Mathématiques pour économistes 2

Mickael Beaud

Maître de conférences des universités (MCU)
Faculté d'économie de l'université de Montpellier (UM)
Centre d'Economie de l'Environnement de Montpellier (CEE-M)
(Courriel: mickael.beaud@umontpellier.fr)

November 5, 2025

Thème 3: Optimisation contrainte

- 3.1 Problèmes contraints
- 3.2 Conditions du second ordre pour l'optimisation contrainte
- 3.3 Existence, unicité et caractérisation des solutions

Optimisation contrainte

- Si, lorsque l'on maximise ou minimise une fonction, nous sommes libres de considérer n'importe quelle valeur réelle prise par les variables comme solution possible, on a un problème d'optimisation non-contraint.
- Cependant, dans la plupart des problèmes économiques, il existe une ou plusieurs contraintes qui restreignent l'ensemble des valeurs pouvant être solution.
- Comme nous l'avons déjà constaté Section 2.3, les restrictions directes sur les variables apparaissent naturellement dans les problèmes économiques et ont généralement un impact important sur la solution.

Optimisation contrainte

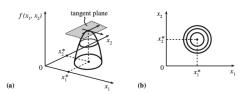
- Dans ce Thème 3, nous allons étudier un autre type de restriction où les variables doivent vérifier une ou plusieurs contraintes prenant la forme d'équations.
- Nous verrons notamment la méthode des multiplicateurs de Lagrange qui est essentielle pour résoudre de nombreux problèmes économiques.

Thème 3: Optimisation contrainte

- 3.1 Problèmes contraints
- 3.2 Conditions du second ordre pour l'optimisation contrainte
- 3.3 Existence, unicité et caractérisation des solutions

- Supposons que l'on cherche à maximiser une fonction **strictement concave** $f(x_1, x_2)$ similaire à celle représentée **Figure 2 Section 2.1** reproduite ci-dessous.
- En l'absence de contrainte, le **Théorème 4** de la **Section 2.2** nous apprend que si $f_i(x_1^*, x_2^*)$ pour i = 1, 2, alors la fonction f atteint un **unique maximum global** au point (x_1^*, x_2^*) .

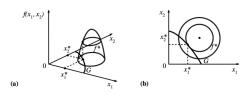
Figure 2 Section 2.1



- Supposons maintenant que les variables doivent satisfaire la **contrainte** $g(x_1, x_2) = 0$.
- Cela signifie que les solutions du programme de maximisation de f doivent être recherchées parmi les points qui vérifient cette équation.
- On a donc une **condition nécessaire** $g\left(x_1^*, x_2^*\right) = 0$ associée au programme de **programme de maximisation de** f.

- La Figure 1 illustre ce problème de maximisation sous contrainte.
- La courbe G représente les points (x_1, x_2) qui satisfont la **contrainte** $g(x_1, x_2) = 0$.
- Il s'agit donc de trouver un point sur G où la valeur de la fonction f est la plus élevée.
- On voit que la solution (x_1^*, x_2^*) est obtenue au **point de tangence** entre G et la **courbe de niveau** de f la plus élevée.

Figure 1



Problèmes sous contraintes

- Adoptons maintenant une approche analytique.
- Dans la **Section 1.3**, nous avons montré que la **pente d'une courbe de niveau de la fonction** f dans le repère (x_1, x_2) est donnée par

$$\frac{dx_{2}}{dx_{1}} = -\frac{f_{1}(x_{1}, x_{2})}{f_{2}(x_{1}, x_{2})}$$

• De plus, la **pente de la fonction** g est donnée par

$$\frac{dx_2}{dx_1} = -\frac{g_1(x_1, x_2)}{g_2(x_1, x_2)}$$

• Comme le point solution (x_1^*, x_2^*) correspond à un **point de** tangence entre une courbe de niveau de f et la courbe G, on a

$$\frac{f_{1}\left(x_{1}^{*},x_{2}^{*}\right)}{f_{2}\left(x_{1}^{*},x_{2}^{*}\right)} = \frac{g_{1}\left(x_{1}^{*},x_{2}^{*}\right)}{g_{2}\left(x_{1}^{*},x_{2}^{*}\right)}$$

• Nous disposons ainsi d'une équation à deux inconnues que l'on ne peut pas résoudre. Mais comme le point (x_1^*, x_2^*) appartient à G (i.e. il vérifie la **contrainte**) on a également

$$g\left(x_{1}^{*},x_{2}^{*}\right)=0$$

 On dispose alors d'un système de deux équations à deux inconnues que l'on peut résoudre.

Theorem (1)

Si le point de tangence (x_1^*, x_2^*) est solution du programme de maximisation contrainte

$$\max_{x_1, x_2} : f(x_1, x_2) \quad s.c. \ g(x_1, x_2) = 0$$

alors il satisfait

$$\frac{f_1\left(x_1^*, x_2^*\right)}{f_2\left(x_1^*, x_2^*\right)} = \frac{g_1\left(x_1^*, x_2^*\right)}{g_2\left(x_1^*, x_2^*\right)} \quad \text{et} \quad g\left(x_1^*, x_2^*\right) = 0$$

- Nous pouvons démontrer le Théorème 1 sans nécessairement faire explicitement référence à la représentation graphique.
- Comme précédemment, considérons la **contrainte** $g(x_1, x_2) = 0$, et supposons que l'on peut résoudre cette équation et obtenir x_2 en fonction de x_1 :

$$x_2 = \gamma(x_1)$$

- C'est l'équation de la courbe G dans le repère (x_1, x_2) , comme sur la **Figure 1**.
- D'après le Théorème 11 Section 1.3 (théorème des fonctions implicites), si $g_2 \neq 0$, on a

$$\frac{dx_2}{dx_1} = \gamma'\left(x_1\right) = -\frac{g_1\left(x_1, \gamma\left(x_1\right)\right)}{g_2\left(x_1, \gamma\left(x_1\right)\right)}$$

• De plus, en substituant $x_2 = \gamma\left(x_1\right)$ dans la fonction objectif du problème d'optimisation contraint, on obtient un programme (équivalent) sans contrainte explicite

$$\max_{x_{1}}:f\left(x_{1},\gamma\left(x_{1}\right)\right)=\phi\left(x_{1}\right)$$

• La solution vérifie nécessairement la condition du premier ordre

$$\phi' = f_1\left(x_1^*, \gamma\left(x_1^*\right)\right) + f_2\left(x_1^*, \gamma\left(x_1^*\right)\right) \gamma'\left(x_1^*\right) = 0$$

