

Algorithmique avancée

TD sur la complexité paramétrée

Exercice 1. IS dans les graphes de degré maximum borné On considère le problème paramétré suivant noté IS_{dec}/Δ :

- \bullet entrée : un graphe G, un entier k
- paramètre : $\Delta(G)$ (degré maximum)
- question : décider si $opt(G) \ge k$, c'est à dire si il existe un stable de taille au moins k
- **Q1.** Montrer que IS_{dec}/Δ est polynomial pour $\Delta = 1$ et $\Delta = 2$.

Il est connu que IS_{dec} est NP-Complet pour les graphes de degré maximum 3.

Q2. Peut on continuer la question précédente pour tout Δ et montrer que IS_{dec}/Δ est XP ? Peut on continuer la question précédente pour tout Δ et montrer que IS_{dec}/Δ est FPT ?

Considérons un algorithme glouton qui, tant qu'il reste des sommets, rajoute un sommet arbitraire, et supprime ce sommet et ses voisins. Soit S le stable obtenu. Si $|S| \ge k$, on retourne true. Considérons donc le cas où |S| < k. Soit $N(S) = \{u \text{ voisins d'un sommet de } S\}$ et $N[S] = S \cup N(S)$.

- **Q3.** Que vaut N[S]?
- **Q4.** Par quoi peut on majorer |N[S]|?
- **Q5.** En déduire un algorithme en $\mathcal{O}(((k-1)(\Delta+1))^k poly(n))$.

On va améliorer la complexité précédente.

- **Q6.** Soit v un sommet. Montrer qu'on a toujours intérêt à utiliser au moins un sommet de N[v]. Plus formelement, montrer que si pour tout stable S, il existe un stable $S' \supseteq S$ tel que $S' \cap N[v] \neq \emptyset$.
- **Q7.** Soit (G, k) une entrée de IS_{dec} . Supposons G non vide, et soit v un sommet. Soit $N[v] = \{u_1, \ldots, u_x\}$. Pour tout $u_i \in N[v]$, soit $G_i = G \setminus N[u_i]$ le graphe obtenu en enlevant u_i et tous ses voisins. Soit $G_0 = G \setminus N[v]$. Considérons l'algorithme A(G, k) qui branche et retourne $A(G_0, k-1) \vee \ldots \vee A(G_x, k-1)$. Montrer que ce branchement est correct, c'est à dire que

$$(G,k)$$
 OUI-instance $\Leftrightarrow \exists i \geq 0$ tel que $(G_i,k-1)$ OUI-instance

- **Q8.** En déduire un algorithme de branchement en $\mathcal{O}((\Delta+1)^k poly(n))$.
- **Q9.** On va maintenant considérer des règles de réduction. Pour chaque règle, dire si elle correcte (sans justification), ou trouver un contre exemple
 - Règle 1 : si il existe un sommet v de degré 1, alors le prendre (et donc on passe de (G, k) à $(G \{v\}, k 1)$)
 - Règle 2 : si il existe un sommet v de degré strictement plus petit que tous les autres, alors le prendre (et donc on passe de (G,k) à $(G-\{v\},k-1)$)