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SUMMARY

Capture-recapture models are widely used in the estimation of population sizes. Based
on data augmentation considerations, we show how Gibbs sampling can be applied to
calculate Bayes estimates in this setting. As a result, formulations which were previously
avoided because of analytical and numerical intractability can now be easily considered
for practical application. We illustrate this potential by using Gibbs sampling to calculate
Bayes estimates for a hierarchical capture-recapture model in a real example.
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1. I N T R O D U C T I O N

An alternative approach to estimating population size by a census is the capture-
recapture methodology which samples the population several times, identifying
individuals which appear more than once. First used by Laplace (1786) to estimate the
population size of France, this approach received its main impetus in the context of
estimating the size of wildlife populations (Otis et al., 1978; Seber, 1982; Pollock, 1991).
Wolter (1986) describes various implementations of this method in the context of surveys
and censuses.

In its most general formulation, the probability model underlying capture-recapture
experiments is as follows. Let N be the unknown size of the population of interest, and
let / be the number of samples taken. The probability that individual j is captured in
sample i is ptj. Assuming that all captures are independent, the likelihood of N and
P = (Pn, • ••, PIN) from data 2 is

L{N,p\3))=tl Y[p%>{l-puy-\ (1-1)
t-ij-i

where Sy = 1 or 0 according to whether or not individual j is captured in sample L
Typically, the parameter space of the general model (1-1) is restricted so that information
about N can be extracted from the data. For example, the commonly applied restriction
Pu^Pi pertains to experiments where the probability of capture is identical across
individuals within each sample; see, for example, Darroch (1958) and Castledine (1981).
For the purpose of illustration, we focus on this homogeneous catch model throughout.

As illustrated by the work of Castledine (1981), Jewell (1985) and Smith (1988,1991),
the Bayesian approach readily lends itself to comprehensive probabilistic modelling and
offers rich potential in the capture-recapture setting. Unfortunately, the possible difficulty
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678 EDWARD I. GEORGE AND CHRISTIAN P. ROBERT

of calculating posterior quantities of interest is sometimes overcome by introducing
unwarranted assumptions. The purpose of this paper is to show how Gibbs sampling, as
an alternative to both analytical calculation and numerical approximation, can facilitate
Bayesian calculations for capture-recapture models, thereby enhancing their scope.

For a large variety of priors ir(N,p), the Gibbs sampler yields an approximation to
the marginal posterior of N, namely n(N \ 2), by simulated sampling from the conditional
distributions

rr{N\p,2), ir(p\N,2), (1-2)

(Gelfand & Smith, 1990; Casella & George, 1992). Starting with an initial value Nm for
N, such as the maximum likelihood estimate, iterations of this simulation can be used
to produce a 'Gibbs sequence'

Nw,pw,N«\/»,..., (1-3)

where 7V(k)~ ir(N\p(k-l), 2) and pw~ Tr(p\N(k\ 2). It follows from Tiemey (1991)
that, when the support of TT(P\N, 2) does not depend on N, the subsequence {pik)} in
(I-3) is an ergodic Markov chain with stationary distribution v(p\2). The duality
principle of Diebolt & Robert (1993) then implies that { N(k)} is also ergodic with stationary
distribution ir(N\2). Thus, the Gibbs sequence can be used to approximate •7r(N\2).
For instance, the ergodic theorem ensures that N = 1 N(k)/ K is a consistent estimator
of E(N\2).

A major reason for the successful implementation of the Gibbs sampler in these
capture-recapture set-ups is the simplification provided by the conditioning in (1-2). This
stems from the fact that the general model (1-1) is multinomial, the analysis of which is
well understood when either the population size N or the probabilities p0 are known.
Note that the analytical approach of integrating out the py, which often leads to intractable
expressions, does not exploit this special structure.

The plan of this paper is as follows. In § 2, we show how Gibbs sampling leads to
manageable Bayes calculations for the special case of (1 • 1) where py = pt. In § 3, we show
how these methods may also be applied to natural hierarchical extensions of these models.
In § 4, the Gibbs sampler is used to compute hierarchical Bayes estimates for the Gordy
Lake sunfish data treated by Castledine (1981) and Smith (1988,1991). Further extensions
are discussed briefly in § 5.

2. BAYES ESTIMATES FOR THE HOMOGENEOUS CATCH MODEL

We now focus on the homogeneous catch model described in the introduction. From
a population of unknown size N, I samples of sizes n , , . . . , n, are consecutively drawn,
marked, and returned to the population. The total number of distinct captured individuals,
denoted by r, is recorded. Note that r = (2.n,) — m, where m is the total number of times
a recaptured individual is observed. If n , , . . . , n, are treated as random, the likelihood
for this experiment may be obtained as the special case of (1-1) when the probability of
any capture in the ith sample is p,js pit namely

where henceforth p = (pt,. •. ,Pi).
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Capture-recapture estimation via Gibbs sampling 679

Following Castledine (1981), we consider priors of the form v(N, p) = v(N)w(p), so
that N and p are a priori independent. Such priors lead to posterior conditionals of the
form

' • ' " (2-2)

In the special case where the p,'s are a priori independent, TT(P) = U TT(P,), and TT(/7,) =
Be (a, b), the beta distribution with mean fi = a/(a + b) and variance T2 =

/i,(l-/i.)/(a + ft + l), it is easy to show that

(2-3)
\jy —r)\ tr-i i (,/v -t-a-t-o; j

Since

Nn, + b\ir(N + l)
i\N + a + b) TT(N) ' K 'TT(N\2) N-r\i.\N + a + b) TT(N)

(2-3) may sometimes be approximated rather accurately by recursion if TT{N + 1)/TT(N)
is readily available such as when ir(N) is Poisson.

