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Feuille d’exercices 1

Exercice 1. (♣) Trouver les limites des suites de terme général suivant :

un = 4−n+3n2

7−n2−n4 , vn = (2n+1)(3n−1)
6n−4 wn =

(6n+1)(( 1
2
)n+1)

3n

xn = e
√
n

n3+ln(n)
yn = (ln(n2 + 1))

1
n zn = n(32 −

∑n
k=0 3

−k)

Exercice 2. (♣) Soit f : I → R une fonction dérivable en x0 ∈ I et (un) une suite d’éléments
de I convergente vers x0. Quelle est la limite de la suite (f(un)−f(x0)

un−x0
)? (On suppose que un ̸= x0,

∀n ∈ N).
Calculer les limites des suites suivantes (elles dépendent toutes d’un paramètre réel α) :

un = n sin( 1
nα ) vn = nα(ln(n+1)−ln(n)) wn = (1 + α

n )
n.

Exercice 3. (♣) Quelles sont les suites réelles (un) satisfaisant les assertions suivantes?

1. ∃c ∈ R, ∀N ∈ N,∃n ≥ N, un ≤ c.
2. ∀c ∈ R, ∀N ∈ N,∃n ≥ N, un ≤ c.
3. ∀c ∈ R, ∃N ∈ N,∀n ≥ N, un ≤ c.
4. ∃c ∈ R, ∃N ∈ N,∀n ≥ N, un ≤ c.

Exercice 4. (♣) Soit (un) une suite. Que pensez-vous des propositions suivantes :

(a) Si (un) converge vers un réel ℓ alors (u2n) et (u2n+1) convergent vers ℓ.
(b) Si (u2n) et (u2n+1) sont convergentes, il en est de même de (un).
(c) Si (u2n) et (u2n+1) sont convergentes, de même limite ℓ, il en est de même de (un).

Exercice 5. Soit (un) une suite de réels strictement positifs.

(a) Que pensez-vous des propositions suivantes?
• Si la suite (un) est convergente alors la suite (un+1

un
) est convergente.

• Si la suite (un+1

un
) est convergente, alors la suite (un) est convergente.

(b) Supposons maintenant que la suite (un+1

un
) est convergente. Montrer les propositions suivantes.

• Si lim
n→∞

un+1

un
> 1, alors lim

n→∞
un = +∞.

• Si lim
n→∞

un+1

un
< 1, alors lim

n→∞
un = 0.

(c) Soit x ∈ R. Déterminer la limite des suites (x
n

n! ) et (x
n2

n! ).

Exercice 6. On considère les suites Hn :=
∑n

k=1
1
k , an = Hn − ln(n + 1), et bn = Hn − ln(n),

définies pour n ≥ 1. Soit F :]− 1,+∞[→ R la fonction définie par F (x) = x− ln(1 + x).

(a) Montrer que F (x) ≥ 0 pour tout x > −1.
(b) Montrer que pour tout n ≥ 1, on a les relations an+1− an = F ( 1

n+1) et bn+1− bn = −F ( −1
n+1).

(c) Montrer que les suites (an) et (bn) sont adjacentes.
(d) Quelle est la limite de la suite ( Hn

ln(n))?
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Pour s’entraı̂ner, aller plus loin

Exercice 7. Soit (un) une suite périodique.

(a) Montrer que (un) est bornée.
(b) Montrer que (u3n) est périodique.
(c) Montrer que la suite (u1+u2+···+un

n ) est convergente.
(d) Supposons de plus que (un) est croissante. En déduire que (un) est constante.

Exercice 8 (Lemme de Cesàro). On suppose que la suite (un) converge vers un réel ℓ. Montrer que
la suite (u1+u2+···+un

n ) converge vers ℓ.

Exercice 9. (♠) On considère les suites de terme général un =
∑n

k=0
1
k! et vn = un + 1

n.n! .

(a) Montrer que (un) et (vn) sont deux suites adjacentes. Qu’en déduit-on?
(b) On note e leur limite commune. Montrer que ∀n ≥ 1, n!(e− un) ∈]0, 1[.
(c) En déduire que e est irrationnel.

Exercice 10. (♠) Soient 0 ≤ u0 ≤ v0 deux réels. On considère les suites (un) et (vn) définies par les
récurrences suivantes : un+1 =

√
unvn et vn+1 =

un+vn
2 , ∀n ∈ N.

(a) Montrer que un ≤ vn, ∀n ∈ N.
(b) Montrer que vn+1 − un+1 ≤ vn−un

2 , ∀n ∈ N.
(c) Montrer que (un) et (vn) sont adjacentes. Qu’en déduit-on? Leur limite commune est appelée

moyenne arithmético-géométrique de u0 et v0.

Exercice 11. (♠) Soit (un) une suite telle que ∀n ∈ N, un ∈ Z. Montrer que si (un) converge, alors
(un) est stationnaire.

