
2. On suppose maintenant que f : (z,t) € R® xR — f(z,t) € Ret g: (z,t) € R? xR — g(z,t) € R?
sont des fonctions différentiables de 4 variables z1, 2, x3,t, la variable t représentant le temps. La
dérivée partielle par rapport au temps de f(g(x,t),t) est donnée par

o (910, g2l 0), g5, 1), 1)

agk(x, t) af

+ 7(91(55’t)792(x7t)593(9:7t>7t)a

:f,k(gl(xat)vg2($7t)ag3(x7t)7t)T ot

soit, en abrégé, notant h; = % la dérivée partielle par rapport au temps d’une fonction h,

(f(g:1) .0 = fr(9:1)(gr) 1 + f.1(9, 1) (1.5.8)

1.5.11 Application : dérivée particulaire.

Soit un milieu matériel continu (liquide, solide ou gaz) et soit v(z(t),t) la vitesse de la particule de
ce milieu occupant la position z(t) & Uinstant ¢. Son accélération y(x(t),t) est donnée par y(x(t),t) =
~i(z(t),1)e;, avec

Walt), 1) = Svi(a(i), 1)
= v 1 (&, 1) (zk) ¢ + vie(x(t),1)
= v k(@ 1)) v (2, t) + v; o (2(1),

) formule (1.5.8)) avec g = x(t) et f = v;
t), car (zk(t)) e = vr(a(t),t).
En abrégé,
v
= (Voo + —.
v=(Vop+ o

On dit que y(z,t) est la ”dérivée particulaire” de la vitesse (abréviation de ”dérivée par rapport au temps
de la vitesse d’une particule de position z(¢) que I'on suit dans son mouvement”). La dérivée particulaire
de la vitesse se note

d ov
U= (Vo)v + 5

Notez bien la différence graphique entre % et %. Si k(x,t) est une autre grandeur physique attachée au

milieu matériel (température, masse volumique, etc...), la dérivée particulaire de k est donnée par

d ok
—k=Vk-v+ —.
@ "o
Si Q(t) est le volume occupé a 'instant ¢ par un milieu matériel continu, on note de méme

d/ 3
— k(z,t)dH’(z
i oy s D)

la dérivée par rapport au temps de Uintégrale fQ(t) k(z,t)dH3(x) lorsque I'on suit Q(¢) dans son mouve-
ment. Le calcul de cette dérivée (section [2.4)) est difficile. Il est essentiel dans ce cours.
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1.5.12 Lemme de Poincaré et variante.

Le théoreme suivant permet en particulier d’établir, dans ce cours, les ”équations de compatibilité”
et les ”équations de Beltrami” (Chapitre E[) qui servent a résoudre des problemes d’élasticité.

Théoreéme 1.5.1 (Lemme de Poincaré). Soit U un ouvert convexe de R™. On a l’équivalence
aeCl(U,]R"), ;5 = Qj i v (Z,]) S {1,2,...,’/1}2
= (1.5.9)
3f € C*(U), a=V}{.
De plus,
1
a(z) = / xia; (tz)dt.
=0
Dans le cas oun =3, (1.5.9) s’énonce
[a € CH(U,R?), rota=0] < [3f € C*(U), a=V{]. (1.5.10)
Démonstration. < Sia =V, d’apres le théoreme de Schwarz, a; ; —a;; = () ; — (p,j),: = 0.
=
Soit @ € C*(U,R™) tel que
Qj,5 = Qj A (Z,]) S {1,2,...,71}2. (1.5.11)
On pose
o(t, x) := xa;(tx). (1.5.12)
On a, Vj € {1,2,..,n}, (avec la convention de sommation de 1 & n des indices répétés)
(p(t,2)),; = (ziai(tx)) ;
= (z) jai(tz) + zi(as(tx)) ;
= (51‘jai(t$) + xi(ai,k(tx))(tmk),j cf " (1 5 13)
= 5wal(tx) + xiai,k(tx)tékj e
= aj (tx) + txiai7j(ta:)
= a;(tx) + tz;a; ;(tx) d’apres (1.5.11)).
Par ailleurs,
0 0
(1 (1)) = ay(t) + (o (42)
0
= aj(tx) + taj(te) 5o (tar) - cf (15.8) (1.5.14)
= a,;(tz) + trya,; k(tz)
= aj (t.’l?) + tl‘iaj}i(tl‘).
On déduit de (1.5.13)) et (1.5.14) que
0
(p(t,x),; = a(taj(tx)). (1.5.15)
Posant .
fla)i= [ ety
t=0
on obtient
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= ([ wtar) = [ (oteon

)
1

= % (ta;(tz))dt d’apres (L.5.15)),
t=0
= [ta; (t2))i—g = a;(2),
d’ot

a=Vf.

1.5.13 Version bidimensionelle du Lemme de Poincaré .

La version suivante du lemme de Poincaré permet en particulier (voir Section [4.2)) de caractériser
les contraintes dans un solide élastique lorsque celles-ci ne dépendent que de deux variables (z1,x2)
(contraintes planes).

Corollaire 1.5.1. Soit V un ouvert conveze de R?. On a

[be CHViR?), bi1+boo=0] — 3 f(z1,22) € C3(V), {bbl_: 1}2 (1.5.16)
2= —J1.

Démonstration. < Résulte du théoréeme de Schwarz.

— by
= Posons U = V x R. Le champa = | b vérifie a; ; = a;; V (4,5) € {1,2,3} donc, d’apres

0

([1.5.9), il existe f € C*(U) telle que

ai f,1

az | = f,2

0 I3

DOl’lC f73 =0 (i. €. f = f(ml,.’l'}g)), bl = as = f)g, et b2 = —a1 = _f,1~

1.5.14 * Variante du Lemme de Poincaré.

Le lemme suivant concerne les champs vectoriels v de divergence nulle. La réunion des courbes tan-
gentes & un tel champ v en tout point et passant par un contour donné a une forme tubulaire. Pour cette
raison, un champ vérifiant div ¥ = 0 est appelé un champ solénoidal, du grec cwAnroetdes signifiant ”de
forme tubulaire”.

Théoréme 1.5.2. Soit U est un ouvert conveze de R®. On a ’équivalence

[a c CH(U;R?), diva=0] < [Buc C*(U;R?), a=rotu)] (1.5.17)

Démonstration. < : voir (|1.5.5]).

= : la preuve est assez simple, mais elle utilise les formes différentielles qui sont hors programme. Voir
[7. O
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1.6 Théoréme de Stokes

Le théoreme de Stokes est "analogue tri-dimensionnel de la formule fondamentale de analyse : f(b) —

fla) = f: f/(t)dt. La formule énoncée dans ce théoréme est encore plus fondamentale. En mécanique, elle
est omniprésente. Dans la suite, on note dH? 1’élément de surface et dH3 ’élément de volume.

Théoréme 1.6.1. Soit Q un ouvert borné de R® de frontiere 9 réguliére (de classe C*) et soit
f € CLR3). Alors
of

Q 81’i

dH? = | fngdH?, (1.6.1)
aQ
soit, avec les notations simplifiées,
/ fidH? = [ fn,dH?.
Q aQ

ot n; =mn-e; etn désigne le vecteur unitaire orthogonal & O dirigé vers Uextérieur de 0 ( normale
unitaire extérieure a 0N).

Démonstration. (Idée de la démonstration). La formule (1.6.1)) se généralise & R™ pour tout entier n > 1 :
of

o Ox;

dH" = [ frgdH " (1.6.2)
o0

On donne une idée de la démonstration pour n = 2 et i = 1 dans le cas d’un ouvert convexe €2 de R2.

FIGURE 1.1 —

D’apres le théoreme de Fubini, les notations étant indiquées sur la figure,

xo=xy " z1=x7""" (x2)
OF gz = / dxa </ af(xl,@)dﬂ?l)
Q 8(E1 1;2:13”'" mlzz?‘i"(ZQ) axl

max

- / dary [f (1, 22) 2 200 72 (1.6.3)

o in T1=a7"" (23)

2=x]
:/ ' f(xT“x(x2)7x2)dx2—/ - [ (w2), 22)dTs.
P ——
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ro=xy""" (

La variation infinitésimale dzo apparaissant dans le terme [ "% (z9), x9)dxo est représentée

To=pyrin
sur la figure par le trait vertical vert & droite. Elle correspond & un déplacement infinitétésimal dH (1, x2)
le long de la frontiere 9 de 2, représentée par le trait oblique vert. Les segments dxo et dH'(z1,x2)

définissent un triangle rectangle. L’angle entre dxy et dH! (21, x2), noté 3, vérifie cos f = %. Cet
angle 5 est aussi Pangle entre la normale extérieure n et et le vecteur z1, donc (voir figure) cos § = % =
ny car |[n|| =1 et n; > 0. On déduit % = nq, soit
dao = nydH* (21, 22) au point (z7"**(x2), x2).
Ainsi,
r2:z12;nam
/ o @ (w2), w0)dry = / fzy, zo)nydH (21, z2).
To=x " (z1,22)€E01Q2
Répétant ce raisonnement en (27" (z3), x2), remarquant qu’en ce point n; < 0 et donc
drg = —nydH* (w1, x2) au point (277" (x3), z2),
on obtient
m2:zmam ]
/ - @ (w2), m2)das = —/ [y, m2)nidH (21, 22).
To=xy""" (z1,22)€ED2Q
Renenant & ([1.6.3)), on déduit
3 _d’H2 = / - @ (w2), w2)drgy — / - [ (22), 22)dTo
q 0z; wo=aim zp=g]rin
= / f(a:l,xg)nld’]-[l(xl,xg) +/ f(l‘l,l‘g)nld?{l(l‘l,l‘g)
(zl,:EQ)EalQ (ml,xz)éagﬂ
= / fridH?
910U 0
= [ fnidH'.

1.6.1 Applications

En combinant le calcul indiciel et la formule de Stokes, on obtient une variété de nouvelles formules.
Par exemple, la formule

/ VfdH: = | fndH?,
Q

o0

s’obtient en écrivant

= fn;dH3e; d’apres (1.6.1)
o0

= / friedH?
o

= fndH3.
N
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Exercices

En combinant le calcul indiciel et la formule de Stokes, montrer les formules suivantes :

1.
/ rotudH? = / n AudH?.
Q o0
2.
div ud’}—[?’:/ undH?. (1.6.4)
Q o
3.
/Vud?—[3:/ u@ndH?, ((u®n); = un;).
Q o0
4.
/ divSdH?® = | SndH>. (1.6.5)
Q o0
5. ) )
/ngcm?’ - f—gdHQ—/Vf.ng”H?’, (i - Vg.'n,.>
0 a0 3n Q an
6.

/(ng —gAf)dH? = / ( ngL - g%) dH? ( formule de Green).
Q o0

1.7 x Compléments : matrice des cofacteurs ; théoreme de décomposition
polaire

Les importantes notions abordées dans cette section ne sont pas nécessaires a la compréhension de la
suite du cours.

1.7.1 x Exercice : matrice des cofacteurs (ou comatrice)

Soit A une matrice 3 x 3 de vecteurs colonne uy, us, us (voir (1.2.6))). On appelle matrice des cofacteurs
(ou comatrice) de A, la matrice 3 x 3, notée Cof A, dont les vecteurs colonne sont us Ausz, uz Auy, us At :

(Cof A)11 (Cof A)12 (Cof A3
(COfA)Ql = Uo /\Ug, (COfA)22 =1us /\’U,l, (COfA)Qg =u; N\ Us. (171)
(Cof A)a (Cof A)s2 (Cof A)ss

1. Montrer que
1
Us N U3 = iElpq’U/p Nug,
1
Uz Nup = §€2pqup Nug,
1
Uy Nug = 563pqup Nug.

2. En déduire que
1
(CofA)i; = (§5quup A '“'4) E

puis que

1
(COfA)” = §€imn5quAmpAnq~ (172)
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3. Montrer que

(CofA)' = (CofA")

4. Montrer que

A(CofA") = (det A)I, (1.7.3)
En déduire que si A est inversible,
At = L (cofay
det A '

5. Montrer que

’C’of(AB) — CofA COfB.\

6. En déduire que si A est inversible, CofA Cof(A~') = I, donc Cof(A) est inversible et

| (CofA)! =Cof(4a™")|

7. Montrer que

Au N Av = (CofA)(u Av). (1.7.4)

8. Montrer que

div (Cof(Vu)) = 0.
Indication : utiliser ((1.7.2)).

1.7.2 x Exercice : théoréeme de décomposition polaire d’une matrice n X n
Le but de cet exercice est de montrer le résultat suivant :

Théoréme 1.7.1 (théoreme de décomposition polaire). Pour toute matrice nxn A, il existe des matrices

symétriques S et S, et une matrice orthogonale @ telles que A = QS = SQ. Autrement dit, il existe des
matricesn xn S, S et Q telles que

A=QS=8Q, S'=8  §=8 QQ-=1I (1.7.5)

Il suffit de démontrer ce théoréme lorsque A est inversible. La densité des matrices inversibles dans
I’ensemble des matrices permet ensuite de conclure. On fixe donc une matrice inversible A. On pose

C=AA (1.7.6)

1. Vérifier que C est symétrique, que detC = (det A)?> > 0, que les valeurs propres de C sont non
nulles, et

a - (Cb) = (Aa) - (Ad) Ya,b € R". (1.7.7)

2. Montrer que pour toute base orthonormée (e1, ¢, ...,¢,) de R™ et pour toute matrice B, on a

B = zn:(Bck) X ek (1.7.8)

k=1

3. Soit (e1,e2,...,¢,) une base orthonormée de R™ des vecteurs propres de C associés aux valeurs
propres A1, Ag, ..., A, c’est a dire Cep = Apeg pour tout k € {1,2,...,n} (voir Théoréme [1.3.1)).
Monter que

Melex|? = ei - (Cex) = (Acy) - (Acy) = |Ack|*>  (sans sommation) Vk € {1,2,...,n}.

En déduire que les valeurs propres de C sont strictement positives.
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4. On pose

dy, = Acy, Vk e {1,2,...,n}.

Montrer que

d;-d; = X\;d;; (sans sommation) Vi, 5 €{1,2,...,n}.

En déduire que (fl)\ldh idg, . \%\dn) est une base orthonormée de R™.

5. On pose

3
—

n ~ n 1 1
Szgx/kkck@)qﬂ, S:;dk@)ﬁdk Q= ——dj R cy.

Montrer que S et S sont symétriques, que @ est orthogonale, et que

A=QS=5Q.
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Chapitre 2

Cinématique des milieux continus

On désigne par milieu continu tout liquide, gaz ou solide, déformable ou non, quand on le considere
d’un point de vue macroscopique, par opposition a une description corpusculaire.

2.1 Définition du mouvement d’un milieu continu.

On considére un milieu continu en mouvement, qui occupe a chaque instant ¢ une région Q(t) de
P’espace. On se place dans le cadre de la mécanique classique, non relativiste. Le mouvement du milieu
continu est défini complétement si, pour chaque instant ¢ et pour chaque point matériel M (t) du milieu
(se déplagant au cours du temps) on connait I’application qui a la position X du point a I'instant 0 associe

X1
sa position x a 'instant ¢. Les coordonnées X := | X5 | point matériel a I'instant ¢ = 0 sont appelées ses
X3
T
coordonnées de Lagrange, et les coordonnées = := | z2 | point matériel a I'instant ¢ sont appelées
T3
ses coordonnées d’Euler. Dans la suite, on notera
F:(X,t) e0) xR — f(X,t) € Q) (2.1.1)

Papplication qui donne les coordonnées d’Euler x = f(X,t) en fonction du temps ¢ et des coordonnées
de Lagrange X. On supposera dans la suite que f est indéfiniment différentiable, et que pour tout ¢ fixé,
lapplication X € Q(0) — f(X,t) est une bijection de ©(0) sur (¢), dont la bijection réciproque sera
notée g(x,t). L’application g est donc définie par

gf(X,0),0)=X  VYX € Q). (2.1.2)

On supposera aussi que g est indéfiniment différentiable.

Definition 2.1.1.

1. On appelle trajectoire d’un point matériel l’ensemble des positions de l’espace qu’il occupe au cours
du temps. Si X représente les coordonnées de Lagrange du point matériel, sa trajectoire est la courbe

de ’espace donnée par
Traj(X) := {f(X,t), teR}.

2. Soit P un point fize de l'espace et soit t1 un réel firé. On appelle ligne d’émission de P a l'instant
t1 l’ensemble des positions a l'instant t1 de tous les points matériels qui sont passé par la position P
a un instant antérieur. Si xp représente les coordonnées de P, la ligne d’émission de P a linstant
t1 est la courbe de l’espace donnée par

Emission(P, t1) := {f(g(zp,t),t1), t€[0,t1]}.
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3. On appelle ligne de courant & linstant t; toute courbe incluse dans Q(t1) et telle que la vitesse
Uinstant t de tout point matériel situé sur la courbe soit tangente a la courbe.

