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Questions isolées

a. Soit vi = (ay,...,a,) € Z" un vecteur non nul. Montrer que v; peut étre complété en une base
{vi,...,v,} de Z" si et seulement si pgcd(ay,...,a,) = 1.
Soit § = pged(ay,...,a,) > 1. Pour n’importe quelle famille {v,,...,v,} de vecteurs Z", le déterminant

det(vy,...,v,) € Zestdivisible par 6. Si ¢ # 1, alors det(vy,...,v,) # £1, ce qui signifie que {vy,...,v,}
n’est pas une base de Z".

Supposons que 6 = 1. Alors, il existe uy, ..., u, € Ztels que )., u;a; = 1. Considérons la forme linéaire
0 :Z" > Z, o(x) = X", u;x;. Comme ¢(v;) = 1 onaZ" = Zv; @ ker(¢). Le sous Z-module ker(¢) C Z"
possede une base {vs,...,v,}. Alors {v{,v,,...,v,} est une base de Z".

b. Déterminer les facteurs invariants du Z-module G := (Z/1002Z) x (Z/80Z) X (Z/90Z).
Onal00=2%2-5%,80=2*-5et90 =2-3%-5. Prenons
n=2-5 m=2"-5 n=2"5.3%
Grice au lemme chinois, on voit que G est isomorphe a
(Z)27) X (Z]2°Z) X (Z]2*Z) x (Z/5Z) x (Z]5Z) x (Z|5*Z) x (Z]3°Z) =~ (Z/mZ) X (Z|n,Z) x (Z/ns7Z).

On a montré que les facteurs invariants du Z-module G sont n;\n;\ns.
¢. Soit V une représentation irréductible complexe d’un groupe abélien fini G. Montrer que dim V = 1.

Voir le cours.

Exercice 1

(1) Rappeler la définition des invariants de similitude d’'un endomorphisme A € End(R").

Voir le cours.

(2) Dénombrer le nombre de classes de conjugaison dans X := {A € End(R%), A* = 0}.

Soit Py, - - - P, les invariants de similitude de A € X : les P; sont des polyndmes unitaires de degré
> 1, et A est semblable a la matrice
C(Py)
C(pP,)

ou les C(P;) sont les matrices compagnon associées a P;. Comme A € X, le polyndme caracté-
ristique de A est égal a
xXb=pP,---P,



tandis que le polyndme minimal de A est égal a
Xt =r,
avec € € {1,2,3}.
On utilise maintenant les propriétés de divisibilité : P\ --- \P,.

Premier cas P, = X. Ici, la matrice A est nulle.

Second cas P, = X?. Ici, on a les possiblités suivantes

— I":S,etP] :P2:P3:P4:X,

— 1’24,P1 :PQZXCtP3:X2,

— r:3,etP1 :P2:X2.

Troisieme cas P, = X°. Ici, on a les possiblités suivantes
—r:4,etP1:P2:P3:X,

— }":3,P1 :XetPZ:XZ,

— r:2,etP1 :X3.

On a ainsi montré que X possede 7 classes de conjugaison.

Exercice 2

Déterminer une base de chaque Z-module :

(1) M :={(x,y,2) € Z*, 20x + 18y + 15z = 0}.

Comme pgcd(20,18,15) = 1, la relation 20x + 18y + 15z = 0 impose que : 3 = pgcd(18,15)
divise x, 5 = pgcd(20, 15) divise y, et 2 = pged(20, 18) divise z.

On pose alors x = 3x’, y = 5y’ et z = 27’. La relation 20x + 18y + 15z = 0 devient 60x" + 90y +
307" = 0, soit 7 = —2x" — 3y’. On a ainsi montré que les éléments de M sont de la forme

Bx',5y",2(=2x' =3y) =x'Vi +y'V,
avec V; =((3,0,-4) et V, = (0,5,-6).

Conclusion : {V}, V,} est une base de M.
(2) N :={(x,y,z) € Z*, 20x + 18y + 15z € 100Z)}.

Posons ¢(x,y,z) = 20x + 18y + 15z, et V3 = (—1,2,1). Comme ¢(V3) = 1,0n a
7} = ker(p) ® ZVs = ZV, @ ZV, ® ZV;

etN =2V, ®2ZV, ®Z100V;.

Conclusion : {V;, V,, 100V} est une base de N.

Exercice 3

On considere le groupe G € GL,(R) engendré par la rotation R d’angle 27” et la symétrie S définie par
S(x’)’) = (X, _Y)

(1) Déterminer les €léments du groupe G.

Les relations 2 = R7 = Id et SRS ™! = R~ implique que
G={RLo<e<e}| J{sRLo<e<6}.



2)

3)

Décrire le sous groupe dérivé [G, G].

Notons [a, b] := aba™'b~! pour tout a, b € G. On calcule

— [RY,RY] =14,

— [SRY,SR"] = R0,

— [SR,R"] =R

Comme I’ordre de R est 7, on voit que [G,G] = {R", 0<t< 6}.
Décrire les classes de conjugaison du groupe G.

Notons < a >:= {gag™", g € G} la classe de conjugaison de @ € G. On a
— <R'>={R', R},
— <SR >={SR* 0<k<6}UISR*, 0<k<6)={SR, 0< (<6}

On a donc 5 classes de conjugaison dans G : {Id}, {R,R'}, (R, R}, {R*>, R}, et {SR/, 0 < £ <
6}.

(4) Déterminer les représentations irréductibles de G.

Le groupe G possede 5 représentations irréductibles complexes :

(a) la représentation triviale V| = C.

(b) la représentation V, de dimension 1 associée au caractere y : G — C — {0}, défini par la
relation y(S*R%) = (1)~
(c) la représentation V3 de dimension 2 associée au morphisme de groupe p; : G — GL(C?),

défini par la relation
k s :2mt
0 1\ (&7 O
kpty _
Pp1(S'R") = (1 0) ( 0 ei_%”{)'

(d) la représentation V, de dimension 2 associée au morphisme de groupe p, : G — GL(C?),

défini par la relation
ko, jan
pa(S'RY) = ((1’ (1)) (e 7 1.04,,@).
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(e) la représentation Vs de dimension 2 associée au morphisme de groupe p; : G — GL(C?),

défini par la relation
k ; ;6nt
1 T
pi(S'RY = ((1’ 0) (e 7 0)
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