Exercice 12. (♠) Soient (un) et (vn) deux suites périodiques. Montrer que (un + vn) est périodique.
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Feuille d’exercices 2

Exercice 13. (♣) Soient a, b, u0 ∈ R. On considère la suite définie par la récurrence : un+1 = aun+b.
(a) On suppose a = 1. Exprimer un en fonction de n.
(b) On suppose a ̸= 1. Trouver λ ∈ R pour lequel la suite (un − λ) soit géométrique.
(c) En déduire l’expression de un en fonction de n. Dans quels cas la suite (un) est-elle convergente?

Exercice 14. (♣) Soit (un) la suite définie par récurrence par u0 ∈ [0, 3[ et un+1 = f(un) avec
f(x) =

√
x+ 6.

(a) Tracer sur un même dessin le graphe de la fonction f et la droite d’équation y = x. Y représenter
les premières valeurs de la suite (un) pour u0 = 0.

(b) Montrer que (un) est majorée et croissante. Qu’en déduit-on?
(c) Déterminer la limite de (un).
(d) Que se passe-t-il si u0 ∈ [3,+∞[?

Exercice 15. (♣) Soit G : R → R la fonction définie par G(x) = 1
4(x

2 + 3). On considère la suite
(Un) définie par la récurrence : U0 ≥ 0 et Un+1 = G(Un), ∀n ∈ N.
(a) Montrer que la suite (Un) est monotone.
(b) Déterminer pour quels U0 ≥ 0 la suite (Un) est convergente.
(c) Montrer que G définit une application contractante de l’intervalle [0, 1] dans lui-même.
(d) Considérons le cas où U0 =

1
2 . Montrer alors que |Un − 1| ≤ 2−(n+1), ∀n ∈ N.

Exercice 16. Soit f :]0,+∞[→]0,+∞[ définie par f(x) = x+3
2x , et (un) une suite récurrente définie

par u0 ∈]0, 32 [ et un+1 = f(un).
(a) Tracer sur un même dessin le graphe de la fonction f et la droite d’équation y = x. Représenter

les premières valeurs de la suite (un) pour u0 = 1.
(b) Montrer que ∀n ∈ N, u2n+1 ∈]32 ,+∞[ et u2n ∈]0, 32 [.
(c) On pose vn = u2n. Montrer que (vn) est une suite récurrente pour une fonction que l’on

précisera. En déduire que la suite (vn) est croissante.
(d) Montrer que lim

n→∞
u2n = 3

2 . En déduire que lim
n→∞

u2n+1 =
3
2 et que lim

n→∞
un = 3

2 .

(e) Que se passe-t-il si u0 ∈ [32 ,+∞[?

Exercice 17. Soit a > 0. On définit la suite (un) par récurrence : u0 > 0 et

un+1 =
1

2

(
un +

a

un

)
, ∀n ∈ N.

On se propose de montrer que (un) converge vers
√
a.

(a) Montrer que

u2n+1 − a =
(u2n − a)2

4u2n
, ∀n ∈ N, (0.1)

et en déduire que un ≥
√
a, ∀n ≥ 1.

(b) Montrer que (un)n≥1 est décroissante. En déduire que (un) converge vers
√
a.

(c) On pose vn = un−
√
a

2
√
a

pour n ≥ 1.
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• Montrer en utilisant (0.1) que vn+1 ≤ v2n, ∀n ≥ 1.
• En déduire que pour tout n ≥ p ≥ 1, on a

0 ≤ un −
√
a ≤ 2

√
a

(
up −

√
a

2
√
a

)2n−p

.

• Application : trouver un nombre rationnel x tel que |x−
√
10| ≤ 10−8 (sans calculatrice).

Pour s’entraı̂ner, aller plus loin

Exercice 18. On considère la suite (Vn) définie par récurrence : V0 = 0 et Vn+1 = Vn + eVn −
3, ∀n ∈ N.
(a) Montrer que (Vn) est décroissante. Quelle est sa limite?
(b) Montrer que Vn ≥ −3n, ∀n ∈ N.
(c) Montrer qu’il existe C ∈ R tel que Vn ≤ C − 2n, ∀n ∈ N.
(d) En utilisant la question précédente, montrer que Vn ≤ −3n+ eC

∑n−1
k=0 e

−2k, ∀n ≥ 1.
(e) En déduire que Vn ∼ −3n

Exercice 19. (♠) On considère la fonction f : R → R définie par f(x) = 1
2x

2 − 2, et la suite
récurrente définie par les relations : u0 ∈ R et un+1 = f(un), ∀n ∈ N.
(a) Déterminer les solutions α < β de l’équation f(x) = x. Dans la suite on utilisera le fait que

β ≥ 3 et |α| ≥ 1, 23.
(b) Montrer que ∀x ∈ R, |x− β| ≤ 2 =⇒ |f(x)− β| ≥ 2|x− β|.
(c) Montrer que ∀x ∈ R, |x− α| ≤ 10−2 =⇒ |f(x)− α| ≥ 6

5 |x− α|.
(d) Montrer que la suite (un)n∈N converge si et seulement si elle est constante à partir d’un certain

rang.