2.2 Vitesse.

La vitesse a 'instant ¢ d’un point matériel M (¢) occupant la position X a l'instant 0 est donnée par
v(M(t)) = £ f(X,t). On note

0
v:(X,t) € Q0) xR —=v(X,t):= af(X,t)7 (2.2.1)
Papplication qui associe au couple (X, ) la vitesse a I'instant ¢ du point matériel de coordonnées lagran-
giennes X.
On note

v:(z,t) € Q) xR »v(z,t) :=v(g(x,t),t),
Papplication qui associe au couple (z, t) la vitesse & I'instant ¢ du point matériel de coordonnées eulériennes
x. La description du champ des vitesses par v est appelée la description lagrangienne du mouvement et

la description du champ des vitesses par v est appelée la description eulérienne du mouvement.

2.3 Accélération. Dérivées particulaires.

Nous reprenons plus en détail la notion introduite en section [1.5.11} L’accélération a I'instant ¢ d’un
2
point matériel M (t) occupant la position X a l'instant 0 est donnée par y(M(t)) = %J‘(X7 t). On définit
de maniere analogue les descriptions lagrangiennes (X, t) et eulériennes (x,t) de accélération :

— (X, t) est 'accélération a l'instant ¢ du point matériel de coordonnées de Lagrange X.

— (=, t) est Paccélération a l'instant ¢ du point matériel de coordonnées d’Euler = & U'instant ¢ .
On a

'Y(xvt) = 7(g(x7t)a t)a

0? 0
’Z(Xv t) = ﬁf(xat) = E'IL)(X? t). (2.3.1)
En description eulérienne, Paccélération «(z,t) n’est pas égale & la dérivée partielle par rapport au temps
de v(z,t). Cela vient du fait que la position x du point varie au cours du temps. Posant xz = f(X ),
d’apres le théoreme de dérivation des fonctions composées de plusieurs variables, on a

3

Yw0) = SO X0,0) = Fow 0+ D 2 (0.0 2 (X0
ov >\ v
= (@) + ; B, (@ Ou(X.1),

c’est a dire, puisque v;(X,t) = v;(f(X,1),t) = vi(w,1)

vy(z,t) = %(m,t) + Z %(m, t)vi(z,t).

i=
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On dit encore que la description eulérienne «y(z,t) de accélération est égale a la dérivée particulaire

du champ des vitesses v(z,t) en description eulérienne. On a vu dérivée particulaire est notée % On a

donc

3

y(z,t) = —v(x,t) = ?(m,t} + Z @(x,t)vi(x,t).

"
i=1 Oz

Definition 2.3.1. On appelle dérivée particulaire d’une quantité k attachée a une particule la dérivée
par rapport au temps de cette quantité quand on suit la particule dans son mouwvement. Si la quantité k
est donnée en description eulérienne

d ok

3
ok
%k(fn, t) = a(m, t) + ; 87:1-(:[’ (. 1),

en abrége,

i ok
Ay Ok g, 9.3.2
Gt =g TVEY (2:32)

2.4 Dérivée particulaire d’une intégrale de volume.

La formule que nous allons démontrer dans cette section permet d’obtenir la plupart des équations
de mécanique des milieux continus, comme nous le verrons plus loin. Cette formule s’écrit :

Théoréme 2.4.1. p

d
— k(z,t)dx = / —k + kdiv vdx. 2.4.1
- / Jwtde= [ (2.4.1)

Le principe de la démonstration de cette formule consiste a se ramener par changement de variables a
une intégrale sur le domaine fixe 2(0), & dériver par rapport au temps, puis & revenir par le changement
de variables inverse & une intégrale sur Q(¢). Commengons par énoncer la formule de changements de
variables :

2.4.1 La formule de changements de variables

Théoréme 2.4.2. Soit ¢ : R? — R3 une application de classe C', inversible et dont l’application
réciproque est de classe C*. Soit k : R? — R3 une application intégrable. Alors pour tout ouvert U de R?,
la formule de changements de variables suivante est vérifiée

/ k:(x)dx:/ kE(p(X))| det Ve|dX. (2.4.2)
e(U) U

Nous allons appliquer cette formule & t fixé avec p(X) := f(X,¢), U = Q(0), de sorte que @(U) =
F(€©(0),t) = Q(t). Dans la suite, nous noterons F' la matrice définie par

Of1 of1 9f1
8X1 8X2 8X3

. _ af af af:
F=Vf=| 2 22 52| (2.4.3)

afg 8f3 6.f3

0X1 0Xo 0X3

La matrice F est donc le gradient de la transformation X — f(X,t), appelée aussi la matrice jacobienne
de la transformation. Son déterminant, appelé le jacobien de la transformation, sera noté J. D’apres

([29) on a
1
J=detF = ésijkqurFiijqur~ (244)
Nous verrons plus loin (cf. exercice [2.4.2)) que J > 0. La formule de changement de variables s’écrit alors
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k(x,t)dxz/ k(F(X, 1), 1)JdX.
Q) Q(0)

Comme le domaine 2(0) est fixe, on peut écrire

4 e tyde = % (/9(0) k(F(X, t),t)JdX) :/Q L h(F(X, 1), 1)) dx

dt Jag (0) 4
d d
= — (k(f(X,t),t)) JdX + k(f(X,t),t)=JdX.
Le changement de variables inverse donne
/ d (k(f(X,1),t)) JdX / dk d
— ,t), = —k dx.
Q(0) de Q(t) dt
Nous montrons plus loin, dans ’exercice la formule suivante :
d
a:] = Jdiv v.
On a donc
d
/ K002 Tdx = [ k(X0 0)Jdiv vdX = [ kdiv vda.
Q(0) de Q(0) Q(t)

Regroupant (2.4.6), (2.4.7), (2.4.9)), la formule (2.4.1]) est démontrée.

Exercice 2.4.1. Calcul de %J.

1. Montrer en utilisant la formule (2.4.4]) que

d 1 d
%J = igijkgpqr <$F1P) quFkr~

2. Montrer en utilisant (2.2.1)) et (2.4.3) que
d
aFip = Ui,stp
En déduire que
d 1
%J = isijkqurvi,stijqur«
8. En utilisant la formule (1.2.11)), montrer que

d 1
@J = §€ijk55jk'Ui,sJ~

4. Montrer que

%J = Jdiv v.

La formule (2.4.8) est démontrée.
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Remarque 2.4.1. D’apres (2.4.11)),

dt

EF = VuF.

(2.4.12)

Exercice 2.4.2. Le but de cet exercice est de montrer qu’a tout instant t, on a : det(Vf)=J >0

1. Montrer que (en utilisant (2.1.2)))

Vg(f(X,)VF(X,t) =VIX) =1T.

2. En déduire que

det(VF(X, ) = J(X,t) £ 0

3. En déduire que J(X,t) garde un signe constant au cours du temps, puis (en considérant linstant

t=0) que

J(X,t) >0 VX € Q(0),Vt € R.
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Chapitre 3

Lois de conservation

3.1 Loi de conservation de la masse

Enoncé : La masse d’un systéeme matériel que 1’on suit dans son mouvement reste constante.

3.1.1 Equation de continuité.

Soit w(t) un tel systéme. Sa masse est donnée par
miw) = [ platart, (3.1.1)
w(t)

ou p(z,t) désigne la masse volumique au point x & I'instant ¢. La loi de conservation de la masse dit que

d

() =0 V()

ce qui s’écrit, d’apres le théoreme [2.4.1

/ ip(as7 t) + pdiv vdH> =0 Vw(t).
oo At

De larbitraire sur w(t), on déduit que la loi de conservation de la masse implique que la représentation
eulérienne p(x,t) de la masse volumique vérifie I’équation suivante, connue sous le nom d’équation de
continuité :

Théoreme 3.1.1. Loi de conservation de la masse est équivalente a ’équation :

d
i + pdive =0. (3.1.2)

Exercice 3.1.1. Montrer que l’équation de continuité s’écrit encore

%p-ﬁ-v,o-'v—i—pdiv v =0. (3.1.3)
ou encore
0 .
" +div (pv) = 0. (3.1.4)

Indication : utiliser la formule de dérivation particulaire (2.3.2]).

Dans I’exercice suivant, nous examinons les conséquences de la loi de conservation de la masse sur les
formules de dérivation particulaire.
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Exercice 3.1.2. 1. Déduire de la formule de dérivation particulaire d’une intégrale de volume et de
léquation de continuité (3.1.2) la formule importante suivante

d d
— pk(x,t)dx :/ p—kdz. 3.1.5
2. En déduire que
d
— pv(z,t)de = py(z, t)de. (3.1.6)
dt Jo) a()
3. Montrer que
d
— pé?\?f/\v(ac,t)da: z/ p(’)‘ﬁ Ay (z,t)dx. (3.1.7)
dt Jo Q)

3.2 Loi de conservation de la quantité de mouvement. Principe
Fondammental de la Dynamique.

Enoncé du Principe Fondammental de la Dynamique pour les milieux continus.

Dans un repére galiléen, pour tout systéme matériel, la dérivée par rapport au temps du torseur des
b o
quantités de mouvement est €gale au torseur des forces extérieures appliquées au systéme.

3.3 Equations du mouvement et équations d’équilibre d’un mi-
lieu continu

Considérons un systeme matériel Q(¢) et soit w(t) un systéme matériel quelconque inclus dans Q(t).

Les forces extérieures agissant sur w(t) sont des forces massiques de densité volumique pf dans w(t) et

des forces de contact de densité F (M, t,n) sur dw(t), de sorte que le torseur des forces extérieures a une
résultante et un moment en O donnés respectivement par

/ pfdm—k/ F(n)ds,
w(t) Ow(t)

/ OM A pfda +/ OM A F(n)dS.
w(t) Ow(t)

Le torseur des quantités de mouvement a une résultante et un moment en O donnés respectivement par
pvdx,
w(t)

O—J\Zf A pudz.
w(t)

L’énoncé de la loi fondamentale de la dynamique se traduit donc par les égalités vectorielles

d — —
— / pvdx = / pfdx + / F(n)dS,
dt Jo w(t) dw(t)

d B} B
— (W/l/\p'vdm: O—]\Zf/\pfd:zc—i—/ O—]\Zf/\F(n)dS.
dt Ju w(t) dw(t)

(3.3.1)

Compte tenu de (3.1.5), on a
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dt w(t)
d d — —
— OM A pvdx —/ p—(OM Av)dx :/ pOM A ~ydx
w(®) wity dt w(®)
On déduit
/ oy — pfde = / F(n)ds, (3.3.2)
w(t) Ow(t)
(3.3.3)

/ m/\(m—pf)dfc:/ OM A Fn)ds.
w(t) Aw(t)

Apres un changement de notation, ces deux équations sont de la forme

/ bdx:/ a(n)dsS.
w(t) Ow(t)

Le Théoreme de Cauchy, énoncé et démontré dans la section suivante, établit, lorsqu’une telle équation
est vérifiée quel que soit w(t), 'existence en tout point M d’une matrice T'(M) telle que

a(M,n) =T(M)n.
Appliquant ce théoréme pour b = py — pf et a(M,n) = ﬁ(M,n), on déduit de I’équation (3.3.2)), vérifiée

pour tout w(t), existence d’une matrice, notée o et appelée le tenseur des contraintes de Cauchy,

telle que
a (3.3.4)

F(M,n) =o(M)n.

11 résulte alors de la fomule de Stockes que

/ F(n)dS = ondS = oijn;eids
Ow(t) Ow(t) Ow(t) (3 3 5)

:/ Uij,jeidx:/ divodz.
w(t) w(t)

Combinant (3.3.2)) et (3.3.5)), on déduit
Y — pf— divedx = 0.

w(t)

Cette équation étant vraie pour tout w(t), il en résulte
(3.3.6)

oY :pf+diva.

Les équations (3.3.6)) sont les équations du mouvement du milieu continu. Si le milieu est en
équilibre ou en mouvement de translation uniforme, ¥ = 0 et les équations se réduisent a

pf +dive = 0. (3.3.7)
Les équations (3.3.7)) sont les équations d’équilibre du milieu continu.
On déduit de (3.3.4) et de la formule de Stokes que
— ——
/ OM A F(n)dS = OM NondS = sl-jkacjakmleidS
Ow(t) Ow(t)

Ow(t)

:/ gijk(Tiom) 1€:dx :/ €ijk0ji0k1€; + €ijKT 0kl 1€:dT
w(t) w(t)
_—% .
/ €ijkOkj€i + OM A diveodz,
w(t
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soit

/ O—]>\4 A F(n)dS = / €ijkOk;€; + O—]>\4 A divedz.
Ow(t) w(t)

Reportant cette équation dans (3.3.3)), on déduit

/ 5]\7 A(py — pf)dm = / €ijk0k;€; + 5]\—)4 Adivedz.
w(t) w(t)

Compte tenu des équations du mouvement (3.3.6)), il vient

/ sijkokjeid:c =0.
w(t)

De larbitraire sur w(t), on déduit
€ijkOkj = 0 Vi € {1, 2,3}.
Ceci implique
Epqi€ijkTkj = 0 Vp, q € {1,2,3}.
Appliquant la formule (1.1.10)), il vient

(6Pj6qk - 6pk6qj)0-kj =0 VPa qc {1a 27 3}7
équivalente a
Ogp —0pg =0 Vp,qe{l,2,3}.
Autrement dit, la matrice o est symétrique. On peut résumer ces résultats dans le théoréme suivant :

Théoréme 3.3.1. La loi de conservation de la quantité de mouvement (ou le principe fondamental de
la dynamique) implique Uexistence en chaque point M du miliew continu d’une matrice symétrique o (M)
appelée tenseur des contraintes de Cauchy et qui satisfait les équations du mouvement

py = pf + dive. (3.3.8)

ou, siy =0, les équations d’équilibre

pf +dive = 0. (3.3.9)

3.4 Théoreme de Cauchy

Théoréme 3.4.1. Soit b = b(M) un champ de vecteurs défini dans 0 et soit a(M,n) une application
dépendant du point M et d’un vecteur unitaire n. On suppose que pourn fizé, Uapplication M — a(M,n)
est continue, que le champ b est borné, et que la loi de conservation suivante est vérifiée :

/bdx :/ a(n)ds, Yw C . (34.1)
w ow
Alors, pour tout point M € Q, il existe une matrice T(M) telle que
a(M,n) =T(M)n.
Autrement dit, a(M,n) dépend linéairement de n.

Démonstration.
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Lemme 3.4.1. On a

a(M,n) = —a(M,—n). (3.4.2)

Preuve du lemme. Soit ¥ le plan passant par M orthogonal a n et soit w une boule de centre M de
rayon r. Le plan 3 partage la boule en deux demi-boules w; et ws. On suppose que n est la normale
extérieure a wy en M. On désigne par d;w la partie de dw qui est incluse dans Jw;. En appliquant
successivement & w, wi, ws, notant ¥ la normale extérieure & w, on obtient

/wbdx = /awa(u)dS,
/W1 bdxr = /61wa(1/)d5+ /Zma(n)ds,
/w2 bdxr = /(%wa(u)dS + /Emwa(fn)dS.

En ajoutant la deuxieme et la troisieme équation et en retranchant la derniere, on obtient

/ a(n) +a(—n)dS = 0.
XNw
De la nature arbitraire du choix de w et de la continuité de M — (M, n), il résulte
a(M,n) = —a(M,—n).
Le lemme est démontré. O

En tout point M € Q, on prolonge I’application n — a(n) définie sur les vecteurs unitaires, a tout vecteur
non nul v en posant

v
a(M,v) = |p||la (M’||v||) .

De plus, on pose

a(M,0) := 0.

Lemme 3.4.2. L’application a(M,v) ainsi définie vérifie pour tout vecteur v :

a(M,w) =  a(M,v) VA eR. (3.4.3)
Preuve du lemme.
v . v
a(M, o) = |[Molje (01 |/\U||) = Wllolla (M. s1gne<A>Hv|)

= signe(A)[A|[v]la (M, IIZII) = Avlla (M, “’j”) = Xa(M,v).

Le lemme est démontré. O

Lemme 3.4.3. Siv et w sont deuzx vecteurs non colinéaires, alors

a(M,v+w) = a(M,v) + a(M,w). (3.4.4)

Preuve du lemme. Nous allons établir (3.4.4) en un point My. Soient A et B les points définis par (voir
figure [3.4)

—

MyA = v, Mog =v+w, (3.4.5)
H un point du segment [My, B], (D1) la droite perpendiculaire & v passant par My, (D2) Lw passant par
My, (D3)L (v +w) passant par H, et s
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(D1)

n/

mm\

(D3)

FIGURE 3.1 —

C:=(D1)N(D3), D :=(D2)N(D3).

Les triangles (MyCD) et (AMyB) sont semblables car leurs cotés sont orthogonaux deux a deux. Il en
résulte que

MyC  MyD CD

= = =g, (3.4.6)
[l flwll [ +wl]

ol € est une constante positive.

Soit B le prisme droit de base le triangle Ay, cp situé au-dessus de Ay cp et de hauteur . On note
01 B, 028, 03B ses faces latérales opposées respectivement a C, D, My, 0488 = Apycp sa base inférieure,
058 sa face supérieure et k la normale extérieure unitaire & B sur 948 (voir figure .