• En réarrangeant les termes, et en substituant $\gamma'\left(x_1^*\right) = -\frac{g_1\left(x_1^*,\gamma\left(x_1^*\right)\right)}{g_2\left(x_1^*,\gamma\left(x_1^*\right)\right)}$, ainsi que $x_2^* = \gamma\left(x_1^*\right)$ (la **contrainte** devant être vérifiée), on retrouve la **condition de tangence** du **Théorème 1**.

$$\frac{f_1(x_1^*, x_2^*)}{f_2(x_1^*, x_2^*)} = \frac{g_1(x_1^*, x_2^*)}{g_2(x_1^*, x_2^*)}$$

- Nous présentons maintenant la technique des multiplicateurs de Lagrange permettant de résoudre les problèmes d'optimisation sous contraintes.
- Nous allons montrer qu'elle est équivalente à l'approche graphique et au **Théorème 1** présentés ci-dessus.
- On commence par introduire une nouvelle variable, généralement notée λ , appelée **multiplicateur de Lagrange**.
- On forme alors ce que l'on appelle la fonction de Lagrange ou le Lagrangien

$$L(x_1, x_2, \lambda) = f(x_1, x_2) + \lambda g(x_1, x_2)$$

- On cherche alors un **point stationnaire** de L par rapport à ses variables x_1 , x_2 et λ .
- D'après la Définition 1 Section 2.1, on a les conditions du premier ordre suivantes

$$\begin{split} \frac{\partial L}{\partial x_1} &= f_1\left(x_1^*, x_2^*\right) + \lambda^* g_1\left(x_1^*, x_2^*\right) = 0\\ \frac{\partial L}{\partial x_2} &= f_2\left(x_1^*, x_2^*\right) + \lambda^* g_2\left(x_1^*, x_2^*\right) = 0\\ \frac{\partial L}{\partial \lambda} &= g\left(x_1^*, x_2^*\right) = 0 \end{split}$$

• On dispose d'un système de trois équations à trois inconnues que l'on peut résoudre.

• On peut réécrire les deux premières conditions comme suit:

$$f_1(x_1^*, x_2^*) = -\lambda^* g_1(x_1^*, x_2^*)$$

$$f_2(x_1^*, x_2^*) = -\lambda^* g_2(x_1^*, x_2^*)$$

 En les combinant pour éliminer le multiplicateur de Lagrange, on retrouve la condition de tangence du Théorème 1

$$\frac{f_1\left(x_1^*, x_2^*\right)}{f_2\left(x_1^*, x_2^*\right)} = \frac{g_1\left(x_1^*, x_2^*\right)}{g_2\left(x_1^*, x_2^*\right)}$$

• La seconde condition du **Théorème 1** est simplement donnée par

$$\frac{\partial L}{\partial \lambda} = g(x_1^*, x_2^*) = 0$$

• La **Définition 1** résume ces éléments.

Definition (1)

La **méthode de Lagrange** permettant de trouver la solution (x_1^*, x_2^*) au **problème de maximisation sous contrainte**

$$\max_{x_1, x_2} : f(x_1, x_2)$$
 s.c. $g(x_1, x_2) = 0$

consiste à établir les conditions du premier ordre caractérisant un point stationnaire de la fonction de Lagrange.

Definition (1 suite)

La fonction de Lagrange est

$$L(x_1, x_2, \lambda) = f(x_1, x_2) + \lambda g(x_1, x_2)$$

Les conditions du premier ordre sont

$$\begin{split} \frac{\partial L}{\partial x_{1}} &= f_{1}\left(x_{1}^{*}, x_{2}^{*}\right) + \lambda^{*}g_{1}\left(x_{1}^{*}, x_{2}^{*}\right) = 0\\ \frac{\partial L}{\partial x_{2}} &= f_{2}\left(x_{1}^{*}, x_{2}^{*}\right) + \lambda^{*}g_{2}\left(x_{1}^{*}, x_{2}^{*}\right) = 0\\ \frac{\partial L}{\partial \lambda} &= g\left(x_{1}^{*}, x_{2}^{*}\right) = 0 \end{split}$$

- On peut alors s'interroger sur les conditions nécessaires et/ou suffisantes pour qu'il existe toujours une solution à ce problème de maximisation sous contrainte.
- Autrement dit, on peut s'interroger sur les conditions nécessaires et/ou suffisantes pour que la méthode de Lagrange fonctionne.
- En particulier, quels rôles jouent les hypothèses faites sur la forme des courbes de niveau de la fonction f et la forme de la contrainte capturée par la fonction g?
- Nous répondrons à ces questions plus loin Section 3.3. Pour l'instant, illustrons comment fonctionne la méthode de Lagrange à travers quelques exemples.

Example (1)

Résolvons le problème de maximisation contrainte

$$\max_{x_1,x_2}: x_1^{\frac{1}{4}} x_2^{\frac{3}{4}} \quad s.c. \ 100 - 2x_1 - 4x_2 = 0$$

• La fonction de Lagrange est

$$L(x_1, x_2, \lambda) = x_1^{\frac{1}{4}} x_2^{\frac{3}{4}} + \lambda [100 - 2x_1 - 4x_2]$$

Les conditions du premier ordre sont

$$\frac{\partial L}{\partial x_1} = \frac{1}{4} x_1^{-\frac{3}{4}} x_2^{\frac{3}{4}} - 2\lambda = 0$$

$$\frac{\partial L}{\partial x_2} = \frac{3}{4} x_1^{\frac{1}{4}} x_2^{-\frac{1}{4}} - 4\lambda = 0$$

$$\frac{\partial L}{\partial \lambda} = 100 - 2x_1 - 4x_2 = 0$$

Exemple 1

 On peut réécrire les deux premières conditions du premier ordre comme suit:

$$\frac{1}{4}x_1^{-\frac{3}{4}}x_2^{\frac{3}{4}} = 2\lambda \quad \text{et} \quad \frac{3}{4}x_1^{\frac{1}{4}}x_2^{-\frac{1}{4}} = 4\lambda$$

 En les combinant, pour éliminer le multiplicateur de Lagrange λ, on obtient

$$x_2=\frac{3}{2}x_1$$

 Finalement, en substituant cette dernière relation dans la troisième condition du premier ordre (i.e. la contrainte), on obtient les solutions

$$x_1^* = \frac{25}{2}$$
, $x_2^* = \frac{75}{4}$ et $\lambda^* = \frac{1}{8} \left[\frac{3}{2} \right]^{\frac{3}{4}} \approx 1,17$

Problème d'allocation temporelle de l'étudiant(e)

- Un(e) étudiant(e) souhaite allouer son temps hebdomadaire disponible de 60 heures entre deux sujets d'étude, le sujet 1 et le sujet 2.
- Consacrer t_i heures au sujet i=1,2 permet d'obtenir un résultat $g_i(t_i)$. On suppose que l'étudiant(e) cherche à **maximiser son résultat moyen**:

$$\max_{t_{1},t_{2}}:\overline{R}\left(t_{1},t_{2}\right)=\frac{g_{1}\left(t_{1}\right)+g_{2}\left(t_{2}\right)}{2}\quad s.c.\ 60-t_{1}-t_{2}=0$$