Exercice 20. (♠) Soit f :]0,+∞[→]0,+∞[ définie par f(x) = x+1
2x2 , et (un) la suite récurrente

définie par u0 = 1
2 et un+1 = f(un).

(a) Tracer sur un même dessin le graphe de la fonction f et la droite d’équation y = x. Y représenter
les premières valeurs de la suite (un).

(b) Montrer que ∀n ∈ N, u2n+1 ∈]1,+∞[ et u2n ∈]0, 1[.
(c) On pose vn = u2n et wn = u2n+1. Montrer que (vn) et (wn) sont des suites récurrentes pour une

fonction que l’on précisera. En déduire que (vn) est décroissante et (wn) est croissante.
(d) Montrer que lim

n→∞
vn = 0 et lim

n→∞
wn = +∞. La suite (un) est-elle convergente?

(e) Que se passe-t-il si u0 ∈ [1,+∞[?

Exercice 21. (♠) Pour n ≥ 1, on considère la fonction polynomiale fn(x) = −1 +
∑n

k=1 x
k.

1. Montrer que ∀n ≥ 1, l’équation fn(x) = 0 admet une unique solution dans [0, 1], notée an.
2. (a) Montrer que (an) est strictement décroissante.

(b) Montrer que (an) est minorée.
(c) Justifier que (an) converge. On note ℓ sa limite.

3. (a) Montrer que la suite (fn(ℓ)) converge vers 0.
(b) Exprimer fn(ℓ) en fonction de n et ℓ.
(c) Déduire de ce qui précède que ℓ = 1

2 .
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Feuille d’exercices 3

Exercice 22. (♣) Soit (un) la suite des décimales de π. Montrer que (un) admet une sous-suite
constante.

Exercice 23. (♣) Soit (un) une suite réelle. Est-il vrai que

(a) si un → +∞, alors toute suite extraite uφ(n) → +∞?
(b) si (un) est croissante, alors toute suite extraite (uφ(n)) est croissante?
(c) si (un) est bornée, alors toute suite extraite (uφ(n)) est bornée?
(d) si (un) est périodique, alors toute suite extraite (uφ(n)) est périodique?

Exercice 24. (♣) Soit (Un) une suite qui converge vers un réel ℓ. Déterminer les valeurs d’adhérence
des suites de terme général

Un sin(
nπ

3
), Un + cos(

nπ

3
).

Exercice 25. (♣) Soit (un)n∈N une suite réelle. On suppose que les sous-suites (u2n), (u2n+1) et
(u3n) convergent. Montrer que la suite (un) converge.

Exercice 26. (♣)
Soit (un)n∈N une suite réelle. Montrer que les assertions suivantes sont équivalentes :

(a) (un) est non-majorée.
(b) (un) admet une sous-suite qui tend vers +∞.
(c) (un) admet une sous-suite croissante qui tend vers +∞.

Exercice 27. (♣) Soit (un) la suite de terme général un = (−1)n(1 + 1
n). Expliciter les suites de

terme général ūn := sup{uk, k ≥ n} et un := inf{uk, k ≥ n}. En déduire les limites supérieures et
inférieures de (un).

Exercice 28. Soit (un)n∈N une suite réelle telle que un > 0,∀n ∈ N.
(a) Monter que lim inf un = 0 si et seulement si lim sup 1

un
= +∞.

(b) Monter que si lim inf un = α > 0 alors lim sup 1
un

= 1
α .

Pour s’entraı̂ner, aller plus loin

Exercice 29. À toute suite a = (an) de termes positifs on associe R(a) := lim sup (an)
1
n ∈ [0,∞].

(a) Calculer R(a) pour les suites an = nα, an = qn et an = qn
2
.

(b) Montrer que R(a) = 0 si et seulement si ∀r > 0, lim
n→∞

anr
n = 0.

(c) Montrer que R(a) = +∞ si et seulement si ∀r > 0, la suite (anr
n)n∈N n’est pas bornée.

Exercice 30. (♠) Soit u := (un) une suite telle que la suite (un+1 − un) converge vers 0. Notons
AD(u) l’ensemble des valeurs d’adhérences de la suite (un).
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(a) Donner un exemple où AD(u) = ∅.
(b) Supposons maintenant que AD(u) ̸= ∅. Montrer que si a < b sont deux valeurs d’adhérences de

la suite (un), alors [a, b] ⊂ AD(u).

Exercice 31. (♠) Lemme sous-additif
Soit (un) une suite telle que

un+m ≤ un + um, ∀m,n ≥ 1.

Le but de l’exercice est de montrer que (un
n ) tend vers ℓ := inf{uk

k , k ≥ 1} ∈ R ∪ {−∞}.