FIGURE 3.2 —

La normale extérieure unitaire n a 0B vérifie

v 4w
+ sur 038,

n n= ———
[lv +wl| (3.4.7)

sur 018, n sur 0988,

_ W - v
[fwl| [[v]|
n=k sur 0,8, n=—-k sur O05B.
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De plus

H(B) = &°|jv Awl],
H?(01B) = *||w||, H*(8:B) =<*|wl|, H*(8:B) = e*||v +wl], (3.4.8)

1
H*(04B) = H*(95B) = §€2H’U Awl.
Drapres (3.4.1)),

/Bb(M)dH3(M) /M <M |“’|)Cm2( )+ /M ( H>dH2( )
/636 ( H”i“’ )dH2(M)

+/ a (M, k) dH?* (M) +/ a (M, —k)dH*(M).
043 3B
Multiplions par Z et appliquons (3.4.2)). Compte tenu de (3.4.3), (3.4.8) et de 858 = 048 + ¢k, il vient

~1 —1
82/b M)dH3 (M HQ(agl)/alBa(M,w)d”H2(M)+W/azsa(Mm)d”H?(M)

1

+ = </36a(M,k)—a(M+Ek,k)dH2(M))-

g2

D’apres (3.4.8]), puisque b est borné,

1 1*(B)
= /B b(M)dH? (M) < C= 5= < C=. (3.4.10)

Comme M — a(M,n) est continue, on a ||a (M,k) —a (M + ¢k, k) || — 0 uniformément sur 9488 lorsque

€ — 0, donc d’apres (3.4.8))

1

= / a(M.k) —a (M + ck. k) de(M)‘ _ o(1) 0B
4B

2

[lv A w]
2

= o(1) = o(1). (3.4.11)

2

De méme, ||a (M,w) — a (Mp,w) || — 0 uniformément sur o4 B lorsque € — 0, donc

-1 1
2(0By) /M (M, w) dH*(M) = (Hg(agl) /Ma (Mo, w) dHZ(M)> (1+0(1))
= —a (Mo, w) (1 +o(1)).
De maniere analogue,

—1 2 -1 )
7{2(881)/81801(M,w)d7—l (M)+H2(882)/828a(M,v)dH (M)

1 (3.4.12)
+ a(M,v+w)dH*(M
I Jyp 0+ 0 OO
= (—a (Mo, w) — a(Mo,v) + a (Mo,v +w)) (1 +0o(1))
Reportant (3.4.10), (3.4.11)), (3.4.12)) dans (3.4.9)), on obtient
o(1) = (—a (My,w) — o (My,v) + a (Mo, v +w)) (1 + o(1)) + o(1),
ce qui prouve (3.4.4) et acheve la preuve du théoréme de Cauchy.
O
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3.5 Conservation de 1’énergie

3.5.1 Premier principe de la thermodynamique

Enoncé. Pour tout systéme matériel, il existe une fonction énergie interne spécifique (c’est & dire par
unité de masse) e(x,t), telle que la dérivée par rapport au temps de l’énergie totale (énergie interne +
énergie cinétique) soit égale a la puissance des forces extérieures appliquées au systéme plus les apports
de chaleur par unité de temps.

3.5.2 Tenseur des vitesses de déformation

Le tenseur des vitesses de déformation est la matrice Dv définie par

Dy = %(VtH—Vtv). (3.5.1)

3.5.3 [Equation de I’énergie

Théoréme 3.5.1. Le premier principe de la thermodynamique entraine que l’énergie interne spécifique
e vérifie l’équation suivante, appelée équation de 1’énergie :

de
Pt
ot pw désigne les apports volumiques de chaleur par unité de temps et q le vecteur flux de chaleur.

=0 : Dv+ pw — div g, (3.5.2)

Preuve. Soit w(t) C Q(t) un sous-systéme matériel d’un systéme matériel Q(t). L’énergie interne du
systéme w(t) est donnée par
/ pedx,
w(t)

L2
—plv|“dx.
/w(t) 2

La puissance des forces extérieures volumiques s’écrit

/ pf"vd‘ra
w(t)
/ F -vdS.
dw(t)

/ pwdS,
w(t)

et les apports surfaciques de chaleur sont donnés par

/ —q -ndS.
Ow(t)

Le premier principe de la thermodynamique nous dit donc que

et son énergie cinétique par

et celle des forces extérieures surfaciques

Les apports volumiques de chaleurs valent

d 1 - -
— (/ —plv|® + pedx) = / pf -vdx —|—/ F-vdS +/ pwdx —/ q - ndS. (3.5.3)
dt \ Ju@) 2 w(t) dw(t) w(t) du(t)
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D’apres (3.3.4) on a F = on, donc

/ F_: -vdS = / (an) -vdS :/ cnjnjvidS.
Aw(t) Ow(t) Ow(t)

En appliquant la formule de Stokes (voir (1.6.1))), on déduit

/ ﬁmdsz/ (Uijvi),jdsz/ 7ij Vi + 0ijvi ;S
Bw(t) w(t) w(?)

(3.5.4)
:/ dive - v + 0 : VvdS,
w(t)

ol A : B désigne le produit scalaire matriciel défini dans la section [1.1.2] (voir aussi (L.1.1))). De méme

/ q-ndS = q;in;dS = ¢iidr = / div qdz. (3.5.5)
Ow(t) Ow(t) w(t) w(t)
D’apres la formule (3.1.5)) de dérivation particulaire d’une intégrale de volume en présence de p, on a
d 1 9 d <1 9 ) / de
el - de )| = — (= dx = . —d. 3.5.6
dt(A@QMM +mwa pr& Slvl" +e)dz MQM)7+pﬁ x (3.5.6)

En combinant (3.5.3)), (3.5.4)), (3.5.5)), et (3.5.6)), on obtient I’équation

d -
/ pv-'y—l—p—edx:/ pf-v+dive -v+ o0 : Vv + pw — div qdz,
w(t) dt w(t)

équivalente a
-, de .
v~(p'y—pf—d1va)+p—dx: o : Vv + pw — div qdz.
w(?) dt w(?)

Les équations du mouvement (3.3.8)) du milieu continu nous disent que py — p f — dive = 0. On déduit

d
/ p—edx:/ o : Vv + pw — div gdz.
w(ty dt w(t)

Cette derniére équation étant vraie pour tout sous-systéme w(t) de Q(t), il en résulte que
de

Pt

Compte tenu de la définition (3.5.1) de Dv et du fait que la matrice o est symétrique, on a

=0 :Vv+ pw—div q.

o:Vv=o0:Dv.
En combinant les deux derniéres équations, on obtient 1’équation de 1’énergie ([3.5.2)). O

3.5.4 Cas d’un milieu au repos : équation de la chaleur, loi de Fourier.

Dans un milieu au repos, v = 0 et % = % + Ve v = %, donc I’équation de I’énergie (3.5.2)) s’écrit
Oe
— = pw — div q. 3.5.7
Pop =P q (3.5.7)

Dans un milieu au repos, les deux lois physiques approchées suivantes sont expérimentalement vérifiées
(ce type de loi est appelé ”loi de comportement”) :
— L’énergie interne e est proportionnelle a la température absolue 7T, soit

e=CT, (3.5.8)

ou le coefficient C' est appelé la chaleur spécifique.
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— Le vecteur flux de chaleur g est proportionnel au vecteur gradient de température et dirigé en sens
opposé (c’est la loi de Fourier), soit

g=-KVT, K >0. (3.5.9)

En reportant (3.5.8) et (3.5.9) dans (3.5.7), on obtient '’équation de la chaleur

pC%—f = pw +div (KVT). (3.5.10)

Le scalaire positif K est appelé le coefficient de diffusion de la chaleur ou la conductivité thermique. Si le
milieu est anisotrope, le coefficient K doit étre remplacé par une matrice de diffusivité symétrique définie
positive. Si le milieu est homogene, cette diffusivité ne dépend pas de x, donc div (KVT) = Kdiv (VT) =
KAT et devient

pCa

= KAT.
o = pw +

3.6 Second principe de la thermodynamique. Inégalité de Clausius-
Duhem

3.6.1 Second principe de la thermodynamique.

Enoncé. Pour tout systéme matériel, il existe une fonction interne spécifique (c’est a dire par unité
de masse) s appelée entropie spécifique, telle que, pour tout systéme matériel w(t), la dérivée par rapport
au temps de ’éntropie totale fw(t) psdx vérifie l'inégalité suivante :

d/ w q-n
— psde/ p—d:v—/ ——dSs Yw(t), (3.6.1)
dt Jo wiy T ow(t) T

ou T est la température absolue.

Théoreme 3.6.1. Le second principe de la thermodynamique a l'inégalité suivante :

p;li > pf —div (%) . (3.6.2)

Démonstration. On a 5 fw(t) psdx = fw(t) pLEdz et

q-n q; 2 qi 3 3
—dS = =n;dH :/ =) dH :/ div dH?,
/8w(t) T ow(t) T w(t) (T> i w(?) ( )

donc équivaux a

qui équivaux a (3.6.2)).

3.6.2 Inégalité de Clausius-Duhem

Théoréme 3.6.2. L’inégalité (3 est équivalente a ’inégalité suivante, appelée inégalité de Clausius-
Duhem :

ds de> q-VT
T— — — : Dy — > 0. .6.
( i dr + o : Dv T >0 (3.6.3)
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Démonstration. D’apres (3.5.2)) pw = p% — o : Dv + div ¢, donc I'inégalité (3.6.2)) est équivalente &

ds _ 1 ( de . . q
> — —o0:Dv+ — =
(p o o : Dv + div q) div ( ) ,

Pat =T

qui, compte tenu de

div (2) _ (&) _ (Qiﬂ) ~ Tig; _divg VT-g
T - T i_ T2 - T T2 )

équivaux a l'inégalité
div q . VT -q
T T2

Pat =T
elle-méme équivalente & (3.6.3)).

1
ds > (p%—a:Dv—i—divq)—
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Chapitre 4

Etude du tenseur des contraintes

4.1 Exercice : cercles de Mohr

On a vu dans le chapitre précédent que la densité surfacique de forces qui s’exerce en un point M sur
toute région limitée par une surface passant par M de normale extérieure n au point M est donnée par

la formule (3.3.4), c’est a dire par :

—

F(M,n) =0(M)n. (4.1.1)

Le vecteur F est appelé le vecteur contrainte. Il se décompose sous la forme de la somme d’un vecteur
T,,(M,n)n parallele & n (donc normal & la surface) et d’un vecteur T3 (M,n) orthogonal & n (donc tangent
a la surface) :

F=Tom+T,, T,=F-n, T,=F-Tymn. (4.1.2)

L’objectif de ce probleme est de répondre a la question suivante : étant donnés un tenseur des contraintes
o et deux nombres réels X (de signe quelconque) et Y (positif ou nul), existe-t-il une direction n telle
que

X =Tuy(n), Y =|Ty(n)|? (4.1.3)

Dans la suite, on note oy, oyy, oyyy les contraintes normales principales associées a o (c’est a dire les valeurs
propres de o), que I’on suppose associées, respectivement, & des vecteurs propres vy, vy, vy (directions
principales de contraintes) choisis de telle sorte que (v, vy, V1) constitue une base orthonormée directe
(c’est toujours possible puisque o est symétrique).

1. Soit n un vecteur normé n de composantes ny,ng, n3 dans la base (v, vrr,vyrr). Montrer que

n = n1V5 + noVyir + N3Visr

o(M)n =niovr+ neovir + n3orvinn (4.1.4)
2 2 2

(O'(M)’n) ‘m=o0mnj] +ormns;—+orn3.

2. Montrer que si le vecteur normé n vérifie (4.1.3), alors ses composantes ni,n2,ns dans la base
(vi,vir,virr) satisfont

2 2 2
ny+ns;+n3z=1
2 2 2
01n1+011n2+0111n3=X (415)
2,2 2 2 2 2 2 2
Uln1+011n2+0111n3:X +Y.
Le systeme (4.1.5) est un systeme de 3 équations linéaires par rapport aux inconnues n?, n3, n3.
Du fait de sa structure particuliere (matrice de Vandermonde) il se résoud aisément de la maniere
suivante :
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3. Soient P(z) un polynéome quelconque de degré 2 s’écrivant sous la forme P(x) = 22 +ax+b. Montrer
que
TL?P(O’]) + ’I’L%P(O’[{) + n%P(aIH) =Y? + P(X)
4. On choisit le polynéme unitaire P du second degré s’annulant pour or; et oy, soit P(z) =
(x —orr)(x — orrr). En déduire que
n%(a; — O’][)(O’] — UIII) =Y? + (X — O’[[)(X — O'III)- (4.1.6)

Montrer de méme que

n%(an — 0’[]])(0’[] — O']) =Y? + (X — U[]])(X — 0'1)7 (4.1.7)

TL%(O’]]] — O’[)(O’[U — 0']1) =Y? + (X — O’[)(X — O'H). (4.1.8)

5. On suppose de plus que

or <oy <O0jyjIJ- (4.1.9)

Vérifier que

n? = Y2+ (X =o)X —orr1)
(o1 —orr)(or —o1rr)

2 Y2+(X—O'[[])(X—O'[)

7 (o —omun)(on —or)

Y24+ (X —o7)(X —o11)

(o111 —or)(orir —orr)

(4.1.10)

3

b

2 _
ng =

6. Les formules (4.1.10) fournissent n1,n2,n3 & la condition nécessaire et suffisante que le point
P=(X)Y)
soit tel que

y? + (X — O’[[)(X - J]]]) >0,
Y24+ (X —o7)(X —or11) 0, (4.1.11)
Y2 + (X—O'[)(X—O'[[) Z 0.

Montrer qu’une équation de la forme

Y2+ (X —a)(X —b) =0, (4.1.12)

a+b\? a—0b\?
v (x-t) = ()
2 2
En déduire que I'équation (4.1.12)) représente le cercle de rayon "’T*b| et de centre de coordonnées
(QTH’, 0). Ce cercle est centré sur OX et passe par les points de OX d’abscisse a et b.

7. Déduire des inégalités (4.1.11) que le point P doit se trouver dans la région délimitée par les trois
cercles centrés sur OX et passant par les points d’abscisse oy, oy7, o777 comme l'indique la figure
[41] et qu’inversement, pour tout point P(X,Y) appartenant & cette région, il existe
un vecteur unitaire n vérifiant (4.1.3) : de plus, les composantes de ce vecteur n sont
données, au signe pres, par (4.1.10). Dans cette figure, on n’a tracé que des demi-cercles car Y

est toujours positif ou nul, et on a hachuré les régions qui ne sont pas atteintes par P = (X,Y). On
a donc démontré le théoréme suivant, :

s’écrit aussi
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>

o 0 9t ooy T

FIGURE 4.1 — Diagramme de Mohr

Théoréme 4.1.1. Soit (X,Y) € R% On suppose (£.1.9). Alors, il existe un vecteur unitaire n
vérifiant si et seulement si le couple (X,Y) se situe dans la zone non hachurée de la figure
4.1. Pour tout couple (X,Y) appartenant a la zone non hachurée de la figure 4.1, tout vecteur n
dont les carrés n%, n% et n% des composantes dans la base (Vi,vir,virr) sont données par

vérifie (L13).

. Déduire de (4.1.10) que si n se déplace dans le plan vy, vy, c’est a dire si ng = 0, alors le point
P = (X(n),Y(n)) se déplace sur le demi-cercle de diametre ((or,0), (0r1,0)), et réciproquement.
Généraliser aux deux autres demi-cercles.

. Le diagramme de Mohr montre que

or <X(n) <o Vn,

que la contrainte tangentielle maximale est atteinte au point P; donné par

j (01 +0'111’ OI11 —01) ,
2 2

et qu’elle est donnée par

orrr —og

Ymaw =
2

Vérifier que les directions n correspondantes sont dans le plan vy, vy et satisfont (Indication :

utiliser (4.1.10))

ny = :tng, Ng = 0.

Les deux plans associés a cette contrainte tangentielle maximale, appelés parfois plan de cisaille-
ment mazximal, sont les plans bissecteurs des directions principales v; et v correspondant aux
contraintes normales principales extrémes. C’est fréquemment cette contrainte de cisaillement maxi-
male qui provoque des ruptures du matériau, d’ott des faces de rupture en dent de scie (cf. figure
2).

‘-wu—_
1
il

FIGURE 4.2 — Rupture en dent de scie
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10. On suppose maintenant que

oy =011 <OJ]]

En utilisant (4.1.8)), montrer qu’alors le point P = (X,Y") se trouve nécessairement sur le cercle de
diametre ((o71,0), (o711,0)).

Y |

o =0y 0 oy X

FIGURE 4.3 —cas oy = o771 < o717

Vérifier que 'angle ¢ représenté sur la figure 4.3 vérifie

X — gr AP
cosp = =
4 AP orrr—or’
et que ng défini par (4.1.10) satisfait
9 AP?
ng=-——.
57 (o1r —o1)?

En déduire que @ représente ’angle de n avec la direction principale vy (i.e. que | cos | = [n.vyrg]).

11. Montrer qu’a chaque point P du demi-cercle correspond tout un cone de directions n, cone de
révolution d’axe vrr et de demi-angle au sommet (OX, AP) = ¢. En particulier, vérifier que le
point A sur la figure 3 correspond a tout le plan vy, vy;.

12. En quel point la contrainte tangentielle maximale est-elle atteinte et quelle est sa valeur ? Quels
sont les plans de cisaillement maximal ?