οù

$$g_{1}\left(t_{1}\right)=20t_{1}^{\frac{1}{2}}+20$$
 et $g_{2}\left(t_{2}\right)=3t_{2}-80$

Problème d'allocation temporelle de l'étudiant(e)

La fonction de Lagrange est

$$L(t_1, t_2, \lambda) = \frac{20t_1^{\frac{1}{2}} + 20 + 3t_2 - 80}{2} + \lambda \left[60 - t_1 - t_2 \right]$$

• Les conditions du premier ordre sont

$$\frac{\partial L}{\partial t_1} = \frac{10t_1^{-\frac{1}{2}}}{2} - \lambda = 0$$

$$\frac{\partial L}{\partial t_2} = \frac{3}{2} - \lambda = 0$$

$$\frac{\partial L}{\partial \lambda} = 60 - t_1 - t_2 = 0$$

Problème d'allocation temporelle de l'étudiant(e)

 On peut réécrire les deux premières conditions du premier ordre comme suit:

$$5t_1^{-rac{1}{2}}=\lambda$$
 et $rac{3}{2}=\lambda$

• En les combinant, pour éliminer le multiplicateur de Lagrange λ , on obtient

$$5t_1^{-\frac{1}{2}} = \frac{3}{2}$$

 Finalement, en substituant cette dernière relation dans la troisième condition du premier ordre (i.e. la contrainte), on obtient les solutions

$$t_1^* = rac{100}{9} pprox 11$$
, 11, $t_2^* = rac{440}{9} pprox 48$, 89, et $\lambda^* = rac{3}{2}$

- Les conditions d'optimalité obtenues grâce à la méthode de Lagrange permettent une interprétation intéressante des résultats.
- En particulier, à l'optimum, le multiplicateur de Lagrange, λ*, mesure l'impact marginal du temps alloué à chaque sujet d'étude sur le résultat moyen.
 - Une augmentation marginale de t_1 augmente le résultat moyen de $\frac{3}{2}$ (car $\overline{R}_1^* = \frac{1}{2}g_1'(t_1^*) = \frac{1}{2}10[t_1^*]^{-\frac{1}{2}} = \frac{3}{2}$).
 - Une augmentation marginale de t_2 augmente le résultat moyen de $\frac{3}{2}$ (car $\overline{R}_2^* = \frac{1}{2} g_2' (t_2^*) = \frac{3}{2}$).
 - A l'optimum, on a $\overline{R}_1^* = \overline{R}_2^* = \lambda^* = \frac{3}{2}$.

Problème d'allocation temporelle de l'étudiant(e)

 On peut également remarquer que, à l'optimum, bien que le temps passé à étudier le sujet 2 soit plus important, le résultat pour le sujet 2 est plus faible.

$$g_1(t_1^*) = \frac{260}{3} \approx 86,67$$
 et $g_2(t_2^*) = \frac{200}{3} \approx 66,67$

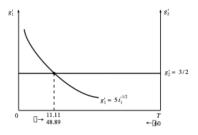
 Aussi, contrairement aux contributions marginales, les contributions moyennes ne sont pas égales:

$$\frac{g_1\left(t_1^*\right)}{t_1^*} = 7,8$$
 et $\frac{g_2\left(t_2^*\right)}{t_2^*} = \frac{15}{11} \approx 1,36$

Problème d'allocation temporelle de l'étudiant(e)

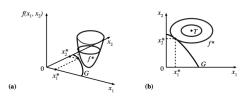
- La **Figure 2** illustre le fait que, à l'optimum, l'impact marginal de t_1 sur le résultat moyen de l'étudiant(e) est égal à celui de t_2 (i.e. $\overline{R}_1^* = \overline{R}_2^*$).
- En effet, si l'impact marginal de t_1 est supérieur à l'impact marginal de t_2 (i.e. $\overline{R}_1 > \overline{R}_2$) il faut augmenter t_1 et réduire t_2 .
- Par contre, si l'impact marginal de t_1 est inférieur à l'impact marginal de t_2 (i.e. $\overline{R}_1 < \overline{R}_2$), il faut réduire t_1 et augmenter t_2 .
- Noter une coquille sur la **Figure 2**, il faut lire $\overline{R}_1 = \frac{1}{2}g_1'$ et $\overline{R}_2 = \frac{1}{2}g_2'$ au lieu de g_1' et g_2' .

Figure 2



- Jusqu'ici nous n'avons considéré que des problèmes de maximisation.
- Mais l'analyse est similaire pour des problèmes de minimisation.
- La Figure 3 illustre la minimisation d'une fonction $f(x_1, x_2)$ strictement convexe sous la même contrainte que précédemment $(g(x_1, x_2) = 0)$.
- Il s'agit de trouver un point sur G (i.e. vérifiant la **contrainte**) qui **minimise** la valeur de la fonction f.

Figure 3



Comme dans le cas d'une maximisation contrainte, le point solution
 (x₁*, x₂*) du problème de minimisation contrainte correspond à un
 point de tangence entre une courbe de niveau de f et la courbe
 G, et donc

$$\frac{f_{1}\left(x_{1}^{*},x_{2}^{*}\right)}{f_{2}\left(x_{1}^{*},x_{2}^{*}\right)} = \frac{g_{1}\left(x_{1}^{*},x_{2}^{*}\right)}{g_{2}\left(x_{1}^{*},x_{2}^{*}\right)}$$

• De plus, le point (x_1^*, x_2^*) appartient à G (i.e. il vérifie la **contrainte**):

$$g\left(x_{1}^{*},x_{2}^{*}\right)=0$$

- On obtient donc les mêmes conditions du premier ordre nécessaires à la maximisation ou à la minimisation contrainte.
- Comme nous l'avons vu dans le Thème 2, pour déterminer si un point stationnaire est un maximum ou un minimum, nous devons étudier les conditions du second ordre.
- Ce point est traité plus loin dans la **Section 3.2**.

Definition (2)

La **méthode de Lagrange** permettant de trouver la solution (x_1^*, x_2^*) au **problème de minimisation contrainte**

$$\min_{x_1,x_2} : f(x_1,x_2)$$
 s.c. $g(x_1,x_2) = 0$

consiste à établir les conditions du premier ordre caractérisant un point stationnaire de la fonction de Lagrange.

