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Context

The goal of the gradient descent method is to find a minimum of
a multivariate function as efficiently as possible

The idea is simple : the negative gradient vector points toward
lower values of the function, so one just needs to take a step in
that direction and repeat the process

However, to accelerate convergence, additional parameters can
be introduced (whose proper tuning often requires significant en-
gineering effort)
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Context

Imagine a drop of water at the top of a hill, the drop flows down-
ward following the steepest slope and stops when it reaches a
low point

This is exactly what gradient descent does : starting from a point
on a surface, it computes the direction of the steepest slope
using the gradient, takes a small step in that direction, and re-
peats the process until it reaches a local minimum
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Gradient Descent Algorithm

Let us formalize the idea to highlight both the general principle
and the technical difficulties that may arise

Let f : Rn → R be a differentiable function of several variables
x = (x1, . . . , xn) and assume we can compute its gradient ∇f(x)

Given

▶ An initial point x(0) ∈ Rn

▶ An error tolerance ε > 0
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Gradient Descent Algorithm

Iteration
We compute a sequence of points x(1), x(2), . . . recursively as
follows (suppose we have already obtained the point x(k))

1 Compute the gradient ∇f(x(k))
2 Choose a step size δk and compute

x(k+1) = x(k) − δk∇f(x(k))

The next point x(k+1) is obtained by moving from x(k) in the
direction opposite to the gradient, scaled by the step size δk

Stopping criterion ∇f(x(k+1)) ⩽ ε
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Gradient Descent Algorithm

Obviously, the closer the initial point is to a local minimum, the
faster the algorithm will converge

However, since we do not know where this minimum lies (that is
what we are trying to find), a simple strategy is to choose x(0) at
random

The choice of the step size δk is crucial ; one can always choose
δk small enough to ensure that

f(x(k+1)) ⩽ f(x(k))

since the function decreases in the direction of −∇f(x(k))
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Gradient Descent Algorithm

One may fix in advance a common step size δ for all iterations,
for instance δ = 0.01

The stopping criterion ensures that at x(k), the gradient is very
small

However, this does not guarantee that the point is close to a local
minimum (and even less to a global one)

Recall that at a local minimum the gradient vanishes, but the
converse is not necessarily true : a point with a zero gradient
may also be a saddle point or even a local maximum
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Gradient Descent Algorithm

In practice, instead of defining an error threshold ε, it is often
more convenient to fix in advance a maximum number of itera-
tions

It is important to compute ∇f(x) efficiently

One could, of course, approximate each partial derivative using
finite differences (however, for both speed and accuracy, it is
preferable to use analytical expressions whenever possible)
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Gradient Descent Algorithm
Examples

f(x) = x2 + 1

x(0) = 2
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Gradient Descent Algorithm
Examples

f(x) = x4 − 5x2 + x+ 10

δ = 0.02, x(0) = −2
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Gradient Descent Algorithm
Examples

f(x) = x4 − 5x2 + x+ 10

δ = 0.02, x(0) = −0.5
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Gradient Descent Algorithm
Examples

f(x) = x4 − 5x2 + x+ 10

δ = 0.02, x(0) = 0.5
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Gradient Descent Algorithm
Examples

f(x) = x4 − 5x2 + x+ 10

δ = 0.02, x(0) = 2
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Gradient Descent Algorithm
Examples

f(x) = x4 − 2x3 + x+ 4

δ = 0.05, x(0) = −1
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Gradient Descent Algorithm
Examples

f(x1, x2) = x2
1 + 3x2

2

δ = 0.1, x(0) = (−1,−1)
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Gradient Descent Algorithm
Varying the step size

We now focus on the choice of the step size δ, also called the
learning rate

As we approach a minimum, the vector δ∇f(x(k)) tends to zero
even if δ remains constant

However, δ must be chosen neither too large nor too small : if
δ is too large, the points x(k) will oscillate around the minimum,
whereas if δ is too small, convergence toward the minimum will
be extremely slow

A common solution is to let δ vary during the iterations : starting
with a relatively large δk for the first steps, and gradually decrea-
sing it thereafter
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Gradient Descent Algorithm
Varying the step size

Below are several possible update rules for the step size, where
δ0 is the initial step

Linear decay

δk =
δ0

k+ 1

Quadratic decay

δk =
δ0

(k+ 1)2

Exponential decay
δk = δ0e

−βk

where β is a positive constant
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Stochastic Gradient Descent (SGD)

In machine learning applications, the function f(θ) represents a
loss function that depends on a large dataset

f(θ) =
1
N

N∑
i=1

ℓi(θ)

where ℓi(θ) = ℓ(yi, fθ(xi)) measures the error for observation i

and θ the parameters of the model

Computing the full gradient ∇f(θ) can therefore be very expen-
sive when N is large
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Stochastic Gradient Descent (SGD)

Idea of Stochastic Gradient Descent (SGD)

Instead of using the gradient over the entire dataset, we approxi-
mate it using only a single randomly selected data point (or a
small subset, called a mini-batch) at each iteration

For iteration k :

1 Select a random index (or batch) ik
2 Compute the stochastic gradient ∇ℓik(θ

(k))

3 Update the parameters

θ(k+1) = θ(k) − δk∇ℓik(θ
(k))
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Stochastic Gradient Descent (SGD)
Remarks

▶ Each update uses only partial information about f, which
introduces noise but greatly reduces computational cost

▶ The noise can help the algorithm escape shallow local
minima or saddle points

▶ To ensure convergence, the step size δk is often
decreased over time

▶ In practice, mini-batch SGD (using small batches of data)
offers a good compromise between speed and stability
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Stochastic Gradient Descent (SGD)
Gradient Descent Variants

Method Gradient Computation

GD Uses the full dataset (N samples)

SGD Uses one random sample per iteration

Mini-Batch SGD Uses a small subset (batch of b samples)
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Stochastic Gradient Descent (SGD)
Gradient Descent Variants

Method Computation Cost

GD High (exact gradient)

SGD Very low (fast updates)

Mini-Batch SGD Moderate (parallelizable)
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Stochastic Gradient Descent (SGD)
Gradient Descent Variants

Method Convergence Behavior

GD Smooth but potentially slow

SGD Noisy trajectory, may oscillate

Mini-Batch SGD Balances speed and stability
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Stochastic Gradient Descent (SGD)
Example

We illustrate the different variants of Gradient Descent on a simple
linear regression problem with two parameters

yi = θ1xi1 + θ2xi2 + εi, εi ∼ N (0,σ2)

The objective is to minimize the mean squared error (MSE)

f(θ) =
1
N

N∑
i=1

(yi − x⊤i θ)
2

with gradient

∇f(θ) =
2
N

X⊤(Xθ− y)
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Stochastic Gradient Descent (SGD)
Example

We generate a synthetic dataset with two predictors and com-
pare three optimization strategies :

▶ GD uses the full dataset at each iteration
▶ SGD uses a single observation per iteration
▶ Mini-Batch SGD uses small random subsets of data

The updates are given by

θ(k+1) = θ(k) − δk∇samplef(θ
(k))

where the gradient is computed from either the full dataset, a
single data point ou a batch
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Stochastic Gradient Descent (SGD)
Example

Jean-Michel Marin (FdS) Gradient descent HAX912X 27 / 28



Stochastic Gradient Descent (SGD)
Example
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