13. Que se passe-t-il dans le cas oy = o5y = o777 7

4.2 Exercice : tenseur des contraintes plan. Fonction d’Airy

On dit qu'un champ de contraintes o est plan (relativement au plan (O, z1,z2) s’il ne dépend que de
r1 et de xo, et est de la forme :

o11(z1,22) o12(z1,22) 0
o= | oi2(z1,22) 02(z1,22) 0
0 0 0

Pour un champ de contraintes plan, si les forces volumiques sont nulles, les équations d’équilibre dive = 0
94t
s’écrivent

o11,1 + 0122 =0,

—
=
o o
N =

S~—

021,1 + 0222 = 0.
On a vu précédemment (cf. (1.5.16)) que
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[f € CHU;R?),  fia+ fao=0] — 3 (a1, 32) € C2(V), {fffjffl' (4.2.3)

On suppose de plus que o est de classe CL.

1. Montrer que, compte tenu de (4.2.3)), ’équation (4.2.1) entraine

011 = (@1),2
012 = —(sﬂl),L

2. Montrer que, compte tenu de (4.2.3), ’équation (4.2.2)) entraine

3 o1 (z1,20) € C*(U), {

g =
IR

3. Déduire de la symétrie de o que

(p1)1+ (p2),2 =0.
4. Appliquant a nouveau (4.2.3)), montrer que

Y1 = X,2

3)((.’1?1,,%2) GCS(U), {
Y2 = —X,1-

5. En déduire que

X22 —xa2 0
o= —-x122 x1u1 O
0 0 0

La fonction x est appelée fonction d’Airy. Inversement, pour toute fonction x(z1, z2) de classe C?,
le champ o défini ci-dessus est un champ de contrainte plan.
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Chapitre 5

Etude des déformations

5.1 Notion de déformation

On dira qu’un milieu continu en mouvement a subi des déformations entre l'instant ¢ = 0 et 'instant
t si les distances relatives des points ont varié. La notion de déformation est locale : le milieu peut
se déformer & certains endroit et ne pas se déformer & d’autres endroits. On est amené a étudier la
présence de déformation a 1’échelle microscopique, c’est a dire a étudier les variations de distance entre
points trés proches les uns des autres. La formule de Taylor permet alors d’exprimer ces variations en
fonction du gradient de la transformation. Supposons que le milieu continu en mouvement soit défini par
la transformation

f:(X,1)€Q(0) xRt — f(X,t) € Q1). (5.1.1)
Pour simplifier les notations, on pose, comme dans (2.4.3),

F(X,t) = Vf(X,1).

La matrice F', qui est la matrice jacobienne de la transformation f, est appelée le gradient de la trans-
formation. Le développement de Taylor au premier ordre s’écrit (voir Remarque [5.1.1])

FX1) = F(Xot) = F(X,)(X — Xo) + o[ X — Xol) VX0, X € Q0). (5.1.2)

Lorsque X est proche de X, le terme o(]| X — Xp||) peut étre négligé. Dans ce cas, notant

dMy =X —Xo,  dM := f(X,1) - f(Xo.t),
I'équation (5.1.2) devient

dM = FdM,, (5.1.3)

Choisissons un second point quelconque de coordonnée X’ proche de X et posons

SMo=X'—Xo, oM = f(X',t) - f(Xo,t).

On obtient de la méme fagon

5M = F3M,. (5.1.4)

La déformation au voisinage du point M, peut se caractériser en étudiant les variations de produits
scalaires

— ==

dM - 0M — dMyé My,

en fonction des vecteurs infinitésimaux dMy, 6 M.



Remarque 5.1.1. Soit Q un ouvert de R™ et f € CN(Q). Pour tout a = (ay,...,a,) € N et tout
x = (21, ...,2Tn) € Q, on introduit les notations

la| = a1 + ... + an,
al = aqlas!...ap,!,

gle
0%1310%x,...0% x,,’

[ R e SR 2>}
¥ =z]'Ty’.

Def=

QAn
n -

Le développement de Taylor de f a l'ordre N au point xg € ) s’écrit

flay=" > M(%—xo)%w(llx—mo\l]v). (5.1.5)

a!
aeN", |a|<N

5.2 Tenseur des dilatations. Tenseur des déformations

Posons
— —
dM() = (dX17dX27dX3)’ (SMO = ((5X1,5X2,(5X3),
N . (5.2.1)
dM = (del, dl’g, d.’tg), oM = (51'1, 5%2, 5%3)
Compte tenu de (5.1.3)) et de (5.1.4), on a
— - — — _—
dM - M = (FdMy) - (FSMy) = (FdMy);(FéMy);
= F0dX o FipdXp = dXo(FiaFip)0 X5 = dX0CopdXs
— dM, - C5M,,
ou C est la matrice de composantes Cypp := Fjo Fi3. En d’autres termes, on a
T T
dM - 6M = dM, - Co My, (5.2.2)
ol
C =F"F. (5.2.3)
La matrice symétrique C' définie par (5.2.3)) est appelée le tenseur des dilatations. On a
—— o S s —— e
dM - M — dMydMy = dMy - CSMy — dMy - I6My = dMy - (C — I)é My, (5.2.4)
soit
dM - 5M — dMys Mg = 2dM, - ESM, (5.2.5)
ou la matrice E, définie par
1 1, .

est appelée le tenseur des déformations.

Théoreme 5.2.1. La condition nécessaire et suffisante pour qu’il n’y ait pas de déformation au point M
de coordonnée de Lagrange X a linstant t par rapport a la configuration initiale (0) est que le tenseur

des déformations E défini par (5.2.6) vérifie E(X,t) =0.
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La matrice des dilatations C est symétrique et possede donc une base orthonormée de vecteurs propres
(vi,vir,virr). Ces vecteurs sont appelés les directions principales de déformation. On note Cy, Crr, Crpy
ses valeurs propres :

Cvr=Cry, Cvip=Crvy, Cvirr=Crvinr.
Les valeurs propres Cr, Cry, Crrr sont appelées les dilatations principales. On a :
Théoreme 5.2.2. Les dilatations principales Cyp,Crr, Crrr du tenseur des dilatation sont strictement

positives.

Preuve. Ona
Cr=Cwr-vi=vr - (Cwvy)=v;-Cv; =CusWi)aWi)s = FiaFip(Vi)aVri)s
= (Eia(v1)a)(Fis(vr)p) = [[Fyi|* > 0.
On montre de méme que Cr; > 0 et Crypr > 0. D’apres (6.1.1]), (5.2.3)) et I'exercice (2.4.2)), on a

C1Cr1Crrr = det C = det(FTF) = det FT det F = (det F)? = (det Vf(X,1))? > 0,
donc les valeurs propres Cr, Crr, Crrr de C sont strictement positives. O

Compte tenu de (5.2.6)), on déduit :

Théoréme 5.2.3. Le tenseur des déformations E défini par (5.2.6) est symétrique, posséde les mémes
directions propres que C, et ses valeurs propres Er, Err, Errr sont appelées les déformations princi-
pales. Elles vérifient

Ev;=FEj,, J=1I, II, 111, (sans sommation)

1 1 (5.2.7)
By =3(Cr—1)> 3, J=1, II, III.

5.3 Variation des longueurs

s s
Considérons un élément matériel dMy a linstant ¢ = 0, de longueur dip = ||dMpy|| et de direction
ng (unitaire), i.e. dMy = dlpng. A Uinstant t, cet élément matériel est devenu dM et sa longueur est
dl = ||dM]|. En choisissant 6 My = dMy (et donc 6 M = dM) dans (5.2.5)), on obtient

di? — di2 = [|dM||? — ||dMg||? = 2dM; - EdMg = 2dlono - E(dlon)
= 2dl(2] no - Eno,
dont on déduit
2 72
attil leo = 2n, - Eny, (5.3.1)
dlg
puis
dl \?
J =1+4+2ng-Eng=n9 -ng+ng-2Eng
0
=N - (I + 2E)n0 =Ny - Cno d’aprés " y
et
dl
dly
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Lorsque mg = v est un vecteur propre de C, c’est & dire une direction principale de déformation, on
obtient

dl )2
_ =C si Ng =vy,
( dly J 0 J
ce qui donne une interprétation des dilatations principales et justifie cette dénomination. De méme,
lorsque ng = v, on déduit de (5.3.1) que
0 =2F i =
3 = J Ss1. Ny =Vy,

soit

dl

— =+/1+2E; si ng=vy. (5.3.3)
dly

Si Ej est petit (ce qui est en général le cas lorsque le milieu considéré est un solide élastique, voir le
chapitre suivant), on a /14 2E; =1+ E; + o(Ej), et

di dl — dly
X 1+ E E
de T s+ o(Ey), dly

ce qui donne une interprétation de la déformation principale E; dans la direction principale de déformation
Vy.

=FE;+o(Ey) si mg=vy,

5.4 Variations d’angles
—_
Considérons deux éléments matériels dM, et 0 M faisant entre eux un angle 6y. Posons

dMO = nodlo, (S—M; = l/()(y)‘l()7

— =
ou ng et vg sont des vecteurs unitaires. A U'instant ¢, ces éléments sont devenus dM et 6 M et font entre
eux un angle 6. Posons

— —
dM = ndl, oM = vél,
ou n et v sont des vecteurs unitaires. Nous avons

ng - Vg = cos b, n-v =cosf.
En appliquant la formule (5.2.5)), on obtient
cos 0dlél — cos 90d10510 = 2’1’),() . .EV()dlo(Sl()7
d’ou

diy 8y
dl 6l

dly dlo

cosf = (cosy + 2ng - Evy) TR

et, compte tenu de (5.3.2)),

= (’I’LQ . (I + QE)V())

no - (I + 2E)I/0
\/’n() . (I + QE)TLO\/V() . (I + 2E)I/0

Supposons que ng = v soit une direction principale de déformation associée a la déformation normale
principale Ey, (i.e. que Eng = Ev; = E;v; = Ejng). Alors

cosf =

(5.4.1)

ng - (I+ 2E)1/0 =Vp- (I+2E)n0 = 1/0(1 + 2EJ)’I’L0 = (1 + 2EJ) COSQ(),
\/ Mo (I+2E)no =+/1 +2EJ,
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de sorte que

Vv1+2E;

cosf = co
Vo - (I + 2E)I/0

890 si Ng =v,. (542)

La formule (5.4.2)) entraine en particulier que si ny = v; est une direction principale de déformation
associée & la déformation normale principale E;, (i.e. Evy = E; v ), et si vg est orthogonal & ng, c’est a
dire ng - vg = cos g = 0, alors apres déformation, les directions n et v restent orthogonales entre elles.

5.5 x Dérivée particulaire d’une intégrale de surface.

Nous allons montrer ’analogue de la formule (2.4.1]) lorsque, au lieu de €2(t), on considére une surface
matérielle 3(¢) que l'on suit dans son mouvement. On note n(z,¢) une normale unitaire & 3(¢) au point
z et no(X) la normale unitaire & ¥(0) au point X.

Théoréme 5.5.1 (Dérivée particulaire d’une intégrale de surface).

d

— (ik + kdiv v — (Vv)k) -n dH?. (5.5.1)
dt 2(t)

. 2 =
k(z,t) -ndH / pr

(t)

Le principe de la démonstration, comme pour la formule , consiste a se ramener par changement
de variable & une intégrale sur le domaine fixe ¥(0), & dériver par rapport au temps, puis & revenir par le
changement de variables inverse & une intégrale sur X(t). Dans ce but, nous avons besoin d’une formule
de changement de variable pour les intégrales de surfaces analogue a celle de changement de variable pour
les volumes considérée dans . Dans le lemme suivant, nous étudions le transformé d’une portion
infinitésimale de surface.

Lemme 5.5.1 (Transformé d’un élément de surface). Soit dSy portion infinitésimale de S(0) et soit ng
un vecteur unitaire orthogonal a dSy. Alors dSy est transformée au temps t en une portion infinitésimale
de S(t) de surface H%(S) et de normale unitaire n données par

CofFny
2 — F 2 R Al
H*(dS) = |Cof Fno|H"(dSo), n Cof Fny|
En particulier, on a

nH%(dS) = (Cof F)noH?(dS). (5.5.2)

Preuve. Rappelons que la surface d’un parallélogramme P de cotés les vecteurs u et v est donnée par
H%(P) = ||u Av|| et sa normale unitaire est n, = % Nous considérons, comme portion infinitésimale

—
dSp de S(0), le parallélogramme de cotés deux vecteurs infinitésimaux dMy et dMy tangents & X(0).
Notant ng la normale unitaire a dSg, on a

—
— — dMo N 0 M
H2(dSo) = ||[dMg A OMg||,  mg = —p 0 (5.5.3)
|[dMo A 5 Mol
Le parallélogramme dSy est transformé en un parallélogramme dS de cotés deux vecteurs infinitésimaux

— s %
dM = FdM, et 6M = F§My (voir (5.1.3)) et de normale unitaire n. L’élément de surface orienté
noH?2(dSy) est donc transformé en

nH2(dS) = dM A 6M, (5.5.4)
ou
— —
— - dM N SM
H2(dS) = ||[dM ANSM||, n=-————m—. (5.5.5)
||[dM A M|
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D’apres ([1.7.4]), on a
— = — — —
dM NSM = FdMy AN FSMy = Cof FdMy N § M.

ce qui, compte tenu de (5.5.3), (5.5.4), et (5.5.5) donne (5.5.2). O

Nous énoncons ’analogue de la formule de changement de variable (2.4.5) pour les intégrales de surfaces :

Proposition 5.5.1 (formule de changement de variable pour les intégrales de surfaces).

k(z,t) -ndH? = k(f(X,t),t)-Cof FnodH?. (5.5.6)
(1) %(0)
Preuve (idée). fZ(t) k(z,t)ndH? = fz(t) k(z,t)nH?(dS) et d’apres (5.5.2)), nH2(dS) = Cof FnoH?(dSo),
d’ott le résultat. O

Preuve du Théoréme [5.5.1} On déduit de (5.5.6) que

4 k(z,t) -ndH? = / dk —(f(X,1),t) - (Cof Fng)dH? +/ kE(f(X,t),t)- <£CofF> nodH?.
dt Js x(0) £(0) dt
(5.5.7)
En appliquant - a dt7
dk dk
/ —(f(X,1t),t) - (Cof Fng)dH?* = / — -ndH>. (5.5.8)
D’apres (| et -,
F(C’ofF)t = (CofF)'F = JI, F'CofF =CofFF'=JI. (5.5.9)
D’apres et - , S (F(CofF)t) = T = J(div v)I, soit
t
E(C’ofF)t + Fd(c‘:lifF) = J(div v)I. (5.5.10)
D’apres , % = VvF, donc d’apres ,
dF
E(CofF)t = VuF(CofF)" = JVv. (5.5.11)
On déduit de (5.5.10) et (5.5.11) que
t
F% =J(dive I —Vwv).
En transposant, on obtient
4COFE pi _ 1 (div v I — Vo).
dt
En multipliant & droite par CofF', on trouve

dCC‘l’f F ptcofF — J (div v I — V') Cof F.

Compte tenu de , on déduit

dCofF

T (div v I — V') CofF = div v Cof F — Vv' CofF.
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D’apres appliqué & A = Vv et b = CofFng, on a
k-Vv'CofFny = Vvk - (CofFny).

Appliquant les deux équations précédentes et la formule de changement de variable (5.5.6) pour les
intégrales de surfaces, on obtient

k(f(X,t),t)- (gCofF> nodH? = k(f(X,t),t)- (divv I —Vv') Cof FnodH?
£(0) dt £(0)
= / (div v I — Vo) k(f(X,t),t) - Cof FngdH?
2(0)
= / (kdiv v — (Vo)k) - ndH?,
(1)
qui, combiné a (5.5.7)) et (5.5.8]), donne (5.5.1]). O
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Chapitre 6

Equations de I’élasticité linéaire

6.1 Notations.

Considérons un milieu continu en mouvement. La position a I'instant ¢ d’'un point matériel occupant
la position X & linstant 0 est notée f(X,t). L’application f est appelée la transformation. Le gradient
de la transformation est noté F' :

ofi
F(X,t)= Xt F;; = . 1.
( ,) VXf( 7)7 j an (611)
On rappelle que le tenseur des déformations de Green-Lagrange est la matrice E définie par
1
E= i(FtF—I). (6.1.2)

6.2 Définition générale d’un matériau élastique

Un milieu continu est dit élastique si le tenseur des contrainte o s’exprime en fonction de la position
et du tenseur des déformations E calculé par rapport a un état de référence pour lequel les contraintes
sont nulles.

Un milieu élastique est dit linéaire lorsque I'approximation linéaire de sa loi de comportement donne
une description convenable de son comportement. Les équations régissant le mouvement d’un milieu
élastique sont obtenues en reportant cette loi de comportement dans I’équation du mouvement

py =dive + pf  dans Q(t).

Mais la divergence ci-dessus est exprimée en coordonnées eulériennes rattachées au milieu physique a
Pinstant ¢ (dive = %jaijei) tandis que le tenseur des déformations E dépend des coordonnées La-
grangiennes X rattachées au milieu physique a I'instant initial ¢ = 0. Nous sommes amenés a exprimer
I’équation du mouvement en coordonnées de Lagrange. Cela nous conduira & définir un nouveau tenseur
des contraintes exprimé en coordonnées de Lagrange.

