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Context

The goal of the gradient descent method is to find a minimum of
a multivariate function as efficiently as possible

The idea is simple : the negative gradient vector points toward
lower values of the function, so one just needs to take a step in
that direction and repeat the process

However, to accelerate convergence, additional parameters can

be introduced (whose proper tuning often requires significant en-
gineering effort)
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Context

Imagine a drop of water at the top of a hill, the drop flows down-
ward following the steepest slope and stops when it reaches a
low point

This is exactly what gradient descent does : starting from a point
on a surface, it computes the direction of the steepest slope
using the gradient, takes a small step in that direction, and re-
peats the process until it reaches a local minimum
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Gradient Descent Algorithm

Let us formalize the idea to highlight both the general principle
and the technical difficulties that may arise

Let f : R™ — R be a differentiable function of several variables
x = (x1,...,xn) and assume we can compute its gradient Vf(x)

Given

» An initial point x(©) ¢ R™
» An error tolerance ¢ > 0
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Gradient Descent Algorithm

Iteration
We compute a sequence of points x("), x(2) ... recursively as
follows (suppose we have already obtained the point x(¥))

© Compute the gradient V(x(*))
® Choose a step size &, and compute

xH) = x5y v(x())

The next point x(**1) is obtained by moving from x(¥) in the
direction opposite to the gradient, scaled by the step size &y

Stopping criterion V(x**1) < ¢
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Gradient Descent Algorithm

Obviously, the closer the initial point is to a local minimum, the
faster the algorithm will converge

However, since we do not know where this minimum lies (that is
what we are trying to find), a simple strategy is to choose x(°) at
random

The choice of the step size &y is crucial ; one can always choose
ok small enough to ensure that

FxH) < f(xF))

since the function decreases in the direction of —Vf(x(*))
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Gradient Descent Algorithm

One may fix in advance a common step size 6 for all iterations,
for instance 6 = 0.01

The stopping criterion ensures that at x(¥), the gradient is very
small

However, this does not guarantee that the point is close to a local
minimum (and even less to a global one)

Recall that at a local minimum the gradient vanishes, but the

converse is not necessarily true : a point with a zero gradient
may also be a saddle point or even a local maximum
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Gradient Descent Algorithm

In practice, instead of defining an error threshold ¢, it is often
more convenient to fix in advance a maximum number of itera-
tions

It is important to compute Vf(x) efficiently
One could, of course, approximate each partial derivative using

finite differences (however, for both speed and accuracy, it is
preferable to use analytical expressions whenever possible)
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Gradient Descent Algorithm
Examples

f(x) =x% +1
X0 —
65=0.9 6=11 6 =0.05
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Gradient Descent Algorithm
Examples

f(x) =x*—5x2 +x+ 10
§=0.02, x0=_-2
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Gradient Descent Algorithm
Examples

f(x) =x*—5x2 +x+ 10
§=0.02, x9=-05
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Gradient Descent Algorithm
Examples

f(x) =x*—5x2 +x+ 10
§=0.02, x© =05

Jean-Michel Marin (FdS) Gradient descent



Gradient Descent Algorithm
Examples

f(x) =x*—5x2 +x+ 10
5§=0.02, x@ =2
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Gradient Descent Algorithm

Examples
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Gradient Descent Algorithm
Examples

f(x1,%x2) = X? + 3X§

§=01, x%=(-1,-1)
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Gradient Descent Algorithm
Varying the step size

We now focus on the choice of the step size 6, also called the
learning rate

As we approach a minimum, the vector § Vf(x(¥)) tends to zero
even if 5 remains constant

However, 6 must be chosen neither too large nor too small : if
§ is too large, the points x(*) will oscillate around the minimum,
whereas if  is too small, convergence toward the minimum will
be extremely slow

A common solution is to let & vary during the iterations : starting
with a relatively large 6y for the first steps, and gradually decrea-
sing it thereafter
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Gradient Descent Algorithm

Varying the step size
Below are several possible update rules for the step size, where
5o is the initial step

Linear decay

8o
=17
Quadratic decay
5y — — 20
T k+1)2
Exponential decay
Sy = doe P¥

where {3 is a positive constant
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Stochastic Gradient Descent (SGD)

In machine learning applications, the function f(0) represents a
loss function that depends on a large dataset

1 N
f(0) = D_ti(6)
i=1

where £;(0) = £(yi, fg (xi)) measures the error for observation i
and 0 the parameters of the model

Computing the full gradient V{(0) can therefore be very expen-
sive when N is large
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Stochastic Gradient Descent (SGD)

Idea of Stochastic Gradient Descent (SGD)

Instead of using the gradient over the entire dataset, we approxi-
mate it using only a single randomly selected data point (or a
small subset, called a mini-batch) at each iteration

For iteration k :

@ Select a random index (or batch) iy
® Compute the stochastic gradient veik(e(k))
® Update the parameters

pltt) =gkl 5, vey, (8(%)
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Stochastic Gradient Descent (SGD)
Remarks

» Each update uses only partial information about f, which
introduces noise but greatly reduces computational cost

» The noise can help the algorithm escape shallow local
minima or saddle points

> To ensure convergence, the step size &y is often
decreased over time

» In practice, mini-batch SGD (using small batches of data)
offers a good compromise between speed and stability
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Stochastic Gradient Descent (SGD)
Gradient Descent Variants

Method Gradient Computation

GD Uses the full dataset (N samples)
SGD Uses one random sample per iteration
Mini-Batch SGD | Uses a small subset (batch of b samples)
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Stochastic Gradient Descent (SGD)
Gradient Descent Variants

Method Computation Cost
GD High (exact gradient)
SGD Very low (fast updates)
Mini-Batch SGD | Moderate (parallelizable)
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Stochastic Gradient Descent (SGD)
Gradient Descent Variants

Method Convergence Behavior
GD Smooth but potentially slow
SGD Noisy trajectory, may oscillate
Mini-Batch SGD | Balances speed and stability
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Stochastic Gradient Descent (SGD)
Example

We illustrate the different variants of Gradient Descent on a simple

linear regression problem with two parameters

Yi = 01xi1 + Oaxia + &1, &1~ A(0,0%)

The objective is to minimize the mean squared error (MSE)

with gradient
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Stochastic Gradient Descent (SGD)
Example

We generate a synthetic dataset with two predictors and com-
pare three optimization strategies :

» GD uses the full dataset at each iteration
» SGD uses a single observation per iteration
> Mini-Batch SGD uses small random subsets of data

The updates are given by
e(k+1) = e(k) — Ok Vsamplef(e(k))

where the gradient is computed from either the full dataset, a
single data point ou a batch
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Stochastic Gradient Descent (SGD)

Example
o
(\II —
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Stochastic Gradient Descent (SGD)
Example

loss
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