Problèmes contraints

Definition (2 suite)

La fonction de Lagrange est

$$L(x_1, x_2, \lambda) = f(x_1, x_2) + \lambda g(x_1, x_2)$$

Les conditions du premier ordre sont

$$\begin{split} \frac{\partial L}{\partial x_{1}} &= f_{1}\left(x_{1}^{*}, x_{2}^{*}\right) + \lambda^{*}g_{1}\left(x_{1}^{*}, x_{2}^{*}\right) = 0\\ \frac{\partial L}{\partial x_{2}} &= f_{2}\left(x_{1}^{*}, x_{2}^{*}\right) + \lambda^{*}g_{2}\left(x_{1}^{*}, x_{2}^{*}\right) = 0\\ \frac{\partial L}{\partial \lambda} &= g\left(x_{1}^{*}, x_{2}^{*}\right) = 0 \end{split}$$

Problèmes contraints

Example (2)

Résolvons le problème de minimisation contrainte

$$\min_{x_1, x_2} : x_1 + x_2 \quad s.c. \ 1 - x_1^{\frac{1}{2}} - x_2$$

• La fonction de Lagrange est

$$L(x_1, x_2, \lambda) = x_1 + x_2 + \lambda \left[1 - x_1^{\frac{1}{2}} - x_2\right]$$

• Les conditions du premier ordre sont

$$\begin{array}{lcl} \frac{\partial L}{\partial x_1} & = & 1 - \lambda \frac{1}{2} x_1^{-\frac{1}{2}} = 0 \\ \frac{\partial L}{\partial x_2} & = & 1 - \lambda = 0 \\ \frac{\partial L}{\partial \lambda} & = & 1 - x_1^{\frac{1}{2}} - x_2 = 0 \end{array}$$

Exemple 2

 On peut réécrire les deux premières conditions du premier ordre comme suit:

$$1=\lambda\frac{1}{2}x_1^{-\frac{1}{2}}\quad\text{et}\quad 1=\lambda$$

 En les combinant, pour éliminer le multiplicateur de Lagrange λ, on obtient

$$\frac{1}{2}x_1^{-\frac{1}{2}}=1$$

 Finalement, en substituant dans la troisième condition du premier ordre (i.e. la contrainte), on obtient les solutions

$$x_1^* = rac{1}{4}$$
, $x_2^* = rac{1}{2}$, et $\lambda^* = 1$

Problèmes contraints

- Le multiplicateur de Lagrange peut apparaître comme un simple artifice introduit afin de nous aider à générer les conditions dont nous savons qu'elles sont vérifiées à l'optimum (point de tangence et contrainte vérifiée).
- En fait, le multiplicateur de Lagrange possède une interprétation économique très importante et intéressante dans tous les problèmes d'optimisation contraints.
- Compte tenu de son importance, nous résumons ce fait dans le **Théorème 2**.

Problèmes contraints

Theorem (2)

Au point solution d'un programme d'optimisation contraint, la valeur du multiplicateur de Lagrange λ^* mesure l'impact d'un desserrement marginal de la contrainte sur la valeur optimale de la fonction objectif.

Thème 3: Optimisation sous contraintes

- 3.1 Problèmes contraints
- 3.2 Conditions du second ordre pour l'optimisation contrainte
- 3.3 Existence, unicité et caractérisation des solutions

- Dans la Section 3.1, nous avons observé que les conditions du premier ordre associées à un problème de maximisation contraint sont identiques à celles associées à un problème de minimisation contraint. Nous avions également observé ce fait pour les problèmes non contraints dans le Thème 2).
- Autrement dit, les conditions du premier ordre sont nécessaires mais elles ne sont pas suffisantes pour affirmer qu'un point est solution.
- On doit alors étudier les conditions du second ordre.

- Une première approche globale consiste à s'assurer, en amont, au travers d'hypothèses associées au modèle économique que l'on développe, que ce dernier possède les bonnes propriétés.
- Il s'agit par exemple de faire des hypothèses sur les préférences des individus ou sur les technologies de production des entreprises, qui garantissent que les fonctions objectif des agents économiques (e.g. fonctions d'utilité et fonctions de profit), ainsi que les contraintes considérées, ont les bonnes propriétés (i.e. les propriétés qui permettent un traitement mathématique simple ou du moins sans difficultés d'existence ou d'unicité de l'équilibre du modèle).

- Nous verrons Section 3.3, qu'il est suffisant pour l'obtention d'un maximum (resp. minimum) contraint que la fonction objectif soit quasiconcave (resp. quasiconvexe) et que les contraintes définissent des ensembles convexes.
- Toutefois, notamment lorsque l'on effectue des analyses de statique comparative, il est utile de disposer des conditions du second ordre locales (aux alentours du point solution, pour de "petites" variations à partir de l'optimum).

- Nous avons observé précédemment (Section 2.2) que, d'un point de vue local, les conditions du second ordre s'expriment en terme de contraintes sur les signes des déterminants des sous matrices principales successives de la matrice Hessienne associée à la fonction que l'on cherche à optimiser.
- Pour les problèmes d'optimisation contraints, il existe des conditions similaires, bien que légèrement plus complexes.
- Nous n'allons pas discuter le fondement de ces conditions de manière approfondie (ce qui peut s'avérer très complexe), mais simplement les établir et les expliquer. Le but est de pouvoir les utiliser dans le Thème 4 relatif à la statique comparative.

 Considérons le problème de maximisation contrainte le plus simple avec deux variables et une contrainte:

$$\max_{x_1, x_2} : f(x_1, x_2) \quad s.c. \ g(x_1, x_2) = 0$$

• Le Lagrangien associé est

$$L(x_1, x_2, \lambda) = f(x_1, x_2) + \lambda g(x_1, x_2)$$

• Supposons que le point $(x_1^*, x_2^*, \lambda^*)$ est un **point stationnaire** vérifiant les **conditions du premier ordre**

$$\begin{split} \frac{\partial L}{\partial x_{1}} &= f_{1}\left(x_{1}^{*}, x_{2}^{*}\right) + \lambda^{*}g_{1}\left(x_{1}^{*}, x_{2}^{*}\right) = 0\\ \frac{\partial L}{\partial x_{2}} &= f_{2}\left(x_{1}^{*}, x_{2}^{*}\right) + \lambda^{*}g_{2}\left(x_{1}^{*}, x_{2}^{*}\right) = 0\\ \frac{\partial L}{\partial \lambda} &= g\left(x_{1}^{*}, x_{2}^{*}\right) = 0 \end{split}$$

• La matrice Hessienne associée au Lagrangien, à l'optimum (d'où la notation H^*), est

$$H^* = \left[egin{array}{ccc} L_{11} & L_{12} & L_{1\lambda} \ L_{21} & L_{22} & L_{2\lambda} \ L_{\lambda 1} & L_{\lambda 2} & L_{\lambda \lambda} \end{array}
ight] = \left[egin{array}{ccc} f_{11} + \lambda^* g_{11} & f_{12} + \lambda^* g_{12} & g_1 \ f_{21} + \lambda^* g_{21} & f_{22} + \lambda^* g_{22} & g_2 \ g_1 & g_2 & 0 \end{array}
ight]$$

• Remarquons que lorsque la **contrainte** est **linéaire**, on a $g_{ij} = 0$ (i, j = 1, 2) et H^* se simplifie:

$$H^* = \left[egin{array}{ccc} f_{11} & f_{12} & g_1 \ f_{21} & f_{22} & g_2 \ g_1 & g_2 & 0 \end{array}
ight]$$

 Il s'agit alors de la matrice Hessienne de f bordée (en bas et à droite) par le vecteur [g₁, g₂, 0].