6.3 Equations du mouvement en coordonnées de Lagrange et
relations de comportement.

La loi fondamentale de la dynamique implique (voir (3.3.1))

d
@t o pdH? (z) = /w(t) pf dH3(z) + /8w(t) ondH?(z)  Vw(t) C Qt). (6.3.1)
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D’apres (2.4.5)), (5.5.6])), on a les formules suivantes associées au changement de variables z = f(X,t)
dans les intégrales de volume et dans les intégrales de surface, pour tout w(t) C (¢), tout champ scalaire
k(x,t) et tout champ vectoriel k(z,t) :

/ k(;v,t)d?{?’(x):/ E(f(X,1),6)J(X,t)dH?*(X),
w(t)

w(0)

(6.3.2)
/ k(z,t) -ndH?(z) = / k(f(X,t),t)-Cof FngdH*(X),
Ow(t) Ow(0)
o J =det F et Cof F est la matrice des cofacteurs de F. On déduit de et que
d
i [ PLIO5 0,00 (.0, 00X, 0a°(X) =
w(0
/ p(f(X, ), ) f(f(X,1),0) T (X, )dH*(X) +/ o(f(X,1),t)Cof FnodH?*(X)  Vuw(t) C Q(1),
w(t) Ouw(t)
que nous écrirons, pour alléger les notations
d
— pJdH3 (X) = / pf JdH3(X) + / 0CofFnodH*(X)  Vw(0) C Q(0). (6.3.3)
dt w(0) w(0) Ow(0)

La densité de forces on sur dw(t) devient donc une densité de forces oCof Fng sur 0w(0). Cela suggere
d’introduire un nouveau tenseur des contraintes &, connu sous le nom de ”premier tenseur des
contraintes de Piola Kirchhoff”, et défini par

6(X,t) = o(f(X,1),t)Cof F(X,1). (6.3.4)

Il est utile de remarquer que, comme CofF = det F'F~! (notant F~% = (F*)~1), (6.3.4) équivaut a

1
det F

(X, ) Ft =a(f(X,1),1). (6.3.5)
D’apres et 7

/ piv JdH3(X) = / pf JAH? (X) + / onodH*(X)  VYw(0) C Q(0).
w(oy dt w(0) 9w (0)

11 résulte de la formule de Stokes et du choix arbitraire de w(0) que

d
P? J=pfJ+divxe dans Q(0), (6.3.6)

ou apparait 'opérateur différentiel divx par rapport aux coordonnées de Lagrange.
Le principe de conservation de la masse permet une simplification de (6.3.6)). En effet, on a :

Lemme 6.3.1. Notant
po(X) = p(X,0), (notation) (6.3.7)

la masse volumique a linstant t = 0, on a
(XA, T(X,8) = po(X) VX, 1) € 2(0) x R* (6.3.8)

Démonstration. Soit w(t) un sous-systéme matériel de Q(t) que 'on suit dans son mouvement. On note
m(w(t)) sa masse, donnée par (3.1.1)), c’est a dire par

m(w(t)) = / | P ),
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En utilisant la formule de changement de variables (2.4.5)), on déduit
mlw() = [ pFO,0T(X, 0dHE ()
w(0)
Par ailleurs, notant po(X) = p(X,0) la masse volumique du milieu & l'instant ¢ = 0, on a
m(w(0)) = / o PO (X).
D’apres le principe de conservation de la masse, on a m(w(0)) = m(w(t)). On déduit donc

/ PO = | p.00(x a3 (x), - (o) € 20)

w(0)
Le choix de w(0) étant arbitraire, on déduit (6.3.8]). O
Compte tenu de (6.3.8)), 'équation (6.3.6)) s’écrit

pO%v = pof +divxe dans Q(0). (6.3.9)

L’inconvénient du tenseur ¢ est qu’il n’est pas symétrique. Pour y remédier, on introduit le second
tenseur des contraintes de Piola-Kirchhoff noté ¢ et défini par

o= %Coth 5 = %CothaCofF. (6.3.10)

Le second tenseur des contraintes de Piola-Kirchhoff est symétrique. De plus, comme %C’ofF t=F-1,
on a

6 =Fo, (6.3.11)
et équation (6.3.9) s’écrit

,00%1) =pof + divX(Fé) dans (0). (6.3.12)

Definition 6.3.1 (Définition générale d’un milieu élastique). On dit qu’un milieu matériel est élastique
s7il est caractérisé par une loi de comportement liant son second tenseur des contraintes de Piola-Kirchhoff
o a son tenseur des déformation E, c’est a dire une loi de comportement de la forme

Q>

—g(E), E= %(FtF —1), g(0)=0. (6.3.13)

Les équations du mouvement , ol 6 est donné par , sont tres non linéaires. Il est difficile
d’en obtenir des solutions. Nous allons en effectuer une linéarisation qui fournira les équations classiques de
Délasticité. Cette théorie linéarisée rend bien compte du comportement de nombreux milieux (la plupart
des métaux, le bois, certains plastiques, etc...).

6.4 Linéarisation des équations de 1’élasticité.

6.4.1 Principe de la linéarisation

On introduit le vecteur déplacement
u(X,t) =z - X, z = f(X,1). (6.4.1)
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et on linéarise par rapport a Vu, c’est a dire que I'on effectue des développements limités par rapport a
Vu en ne conservant que les termes constants et les termes linéaires par rapport a Vu. Cela. revient a
supposer que les composantes de Vu sont tres petites, c’est a dire

8ui
0X;
Cette approximation est connue sous le nom hypothése des petites perturbations, qu’on note en
abrégé h.p.p..

< 1.

6.4.2 Tenseur des déformations linéarisées

D’apres (2.4.3)) et (6.4.1)),

F=Vf=Vu+X)=I1+Vu, (6.4.2)
d’olt, compte tenu de (6.3.13)),

E-= (FtF—I):%((I—FVtu) (I+Vu) -1I)

(Vu + V'u + VuVu) (6.4.3)

(Vu + V'u) + O(|Vul?).

N =N =N =

On déduit :
Théoréme 6.4.1. Sous [’hypothese des petites perturbations,

E =¢(u) + O(|Vul?). (6.4.4)

ou g(u), défini par

e(u) = % (Vu+V'u) , (6.4.5)

est appelé le tenseur des déformations linéarisées du milieu continu.

6.4.3 Linéarisation de la loi de comportement

Supposons que l'application g apparaissant dans (6.3.13)) soit différentiable & l'origine. Fixons i, et
écrivons le développement de Taylor de g;;(E) a l'ordre N = 1 au voisinage de 0. D’apres (5.1.5)), (6.3.13)
et (6.4.4), compte tenu de g(0) = 0,

2 0gi;
(0)ij = 9i;(E) = 9i5(0) + 3E1:z (0)Ew + O(IE)?)
_ gg’i (0) (2a(w) + O( V) + O(|Vul?)
_ 89721 2
= 35, (0) (e (w)) + O(|Vul?).
soit, en posant
dgi;
Aijil = aézjz (0), (6.4.6)
Gij = aijrien(u) + O(|Vul?), Vi je{1,2,3}, (6.4.7)

ou gy est défini par (6.4.5).
Definition 6.4.1. La relation (6.4.7) est appelée la loi de comportement de l’élasticité linéarisée. Les
coefficients a;ji définis par (6.4.6) sont appelés les coefficients d’élasticité. Du fait de la symétrie des

tenseurs o et e(u), ils satisfont les relations de symétrie

Qijkl = Qjikl = Qijlk- (6.4.8)
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6.4.4 Expressions linéarisées du premier tenseur des contraintes de Piola-
Kirchhoff ¢ et du tenseur des contraintes o

D’apres (6.3.11)), (6.4.2) et (6.4.7)),

0ij(X,t) = (Fé)ij d’apres
= ((I—i—V'u,)é)Z_j d’apres
= 57” + (Vu&)ij
= é’ij + O(|Vul?) d’apres

= ajjuck(u) + O(|Vul?)  d’apres (6.4.7).

Ainsi le premier tenseur des contraintes de Piola-Kirchhoff vérifie

6:i5(X,t) = aijmen(w(X, 1)) + O(|Vul?), Vi,j € {1,2,3}. (6.4.9)

D’apres (6.3.5), (6.4.2) et (6.4.9) on a

1
o5 (S 0.0) = (b (X.OF") dapres (G33)
detF i
1
X t
d tFUzm< (F )m7
1 du;
=T (aimklEkl(U) + O(|Vu|2)) ( mj + X, ) d’apres ) et -
1
= Qoo Yiaken () + O(|Vul?).
D’ou )
0ij (f(X,1),8) = g aimen (v u) + O(|Vul?). (6.4.10)
On a )
det F' = éfijkgpquiijqur d’aprés 1.2.9
1 6u 8 8uk R .
651]k5pqr (511) + aX ) (5](1 + aX > <6kr 6X ) dapres (16.4.2])
1 1 ou; .
= égijkgpqraip(sjq(skr + ieijkapqr 8X 6](15](‘7' + O(|VU| ) idem avec 2410
1 ou;
=det] + 5 CikEpik g X, + O(|Vul?)
8 N
=1+ 261’78)( + O(|Vul?) d’apres (1.1.12)
ou;
=1+ X, + O(|Vul?),
soit
J =det F =1+ div u(X,t) + O(|Vu)|?). (6.4.11)
On déduit
1
o (f(X,1),t) = maijklfkl(u) +O(|Vul?) d’apres (6.4.10))

= (L +div u+ O(|Vul*)) " aijuen(u) + O(|Vul*)  d’apres (6.4.11)
= (1 = div u+ O(|Vul*))ayjren (u) + O(|Vul?)
)-

= aijrier(w) + O(|Vul?
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soit

0ii (f(X,1),t) = amer (uw) + O(|Vul?), Vi, j € {1,2,3}. (6.4.12)

On conclut :

Théoréme 6.4.2. Le tenseur des contraintes o(f(X,t),t), le premier tenseur des contraintes de Piola-

Kirchhoff 6(X,t) et le second tenseur des contraintes de Piola-Kirchhojj‘"é(X, t) ont le méme développement
au premier ordre sous l’hypothése des petites perturbations. La loi de comportement de [’élasticité linéarisée
s’exprime indifféremment sous la forme (6.4.7), (6.4.9)), ou(6.4.12)).

6.4.5 Linéarisation des équations du mouvement

On a
d O*f(X,t
&'U(f(X, t)at) = %
Pu(X. 1) (6.4.13)
u ) 5 N
="z d’apres (6.4.1)).

Les équations du mouvement ((6.3.9), c’est a dire

d
POV = pof +divxe dans (0).

s’écrivent, compte tenu de ((6.4.13) et (6.4.9)

Pu(X,t .
Po% = pof + divx (aijrien(u) + O(|Vul?))  dans Q(0).
On supposera que le terme div x (O(|Vu(?)) peut étre négligé. L’équation du mouvement linéarisée s'écrit
alors
0%u(X, 1)

PO = pof +divxe'  dans Q(0)

(6.4.14)
UZ(X, t) = al-jklekl(u)ei K e;.

Remarque 6.4.1. La matrice o' est le tenseur des contraintes linéarisé. Les équations (6.4.7), (6.4.9),

(6.4.12) et (6.4.14) montrent qu’en élasticité linéarisée, il n’y a pas lieu de distinguer o de &, 6 ou o'.

Dans la suite du cours, pour simplifier, ces quatre tenseurs seront notés o :

=0l = ajjuen(u)e; e, dans Uapprozimation linéaire. (6.4.15)

[STH

o=0=

6.4.6 Conditions aux limites linéarisées
Si les forces sont données sur une partie I'; (¢) de la frontiere 0Q(t) de £2(t) par une densité surfacique
F(x), on a
oz, t)n(z,t) = F(z) sur [y(t). (6.4.16)

A Dinstant ¢t = 0, les points matériels de I';(f) occupent une portion I'y(0) de 9€(0), et la normale
extérieure ng(X) est donnée en fonction de n(x,t) =n(f(X,t),t) par la formule (5.5.2)), c’est & dire par

_ CofF(X,t)no(X)

n(f(X,t),t) = |Cof F(X,t)ng(X)|

(6.4.17)
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Or,

1
(COfF)U = EeimnsquFmpan d’aprés ‘)
1 .
= §€¢mnsqu(f + V), (I + V), d’apres (6.4.2)
1 8um 8“11
- §5imn5qu(6mp + aX )(67“1 + an)
1
= igimngqu‘smp‘an + O(|Vu))
1
= 5 €imnEjmn + O(|Vul)
=0;; + O(|Vu|) d’apres (1.1.12)),
donc
CofF = (1+ O(|Vul|))I. (6.4.18)

On déduit de (6.4.17)) et (6.4.18) que

n(f(X,t),t) = (1 4+ O(|Vu|))ne(X).
La condition aux limites ((6.4.16f) s’écrit donc dans I'approximation linéaire,
o(f(X,1),t)no(X) = F(f(X,t),n0(X)) sur I';(0).

On peut donc écrire les conditions aux limites indifféremment sur le bord 9€(t) ou sur le bord 9€(0).

6.4.7 Lien entre dérivées par rapport aux variables de Lagranges et dérivées
par rapport aux variables d’Euler dans ’approximation linéaire

o U 000) = (Gl . tm) 2.0
(8%) d’apres (6.1.1])
(317]) <6Jl + gX ) d’apr\es
= (52) Gex0.00+0(vu)).

Donc, dans 'approximation linéaire, il n’y a pas lieu de distinguer les dérivées partielles par rapport aux
variables de Lagrange des dérivées partielles par rapport aux variables d’Euler :

9y

0 Y(f(X,1),t) ~ (83: ) (f(X,t),t) dans 'approximation linéaire. (6.4.19)

X,

6.4.8 Equations de I’élasticité linéaire

Supposons que l'on connaisse la densité F' des forces appliquées sur la frontiere €2 du milieu continu
élastique linéaire occupant le domaine §2. En remarquant que la vitesse v et ’accélération -y vérifient
d’aprés [2.2.1), [@.3.1) et (6.4.1),

o
Todt’ RAPTe

les équations gouvernant le comportement du milieu continu élastique linéaire s’écrivent alors, d’apres
(3.3.6), (6.4.5), (6.3.10), (6.4.7) et (6.4.19))

(6.4.20)
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2
U —

e dive + pf dans Q, (équations du mouvement)

Oij = QijkhEkh (W), loi de comportement) (6.4.21)

on=F sur 02

(
(
1
e(u) = 5(Vu + V'u), (tenseur des déformations linéarisées)
(

conditions aux limites).

6.5 Conséquence de I’existence d’une énergie interne de déformation

En 'absence d’effets thermiques, c’est & dire lorsque les apports volumiques de chaleur par unité de
temps pw et le vecteur flux de chaleur ¢ sont négligés, I’énergie interne spécifique e vérifie I'équation (voir
(13-5.2)))

Py =9 Dv, (6.5.1)

ot Dv est le tenseur des vitesses de déformation défini par la formule (3.5.1)), c’est & dire
1
Dv = i(Vv + V).

D’apres (6.4.19)), dans le cadre de I'élasticité linéaire, les dérivées par rapport aux variables de Lagrange
X, sont approximativement égales aux dérivées par rapport aux variables d’Euler x;. Compte tenu de

(6.4.5) et (6.4.20), on déduit

1 1 1
Dv=-(Vv+Vh) == (VX (d—u) + V% (d—u>) = gf(VXu—i-VtXu)
2 2 dt dt dt 2 (6.5.2)

= %s(u).

