Practical Gibbs Sampler

We consider a random vector $X=(X_1,X_2)$ taking values in $\{0,\ldots,n\}\times[0,1]$. The density of X on its support is proportional to

$$\frac{n!}{(n-x_1)!x_1!} x_2^{x_1+\alpha-1} (1-x_2)^{n-x_1+\beta-1}.$$

- 1 For n=10, $\alpha=1$, and $\beta=2$, implement a Gibbs sampler to generate samples approximately distributed according to the law of X. Use graphical diagnostics to verify the convergence of the resulting Markov chain to its stationary distribution.
- **2** Estimate $\mathbb{E}(X_1X_2)$.