 On peut calculer le déterminant en utilisant la méthode des cofacteurs

$$|H^*| = f_{11} |H_{11}| - f_{12} |H_{12}| + g_1 |H_{13}|$$

$$= f_{11} \begin{vmatrix} f_{22} & g_2 \\ g_2 & 0 \end{vmatrix} - f_{12} \begin{vmatrix} f_{21} & g_2 \\ g_1 & 0 \end{vmatrix} + g_1 \begin{vmatrix} f_{21} & f_{22} \\ g_1 & g_2 \end{vmatrix}$$

$$= -f_{11}g_2^2 + f_{12}g_1g_2 + g_1 [f_{21}g_2 - g_1f_{22}]$$

$$= -f_{11}g_2^2 + 2f_{12}g_1g_2 - f_{22}g_1^2$$

Theorem (3)

 $Si\left(x_{1}^{*},x_{2}^{*},\lambda^{*}\right)$ est un point stationnaire de la fonction de Lagrange $L\left(x_{1},x_{2},\lambda\right)=f\left(x_{1},x_{2}\right)+\lambda g\left(x_{1},x_{2}\right)$, alors il constitue

- 1. *un* **maximum** *si* $|H^*| > 0$.
- 2. *un* **minimum** *si* $|H^*| < 0$.

Example (3)

Montrons que la solution de l'Exemple 1 constitue un maximum:

$$\max_{x \in \mathbb{R}^{3}} : x_{1}^{\frac{1}{4}} x_{2}^{\frac{3}{4}} \quad s.c. \ 100 - 2x_{1} - 4x_{2} = 0$$

La matrice Hessienne associée au Lagrangien

$$L(x_1, x_2, \lambda) = x_1^{\frac{1}{4}} x_2^{\frac{3}{4}} + \lambda \left[100 - 2x_1 - 4x_2 \right]$$

est

$$H = \begin{bmatrix} -\frac{3}{16}x_1^{-\frac{7}{4}}x_2^{\frac{3}{4}} & \frac{3}{16}x_1^{-\frac{3}{4}}x_2^{-\frac{1}{4}} & -2\\ \frac{3}{16}x_1^{-\frac{3}{4}}x_2^{-\frac{1}{4}} & -\frac{3}{16}x_1^{\frac{1}{4}}x_2^{-\frac{5}{4}} & -4\\ -2 & -4 & 0 \end{bmatrix}$$

• Au **point stationnaire** on a $(x_1^*, x_2^*) = (\frac{25}{2}, \frac{75}{4}) = (12.5, 18.75)$ et donc

$$H^* = \begin{bmatrix} -\frac{3}{16} [12.5]^{-\frac{7}{4}} [18.75]^{\frac{3}{4}} & \frac{3}{16} [12.5]^{-\frac{3}{4}} [18.75]^{-\frac{1}{4}} & -2\\ \frac{3}{16} [12.5]^{-\frac{3}{4}} [18.75]^{-\frac{1}{4}} & -\frac{3}{16} [12.5]^{\frac{1}{4}} [18.75]^{-\frac{5}{4}} & -4\\ -2 & -4 & 0 \end{bmatrix}$$

 On peut calculer le déterminant en utilisant la méthode des cofacteurs

$$|H^*| = -\frac{3}{16} [12.5]^{-\frac{7}{4}} [18.75]^{\frac{3}{4}} \times \begin{vmatrix} -\frac{3}{16} [12.5]^{\frac{1}{4}} [18.75]^{-\frac{5}{4}} & -4 \\ -4 & 0 \end{vmatrix}$$

$$-\frac{3}{16} [12.5]^{-\frac{3}{4}} [18.75]^{-\frac{1}{4}} \times \begin{vmatrix} \frac{3}{16} [12.5]^{-\frac{3}{4}} [18.75]^{-\frac{1}{4}} & -4 \\ -2 & 0 \end{vmatrix}$$

$$-2 \times \begin{vmatrix} \frac{3}{16} [12.5]^{-\frac{3}{4}} [18.75]^{-\frac{1}{4}} & -\frac{3}{16} [12.5]^{\frac{1}{4}} [18.75]^{-\frac{5}{4}} \\ -2 & -4 \end{vmatrix}$$

$$|H^*| = -\frac{3}{16} [12.5]^{-\frac{7}{4}} [18.75]^{\frac{3}{4}} \times [-16]$$

$$-\frac{3}{16} [12.5]^{-\frac{3}{4}} [18.75]^{-\frac{1}{4}} \times [-8]$$

$$-2 \times \left[-\frac{12}{16} [12.5]^{-\frac{3}{4}} [18.75]^{-\frac{1}{4}} - \frac{6}{16} [12.5]^{\frac{1}{4}} [18.75]^{-\frac{5}{4}} \right]$$

$$|H^*| = 3 [12.5]^{-\frac{7}{4}} [18.75]^{\frac{3}{4}}$$

$$+ \frac{3}{2} [12.5]^{-\frac{3}{4}} [18.75]^{-\frac{1}{4}}$$

$$+ \frac{3}{4} \left[2 [12.5]^{-\frac{3}{4}} [18.75]^{-\frac{1}{4}} + [12.5]^{\frac{1}{4}} [18.75]^{-\frac{5}{4}} \right]$$

$$\approx 0.58 > 0$$

• D'après le **Théorème 3**, nous avons bien identifié un **maximum** à partir des **conditions du premier ordre**.