(a) Soit k ≥ 1 et r ∈ {0, . . . , k − 1}. Montrer que ukq+r ≤ kuq + ur pour tout q ≥ 1.
(b) En déduire que lim sup un

n ≤ uq

q , pour tout q ≥ 1.
(c) Conclure.
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Feuille d’exercices 4
Exercice 32. (♣) Montrer que un = (−1)n n’est pas une suite de Cauchy.

Exercice 33. (♣) Pour tout n ≥ 1, on pose Hn =
∑n

k=1
1
k .

(a) Montrer que ∀n ∈ N∗, H2n −Hn ≥ 1
2 .

(b) En déduire que (Hn) n’est pas une suite de Cauchy.

Exercice 34. (♣) Soient (un) une suite réelle et ρ ∈]0, 1[. On suppose que pour tout n ≥ 1,

|un+1 − un| ≤ ρ|un − un−1|.

Montrer que (un) est une suite de Cauchy.

Exercice 35. (♣) Soit (xn) la suite définie par récurrence par x0 = 3
2 et

xn+1 = 1 +
1

xn
, ∀n ∈ N.

(a) Montrer que ∀n ∈ N, xn est un nombre rationnel appartenant à l’intervalle [32 , 2].
(b) Montrer que (xn) est une suite de Cauchy. On utilisera l’exercice 34.
(c) Est-ce que la limite de la suite (xn) est un nombre rationnel ?

Exercice 36. Les questions suivantes utilisent les sommes de Riemann.
(a) Déterminer lim

n→∞

∑2n
k=n+1

1
k .

(b) Soit α > 1. Déterminer lim
n→∞

∑2n
k=n+1

1
kα .

(c) Soit α > 0. Déterminer un équivalent simple de la suite Sα
n :=

∑n
k=1 k

α.

Exercice 37. On considère la suite Un =
∑n

k=1
(−1)k−1

k

(a) Montrer que U2n =
∑2n

k=n+1
1
k .

(b) Montrer que limn→∞ Un = ln(2).

Pour s’entraı̂ner, aller plus loin

Exercice 38. Soient I un intervalle de R et une fonction f : I → R.
(a) On suppose que l’intervalle I est borné et que f est uniformément continue. Montrer que f est

bornée.
(b) Montrer que f est uniformément continue si et seulement si pour toutes suites (an) et (bn)

d’éléments de I , on a lim
n→∞

|an − bn| = 0 =⇒ lim
n→∞

|f(an)− f(bn)| = 0.
(c) Déduire le théorème de Heine du point précédent.

Exercice 39. Soit f : R → R continue. Pour les questions suivantes, on pourra utiliser le point (b) de
l’exercice 38.
(a) On suppose que la fonction f est 1-périodique. Montrer que f est uniformément continue.
(b) Montrer que si f admet des limites (finies) en +∞ et en −∞, alors f est uniformément continue.
(c) Est-ce que la fonction f(x) = sin(x2) est uniformément continue?
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Feuille d’exercices 5
Exercice 40. (♣) Tracer sur un même dessin les graphes des fonctions x3, x,

√
x, x

1
5 , 1, x−1, x−7 sur

l’intervalle ]0,+∞[.

Exercice 41. (♣) Soit α > β. Montrer que si f(x) =
+∞

O
(

1
xα

)
alors f(x) =

+∞
o
(

1
xβ

)
. La réciproque

est-elle vraie?

Exercice 42. (♣) Donner un équivalent simple en +∞ et en 0 de

(a) −x4 + x3 + x2 + 1,
(b) x2+6x−5

7x2−2x−3
,

(c) 23x + 32x,
(d) x22x − 3x

x3 ,

(e)
√
x2 + 5,

(f) 2
x2 − 1

(x+1)2
,

(g) x2+ln(x)
x2 ln(x)

,

(h) x2 ln(x)3 − x3 ln(x)2,
(i) e

1
xx5 ln(x)− exx4 ln(x)2,

(j) ln(e2x − ex).

Exercice 43. (♣) Soit x0 ∈ R ∪ {−∞,+∞}. Les assertions suivantes sont-elles vraies ou fausses?
Justifier.
(a) Si f(x) ∼

+∞
5x, alors lim

x→+∞
f(x)− 5x = 0.

(b) Si f(x) ∼
x0

g(x), alors f(x)3 ∼
x0

g(x)3.

(c) Si f(x) ∼
x0

g(x), alors ef(x) ∼
x0

eg(x).

Exercice 44. (♣) Soit x0 ∈ R ∪ {−∞,+∞}. Les assertions suivantes sont-elles vraies ou fausses?
Justifier.
(a) Soit ℓ ∈ R ∪ {−∞,+∞}. Si lim

x→x0

f(x) = ℓ et f(x) ∼
x0

g(x), alors lim
x→x0

g(x) = ℓ.