D’apres (6.5.1)) et (6.5.2)), en ’absence d’effets thermique, I’énergie interne spécifique e du milieu élastique
linéaire vérifie I’équation

de o dE(’u,) d{fij
—_— = e = 0j5 .
Pt a v

(6.5.3)

Si I’énergie interne spécifique e est uniquement une énergie interne de déformation, c’est a dire uniquement
une fonction de la déformation &, on a

@ o Oe déij 6.5.4
On déduit de (6.5.3) et (6.5.4) que
de ) d
(pag” — 0ij &5” = 0, (655)

ce qui fournit ’expression suivante des composantes du tenseur des contraintes o en fonction de I’énergie
spécifique e :

0 ..
P gy Wi je{1,2,3). (6.5.6)
851‘]'
Compte tenu de (6.4.15)),
Oe .
P7— = Qijkh€kh Vi, j € {1, 2, 3}. (6.5.7)
85@‘
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En dérivant par rapport a ey, on obtient I’expression suivante des coefficients d’élasticité a;;xn en fonction
de I’énergie spécifique e :

0%
— =y, Vi, g, k,h e {1,2,3}. 6.5.8
P oeomy ik iJ { } (6.5.8)
D’apres le théoreme de Schwarz, on a OE?Z‘ZM = 865:55,__ , donc
Qijkh = Qkhij Vi,j,k,h S {1,2,3}. (659)

Compte tenu de (6.4.8)), les coefficients d’élasticité vérifient les relations de symétrie suivantes :

Qijkh = Qjikh = Qijhk = Okhij Vi, j, k,h € {1, 2,3}. (6.5.10)
Si maintenant on integre (6.5.7), ce qui devient possible grace a (6.5.9)), on obtient

1
€ = %aijkhaijskh. (6511)

On a donc établi le théoréme suivant :

Théoréme 6.5.1. La condition nécessaire et suffisante pour qu’il existe une énergie de déformation e
en €lasticité linéarisée est que les coefficients d’élasticité satisfassent

Qijkh = Qkhij Vi,j,k,h S {1,2,3}. (6512)
Compte tenu de (6.4.8)), les coefficients d’élasticité satisfont

Qijkh = Qjikh = Gijhk = Qkhij Vi, j, k,h € {1,2,3}. (6.5.13)

En labsence d’effets thermiques, on a

1 1
€ = 5, GinkEGERh = %0(5) (€, (6.5.14)
et
Oe 8%
Oij = pagij’ paf‘?ijaf‘?kh = Qjjkh Viajv kv h e {17 27 3} (6515)

6.6 Isotropie. Loi de Hooke

6.6.1 Définition d’un milieu élastique isotrope

Si, en un point X, le milieu a les mémes propriétés quelles que soient les directions autour de X,
on dit qu'il est isotrope. Considérons un milieu élastique, linéaire ou non. La loi de comportement d’un
milieu élastique dit que le tenseur des contraintes o est une fonction du tenseur des déformations E :
o = o(E). La propriété d’isotropie s’exprime en disant que si, dans une base orthonormée (v1,vs,v3), le
tenseur des déformations E donné par

E = Eijlli & vj, (661)

est associé au tenseur des contraintes
G‘(E) = 04V; QVj, (6.6.2)

alors dans tout autre base orthonormée (ni,ns,n3), le tenseur des déformations
E = Eijni dn;, (663)
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est associée au tenseur des contraintes

Autrement dit,

O'(E) =0n; n;. (665)

Definition 6.6.1. Soit Q un milieu élastique linéaire ou non linéaire et soit X un point matériel de 2.
On note 0 = o(E) la loi de comportement élastique du miliew au point X. On dit que le milieu matériel
est isotrope au point X si et seulement si, quels que soient les nombres réels Fy; et 05 avec Ey; = Eyy,
oij = 0j; i,j € {1,2,3}, et quelle que soit la base orthonormée (v1,v2,v3) de R3,

o(Eijv; ®@v;) =0, Qv; = 0(E;n;®n;)=o0;n; ®n; pour toute base orthonormée (n1,n2,n3).

Exercice

Soient (v1,v2,v3) et (n1,n2,n3) deuz bases orthonormées de R? et soient E, o, E ceto définies respec-
tivement par (6.6.1]), (6.6.2), (6.6.3), (6.6.4). Soit, en utilisant la convention de sommation des indices
répétés,

Q=v,9n;
1. Montrer que Q transforme la base orthonormée (ny,m2,mn3) en la base orthonormée (v1,va,v3).
2. Montrer que Q'Q = 1.

3. Vérifier en utilisant (1.1.4)) que
E=Q'EQ, &=Q'(EQ.

4. En déduire que le milieu élastique est isotrope si et seulement si, quelle que soit la matrice ortho-
gonale Q et le tenseur des déformations E, on a

c(QEQ)=Q'c(E)Q, VQecM;s:(R), QQ=QQ =1I
L’exercice ci-dessus nous permet d’énoncer la proposition suivante :

Proposition 6.6.1. Un matériau élastique linéaire ou non est isotrope en un point X si et seulement si
sa loi de comportement E — o(E) vérifie

0(Q'EQ)=Q'c(E)Q, (6.6.6)

quelles que soient la matrice orthogonale Q et la matrice symétrique E.

6.6.2 Energie élastique d’un milieu élastique linéaire isotrope

Lemme 6.6.1. Dans un matériau €lastique linéaire isotrope, l’énergie €lastique vérifie

e(Q'€Q) =ele), Q€ M3x3(R), Q'Q=1I (6.6.7)

Démonstration. Compte tenu de (6.5.14)) et de , on a
1 1 1
t _ L t OO — Ot . OleO — &
(Q'eQ) = 5-0(Q'eQ) :Q'Q = ;-Qo(E)Q: Q'@ =
1 1
= % Epaququgrf?rstj = %( gp ﬁr)(quQsj)qu&?m

= %(QQt)pr(QQt)quz}qErs = %

Q' (e)Q)i;(Q'eQ),
1
OprOqsOpqers = ?papq'qu = e(e).
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Lemme 6.6.2. Dans un matériau élastique linéaire isotrope, l’énergie élastique s’écrit

1
°=3 ((a—b)tr(e®) + b(tre)?), (6.6.8)
o
a = a1111 = (2222 = (3333} b= ai122 = @1133 = G2233. (6.6.9)

Démonstration. Compte tenu de sa symétrie, la matrice € admet une base orthonormée de vecteurs
propres associés aux valeurs propres €1, €2, €3. Il existe donc une matrice @ orthogonale, c’est & dire

€1 0 0
vérifiant (6.6.6)), telle que Q€@ = [ 0 e 0 |. On déduit de que
0 0 €3
€1 0 0
efe) =e 0 e O )
0 0 €3
€1 0 0
puis de (6.5.14)), en remarquant que | 0 &3 O = d;;¢; (sans sommation), et en tenant compte de
0 0 €3

j
(6.5.9), que (dans les équations suivantes, nous n’utilisons pas la convention de sommation des indices
répétés)

3 1 3 1 &1 0 O eg 0 O
e = ‘ Z %aijhkeijskh = ‘ Z ?aijhk 0 g2 0 0 &9 0
i,7,k,h=1 i,7,k,h=1 0 0 €3 ij 0 0 €3 kh
3 3
1 1 (6.6.10)
=5, Z ijkn0ij€j0knER = % Z QiikkEi€k
i,3,k,h=1 i,k=1
1
= 2 (a1111€% + 22025 + 333363 + 2011226162 + 2011338163 + 2a2233€2€3) .
Dans la formule ci-dessus, 'ordre des valeurs propres est indifférent, i.e.
6(517 £2, 53) = 6(817 €3, 82) = 6(527 €1, E3) = 6(527 €3, El) = 6(837 €1, 52) = 6(537 £2, 51)'
Il en résulte que aii11 = a2222 = 43333 et aj192 = 1133 = A2233. Posant
G = ai111 = A2222 = G3333; b= ai122 = a1133 = 2233, (6.6.11)
on déduit de (6.6.10)) que
1
e= % (a(sf + 53 + E%) + 2b(e169 + €163 + 5253)) . (6.6.12)
Remarquant que
tre =e; +eo+e3;  tr(e?) =l +e3 +e2, (6.6.13)
(tre)? = (61 +e2 +e3)> =3 + €2 + 2 4+ 2(c162 + €163 + £263), o
on déduit de (6.6.12)) que
1
e= 5 (atr(e?®) + b((tre)® — tr(e?))
0
1
= 2 ((a—b)tr(e?) + b(tre)?) .
Le lemme est démontré. O
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6.6.3 Loi de comportement d’un milieu élastique linéaire isotrope : Loi de
Hooke. Coefficients de Lamé.

Théoréme 6.6.1 (loi de Hooke). Dans un matériau élastique linéaire isotrope, le tenseur des contraintes
s’écrit

‘ o = Atre)T + 2pe, ‘ (6.6.14)
et l’énergie spécifique est donnée par
1
e= 5 (A(tre)® + 2ptr(e?)) . (6.6.15)

La loi de comportement (6.6.14) est appelée la loi de Hooke. Les coefficients A, p sont appelés les
coefficients de Lamé. Ils sont donnés par (cf. (6.6.11))

a—>b _ G111 — G112 (6.6.16)
2 2 '

A=b=uai; p=

Démonstration. D’apres le lemme [6.6.2 I'énergie spécifique d’un milieu élastique linéaire isotrope est
donnée, lorsque 'on néglige les effets thermiques, par

e= % ((a —b) tr(e?) + b(tre)?) = % ((a — b)epgepq + beppEqq) s (6.6.17)

ou
a = aii11 = a2222 = A3333; b:= a1122 = a1133 = G2233.

D’apres le théoreme [6.5.1] le tenseur des contraintes d’un milieu élastique linéaire est donné par (voir la

formule (6.5.15))

Oe

Oij :'085--'
v

On déduit

0 1
Oij = paf‘:ij <2p ((@ = b)epgepg + bgpp%q))
1

0 0
=3 ((a - b)@ (€pgepq) + bg (sppsqq))
ij ij

1
5 ((a = b)20ipdjqepq + b (20ij24q))
((l — b)Eij + béw tre
autrement dit,

o =b(tre)] + (a — be.

En introduisant les coefficients de Lamé
a—1b

2 b
on obtient la loi de Hooke (6.6.14)). Revenant & (6.6.17]), on trouve

A=b p=

L (0= ) te(e?) + btre)?)

€= %
1
= 2 (AMtre)® + 2utr(e®)),
soit (6.6.15). O
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6.6.4 Calcul des coefficients d’élasticité d’un matériau élastique linéaire iso-
trope

D’apres (6.5.8) et (6.6.15) on a, Vi, j, k. h,

0%e .
Aijkh = Py 5 d’apres (6.5.8)
aijaakh
= ,0672 (i ()\(trz-:)2 +2u tr(ez))> d’apres ((6.6.15)
asijc%kh 2p =
1 0 0
) Dz (afkh (Aeppeqq + 2N5pq5pq))
1 0 ( Oe Oe
— 2)\ pp 4 prq >
2 85” a&“kh 5qq + “8skh qu
0
= 36" (Aékhqu + 2M6pk6qh€qp)
ij
0
= ? (Aékhé‘qq + 2,u€hk)
ij
Oe 0 Enk t+ €kh
= Ajp =22 42 (7)
kh 652-]- + Maéij 2
0 <5ih5'k + 5ik5'h)
= Mgndi; + 2 e LS LA
khCij + Masij 2 ’
soit
@ijkh = AijO0kn + w(0ikdjn + 0indjk), Vi, g, k,h € {1,2,3,4}. (6.6.18)
En particulier,
Qijij = Qijji = [ Vi # j,  (sans sommation des indices répétés)
Qiijj = A Vi # j,  (sans sommation des indices répétés)
Qi = N+ 2u Vi,  (sans sommation des indices répétés)
aijrr =0 si card {i,5,k,1} > 3.
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Chapitre 7

Existence et unicité de la solution
d’un probleme d’élasticité linéaire

7.1 Exemple 1 : Probleme d’équilibre avec condition aux limites
de Dirichlet homogenes.

Nous cherchons un champ de déplacement u : Q — R3 satisfaisant le probleme d’équilibre déduit

2 —
de (6.4.21)) en remplagant ‘fiT;‘ par zéro la condition au bord o(u)n = F sur 99 (dite ” condition aux
limites de Neumann”) par la condition au bord (dite ”condition aux limites de Dirichlet homogene”)

u =0 sur 09, c’est a dire :

—dive(u) = pf dans (2,

0ij(u) = aijrnepn(u),  (noté o(u) = ae(u))

1 7.1.1
e(u) = 5(Vu +V'u), (7-1.1)
u=0 sur 0§,
lorsque la condition
aijk?hSijS]/{;h < ClSHSll, VS, S’ e S3 (C > 0) (7 1 2)

AijknSijSkn > Si;Si;, VS € Sy (> 0) (condition d’ellipticité)
est vérifiée.

7.1.1 Espace de Hilbert H'(Q2; R?). Inégalités de Poincaré et de Korn. Théoréme
de Lax Milgram.

On rappelle que 'espace de Sobolev H(Q) est défini par

391792793 S L2(Q)7

HY Q)= ue L*9) .
/ fpidr = —/ gipdr Yo e CX(Q), Vie{1,2,3}
Q Q

(7.1.3)

Siu e H'(£), les fonctions g; sont unique et notée g; = u ;. L’espace de Sobolev H'(Q;R?) est défini par
H' (O R?) = {u € L*((4R?), u; € H'(Q) Vie{1,2,3}}. (7.1.4)
L’espace de Sobolev H!(2) est associé au produit scalaire et & la norme
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(u,v) g1 = / uwv + Vu - VodH?,
Q

lullty =, 0)n — \/ [ 190
Q

qui lui donnent une structure d’espace de Hilbert. On définit de méme P'espace de Sobolev H!(Q;R3) : il

est associé au produit scalaire et & la norme

(u,v) g1 :/u~v+Vu:VvdH3,
Q

[[ul|z, = (u,u)gr = \// (lu|? + Vu : Vu) dH3.
Q

qui lui donnent aussi une structure d’espace de Hilbert. Si la frontiere de (2 est assez réguliere, on peut
définir les valeurs prisent par un élément u de H'(Q;R3) sur le bord 92. La restriction de u & 9 est
appelée la trace de u et notée u|pq. Elle vérifie ujgq € pr(&‘Q; R?). On peut employer la formule de

Stokes avec les éléments de H!(©2;R?). On note

Hy (4 R?) = {u € H' (4 R?), ujo=0}.

Lemme 7.1.1 (Inégalité de Poincaré.). Si Q est borné, il existe C > 0 tel que
/ lul2dH? < c/ |Vul|?dH?  Yu € H(Q).
Q Q
Démonstration. On utilisera 'inégalité de Jensen :

I ’
—_— t)dt| <
b— a/a u(?) -
Soit L tel que Q C (—L, L)? et u € CL(Q) prolongée par 0 sur (—L, L)?\ Q.

/ lu|?dH> = / lu|2dH?
Q (—=L,L)3
z1
= / / UJ(f,(EQ,Ig)dt
(-L,0)? |/ -1
L 2
_ / (/ |u’1(t,x2,x3)|dt> aH?
(-L,L)3 \J-L

2
1 L

:/ 417 (/ |u,1(t,x2,x3)|dt> dH?
(~L.L)? 2L )¢

b—a

2

am?

L
g/ 2L/ |u71(t,xg,x3)|2dtdxldxgdxg (d’apres (7.1.7)
(-L,L)® -L

L
= 4L2/ / |u1(t, z2, x3)|? dtdzydas (en intégrant par rapport & 1)
(-L,L)2J-L

_ 4L2/ a2 dH?
(7L7L)3

< 4L2/ \Vul?dH®  Yu e Hj(Q).
Q
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Lemme 7.1.2 (Inégalité de Korn.).

Vu2di < 2/ e@)2dH®  Vu e CL(R%:RY),
R3 R3

/ Vul2dH® < 2/ e()dH?  Vue HL(Q:RY).
Q Q

Démonstration.

N —

1 1 1
. le(u)|*dH® = /]RS o (g + i) 5 (g + ;i )dH® = /RS Ui Ui+ §Ui,juj,z‘d7'13

1 1 1 1
= /W 5IVul* = Sui i dH® = /RS 3|Vl + Sui i di

1 1
:/ ~|Vul? + = (div u)?dH? z/
RS 2 2

1
~|Vu|?dH?.
s 2

(7.1.8)

(7.1.9)

O

Théoréeme 7.1.1 (théoréme de Lax-Milgram). Soit H un espace de Hilbert et a : (u,v) € H x H une

forme bilinéaire continue coercive sur H, c’est a dire vérifiant

a(Au+ pv, w) = Aa(u, w) + pa(v,w j '
( K ) ( ) + pa( ) Vu,v,w € H, YA\, p € R bilinéarité
a(w, \u+ pv) = Aa(w,w) + pa(w, w)

C >0, |a(u,v)| <Clulglvlg Yu,ve H continuité

Je>0, a(u,u)| > cul? coercivité.
Soit L : H — R une forme linéaire continue sur H, c’est a dire vérifiant

L(A\u+ pv) = AL(u) + pL(v) linéarité
C >0, |L(w)| <Clulg Yue H continuité.

Alors il existe u € H unique tel que
a(u,v) = L(v) Yv € H.
De plus, si a est symétrique, c’est a dire si
a(u,v) = a(v,u) Yu,v € H.

alors u est caractérisé par la propriété

ue H et %a(u, u) — L(u) = i%lzr} {%a(v, v) — L(v)} .

Pour la preuve, voir [2][p. 84].

7.1.2  Application au probleme (7.1.1)) (voir aussi [2][paragraphe IX.5])

Si u est solution de (|7.1.1)), on a
u € H}(Q;R?),

/ —dive (u) - vdH? = / pof -vdH® Vv € Hj(Q;R?).
0 Q
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Or, d’apres la formule de Stokes, (en utilisant la convention de sommation des indices répétés)
/ —divo(u) - vdH® = / — 0455 (w)vidH?
Q Q
= [ (o) + syt

:/ —0i;(u U?’LJdHQ /aij(u)vi,jdﬂ‘g
a9 Q

:/ ) - vdH? + /a(u) : VodH? (7.1.15)
o9 Q
= / o(u) : VodH3 car v g =0

Q

—/a() £(v)dH? car o' = &
Q
as(u) : e(v)dH? d’apres (7.1.1)),

Q

donc
u € H&(QRS)

/ae v)dH? = /pf-'v Yo € Hy(Q;R?).
Q
Donc u vérifie (7.1.12)) avec
H = H} (R, a(u,v) = / ag(u) : e(v)dH?, L(v) = / of -v.
Q Q

(7.1.16)

Vérifions que les hypotheses du théoreme de Lax-Milgram (théoréme (|7.1.1))) sont satisfaites. Les deux
premieres ligne de ([7.1.10) sont faciles a vérifier. D’apres (7.1.2) et 'inégalité de Cauchy-Schwarz

a(u,v) /as d7—l3<C/|e u)|le(w)|dH?