Avec deux biens, le **problème du consommateur** s'écrit

$$\max_{x_1,x_2} : u(x_1x_2)$$
 s.c. $R - p_1x_1 - p_2x_2 = 0$

• Le Lagrangien associé est

Problème du consommateur

$$L(x_1, x_2, \lambda) = u(x_1x_2) + \lambda [R - p_1x_1 - p_2x_2]$$

Problème du consommateur

• Les conditions du premier ordre sont

$$\frac{\partial L}{\partial x_1} = u_1(x_1^*, x_2^*) - \lambda^* p_1 = 0
\frac{\partial L}{\partial x_2} = u_2(x_1^*, x_2^*) - \lambda^* p_2 = 0
\frac{\partial L}{\partial \lambda} = R - p_1 x_1^* - p_2 x_2^* = 0$$

 En combinant les deux premières conditions du premier ordre on obtient la condition de tangence:

$$\frac{u_1(x_1^*, x_2^*)}{u_2(x_1^*, x_2^*)} = \frac{p_1}{p_2} \Leftrightarrow TMS_{21}^* = \frac{p_1}{p_2}$$

 La troisième condition du premier ordre impose simplement que la contrainte budgétaire est vérifiée:

$$R - p_1 x_1^* - p_2 x_2^* = 0$$

A l'optimum, la matrice Hessienne associée au Lagrangien est

$$H^* = \left[egin{array}{ccc} u_{11} & u_{12} & -p_1 \ u_{21} & u_{22} & -p_2 \ -p_1 & -p_2 & 0 \end{array}
ight]$$

• Le **déterminant** de *H** est (en utilisant la méthode des **cofacteurs**)

$$|H^*| = u_{11} \begin{vmatrix} u_{22} & -p_2 \\ -p_2 & 0 \end{vmatrix} - u_{12} \begin{vmatrix} u_{21} & -p_2 \\ -p_1 & 0 \end{vmatrix} - p_1 \begin{vmatrix} u_{21} & u_{22} \\ -p_1 & -p_2 \end{vmatrix}$$

$$= -p_2^2 u_{11} + p_1 p_2 u_{12} - p_1 [-p_2 u_{21} + p_1 u_{22}]$$

$$= -p_2^2 u_{11} + 2p_1 p_2 u_{12} - p_1^2 u_{22} > 0$$

• Il est clair que si $u_{11} < 0$, $u_{22} < 0$ et $u_{12} > 0$, alors $|H^*| > 0$.

D'après les conditions du premier ordre, on a

$$p_1=-rac{u_1}{\lambda}$$
 et $p_2=-rac{u_2}{\lambda}$

• En substituant ces prix dans $|H^*|$ on obtient:

$$|H^*| = -\frac{u_{11}u_2^2 - 2u_1u_2u_{12} + u_{22}u_1^2}{\lambda^2}$$

 Ainsi, on retrouve la condition de stricte quasiconcavité (voir Section 1.5)

$$|H^*| > 0 \Leftrightarrow u_{11}u_2^2 - 2u_1u_2u_{12} + u_{22}u_1^2 < 0$$

- Jusqu'ici, nous avons uniquement étudié des problèmes d'optimisation avec deux variables et une contrainte.
- Nous étendons maintenant le Théorème 3 pour les problèmes à n ≥ 2 variables.
- Comme le Théorème 3, le Théorème 4 donne des conditions suffisantes mais non-nécessaires. Un point peut être solution d'un problème d'optimisation contraint sans pour autant vérifier les conditions de ces théorèmes.

- Toutefois, dans les modèles économiques, on fait généralement l'hypothèse que les conditions suffisantes des Théorèmes 3 et 4 sont satisfaites pour qu'un point stationnaire soit solution du problème d'optimisation contraint étudié.
- Il est donc peu utile (dans un cours de mathématiques pour économistes) d'investiguer les conditions nécessaires et suffisantes.

 Considérons le problème de maximisation contrainte avec n variables et une contrainte:

$$\max_{x_1, x_2, ..., x_n} : f(x_1, x_2, ..., x_n) \quad s.c. \ g(x_1, x_2, ..., x_n) = 0$$

• Le Lagrangien associé est

$$L(x_1, x_2, ..., x_n, \lambda) = f(x_1, x_2, ..., x_n) + \lambda g(x_1, x_2, ..., x_n)$$

• La matrice Hessienne associée au Lagrangien, à l'optimum (d'où la notation H^*), est

$$H^* = \left[egin{array}{cccccc} L_{11} & L_{12} & \dots & L_{1n} & g_1 \ L_{21} & L_{22} & \dots & L_{2n} & g_2 \ \dots & \dots & \dots & \dots & \dots \ L_{n1} & L_{n2} & \dots & L_{nn} & g_n \ g_1 & g_2 & \dots & g_n & 0 \end{array}
ight]$$

• Remarquons ici encore que lorsque la **contrainte** est **linéaire**, on a $g_{ij} = 0$ (i, j = 1, 2, ..., n), et H^* se simplifie:

$$H^* = \begin{bmatrix} f_{11} & f_{12} & \dots & f_{1n} & g_1 \\ f_{21} & f_{22} & \dots & f_{2n} & g_2 \\ \dots & \dots & \dots & \dots & \dots \\ f_{n1} & f_{n2} & \dots & f_{nn} & g_n \\ g_1 & g_2 & \dots & g_n & 0 \end{bmatrix}$$

• Il s'agit alors de la **matrice Hessienne** de f **bordée** (en bas et à droite) par le vecteur $[g_1, g_2, ..., g_n, 0]$.

Theorem (4)

 $Si\ (x_1^*, x_2^*, ..., x_n^*, \lambda^*)$ est un point stationnaire de la fonction de Lagrange $L\ (x_1, x_2, ..., x_n, \lambda) = f\ (x_1, x_2, ..., x_n) + \lambda g\ (x_1, x_2, ..., x_n)$, alors $(x_1^*, x_2^*, ..., x_n^*)$ est la solution de

1.
$$\max_{x_1, x_2} : f(x_1, x_2, ..., x_n)$$
 s.c. $g(x_1, x_2, ..., x_n) = 0$, si
$$\begin{vmatrix} L_{11} & L_{12} & g_1 \\ L_{21} & L_{22} & g_2 \\ g_1 & g_2 & 0 \end{vmatrix} > 0$$
,
$$\begin{vmatrix} L_{11} & L_{12} & L_{13} & g_1 \\ L_{21} & L_{22} & L_{23} & g_2 \\ L_{31} & L_{32} & L_{33} & g_3 \\ g_1 & g_2 & g_3 & 0 \end{vmatrix} < 0$$
, ...,
$$|H^*| \left\{ \begin{array}{ccc} > 0 \text{ si } n \text{ est pair} \\ < 0 \text{ si } n \text{ est impair} \end{array} \right.$$

Theorem (4)

 $Si\ (x_1^*, x_2^*, ..., x_n^*, \lambda^*)$ est un point stationnaire de la fonction de Lagrange $L\ (x_1, x_2, ..., x_n, \lambda) = f\ (x_1, x_2, ..., x_n) + \lambda g\ (x_1, x_2, ..., x_n)$, alors $(x_1^*, x_2^*, ..., x_n^*)$ est la solution de