(b) Si lim
x→x0

f(x) = +∞ et lim
x→x0

g(x) = +∞, alors f(x) ∼
x0

g(x).

(c) Soit ℓ ∈ R. Si lim
x→x0

f(x) = ℓ et lim
x→x0

g(x) = ℓ, alors f(x) ∼
x0

g(x).

(d) Soit ℓ ∈ R. Si lim
x→x0

f(x) = ℓ , alors f(x) =
x0

O(1).

Exercice 45. (♣) Soit x0 ∈ R∪ {−∞,+∞}. Déterminer toutes les fonctions f telles que f(x) ∼
x0

0.

Exercice 46. Montrer que ef(x) ∼
+∞

eg(x) si et seulement si lim
x→+∞

f(x) − g(x) = 0. En déduire un

équivalent simple en +∞ de e2x
2−3+ 1

x
+ 2

x4 .

Pour s’entraı̂ner, aller plus loin

Exercice 47. (♠) Soit x0 ∈ R∪{−∞,+∞} et ℓ ∈ (R+∪{+∞})\{1}. On suppose que f(x) ∼
x0

g(x)

et que lim
x→x0

g(x) = ℓ. Montrer que ln f(x) ∼
x0

ln g(x). Est-ce encore vrai pour ℓ = 1?

Exercice 48. (♠) 48 Soit f : R+ → R+ une application continue telle que ∀x ∈ R+, f(x) ≤ 2f
(
x
3

)
.

(a) Justifier que f admet un maximum sur [0, 1].
(b) Montrer que ∀k ∈ N, f(x) ≤ 2kf

(
x
3k

)
.

(c) On pose k0 = min{k ∈ N| x
3k

≤ 1}. Justifier l’existence de k0 et montrer que k0 ≤ lnx
ln 3 + 1.

(d) Montrer que f(x) =
+∞

O
(
x

ln 2
ln 3

)
.
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Feuille d’exercices 6

Exercice 49. (♣) Donner les DL2, DL4, DL10 et DL2017 en 0 de f(x) = x58 + 2x12 + 5x10 + x3.

Exercice 50. (♣) Montrer que si f est une fonction paire (resp. impaire), alors les termes impairs
(resp. pairs) de ses DL en 0 sont nuls.

Exercice 51. (♣) Sommes de DL.
(a) Donner le DL5 en 0 de 1

1+x + 3
√
1 + x.

(b) Donner le DL7 en 0 de ch(x) = ex+e−x

2 (cosinus hyperbolique).
(c) Donner le DL8 en 0 de sh(x) = ex−e−x

2 (sinus hyperbolique).

Exercice 52. Produits de DL.
(a) (♣) Donner le DL3 en 0 de cos(x) ln(1 + x).
(b) (♣) Donner le DL8 en 0 de f(x) =

√
1 + x2 ln(1+x3). En déduire la valeur des dérivées f (k)(0)

pour 1 ≤ k ≤ 8.
(c) Donner le DL6 en 0 de (1− ch(x)) sinx.

Exercice 53. DL en x0 ̸= 0.
(a) (♣) Donner les DL4 en 2 des fonctions ex, (1 + x)α et ln(1 + x).
(b) Donner le DL5 en π

3 de cosx.

Exercice 54. Composition de DL.
(a) (♣) Donner le DL4 en 0 de ln(1 + cosx).
(b) Donner le DL2 en 0 de e

√
1+x.

(c) Donner le DL4 de 3
√
1 + cosx en 0.

Exercice 55. Divisions de DL.
(a) (♣) Donner le DL3 en 1 de 1+x

2+x .
(b) (♣) Donner le DL5 en 0 de tan(x).
(c) Donner le DL3 en 0 de th(x) = sh(x)

ch(x) (tangente hyperbolique).
(d) Donner le DL4 en 0 de x cosx

sinx . En déduire le DL3 en 0 de cotan(x)− 1
x .

Exercice 56. La fonction 1
1+|x|3 admet-elle un DL2 en 0? un DL3 en 0? un DL4 en 0?

9



Pour s’entraı̂ner, aller plus loin

Exercice 57. (♠) On considère la fonction f : R → R, donnée par

f(x) =

{
x

ex−1 si x ̸= 0

1 si x = 0.

(a) Calculer le développement limité de f à l’ordre 3 en 0.
(b) Montrer que f est continue.
(c) Montrer que f est de classe C1.
(d) Montrer que f est de classe C2.

Exercice 58. (♠) On considère la fonction g : R → R, donnée par

g(x) =

{
e−

1
x si x > 0

0 si x ≤ 0.

(a) Montrer que pour tout n ∈ N, il existe un polynome Pn tel que ∀x > 0, g(n)(x) = e−
1
xPn

(
1
x

)
.