Obviously, not all prior formulations allow as clean a solution as (2-3) and (2-4).
However, if one can simulate from the conditional posteriors n(N\p, 2) and v(p \ N, 2)
as in (I-2), then the Gibbs sampler may be a promising computational approach. It
follows from (2-2) that the support of TT(P\N, 2) does not depend on N. Thus, {pik)}
and {Nw} will be Markov chains with stationary distributions v(p\2) and v(N\2)
respectively.

To implement the Gibbs sampler, the only practical restrictions on ir(N) and n(p) is
that they lead to conditional posteriors (2-2) which are easily simulated. Fortunately, a
variety of choices lead to standard distributions for which simulation programs are readily
available. For example, for the simulation of {N(k)}, if v(N) is Poisson with mean A,
the conditional posterior of N-r is Poisson with mean A FI (I-/?,). Alternatively, for
the Jeffreys prior n(N) = I/TV, the conditional posterior of N is negative binomial with
parameters r - l and l - I I ( l - p , ) . For the simulation of {p(k)}, under independent
Be (a, b) priors for the p,'s, the conditional posteriors of the p('s are independent
Be(n, + a, N-n, + b).

Even when the conditional posterior of p is nonstandard, {p(k)} can be simulated by
the adaptive rejection sampling, ARS, algorithm of Gilks & Wild (1992) whenever
ir(p | N, 2) is log concave. From (2-2), this will be satisfied whenever log v(p,) is concave
for each i. One might also consider a logit model on the p,'s, that is

Because

is log concave in a,, these a, can be simulated by adaptive rejection sampling.
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680 EDWARD I. GEORGE AND CHRISTIAN P. ROBERT

3. HIERARCHICAL BAYES EXTENSIONS

The capture-recapture setting can be substantially enhanced by embedding it in a
hierarchical framework in which the components of p can be modelled. This may be
accomplished with priors of the form

TT(N, p I 0)TT(O) = TT(N) jjQ n(p, | 0)}ir(0), (3-1)

where 8 is a hyperparameter governing each prior Tr{p,\d) (Castledine, 1981). Here, N
and p are a priori independent, and pt,.. • ,Pi are a priori exchangeable.

For the likelihood (2 • 1) coupled with a prior of the form (3 • 1), implementing the Gibbs
sampler entails producing a Gibbs sequence {N(k), p(k), 0(k)} (k = 0,1,...), which, except
for preselected initial values, is obtained by alternately simulating from the conditional
posteriors

J 11 (1-/

When the support of n{p,\d) does not depend on 8, {Nw}, {p(k)} and {6ik)} will each
be Markov chains with stationary distributions v(N\2), TT(P\2) and n(8\2) respec-
tively.

Because TT(N \p, 6, 3)) is as before, and ir(p \ N, 6, 2) is a special case of the conditional
posteriors in (2-2), the same considerations concerning ease of simulation apply here.
For example, if n(N) is Poisson we obtain a Poisson posterior, w{N) = 1/N yields a
negative binomial posterior, and Tr(p, \ 8) — Be (a, b) yields Beta posteriors. To simulate
8 = (a, b) for these cases, the conditional posterior is of the form

In many cases, this posterior will be log concave, and so can be simulated by adaptive
rejection sampling. For example, the first three terms on the right-hand side of (3-2)
comprise a log concave probability distribution in a and b when / 2= 2 (George, Makov
& Smith, 1993). Thus, whenever TT(O, b) is log concave or even constant, TT(O, b | N, p, 2)
will be log concave. It can also be shown directly that ir(a, b \ N, p, 2) will be log concave
under priors of the form ir(a, b)oc(a + b)~kI (a, b> 1) for k*£ I.

An alternative hierarchical model is obtained by extending the logit model introduced
previously. The means /i, of the logits a, = log {/></(l -/><)} are usually unknown and may
be modelled as exchangeable normal variables N(r), T2) (Castledine, 1981). This rep-
resentation is particularly attractive when covariates can be used to model the mean
7] = X'P (Huggins, 1989). In any case the simulation of /i, is straightforward since

__ |

is easily simulated. Further elaborations, such as putting priors on a, T and 17, are also
easily accommodated by Gibbs sampling.
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4. THE SUNFISH EXAMPLE

In this section, we briefly illustrate our techniques on the Gordy Lake sunfish data set
treated by Castledine (1981) and Smith (1988, 1991). As shown in Table 1, it consists of
/ = 14 capture occasions from a population of sunfish. At the ith capture, n, fish are
captured out of which m, have been previously captured. Thus, r = 1 (n, — m,) = 138 is
the total number of different fish captured.