2.
$$\min_{x_1, x_2}$$
: $f(x_1, x_2, ..., x_n)$ s.c. $g(x_1, x_2, ..., x_n) = 0$, si

$$\left|\begin{array}{cc|c} L_{11} & L_{12} & g_1 \\ L_{21} & L_{22} & g_2 \\ g_1 & g_2 & 0 \end{array}\right| < 0, \left|\begin{array}{cc|c} L_{11} & L_{12} & L_{13} & g_1 \\ L_{21} & L_{22} & L_{23} & g_2 \\ L_{31} & L_{32} & L_{33} & g_3 \\ g_1 & g_2 & g_3 & 0 \end{array}\right| < 0, \dots, |H^*| < 0.$$

Thème 3: Optimisation sous contraintes

- 3.1 Problèmes contraints
- 3.2 Conditions du second ordre pour l'optimisation sous contraintes
- 3.3 Existence, unicité et caractérisation des solutions

- Dans les Sections 3.1 et 3.2, nous avons vu comment trouver les solutions d'un problème d'optimisation contraint en utilisant notamment la méthode de Lagrange sans réellement nous poser la question de savoir si cette approche est justifié ou non.
- Nous allons maintenant répondre à cette question.

- Considérons un problème de maximisation contraint (des arguments symétriques vont s'appliquer pour un problème de minimisation contraint).
- Par ailleurs, plutôt que d'exprimer les contraintes sous forme d'équations, supposons, de manière équivalente, que les solutions doivent appartenir à un ensemble X qui est un sous-ensemble de l'ensemble de définition \mathbb{R}^n de la fonction objectif à n variables que l'on cherche à optimiser.
- Nous allons considérer n = 1 et n = 2 pour illustrer graphiquement.

- La première question fondamentale qui se pose est de savoir si le problème d'optimisation admet ou non (au moins) une solution.
- C'est la question de l'existence d'(au moins) une solution.
- Le Théorème 5 ci-dessous donne les conditions suffisantes d'existence d'(au moins) une solution pour tout problème d'optimisation (maximisation ou minimisation) contraint.

Theorem (5)

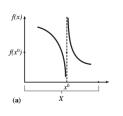
Si la fonction f, définie sur \mathbb{R}^n , est continue, et si X est un sous-ensemble non-vide, fermé et borné de \mathbb{R}^n , alors f possède à la fois un minimum et un maximum sur X. C'est le théorème de Weierstrass.

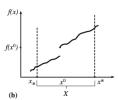
- Noter qu'un sous ensemble non-vide de ℝ est simplement un ensemble qui contient quelque chose.
- Un sous ensemble fermé et borné de R est un ensemble dont les bornes sont contenues dans l'ensemble (fermé) et sont finies (borné).
- Par exemple, tous les sous-ensembles X = [a, b] de \mathbb{R} , avec a et b des constantes vérifiant a < b, sont **non-vides**, **fermés** et **bornés**. Ils sont alors qualifiés de **compacts**.
- Mais les sous-ensembles de $\mathbb R$ suivants ne le sont pas: $X=[0,+\infty)$ (fermé, non-borné), X=(0,1) (ouvert, borné), et X=[0,1) (semi-ouvert, borné).

- Les conditions du Théorème 5 sont suffisantes mais non-nécessaires. Autrement dit, il est possible qu'une solution existe lorsque la fonction objectif est discontinue.
- La **Figure 5** illustre le genre de problème qui peut apparaître ou non lorsque la **fonction objectif** est **discontinue**.
- Sur les **Figures 5.a** et **5.b**, la fonction représentée est **discontinue** en x_0 .

- Sur la **Figure 5.a**, la **discontinuité** condamne l'existence d'une solution car la fonction tend vers $-\infty$ lorsque l'on approche x_0 par la gauche, et vers $+\infty$ lorsque l'on approche x_0 par la droite. La fonction n'admet pas de **maximum** ou de **minimum** sur X.
- Sur la **Figure 5.b**, la **discontinuité** ne condamne pas l'existence d'une solution. La fonction admet un **maximum** $x^* \in X$ et un **minimum** $x_* \in X$.

Figure 5





- Dans les modèles économiques, on suppose généralement que les fonctions que l'on cherche à optimiser sont différentiables (i.e. les dérivées partielles existent, ce qui signifie que la fonction admet une tangente en tout point).
- Or la **différentiabilité** implique la **continuité**. On voit par exemple sur les **Figures 5a** et **5b** que la fonction n'est pas dérivable en x_0 car il est impossible d'établir une tangente à la fonction en ce point (pour calculer sa pente et donc la dérivée).
- De plus, lorsque l'on considère des fonctions non-différentiables, on considère qu'elles sont continues.
- Ainsi, la condition de continuité du Théorème 5 est toujours vérifiée dans les modèles économiques. En effet, un modèle sans solution est inutile.

- Le **Théorème 5** s'applique uniquement si l'ensemble *X* est **non-vide**.
- Il est possible que X soit vide lorsqu'une contrainte associée au problème d'optimisation est impossible à vérifier ou si les contraintes sont incompatibles.
- Par exemple, les contraintes suivantes sont incompatibles (elles ne peuvent pas être vérifiées simultanément):

$$3x_1 + 6x_2 = 8$$

 $x_1 + 2x_2 = 4$
 $x_1 + x_2 = 6$

• Dans le repère (x_1, x_2) , les droites d'équation $x_2 = \frac{4}{3} - \frac{1}{2}x_1$, $x_2 = 2 - \frac{1}{2}x_1$ et $x_2 = 6 - x_1$ ne se coupent pas en un point.

- Le Théorème 5 s'applique uniquement si l'ensemble X est borné.
 Par définition, un ensemble est borné s'il est impossible d'approcher l'infini tout en restant dans l'ensemble.
- Pour illustrer quelle genre de difficulté peut apparaître si X est non-borné, considérons le problème du consommateur.
- Supposons qu'il existe deux biens et que le prix du bien 1 soit nul $(p_1 = 0)$. Alors une quantité infinie de bien peut être consommée. L'ensemble budgétaire est non-borné. Dans le repère (x_1, x_2) , c'est l'ensemble se trouvant sous la droite horizontale $x_2 = \frac{R}{p_2}$.
- Si l'utilité marginale du bien 1 est positive, alors le consommateur ne sera jamais satisfait avec une quantité finie de bien 1. Le problème du consommateur n'a pas de solution.

- Le **Théorème 5** s'applique uniquement si l'ensemble X est **fermé**. Par définition, un ensemble est **fermé** s'il contient ses bornes.
- Pour illustrer quelle genre de difficulté peut apparaître si X est non-fermé, considérons le problème d'optimisation contraint suivant:

$$\max_{x} : y = 2x \quad s.c. \ 0 < x < 1$$

• La fonction doit donc prendre ses valeurs dans (0, 2). Elle n'admet pas de **maximum** dans cet intervalle (ni de **minimum**).