(b) Montrer que pour tout n ∈ N, g(n)(0) = 0.
(c) En déduire que g est de classe C∞ sur R. Quels sont ses DL en 0?
(d) Existe-t-il une autre fonction ayant les mêmes DL en 0 que g ?

10



Feuille d’exercices 7

Exercice 59. (♣) Écrire la formule de Taylor-Lagrange à l’ordre 2 pour f(t) =
√
t entre a = 100 et

b = 101. En déduire une approximation décimale de
√
101 à 10−6 près.

Exercice 60. (♣) Écrire la formule de Taylor-Lagrange à l’ordre 5 pour la fonction cos sur [0, x]. En
déduire que ∀x ∈ R, | cos(x)− 1+ x2

2! −
x4

4! | ≤
x6

6! , puis une approximation rationnelle de cos(0, 1) à
10−8 près.

Exercice 61. (♣)
(a) Montrer que ∀x > 0, On a la relation

1 +
1

3
x− 2

9
x2 < 3

√
1 + x < 1 +

1

3
x− 1

9
x2 +

5

81
x3.

En déduire une valeur approchée de 3
√
1, 03 à 10−5 près.

(b) Montrer que pour tout t ≥ 0 on a l’encadrement

(⋆) t− t2

2
+

t3

3
− t4

4
≤ ln(1 + t) ≤ t− t2

2
+

t3

3
− t4

4(1 + t)4
.

En déduire une approximation de ln(1, 1) à 10−5 près. On se servira du fait que (1, 1)−4 ≃ 0, 68.

Exercice 62. Soit un =
∑n

k=1
(−1)k+1

k .
(a) Montrer que (u2n)n∈N∗ et (u2n+1)n∈N∗ sont deux suites adjacentes. Qu’en déduit-on?
(b) Montrer que la fonction x 7→ ln(1 + x) est de classe C∞ sur ] − 1,+∞[ et calculer la dérivée

kième de ln(1 + x) pour tout k ∈ N.
(c) En utilisant la formule de Taylor-Lagrange, montrer que

∀x > 0, ∀n ∈ N∗,
2n∑
k=1

(−1)k+1xk

k
< ln(1 + x) <

2n+1∑
k=1

(−1)k+1xk

k
.

(d) Montrer que lim
n→∞

un = ln(2).

Exercice 63. (a) Soit β > 1. En utilisant le théorème des accroissements finis, montrer que

∀x > 0,
1− β

xβ
<

1

(x+ 1)β−1
− 1

xβ−1
<

1− β

(x+ 1)β
.

(b) En déduire que ∀n ≥ 1,

∀n ≥ 1,
n∑

k=1

1

kβ
≤ 1 +

1

(1− β)nβ−1
− 1

1− β
.

(c) Montrer que la suite
(∑n

k=1
1
kβ

)
converge.

11



Pour s’entraı̂ner, aller plus loin

Exercice 64. Soit f : [0, 2] → R une fonction 2 fois dérivable telle que f(0) = f(1) = f(2). Montrer
qu’il existe c ∈]0, 2[ tel que f ′′(c) = 0. Indication : Lemme de Rolle.

Exercice 65. (a) Montrer que pour tout x ∈ R, la suite (x
n

n! ) tend vers 0.
(b) Montrer que pour tout x ∈ R,

|ex −
n∑

k=0

xn

n!
| ≤ e|x|

|x|n+1

(n+ 1)!
, ∀n ∈ N.

(c) Quelle est la limite de la suite (
∑n

k=0
xn

n! )?

Exercice 66. (♠) Soit 0 < β < 1. En vous inspirant de l’exercice 63, montrer que

n∑
k=1

1

kβ
∼

n→+∞

n1−β

(1− β)
.

Exercice 67. (♠) Soit f : R → R l’application donnée par f(x) = x + x2 cos( 1
x2 ) si x ̸= 0 et

f(0) = 0.
(a) Montrer que f est dérivable sur R et justifier que f ′(0) = 1.

(b) On pose ∀n ∈ N, un = f

(
1√

π(2n+2)

)
− f

(
1√

π(2n+1)

)
.

(i) Justifier que
√
1 + x =

0
1 + x

2 + o(x). En déduire que

1√
π(2n+ 2)

− 1√
π(2n+ 1)

=
1

2(2n+ 1)
√
π(2n+ 2)

+ o
(
n− 3

2

)
,

lorsque n → +∞.
(ii) Montrer que

un ∼ −1

4
√
2πn

3
2

lorsque n → ∞.

(c) Montrer qu’il existe un entier N tel que ∀n ≥ N, f

(
1√

π(2n+1)

)
< f

(
1√

π(2n+2)

)
. En déduire

que f n’est croissante sur aucun voisinage de 0.
(d) Tracer le graphe de la fonction f .
(e) Est-il vrai que si une fonction f est dérivable sur R et que f ′(x0) > 0, alors f est croissante sur

un voisinage de x0 ?