< 0\/ / |Vu|2cm3\/ | 19vRare < Clullg om0l e
donc la troisieme ligne de (7.1.10) est vérifiée. D’apres ([7.1.2)), (7.1.9)), et (7.1.6)),
o, u) = / as(u) : e(w)dH® > c/ le(w)[2dH® > c/ IV () PdH? > c/ 243
Q Q Q Q

ou la constante C' > 0 peut varier d’une inégalité a ’autre. Donc la quatrieme ligne de ([7.1.10f) est vérifiée.
D’apres I'inégalité de Cauchy-Schwarz, (7.1.11)) est vérifiée. D’apres le théoreme|7.1.1} le probleme (7.1.16))
admet une solution unique u, caractérisée, puisque af(.,.) est symétrique, par

u€ Hy(Q;R?), et
1 1
3 /Qae(u) L e(u)dH? — /pr-ud’H?’ = veHr?(ig;Rs) {5 /Qae(v) re(v)dH® — /pr -v} :

Inversement, si u est solution de ([7.1.16)), d’apres (7.1.15))
/ —dive(u) - vdH> = / pf -vdH3, Vovec HHQR?),  (au sens des distributions)
Q Q
donc —dive (u) = pf dans Q au sens des distributions et u est solution de ([7.1.1)) au sens des distributions.

On peut montrer (voir [2][Chapitre IX]) que si pf et les coefficients a;;x; sont assez régulieres, par exemple
de classe C™ et si le bord 9 & une forme réguliere, alors cette solution u est de classe C2, et est une

solution au sens ”classique” de ([7.1.1).
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7.2 Exemple 2 : Probleme d’équilibre avec condition aux limites
de Dirichlet inhomogenes.

Nous cherchons un champ de déplacement u :  — R? satisfaisant le probleme d’équilibre déduit de
(7.1.1) en remplacant la condition au bord u = 0 sur 92 par la condition au bord (dite ”condition aux
limites de Dirichlet non homogene”) u = g sur 9Q, o1 g € C°(R3;R3), c’est & dire :

—dive(u) = pf dans €2,
oij(w) = aijrrepn(u), (noté o = ae(u))
1 ; (7.2.1)
e(u) = §(Vu + V'u),
u=4g sur 0.

Elle est donnée par
uU=1uy+g,

ol ug est la solution déduite de (7.1.1)) en remplagant pf par pf — dive(g).

7.3 Exemple 3 : Probleme d’équilibre avec condition aux limites
mixtes de Dirichlet homogeénes et de Neumann homogenes.

Nous cherchons un champ de déplacement u :  — R? satisfaisant le probleme d’équilibre déduit de
(7.1.1) en remplacant la condition au bord w = 0 sur 9 par les conditions au bord mixtes u = 0 sur T’y
(Dirichlet homogene), et o(u) -n = 0 sur I'y (Neumann homogene), ot 9 est la réunion disjointe de Ty
et I'y, et H2(Tg) > 0, c’est & dire :

—dive(u) = pf dans Q,

oi;(u) = aijknern(u), (noté o = ae(u))

e(u) = %(Vu + Vi), (7.3.1)
u=0 sur o,

ou) n=0 sur T'y.

Si u est solution de ([7.3.1)), on a
u € HY (G R?) = {ue H'(O;R?), uo=0 surlo},

/—diva(u)md’HS:/pﬁvd’HS Yo € H} (Q;R?).
Q Q

Or, d’apres la formule de Stokes, Vv € lflé (Q;R3), (en utilisant la convention de sommation des indices
répétés)

/ —divo(u) - vdH> = / — 0455 (w)vidH?
Q Q
:/Q—(Uij(u)vi),j + 0y (wvy, dH
:/ —Uij(u)vmjdHQ—&-/Uij(u)vi,jd’H?’ (732)
a0 Q
:/ —(o(u)n)~vd7—[2+/o(u) : VodH?
a0 Q
z/ae(u) ce()dH® car v=0 sur Ty et o(un =0 sur Iy,
Q
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donc B
u € Hy (O R),

/ ag(u) : e(v)dH? = / pof v Yue Hi(R?).
Q Q

Donc u vérifie (7.1.12)) avec

(7.3.3)

H = H}(Q;R?), a(u,v) = / ag(u) : e(v)dH?, L(v) = / of -v.
0 Q

On peut montrer que les inégalités de Korn et de Poincaré sont aussi vérifiées dans Hg(€;R?). En
répétant le raisonnement de la section (7.1.2), on déduit que le probléeme (7.3.3) admet une solution
unique u, caractérisée, puisque a(.,.) est symétrique, par

uc HI(GR?), et

%/ch(u) Le(u)dH? — /pr-ud”z'-i?’ = UEFII?(ig;R3) {% /Qas(v) te(v)dH® — /pr -v} .

Inversement, si u est solution de ([7.3.3), d’apres (7.3.2)
/ —dive (u) - vdH? = / of -vdH3, Vv e HY}(QR?),
Q Q

donc —dive (u) = pf dans et u est solution de (7.3.1)).
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Chapitre 8

Problemes d’élasticité linéaire

8.1 Probleme 1 : compression uniforme

8.1.1 Enoncé du probleme et mise en équation

Soit un corps élastique, homogene, isotrope, qui occupe une région ). On suppose que ce corps
élastique est plongé dans un gaz & pression constante p. On néglige les forces volumiques (pesanteur). On
suppose que ce corps est en équilibre. On se place dans le cadre de 1’élasticité linéaire.

1.
2.

it

FIGURE 8.1 —

Quelle est la loi de comportement satisfaite par ce corps élastique ?

Ecrire les équations d’équilibre, les conditions aux limites.

8.1.2 Solution du probleme et conséquences

1.

Montrer que la matrice constante o = —pl vérifie les équations aux limites et les conditions aux
limites.

. Exprimer le tenseur d’élasticité linéarisé en fonction du tenseur des contraintes o = —pl.

; i e_ __D
Réponse : € = 3/\+2uI'

Montrer que le champ de déplacements u défini par u; = x; est associé au tenseur d’élasticité

linéarisé obtenu dans la question précédente.

—p
32420

. On note V; = H3(Q(t)). Montrer que

Vi—Vo = det F — 1dH>. (8.1.1)
Q(0)
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Indication : utiliser la formule de changement de variables (2.4.5) avec k = 1. On rappelle que le
volume d’un ensemble ) est donné par H*() = [, dH>.

5. En déduire que dans ’hypothese des petites perturbations,

ViV 1

~ — div udH?. 8.1.2
Vo Vo Ja(o) (8.1.2)
6. Calculer V;V“.
0
Réponse : V;,OVO = 3;4?5# =32, 0u K := % est appelé le module de rigidité a la compression.

Remarque 8.1.1. L’ezpérience (et le bon sens) fait apparaitre que 'application d’une pression (positive)
ne peut entrainer qu’une diminution de volume, ce qui impose

3K =3\ +2u > 0. (8.1.3)

8.2 Probleme 2 : traction simple

8.2.1 Enoncé du probleme

Soit une poutre cylindrique de longueur L, constituée d’un matériau élastique, homogene, isotrope, et
limitée par deux sections droites I'g et I';. On se place dans le cadre de I’élasticité linéaire. On rapporte
la poutre a un systéme de coordonnées orthonormées tel que I'y soit dans le plan (0, z2, x3) et 'y dans le
plan d’équation 1 = L (voir figure).

La poutre est soumise a des forces de traction Fsur Ty et —F sur Iy, paralleles a ’axe du cylindre
(O,e1). On suppose que ces forces sont uniformément réparties sur les bases, de sorte que la base I'; est
soumise & une densité de forces (F,0,0) et Ty & une densité de forces (—F,0,0), avec

(F,0,0) =

b

W

ou S est 'aire de la section droite. La surface latérale I'; n’est soumise a aucune forces et les forces
volumiques sont nulles.

+" i)

el i)

FIGURE 8.2 —

8.2.2 Mise en équations

1. Ecrire les équations d’équilibre, la loi de comportement, et les équations traduisant les conditions
aux limites.
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2. Montrer les équations traduisant les conditions aux limites peuvent se simplifier en

oiong +o;3n3 =0, 1 =1,2,3 sur 17,
011 = F, 0921 — 031 = 0 sur Fo, (821)

o1 =F, o0 =031=0 sur Iy,

8.2.3 Résolution

1. Vérifier que le champ des contraintes constant défini par

o11 =F, 022 =033 =023 =013 =012=0, (8.2.2)

satisfait les équations d’équilibre et les conditions aux limites (8.2.1)).
2. Déterminer le tenseur des déformations linéarisé e(u) en fonction de o donné par (8.2.1)) et des
coefficients de Lamé.

Réponse :
A A
= 7F, = = —7‘F‘7
aBA o) TP T T T o)

et les trois autres composantes sont nulles.

€11

3. Vérifier que le champ de déplacements

Up = €1121, U2 = E22&2, U3 = £33T3,

est un champ de déplacements solution.

8.2.4 Analyse de la solution obtenue. Module de Young.

1. L’allongement AL de la barre est donné par le déplacement du point (L, 0,0). Montrer que

AL F (1(3\ + 2p)
_r — PAT 2 8.2.3
L E O+ p) (8.2.3)

.....

Uallongement. L’allongement est d’autant plus petit que E est grand. L’expérience (et le bon sens)
montre que le module de Young est toujours positif, i.e.

_ 1(BA+2p)

I 0. (8.2.4)

I Q -
| K,
L
- = e = L - — -l-l—! ll-l——ﬂl—_
FIGURE 8.3 —
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8.2.5 Coefficient de Poisson.

En méme temps que la poutre s’allonge, ses dimensions transversales diminuent car

I S o T S
23N +2u) " 7 5T T 2u(3A + 2p)

On appelle coefficient de Poisson le nombre v défini par

U = FJL‘3.

A
Vi=— ———.
2(A + )

1. Soit I le diametre de la poutre avant déformation et soit | + Al son diametre apreés déformation
(voir figure [8.3]). Montrer que

(8.2.5)

Al AL
—_—=—v—.

l L

2. L’expérience (et le bon sens) montre que le coefficient de Poisson est toujours positif, i.e.

L
2\ + )

Montrer, en utilisant (8.1.3]), (8.2.4)), et (8.2.6), que

> 0. (8.2.6)

1
A>0, pu>0, 0<1/<§.
3. Les relations (8.2.3)) et (8.2.5) peuvent s’inverser. Montrer que

vE FE

ST R ()

(8.2.7)

4. Montrer que la loi de Hooke entraine la relation suivante :

1
= — |- —
21 3A+2u

Indication : la lot de Hooke est une éqalité de deux matrices. Ecrire [’égalité des traces de ces deux
matrices.

IS trol| .

5. En déduire que

E =

12
_ . 8.2.8
o EtraI ( )

8.3 Probleme 3 : cisaillement simple

Dans le cadre de ’élasticité linéaire, on étudie I’équilibre d’un corps élastique homogene isotrope de
forme parallélépipédique, qui occupe la région €2 définie dans un repere orthonormé 0zizoxs par
Q={z|0<z1<a, 0<z2<b, 0<z3<c},

ou a, b, ¢ sont des longueurs données. (Dans la figure ci-dessous, il faut faire la correction suivante : 'axe
vertical est x3, la coordonnée b sur cet axe doit étre remplacée par c).

On suppose que le déplacement est donné par (un tel déplacement est dit ”de cisaillement ” dans le plan
T1,73)

uy = k‘l‘3, Ug = Uz = 0. (831)

On se propose de calculer les densités de forces qui provoquent ce champ de déplacement.
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FIGURE 8.4 —

8.3.1 Loi de comportement

Quelle est la loi de comportement satisfaite par ce corps élastique ?

8.3.2 Equations d’équilibre

Ecrire les équations d’équilibre.

8.3.3 Tenseur des déformations linéarisé

Calculer le tenseur des déformations linéarisé €(u) associé au déplacement uw défini par (8.3.1)).

8.3.4 Tenseur des contraintes

Calculer le tenseur des contraintes o associé au tenseur des déformations linéarisé e(u).

8.3.5 Forces volumiques

A Taide des équations d’équilibre et de I’expression de @, calculer les forces volumiques p f

8.3.6 Forces surfaciques

Calculer les forces surfaciques F' = on sur chacune 6 faces du parallélépipede, d’équations respectives
r1=0, x1y=a, x2=0, w3=0b x3=0, x3=c

Réponses :
f=o,
F= (kp,0,0) sur la face x3=c,
F= (=kp,0,0) surla face x3=0,
F= (0,0, k) sur la face 1 = a,
F= (0,0,—kp) surla face x1 =0,
F=0 sur les faces xo=0 et xo =0.
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Chapitre 9

Equations de Navier, conditions de

compatibilités, équations de
Beltrami

9.1 Equations de Navier

On consideére un matériau élastique linéaire homogene isotrope a 1’équilibre, occupant un domaine
Q, et soumis & des forces extérieures volumiques pf. Les coefficients de Lamé sont notés A et u. Le

déplacement u est solution du probléeme

—dive = pf dans €,
o = Mtr(e(uw)I + 2ue(u),

équations d’équilibre)

loi de comportement de Hooke)

u=g sur I'g C 092 conditions aux limites de Dirichlet)

(
(
1
e(u) = E(Vu + V'u), (tenseur des déformations linéarisées)
(
(

on=F sur 'y =00\ Ty (conditions aux limites de Neuman).

Théoréme 9.1.1. Le probléeme (9.1.1) est équivalent au probléme suivant :
A+ w)V(div u) + pAu + pf =0 équations de Navier
u=g sur T'p C 09,

(A r(e@)I + 2ue(u))n = F sur Ty = 00\ Tg.

Les équations
A+ w)V(div u) + pAu + pf = 0.

(9.1.1)

(9.1.2)

(9.1.3)

sont appelées les équations de Navier. Equivalentes aux équations d’équilibre, elles les expriment en

fonction du déplacement w. Les équations de Navier sont équivalentes a

(A +2u)V(div u) — prot (rotu) + pf = 0.
Cette version des équations de Navier est intéressante lorsque rotu = 0.

Démonstration. (Sous forme d’exercice)

1. On note I la matrice identité 3 x 3. Montrer en utilisant le calcul indiciel que
div(tr(e(w))l) = V(div u).
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2. Montrer par calcul indiciel que

div(e(w)) = - (Au + V(div u)) . (9.1.6)

N =

3. Déduire de (9.1.5), (9.1.6) et de la loi de Hooke, que le tenseur des contraintes o (u) vérifie

div(o(u)) = (A + p)V(div u) + pAu. (9.1.7)

4. Déduire de (9.1.7) et des équations d’équilibre que le champ des déplacement w vérifie a 1’équilibre
les équations de Navier (9.1.3))

5. On rappelle que (cf. (1.5.6]))
rot (rotu) = V(div u) — Au.

Montrer que les équations de Navier sont équivalentes a

(A +2p)V(div u) — prot (rotu) + pf = 0.

9.2 Equations de compatibilités

Dans ce qui suit, pour faciliter la lecture de la démonstration, le tenseur des déformations linéarisées
est noté e (au lieu de ).

Pour résoudre (9.1.1)), on peut chercher directement une solution o de —dive = pf. Il faut ensuite
déterminer s'il existe u tel que o = Atr(e(u))I + 2ue(u). Compte tenu de 'équation e = 2o — L trol
(voir ), cela revient a déterminer les conditions sur e garantissant l’existence de u tel que e =
% (Vu + V'u). Ces conditions s’appellent les équations de compatibilités. Elles sont analogues aux condi-
tions sur a garantissant ’existence de f telle que V f = a déterminées par le Théoreme (Lemme

de Poincaré) qui établit 1’équivalence

[a € C'(Q,R?), rota=0] < [3f € C*(Q), a=V/f] (9.2.1)
Elles sont énoncées dans le théoreme suivant, dont la preuve repose sur le lemme de Poincaré :

Théoréme 9.2.1 (Equations de compatibilités). Soit Q un ouvert conveze de R3. On a I’équivalence

le € C%(,S?), €ipgirstprgs =0 Vi, j=1,2,3] (9.2.2)
—

Fuec C3QURY), e=- (Vu+ Vi)

|~
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Preuve

1. < : exercice.