Table 1. Capture-recapture counts of Gordy Lake sunfish

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10
0

27
0

17
0

7
0

1
0

5
0

6
2

15
1

9
5

18
5

16
4

5
2

7
2

19
3

Castledine (1981) and Smith (1991) applied the homogeneous catch model (2-1) to
this data using the prior formulation ir(N,p\a, b) = ir(N) II 7r(/>, |a, b) with Jeffreys'
prior Tr(N)ccl/ N, and ir(pl\a,b) = Be(a,b) for various fixed (a, b). Table 2 lists charac-
teristics of TT(N\ data) for some of their choices computed using (2-4). The choices
(a, b) = (0,0), (0,1), (1,1) can be motivated as noninformative, the choices (a, b) =
(2,100), (3,100) as informative, and (a, b) = (1-79, 56-6), which maximizes the likelihood,
as empirical Bayes. The wide variability in posterior characteristics shows sensitive
dependence on fixed choices of (a, b).

Table 2. Posterior characteristics of N for fixed a and b

a

0
0
1
2
3
1-79

b

0
1
1

100
100

56-6

Mean of N

441
446
321
507
419
419

Std. dev.
of N

80-2
81-4
43-2
70-5
51-2
57-0

95% credible
interval

316-628
319-636
251-419
389-664
332-532
324-547

Instead of treating (a, b) as fixed, we pursued the hierarchical approach of putting a
prior on (a, b). We considered the five priors: 7r(a, b)ocexp{-(a + b)/k} for k = 10, 100,
1000, TT(O, 6)= l.and TT(O, b)°c(a + b)~2I (a, b> 1). These priors all put uniform proba-
bility on /x = a/(a + b), the mean of the beta Be (a, b), and vary only in the distribution
on (a + 6). The prior mean of (a + b) is 20, 200, 2000 under the first three priors
respectively, and is infinite under the last two priors. For each of these priors, we used
the Gibbs sampler to approximate posterior characteristics of N, p, a, b, and fi = a/(a + b).
Smith (1991), who applied the prior ir(a, 6)oc(a + b)~2I (a,b>0) to express vague prior
information, used a Laplace approximation to obtain posterior characteristics of N.

Setting initial values by maximum likelihood, we simulated the values p(k) and N(k)

in the Gibbs sequence using the IMSL routines DRNBET and RNNBN respectively, and we
simulated aw and bw using adaptive rejection sampling. For each prior, we generated
a Gibbs sequence of length 106. For each sequence, Table 3 lists the means a, 5, fL, N,
the standard deviation sN of N, and a 95% credible interval for N obtained from the
2-5% and 97-5% quantiles. These may be regarded as estimates of the corresponding
posterior characteristics.

Table 3 shows that the posterior distributions of a and b vary considerably across our
choices of TT(O, b). However, the posterior means fi = a/(a + b) are relatively constant,
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682 EDWARD I. GEORGE AND CHRISTIAN P. ROBERT

Table 3. Posterior characteristics of a, b, p, N for various hierarchical priors

a

1-54
3-64
5-41
6-46
3-33

B

42-6
133
213
257
116

0036
0028
0026
0026
0029

N

403
440
458
462
432

65-8
77-7
851
86-4
76-7

95% credible
interval

297-555
317-617
327-661
325-661
309-615

exp{-(a
exp{-(a

exp{-(a
Constant

(a + b)~2I (a,

around 0-03, suggesting that most of the variation is in the distribution of (a + b). As
(a + 5) increases both N and sN increase, although these values vary less over Table 3
than over Table 2. Note that the priors in Table 2 with similar values of /x — 0-03 yield
much smaller sN and credibility intervals.

5. CONCLUSION

We have shown how Gibbs sampling facilitates Bayesian analyses of homogeneous
capture-recapture experiments by allowing for a much wider choice of prior distributions.
This is especially valuable when only limited prior information is available, as was
demonstrated on the sunfish data.

The homogeneous catch model is only one of a large variety of capture-recapture
models. The applicability of the Gibbs sampler to these models relies only on the missing
value multinomial structure. Fortunately, many of the capture-recapture variants preserve
this structure. For instance, the homogeneous model can be replaced by a behavioural
model (Wolter, 1986), where the probability of capture is modified after a capture, or a
stratified model, where the target population is partitioned into homogeneous subgroups
with different catch probabilities. It also appears that a missing data representation would
simplify the treatment of open population problems where deaths and immigration can
occur, as is often the case in practical problems such as estimating the number of illegal
aliens. Such representations would also be appropriate for tag-loss extensions where
there is a possible misclassification of recaptured objects (Seber & Felton, 1976).
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