12



Feuille d’exercices 8

Exercice 68. (♣) Donner le développement limité en 0, à l’ordre 20, de la fonction F (x) = x4 cos(x3).
En déduire la valeur de la dérivée F (16)(0).

Exercice 69. (♣) Déterminer la limite de
(
1 + 1

x + 1
x2

)x+x2

lorsque x → +∞ et lorsque x → 0+.

Exercice 70. (♣) Donner un équivalent simple de
√
x4 + x2 + 1−

√
x4 + 1 en +∞, et ensuite en 0.

Exercice 71. (♣) Déterminer la limite en 0 de

ln(1 + x)− tanx+ 1
2 sin

2 x

3x2 sin2 x
. Rappel : tanx = x+

x3

3
+ o(x4).

Exercice 72. Déterminer la limite en 0 de

(a) (♣) 1
x − 1

ln(1+x) (b) (♣) (1+x
1−x)

1
x (c) sin(x2)−sin(x)2

x4 (d) 1
x2 − cotan2x

Exercice 73. Donner une asymptote en +∞ et la position par rapport à l’asymptote de

(a) (♣)(x3 + x2 + x+ 1)
1
3 (b)

√
x(2 + x)e

1
x (c) ln(ex

2 − ex − 1)

Exercice 74. Développements asymptotiques. Montrer que

(a) (♣)
√

x+
√
x =

0+
x

1
4 + x

3
4

2 − x
5
4

8 + o(x
5
4 )

(b) (♣)
√

x+
√
x =

+∞

√
x+ 1

2 − 1
8
√
x
+ 1

16x + o( 1x)

(c) 1
x+lnx =

+∞
1
x − lnx

x2 + ln2 x
x3 + o( 1

x3 )

Exercice 75. Soit f :]0,+∞[→ R la fonction définie par f(x) = ln(x)
x .

(a) Montrer que pour tout n ≥ 3, il existe un unique e > αn > 1 satisfaisant la relation : f(αn) =
1
n .

(b) Montrer que (αn) est décroissante (on utilisera la monotonie de la fonction de f ).
(c) Montrer que (αn) converge vers 1.
(d) Déterminer le DL à l’ordre 2 de f en x = 1.
(e) Montrer que (αn) admet le développement asymptotique

αn = 1 +
1

n
+

3

2n2
+ o(

1

n2
).
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Pour s’entraı̂ner, aller plus loin

Exercice 76. On considère la suite

un :=

√
4n2 + 1− 2n√
n2 + 1− n

, n ≥ 0,

et la fonction F : R \ {0} → R définie par la relation

F (x) =

√
4 + x2 − 2√
1 + x2 − 1

, x ̸= 0.

(a) Exprimer les termes de la suite (un) au moyen de la fonction F .
(b) Calculer le DL2(0) de la fonction F .
(c) Montrer que lim

n→∞
un = 1

2 .

(d) Pour tout α ∈ N, calculer la limite de la suite nα(un − 1
2).

Exercice 77. (♠)
Question préliminaire : montrer que ex−1

x > 0,∀x ̸= 0.
On considère la fonction F : R → R telle que F (0) = 0 et

F (x) = ln

(
ex − 1

x

)
, ∀x ̸= 0.

(a) Déterminer le DL3(0) de la fonction F .
(b) Déduire de la question (a) la limite de la suite un = n

(
ln(n) + ln(e

1
n − 1)

)
, n ≥ 1.

(c) Montrer que lorsque x → +∞, on a le développement asymptotique

F (x) =
+∞

x− ln(x)− e−x + o(e−x).

(d) Donner la tangente et la position par rapport à la tangente en ln(4) de la fonction F . On utilisera
le fait que ln(4) ≃ 1, 38.

Exercice 78. (♠) Soit f : R → R la fonction définie par f(x) = ex−e−x

ex+e−x , x ∈ R, et (un) la suite
définie par récurrence par : u0 > 0 et ∀n ∈ N, un+1 = f(un).

I : Étude de la fonction
(a) Montrer que 0 < f(x) < x pour tout x > 0.
(b) Montrer que le développement limité à l’ordre 5 de f en 0 est donné par

f(x) =
0
x− 1

3
x3 +

2

15
x5 + o(x5).

(c) En déduire que lim
x→0

1
f(x)2

− 1
x2 = 2

3 .

(d) Montrer qu’au voisinage de +∞ on a le développement asymptotique

f(x) = 1− 2e−2x + 2e−4x + o(e−4x).

II : Étude de la suite
(a) Montrer que (un) est une suite strictement décroissante convergente vers 0.
(b) Calculer la limite de la suite vn = 1

u2
n+1

− 1
u2
n

.

(c) En appliquant le lemme de Cesàro à la suite (vn), déterminer un équivalent de (un) quand n →
∞.
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Feuille d’exercices 9

Exercice 79. (♣) Etudier la convergence des séries
∑

un suivantes :

(a) un = ln(n+1)
n2+1

(b) un = 3n−n3

4n−3n

(c) un = 1√
n
ln(1 + 1√

n
)

(d) un = 1
n!