• Par opposition, la solution du **problème d'optimisation contraint** suivant existe $(x^* = 1)$:

$$\max_{x} : y = 2x \quad s.c. \ 0 \le x \le 1$$

- Dans ce cas, X = [0,1] est **fermé** car les bornes appartiennent à l'ensemble.
- Ainsi, dans les problèmes d'optimisation contraints, on exclut donc les contraintes en inégalité stricte.

- Le fait que X soit fermé et borné implique que sont image (les valeurs prisent par la fonction dans cet intervalle) est un ensemble fermé et borné.
- Or il est évident qu'un ensemble fermé et borné admet un maximum (la borne à droite) et un minimum (la borne à gauche).

- Par la suite, nous supposerons que les conditions du Théorème 5 sont vérifiées et qu'une solution existe.
- On peut alors se demander sous quelles conditions la méthode de Lagrange permet de l'identifier (i.e. qu'est-ce qui nous assure que cette méthode fonctionne?).
- La méthode de Lagrange fonctionne si et seulement s'il existe des multiplicateurs de Lagrange permettant de résoudre les conditions du premier ordre.
- Autrement dit, il doit être possible de résoudre le système de n+m équations à n+m inconnues (les **conditions de Lagrange**).

- Lorsque les contraintes sont toutes linéaires et non-contradictoires, la méthode de Lagrange fonctionne toujours.
- Lorsque les contraintes sont non-linéaires, il existe des conditions techniques (conditions de qualification des contraintes), non présentées ici, qui nous assurent que la méthode de Lagrange fonctionne.

- Si les multiplicateurs existent, alors il est évident que les conditions de Lagrange donnent la solution du problème.
- En effet, pour un maximum, on a:

$$f\left(\mathbf{x}^{*}\right) + \sum_{j=1}^{m} \lambda_{j} g^{j}\left(\mathbf{x}^{*}\right) \geq f\left(\mathbf{x}\right) + \sum_{j=1}^{m} \lambda_{j} g^{j}\left(\mathbf{x}\right) \quad \forall \mathbf{x}$$

car x* maximise le Lagrangien.

• De plus, $\forall \mathbf{x} \in X$ (les points vérifiant les contraintes), on a $g^{j}(\mathbf{x}) = 0$. En conséquence

$$f(\mathbf{x}^*) \ge f(\mathbf{x}) \quad \forall \mathbf{x} \in X$$

et donc \mathbf{x}^* maximise la fonction f.

Une démonstration similaire vaut pour un minimum.

- Le point solution identifié par la méthode de Lagrange (qui vérifie les conditions du premier ordre) est un optimum (un maximum ou un minimum) local.
- Si nous identifions un optimum local, on sait que la fonction est maximisée ou minimisée en comparaison des points se trouvant aux alentours proches de la solution.
- Mais il se peut que ce ne soit pas le véritable optimum que l'on recherche qui est l'optimum global.
- La **Figure 6** illustre ce point.

- Les **Figures 6.a** et **6.b** illustrent des **maximums locaux**, respectivement x_a^* et x_b^* , qui ne sont pas des **maximums globaux** (noter une coquille sur la **Figure 6.a**, il faut intervertir G_a et F_a).
- Ceci peut être le cas même si les conditions du second ordre sont vérifiées.
- En effet, les conditions du second ordre permettent seulement d'identifier un maximum local ou un minimum local et d'exclure un point d'inflexion ou un point selle (où les conditions du premier ordre sont vérifiées).
- Sur la **Figure 6.c**, nous avons le cas recherché où la solution x_c^* est bien un **maximum global**.

Figure 6

- On peut remarquer que sur la **Figure 6.c**, la **droite tangente** T_c **sépare** les deux ensembles F_c et G_c .
- De ce fait, il existe un **unique point** x_c^* qui appartient à la fois à F_c et G_c .
- Par contre, sur la **Figure 6.a** (resp. **6.b**) la **droite tangente** T_a (resp. T_b) ne **sépare pas** les deux ensembles F_a et G_a (resp. F_b et G_b).

- Ceci suggère que l'on peut s'assurer d'obtenir un maximum global comme solution d'un problème d'optimisation contraint lorsque les ensembles F et G ont une forme correspondant à la Figure 6.c.
- En particulier, si F et G sont **convexes**, on obtient le cas décrit **Figure 6.c**.
- F et G sont convexes si et seulement si les **courbes de niveau** de f sont **convexes** et la **frontière** g (de l'ensemble des points vérifiant les contraintes) est **concave**.
- On sait que ces propriétés sont vérifiées si f est **quasiconcave** et si les fonctions contraintes g^1 , g^2 ,..., g^m sont **quasiconvexes**.
- Ceci donne l'intuition du **Théorème 6**.

Theorem (6)

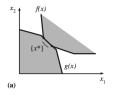
Dans le problème de maximisation contraint

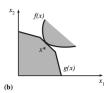
$$\max_{\mathbf{x}} : f(\mathbf{x}) \quad s.c. \ g^{1}(\mathbf{x}) = 0, \ g^{2}(\mathbf{x}) = 0, ..., \ g^{m}(\mathbf{x}) = 0$$

si la fonction f est quasiconcave et si toutes les fonctions g^1 , g^2 ,..., g^m sont quasiconvexes, alors toute solution localement optimale au problème de maximisation contraint est également globalement optimale.

- Les conditions du Théorème 6 n'excluent pas la possibilité d'obtenir plusieurs solutions.
- Pour s'assurer qu'un problème d'optimisation contraint admet une unique solution, on doit renforcer les conditions du Théorème 6.
- Au regard de la Figure 7, on comprend aisément qu'il s'agit de supposer la stricte quasiconcavité de f et/ou la stricte quasiconvexité des fonctions g¹, g²,..., g^m.

Figure 7





Theorem (7)

Dans le problème de maximisation contraint

$$\max_{\mathbf{x}} : f(\mathbf{x}) \quad s.c. \ g^{1}(\mathbf{x}) = 0, \ g^{2}(\mathbf{x}) = 0, ..., \ g^{m}(\mathbf{x}) = 0$$

où f et g sont des fonctions croissantes de x, toute solution localement optimale est unique et globalement optimale si au moins une des deux conditions suivantes est vérifiée:

- 1. La fonction f est strictement quasiconcave et toutes les fonctions g^1 , g^2 ,..., g^m sont quasiconvexes.
- 2. La fonction f est quasiconcave et toutes les fonctions g^1 , g^2 ,..., g^m sont strictement quasiconvexes.