2. = : supposons
€ipgEirseprgs =0 Vi,j =1,2,3. (9.2.3)

Notre but est de trouver u tel que
1
€ijj = 5(’&1‘,3‘ + Ujﬂ‘), (924)
pour tout (7,7). Fixons p € {1,2,3}, multiplions (9.2.4) par e, dérivons par rapport & zj et

sommons par rapport a j et k. On obtient

Epjkeijh = 5 (Epjklii ik + Epjktyik)

1
= §(Epjkuj,ik) (9.2.5)

= (%(Epjkuj,k)) K

5T

Donc ¢'il existe u vérifiant (9.2.4)), alors nécessairement

v (%(spjkuj,k)) _ @, (9.2.6)

a? = EpjkCij kCi- (9.2.7)

D’apres (9.2.6)), pour que u existe, il est nécessaire que aP soit un gradient pour tout p. D’apres le
Lemme de Poincaré (voir (1.5.10)), pour que a? soit un gradient, il est nécessaire et suffisant que
rota? = 0. Calculons

rota? = (rota”),e;
= £5qil} 4€5 d’apres (9.2.7))
= E5qi€pjkCij,kqts
= —E€siq€pjkCij,qk€s = 0 d’aprés ‘D
Le lemme de Poincaré nous dit alors que (voir (1.5.10))
Jw, € C%(Q), Vw, =a’. (9.2.8)
L’équation ((9.2.6)) nous suggere, compte tenu de (9.2.8)), de rechercher un champ w vérifiant

1
wp = geprujn W € {1,2,3}. (9.2.9)

Si un tel champ u existe, alors pour tout (r, s),

1

EprsWp = 2 EprsCpjkUy,k

1
= 5(57«]5gk - 5Tk55j)ujvk

1
= i(ur,s - us,r)a
donc si u existe,
1
Upr,s = 5(“7",5 + us,r) + 5( r,s us,r) =eérs + EprsWp,
ce qui équivaux a
Vu, =b", o d" = (ers + €prswp) €s. (9.2.10)
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Toujours d’apres le Lemme de Poincaré (voir (1.5.10))), une fonction w, vérifiant Vu, = b" existe si
et seulement si existe si et seulement si rotd” = 0. Or on a

(rotd"), = €yisby ;
= €vis (€rs + Eprswp) d’apres

= EwisCrs,i + Evis€prsWp,i

= EvisCrs,i T 5vis<€prsa? car va =a?, voir
= EvisCrs,i + (61;;)61'7' - (gvréip)a:;7

= EvisCrs,i + ag - 6rva§

= EyisCrs,i T EvjkCrjk — Orv€ijk€ijk  Car @’ = €pjpeij 1€;

= E€yisrs,i + EvjkCrjk car €;x€i5,x = 0 puisque e;; = ey,
= Eyistrs,i + EvisCri,s changement d’indice,
= Evis (ers7i + eri,s)
=0 car M, =eps; +eps vérifie M, = M.,
soit
rotb” = 0.
Donc, d’apres le Lemme de Poincaré, pour tout r € {1,2, 3}, il existe u, satisfaisant
Vu, =b". (9.2.11)
La preuve de I'implication = est terminée si nous montrons que %(Vu + Viy) = e. Calculons :
Ups + Usp = b, + b7 d’apres (9.2.11))
= €rs + Eprswp + €sr + Epsrwp  d’apres ((9.2.10)
= €rs + €sp car Eprs + Epsr =0
= 2¢e,g car €,s = €gp
Le théoreme [9.2.1] est démontré. O

Remarque 9.2.1. La démonstration précédente présente une méthode systématique de construction
d’un champ de déplacement w a partir d’un champ de déformation e : partant de aP défini par , on
détermine wP vérifiant et on définit b" par , Le champ des déplacements est alors obtenu
en résolvant .

9.2.1 Trois formulations équivalentes des équations de compatibilités

Voici trois variantes équivalentes des équations de compatibilités :
1. Les différents choix de (4,75) choix de (i,7) dans Iéquation conduisent & I’équivalence sui-
vante :
Eipq€jrsCpr,qs = 0 VZ,] = 1, 2,3

—

€22,33 + €33,22 = 2€23 32,
e11,33 + €33,11 = 2€13,31,
e22,11 + €11,22 = 2€21,12, (9.2.12)

1)

2)

3)
,2) 1 e12,33 +e3312 = €13,23 + €23.13,
3) €23,11 + €11,23 = €21,31 + €31,21,
3)

€13,22 + €22.13 = €12,32 + €32 12.
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2. On a
EipgEjrseprgs =0 Vi,j=1,2,3

<~

Cijkl T €kl ij = €l jk + €jk,il Vi, j, k, 1€ {1,2,3}. (9.2.13)

En effet, si €ipgejrseprgs = 0 Vi,j = 1,2,3, d’aprés le théoreme [0.2.1] il existe u tel que e =
1(Vu + V'u)). En substituant e = (Vu + V'u)) on vérifie que e;j 0 + erij = €k + €jn,il-
Inversement, si e;; k1 + €xt,ij = €, jk + €jk,i1, différents choix de (4, j, k,1) conduisent & (9.2.12) qui
équivaux, comme on 'a VU, & €ipg€jrsCprqs =0 V1,7 =1,2,3.

3. On a (en utilisant la convention de sommation des indices répétés) :

EipgEjrsCpr,qs = 0 Vi, j=1,2,3 (9.2.14)
<
€ij,kk T Ckk,ij = €ik,jk + €jkik Vi, J =1,2,3. (9.2.15)

L’implication = s’obtient en choisissant k¥ = [ dans (9.2.13]) et en sommant par rapport a k.
L’implication <= s’obtient en testant les différents choix de (7,7) : on montre ((9.2.15) = (9.2.12))
qui entraine (9.2.14)) d’aprés la variante 1. Plus précisément, en choisissant (i,7) = (1,2) dans

(9.2.15)), on obtient

€12,11 +€11,12 + €12,22 + €22.12 + €12.33 + €33,12 = €11,21 + €21.11 + €12,22 + €22.12 + €13,23 + €2313,

qui se simplifie en
€12,33 + €33,12 = €13,23 + €23,13-

Par permutation circulaire des indices, on obtient les trois derniere lignes de (9.2.12)).
Ensuite, en choisissant (4,j) = (1,1) dans (9.2.15)), on obtient

e11,11 te11,11 +e11,22 + €2211 +€11,33 +€3311 = €11,11 + €11,11 + €12,12 + €12,12 + €13,13 + €13,13,
qui se simplifie en

€11,22 + €22,11 + €11,33 + €33,11 = €12,12 + €12,12 + €13,13 + €13,13, (9.2.16)
Par permutation circulaire on déduit, pour (i,7) = (2, 2),

€22,33 + €33,22 + €29, 11 + €11,22 = €23 23 + €23.23 + €21,21 + €21 21, (9.2.17)

et pour (i,7) = (3,3),

€33,11 1+ €11,33 + €33,22 + €22.33 = €31,31 + €31.31 + €32.32 + €32 32. (9.2.18)
(19.2.16)) moins (9.2.17)) donne
e11,33 + e33,11 — (€22,33 + €33,22) = €15.15 + €13.15 — (€23,23 + €23.23), (9.2.19)

et (9.2.18)) moins (9.2.19)) fournit
2(e33,22 + €22,33) = 2(e32,32 + €32,32),

qui équivaut a la premiere ligne de (9.2.12)). Les seconde et troisieme lignes de (9.2.12)) s’obtiennent
ensuite par permutation circulaire. O
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9.3 Equations de Beltrami

Théoréme 9.3.1. Soit Q un ouvert convere de R?, soit 0 € C*(;S?) tel que —dive = f dans 2, et

soit e = H?”a — g trol. On a l'équivalence

Juc CHLRY), efu) = %(vatu),}

v
(1 4+v)Acij + o,ij + (14 v) <fz + fii+ 7]01,151") =0 Vi,j=1,2,3]
j j it liit j (9.3.1)

équations de Beltrami

—

(14 1)Ac + V(V(tra)) + (1 + 1) <Vf +(VF) + —(div f)I) —0

1—v

Démonstration.

Preuve de 'implication =—>.  D’apres le théoreme et I’équivalence (9.2.15)), 'existence de u tel
que e(u) = %(Vu—&—Vtu) équivaux aux équations de compatibilité e;; pi + €xk,ij — €ik,jk — €jk,ik = 0 (i, €
{1,2,3}). En reportant dans la loi de Hooke inversée e = 120 — % trol (voir (8.2.8)) dans (9.2.15), on
déduit que les équations de compatibilités sont équivalentes a

1+v v 1+v v
€ij.kk + €kk,ij — Cik,jk — €k ik = ( o — —(tra)I) + ( o — —(tra)I)
! ! ’ ’ E E ij,kk E E kk,ij
1+v v 1+v v
- o——(tra)I) - ( a——(tra)I) =0,
< E E ik,jk r E Jjk,ik

soit

1+v v 1+v v
(To—ij"kk — E(tra)ykk&j) + ( E (tra),ij — 3@(‘61‘0’)7”)

1+v v 1+v v
- <7E Tik,jk — E(trd),jk&'k) - (7E Tjk,ik — E(trﬂ),ik5jk> =0,

soit

14+v v 1-2v
(ng‘j,kk - E(tw),kk%) + (T(t“’)ﬂ'f)

1+v v 1+v v
- (T(Uik,k),j - E(tm)m‘) - ( i (Ojkk),i — E(tm),z'j) =0.

Les équations de compatibilités sont donc équivalentes a

1+v v 1 1+v 1+v
T Cidkk E(trﬂ),kk5ij + E(tra),ij - T(Uik,k),j — T(Ujk,k),i =0. (9.3.2)
Or gijxe = (Ag);; et (tro) g = A(tro). De plus, o vérifie —dive = f, donc (o k), = —fi; et

(0jkk),s = —fji- En multipliant (9.3.2) par E, on déduit que
932 < (1 + V)(AO')Z‘j — I/A(U‘O')(Sij + (tI‘O’)7ij + (1 + I/) (fi,j + fj,i) =0.
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C’est vrai pour tout 4, j, donc
(1+v)Ac —vA(tro)I + VV(tro) + (1 +v) (Vf +V'f) =0. (9.3.3)

En prenant la trace de I’équation ci-dessus, notant que tr A = A(tro), tr(VV(tro)) = A(tro), tr Vf =
tr Vif = div f, on obtient

(14+v) trAc —3vA(tro) +trVV(tro) +(1+v) [ tt Vf +trVif | =0.
SN~ ——  N——

—_——
=A(tro) =A(tro) =div f =div f
soit
(1+v—-3v+1)Alre)+2(1+v)div f =0,
d’ou .
Altro) = — 3 F D iy 1. (9.3.4)

(I-v)
En reportant I’équation ci-dessus dans (9.3.3), on obtient

v

i-v)

(14 v)Ao +VV(tro) + (1+v) (Vf +V'f + (div f)I) =0. (9.3.5)

L’implication = de (9.3.1) est démontrée.
Preuve de l'implication <. Inversement, en prenant la trace de (9.3.5) on obtient (9.3.4]) par

laquelle on exprime divf en fonction de o. En reportant cette expression dans ((9.3.5]) on retrouve (9.3.3))
qui d’apres ce qui précede équivaux aux équations de compatibilité (9.2.2)). O

Remarque 9.3.1. Dans le cas de forces volumiques constantes, les équations de Beltrami s’écrivent
(1+Z/>AU’L] +Ukk,ij7 VZ7,7 =1,2,3,

ce qui équivaur a

(1+v)Ac+V(V(tra)) =0.

L’équation ci-dessus est satisfaite par tout champ a constant ou affine par rapport auz variables d’espace
x;. C’est la raison pour laquelle, dans les exemples simples de problémes d’élasticité développés en sections
[87] et[8-3, nous avons obtenu des champs de déplacements associés aux champs de contraintes présumés
solution.

9.4 Champ de déformations planes. Champ de contraintes planes

9.4.1 Champ de déformations planes

Si dans un corps élastique homogene isotrope de forme cylindrique de génératrices paralleles a Oxs,
le champ des déplacements est de la forme

(25} :Ul(xl,x2)7 U2 :UQ(Il,fEQ), U3:O7

le champ des déformations est donné par
1
€11 = U1, €22 =1U22, €33=¢c3=¢€13=0, €12= §(U1,2 + u2,1)-
On dit qu’on a affaire & un champ de déformations planes, parallelement au plan (z1,z2). Les seules
composantes non nulles du tenseur des déformations sont les composantes E,5 ol a, 8 € {1,2}. De plus,

ces composantes ne dépendent que de z1,x2, et non de x3.
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Le tenseur des contraintes associées est de la forme

o1 o2 0
o= M\tre)+2ue =1\ o012 022 O
0 0 033

9.4.1
0ap = MEeyy)0ap + 2ucap Vo, B € {1,2}, ( )
033 = Ae11 +€22) = ——— (011 + 0
33 (€11 +€22) 2(>\+M)( 11 22)
ou les composantes oag, o, f = 1,2, ne dépendent que de x; et x2 et sont données par
ap = MEyy)0ap +2ueap Vo, € {1,2}, (94.2)

ol nous convenons que les indices répétés grecs sont sommés de 1 a 2. Par ailleurs, comme €33 = 0,

o33 = A(e11 +€22) = m((fll + 022)

Le champ des contraintes est donc, comme le champ des déformations, indépendant de z3. On ne pourra
donc étre dans un cas de déformations planes que si I’ensemble du probleme posé est indépendant de x3,
c’est a dire invariant par rapport a toute translation parallele a Oxs.

Le probleme a résoudre sera alors un probleme bidimensionnel posé sur une section droite w quelconque
de . Les équations du probléme seront

0ap,3+ fo =0 dans Q, (nécessairement f3 =0), « € {1,2}, (9.4.3)

les équations de comportement (9.4.1)), et les conditions aux limites sur la frontiere dw de 'ouvert bidi-
mensionnel. C’est ce qu’on appelle un probleme d’élasticité bidimensionnelle (ou plane). La composante
o33 sera calculée & postériori en utilisant la relation (9.4.1]) (troisieme ligne).

9.4.2 Champ de contraintes planes

C’est par définition un champ de contraintes o;; qui ne dépend que de z; et z2 et dont les composantes
0;3, © = 1,2,3 sont nulles. Si le corps élastique est isotrope, le champ des déformations associé €;; est
relié au champ des contraintes par la loi de Hooke, soit

Oap = A(511 + €90 + 533)5(16 + 2U€a,3 OZ,B = 17 23
0= €13 = €23, (944)
0= )\(Eu + €20 + 633) + 2pe33.

Il en résulte que €33 s’exprime explicitement en fonction de €11 et €92 par

-A
ezz3 = ——— (€11 +¢ 9.4.5
33 )\+2u( 11 +€22) (9.4.5)
On peut écrire les équations ({9.4.4) en fonction des seules composantes .5 par

Tap = Neyy0ap + 2lEnp (9.4.6)

2\
oA+ 2u
Il en résulte que les e,4 ne dépendent que de @1,z et, d’apres (9.4.5), il en est de méme pour e33.

Il apparait alors qu’un probleme de contraintes planes conduit aux mémes équations d’équilibre ((9.4.3))
et a la loi de comportement bidimensionnelle (9.4.6) qui est du méme type que , A étant remplacé
par A*. D’un point de vue mathématique, les problemes de contraintes planes et de déformation plane
sont de méme nature.

*
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9.4.3 Fonction d’Airy

Théoréme 9.4.1. Soit un corps élastique isotrope dont la forme est un cylindre Q = w x (0, L), soumis
a un champ de contraintes planes a(x1,x2) de classe C* parallélement au plan x1, 2. On suppose que
les forces volumiques sont nulles. Alors il existe une fonction x € C3(w) telle que

X22 —Xi12 0
g = —X,12 X,11 0 . (947)
0 0 0

La fonction x est appelée la fonction d’Airy.
Avant de prouver le théoréme, nous établissons une variante bidimensionnelle du théoréeme de Poincaré :

Lemme 9.4.1. Soit w est un ouvert convexe de R%2. On a 'équivalence

[h S C’l(w,]RQ), h1,1 + h272 = 0} < [Hf € CQ(w), hy = —f,l, hi = f,g]. (948)
—hs 0 0
Démonstration. Posons a = hi ].On arota = 0 = 0 = 0 donc, d’apres
0 a1 — a1,2 hi1+ hao
le théoreme |1.5.10| (de Poincaré), il existe f tel que
f1 —hy
a=|(fo|l=1 M
I3 0
On déduit
he=—f1, hi=fa, f=f(21,22).
Et réciproquement. O

Preuve du Théoréme Un champ de contraintes planes 0 = {ons} dans un matériaux ou les
forces volumiques sont nulles, doit satisfaire les deux équations d’équilibre suivantes dans w :

o +o =0
{ 11,1 12,2 (9.4.9)

021,1 + 0222 = 0.
D’apres|1.5.16| appliqué a 'équation o111 + 12,2 = 0, il existe une fonction ¢;(x1,22) € Cl(w) telle que
o1z = —(p1),1, o011 = (¥1)2- (9.4.10)

Comme o € C3(w;S?), on a p; € C?*(w). De méme, d’apres [1.5.16/appliqué & 1’équation oa1 1 + 0922 = 0,
il existe une fonction @s(r1,12) € C%(w) telle que

0922 = —(302)’1, g91 — (@2)’2. (9411)

La matrice o étant symétrique, 12 = 021 donc —(¢1),1 = (¢2),2. On déduit

p1,1 + 2.2 =0.

D’apres le lemme appliqué a D'équation ¢11 + 22 = 0, il existe une fonction x(z1,z2) € C*(w)
telle que
P2 ==X1, ¥1=Xz2- (9.4.12)

Comme 1, 02 € C?(w), on a x € C3(w). 1l résulte de (9.4.10), (9.4.11)), (9.4.12)) que

012 = —(901),1 = —X,12; o11 = (901),2 = X,22-
)

022 = —(sﬂz 1= X,11, 021 = (@2),2 = —X,12,

qui équivaux & (9.4.7)).
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