(e) un = sin( 1n)−
1
n

(f) un = (−1)n+n
n2+1

(g) un = (−1)nn
n2+1

(h) un = (−1)n
√
n

n+
√
n

(i) un = (−1)nn
n+

√
n

(j) un = 2
√
n

n3+1

(k) un =
(

n
n+1

)n2

Exercice 80. (♣) Soit a et b deux réels. Pour tout n ∈ N, posons

un =
√
n+ a

√
n+ 1 + b

√
n+ 2.

(a) Vérifier que la suite (un) tend vers 0 si et seulement si a+ b+ 1 = 0.
(b) Déterminer a et b pour que la série

∑
un soit convergente. Dans ce cas, que vaut la somme∑∞

n=0 un ?

Exercice 81. (♣)

(a) Montrer que la série
∑ (−1)n√

n
est convergente.

(b) Montrer que la série
∑ (−1)n√

n−(−1)n
est divergente.

(c) Qu’a-t-on voulu mettre en évidence dans cet exercice?

Exercice 82. (♣) Au moyen du critère de d’Alembert, étudier la convergence des séries
∑

un sui-
vantes (toutes dépendent d’un paramètre α > 0) :

(a) un = α−n2
n! (b) un = n!

nαn (c) un = nα(ln(n+1))n

n! .

Exercice 83. Au moyen d’une comparaison avec une intégrale, donner des équivalents pour les suites
suivantes

(a) An =
∑∞

k=n
(−1)k

k
(b) Bn = ln(n!) (c) Cn =

∑n
k=1 ln(k)

2.

Indication : on pourra écrire (An) sous la forme An = (−1)n
∑∞

k=n αk où (αk) est une suite
positive.

Pour s’entraı̂ner, aller plus loin

Exercice 84. (♣)
(a) Montrer que pour tout entier n ∈ N, la série

∑ kn

k! est convergente.
(b) Pour tout entier n ≥ 1, posons Sn =

∑∞
k=0

kn

k! . Notons e =
∑∞

k=0
1
k! .

• Etablir une relation de récurrence satisfaite par la suite (Sn).
• En déduire que Sn

e ∈ N pour tout entier n ≥ 1.
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Exercice 85. Soit
∑

an une série à termes positifs convergente.
(a) Montrer que pour tout p ≥ 1, la série

∑
(an)

p est convergente.
(b) Posons Sp =

∑∞
n=0(an)

p. Calculer la limite de (Sp)
1
p lorsque p → ∞.

Exercice 86. On considère deux suites réelles (an) et (bn). Posons Bn =
∑n

k=0 bk.
(a) (Transformation d’Abel 1) Montrer que pour tous entiers naturels N > M , on a

N∑
n=M+1

anbn =

N∑
n=M+1

(an − an+1)Bn + aN+1BN − aM+1BM .

(b) En déduire que
∑

anbn est une série convergente si les conditions suivantes sont satisfaites
• la suite (Bn) est bornée,
• la série

∑
(an − an+1) est absolument convergente,

• la suite (an) tend vers 0.
(c) En déduire que

∑
anbn est une série convergente si la suite (Bn) est bornée et si (an) est une

suite décroissante convergente vers 0.
(d) Montrer que la série

∑ sin(n)
n est convergente.

(e) Montrer que la série
∑ sin(n)

n n’est pas absolument convergente (on pourra utiliser le fait que
| sin(x)| ≥ sin(x)2).

Exercice 87. (♠) On cherche à établir un développement asymptotique de la série harmonique

Hn =

n∑
k=1

1

k
, n ≥ 1.

On pose ak = 1
k −

∫ k+1
k

dt
t , pour tout k ≥ 1.

(a) Montrer que ak = 1
2k2

+O( 1
k3
).

(b) En déduire que la série
∑

ak converge. On note γ :=
∑∞

k=1 ak.
(c) Montrer que le reste Rn =

∑∞
k=n ak admet le développement asymptotique :

Rn =
1

2n
+O(

1

n2
)

(d) En déduire que la série harmonique admet le développement asymptotique suivant :

(⋆) Hn = ln(n) + γ +
1

2n
+O(

1

n2
).

Exercice 88. (♠) Considérons une suite réelle (xn) formée de termes strictements positifs. On sup-
pose que la suite (xn+1

xn
) admet le développement asymptotique suivant :

xn+1

xn
= 1 +

α

n
+O(

1

n2
).

(a) Montrer que la série
∑

ln(xn+1

xn
)− α

n est convergente.
(b) Montrer qu’il existe une constante C > 0 pour laquelle on a : xn ∼ Cnα. On utilisera le fait que

Hn = ln(n) + γ + o(1), voir (⋆).

1. On notera la similitude avec l’intégration par parties des fonctions.
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